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Measuring Transcription Directly From Our Chromosomes

Abstract
Our genome is organized into DNA segments called chromosomes. Alterations to the typically invariant
number and composition of chromosomes are hallmarks of serious disease like cancer. Understanding how
rearranging chromosomes affects chromosomal behavior and ultimately leads to disease requires
chromosome-specific gene expression measurements, but current tools are insufficient. This thesis describes
tools for measuring transcription while discriminating which copy of a gene the RNA comes from. The ability
to take these measurements in single cells enabled us to measure changes in transcription on translocated
chromosomes or from the maternal vs. paternal chromosomes.

Firstly, we introduce intron chromosomal expression FISH (iceFISH), a multiplex imaging method for
measuring transcription and chromosome structure simultaneously on single chromosomes. We find
substantial differences in transcriptional frequency between genes on a translocated chromosome and the
same genes in their normal chromosomal context in the same cell. Correlations between genes on a single
chromosome pointed toward a cis chromosome-level transcriptional interaction spanning 14.3 megabases.

Chromosomes also come in nearly identical pairs and gene expression is a mixture of RNA transcribed from
the maternal or paternal copies. The infrequent sequence differences between parental copies can have serious
implications for the viability of cell or organism but detecting single nucleotide differences is difficult, making
these behaviors nearly impossible to study in detail. We present a high efficiency fluorescence in situ
hybridization method for detecting single nucleotide variants (SNVs) on individual RNA transcripts, both
exonic and intronic. We used this method to quantify allelic expression at the population and single cell level,
and also to distinguish maternal from paternal chromosomes in single cells.

The findings we present in this thesis have far-reaching implications for understanding the transcriptional
effects of translocations, and the tools described in this thesis are widely applicable to studying gene
regulation and developing in vitro diagnostics.
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ABSTRACT

MEASURING TRANSCRIPTION DIRECTLY FROM OUR

CHROMOSOMES

Marshall James Levesque

Dr. Arjun Raj

Our genome is organized into DNA segments called chromosomes. Alterations to the typi-

cally invariant number and composition of chromosomes are hallmarks of serious disease like

cancer. Understanding how rearranging chromosomes affects chromosomal behavior and ul-

timately leads to disease requires chromosome-specific gene expression measurements, but

current tools are insufficient. This thesis describes tools for measuring transcription while

discriminating which copy of a gene the RNA comes from. The ability to take these mea-

surements in single cells enabled us to measure changes in transcription on translocated

chromosomes or from the maternal vs. paternal chromosomes.

Firstly, we introduce intron chromosomal expression FISH (iceFISH), a multiplex imaging

method for measuring transcription and chromosome structure simultaneously on single

chromosomes. We find substantial differences in transcriptional frequency between genes

on a translocated chromosome and the same genes in their normal chromosomal context

in the same cell. Correlations between genes on a single chromosome pointed toward a cis

chromosome-level transcriptional interaction spanning 14.3 megabases.

Chromosomes also come in nearly identical pairs and gene expression is a mixture of RNA

transcribed from the maternal or paternal copies. The infrequent sequence differences be-

tween parental copies can have serious implications for the viability of cell or organism but

detecting single nucleotide differences is difficult, making these behaviors nearly impossible

to study in detail. We present a high efficiency fluorescence in situ hybridization method

for detecting single nucleotide variants (SNVs) on individual RNA transcripts, both exonic
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and intronic. We used this method to quantify allelic expression at the population and

single cell level, and also to distinguish maternal from paternal chromosomes in single cells.

The findings we present in this thesis have far-reaching implications for understanding the

transcriptional effects of translocations, and the tools described in this thesis are widely

applicable to studying gene regulation and developing in vitro diagnostics.
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CHAPTER 1 : Introduction

RNA is the messaging molecule transcribed from regions of our DNA called genes. After

leaving a cells nucleus, RNA is ultimately translated into proteins that perform the functions

of the cell. This whole process is called gene expression. The cell regulates levels of RNA as

it needs more or less of each gene product. Scientists often study gene expression by growing

millions of cells in a dish, breaking them up into a slurry, extracting out the molecules of

interest, and end up measuring numbers like average RNA per cell. Measuring population-

averaged RNA levels is sufficient to answer some questions about how a cell operates.

However, each cell in the genetically identical cell population can behave differently due to

variability in gene expression[63]. Population-based measurements mask this diversity of

behaviors of individual cells.

With advances in technology, it is possible to characterize the previously ’hidden’ differences

between individual cells. Quantitatively characterizing this heterogeneity revealed new

details in behaviors like intracellular signaling [21], noise in gene expression[16], and the

dynamics of RNA transcription[60]. The work described in this thesis involved building and

applying new tools to measure single cell transcriptional behaviors. We extend quantitative,

single cell transcriptional measurements down to the single chromosome source of RNA.

Transcription is partially regulated by the linear arrangement of genes along chromosomes

as well as the spatial positioning of chromosomes in the three-dimensional cell nucleus[53].

To investigate these ideas, we developed an assay called iceFISH capable of measuring chro-

mosome structure and active transcription simultaneously in single cells. Using iceFISH,

we uncovered chromosome-specific differences in transcriptional regulation between normal

vs. rearranged chromosome copies. Contrary to conclusions in other studies[52, 33], spatial

positioning of chromosomes and their genes did not correlate with transcriptional activity.

We also showed that genes on the same chromosome copy display interactions despite being

separated by significant genomic distance.
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Our findings of gene copies behaving differently within the same cell led us to pursue a

tool capable of measuring the allelic origin of individual RNA molecules. Alleles are non-

identical copies of a gene or genetic locus. However, alleles can differ by only a single

nucleotide, making it difficult to discriminate these minor differences in a quantitative

manner for measuring RNA levels. After developing an assay capable of distinguishing

single nucleotide differences, we characterized allelic imbalance for gene copies at the cell

population and single cell level. We demonstrated how a cell population can be balanced

in expressing both alleles of a gene, but on the single cell level show a bias towards one

allele or the other. As an extension of previously mentioned work in detecting chromosome

structure, we labeled numerous parental alleles simultaneously and identified parental origin

of chromosomes along with their structure in the nucleus.

The following text provides an overview of literature covering the role of chromosome struc-

ture and its role in regulating transcription. We then summarize ideas and evidence of how

the two copies of each gene in a cell may or may not produce equal amounts of RNA.

1.1. Genomic structure and its role in regulating gene expression

DNA is a linear molecule and as a genome it occupies the three-dimensional space of a cell’s

nucleus. In humans, the 6 billion nucleotide pairs (3 billion multiplied by 2 to account for

both parents) that make up the genome would reach around 2 meters when stretched out

straight. All this DNA is packaged into a nucleus often smaller than 10µm in diameter.

The spatial arrangement of the DNA in the nucleus, across a range of length scales and

complexity, is thought to regulate transcription, and thus cellular function, in many ways.

This regulation affects the ability for cells to differentiate into different cell types[3, 25],

to remember cellular state over time and cell division[26, 56], to co-regulate the expression

of genes that depend on each other[69, 20], and designate one parental copy as the main

source of expression[48]. This structure-function relationship suggests that disruption of

the normal, healthy genome structure can lead to disease. The following is a survey of the

literature on genomic organization and its role in regulating gene expression.
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1.1.1. Chromosome copy number, dosage, aneuploidy

Human genomic DNA is organized into 231 segments called chromosomes. Each chromo-

some also comes in two copies, one from each parent. For a cell to divide, chromosomes

are replicated, condense into tube-like structures, line up at the center of the dividing cell,

and then evenly distribute into the two new daughter cells. After division, chromosomes

decondense and fill up a newly formed nucleus. The number of chromosomes and the linear

arrangement of genes that make up each chromosome are nearly flawlessly maintained over

the countless cell divisions over one’s life and the production of gametes to pass DNA to

progeny. Disruptions in chromosome copy number or stitching together parts of different

chromosomes are hallmarks of serious disease like cancer and developmental disorders. This

strongly suggests that the structural composition of our genome is imperative for proper

function.

Variation in chromosome copy number is a gross modification of genomic structure called

aneuploidy and has serious implications for cellular function. The gain or loss of a chro-

mosome copy correlates with an increase or decrease in expression of the genes on the

chromosome, respectively . Expression changes roughly track copy number 1:1 so therefore

having 3 copies of a chromosome, a trisomy, leads to 1.5X expression of the chromosome’s

genes that are normally 2 copies in a diploid cell[4]. This phenomenon is referred to as gene

dosage. Fitness of the cell or organism is most always negatively affected by aneuploidy[70].

Serious developmental diseases like down-syndrome are caused by trisomies[64] and system-

atically induced trisomies show transcriptome-wide gene expression changes[57]. Detrimen-

tal effects of unbalanced chromosome copy number are thought to result from imbalanced

stoichiometry of gene products. This argument hinges on the fact that some heteromeric

complexes are composed of proteins encoded on different chromosomes and a difference in

chromosome number changes the amount of one component, thus throwing off the balance

in building the heteromeric protein structures[70].

122 plus the X or Y sex chromosome
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1.1.2. Chromosome and gene positioning

Over more than a decade, views have evolved over what influences chromosome positioning

in the nucleus. Most of what we know about chromosome organization in the nucleus came

through the application of fluorescently labeled nucleic acid probes to fixed tissues, targeting

genomic loci or whole chromosomes, and imaged using microscopy. These techniques are

generally referred to as DNA FISH (fluorescence in situ hybridization).

Using whole chromosome probes[9], studies showed that the chromosomes occupy relatively

distinct territories in the interphase nucleus, with smaller chromosomes toward the nuclear

periphery[13]. This idea was explored in more detail by considering the composition of

chromosomes, and radial positioning in the nucleus was attributed to gene density and

replication timing within a chromosome[37]. Despite being mostly contained to their own

territories, all 46 chromosomes packed into the nucleus do intermingle[80]. One is then

presented with the questions of whether chromosomes come into contact with others more

frequently than random. In studies that sought to better understand the causes of common

cancers, researchers showed that the frequency of inter-chromosomal contacts within the

nucleus is correlated with frequency of translocation events[7, 74, 89]. Overall, these studies

established the existence of chromosome territories in the interphase nucleus, but left open

how individual genes are arranged in and around those territories.

DNA FISH methods can be applied with genomic resolution down to detecting locations

of individual genes or loci. Studies showed how the spatial positioning of genes within a

chromosome territory can correlate with and potentially regulate transcription[55]. In gen-

eral, the nuclear periphery is occupied by less active genes while active genes prefer the

center of the nucleus[22, 28]. Focused regions of the nucleus with hotspots of transcrip-

tional activity are referred to as transcription factories and house collections of active RNA

polymerase[58, 54]. These factories can also contain shared transcription factors that bring

together co-regulated genes from different chromosomes[69]. Besides the chromosome terri-

tories themselves, nuclear structure itself can play a regulatory role as shown in the example
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of inactive portions of chromosomes rapidly activating transcription after dissociating with

the nuclear lamina[59].

Studying the organization of DNA in the nucleus using microscopy has single cell resolution

but suffers from both low-throughput and poor genomic resolution. Biochemical methods

based on a technique called chromosome conformation capture (3C) measure DNA contact

probability in a cell population with detailed genomic resolution [75, 14] and provide the

opportunity to survey genome-wide using high-throughput DNA sequencing[47, 35, 83]. The

problem with 3C-based tools is that they only produce gene-pair contact probabilities from

the population, thus averaging all interactions. If a chromosome exists primarily in two

distinct spatial conformations, the contacts measured from the two conformations would

blend together into one set of signals. Another issue with using gene-pair interactions from

the population is the example of studying three genes, A, B, and C. All gene-pair interactions

might be detected, but one could never confidently claim that all three are in contact with

each other at one time in single cells or if they are mutually exclusive. Most problematically,

it is difficult to associate observed interactions with gene activity and impossible measure

relative spatial position in the nucleus.

The lack of transcriptional activity measurements is a major downside to both DNA FISH

and 3C-based methods. In order to characterize the influence of spatial arrangement of

chromosomes on transcription, ideally one would observe both simultaneously. Additionally,

to study the regulatory effects of altered genomic structure, such as translocations, we need

to be able to assign transcriptional activity to either the normal or edited chromosome

copies. This is our motivation in developing the iceFISH assay detailed in Single chromosome

transcriptional profiling using iceFISH.

1.2. Transcription from different copies of a gene in single cells

A normal human cell contains two copies of its chromosomal DNA, one from each parent.

Between the two copies, infrequent nucleotide differences can be sufficient to alter the levels
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of transcribed RNA or the functionality of the translated protein product. Most approaches

to measuring RNA levels, however, cannot distinguish the mixture of RNA molecules pro-

duced from both copies. Lack of interest is not why scientists overlook which allele an RNA

comes from. The structural and thermodynamic differences of single nucleotide changes

are too subtle for most measurement techniques to detect. If tools were sensitive enough

to quantitatively measure RNA levels for each allele, especially at the level of a single

cell, many unaddressed topics in transcriptional regulation become reasonable questions to

explore. We highlight a number of these allele-specific gene expression topics in this section.

1.2.1. Variability in imprinted gene expression

Through a process of chemical modifications to the DNA during gametogeneis, some ge-

nomic regions are marked for parental-specific transcription[2]. This process is called ge-

nomic imprinting and is essential to fetal development, placental physiology, and driving

the development of certain cell types[19]. Imprinted gene expression is also often seen in a

tissue-specific manner[81], mainly in the placenta, testes, and neural cell lineages. To fully

characterize this tissue-specific expression of imprinted genes, we must assign transcription

to individual cells, thus making in situ techniques an attractive strategy.

From a clinical perspective, loss of imprinting due to genetic mutations is the cause of

a number of serious diseases. One example is BeckwithWiedemann Syndrome (BWS)[40]

where transcription is seen from both parental copies from a normally imprinted locus.

Patients with BWS display overgrowth or asymmetry in their physical features and have

a significantly higher risk of developing tumors[15]. The affected genes express balanced,

biallelic RNA levels according to measurements from a cell population. These population

measurements make it impossible to distinguish whether these loss of imprinting mutations

lead to a 50/50 split in the population of cells with exclusive expression of maternal or

paternal RNA, or each individual cell splitting its transcriptional output 50/50 between

paternal and maternal copies. This is an incredibly well-suited opportunity for an allele-

specific, single cell RNA measurement tool to provide the details needed to understand
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mechanisms of a disease.

1.2.2. Allelic imbalance in non-imprinted genes

Beyond the all-or-none allelic expression of imprinting, which includes only a few hundred

genes in humans[36], single cells or the cell population may transcribe RNA for a gene

with a bias for the maternal or paternal copy. If one copy is defective in some way, an

allelic imbalance as subtle as 60/40 favoring the defective copy could have detrimental

physiological consequences. One simple cause for this type of expression pattern is hav-

ing a single nucleotide polymorphism (SNP) in a transcription factor recognition site on

one allele, thus altering transcriptional rate from that allele[65]. It is also plausible that

SNPs within the gene do not alter transcription, but complex, inherited genetic differences

scattered throughout the genome lead to the imbalance[84]. At the level of a single cell,

an allelic imbalance could also be a transient manifestation through the stochastic nature

of transcription, where genes are transcribed infrequently and in ”bursts”[60]. If an RNA

degrades fast enough while being produced in bursts of transcription from the same allele,

a cells RNA would then have a strong bias for one version of a gene. This single cell imbal-

ance is imperceptible using RNA from the cell population. Therefore, studying this behavior

necessitates a quantitative, single-cell method of measuring allele-specific transcription.

This section outlined motivations for measuring allele-specific RNA levels on the single cell

level. We succeeded in developing a technique to perform these types of studies in situ

and describe the method and applications in Single cell allele-specific expression using SNP

FISH.
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CHAPTER 2 : Single chromosome transcriptional profiling reveals

chromosome-level regulation of gene expression

2.1. Background

Researchers generally believe that the transcription of a gene’s DNA into RNA is con-

trolled by the interaction of regulatory proteins with DNA sequences proximal to the gene

itself. At the same time, genes are organized by the thousands into chromosomes, raising

the possibility that the structure or organization of chromosomes themselves may influ-

ence transcription. Indeed, there are several examples of complex regulatory interactions

within clusters of genes[41, 68] and between segments of DNA separated by lengths up

to a couple megabases[8]; however, little is known about how organization at the chromo-

some length scale affects gene expression. There are several hints that such chromosome-

specific regulation may exist, such as the distinct banding patterns characteristic of par-

ticular chromosomes[42] and evidence for large-scale chromosomal rearrangements leading

to disease[78], but the lack of tools to measure transcription along individual chromosomes

has hampered the ability to directly test such hypotheses.

Here, we describe a microscopy-based method called iceFISH that enabled us to generate

per-chromosome transcriptional profiles of 20 genes simultaneously along individual copies

of human chromosome 19 in single cells. Using this tool, we first examined how chromo-

somal translocations altered transcription, finding substantial differences in transcriptional

frequency between the majority of genes located on a translocated piece of chromosome 19

and the two normal copies of chromosome 19 present in HeLa cells. Second, measurement of

correlations between these genes on a single chromosome revealed a cis chromosome-specific

transcriptional interaction between two genes spanning 14.3 megabases. Our analysis did

not, however, reveal connections between these effects and the three-dimensional conforma-

tions of the chromosome. Our findings point to the presence of long-range, chromosome-

specific transcriptional regulatory mechanisms that may not depend on chromosome shape
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but can be disrupted by alterations to genome structure.

2.2. Results

2.2.1. iceFISH allows per-chromosome transcriptional profiling

Our method utilizes RNA fluorescence in situ hybridization[18, 62] (RNA FISH) in a way

that allows us to uniquely identify and localize the transcriptional activity of 20 genes from

the same chromosome in single cells. For each gene, we wanted to visualize only nascent

transcription and ignore mature messenger RNA (mRNA), so we took advantage of the fact

that cells transcribe nascent RNAs comprised of exons and introns. The splicing process

removes introns and joins exons into mature mRNAs that then leave the nucleus, with

introns typically degrading rapidly after being spliced out of the nascent RNA. Labeling

the intron thus enables one to measure whether or not the gene is actively transcribing[24],

and, if active, the three-dimensional coordinates of that gene[32, 82, 79]. We probed the

introns with sets of short, fluorescently labeled nucleic acid probes (Fig. 2.1a,[62]), and

using fluorescence microscopy, we detected active sites of transcription in three dimensions

without the accompanying mRNAs. Note that even genes considered constitutively active

do not always actively transcribe RNA, as transcription occurs in short but intense ”bursts”

on the order of tens of minutes separated by ”off” periods on the order of several hours[30,

10, 60, 72]; researchers believe these bursts arise from random aspects of the transcriptional

process[63]. The overall transcription rate is proportional to the probability of finding such

a spot for each gene (see Supplementary discussion).

Although targeting a single genes introns provides its 3D position, it does not yield informa-

tion about the location of the gene relative to the chromosome. To visualize the chromosome,

we designed probes targeting the introns of 20 genes along chromosome 19 (Fig. 2.2). Chro-

mosome 19 is an ideal test case for our assay because it is densely populated with highly

expressing genes. Applying all of these probes, each labeled with the same fluorophore, on

human foreskin fibroblasts, we ”painted” chromosome 19 (Fig. 2.1e), allowing one to readily
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Figure 2.1: a. Depiction of our scheme for labeling the site of transcription by targeting gene
introns with a series of labeled oligonucleotide probes. b. DAPI stain of the cells nucleus. c. RNA
FISH targeting mRNA from the EEF2 gene (labeled with Alexa594 dye). d. RNA FISH targeting
EEF2 introns (labeled with Cy3). e. Depiction of our scheme for labeling chromosome 19 via RNA
FISH by labeling several introns simultaneously in a single color. f. 17 gene intron chromosome 19
”paint” (cyan, labeled with Cy3), intron of EEF2 (white, labeled with ATTO 647N), EEF2 mRNA
(magenta, labeled with Alexa594), and the nucleus (yellow), labeled with DAPI. All images are
maximum z-projections of a three-dimensional z-stack. All scale bars are 5µm long.
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visualize the two chromosome copies (Fig. 2.1f), confirming the long known fact that inter-

phase chromosomes are organized into distinct territories[13] (as beautifully demonstrated

in Boltzer et al. PLoS Biology 2005[6]). Simultaneously, we applied a differently- colored

probe targeting the intron of a particular gene on chromosome 19 (EEF2), and used a probe

labeled with a third color to detect EEF2 mRNA (Fig. 2.1f). These chromosomal intron

paints demonstrated the ability to simultaneously visualize chromosome structure, gene po-

sition, transcriptional activity, and mRNA abundance in a single (Fig. 2.1f) cell, a process

which we call iceFISH for intron chromosomal expression FISH. RNase experiments showed

that the spots did not result from probes binding to DNA (Fig. 2.3). All spots disappeared

within 30 minutes after addition of the transcriptional inhibitor Actinomycin D (Fig. 2.4),

and comparing intron and exon probe spot intensities at the site of transcription revealed

a strong correspondence between active transcription and the presence of an intron spot

(Fig. 2.5). (We also found a correspondence between run-on nascent transcript sequencing

data19 and intron spot frequency; Fig. 2.6). Furthermore, colocalization of intron spots

with bright exonic transcription sites (Fig.2.7, inset) and with DNA FISH probes targeting

the gene locus (Fig. 2.8) show that the intron spot location correctly marks the site of

transcription itself.

In order to measure all 20 genes transcriptional status simultaneously, we utilized a color-

coding approach that enabled us to uniquely identify each spot in our chromosomal paint.

We labeled each genes introns with a particular ”pseudocolor”, which is a distinct code for

each gene consisting of either two or three out of a base palette of five spectrally distinguish-

able fluorophores (Fig. 2.9A,B; akin to other methods[44, 49]). To assign gene identity, we

looked for colocalization of two or three spots in the images we acquired for each fluorescence

channel (Fig 2.9C-H) corresponding to the pseudocolor probe labeling scheme we employed,

aligning the channels using spots from an mRNA labeled with all 5 dyes. In human fore-

skin fibroblasts, which are primary cells containing two intact copies of chromosome 19

before DNA replication, we could usually discern two chromosomes clearly separated into

individual territories (Fig. 2.9I,J), with roughly 22% of cells having commingled territories
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Figure 2.2: We selected many potential genes based on high abundance of their mRNA (determined
by RNA-seq and RT-PCR), then narrowing our focus to a subset of those with high intron spot
frequencies as measured by RNA FISH. Ultimately, the set of genes we picked had spot frequencies
ranging between 10% and 80% of chromosomes exhibiting a spot; see Fig.2.13 for some representative
numbers. The smallest genetic distance between loci was 0.36 megabases (between TOMM40 and
MARK4)
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Figure 2.3: We exposed HeLa cells to 10µg/mL of RNase A for 30 minutes after fixation and
before hybridization (right panels), with control cells exposed to the same procedure but without
the addition of RNase. The top row contains images of the DAPI nuclear stain. The second row
contains images in which we labeled the introns of all genes except EEF2, thus painting active genes
in chromosome 19, and in the third row we labeled the introns of EEF2. In the fourth row, we
labeled EEF2 mRNA. All images are maximum intensity projections of a z-stack of fluorescence
images. The scale bar is 5µm long and applies to all images depicted. These results show that
RNase A eliminates all the FISH signals we observed in the cells. This shows that the signals we
are detecting are due to binding to RNA and not DNA, showing that our probes are detecting RNA
from actively transcribing genes and not the DNA of gene itself.
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Figure 2.4: We exposed HeLa cells to 2µg/mL of actinomycin D for varying amounts of time as
indicated. The top row contains images of the DAPI nuclear stain. The second row contains images
in which we labeled the introns of all genes except EEF2, thus painting active genes in chromosome
19, and in the third row we labeled the introns of EEF2. In the fourth row, we labeled EEF2
mRNA. All images are maximum intensity projections of a z-stack of fluorescence images. The scale
bar is 5µm long and applies to all images depicted. We found that virtually all the intronic RNA
disappeared or greatly diminished in intensity after 30 minutes of Actinomycin D exposure. In the
case of EEF2 intron, we found absolutely no spots; in the case of the chromosome paint, we did
occasionally see dim spots even at later time points, although they were considerably dimmer. These
may be residual RNA still attached to RNA polymerases stalled by Actinomycin D. We observed
mature mRNA at all time points, indicating that the cells were still alive and that the treatment did
not affect the RNA itself. Altogether, our results show that intronic RNA degrades rapidly; thus,
the presence of an intronic RNA spot indicates that the targeted gene is transcriptionally active.
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Figure 2.5: A. We show intron vs. exon spot intensity, defined as maximum pixel intensity of the
spot minus the nearby background pixel intensity. Blue spots correspond to S/G2 phase cells (as
scored by Cyclin A2 mRNA levels); red spots correspond to G1 cells. We analyzed a total of 105
spots. The correlation between intron and exon intensity is 0.378. B. Images depicting all the exon
and intron spot pairs we analyzed (exon on left, intron on right). The slight shift between the exon
and intron spot results from slight registration shifts in the images between fluorescence channels.
We found that only 2 out of 105 intron spots displayed a lack of corresponding exon spot. These
results further establish that the presence of an intron spot corresponds to active transcription of
the gene. We almost never observe an intron spot without any corresponding exon spot. Moreover,
when there is no visible intron spot, we never find a bright transcription site in the exon channel
(data not shown). Also, these results provide further evidence that the intron spots are truly located
at the site of transcription because the intron spots strongly colocalize with bright exon spots that
researchers have shown to represent nascent transcripts emanating from the site of transcription (see
Levsky and Singer Science 2002, Vargas et al. PNAS 2005, [10, 60]).
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Figure 2.6: In order to compute the GRO-seq mean intron reads[11], we measured the average
number of reads within the first 3000 intronic bases in the transcript (which was roughly the same
region that we probed by iceFISH in our study). We computed the frequency as discussed at length
in the main text. We also included data from a further 15 genes on chromosome 19 not studied in
the main paper to provide better sampling in the high GRO-seq regime. Our observation is that
above a certain number of GRO-seq reads, the iceFISH spot frequency was always relatively high.
We also point out that there is a large set of points that we have not shown that are at the origin
of the graph: they have no GRO-seq reads and generally do not show intronic FISH spots. (We
have not included these data as we were not interested in intron probes that do not show spots
and so did not systematically analyze such probes.) We believe there are many reasons that the
correlation we observe is rather noisy: 1. these two sets of data arise from different cell lines and
represent completely different treatments and procedures; 2. comparing iceFISH signals from gene
to gene is not necessarily valid (nor are those from GRO-seq); and 3. our data are solely from G1
cells, whereas GRO-seq is from a mixed population. As such, we believe that the fact that these
data show that high GRO-seq signals correspond to high iceFISH spot frequency is a valid means
by which to measure transcriptional activity.
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Figure 2.7: Each box plot depicts a statistical analysis of the distances between a particular pair
of actively transcribing genes, and we placed the box plot at a location on the x-axis representing
the genomic distance between the pair of genes. The spot in the center of the box corresponds
to the median distance, the box itself corresponds to 25th and 75th percentiles, and the whiskers
reflect the range of the data (with the open circles reflecting data points deemed outliers). The open
triangles provide comparison intervals: two medians are different at a 5% significance level if the
intervals represented by these triangles do not overlap. The red box plots correspond to distances
measured by DNA FISH (the experimental details of which are described in the methods). There is
no particular difference between the DNA FISH results and the distances between transcriptionally
active loci at the length scales we examined, although our results indicate that genetically proxi-
mal transcriptionally active loci (<0.5 megabases) are more spread out physically than pure DNA
FISH measurements that do not distinguish between transcriptional status (Mateos-Langerak et al.
PNAS 106:3812-3817. 2009). However, a simple model demonstrates that our data are compatible
with these previous results (see Supplementary discussion). The inset shows the physical distance
between loci separated by 30 kilobases (EIF3K and ACTN4; magenta) and introns and exons of
the same gene (DNMT1; green). These data show that intron spots are very close to the site of
transcription as measured by exonic probes (we believe the measurements are almost to within our
spatial discrimination limit), and that genetically very proximal genes do indeed come very close to
each other, showing that the spread out characteristics that we observe are not just an artifact of
our method.
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Figure 2.8: As we describe in the methods, we performed a protocol in which we combined DNA
and RNA FISH, here using BAC probes targeting the DNA, RNA FISH probes targeting the exons
of SLC1A5, and RNA FISH probes targeting the introns of SLC1A5 (b-d). We found that all the
exon and intron signals colocalized with the DNA FISH signals (e) to within our detection limits.
These results show that the intron RNA FISH signals we observed indeed remain at the site of
transcription. Note that we observe three copies of the gene via DNA FISH, but only two of the
three copies of the gene are transcriptionally active. This shows that our RNA FISH probes are
not inadvertently binding to DNA. Another proof that our probes are not merely targeting DNA
is the fact that both the exon and intron signals are brighter than what one would expect from a
single RNA molecule. If the probes were bound to the gene’s DNA, one would only see fluorescence
intensity equivalent to that of a single RNA molecule. The scale bar is 5µm long.
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(exclusion of these commingled chromosomes did not alter our results; Fig. 2.10). On av-

erage, we found 6 2 expressing genes (out of the 20 labeled) per chromosome. We found

that using more probes did not change spot detection efficiency (see Methods), nor does

pseudocoloring incur a significant rate of spot misidentification (Fig. 2.11). We ensured

that the cells we analyzed were in the G0/G1 stage of the cell cycle by co-labeling Cyclin

A2 mRNA and examining only cells with low levels of Cyclin A2, which is abundant during

the S, G2, and M phases of the cell cycle (Fig. 2.12, and see [17].

By grouping actively transcribing genes into territories corresponding to each chromosome,

we constructed transcriptional profiles showing which of our 20 genes are on and off per

chromosome. Taking transcriptional profiles of individual chromosomes in several cells let

us 1. directly compare the transcriptional activity of normal and rearranged chromosomes

within the same cell (Fig 2.13), and 2. find large-scale interactions between pairs of genes

on the same chromosome by measuring correlations or anti-correlations in transcriptional

activity (Fig. 2.20). In both cases, our results point to chromosome-specific mechanisms

controlling transcription.

2.2.2. Translocations can cause chromosome-wide transcriptional changes

Researchers largely believe that cells regulate transcription of a gene via chromosome-

extrinsic trans factors (such as transcription factors) or via local cis factors on the DNA

(i.e., sequence elements typically within 1 megabase of the gene itself). Our method en-

ables us to examine the possibility that chromosome-specific mechanisms may also regulate

transcription. Translocations, in which large segments of different chromosomes are joined

together, provide a means to test this hypothesis: while they disrupt the large-scale struc-

ture of a chromosome, the cells trans environment and local cis DNA regulatory code re-

mains unchanged for most genes on the translocated chromosome. Thus, any differences in

transcription of a gene(s) between the normal and translocated chromosomes would show

that chromosomes possess non-local cis regulatory mechanisms that can be disrupted by

translocation.
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Figure 2.9: a. Our scheme involved labeling each intron with oligonucleotide probes alternately
labeled with either two or three different fluorophores, leading to a total of 20 unique pseudocolors.
b. Once we identified the pseudocolored transcription sites, we could trace out the chromosomes
three- dimensional configuration. c-h. Images for each fluorescence channel from the nucleus (labeled
with DAPI in (c)) that we stained with probes labeled with the scheme depicted in (a). Along with
probes targeting the introns, we also included probes targeting Cyclin A2 mRNA to determine
position in cell cycle and SUZ12 mRNA as a fiducial marker. All images are maximum z-projections
of a three-dimensional z-stack. All scale bars are 5µm long. i-j. Computational identification of
chromosome 19 gene positions. 3D depiction has axes labeled in µm and the nuclear outline from
the DAPI signal is outlined in red.
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Figure 2.10: In our analysis, we had to exclude chromosome in which both copies of chromosome
19 were too close for us to separate. In order to check whether this exclusion introduced any bias
into our measurements, we measured iceFISH spot frequency for all chromosomes (including those
which were excluded from transcriptional profiles). We found that the frequency was essentially
identical to what we obtained from analyzing just the non-overlapping chromosomes, showing that
our exclusion of overlapping chromosomes did not bias our results.
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Figure 2.11: In order to assess the degree to which our intron spot color-coding scheme resulted
in false positives, we left out 10 of the 20 probes (labeled in green) and ran the resultant images
through our normal spot identification pipeline. In blue, we have indicated all the spots that we
found that we ended up assigning to genes whose probes had been added to the hybridization (i.e.,
correct identifications). In red are spots we misidentified in the sense that they correspond to genes
that we hadn’t added to the hybridization. We found that misidentified spots were relatively rare,
with roughly 97% of spots we identified being assigned to genes that we had actually targeted in
our hybridization. In order to minimize bias, we had another person in the lab randomly select 10
genes to leave out of the hybridization.
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Figure 2.12: In order to isolate cells in G0/G1 for analysis, we performed RNA FISH targeting
Cyclin A2 (magenta), which Eward et al. [17] have shown to be present during S, G2, and M phases.
We observed highly variegated expression, with some cells having having high levels of expression
and some having very few mRNA. In order to demonstrate that the high expressing cells were
indeed in S-M phase, we incubated the cells with Click-iT EdU 10µM for 5 minutes before fixation
(green); the Click-iT EdU reagent incorporates into polymerizing DNA and produces a signal in cells
undergoing DNA replication. We found that every cell display- ing Click-iT EdU signal had high
levels of Cyclin A2 mRNA, showing that Cyclin A2 mRNA provides a strong marker for cell-cycle.
Sometimes a cell would have high levels of Cyclin A2 but would not be undergoing DNA replication;
these cells are in G2, as we observed several double intron spots in these cells, indicating that those
cells had already duplicated their DNA. In thus study, we were primarily interested in cells that
had not undergone replication, so we selected cells with low levels of Cyclin A2. Note that we could
not use the Click-iT EdU kit in combination with iceFISH because we found that incubating cells
with the Click-iT reagent resulted in an abolition of transcription. We stained the nuclei with DAPI
(purple); the scale bar is 5µm long.
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HeLa cells provide a test case for such a study. This widely-used cervical cancer cell line

contains two intact copies of chromosome 19 and one copy that is split into two pieces

fused to parts of other chromosomes[50]: one, denoted t(6;19), consists of the first 17-20

megabases of chromosome 19 fused to part of chromosome 6, and the other, denoted t(13;19)

consists of the remaining 40-43 megabases of chromosome 19 translocated onto a portion of

chromosome 13 (Fig. 2.13A; confirmed by G-band karyotyping and DNA FISH, Fig. 2.14).

We observed this pattern of genetic rearrangements in our iceFISH data (Fig. 2.13B). We

found that most genes on t(13;19) were up to 5 fold more transcriptionally active than those

on the normal copies of chromosome 19 (Fig. 2.13C, replicate in Fig. 2.15). This finding

is consistent with the existence of chromosome-specific transcriptional regulation that the

translocation has disrupted in some way. Intron spot intensities were roughly the same on all

the chromosomes we examined (Fig. 2.16), suggesting that transcriptional hyperactivation

results from an increased probability of a gene being active rather than an increased rate

of transcription when the gene is active (see Supplementary discussion).

We then asked whether the portion of chromosome 13 on t(13;19) also displays heightened

transcriptional activity. We found that the transcriptional frequency of two genes from chro-

mosome 13 (DIAPH3 and MTZ1) was roughly 2 fold higher on t(13;19) than on the normal

copies of chromosome 13 (Fig. 2.13C, Fig. 2.15), suggesting that this translocation resulted

in hyperactivation of all genes on t(13;19) irrespective of origin. Meanwhile, transcription of

the chromosome 19 genes on t(6;19) was similar to the normal copies (Fig. 2.13C), suggest-

ing that translocations do not necessarily lead to transcriptional changes. We note also that

per-chromosome differences in transcription are difficult to observe using bulk assays that

average expression from all chromosomes, which may explain why reports of such effects

are not widespread.

We explored whether the hyperactivation of t(13;19) was associated with differences in the

chromosomes spatial configuration, examining both the relationship between genomic and

physical distance as well as the chromosomes positioning within the nucleus. Previous re-
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Figure 2.13: a. Schematic showing that our HeLa cells contain two intact copies of chromosome
19. b. Computational identification of actively transcribing genes on chromosome 19 revealed all
the 4 chromosomes containing portions of chromosome 19, including the two intact copies and the
two translocated pieces. The scale bar is 5µm long. c. Comparison of the transcriptional activity
of the genes on chromosome 19 (as measured by frequency of observing a transcription site per
chromosome) on the various translocated fragments of chromosome 19 as well as the intact copies of
chromosome 19. For the expression of the two genes on chromosome 13 (MTZ1 and DIAPH3), we
measured spot frequency as described in Fig. 2.17. We denote p-values for the difference in frequency
(as compared to the null hypothesis of no difference) by *** for p <0.001, ** for p <0.01, * for p
<0.05.
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Figure 2.14: A. We performed G-band analysis of a metaphase spread of our chromosomes to
identify both the numbers of chromosomes in the cells as well as identify potential translocations.
The numbers (and X and Y) correspond to the identities of the intact chromosomes. The specific
translocations we were interested in for this study are fusions of portions of chromosome 19 to chro-
mosome 13 and 6, denoted t(13;19) and t(6;19), respectively. B. We wanted to further verify the
translocations of chromosome 19 via DNA FISH, which we performed upon the same chromosomes
for the G-band analysis in A. We probed the chromosomes with probes against the p-arm of chro-
mosome 19 (green) and the q-arm of chromosome 19 (red). This confirmed the results of our G-band
analysis.
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Figure 2.15: Here we present data from a biological replicate of the data presented in Fig. 2.13.
We performed the exact same analysis as described in the legend of that figure. In this case, we
analyzed 20 cells with the full set of 20 chromosome 19 probes and 53 cells in which we analyzed
expression of MTZ1 and DIAPH3 on chromosome 13.
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ports often found genes ”looped” out towards the periphery of the chromosome territory

when active[55] and that active regions of DNA are more physically spread out than in-

active ones[23] and these domains may be physically separated[47], raising the possibility

that the hyperactivation of t(13;19) may correlate with differences in inter-gene spacing.

We compared genomic and physical distance separating pairs of actively transcribing loci

(Fig. 2.7), finding that the physical distances between genetically proximal (<5 and es-

pecially <1 megabases) genes are considerably larger than those obtained by pure DNA

FISH[39, 77] even for ”active” DNA[51]. These observations are consistent with a model in

which DNA fluctuates between compact and extended configurations depending on tran-

scriptional status[55] (see Supplementary discussion); however, the physical inter-gene spac-

ing on t(13;19) was virtually identical to that of the intact chromosome 19 (Fig. 2.18).

Other reports[73] have found that smaller, gene dense chromosomes are often located at

the center of the nucleus, whereas larger chromosomes tend towards the nuclear periphery.

Translocations thus may alter the affected chromosomes distance from the nuclear periphery,

and one report has suggested that translocation-induced changes in nuclear position may

be partly responsible for changes in transcriptional activity[33]. In HeLa cells, we saw that

the t(13;19) translocated chromosome was slightly closer to the periphery than the intact

chromosome 19s, although this difference was not statistically significant (Fig. 2.19). We did

see a significant shift in t(6;19) towards the nuclear periphery, but that chromosome did not

show any transcriptional differences. We also found no dependence between transcriptional

activity of any of the genes we examined and distance of the chromosome to the nuclear

periphery (Fig 2.19). Together, these analyses suggest that spatial configuration may not

be responsible for hyperactivation per se, but it is possible that other spatial aspects of

chromosomes we are unable to measure cause these effects.

2.2.3. Transcriptional profiling reveals long range cis transcriptional interactions

Chromosome transcriptional profiling demonstrated the potential for differences in tran-

scriptional activity between chromosomes. We next looked for evidence of interactions
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Figure 2.16: We computed spot intensity by finding the maximum pixel intensity in the center of
a 3x3 pixel box around the center of the spot and subtracting the median local back- ground pixel
intensity around the spot. We then normalized this intensity for each color to number of probes
on a cell-by-cell basis by calibrating to the intensities of the SUZ12 mRNA signals, which had 13
oligonucleotide probes in each fluorescence channel. A value of 1 for spot intensity here indicates
and intensity equivalent to 1 complete set of intron probes bound. The box plots show spot intensity
for each gene on Chr. 19 in foreskin fibroblasts and HeLa cells, as well as the t(6;19) and t(13;19)
derivative chromosomes in HeLa cells. Center white spot represents the median, edges correspond
to 25th and 75th percentile, and whiskers extend to extrema, with outliers plotted individually as
circles. We found that the spot intensities varied from gene to gene, with most of the genes showing
a median between 1 and 4 full intron equivalents. The foreskin spot intensities appeared to be
somewhat lower than in HeLa cells. In HeLa cells, we found that spot intensities were essentially the
same when comparing spots on the intact chromosome 19s and the translocated t(6;19) and t(13;19).
This result implies that the changes in transcription of the chromosome 19 genes on t(13;19) arise
via changes in transcriptional burst frequency but not changes in burst size. It also highlights the
fact that the changes in spot frequency that we observe on t(13;19) are not likely to be the result
of a relatively small increase in spot intensity leading to an increase in the number of spots above a
putative detection threshold. Were that the case, then we would see many more low intensity spots
on t(13;19), which would lower the mean intensity, which is not what we observe.
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Figure 2.17: To measure the frequency of transcription of genes on the portion of chromosome
13 fused to chromosome 19 (denoted der(19)t(13;19)) in HeLa cells, we used a strategy in which
we painted chromosome 19 with probes in one color (Cy3, panel B) to identify the chromosome
territory. We also labeled Cyclin A2 mRNA in Cy3 to ensure analyzed cells were in G0/G1 phase
of the cell cycle. We also labeled probes targeting EEF2s intron in Atto 647N (C), which is located
on the portion of chromosome 19 that is part of der(6)t(6;19) and is not on der(19)t(13;19), thereby
helping to identify those portions of chromosome 19 that are not fused to chromosome 13. Finally,
we labeled the intron of the gene of interest on chromosome 13 (either MTZ1, in panel D, or
DIAPH3, not depicted) with Alexa 594, and if the intron spot appeared in the chromosome territory
identified by the chromosome 19 paint, we assigned it to der(19)t(13;19). We assigned spots for
these chromosome 13 genes that appeared away from chromosome 19 as coming from one of the two
normal copies of chromosome 13 in our HeLa cells. The scale bar is 5µm long.
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Figure 2.18: We compared the physical distances between all pairs of actively transcribing genes
on chromosome 19 or the t(13;19) derivative chromosome from human foreskin fibroblasts and HeLa
cells. Our comparison was between all loci on all chromosomes from human foreskin fibroblasts
(blue markers), normal chromosome 19s from HeLa cells (red markers), and the t(13;19) derivative
chromosome also present in HeLa cells (green markers; only for those genes that are located on this
chromo- some). We did not observe any statistically significant differences in average distances for
any gene pair when comparing any of these conditions. The inset plot shows a comparison between
genomic and physical distance for all active loci, comparing these same classes of chromosomes. The
plot contains a rolling average with a 1 megabase window, with the error bars corresponding to
the standard error of the mean. We observed no significant differences in the relationship between
genomic distance and physical distance between active loci, suggesting that the increased expression
on the t(13;19) derivative chromosome does not correlate with an overall increase in the physical
distance between active loci.
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Figure 2.19: A. Box plot showing distance from nuclear periphery for Chr. 19 in foreskin fibroblasts
and HeLa cells, as well as the t(6;19) and t(13;19) derivative chromosomes. Center line represents
the median, edges correspond to 25th and 75th percentile, and whiskers extend to extrema. Medians
are different with a p ¡ 0.05 if the notched regions do not overlap. We computed p-values using the
Kolmogorov-Smirnov test. B. The cumulative density function corresponding to A. C. Distance
from nuclear periphery for chromosomes in which a given gene is actively transcribing (green) versus
inactive (orange). Error bars reflect the standard error of the mean.

32



governing the transcription of genes within a single chromosome. Specifically, we examined

whether the transcriptional status of one gene in our panel (i.e., actively transcribing or

transcriptionally inactive) affected the transcriptional status of another gene on the same

chromosome. Such an interaction would manifest itself as a deviation from independence,

with positive correlations signifying that the two genes A and B would be more likely

than chance to be actively transcribing at the same time on the same chromosome, and

anti-correlations indicating that the transcriptional statuses of genes A and B would be

mutually exclusive.

We found that most pairwise interactions on single chromosomes did not show a significant

deviation from independence (Fig.2.20; see Fig.2.22 and 2.22 for individual replicates) (al-

though there may be weak effects that we we have insufficient data to detect). However, one

pair of genes, RPS19 and ZNF444 (separated by 14.3 megabases), showed a significant anti-

correlation (R = -0.400.08; p=3.99x10-5, Fisher Exact Test). One explanation for this anti-

correlation is fluctuations in a potential trans-acting factor, such as a transcription factor,

that activated RPS19 and inactivated ZNF444 in some cells while activating ZNF444 and

inactivating RPS19 in others. Any such trans factor would, however, affect the copy of the

gene on the other chromosome 19 as well[16]. We checked for this potential trans factor

by looking for an anti-correlation between RPS19 on one chromosome and ZNF444 on the

other copy of chromosome 19 in the same cell. We found that the inter-chromosomal in-

teractions between the genes was qualitatively different, having a mild and less statistically

significant positive correlation (R = 0.330.09; p=6.90x10-4, Fisher Exact Test), indicating

that the interaction between these genes is not due to a trans factor but rather a cis effect

confined to the chromosome itself. The lack of anti-correlation between the chromosome

19 copies (both between the pair of genes and also each gene with itself; Fig. 2.20) also

precludes the possibility of genetic imprinting.

To see if these results are cell-type specific or are intrinsic to chromosome 19, we also

looked for interactions amongst these same genes on the two intact copies of chromosome
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19 in HeLa cells (Fig. 2.13A). Despite the large differences between these two cell types,

we found that HeLa cells displayed the same anti-correlation between RPS19 and ZNF444

(Fig. 2.20), and did not display any inter-chromosomal correlations. Moreover, as in the

foreskin fibroblasts, none of the other gene pairs displayed any significant interactions.

To test whether this behavior depends on large-scale properties of chromosome 19, we

checked whether the anti-correlation between RPS19 and ZNF444 persisted on the t(13;19)

chromosome in HeLa cells (Fig. 2.20A).

This chromosome includes both of these genes, but we found no anti-correlation between

these copies of the two genes (Fig. 2.23). We believe that these data indicate that the long-

range regulatory mechanism governing this interaction may require the entire chromosome

to be intact in order to function, suggesting that this regulatory interaction may be an

intrinsic property of chromosome 19.

To check if chromosome conformation mediates this anti-correlation, we examined the physi-

cal distances between all pairs of active genes when RPS19 or ZNF444 were transcriptionally

active or inactive (Fig. 2.24). We found no difference in the physical distances between any

gene pair, although the anti-correlation prevented us from finding many chromosomes upon

which we could locate both genes, and our statistical power was low for several pairs. We

also found no dependence between the transcriptional state of these genes and chromosome

positioning within the nucleus (Fig. 2.19). Combined with our findings on nuclear posi-

tioning of translocated chromosomes (Fig. 2.19), we feel our data suggest that large-scale

chromosome conformation does not play a major role in determining the transcriptional

status of these genes.

2.3. Discussion

Our method has enabled us to measure transcriptional activity on individual chromosomes

in single cells by spatially segregating intron RNA FISH signals to particular chromosome

territories. Our results suggest the existence of chromosome-specific regulatory mechanisms
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Figure 2.20: a. We reasoned that intrachromosomal transcriptional interactions between two genes
would manifest themselves as a correlation or anti-correlation between transcriptional activity of the
two genes on the same chromosome. To eliminate the possibility of a trans factor producing the
same effect, we also measured the correlation between pairs of genes on opposite chromosomes within
the same cell, which would be uncorrelated in the case of a cis (i.e., intra-chromosomal) interaction.
b. Heat map showing the deviation from independence of the intrachromosomal transcriptional
activity of all pairs of genes we measured in human foreskin fibroblasts, as measured by p-value for
obtaining the measurement by random chance under the null-hypothesis that the genes transcribe
independently (calculated using the Fisher Exact Test; see methods). A smaller p-value (more red)
indicates a more significant deviation from independence. c. Same as (b), but for interchromosomal
pairs. Diagonal elements represent interactions between the two copies of the same gene in single
cells. d-e., Same as (b,c), but for the two intact copies of chromosome 19 in HeLa cells (identified
as described in Fig 2.13). Here, we have presented data combined from two independent biological
replicates (see Fig.2.21 and 2.22 for replicates).
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Figure 2.21: The analysis is exactly the same as that performed in 2.20 and as described in the
methods.
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Figure 2.22: The analysis is exactly the same as that performed in 2.20 and as described in the
methods.

37



Figure 2.23: The analysis is exactly the same as that performed in Fig.2.20 and as described in
the methods. We found no significant correlation between RPS19 and ZNF444, suggesting that the
translocation disrupts the whatever the regulatory mechanism is that is responsible for the anti-
correlation we observed between this pair of genes on the normal copies of chromosome 19 in both
human foreskin fibroblasts and HeLa cells.
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Figure 2.24: We compared the physical distances between all pairs of actively transcribing genes
on chromosome 19 in human foreskin fibroblasts. Our comparison was between all loci on all chro-
mosomes (blue markers), chromosomes upon which RPS19 in actively transcribing (red markers),
chromosomes upon which RPS19 is transcriptionally inactive (green markers), chromosomes upon
which ZNF444 is actively transcribing (cyan) and chromosomes upon which ZNF444 is transcrip-
tionally inactive (magenta markers). We did not observe any statistically significant differences in
average distances for any gene pair when com- paring any of these conditions (K-S test, p ¡ 0.05),
although we note that our statistical power to resolve these differences is in some cases rather low
because of a low number of measurements. We also did not note any particular distance patterns or
relationships, although some pairs did appear to display less distance variability than others.
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that control the expression of genetically distal genes, and that large-scale chromosome re-

arrangements may disrupt these mechanisms and influence transcription in a chromosome-

specific manner. The key aspect of our method for these measurements is the ability to

spatially segregate transcription and thus assign transcription to particular chromosomes,

highlighting one of the main advantages of single cell/chromosome imaging over bulk meth-

ods that average together signals from multiple sources.

The chromosome-scale transcriptional effects we observed could arise as a consequence of

spatial conformational characteristics of the chromosome or from other epigenetic features.

Given that our assay also yields the position of active genes, we could assess the former

possibility, and we did find that the distance between transcriptionally active loci in gen-

eral appears to be larger than that measured between loci using DNA FISH, which cannot

discriminate between active and inactive loci (see Supplementary discussion). We did not,

however, find evidence in our data for particular large-scale conformational features asso-

ciated with the specific transcriptional phenomena we observed. We note, however, that

this does not preclude potential regulatory roles for other structural features beyond the

ones examined here. Also, we have not examined short range interactions, nor have we

looked at particular categories of genes that may display more gene-specific chromosomal

conformation dynamics[69].

There are examples of epigenetic phenomena involving whole-chromosome transcriptional

regulation, often related to dosage compensation in cases of aneuploidy[5]. One notable

example of chromosome-wide regulation is dosage compensation, in which entire X chro-

mosomes can show increased or decreased transcription or even complete transcriptional

inactivation[71]. The molecular mechanisms underlying these epigenetic effects often ap-

pear to involve modification of chromatin, and it is possible that such effects may be at play

in the effects that we have observed as well. For instance, one could imagine that the tran-

scriptional hyperactivation of t(13;19) we observed in HeLa cells arose because of epigenetic

modifications due to double stranded breaks that may progressively spread through the rest
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of the chromosome. Testing such hypotheses will require the development of complementary

methods to measure, for example, the chromatin status of individual chromosomes. Com-

bined with iceFISH, we believe that such a toolset will allow us to determine the prevalence

of these chromosome-level regulatory phenomena and uncover their underlying mechanisms.

2.4. Materials and Methods

2.4.1. Cell culture, fixation, and fluorescent in situ hybridization

We grew primary human foreskin fibroblasts (ATCC CRL 2097) or HeLa cells (gift from

the lab of Phillip Sharp) in Dulbeccos modified eagles medium with glutamax (DMEM,

Life Technologies) supplemented with penicillin/streptomycin and 10% fetal bovine serum.

We enriched for G0/G1 phase cells through a double-thymidine block (2mM thymidine in

medium) procedure, which arrested cells at the beginning of S phase. We released the cells

and let them go through S, G2, M, G1, S, G2, M, and then fixed them when they were

in G1. We let the cells go through over one complete cell cycle to minimize any potential

transcriptional or structural effects due to the block itself. To fix the cells, we followed the

protocol of Raj et al. Nat. Meth. 2008. Briefly, we fixed the cells for 10 minutes at room

temperature using 4% formaldehyde/10% formalin in 1x phosphate buffered saline solution

(PBS), followed by two rinses in 1x PBS, after which we permeabilized the cells with 70%

EtOH and stored at 4C at least overnight.

To perform fluorescence in situ hybridization (FISH), we again followed the procedure of

Raj et al. Nature Methods 2008 with some minor modifications. We prewashed with a wash

buffer containing 10% formamide and 2x saline-sodium citrate (SSC), then hybridized by

adding the appropriate amount and type of probe (described later) in a buffer containing

10% formamide, 2x SSC and 10% dextran sulfate (W/V). We empirically determined the

optimal concentration of each probe, which in most cases was roughly equivalent to the con-

centrations used in Raj et al. Nature Methods 2008. We hybridized our samples overnight

in a humidified chamber kept at 37C, then washed twice for 30 minutes with wash buffer at
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37C (adding DAPI at a concentration of 50 ng/mL in the second wash), and then imaged

in 2x SSC as described below.

In the case of the experiments involving Actinomycin D, we incubated HeLa cells in 2

µg/mL of Actinomycin D (Sigma) for 0, 30, 60, and 120 minutes (as described in Fig. 2.4),

after which we fixed the cells and performed FISH. We made sure to thoroughly mix the

Actinomycin D into the medium before adding it to avoid spatial inhomogeneity in the

activity of the drug.

For the RNase experiments, we fixed and permeabilized the cells as just outlined, after

which we aspirated the 70% EtOH, washed once with 1x PBS, then added 1x PBS with

10µg/mL of RNase A (Sigma). We incubated the fixed cells at 37C for 30 minutes, washed

with 1x PBS, and then proceeded with FISH as outlined above. As a control, we performed

the exact same procedure on cells in a neighboring well, but didnt add RNase A to the 1x

PBS for the incubation (as described in Fig. 2.3).

2.4.2. Imaging

We imaged all our samples on a Nikon Ti-E inverted fluorescence microscope using a 100x

Plan-Apo objective (numerical aperture of 1.43) and a cooled CCD camera (Pixis 1024B

from Princeton Instruments). We sequentially acquired three-dimensional stacks of fluores-

cent images in 6 different fluorescent channels using filter sets for DAPI, Atto 488, Cy3,

Alexa 594, Atto 647N, and Atto 700. Our exposure times were roughly 2-3 seconds for

most of the dyes except for DAPI (which we exposed for 100ms) and Atto 700 ( 5 seconds,

due to somewhat weaker illumination on our apparatus). The spacing between consecutive

planes in our stacks is 0.3µm.

2.4.3. Image analysis

Once we acquired our images, we put them through an image analysis pipeline made up of

custom semi-automated spot recognition software we wrote in MATLAB with the following
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series of steps:

1. We first identified candidate spots in the three-dimensional image by filtering the image

with a Laplacian of Gaussian filter, and taking the top 300 spots as candidates. In some

cases, we also chose cells to analyze based on phase in the cell-cycle. In those cases, we

chose cells that had little or no Cyclin A2 mRNAs. Our experiments in Fig. 2.12 validate

this approach.

2. For each candidate, we then fit the candidate to a Laplacian of Gaussian intensity profile,

thereby giving us precise estimates of the center, width, and intensity of the spot.

3. Based on histograms of the intensities and widths, we manually selected a subset of the

spots with qualities (uniform width, higher intensity) that were higher than background.

This is similar in spirit to the procedure described in Raj et al. Nature Methods 2008, in

which the experimenter chose a threshold to separate legitimate RNA spots from background

spots. In this case, we erred on the side of including spots that may be background, because

our multi- color scheme for spot assignment provided us another means by which to discard

background spots.

4. Once we had selected the spots, we then ran software that found the fiducial markers

(in this case, probes in all 5 RNA colors targeting SUZ12 mRNA, which are present at an

abundance of roughly 20-50 clear cytoplasmic spots per cell). In this manner, we could

measure the displacements between different fluorescence channels in each cell individually.

We then applied these shifts to align the computationally identified spots between the

different fluorescence channels.

5. After alignment, we then ran software that looked for colocalized spots corresponding

to the particular pseudocoloring scheme we chose for the introns we targeted. We estimate

that our software is roughly 75% accurate in assigning colocalized spots to particular genes

at this stage.
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6. We then went through a manual correction process in which we corrected mistakes

the software made in identifying spots. Common issues were failure to detect dim (but

clearly present) signals in one of the fluorescent channels and resolving two spatially close

fluorescent spots that the laplacian of gaussian filtering and candidate identification steps

had labeled as a single spot.

7. Once we had correctly annotated the introns of the gene loci we had labeled, we then

examined cells manually to separate out individual chromosomes. We would discard cells

in which the chromosomes overlapped since this made it difficult to assign gene spots to

particular chromosomes. In order to determine the distance of the chromosome from the

nuclear periphery, we first determined the average position of the spots of the chromosome in

x and y and then found the Euclidean distance between this point and the nuclear periphery

as outlined by our DAPI stain.

2.4.4. Characterization of error rate

In order to gain some sense of the rate of false positives, we performed a hybridization in

foreskin fibroblasts in which we left out 10 of the 20 genes comprising our iceFISH assay

(randomly chosen by another member of the lab), and proceeded with our spot identification

procedure as usual (Fig. 2.11). We found that our rate of false identification was very low,

with the vast majority (97%) of spots we assigned corresponding to genes which we had

targeted in our assay.

We also probed a set of 2 genes (RPS19, TOMM40) one at a time with oligonucleotides

labeled with a single dye rather than the combination of 2 or 3 dyes used in our pseudo-

coloring strategy. Our aim was to determine to what extent our pseudocoloring strategy

would result in false negatives in spot identification. We found that the spot per chro-

mosome frequencies measured with a singly-colored probe alone were 0.56, 0.27, while the

spot frequencies measured by pseudocoloring were 0.57, 0.25, respectively, in a total of 30

cells. Although statistical effects preclude a definitive statement, our results are consistent
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with our pseudocoloring strategy correctly identifying virtually all spots detectable by RNA

FISH targeting introns.

2.4.5. Probe design

We designed 20 base oligonucleotide probes against introns using custom FISH design soft-

ware (http://www.biosearchtech.com/stellarisdesigner/). Where possible, we tried to design

16 oligonucleotides targeting the first intron of the gene. We ordered the oligonucleotides

from Biosearch Technologies (Novato, CA), who synthesized the oligonucleotides with amine

groups attached to the 3 end. We coupled these 3 ends to various organic dyes (including

Atto 488 (Atto-Tec), Cy3 (GE), Alexa 594 (Invitrogen), Atto 647N (Atto-Tec), and Atto

700 (Atto-Tec)) as indicated in the text and in ***Supplementary Table 1***. We purified

the probes by HPLC as described in Raj et al. Nature Methods 2008.

2.4.6. Karyotyping of HeLa cells

We performed G-band analysis (karyotyping) on metaphase spreads of our HeLa cells fol-

lowing standard procedures. This indicated that our cells contained two intact copies of

chromosome 19 and a full third copy of chromosome 19 split into two fragments and fused

to other chromosomes (Fig. 2.14). One fragment includes the first half of the chromosome

19 p-arm and is fused to a large portion of chromosome 6. The second fragment is the

remaining portion of chromosome 19 (half the p-arm through the centromere and entire q-

arm), which is fused to the q-arm of chromosome 13. In order to conclusively demonstrate

that chromosome 19 was split in this particular way, we performed a DNA FISH analysis

on the same metaphase spreads that we performed the G-band analysis on. We used probes

targeting loci within the 19p13 and 19q13 regions on chromosome 19, each labeled with a

different fluorophore (Abbott Molecular). The results confirm the results of the G-band

analysis. We performed this analysis on 10 cells, each of which showed the same genetic

abnormalities, indicating that the cells do not vary much in this particular characteristic

from cell to cell.
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2.4.7. Click-iT EdU analysis of cell cycle progression

In order to demonstrate that Cyclin A2 mRNA was an accurate marker of position in

the cell cycle, we used the Click-iT EdU Alexa Fluor 594 Imaging kit (Invitrogen), which

incorporates a targetable chemical into newly replicated DNA. In this case, we incubated

foreskin fibroblasts with the 10µM Click-iT EdU reagent for 5 minutes before fixing the

cells. We performed our FISH protocol on these cells using a Cyclin A2 mRNA Cy3 probe

and after hybridization and wash steps followed the instructions provided with the kit for

fluorescently labeling the incorporated EdU. We ultimately did not elect to use the Click-iT

EdU kit directly in most of our experiments (and instead opted to use Cyclin A2) because we

found that performing the Click-iT EdU procedure interfered with our nascent RNA FISH

detection, most likely either due to interference with transcription itself or by making our

spot detection less reliable because of additional washing steps associated with the Click-iT

procedure.

2.4.8. DNA FISH

We performed DNA FISH with BAC probes from Empire Genomics, using their reference

hybridization protocol. In the human foreskin fibroblast cells we applied pairs of fluores-

cently labeled BAC clones from the human RPCI-11 library targeting human chromosome

19 at positions 2.8-4.5 Mb (268O21), 39.0-39.5 Mb (31D10), or 52.5-52.7 Mb (43N16). We

denatured the DNA by immersing the cells in 70% formamide, 2X SSC buffer at 80C for 5

minutes, and then transferred to series of ethanol steps increasing to 70, 85, and then 100%

ethanol. We added 10µL of BAC probes to the air dried sample, applied a coverslip, and

incubated overnight in humidified slide chamber. The next day we washed the sample with

0.4X SSC at 73C for 2 minutes, removed the coverslip, transferred to room temperature 2X

SSC for 1 minute, then to 10µL of 2X SSC with DAPI at 50 ng/mL, and applied a new

coverslip. We performed imaging similar to our iceFISH probes with dye pairs Red 5-ROX

and TAMRA.
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2.4.9. Combined DNA/RNA FISH

We performed a sequential DNA/RNA FISH in HeLa cells by first performing DNA FISH

using BAC clones as and then performing RNA FISH, both by following the protocols

outlined above. We found that both the bright exonic transcription sites and the intron

spots were considerably brighter than single mRNA spots, thus showing that the RNA

probes were not simply targeting the DNA directly. We compared the location of SLC1A5

exonic (Alexa 594) and intronic (ATTO647N) RNA to the location of DNA FISH probes

using BAC clones RP11-687M15 (TAMRA).

2.4.10. Statistical analysis

In Fig. 2.13, we looked for deviations from independence in the transcriptional frequencies

of all pairs of genes we examined. We performed the Fisher Exact Test on all 2x2 tables

generated by counting the number of chromosomes where gene A or B was transcriptionally

active vs. inactive. We reported the two-sided p-value corresponding to the chance of

obtaining a similar deviation from independence via random chance, with a smaller p-value

corresponding to a more significant result. In Fig 2.13, we show the results we obtained by

analyzing a dataset consisting of the combination of two independent biological replicates;

we also performed the analysis on each individual biological replicate, as shown in Fig. 2.21

and 2.22. Note that we have not applied a multiple hypothesis correction in our presentation

of the p-values; however, our results would remain statistically significant if we applied the

crude correction of just multiplying our p-values by 190, which is the number of pairs

of genes we examined. We chose to convey the information in this manner because the

number of hypotheses tested depends on the particular question being asked of the data.

For instance, if one decides that, based on the human foreskin fibroblast data, one wanted

to focus on interactions between RPS19 and ZNF444, then the p-values for the specific

hypothesis comparing these two genes in, say, HeLa cells, would not be subjected to this

same correction. We leave such interpretative matters to the reader.
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We also report the correlation coefficient between RPS19 and ZNF444; although it is a

somewhat imperfect measure of the lack of independence for this sort of data, it has the

advantage of being familiar to many researchers. We obtained standard errors for the

correlation coefficient by bootstrapping.

In Fig. 2.20, we obtained p-values for the difference in transcriptional frequency between the

copy of the gene on the t(13;19) (or t(6;19)) chromosome and the copies of the gene on the

normal copies of chromosome 19 by rejecting the null hypothesis in which the frequency of

transcription was the same for all three copies. We did this by computationally generating

the probability density function for the difference in transcriptional frequencies between

two sets chosen to match our experimental data in size under the null hypothesis that the

frequency is the same for both sets, and then directly calculated the probability of finding

our observed difference by chance.

2.4.11. Relationship between intron spot measurements and transcriptional activity

In our measurements, we obtain both the probability of finding an intron spot as well as

the intensity of that spot. Here, we present a simple model of intron dynamics that relates

transcriptional dynamics to these two measurements.We assume that transcription occurs

in bursts, which is supported by several studies in higher eukaryotes as noted in the main

text. We assume that the transcription of a gene as a function of time is given by the

function µ(t) = µ0f(t), where µ0 is a constant is a constant and f(t) is a stochastic process

that randomly fluctuates between having value 0 and value 1 (corresponding to the gene

being active or inactive, respectively). We do not assume any form for f(t) other than that

the time in the active state or the inactive state is on average considerably longer than the

time to degrade introns, although several groups model the dwell times in the active or

inactive state as being exponentially distributed, and there is experimental support using

time-lapse imaging for this view [30, 10, 72]. We assume that the fraction of time the gene is

in the active state is given by a. The (continuous) equation governing the intron dynamics

is:
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dI/dt = µ(t)− δI

where I is the number of intron molecules and δ is the rate of intron degradation. The

steady state of this equation when the µ = 0 or µ = 1 is 0 or µ0/δ, respectively. The

degradation rate, δ, is what determines how rapidly I heads to steady state. Based on

our Actinomycin D experiments (Fig. 2.4), we believe the intron half-lives of the genes we

examined to be less than 5 minutes. In this case, where δ is considerably larger than the

rates of the gene switching on or off, then

I(t) ≈ µ(t)/δ

i.e., I(t) is non-zero only when the gene is actively transcribing, and zero when the gene is

inactive. The time average of I(t) is then

〈I(t)〉 = aµ0/δ

while the time averaged rate of transcription is given by

〈txn〉 = aµ0

By measuring the percentage of the time we observe the gene actively transcribing, we

can estimate a, the probability of the gene being active, in absolute terms. When the

gene is active, the rate of transcription is µ0, but we can only measure the intron spot

intensity, which is proportional to the rate of transcription. Thus, we cannot measure the

rate of transcription when the gene is active up to a constant of proportionality that is

1/δ, which in principle may vary from one gene to another. Nevertheless, we can compare
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the relative changes in the rate of transcription of the same gene from one chromosome

to another by comparing our measurements of both a and µ0/δ. In our experiments, we

found that in virtually all situations, the spot intensity (µ0/δ) did not change (Fig. 2.5),

but we did observe changes in the probability of finding an intron spot (a), which implies

a proportional change in the overall time-averaged rate of transcription. We interpret this

to mean that whatever causes the changes in transcription on the hyperactivated t(13;19)

chromosome in HeLa cells (as compared with the intact chromosome 19s in HeLa cells), it is

most likely not something that is changing the rate of transcription when the gene is active,

but rather is changing the probability that the gene is active itself. We note that this is not

necessarily the same as saying that the transcriptional burst frequency has changed while

the transcriptional burst size remains the same: if transcriptional bursts lasted for longer,

then both the burst size and the probability of finding a spot would increase, even if the

burst frequency remained constant.

2.4.12. Comparison of the distance between active DNA loci to previous experiments

We were somewhat surprised to find that the distance we observed between transcriptionally

active loci was quite large even for relatively short genomic separations; for instance, we

observed a mean physical displacement of 1.7µm for genes separated by only 0.36 kilobases.

We suspected that these large distances were due to the relatively decondensed chromatin

thought to accompany actively transcribed genes. To check whether such a hypothesis was

consistent with the published literature, we examined the data from the excellent study [51] ,

in which the authors measured the relationship between the physical and genetic separation

of DNA loci. In particular, they examined the distances genes in transcriptionally active

regions of DNA (ridges) and transcriptionally inert regions of DNA (anti-ridges), finding

that the transcriptionally active regions were considerably more physically spread out than

the transcriptionally inert regions.

We posit, given that transcription is fundamentally pulsatile, that the mean physical separa-

tion between two loci in a transcriptionally active region fluctuates between a short distance
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when the genes are inactive and a long distance distance when the genes are active (consis-

tent with the findings of [76]). From this perspective, the observations by [51] correspond to

measuring the mean inactive gene separation (DNA FISH between transcriptionally inert

regions) and the weighted average of the mean inactive and active separation (DNA FISH

between transcriptionally active regions), weighted by (1-a) and a, respectively, where a

is the probability of the gene being active. Our measurements of interpair separations

correspond to the mean active gene separation.

We checked for consistency between these different sorts of measurements when comparing

our data to that of Fig. 2B, left panel from [51]. At a genetic distance scale of roughly

490 kilobases, Mateos-Langerak report an mean square distance of around 0.23 µm2 for

inactive loci and 0.84µm2 for ”ridges”, the latter of which we believe corresponds to the

weighted average of active and inactive loci as described above. Our measurements of a mean

square distance of 3.57µm2 between active loci at this genetic distance scale would imply a

weighting factor of 0.18, which falls squarely within our observed variation in probabilities

of genes transcribing. Thus, we conclude that our data are at least consistent with the

previous DNA FISH observations of Mateos-Langerak et al. with this simple model for the

distance between active and inactive loci. Further studies may elucidate whether such a

model is indeed an accurate description of conformational dynamics.
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CHAPTER 3 : Single cell allele-specific expression via single nucleotide variant

detection in situ

3.1. Background

Advances in single cell imaging have enabled researchers to detect individual RNAs with

single molecule resolution[18, 62], more recently in conjunction with single chromosomes[43].

However, such methods typically are unable to distinguish single nucleotide variants in

these molecules. Development of such a method with general applicability would be of

great utility in fields like genetics and gene regulation, specifically because of its ability to

measure allele-specific gene expression at the single cell and single molecule level[29, 31, 19].

Methods also exist to survey the expression levels of RNA species that vary only by single

nucleotides on the cell population level through RNA sequencing [67, 45, 88]. The advan-

tage of these techniques is that the measurements are genome-wide. However, despite the

’digital’ transcript counts provided by RNA sequencing, the many steps required in up-

stream procedures to extract total RNA, generate input cDNA by reverse transcription,

and library preparation are not fully characterized and may introduce systematic errors

that need to be accounted for in subsequent analysis. Overall, the RNA sequencing based

methods have the disadvantage of requiring lots of input cellular material that prevent de-

tection of allelic expression behaviors present in a minority of cells and obviously masks

cell-to-cell heterogeneity in expression. These methods require amplification of nucleic acid

material. Quantification of low copy number RNA species through amplification is suscepti-

ble to noise. Direct detection is the best strategy for quantitative comparison with amounts

of material spanning several orders of magnitude and between different RNA species.

The few methods available for in situ SNV detection tend to be complex and suffer from

low efficiency. Specifically, Larsson et al 2010[38] used a rolling circle amplification method

that requires a series of enzymatic steps, each of which has issues with reaction efficien-

cies and technical repeatability. Ideally there would be no enzymatic steps in the assay to
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avoid variability in reagent stability over freeze/thaw cycles or different batches. Enzymatic

steps can also suffer from different amounts of accessibility throughout a sample used for

in situ. Larsson et al described experiencing difficulties with assay efficiencies in technical

repeats using these methods in the past for direct RNA detection (as little as 1% detec-

tion efficiency), thus requiring the use of expensive LNA primers to create cDNA (a DNA

complement version of the RNA target) used for detection and subsequent amplification.

The most concerning data from their work is the reported beta-actin mRNA molecules per

human fibroblast cell with a gaussian distribution ranging from 28-1000 whereas similar

experiments performed using tiled singly labeled RNA FISH assay [62] produces consistent

beta-actin mRNA counts in no less than 1500 and up to 6000 RNA per human fibroblast

cell (data not shown). This discrepancy is most likely due to the variability in enzymatic

efficiency.

Here we present a method that discriminates single nucleotide differences in single cells using

direct detection and quantification of RNA molecules. Using a probe design strategy em-

ployed in DNA directed chemical reactions and other nanotechnology applications [86], we

are able to discriminate single nucleotide differences while still using DNA oligonucleotides

without exotic chemistries, making them affordable for custom synthesis. By combining this

discriminating technology with tiled singly labeled RNA FISH probes[62], we get a high ef-

ficiency, quantitative assay for allele-specific gene expression. We validate the capabilities

of the method with a panel of melanoma cell lines with different genotypes for the BRAF

V600E mutation, apply the method to measure population and single cell allelic imbalance,

and discriminate many SNVs at a time to classify whole chromosomes for parental origin.

3.2. Results

3.2.1. The SNP FISH assay

One of the primary difficulties in detecting a single base difference via RNA FISH is that

a 20 base oligonucleotide probe will often hybridize to the RNA despite the presence of

53



a single mismatch. On the other hand, very short oligonucleotide probes, while able to

discriminate between single base differences, will often fail to remain bound to the target

due to reduced binding energy. Meanwhile, in either case, distinguishing legitimate signals

from false positives is a challenge when using just a single probe. We use probe design and

high-resolution image analysis to circumvent these issues. Firstly, in order to distinguish

between single base mismatches, we used a ”toehold probe” strategy in which we hybridize

a 28 base single stranded DNA SNV detection oligonucleotide probe to a shorter ”mask”

oligonucleotide[87, 85, 46] (Fig. 3.1). The remaining single stranded portion of the detection

oligonucleotide includes the SNV base and is short enough to confer selectivity based on

single base mismatches, but once bound, the mask oligonucleotide dissociates from the

detection probe via passive strand displacement, enabling the remainder of the detection

probe to bind to the target RNA. This strategy confers specificity while still retaining a

sufficient binding energy to prevent the detection probe from rapidly dissociating from the

target after hybridization.

The use of a single probe can often lead to a large number of false positive signals, as every

off-target binding event is indistinguishable from on-target binding. Typically, one avoids

such false positives by relying on the co-localization of multiple probes[62, 61], but that is not

possible when one can only use at most a single probe, as is the case in SNV detection. We

adopted a strategy in which we used multiple oligonucleotide probes (collectively referred to

as the ”guide” probe) that bind to the target RNA, thereby robustly identifying the target

RNA with a very low rate of false positives and negatives. We then only consider detection

probe signals as legitimate if they co-localize with the guide probe signals, thereby clearly

distinguishing false positive signals from true positives (Fig. 3.1).
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Figure 3.1: Toehold probes enable SNV detection on individual RNA molecules in situ. Schematic
of the principle behind in situ SNV detection, using the T1799A mutation of BRAF as an example.
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3.2.2. Validation of the assay using BRAF V600E melanoma cell lines

To demonstrate the efficacy of our method, we utilized a series of melanoma cell lines

harboring a well-known mutation in the BRAF oncogene. We used cell lines that were

homozygous mutant, heterozygous mutant/wild-type and homozygous wild-type in a muta-

tion of the 1799 position from T to A. We designed two detection probes for this particular

SNV, one targeting the mutant and one targeting wild-type transcripts, and utilized a mask

oligonucleotide common to both. We found that our scheme performed as expected, clearly

revealing both wild-type and mutant transcripts in a heterozygous line (Fig. 3.2a,b; see

Fig. 3.3 for homozygous lines). In the homozygous mutant cell line (SK-MEL-28), we found

that roughly 56% of the RNA identified by the guide probe co-localized with signals from the

mutant detection probe, whereas only 7% of the guide probe signals co-localized with the

wild-type detection probe (Fig. 3.4, Fig. 3.5). Conversely, in the homozygous wild-type cell

line (WM3918), we found that 58% of guide probe signals co-localized with the wild-type

detection probe whereas only 7% of the guide probe signals co-localized with the mutant

detection probe. In the heterozygous mutant/wild-type cell line WM9, we found 33% of

BRAF transcripts co-localized with the wild-type detection probe while 34% co-localized

with the mutant detection probe, indicating that both copies of the gene transcribe equiv-

alently in these cells. In another heterozygous cell line WM983b, we observed 36% and

29% wild-type and mutant mRNA, respectively. Overall, we found that our co-localization

efficiency was around 65%, roughly in line with other estimates of efficiency of hybridization

of DNA oligonucleotides to RNA[49], and that co-localization itself is not subject to a high

rate of false positives (Fig. 3.5). We also found that the presence of the wild-type probe im-

proves specificity of the mutant detection probe and vice-versa (data not shown). The mask

oligonucleotide is critical for maintaining this specificity; we observed many false-positive

detections when we performed our detection without the mask present (Fig. 3.6a). This

approach appears to work for a variety of different target sequence mismatches (Fig. 3.6b).

Increasing the toehold length also increases the detection efficiency (Fig. 3.7).
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Figure 3.2: a. Visualization of the guide probe detecting BRAF mRNA (ATTO488, left panel)
and the wild-type and mutant detection probes (Cy5, Cy3, middle and right panels, respectively).
b. Classification of RNA as being either wild-type or mutant using the detection probes. Scale bar
is 5µm.
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Figure 3.3: Images of SNV detection in homozygous wild-type BRAF cells (top) and homozygous
mutant BRAF cells (bottom). The left panels show the guide probe targeting BRAF mRNA, and the
middle and right panels show the wild-type and mutant BRAF detection probes, respectively. These
are example images corresponding to the data shown in Fig. 3.2. We found little co-localization with
the off target probe, as shown quantitatively in Fig. 3.2. Note that each panel shows a z-projection
of multiple planes, but that we perform co-localization analysis in three dimensions.
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Figure 3.4: Quantification and classification of RNA as wild-type or mutant in a group of single
cells. Each sample shown is one of a set of at least two biological replicates. Left: cells with only
wild-type BRAF; middle: cells that are heterozygous for BRAF; right: cells that are mutant for
BRAF.
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Figure 3.5: Measurement of false positive rates due to random colocalization. Bar graphs show
the number of guide spots and detection spots identified in all the cells we analyzed. The pie charts
show the degree of colocalization in the original images (left) and after applying a 8 pixel shift in
x and y to the detection spots (right). The latter serves as an estimate of how often spots would
be likely to colocalize purely by chance. We found that these rates of colocalization were very low,
with the vast majority of spots remaining unclassified after applying the shift.
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Figure 3.6: a. Addition of mask is required for proper discrimination of single nucleotide variant
targets. We probed the WM3918 cell line, which is homozygous for the wild-type allele, with
probes targeting both the mutant and wild type allele, either with or without the mask (left, right,
respectively). Each bar represents the mRNA counts from a single cell. We found that in the presence
of mask, the vast majority of transcripts are wild-type, whereas without mask, a large fraction of the
mutant probe spuriously bound to the target. b. Other targets also showed single base mismatch
discrimination. We targeted sequences as shown with both perfect match and mismatch detection
probes, and found that the perfect match probe was far more likely to bind.
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Figure 3.7: Changing the toehold length can change the detection efficiency without dramatically
increasing off-target binding. Toehold length is in nucleotides, with the total probe length remaining
constant (toehold length changed by changing the mask probe length). With no mask there is
dramatically reduced target discrimination and overall detection efficiency saturates around 67%.
We computed the free energy change of the toehold binding (given in kcal/mol) using the definition
from [87]
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3.2.3. Population and single-cell allelic imbalance

Our method for detecting SNVs on RNA molecules enabled us to measure differences in

the number of mRNA derived from the maternal vs. paternal copies of a gene, both in

the cell population overall and at the single cell level. We explored these possibilities

using the GM12878 cell line, for which complete genetic phase information is available[1],

making it ideal for studies involving allele-specific expression[27, 67]. We first examined cell

population-level imbalances in maternal vs. paternal transcript abundance. We found that

the gene DNMT1 displayed no imbalance, whereas EBF1 and SUZ12 had more mRNA from

the paternal chromosome (Fig. 3.8; see Fig. 3.9a for number of mRNA one must classify in

order to determine that there is an imbalance). Consistent with our findings, a previous

study has also found an allelic imbalance in the expression of EBF1 in a similar cell line[29].
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Figure 3.8: We quantified allelic imbalance in the population of the indicated genes by measuring
the probability that a transcript comes from either the maternal or paternal allele. Error bars
reflect 95% confidence intervals on counting statistics plus an 8 percentage-point differential between
maternal and paternal detection efficiency; see methods for details
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Figure 3.9: a. Using a statistical model, we determined the number of RNAs required to say
whether there was an allelic imbalance (for a given actual degree of imbalance). This number is
relatively insensitive to the detection efficiency. b. We examined the degree to which changes in the
detection efficiency between maternal and paternal detection probes would affect the determination
of the presence of single cell imbalance. We found that even very large changes in the detection effi-
ciencies would qualitatively similar conclusions. This is because single cell imbalance manifests as a
deviation from the average, thereby making it insensitive to parameters governing the determination
of the average itself.
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While the cell population average gives us the average imbalance between the maternal and

paternal copies of the gene, our method allows us to look for deviations from this average

at the single cell level, which would manifest themselves as abnormally large proportions of

maternal or paternal transcripts (Fig. 3.10a). In order to quantify the degree of deviation

from the average, we took a population of cells and calculated the probability of observing

the imbalances detected in that cell population. The null hypothesis is that each transcript

in a given cell has a probably of being maternal or paternal equal to that of the cell

population average. We found that while DNMT1 displayed allelic balance at the cell

population level, a significant number of individual cells deviated from this average (p =

0.00017) (Fig. 3.10b). In contrast, while EBF1 and SUZ12 showed imbalance at the cell

population level, single cells did not deviate significantly from the average. We note that

these imbalances are insensitive to detection efficiency (Fig. 3.9b) and that our analytical

method is agnostic as to whether the single cell imbalances are stochastic[16], epigenetic[29]

or even genetic in origin.
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Figure 3.10: a. Diagram of single cell allelic balance and imbalance. b. Allelic imbalance in
single cells. The solid black midline represents the average imbalance across cells (from a). The
dashed black lines shows the 95% confidence interval on the imbalance for each cell with the null
hypothesis that the probability of an RNA being maternal or paternal is independent of which cell
it is in. The inset shows the likelihood of the observed population imbalance (red) compared to that
of the null model (blue); see methods for details. Note that for EBF1, 90% of cells expressed zero
transcripts, so we excluded those cells from the figure. Each sample shown is one of a set of at least
two biological replicates. ** represents cells with a p-value below 0.05, and * represents a p-value
below 0.10 (p-value defined in methods and Supplementary Note).
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3.2.4. Parent-specific chromosome paints

Another application of our method is to distinguish transcription from the maternal vs.

paternal chromosomes in situ. In previous work[43], we developed a set of probes target-

ing introns of a set of 31 genes along chromosome 19, yielding an RNA-based chromosome

”paint”. We used a database of SNVs in GM12878 cells[67] to find SNVs in the introns of

these genes and created a set of detection probes designed to label 15 of the introns from

the paternal chromosomes in a distinct color. In this manner, we were able to visualize and

classify chromosomes as maternal or paternal in situ (Fig. 3.11). These results demonstrate

that our method is applicable to introns, enabling us to measure allele-specific transcrip-

tional activity directly. Moreover, localization of signals to specific chromosomes can allow

one to determine whether a new SNV is on the maternal or paternal copy of the chromo-

some, or even whether transcription of a gene with no SNV is coming from the maternal or

paternal chromosome..
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Figure 3.11: a. Illustration of the chromosome detection method. We designed iceFISH probes[43]
that target chromosome 19 and SNV detection probes targeting 19 SNPs within 15 of these genes
on the paternal chromosome (methods). b. Example images showing the two copies of chromosome
19 (gray dashed regions) with the computationally identified co-localized detection probes labeled
with green circles. Each sample shown is one of a set of at least two biological replicates.
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Figure 3.12: Number of co-localized spots in the experiment described in Fig. 3.11. We applied
SNV RNA FISH detection probes targeting introns on the paternal copy of chromosome 19; we
simultaneously labeled these introns with guide probes targeting several introns on chromosome 19
as described in the methods. We spatially isolated individual chromosomes in individual cells and
then counted the number of paternal SNVs detected on each chromosome (by co-localization with
the guide intron probes). We designated the chromosome with more paternal SNVs as being the
paternal copy.
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3.3. Discussion

Here, we have demonstrated the ability to distinguish SNVs with high efficiency and speci-

ficity at the level of individual RNA molecules. Our method is simple to implement and uses

readily available reagents. It is possible that using different nucleic acid chemistries for the

detection probe could help increase the detection efficiency while also reducing off-target

binding, which may make application of this method more difficult for more abundant RNA

species. Aside from diagnostic applications, particularly in genotyping single cells in situ,

our method has the potential to reveal new insights into allele-specific effects in gene ex-

pression. Classic examples include gene imprinting[2], but genome wide association studies

have highlighted the need for tools to quantify the expression of genes in an allele-specific

manner to show how disease-associated SNVs affect transcription, and methods like ours

will help bridge that gap.

3.4. Materials and Methods

3.4.1. Cell culture and fixation

We grew melanoma cell lines with the BRAF V600E mutation, SK-MEL-28 (Mut/Mut,

ATCC cat no HTB-72), WM3918 (WT/WT) and WM398b & WM9 (both WT/Mut) (gifts

from the lab of Meenhard Herlyn, Wistar Institute, genotypes verified by the Herlyn lab),

using the recommended cell culture guidelines for each line. The SK-MEL-28 cell line is

documented as homozygous for the V600E mutation, but our experiments revealed that a

subpopulation of the cells was heterozygous (Fig. 3.13), which we excluded from further

analysis. We grew the cells on Lab-Tek chambered coverglass (Lab-Tek) and fixed the cells

following the protocol in Raj et al. Nat Meth 2008[62]. We obtained GM12878 cells from

the Coriell Cell Repositories and grew them according to guidelines. We stored fixed cells

in 70% ethanol at 4C for up to 4 weeks before hybridization; the duration of storage did

not affect hybridization efficiency. All cells were negative for mycoplasma contamination as

verified by DAPI imaging.

71



Figure 3.13: We plated out the SK-MEL 28 cells at a low density and grew them until we had
groups consisting of 2-6 recently divided cells. Within these groups, the cells can be regarded as
genetically identical because they have a common recent ancestor. We found two of the ten groups
analyzed had an unusually large number of wild-type transcripts (36% and 39%) compared to the
other groups, indicating that those cells were likely to be heterozygous.
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3.4.2. Probe design and synthesis

We designed detection probes with the single nucleotide difference located at the 5th base

position from their 5 end. We adjusted the total length of the detection oligonucleotide

to ensure the hybridization energy with target RNA was similar or greater than that of

the guide probe oligonucleotides[87]. We designed mask oligonucleotides complementary

to the detection probes that, upon binding to the detection probe, left a 6 to 11 base

toehold regions available to target RNAs regions with SNVs. We conjugated guide probe

oligonucleotides to ATTO 488 dye (ATTO-TEC) and we interchangeably used Cy3 and Cy5

(GE Healthcare) dyes for the SNV detection probes. We did not observe any changes to

detection efficiency when swapping the Cy3/Cy5 dyes. Our choice of dyes was influenced

by dye stability after a post-fixation step described below and affinities of some dyes that

cause excessive binding to the incorrect target. We listed the detection, mask, and guide

probe sequences in the supplementary information.

3.4.3. RNA FISH

We performed RNA fluorescence in situ hybridization (FISH) as outlined in Raj et al. Nat

Meth 2008[62] with some modifications as outlined presently, most notably a postfixation

step after the hybridization to help prevent probe dissociation during imaging. Firstly, our

hybridization buffer consisted of 10% dextran sulfate, 2x saline-sodium citrate (SSC) and

10% formamide[49]. We performed the hybridization as before, using final concentrations

of 5nM for the guide probe, wild-type and mutant detection probe, and 10nM for the mask,

thereby leading to 1:1 mask:detection oligonucleotide ratios. We let the hybridization pro-

ceed overnight at 37C. For Lab-Tek chamber samples, we used 50µL hybridization solution

with a coverslip and included a moistened paper towel to prevent excessive evaporation

in parafilmed culture dish. For suspension cells, we used 50uL hybridization solution in a

1.5mL Eppendorf tube. In the morning, we washed the samples twice with a 2X SSC and

10% formamide wash buffer. Suspension cells included 0.1% Triton-X in the wash buffer.

We then performed a postfixation step using 4% formaldehyde in 2X SSC for 30 minutes at
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25C to crosslink the detection probes and thereby prevent dissociation during imaging, fol-

lowed by 2 washes in 2X SSC. We then put the cells into anti-fade buffer with catalase and

glucose oxidase[62] to prevent photobleaching of Cy5 during imaging. For the chromosome

19 paints, we used probes against introns of 31 genes with 12-16 oligonucelotides per gene,

each at 0.1nM, for the guide probe in Cy3[43]. We added maternal and paternal probes, in

Cy3 and Cy5 respectively, for 19 SNV sites within 15 of the chromosome 19 paint genes,

added masks, and performed hybridization as described above.

3.4.4. Imaging

We took all our images on a Leica DMI600B automated widefield fluorescence microscope

equipped with a 100x Plan Apo objective, a Pixis 1024BR cooled CCD camera and a Prior

Lumen 220 light source. We took image stacks in each fluorescence channel consisting of sets

of images separated by 0.35µm. Our exposure times were 1500ms and 3500ms for guide and

detection probes respectively. We used longer exposure times for the wild-type and mutant

detection probes owing to the low signal afforded by single dye molecules relative to the

dozens of fluorophores typically used in the guide probes. Step-wise photobleaching traces

demonstrated that we were indeed detecting single dyes (Fig. 3.14).
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Figure 3.14: Spot fluorescence traces over time show stepwise photobleaching. To show that each
of the fluorescence spots we found in the detection probes was indeed from a single fluorescent
molecule, we looked for stepwise decrease in fluorescence upon repeated exposure. Here, we show
three representative fluorescence traces of spots observed in the fluorescence channel corresponding
to the detection probe target- ing SUZ12 mRNA. Each exposure lasted for 5 seconds, and the x-
axis shows the total number of seconds of exposure. The y-axis shows the fluorescence intensity
in arbitrary units, but note that we did not normalize each trace individually; thus, the fact that
the intensities are similar at time zero provides further evidence that the spots correspond to single
fluorescent molecules.

75



3.4.5. Image analysis

Our image analysis consisted of first manually segmenting the cells using custom software

written in MATLAB (Mathworks), after which we identified spots using algorithms similar

to those we described in Raj et al. Nat Meth 2008. We chose relatively permissive thresholds

for spots in the channels for the mutant and wild-type detection probe channels, thereby

trying to avoid false negatives due to overly stringent criteria for spot detection. Once

we had located the spots, we then denoted spots as colocalized if two spots from different

fluorescence channels were within 4 pixels of each other in order to account for a 2 pixel

chromatic aberration in portions of the images from the different channels. In the event of

a colocalization event in which spots appeared in more than 2 channels or in which more

than 2 spots were in the neighborhood of the guide probe, we used colocalized pairs in the

rest of the image to correct for shifts between channels, thereby allowing us to tighten the

colocalization window.

3.4.6. Bioinformatic analysis of GM12878 to find SNPs

We used the RefSeq gene model to define the genomic coordinates of introns and exons for

genes of interest. We queried these regions in the published diploid genome of GM12878

(http://alleleseq.gersteinlab.org) (version Dec 16, 2012) to locate the heterozygous SNPs,

and extracted those sequences for probe design.

3.4.7. Statistical analysis of allele-specific expression

We performed a statistical analysis of allele-specific expression in two stages. In the first

stage, we combined data from all cells to find evidence for population-level allelic imbalance.

Using this data, we computed the mean detection efficiency of the detection probes as well as

the average percentage of detected transcripts that originated from the maternal or paternal

allele of the gene in question. We computed confidence intervals on these percentages by

combining a. the error associated with the number of observations itself (modeled as a

multinomial distribution and computed to 95% confidence) and b. the error associated
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with uncertainty in the detection efficiency. For the latter, we assumed that the detection

efficiency could differ by at most 8% from each other; for example, if the average detection

efficiency was 55%, we would compute the imbalance with 59%/51% detection efficiencies,

first in favor of maternal and then paternal. Empirically, we have found that our detection

efficiencies tend to remain in the 50%-60% range, and so this procedure will ensure that at

least one of the detection efficiencies remains in this range. Combining these two sources of

error, our error bars likely reflect a greater than 95% confidence interval.

In the next stage, we used the observed detection efficiency and population-level imbalance

to ascertain the degree to which single cells displayed allelic imbalance. Our null hypothesis

is that each RNA produced at any given period of time would be independently chosen to

come from either the maternal or paternal allele at the same frequency as at the population

level; in other words, there are no ”runs” of maternal or paternal-origin transcripts in single

cells. Given this null model, we then computed the probability density of possible observed

imbalances for each cell given the population-level imbalance. We used these densities to

compute single cell likelihoods for our observed counts and calculated the total likelihood of

the population by taking the product of the single cell likelihoods. We then compared the

likelihood of our observations to the likelihood one might expect from the null hypothesis

by generating 1,000,000 in silico counts for each cell based on our multinomial model and

computing the likelihood of these observations to generate a distribution of likelihoods

corresponding to the null hypothesis. In order to reject the null hypothesis and show that

the population of single cells displays cell-to-cell allelic imbalance, we then computed the

percentage of the null hypothesis likelihoods that were more extreme than our observation.
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CHAPTER 4 : Outlook and applications for the chromosome and allele-specific

expression measurements

4.1. Implications of single chromosome profiling and applications of iceFISH

In our study [43] we definitively showed that translocations can lead to chromosome-wide

changes to transcriptional activity. Our measurements of transcriptional activity on normal

versus translocated copies of chromosomes are impossible to obtain with previous methods.

The ability to discriminate the chromosomal source of transcription comes from the use of

microscopy and spatially assigning activity to chromosomes within single cells. The physical

mechanism that produces the difference in transcriptional activity is still unknown.

The possibility of three-dimensional conformation or nuclear positioning of chromosomes

producing these expression changes seems unlikely given our observations (Fig. 2.19). This

is in contrast to previous findings that attributed changes in transcription to the positioning

of chromosomes and genes within the 3D nucleus[52, 33]. The statistical significance of their

findings required high numbers of observations (a larger value of n) and the differences were

subtle. Speculating on alternative possibilities that could lead to their conclusions, there

may be bias in producing a coordinate system for asymmetrical nuclei and then applying this

system across cell types. There are gross structural differences between the nuclei of normal

and cancer tissues[90] that could introduce systematic error in comparing nuclear positioning

measurements between cell types. One outstanding example is how these coordinate systems

developed for nuclear positioning treat the nucleus as a homogenous volume. We feel this is a

fundamentally erroneous assumption since the largest substructures of the nucleus, nucleoli,

are ignored. Nucleoli, which are the site of ribosomal RNA production and assembly of

ribosomal subunits come in different sizes and numbers in each nucleus[34]. Cancer cells

can even be identified by their nucleoli that differ from healthy tissue[90]. Overall, these

concerns about the measurement methods in published work and the lack of correlation in

our studies leads us to dismiss the hypothesis of nuclear positioning regulating transcription.
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Instead of 3D positioning, we hypothesize that the translocated portion of chromosome 19

has an epigenetic profile that differs from its intact copy. Translocated chromosomes are

created by non-homologous end joining after a set of DNA double-strand breaks. The DNA

repair process involves a great deal of chromatin remodeling[66] and it is possible that a

translocation event leads to the replacement or modification of histones chromosome-wide.

Therefore, we would like to measure the DNA methylation and histone modifications present

on the individual copies. Unfortunately, sequence similarity prevents discriminating the

chromosome copies since high-throughput sequencing techniques produce short DNA reads

that map to a reference genome. To overcome this, we utilized flow assisted cell sorting to

separate chromosome species by size[12] (normal 19 is smaller than derivatives t(6;19) and

t(13;19)). Once separated, we can probe the material using chromatin immunoprecipitation

coupled with DNA sequencing (ChIP-seq). This is an ongoing project in the Raj Lab

currently in the sequencing stages. This technique will provide nucleotide resolution of the

epigenetic profiles and hopefully provide an answer to what makes translocated versions of

chromosomes behave differently than the intact copies.

Using 5-base colors and sophisticated image processing for labeling 20 different genes, the

iceFISH assay described in [43] is too complex for rapid diagnostic applications. As a proof of

concept, we put together a version of the iceFISH assay that provides simpler interpretation

of signals. By labeling two halves of chromosome 19 in two distinct colors, one for each

segment split by the site of translocation, we can karyotype interphase cells manually by

eye (see Fig. 4.1). This data is simple enough that the analysis could be automated using

computational image processing routines that identify overlapping or separated ’blobs’ for

the two halves of chromosome 19. Since this version of the method uses only a couple

fluorescent colors, the remaining third or fourth colors could probe for an RNA biomarker

associated with a certain type of cancer or other diseased tissue. Looking forward, an

iceFISH assay designed to detect recurring translocations and associated RNA biomarkers

has the potential to provide high confidence diagnostics with opportunities for automated

analysis.
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Figure 4.1: Applying the iceFISH assay to specifically detect a recurring, known translocation,
karyotyping chromosomal translocations becomes simple to identify by eye. The assay can be com-
bined with RNA expression probes for correlated biomarkers, thus providing an even higher level of
confidence in the diagnosis
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4.2. Genetic variation within single cells measured by SNP FISH

SNP FISH is a novel assay capable of detecting single nucleotide differences on individual

RNA molecules within single cells. We are able to discriminate single nucleotide differences

using a masked-probe strategy that leaves only a short region of an oligonucleotide probe

accessible in the search for a complementary target. This portion of the probe is called

the toehold and the short length maintains specificity when it encounters a destabilizing

single-base mismatch. After finding the target, the complementary mask oligonucleotide is

displaced and the probe can stably bind the RNA target. By combining this strategy with

a tiled probe RNA FISH method, we overcame false positives other single probe strategies

suffer from and achieved quantitative, allele-specific measurements of transcription.

SNP FISH opens up many new questions one can study in the field of transcriptional reg-

ulation. Without the ability to discriminate between alleles, it is difficult to investigate

interactions between genes on the same chromosome. These cis interactions could be regu-

lated by control regions of the DNA near the affected genes and would display RNA levels

correlated in parental origin. Allelic discrimination would also be useful in studying diseases

caused by mutations in the RNA such as many cancers. An open question is how a cancer

becomes resistant after exposure to therapies targeting the affected allele. One possibility

is that cancer cells increase levels of the problematic allele while maintaining overall RNA

levels constant for the affected gene. SNP FISH can quantify the single cell allelic ratio of

RNA in cancer cells before and after obtaining resistance to test this hypothesis.

An application of SNP FISH we are currently pursuing is imprinted transcription where one

parental allele of a gene is chosen during development as the sole source of RNA. Imprinted

genes can lose their parent-specific expression due to a mutation in an imprinting control

region. Measurements from the cell population leave open the question of whether the

observed biallelic expression is now coming from each cell randomly choosing an allele or all

cells transcribing from both alleles. Disruptions in the regulation of imprinted expression

have serious disease implications and imprinting is often specific to particular tissues or cell
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types[81]. Therefore, the ability to measure gene expression within native tissue with cells

identified through RNA biomarkers is essential, making RNA FISH a well-suited strategy

to characterize this behavior.

Beyond allelic imbalances caused by deterministic transcriptional regulation, the stochastic

nature of transcription is another place to apply SNP FISH. Some genes express with

”bursts” of new RNA at infrequent intervals[60]. Provided a short RNA half-life and large

enough burst-sizes, a cell could toggle between parental copies of a gene, making it effectively

homozygous for each allele at certain times. The SNP FISH assay can quantify the maternal

or paternal ratio of RNA on a per cell basis. This data could help develop computational

models describing the dynamics of ”bursty” gene expression. We already observed examples

of this class of genes, in the expression of dual specificity phosphatase 6 (Dusp6) in mouse

embryonic fibroblast cells (Fig. 4.2).
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Figure 4.2: Applying SNP FISH in a mouse embryonic fibroblast line derived from a CAST (chro-
mosome 7 and 10) female mouse crossed with a Black6 male, the gene Dusp6 shows transcriptional
bursting from transcription sites (bright white spots) with allele-specific labeling of the individual
RNA molecules. The Black6 allele shows a cluster of newly transcribed RNA coming from the upper
transcription site.
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Hopefully, new insights from example applications of SNP FISH described above will pro-

duce more interest in how our cells manage transcribing RNA with two copies of each gene.

4.3. Final conclusions

Both the iceFISH and SNP FISH assays provide new details of transcription by discriminat-

ing which chromosome copy RNA comes from in single cells. We used iceFISH to describe

how genes on a translocated copy of chromosome, a hallmark of cancer, can have drastically

different transcriptional behaviors than the copies on intact chromosomes. We did not find

any correlation between these transcriptional changes and the spatial positioning of chro-

mosomes or genes within the nucleus. These results force us to rethink how translocations

affect transcription and lead to disease. We then built SNP FISH to discern single base

differences on RNA in situ and used it to quantify allelic levels of RNA in single cells.

These tools have the potential to open up new avenues for research in the regulation of gene

expression, serve as effective diagnostic tools, and ultimately deepen our understanding of

biology to improve medicine.
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