
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2013

Empirical Studies In Retail Operations
Juan Santiago Gallino
University of Pennsylvania, sgallino@wharton.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Business Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/753
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Gallino, Juan Santiago, "Empirical Studies In Retail Operations" (2013). Publicly Accessible Penn Dissertations. 753.
http://repository.upenn.edu/edissertations/753

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=repository.upenn.edu%2Fedissertations%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/753?utm_source=repository.upenn.edu%2Fedissertations%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/753
mailto:libraryrepository@pobox.upenn.edu


Empirical Studies In Retail Operations

Abstract
This dissertation contains three essays. The first essay, entitled \textit{ "Does Inventory Increase Sales? The
Billboard and Scarcity Effects in U.S. Automobile Dealerships"} looks into the relationship between inventory
and demand beyond the obvious stockout effect. Inventory might signal a popular, and therefore a desirable,
product, thereby increasing sale. Or, inventory might encourage a consumer to continue her search, thereby
decreasing sales. In this paper we seek to identify these effects in U.S. automobile sales. Our primary research
challenge is the endogenous relationship between inventories and demand. Hence, our estimation strategy
relies on weather shocks at upstream production facilities to create exogenous variation in downstream
dealership inventory. We find that the impact of adding a vehicle of a particular model to a dealer's lot depends
on which cars the dealer already has. If the added vehicle expands the available set of sub-models (e.g., adding
a four-door among a set that is exclusively two-door), then sales increase. But if the added vehicle is of the
same sub-model as an existing vehicle, then sales actually decrease. Based on this insight, given a fixed set of
cars, they should be allocated among a group of dealers so as to maximize each dealer's variety. The second
essay, entitled \textit{"Severe Weather and Automobile Assembly Productivity"}, is related to the first one in
that presents a detail analysis of the exogenous shock presented there: The weather impact on vehicles
assembly lines. It is apparent that severe weather should hamper the productivity of work that occurs outside.
But what is the effect of extreme rain, snow, heat and wind on work that occurs indoors, such as the
production of automobiles? Using weekly production data from 64 automobile plants in the United States
over a ten-year period, we find that adverse weather conditions lead to a significant reduction in production.
Across our sample of plants, severe weather reduces production on average by 1.5\%. While it is possible that
plants are able to recover these losses at some later date, we do not find evidence that recovery occurs in the
week after the event. Our findings are useful both for assessing the potential productivity shock associated
with inclement weather as well as guiding managers on where to locate a new production facility. The third
essay, entitled \textit{"Integration of Online and Offline Channels in Retail: The Impact of Sharing Reliable
Inventory Availability Information"}. In this essay we focus the attention on the impact of inventory
information disclosure. Increasingly, retailers are integrating their offline and online channels to reduce costs
or to improve the value proposition they make to their customers. Using a proprietary dataset, we analyze the
impact of the implementation of a buy-online-pickup-in-store project. Contrary to our expectations, the
implementation of this project is associated with a reduction in online sales and an increase in store sales and
traffic. We interpret the results in light of recent operations management literature that analyzes the impact of
sharing inventory availability information online. The implementation of a buy-online-pickup-in-store project
provides an exogenous shock to the verifiability of the inventory information that the firm shows to their
customers. Our analysis illustrates the challenges of drawing conclusions about complex interventions using
single channel data.
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ABSTRACT

EMPIRICAL STUDIES IN RETAIL OPERATIONS

Juan Santiago Gallino

Gérard P. Cachon

Marshall Fisher

This dissertation contains three essays. The first essay, entitled ”Does Inventory Increase

Sales? The Billboard and Scarcity Effects in U.S. Automobile Dealerships” looks into the

relationship between inventory and demand beyond the obvious stockout effect. Inventory

might signal a popular, and therefore a desirable, product, thereby increasing sale. Or,

inventory might encourage a consumer to continue her search, thereby decreasing sales.

In this paper we seek to identify these effects in U.S. automobile sales. Our primary re-

search challenge is the endogenous relationship between inventories and demand. Hence,

our estimation strategy relies on weather shocks at upstream production facilities to create

exogenous variation in downstream dealership inventory. We find that the impact of adding

a vehicle of a particular model to a dealer’s lot depends on which cars the dealer already

has. If the added vehicle expands the available set of sub-models (e.g., adding a four-door

among a set that is exclusively two-door), then sales increase. But if the added vehicle is

of the same sub-model as an existing vehicle, then sales actually decrease. Based on this

insight, given a fixed set of cars, they should be allocated among a group of dealers so as to

maximize each dealer’s variety. The second essay, entitled ”Severe Weather and Automobile

Assembly Productivity”, is related to the first one in that presents a detail analysis of the

exogenous shock presented there: The weather impact on vehicles assembly lines. It is

apparent that severe weather should hamper the productivity of work that occurs outside.

But what is the effect of extreme rain, snow, heat and wind on work that occurs indoors,

such as the production of automobiles? Using weekly production data from 64 automobile
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plants in the United States over a ten-year period, we find that adverse weather conditions

lead to a significant reduction in production. Across our sample of plants, severe weather

reduces production on average by 1.5%. While it is possible that plants are able to recover

these losses at some later date, we do not find evidence that recovery occurs in the week

after the event. Our findings are useful both for assessing the potential productivity shock

associated with inclement weather as well as guiding managers on where to locate a new

production facility. The third essay, entitled ”Integration of Online and Offline Channels

in Retail: The Impact of Sharing Reliable Inventory Availability Information”. In this es-

say we focus the attention on the impact of inventory information disclosure. Increasingly,

retailers are integrating their offline and online channels to reduce costs or to improve the

value proposition they make to their customers. Using a proprietary dataset, we analyze

the impact of the implementation of a buy-online-pickup-in-store project. Contrary to our

expectations, the implementation of this project is associated with a reduction in online

sales and an increase in store sales and traffic. We interpret the results in light of recent op-

erations management literature that analyzes the impact of sharing inventory availability

information online. The implementation of a buy-online-pickup-in-store project provides

an exogenous shock to the verifiability of the inventory information that the firm shows

to their customers. Our analysis illustrates the challenges of drawing conclusions about

complex interventions using single channel data.
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CHAPTER 1 : Introduction

This dissertation contains three related essays that contribute to the empirical literature

in operations and information management. These papers try to better understand the

relationship between inventory information and demand. At the same time the papers

present different approaches to deal with the challenge of inventory and demand endogeneity

in their empirical estimation approach.

The first essay, entitled ”Does Inventory Increase Sales? The Billboard and Scarcity Effects

in U.S. Automobile Dealerships” looks into the relationship between inventory and demand

beyond the obvious stockout effect.

In early 2008, before the financial crisis, car dealerships in the United States (U.S.) held

enough vehicles to cover sales for 75 days (WardsAuto market data). However, immediately

following the financial crisis automakers began drastic reductions in their inventories. By

January 2010, days-of-supply for the industry had dropped to less than 49, leading many

dealers to complain that their low inventories were negatively affecting sales (Automotive-

News (2010)). Were those complaints justified?

Clearly sales could fall if a dealer does not have any inventory - it is hard to sell a car if

there is no car to sell in markets, like the U.S., where customers are accustomed to purchase

directly from units on the lot rather than a make-to-order process as is more common in

Europe. But beyond this stockout effect, does carrying more or less inventory influence

sales? Traditional inventory theory assumes the answer is “no”: demand is generally taken

to be independent of inventory, so while sales varies in inventory (due to the stockout

effect), demand does not. But in some product categories, including automobiles, there

is reason to believe that demand may indeed depend in part on the amount of inventory

carried, thereby creating a link between inventory and sales beyond the stockout effect. For

example, seeing many cars on a dealers lot might cause a customer to infer that the car

is popular (a dealer carries many cars only if the model is popular), thereby making the
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car more desirable to the customer and increasing the chance the customer purchases the

vehicle. In contrast, ample inventory could create the opposite inference: if there are many

cars, then demand must be slow because the car is not popular, and it must not be popular

for a reason, so the customer becomes less likely to purchase. In general, we use the label

“billboard effect” for any mechanism that assigns a positive relationship between inventory

and demand, and “scarcity effect” for any mechanism with a negative relationship. Our

objective is to empirically evaluate the strength of these effects in the U.S. auto industry.

While it is possible to identify several mechanisms that lead either to a billboard or to a

scarcity effect, estimating the relationship between inventory and sales is complex primarily

because it is reasonable to believe that inventories are endogenously chosen. For example,

a simple plot reveals a positive relationship between the amount of inventory a dealer

carries and the dealer’s average weekly sales. But dealers that operate in larger markets are

expected to carry more inventory and have higher sales even if inventory has no influence on

demand merely because a firm rationally needs to carry more inventory when it serves more

demand. To overcome this selection effect, we estimate the influence of inventory using only

observed variation within dealer-model pairs rather than variation across dealerships and

models. This approach is valid given the assumption that a dealer’s market conditions are

reasonably constant in our six-month study period (e.g., there is little change in local factors

like demographics, population, or the degree of competition the dealer faces). However,

even within a dealer-model pair, there is a concern that a dealer may change her inventory

level in anticipation of changes in demand. For example, the dealer may build inventory

due to a planned promotion. In that situation it is incorrect to conclude that the larger

inventory caused the higher sales. To overcome this issue, we exploit shocks to dealers’

inventories due to weather disruptions in upstream production. Extreme weather disrupts

production via a number of mechanisms (e.g., delays in inbound or outbound shipments,

worker absenteeism, etc.) and also is independent of dealer demand (as production generally

occurs at a considerable distance from the dealership), thereby providing a valid instrument

that allows us to estimate the causal impact of inventory on sales. Given our results, we are

2



then able to estimate the increase in sales that could be achieved if vehicles were allocated

differently across dealerships.

The second essay, entitled ”Severe Weather and Automobile Assembly Productivity”, is

related to the first one in that presents a detail analysis of the exogenous shock presented

there: The weather impact on vehicles assembly lines.

It is well known that there is a relationship between climate and economic activity. For

example, not only are hot countries poorer, temperature even explains variation in economic

output within countries (Dell et al., 2009). It is intuitive that climate can impact outdoor

activities like agriculture, forestry, construction and tourism. Less clear is the impact on

“climate-insensitive” sectors such as manufacturing and services (Nordhaud, 2006).

In this paper we study the relationship between severe weather and weekly automobile

production at 64 facilities within the United States over a ten-year period. Although au-

tomobiles are made indoors, there are several mechanisms through which bad weather at a

plant could influence production. For example, high winds, icy roads or heavy precipitation

could cause delays in in-bound delivery of parts from suppliers, possibly due to additional

traffic congestion, accidents or cancelled shipments. (See Brodsky and Hakkert (1988);

Golob and Recker (2003) for data on precipitation and traffic accidents.). Finished vehicles

might be damaged during periods of high wind or hail once they exit the plant. In addition,

if a plant operates in a “just-in-time” fashion with relatively little buffer stock of parts, the

plant may need to delay the start of a shift or cancel a shift altogether due to the absence

of needed parts. The same concern applies to “in-bound” employees – production could be

curtailed if workers are unable to (or choose not to) travel to the plant. Finally, even if

all of the workers and parts are available, it is possible that bad weather could influence

employee productivity. For example, with extreme heat conditions outside, even if the plant

has a cooling system, it is possible that the indoor temperature rises to a level that slows

down the manual labor associated with automobile production. Alternatively, bad weather

outside could influence the affect of employees which in turn may lower their productivity.

3



In short, it seems reasonable to conclude that weather could influence seemingly sheltered

indoor economic activity.

For our study it is safe (we believe) to assume that production does not cause changes in the

weather - whether a plant produces more or fewer cars in a week is unlikely to influence its

local weather in that week. Of greater concern is whether weather exerts a causal influence

on production - are there omitted variables that could lead to an endogeneity bias? For

example, maybe automobile production is seasonal for reasons unrelated to local weather.

If production seasonality is correlated with a plant’s weather (e.g., if fewer cars are made

in the summer because demand across the country is lower during the summer), then local

weather may only be a proxy for this seasonality. To address this issue we take advantage of

the panel structure of our data to include a number of controls: product introduction and

ramp-down dummies to account for the possibility that vehicles are introduced at certain

times of the year (and their obvious influence on the level of production); plant fixed effects

to account for idiosyncratic plant characteristics associated with seasonality; planned shifts

to account for known variations in production; weekly dummies to account for national

variations in demand, monthly segment dummies (e.g., cars, vans, etc.) to account for

segment specific demand seasonality; regional year-month dummies to account for regional

differences in weather fluctuations and the possibility that the influence of weather varies

by region; and seasonal average weather measures for each plant (e.g., average amount of

rain in week t for plant i). In sum, given our extensive set of controls, we believe we have

identified a causal impact of severe weather on production.

We also find that weather has a substantial economic impact on automobile production. For

example, we estimate that for an average plant, within a week, six or more days with a high

temperature of 90oF or one additional day of heavy winds reduces that week’s production by

approximately 8%, and six or more days of rain within a week reduces production relative to

no rain by 6%. Furthermore, we find that average weekly production losses due to weather

events (snow, rain, heat and wind) ranges from a low of 0.5% (Princeton, IN) to a high

4



of 3% (Montgomery, AL), with an overall average of 1.5%. Hence, even though the severe

events we identify are not common (e.g., there is only about 2.5 high wind days per year

per plant), they are sufficiently common that their collective effect is meaningful.

Our data are suitable for measuring the short term impact of weather on production. An

interesting question is how do plants react to the productions shocks we observe? On one

extreme, the production could be “lost forever”, while at the other extreme, the plant may

fully recover the lost production in the same week the weather event occurs. Even if they are

able to recover some production in the same week, we find the net impact of severe weather

on a week’s production to be negative. In addition, we do not find evidence that they are

able to recover in the following week - plants are not more likely to schedule overtime in

a week that follows bad weather, nor is production higher in weeks following bad weather

(all else being equal). Nevertheless, we cannot rule out the possibility that plants recover

the production at some point in the future. However, even if they were to fully recover at

some point, at the very least, such recovery increases the variability of production (which

is costly) and may lead to delayed shipments and stockouts.

Our results could be useful in several ways. First, they are related to the issue of climate

change. While there is low confidence of the impact of climate change on wind (Pryor

(2009)), the Intergovernmental Panel on Climate Change (Field et al. (2012)) projects that

climate change is likely to increase the frequency of extreme weather events, such as heat

waves and heavy precipitation. It follows that climate change could have a consequential

impact even on indoor economic activities. Second, given that weather varies across the

country, our findings should be considered in the location decision for new plants, along

with the traditional factors like labor cost and availability, access to suppliers, proximity

to markets, etc. Third, our results complements the existing literature on productivity

in the automobile industry (Lieberman et al. (1990), Lieberman and Demeester (1999),

among others) by presenting evidence of the impact of extreme weather on productivity;

plant managers may be unaware of the impact of weather on their output (e.g., attributing
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variation in output to unexplained causes or to mechanisms that are caused by weather,

such as absenteeism or parts shortages), and can use our results to implement policies to

counteract these negative effects (e.g., accelerating deliveries in anticipation of weather).

Finally, this paper confirms that weather can be used as an exogenous shock in automobile

production, which may be useful in the development of valid instruments for other research.

The third essay, entitled ”Integration of Online and Offline Channels in Retail: The Impact

of Sharing Reliable Inventory Availability Information”.

Online retailing has grown steadily over the last few years. Some retailers operate ex-

clusively through online channels, and traditional brick and mortar (B&M) retailers have

incorporated online sales channels since the early stages of the commercial Internet (e.g.,

the Barnes and Noble website launched in May 1997). Today, retailers’ online channels are

no longer an experiment but a relevant and growing part of their business. Originally, most

of the B&M retailers decided to separate the operations of traditional and online channels.

Now, some B&M retailers are exploring integration strategies for their online and B&M

channels to enrich the customer value proposition and/or reduce costs. Online-offline inte-

gration efforts can occur in a variety of configurations. For example, B&M retailers often

show in-store inventory availability information online. More advanced integration includes

shipping the product ordered from the store closest to its destination, or offering the option

to buy products online and pick them up in the store.

In particular, over the last few months, a number of traditional B&M retailers across differ-

ent categories (e.g., The Home Depot, Apple, Crate & Barrel, Toys ”R”Us, among others)

have implemented buy-online-pickup-in- store (BOPS) functionality. The retailer shows

online viewers the locations at which the item is available, and gives customers the option

to close the transaction online and then pick up the product at one of the locations within

two hours of closing the purchase.

The integration of online and offline channels provides an opportunity to empirically study
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issues that have been the subject of theoretical research in operations management. In this

paper, we use an online-offline integration project that implements BOPS functionality as

a natural experiment to study the impact of sharing reliable inventory availability infor-

mation with the customers. Implementing a buy-online-pick-up-in-store project provides

an exogenous shock to the verifiability of the inventory information that the firm shows to

their customers; because the inventory information becomes more credible, the risk that

customers face when deciding whether to visit the store is reduced.

We have collected a novel proprietary dataset from a nationwide retailer that has been

among the pioneers in implementing BOPS functionality. Using this dataset and a series of

natural experiments, we make the following contributions:

First, we evaluate the impact of BOPS implementation on company sales and customer

behavior, and give the first piece of empirical evidence on this emerging trend in retailing.

We study the impact of the deployment of a BOPS project on both the online and brick and

mortar channels. Conventional wisdom within the industry suggests that offering the BOPS

functionality will improve online channel revenue (since BOPS transactions are considered

online revenue), and that the traditional B&M stores will carry the burden of having the

item ready for the customers to pick up, without receiving any significant benefit in their

sales. However, as we will describe in detail, a series of natural experiments leads us to

conclude that these assumptions are not correct. Our results show that, contrary to what

we would expect, sales transacted online decrease and B&M sales increase when the BOPS

functionality is deployed.

Second, we show how the increase of inventory information verifiability affects customer

behavior. The impact of availability information and its verifiability on customer behavior

has been the subject of recent modeling research in the field of operations management (e.g.,

Allon and Bassamboo (2011); Su and Zhang (2009)) but to our knowledge, no empirical

results were available prior to this paper. Implementing BOPS functionality can be seen as a

shock to the verifiability of inventory information online. To implement BOPS functionality,
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the online system must have access to accurate real-time information about availability of

in-store inventory. If the retailer offers the option to pick up an online order at a particular

store, the customer knows with very high certainty that the item ordered is available at

that store. Therefore, inventory availability information is perceived as very reliable. This

contrasts with situations whereby the store simply shows inventory information but does

not offer the option to close the transaction online. For example, consider a car dealership

showing information online about their inventory. This information is typically unverifiable;

if a customer visits the dealer and the product is not available, the dealer can claim that

the online information was not updated in real time. We find that increased reliability

of in-store availability information increases the probability that customers will visit the

store. We present an explanation consistent with empirical evidence we observed regarding

the impact of BOPS functionality: Providing BOPS functionality increases the reliability

of the inventory information, resulting in an increase in the number of customers visiting

the stores to purchase items after checking product availability online. This provides an

explanation to the counterintuitive finding described above. We further check the validity

of this explanation by presenting further evidence from the shopping cart abandonment

behavior.

We use this project as an example of the evaluation of an online-offline strategy, illustrat-

ing the complex interactions between the online and offline channels and the challenges of

relying on single channel data to evaluate the impact of interventions that affect multiple

channels. Retailers often run experiments in their online channel (for example, A/B test-

ing) to evaluate the impact of interventions on their conversion rates or other measures of

interest. In our case, an isolated evaluation of the online channel would have considered the

impact of the BOPS implementation to yield negative results. Only when closing the loop

and looking at the effects in the brick and mortar channel we can quantify the net effects

of the BOPS implementation, which are positive.

While the three essays are independent and self-contained studies, each of them focusing on
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specific research questions, there are many common themes that are present in all of them,

which characterize the general contribution of this dissertation. The main common theme

is that these three essays study questions that can be characterized as the relationship and

interaction between inventory and demand. The first essay is concern with how inventory

visible to the consumer can affect their purchase decision and hence demand. The third

essay explores the issue of how inventory availability information can affect the consumer

decision related to the channel that the customer will use to purchase an item and the impact

on the perceived risk of experiencing a stock-out. The second essay gives a solid support

to the argument used in the first essay related to the impact of weather in automobile

productivity.

Finally, on the methodological side, a common feature that is shared by the three essays

is that they are all empirical studies that deal with the endogeneity challenges of the es-

timation. The three studies use observational data that comes from proprietary sources.

The first essay uses data that can be separated in two groups. The first group includes the

inventory and sales information for the dealers in our sample. The second group includes

geographic location, weather information for all the dealers in our sample and all plants

located in the U.S. and Canada. The second essay combines two main data sets. The first

data set is weekly vehicle production in the United States at the plant-model level. The

second includes daily weather conditions at our sample of vehicle assembly plants. Both

cover the period of January 1994 to December 2005. For the third essay we have partnered

with one of the leading nationwide retailers in the US that has implemented buy-online-

pickup-at-store capabilities. We have obtained data spanning April 2011 to April 2012.

Throughout this period, the online store offered information about the availability of in-

ventory at each of the stores. During this period the retailer started to offered the option

of placing orders online and picking them up at a store. The period of analysis considered

in our analysis covers six months before the store pickup implementation and extends six

months after the implementation.
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CHAPTER 2 : Does Adding Inventory Increase Sales? The Billboard and Scarcity

Effects in U.S. Automobile Dealerships

2.1. Introduction

In early 2008, before the financial crisis, car dealerships in the United States (U.S.) held

enough vehicles to cover sales for 75 days (WardsAuto market data). However, immediately

following the financial crisis automakers began drastic reductions in their inventories. By

January 2010, days-of-supply for the industry had dropped to less than 49, leading many

dealers to complain that their low inventories were negatively affecting sales (Automotive-

News (2010)). Were those complaints justified?

Clearly sales could fall if a dealer does not have any inventory - it is hard to sell a car if

there is no car to sell in markets, like the U.S., where customers are accustomed to purchase

directly from units on the lot rather than a make-to-order process as is more common in

Europe. But beyond this stockout effect, does carrying more or less inventory influence

sales? Traditional inventory theory assumes the answer is “no”: demand is generally taken

to be independent of inventory, so while sales varies in inventory (due to the stockout

effect), demand does not. But in some product categories, including automobiles, there

is reason to believe that demand may indeed depend in part on the amount of inventory

carried, thereby creating a link between inventory and sales beyond the stockout effect. For

example, seeing many cars on a dealers lot might cause a customer to infer that the car

is popular (a dealer carries many cars only if the model is popular), thereby making the

car more desirable to the customer and increasing the chance the customer purchases the

vehicle. In contrast, ample inventory could create the opposite inference: if there are many

cars, then demand must be slow because the car is not popular, and it must not be popular

for a reason, so the customer becomes less likely to purchase. In general, we use the label

“billboard effect” for any mechanism that assigns a positive relationship between inventory

and demand, and “scarcity effect” for any mechanism with a negative relationship. Our
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objective is to empirically evaluate the strength of these effects in the U.S. auto industry.

While it is possible to identify several mechanisms that lead either to a billboard or to a

scarcity effect, estimating the relationship between inventory and sales is complex primarily

because it is reasonable to believe that inventories are endogenously chosen. For example,

a simple plot reveals a positive relationship between the amount of inventory a dealer

carries and the dealer’s average weekly sales. But dealers that operate in larger markets are

expected to carry more inventory and have higher sales even if inventory has no influence on

demand merely because a firm rationally needs to carry more inventory when it serves more

demand. To overcome this selection effect, we estimate the influence of inventory using only

observed variation within dealer-model pairs rather than variation across dealerships and

models. This approach is valid given the assumption that a dealer’s market conditions are

reasonably constant in our six-month study period (e.g., there is little change in local factors

like demographics, population, or the degree of competition the dealer faces). However,

even within a dealer-model pair, there is a concern that a dealer may change her inventory

level in anticipation of changes in demand. For example, the dealer may build inventory

due to a planned promotion. In that situation it is incorrect to conclude that the larger

inventory caused the higher sales. To overcome this issue, we exploit shocks to dealers’

inventories due to weather disruptions in upstream production. Extreme weather disrupts

production via a number of mechanisms (e.g., delays in inbound or outbound shipments,

worker absenteeism, etc.) and also is independent of dealer demand (as production generally

occurs at a considerable distance from the dealership), thereby providing a valid instrument

that allows us to estimate the causal impact of inventory on sales. Given our results, we are

then able to estimate the increase in sales that could be achieved if vehicles were allocated

differently across dealerships.

2.2. The stockout, billboard and scarcity effects

Focusing on a single item with q units of inventory and stochastic demand, d, that is inde-

pendent of q, as inventory increases, so does expected sales, E[min(q, d)], simply because
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a stockout occurs when d > q. Hence, the stockout effect suggests that sales increase with

inventory even though demand is independent of inventory. However, the magnitude of the

effect also diminishes with inventory, i.e., the effect is small when q is large.

There are also various mechanisms that we collectively label as billboard effects because

they create a positive relationship between demand (the likelihood a customer wants to

buy) and inventory, which is observed as a positive relationship between inventory and

sales (see Balakrishnan et al. (2004) for a model that assumes this mechanisms). Variety

is one example. Suppose a retailer stocks similar items that differ in several attributes

(e.g., engine size, body style) and consumers have heterogeneous preferences over those

attributes. Increasing inventory may also increase the breadth of attributes available to

consumers, thereby increasing demand (because consumers are more likely to find an item

that matches their preference), and in turn this leads to higher expected sales. This is

similar to a stockout effect in which each possible variant is considered separately. There is

an extensive literature on consumer choice that offers a number of approaches for modeling

variety (e.g., multinomial logit, nested logit, etc.). See Train (2009) for an overview. There

is also work that combines the inventory choice decision with one of these consumer choice

models (see Talluri and van Ryzin (2004), Smith and Achabal (1998)).

Continuing to hold preferences constant, inventory could increase sales by influencing a

consumer’s engagement in the purchasing process. For example, if a consumer is not aware

of an item, the consumer cannot even consider purchasing it - as with a literal billboard, a

large inventory may increase awareness. Or, a consumer may infer that a large inventory

implies a low price (e.g., the item must be on promotion or the dealer will be willing

to negotiate a good deal), thereby motivating the consumer to include the item in her

consideration set (see Zettelmeyer et al. (2006) for a study on the effect of dealership

inventory on prices). Finally, if search is costly, then consumers are more likely to visit

(and therefore buy from) a dealer that has a reputation for higher inventory - nobody likes

to go to a store only to find out that the desired item is unavailable (e.g., Dana and Petruzzi
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(2001)). Alternatively, inventory could influence demand by directly influencing preferences.

For example, a consumer might infer from a large inventory that the item has good quality

(why else would the dealer have so many), thereby making the item more desirable to the

consumer - a good quality item has useful features and durability.

In contrast to the billboard effect, there are several mechanisms that lead to a scarcity

effect in which more inventory actually lowers sales. This could happen if consumers infer

that an item with ample inventory is unpopular or low quality - there must be many units

because nobody is buying the item (e.g., Balachander et al. (2009), Stock and Balachander

(2005)). Or, a consumer might prefer an item that is perceived to be exclusive or rare, as

in a collectible (e.g. Brock (1968); Brehm and Brehm (1981); Worchel et al. (1975)). This

may apply to some specialty vehicles in the auto industry, but probably not to the sample

of mainstream vehicles we consider.

If it is costly for consumers to consider all possible options, then low inventory may imply

a low variety of options and higher confidence that a good option has been identified.

Similarly, high inventory and high variety may create confusion or frustration (too many

options to know where to begin), thereby leading to lower demand and sales (e.g. Iyengar

and Lepper (2000), Schwartz (2004), Kuksov and Villas-Boas (2010)).

A large inventory may indicate that a product will be available later on at a good price

(because the dealer may need to discount the item), thereby encouraging consumers to

wait before buying (which lowers current sales). In contrast, with a low current inventory

consumers not only anticipate that the price will not fall, they also anticipate that the

item may not be available in the future. This can lead to a “buying frenzy” in which

the low current inventory creates a sense of urgency among consumers to buy immediately

(DeGraba (1995), Qian and van Ryzin (2008)). A similar effect can materialize in search

behavior. Say a consumer finds a vehicle that she likes at a dealership. If the dealer has

only one of that type of car, she may be inclined to stop her search and just buy the car -

if she continues her shopping at other dealers, then she risks not finding a better car and
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losing the current car to another customer. But if the dealer has several of her desired cars,

she may be more inclined to continue her search, and that search may lead her to make a

purchase from some other dealership (See Cachon et al. (2008) for a model in which variety

influences the degree of consumer search.).

To summarize, there are several mechanisms that lead to a billboard effect (ample inventory

enables a better preference match, increases awareness, signals popularity, indicates avail-

ability and suggests the potential to obtain a good price) while other mechanisms lead to a

scarcity effect (ample inventory signals an unpopular vehicle, creates overwhelming choice,

suggests that prices will soon be lowered, and reduces the urgency to purchase immediately

while encouraging additional search).

2.3. Data Description and Definition of Variables

As a general reference, during the period of our study six car companies accounted for about

90% of sales in the U.S. auto market. The company we focus on, General Motors (GM),

captured 25% of the market. This market share was distributed across several different

brands: Chevrolet, GMC, Pontiac, Buick, Saturn, Cadillac and Hummer.

The data used in our analysis can be separated in two groups. The first group includes the

inventory and sales information for the dealers in our sample. The second group includes

geographic location, weather information for all the GM dealers in our sample and all GM

plants located in the U.S. and Canada.

2.3.1. Dealer’s sales and inventory data.

We obtained, via a web crawler, daily inventory and sales data from a website offered by

GM that enables customers to search new vehicles inventory at local dealerships. The data

collection was done from August 15, 2006 to February 15, 2007, and includes a total of 1,289

dealers in the following states: California, Colorado, Florida, Maine, Nebraska, Texas and

Wisconsin. These states are geographically dispersed and somewhat geographically isolated
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- they may border with Mexico or Canada or have a substantial coastline. The dealers in

the sample are all the GM dealers in those states and they represent approximately 10% of

all GM dealers in the U.S. for the period under analysis.

The crawler collected specific information for each vehicle at a dealer’s lot, such as its trim

level, options, list price and Vehicle Identification Number (VIN). Our sample of GM vehicles

includes all cars and a large portion of light-truck models manufactured and sold in the U.S.

and Canada. VINs uniquely identify all vehicles in the U.S. Thus, they provide three key

pieces of information. First, the VINs allow us to identify when a new car arrived at a dealer

and when a sale happened (a vehicle is removed from a dealer’s inventory). Second, the

VIN code identifies the particular plant where the vehicle was produced even if the model is

manufactured at multiple plants. Finally, the VINs provide us with information regarding

dealer transfers - we can observe when a vehicle is removed from one dealer’s inventory and

added to another dealer’s inventory within the state.1

We removed from our sample a limited number of dealerships that opened or closed during

the period under analysis.

2.3.2. Geographic location and weather data

For each dealer and all 22 GM plants supplying vehicles in our sample (located in the

U.S. and Canada), we obtained their address and exact geographic location (longitude and

latitude) from GM’s website.

We identified the closest weather station to each plant and each dealer. The selected weather

stations are close to our plants with a mean and median distance of 12 and 10 miles,

respectively. No plant is further than 32 miles from its corresponding weather station. To

assess whether a station’s weather is likely to be similar to the weather at its nearby plant,

1If a vehicle leaves a dealer in week t and does not reappear in another dealer’s inventory in week t + 1,
then we code this as a sale. Otherwise, it is coded as a transfer. For example, car A is transferred from
dealer 1 to dealer 2 and then sold at dealer 2, a sale is counted only at dealer 2. We can only observe
transfers between dealerships within the same state. We anticipate that we observe the majority of transfers
because transfers probably occur in a limited geographic area and the isolated states we analyze have fewer
borders with other states.
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we constructed a sample of weather stations that are between 30 and 60 miles apart. In

this sample, the correlation in our weather variables is no less than 95%, suggesting that

the weather reported at the nearby weather station is representative of the weather at the

plant2.

Using the website from the National Weather Service Forecast Office (NWSFO) and the

website www.wunderground.com, we obtained daily weather information for every dealer-

ship and plant location in our sample for the period August 15, 2006 to February 15, 2007.

Section 4 describes in detail the weather variables included in our analysis.

Table 1 summarized the number of dealers in each state and Figure 2 shows the geographic

location of GM plants and the dealers in our sample.

2.4. Model Specification

We seek to estimate the impact of inventory and variety on sales. The available data was

used to construct a panel data-set where the unit of analysis is the sales of a particular

vehicle model i at a specific dealership j during a week t (Salesijt). Expected sales during

a week are influenced by the total number of vehicles available at the dealership during the

week (Inventoryijt), the number of varieties of the model that where available (V arietyijt,

to be described in more detail shortly), plus other factors that could influence the demand

for vehicles at the dealership. Figure 1 illustrates the relationship between the key variables

in our analysis – sales, inventory and variety.

Figure 1 shows multiple effects between the three key variables. First, there is a direct

effect of inventory on sales (labeled with the coefficient β13). An example of this effect is

when low levels of inventory signal low future availability of the vehicle model and lead to

a “buy frenzy” behavior, or when high levels of inventory signals lower prices and therefore

increases sales. Therefore, the sign of β13 is ambiguous. Second, there is a direct effect of

2The locations consider for this analysis were: Marysville, Ohio and Columbus, Ohio; Washington DC and
Baltimore, Maryland; Kansas City, Missouri, and Topeka, Kansas; Lansing, Michigan and Grand Rapids,
Michigan
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Figure 1: Relationship between Sales, Inventory and Variety

variety on sales (labeled by β12), as when more variety leads to a better match of customer

preferences, thereby increasing sales. Higher variety could also lead to more confusion in

choosing among too many options, lowering sales. Hence, the sign of β12 is also ambiguous.

Third, there is an indirect effect of inventory on sales through variety (labeled β23): adding

inventory can lead to an increase in variety, which in turn could affect sales.

The estimation can be viewed as a system of simultaneous equation with three endogenous

variables – Salesijt, V arietyijt and Inventoryijt. Let Sales, V ariety and Inventory be

vectors containing the observations for these three variables, respectively (indexes i, j, t are

therefore suppressed). The system is given by:

Sales = β12V ariety+β13Inventory +γ1Z +ε1 (2.1)

V ariety = β23Inventory +γ2Z +ε2 (2.2)

Inventory = +γ3Z + δ3W +ε3 (2.3)

The matrix of covariates Z is a set of exogenous controls to be specified in detail later.

The matrix of covariates W is a set of weather shocks at the plant that produces a specific

model. The error vectors {εg}g=1,2,3 represent unobservable factors that affect each of the
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endogenous variables. Throughout we assume that Z and W are predetermined in the three

equations, in the sense that E(εg|Z,W ) = 0, for g = 1, 2, 3. Next, we discuss identification

of the system of equations (1)-(3).

The error term ε1 represent factors that affect sales which are unobservable in the data.

Dealerships and manufacturers may predict some of these factors in advanced and use them

in their demand forecast to choose inventory levels (see Figure 1 for an illustration). Hence,

ε1 and ε3 are likely to be positively correlated, making Inventory endogenous in the sales

equation (1).

W is excluded from the sales equation but included in the inventory equation. If weather at

the plant affects its productivity, then weather shocks at the plant affect the inventory level

at the dealerships; this effect is captured by the coefficient δ3 in equation (3). A dealer’s

local weather is included in Z, but because most of the plants are located far away from

the dealerships in our study, weather shocks at the plants should be unrelated to the local

demand for autos. Hence, W is excluded from equation (1). Consequently, the explanatory

variables in W are valid instrumental variables for Inventory in equation (1).

Nevertheless, this exclusion restriction on W is insufficient to identify the parameters of the

system of equations; in fact, the parameters of the first equation are not identified without

additional assumptions. The reason is that, since inventory also affects variety (Inventory

is an explanatory variable in equation (2)), V ariety is also endogenous in equation (1).

Hence, V ariety has to be instrumented to obtain consistent estimates of the coefficient in

equation (1). Note that although W affects inventory, it does not have any further effect on

the variety of vehicles; that is, W is excluded from equation (2) (i.e.,δ2 = 0). Weather at

the plant is a productivity shock that affects total production at the plant but not the mix

of vehicles that are produced at the plant. Hence, W is not a valid instrument for V ariety.

In the absence of further exclusion restrictions of the exogenous variables (Z,W ), identi-

fication of the system (1)-(3) requires assumptions about the covariance structure of the
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errors (ε1, ε2, ε3). As previously mentioned, it is likely that ε1 and ε3 are positively cor-

related due to inventory endogeneity. However, it is reasonable to assume that ε1 and ε2

are uncorrelated, that is, E(ε1ε2) = 0. Although dealerships can control to some extent

the number of vehicles of a particular model that they receive, they typically have little

control on the exact sub-models that are allocated to them. Therefore, the variations in

variety after controlling for inventory levels should be unrelated with the demand fore-

casts or other unobservable factors related to demand. Moreover, it is also reasonable that

E(ε2ε3) = 0: because dealers can only control variety through their inventory levels, other

factors that induce variation in variety (captured by ε2) should be unrelated to factors that

affect inventory. These assumptions are sufficient for identification, as shown next.

Proposition 2.1. If E(εg|Z,W ) = 0, for all g ∈ {1, 2, 3}, E(ε1ε2) = 0 and E(ε2ε3), then

all the parameters of the system of equations (1)-(3) are identified.

The proof of the proposition can be found in the appendix.

We need instrumental variables to estimate the parameters of equation (1) because V ariety

and Inventory are endogenous. As noted earlier, the exogenous plant weather variables

W are excluded from (1) and can therefore be used as instruments for Inventory. More-

over, under the assumption E(ε1ε2) = 0, the residual of equation (2) can be used as an

instrument for Variety in equation (1). This requires a consistent estimator of ε2. Under

the assumption that E(ε2ε3), the residual of the OLS regression of (2), denoted ê2, is a

consistent estimator of ε2. Thus, the following method can be used to obtain consistent

estimates of the coefficients of equation (1):

1. Estimate regressions (2) and (3) via OLS.

2. Compute the fitted values ̂Inventory = γ̂3Z + δ̂3W and the residuals ê2 = V ariety−

β̂23Inventory − γ̂2Z.

3. Estimate equation (1) via Two-Stage Least Square using ê2 and ̂Inventory as instru-

mental variables for the endogenous variables V ariety and Inventory.
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To obtain the standard errors of this estimation we did 400 bootstraps over these 3 steps,

sampling at the dealer-model level.

Controls

Z includes model-dealership fixed-effects which control for the invariant characteristics of

each dealer: each dealer location, the average popularity of a model at a particular dealer-

ship, the intensity of competition a model faces at each dealer, the average discount policy

a dealer offers for a particular model, etc. Z also includes a seasonality dummy variable

to account for changes in the sales across weeks. This is implemented by grouping dealers

into four geographic regions: {Florida, Texas}, {Colorado, Nebraska}, {Maine, Wisconsin},

and {California}. Let r(j) be the region containing dealership j. We include the set of

dummy variables Seasonalr(j)t to control for different seasonal patterns across geographic

regions, e.g., a different weekly sales pattern in Texas than in Wisconsin. Finally, as already

mentioned, Z includes measures of local weather at each dealership to control for the effect

of local weather on sales and demand forecasts. (See Steele (1951) and Murray et al. (2010)

for examples of how local weather affects retail sales. There is also anecdotal evidence of

this relationship in the public press, e.g. BloombergTV (2012)).

Measuring variety

To identify which of the main effects of inventory on sales described earlier dominates, we

identify separately the impact of our two measures of availability – inventory and variety. For

example, a negative effect of V arietyijt would suggest that the confusion effect dominates

the impact on sales. Although Inventoryijt can be objectively defined as the number of

vehicles available for a model, variety could be defined in many different ways depending

on the relevant product characteristics that are considered by customers when making

their purchase decision. For example, a customer wanting to buy a Chevrolet Malibu may

consider two vehicles with different horsepower as two different products, but could be

indifferent on the color of the car. To measure V ariety, it is necessary to define a set of
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attributes that describes relevant differences across vehicle options within a model. See

Hoch et al. (1999) for a framework on how customers perceive variety.

The VIN of a vehicle contains information about vehicle characteristics, including the model,

body style, engine type and restraint type. We use all these relevant characteristics reported

in the VIN to define the different possible variants of a model and we refer to each variant as

a sub-model. The variable AvailV arijt is the number of sub-models of a model i available at

dealership j during week t. The assumption being that the variety information included in

the VIN describes relevant differences across vehicle options from the customer perspective.

Table 2 summarizes the number of different sub-models observed in our data and the average

V arietyijt observed at the dealerships for a sample of models. The table reveals that there

is variation in the number of sub-models available across the set of models. Hence, it is

plausible that the impact of variety is different across models: for example, adding one

more sub-model of a Cobalt (which has many sub-models) can have a smaller impact than

adding one more sub-model of an Equinox (for which fewer sub-models were produced). To

account for this, the amount of available variety can be measured relative to the number

of sub-models that exist for that model. Denote MarketV arj as the number of sub-models

produced for model j in the model-year 2007. Our main measure of variety is defined as:

V arietyijt =
AvailV arijt
MarketV arj

. (2.4)

For robustness, we considered other definitions of variety; for example, we used AvailV arijt

and its logarithm as alternative measures. The results using these alternative measures,

discussed in Section 3.4, were similar.

Weather Instrumental Variables

There are multiple mechanisms by which plant weather can influence dealership inventory.

Bad weather can affect the supply of parts to the production line slowing the production
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process. In addition, weather conditions can affect employee behavior both in their task

performance and by increasing absenteeism. Alternatively, weather can delay shipments

of vehicles to dealers. Consistent with these mechanisms, Cachon et al. (2011) provide

evidence that weather in the vicinity of an assembly plant affects its productivity.

Our weather variables are defined as in Cachon et al. (2011) and are described in detail in

Table 3 . We included Wind, Fog, Rain and Snow variables because each of these weather

events may influence travel to and from a plant.3 Cloud could proxy for other inclement

weather and could influence employee behavior. High Temp is included because it could

influence ambient temperature within the plant or employees that must work outside (e.g.,

loading docks). Low Temp may proxy for hazardous road conditions (e.g. ice). Some of the

variables, such as Wind and Cloud, directly capture weather shocks. For other measures

–specifically for Fog, Rain, High Temp, Low Temp and Snow– we estimated specifications

including multiple levels of the variable to capture potential non-linear effects on production.

Some of these weather variables have a weak impact on dealership inventory, in part be-

cause of the high correlation between the many alternative measures of weather that we

considered. Using a large number of instruments in a two-stage least square estimation can

induce bias on the estimates (Buse (1992)). There is also a rich literature that discusses

other challenges that can arise when dealing with multiple instruments, in particular when

some of these instruments might be weak (Bekker (1994), Donald and Newey (2001), Chao

and Swanson (2005)).

Kloek and Mennes (1960) proposed a practical solution to solve the shortcomings of dealing

with a large number of (possibly weak) instruments. The idea is to use a reduced number

of principal components of the original set of instruments as the instrumental variables in

the estimation. We follow a similar approach.

The thirteen weather variables were reduced to five principal components. By capturing

3Cachon et al. (2011) report some measurement problems for fog, but these problems were not observed
in 2007, our study period.
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more than fifty percent of the variance on the original variables, the components obtained

contain a good portion of the information in our instruments. The OLS regression of

equation (3) shows that the five principal components coefficients are significant with an

average p-value for the five factors of 12. In addition, to validate the strength of our

instrument, we observe that both the R-squared (0.9) of this regression and the F-test

(195) of join significance of the instruments exceed the usual standards to rule out weak

instruments. For robustness, we also estimated our model using all of the the original

weather variables as instruments in W , and all the main results continued to hold. But

the estimation with the five principal components is more efficient (i.e. smaller standard

errors), so we use those as our main results.

Although plant productivity is affected during the same week of a weather incident (as

reported in Cachon et al. (2011)), the impact on dealership inventory is lagged due to

delivery lead-times. We used a one-week lag based on anecdotal evidence reporting one-week

delivery lead-times, but we also tested other specifications and obtained similar results.4

An alternative estimation approach of the overall effect of inventory

Proposition 1 establishes sufficient conditions to estimate the system of equations (1)-(3)

consistently. This requires assumptions about the covariance structure of the error terms

{εg}g=1,2,3. However, it is possible to estimate the overall effect of inventory on sales –

which corresponds to the direct effect β13 plus the indirect effect through variety, β12β23

(see figure 1) – under weaker assumptions. To see this, replace V ariety from equation (2)

into equation (1) :

Sales = (β13 + β12β23)Inventory + γ′1Z + ε′1, (2.5)

4Another specification assumed there is no lead-time, hence we include contemporaneous weather. Finally,
we considered another specification that included a specific lead-time for each vehicle to the dealers depending
on the distance between the dealer and the plant where a particular model was manufactured. When this
distance is less than 600 miles we consider that the vehicle will arrive within the week (zero lag). When the
distance is between 600 and 1200 miles we consider that the vehicle will arrive with a lead time of one week
and when the distance is more than 1200 miles we consider a two weeks lead-time.
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where γ′1 = γ1 + β12γ2 and ε′1 = ε1 + β12ε2. Under the exogeneity assumption E(εg|Z,W )

, g ∈ {1, 2, 3} , the coefficient β′13 ≡ β13 + β12β23 can be estimated via instrumental vari-

ables, instrumenting Inventory with the weather variables W . This provides an alternative

estimate of the overall effect inventory on sales without making assumptions about the co-

variance structure of the error terms (ε1, ε2, ε3). The drawback of this approach is that it

doesn’t identify separately the effect of inventory and variety on sales. In particular, this

precludes analyzing the allocation strategies described in section 2.6.

2.5. Results

Table 11 reports the main estimation results. Column (1) shows the estimates of equation

(1), instrumenting the endogenous variables inventory and variety (as defined in equation

(2.4)). The estimates suggest that the direct effect of inventory (β13 in Figure (1)) is negative

and statistically significant, but the effect of variety (β12) is positive and also statistically

significant. This suggests that sales increase if new sub-models are made available to cus-

tomers, but sales decrease if inventory is added to a sub-model that is already available at

the dealership.

Given how inventory is allocated to dealerships in our sample, there is a small and positive

relationship between inventory and variety: the estimated coefficient is β̂23 = 0.0054, with

a standard error SE(β̂23) = .0001. This estimate together with the estimated coefficients

of equation (1) can be used to estimate the overall average impact of inventory on variety,

which is given by β13 + β12β23 = −0.013 (with a standard error of 0.003, obtained from

a bootstrap of 400 samples). Hence, our estimates suggest that, given how vehicles were

allocated to dealerships in our sample, the overall impact of inventory on sales is negative

and statistically significant - adding inventory increases variety, but not by much, so the

negative effect of adding inventory to an existing sub-model dominates the sales benefit

of the (limited) expanded variety. However, different vehicle allocation policies can give

different results. Figure 3 illustrates the overall impact of inventory on sales with the

vehicle allocation policy that maximizes the expansion of variety (black line) compared to
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the allocation policy that expands inventory without increasing the number of sub-models

available (dashed line). As is apparent from the figure, whether adding inventory increases

or decreases overall sales depends on how vehicles are allocated to dealerships. For example,

with a vehicle allocation policy that maximizes variety by adding new sub-models to a

model’s inventory, the overall impact of each additional unit of inventory on sales would

be 0.5%. A more precise analysis of alternative vehicle allocation policies is described in

Section 2.6.

Recall that the estimates of column (1) are consistent if the error in equation (2), ε2, is un-

correlated with ε1 and ε3. However, the overall impact of inventory on sales can be obtained

by estimating equation (2.5) directly via instrumental variables, without any assumptions

on the error term ε2 (other than the maintained exogeneity assumption E(εg|Z,W ) = 0, for

g = 1, 2, 3). Column (2) in table 11 shows these estimates. The coefficient of inventory is

-0.014, which is close to our previous estimate based on the coefficients of column (1) (which

gave -0.013).5 This provides some support to validate the consistency of the estimates of

column (1).

To assess the magnitude of the bias induced by the endogeneity of inventory, we estimated

model (2.5) via Ordinary Least Squares (OLS). As mentioned in Section 3.3, if inventory

is set in anticipation of demand, then ε1 and ε3 are likely to be positively correlated and

therefore the OLS estimate of the inventory coefficient could be biased upward. The OLS

estimates reported in column (3) show evidence of this endogeneity bias: in fact, the bias is

so severe that the coefficient on inventory changes sign and becomes positive with statistical

significance.

Column (4) estimates equation (1) instrumenting Inventory but treating Variety as exoge-

nous. As inventory increases variety, variety is positively correlated with ε3 and thereby

with ε1. Hence, ignoring the endogeneity of variety could also lead to a positive bias on the

5A non-parametric bootstrapping method (based on 400 re-samples of the original data) gives an average
difference of 0.0008, with standard error 0.0002. Although the difference is statistically significant at the
99%, the difference is quite small in practical terms.
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estimate of coefficient β23, which is what we find: the variety coefficient in column (4) more

than doubles that of column (1). This highlights the importance of treating both inventory

and variety as endogenous in the estimation.

To repeat, the estimates in column (1) of Table 11 suggest that (i) adding inventory decreases

sales if variety is held constant (a scarcity effect), (ii) although increasing inventory expands

variety and variety has a positive impact on sales, the overall effect of increasing inventory is

negative given the way vehicles are allocated in our sample, and (iii) adding inventory while

simultaneously expanding variety can increase sales. Some of the mechanisms discussed

earlier are consistent with these findings and several are not. For example, our findings

are consistent with the notion that more variety improves the match between consumer

preferences and the available inventory, thereby increasing the likelihood that a customer

makes a purchase. In contrast, the results are not consistent with the notion that more

variety creates confusion, thereby reducing demand - in some categories it is possible that

the confusion effect is real and sufficiently strong, but with automobiles it appears that

consumers are more likely to buy when they have more options to choose from.

Our findings do not suggest that inventory has a strong relationship on how dealer price or

how consumers bargains. As shown by Moreno and Terwiesch (2012) one would expect that

a dealer is more likely to offer a better price when the dealer has an above average amount

of inventory because the dealer would want inventory to return to a more normal level. We

observe that sales decrease as inventory increases (holding variety constant) - if this is to

be explained by pricing, then one needs to be willing to assume that dealers increase their

prices when they have more inventory. Similarly, our estimates cannot simply be explained

by a stockout effect - if adding inventory prevents stockouts, then coefficient β13 should be

positive, not negative.

It is possible that the scarcity effect we observe is due to the information inventory conveys

to consumers. For example, a consumer might infer that ample inventory is a signal that

the car is not popular, possibly due to poor design or quality. For this to explain our data,
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the inventory signal would have to be at the sub-model level - a consumer would have to

believe that ample inventory of two-door Malibus is a bad signal for two-door Malibus, but

the overall number of Malibus is not a negative signal. While we cannot rule this out, it

does not seem plausible. We suspect that a consumer would infer quality, popularity and

design based on the total inventory of a model level rather than based on the inventory of

each of various sub-models. If that is the case, then inferences of popularity cannot explain

the negative relationship between sales and inventory, controlling for variety.

The scarcity effect we observe is consistent with the notion that inventory influence con-

sumer search. Consumers are likely to desire a particular sub-model. If there is only one

unit available of their desired sub-model, then they may discontinue their search for a new

vehicle and purchase the vehicle. However, if the dealer has several units that fit the con-

sumer’s preference, the consumer may continue her search, feeling confident that if she does

not find a better match, she can return to the dealership. If the consumer continues her

search, then at the very least it delays the sale, but worse, it risks losing the sale - the

consumer might discover a better match at another dealership. Thus, we find evidence that

low inventory reduces consumer procrastination and motivate an immediate sale.

2.5.1. Robustness analysis

In this robustness section we want to look into issues that can potential affect our result or

the conclusions we draw from them. We will focus on the following four issues: competition

among dealers, alternative measures of variety, transfers between dealers and estimation

issues due to sales being a count variable.

Competition among dealers

In our first robustness analysis we want to study to what extent our results are affected

by competition among dealers of the different GM brands. As mentioned earlier the dealer

model fixed effects included in our main specification account for the average competition

intensity for a particular model at a dealer. However, inventory level for a model at the
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dealers vary from one week to another and this variation can potentially change the compet-

itive landscape for the dealers. To explore the impact of these changes we estimate our main

model with a subsample of dealers that don’t face competition in their local market. This

requires defining the relevant market of a dealer. Albuquerque and Bronnenberg (2012)

conduct a study of dealership’s demand for autos and show that a 15 mile radius covers

most of the relevant market of a dealership. Hence, we defined a sub-sample of dealers with

no competing GM dealer, of each particular brand, within a 15 mile radius. The analysis

with this sub-sample is reported on the first column of Table 5. This result is consistent

with the results obtained with the complete sample and suggests that our main results are

not confounded by the impact of competition patterns between GM dealers.

Alternative measures of variety

To evaluate how robust our analysis is to different specifications of the variety variable,

we replicated the analysis described on the previous section considering two alternative

measures of variety: (i) AvailV arijt, the total number of different sub-models carried by

a dealer on each week (instead of the relative measure of variety considered before); and

(ii) the logarithm of AvailV arijt. The results for these two alternative specifications are

reported in columns (2) and (3) of table 5. First, we note that the coefficient of inventory

barely changes (compared to that of Table 11 column (1)). Second, the coefficient of variety

is positive and significant in both specifications.

Transfers between dealers

A second issue that can potentially affect our conclusions is related to the transfer of vehicles

between dealers. When dealers lack of a particular submodel that is being demanded buy

a customer they have the possibility to look for that particular vehicle in nearby dealers.

When a dealer finds the car she can request a transfer. This transfer needs to be approved

by the dealer that is currently carrying the vehicle. If the transfer is approved it can happen

in two different ways: the transfer can by a swap of vehicles between dealers or the transfer
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can be an internal sale between dealers involving only one car. In our sample sales that

include a transfers represent 12.9% of the total sales.

In both cases it is possible to argue that sales of those vehicles that include a transfer were

not directly influenced by the inventory at the dealer’s lot. If this is the case our results

can be explain through a different mechanism: when facing low inventory for a particular

model, dealers change their behavior by increasing the number of transfers. To find out if

this potential explanation is taking place we look in to this issue by exploring the existence

of this change in behavior.

We first identify those sales that involved a transfer. To do this we look into vehicles

transfers that were sold within ten days of arriving to the dealer’s lot. We consider this ten

days threshold because we wanted to make sure that we include in the analysis the vehicle

that were transfers to be sold and not those that were part of the transfer swap. Then we

estimate our model including only those sales that were linked to the transfer. The result

we obtain shows that inventory quantity was not a significant variable to explain changes

in those “transfer-sales”. This results rules out the potential explanation that the increase

in sales we observe is driven by a change in the number of transfers that dealers are willing

to make when they face low inventory quantity.

Sales being a count variable

Finally a potential estimation issue is that Sales, our main dependent variable, is a count

variable with frequent zeroes (about 60% of the weekly model sales were zero). A nega-

tive binomial regression, which accounts for the counting nature of sales, could increase

the model fit and therefore lead to more precise estimates. We argue, however, that our

estimation strategy – which is consistent under weaker assumptions – already provide pre-

cise estimates of the coefficients of interest. Nevertheless, we estimated a model of sales

via a negative binomial regression, including inventory as independent variable. We used

a control function approach to account for the endogeneity of inventory (see Wooldridge
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(2010) and Hilbe (2011) for details on the implementation of the control function approach

in negative binomial regressions). The results are presented in column (4) of table 5. The

overall effect of inventory for this model is still negative and statistical significance as in the

comparable specification reported in table 11, column (3).

We also considered alternative specification that include inventory with log transformation,

variety measured in the actual number of sub-models (as defined by AvailV ar rather than

V ariety), its logarithm, and combinations of these. The results obtained were similar in

magnitude and statistical significance.

2.6. The impact of inventory allocation

Our empirical estimation reveals that adding inventory to a dealer is only beneficial if the

added vehicle expands the dealer’s set of sub-models - increasing the inventory of a particular

sub-model actually lowers sales. This sections explores the potential sales benefit of using

this result to better allocate vehicles to dealers. We take two different approaches. The first

approach estimates the potential sales improvement from reallocating the existing vehicles

among the dealers in a small local area. The second approach considers only the incoming

vehicles to a larger region (e.g., a state) and attempts to maximize sales by allocating those

vehicles to the dealers in the area while leaving the dealers’ existing inventory intact.

Given the size of our data-set (1289 dealers, 30 weeks, etc) we focus our analysis on a

particular week (the week with the median number of total cars) and the ten most popular

models. These models represent approximately sixty percent of the weekly sales across

all the GM models in our sample: Cobalt, Equinox, G6, HHR, Impala, Suburban, Tahoe,

TrailBlazer, Saturn, VUE, and Yukon.

2.6.1. Local reallocation among dealers

The analysis in this section partitions dealers into reasonably small local markets. For each

model we know each dealer’s available inventory in our chosen week. Some dealers may have
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multiple units within a sub-model and other dealers within the same local market might

not have any vehicles of that sub-model. Hence, based on our results, both dealers could

benefit from a vehicle transfer - moving a vehicle from the dealer with multiple units to the

dealer with no units increases sales at both dealers. Thus, we evaluate for each model the

total sales gain across all markets that could be achieved by efficiently transferring vehicles

so as to maximize the variety each dealer offers and to minimize the duplication of units

within sub-models. We do not model the cost of actually transferring these vehicles - any

sales improvement from reallocation would have to be compared with the cost of achieving

the better balance of variety across dealers.

We group dealers as part of the same local market if they are in the same core based statis-

tical area (CBSA) - a CBSA is a U.S. geographic area defined by the Office of Management

and Budget based around an urban center of at least 10,000 people and adjacent areas that

are socioeconomically tied to the urban center by commuting. We consider vehicle swaps

only between dealers in the same CBSA. Hence, the total inventory within each CBSA re-

mains constant. In addition, we require that each dealer’s total inventory remains constant

- each dealer that gains a vehicle must also give up a vehicle.

To formulate the problem as a mathematical program, let i = 1 . . . n indexes the dealers

within the CBSA and k = 1 . . .mj index the sub-models of model j. The problem can be

formulated as choosing Qijk – the number of vehicles at dealer i of model j and sub-model

k after the reallocating vehicles among the dealers within the CBSA – in order to solve the

following non-linear integer optimization problem:

max
Qijk

[
n∑
i=1

exp

(
δij + β̂13

mj∑
k=1

Qijk + β̂12 ·Varietyij

)]
(2.6)

s.t.

∀k
n∑
i=1

Qijk =
n∑
i=1

Iijk (2.7)
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∀i
mj∑
k=1

Qijk =

mj∑
k=1

Iijk (2.8)

Varietyij =

∑mj

k I (Qijk ≥ 1)

mj
(2.9)

Qijk ∈ 0, 1, 2, . . .∞ (2.10)

where Iijk is dealer i’s initial endowment of inventory of model j and sub-model k (i.e.,

if there is no reallocation). The parameters β̂12 and β̂13 are the estimated coefficients of

Inventory and Variety, respectively, and δij is the estimated model-dealer fixed-effect (the

estimates correspond to the model reported in Table 11, column (1)). Constraint (2.7)

ensures that the reallocation does not change the total inventory within the CBSA of sub-

model k and constraints (2.8) ensure that dealer i′s inventory of model j after the exchanges

is identical to its inventory before the exchange. The objective is then to maximize V arietyij

(which is a function of the decision variables Qijk as described by 2.9) while keeping the

dealership’s model inventory constant.

The first column on Table 6 shows the solution to this math program, measured by the

average potential sales improvement for each car model. We find that on average, exchanging

inventory among dealers within a CBSA with the objective of maximizing each dealer’s

offered variety yields an weighted average sales gain of 1.7%.

2.6.2. State-wide reallocation of vehicles

Instead of swapping vehicles after they arrive at dealerships, we now consider changing the

allocation of vehicles after they leave the production facility. At that point in time there

may be some flexibility with respect to the final destination of vehicle and this flexibility

may come with little incremental cost. In particular, we estimate the sales gain that can
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be achieved through smarter allocation of vehicles that arrive to a particular state in a

given week. With this approach there are no transfers among dealers - each dealer’s initial

inventory remains with that dealer. However, rather than send sub-model k to a dealer

who already has some units of sub-model k, it is better to send that vehicle to a dealer who

begins the week without any units of sub-model k.

To specify this optimization problem, fix a given week and define Ajk as the total number

of sub-model jk sent to the state on this week. The decision is to choose Yijk , the number

of units dealer i receives of sub-model jk during the week. For each state and each model

j we solved the following integer non-linear optimization problem:

max
Yijk

[
n∑
i

exp

(
δij +

¯̂
β13 ·

mj∑
k

Qijk + β̂12 ·Varietyij

)]
(2.11)

s.t.
n∑
i

Yijk = Ajk (2.12)

mj∑
k

Qijk ≤Mij (2.13)

Qijk = Iijk + Yijk (2.14)

Varietyij =

∑mj

k I (Qijk ≥ 1)

mj
(2.15)

Yijk > 0 (2.16)

Constraint (2.12) ensures that the state receives the same number of vehicles of model j and

33



sub-model k as we observed in our data for the chosen week. To preclude allocations that

result in an unreasonably large amount of inventory allocated to some dealers, constraint

(2.13) ensures that dealer i’s inventory of model j after the assignment is not greater than

the maximum number of vehicles of model j that dealer i had in any week of our sample,

denoted by Mij . Equation (2.14) merely states that a dealer’s inventory of a model equals

the dealer’s initial endowment, Iijk, plus the dealer’s allocation, Yijk.

The second column on Table 6 shows average results for each model in this state-wide

allocation problem. On average, we find that routing vehicles to dealers in a state so as to

minimize overlap within a dealer’s inventory while maximizing variety across dealers yields

an average sales increase of 2.5%.

2.7. Conclusion

We develop an econometric model to estimate the effect of inventory on sales at U.S. auto-

mobile dealerships. Theory is ambiguous with respect to the impact of inventory on sales.

There are several mechanisms that lead to a billboard effect - a positive relationship be-

tween inventory and sales. For example, at a basic level, adding inventory can increase

sales by improving the visibility of the product or by expanding the variety of sub-models

available. However, there are mechanisms that lead to a scarcity effect - a negative relation-

ship between inventory and sales. For instance, adding inventory may encourage additional

search from the customers or may give a sense that the product is not selling due to inferior

quality.

In our sample, we find that an increase in inventory at a dealer actually lowers sales.

However, it is important to decompose this effect into two parts: increasing inventory of

a sub-model does indeed reduces sales, but if the increase in inventory also expands the

number of sub-models available, then sales increase. In short, the benefit of expanding

variety can dominate the negative effect of increasing inventory within a sub-model. This is

consistent with two mechanisms relating inventory to demand: (i) expanded variety enables
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a better fit to consumer preferences, thereby increasing demand, and (ii) too many of

the same sub-model encourages consumers to procrastinate the purchase decision, thereby

lowering sales. To maximize sales a dealer wants to have one unit of each sub-model (to

generate an urgency to “buy now before they are all gone”) while also having as many

sub-models available as possible, to cater to the heterogeneous tastes of consumers.

Our findings emphasizes the importance of careful vehicle allocation. The data suggest

that vehicles are allocated in a way that does not maximize the heterogeneity of sub-models

available to consumers. Dealers may view one sub-model as particularly desirable and

then take actions to increase their inventory in that sub-model rather than to expand the

set of sub-models offered. Based on our estimates, an allocation policy that is focused

on maximizing variety can increase sales by about 2.5%, without changing the number of

vehicles produced or the number of vehicles each dealer carries. In some cases this sales

improvement may come with relatively little incremental costs - transportation costs are

dominated by the frequency and quantity of deliveries, and less so by the composition of

each delivery.

2.8. Appendix

Proof Proposition 1

Consider the following system of simultaneous equations:

Sales = β12V ariety+β13Inventory +γ1Z +ε1 (2.17)

V ariety = β23Inventory +γ2Z +ε2 (2.18)

Inventory = +γ3Z + δ3W +ε3 (2.19)

We show that if E(εg|Z,W ) = 0, for all g ∈ {1, 2, 3}, E(ε1ε2) = 0 and E(ε2ε3) = 0, then all
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the parameters of the system of equations (1)-(3) are identified.

Proof. The reduced form of the system of equations (1)-(3) is denoted by:

Sales = π1Z + ψ1W + u1 (2.20)

V ariety = π2Z + ψ2W + u2 (2.21)

Inventory = π3Z + ψ3W + u3 (2.22)

Because Z and W are exogenous, the coefficients (π1, π2, π3) and (ψ1, ψ2, ψ3) are identified,

as well as the covariance matrix of the reduced form error terms (u1, u2, u3), denoted by Ω.

The triangular structure of the system (17)-(19) facilitates its inversion into the reduced

form system (2.20)-(2.22). First, equations (19) and (2.22) are identical, so π3 = γ3 ,

ψ3 = δ3 and Ω33 = Σ33 Hence, equation (2.22) alone identifies γ3, δ3 and Σ33 = V ar(ε3).

For equation (2.21) we have:

π2 = β23γ3 + γ2 ψ2 = β23δ3

so β23 = ψ2/δ3 and γ2 = π2 − ψ2

δ3
γ3 are also identified. The variance of u2 is given by:

Ω22 = Σ22 + β2
23Σ33

which identifies V ar(ε2) = Σ22.

For equation (2.20):

π1 = β12β23γ3 + β12γ2 + β13γ3 + γ1

ψ1 = β12β23δ3 + β13δ3 (2.23)

with unknowns β12, β13 and γ1. Additional identifying equations can be obtained from Ω,

the covariance matrix of the reduced form error u. By definition, the reduced form errors
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of equations (2.21) and (2.22) imply:

u2 − β23u3 = ε2

u1 = ε1 + β12ε2 + (β12β23 + β13)ε3

Taking covariance of these two equations, assumptions E(ε1ε2) = E(ε2ε3) = 0 imply:

Ω12 − β13Ω13 = β12Σ22.

This identifies β12 = (Ω12 − β13Ω13)/Σ22, which replacing in (2.23) identifies the remaining

parameters β13 and γ1.
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Table 1: Dealers by state in our sample
State Number of Dealers

California 355
Colorado 67
Florida 237
Main 31
Nebraska 50
Texas 366
Wisconsin 183

TOTAL 1,289

Figure 2: Dealer and plant locations in our sample
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Table 2: Model Variety for the top ten selling models
Total Model Variety (MarketVar) Average Variety Available (AvailVar)

Cobalt 18 3.5
Equinox 4 2.2

G6 37 6.1
HHR 4 2.9

Impala 10 3.7
Suburban 18 4.5

Tahoe 13 4.0
TrailBlazer 10 2.1

Saturn VUE 5 4.6
Yukon 30 8.6

AVERAGE 14.9 4.2

Model Variety is the maximum number of variants that could be produced for the model.

Available variety is the number of variants with at least one unit during a particular week.

Table 3: Weather variables included in the empirical study
Variable Description

Wind Number of days in which a wind advisory is issued by the National
Weather Service Forecast Office. A wind advisory is issued when
maximum wind speed exceeds a threshold for the area which is typical
in excess of 40 miles per hour.

Cloud Average cloud cover during the week (0 = no clouds; 8 = sky
completely covered).

Fog 1 Weeks with 1 days with fog during the week.
Fog 2-3 Weeks with 2 or 3 days of fog during the week.
Fog 4-7 Weeks with more than 3 days of fog during the week.

Rain 1-2 Weeks with 1 or 2 days of rain during the week.
Rain 3-5 Weeks with 3 to 5 days of rain during the week.
Rain >5 Weeks with more than 5 days of rain during the week.
Snow 1 Weeks with 1 day of snow during the week.

Snow 2-4 Weeks with 2 to 4 days of snow during the week.
Snow >4 Weeks with more than 4 days of snow during the week.

High Temp 1 Weeks with 1 day of high temperature, above 90 degrees Fahrenheit,
during the week.

High Temp 2-5 Weeks with 2 to 5 days of high temperature, above 90 degrees
Fahrenheit, during the week.

High Temp 6-7 Weeks with more than 5 days of high temperature, above 90 degrees
Fahrenheit, during the week.
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Table 4: Main Model Results - Log Linear Model
(1) (2) (3) (4)

Inventory -0.0147∗∗∗ -0.0140∗∗∗ 0.0130∗∗∗ -0.0189∗∗∗

(0.0030) (0.0030) (0.0002) (0.0034)
Variety 0.2958∗∗∗ 0.7223∗∗∗

(0.0094) (0.0487)
Fixed Effects YES YES YES YES
Week - Season YES YES YES YES
Dealer’s Local Weather YES YES YES YES

N 293776 293776 293776 293776
N g 12969 12969 12969 12969

Standard errors in parentheses
∗ p < 0.05 , ∗∗ p < 0.01 , ∗∗∗ p < 0.001

(1) Main estimation results where the estimates are obtained instrumenting

the endogenous inventory and variety.

(2) Estimation results for the overall impact of inventory on sales instrumenting

the endogenous inventory.

(3) Estimation results for the overall impact of inventory on sales without instrumenting

the endogenous inventory.

(4) Estimation results where the estimates are obtained instrumenting

the endogenous inventory and without instrumenting variety.

The Figure illustrates the overall impact of inventory on sales with the vehicle allocation policy

that maximizes the expansion of variety (black line) compared to the allocation policy that

expands inventory without increasing the number of sub-models available (dashed line), for a

dealer that starts with 3 vehicles of a particular model.

Figure 3: Sensitivity Analysis
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Table 5: Robustness Checks
(1) (2) (3) (4)

Inventory -0.0171∗ -0.0151∗∗∗ -0.0156∗∗∗ -0.0752∗∗∗

(0.0074) (0.0030) (0.0030) (0.0114)
Variety 0.2847∗∗∗

(0.0123)
AvailV ar 0.0421∗∗∗

(0.0012)
Log(AvailV ar) 0.1310∗∗∗

(0.0034)
Fixed Effects YES YES YES YES
Week - Season YES YES YES YES
Dealer’s Local Weather YES YES YES YES

N 150619 274399 274399 274399
N g 6803 11879 11879 11879

Standard errors in parentheses
∗ p < 0.05 , ∗∗ p < 0.01 , ∗∗∗ p < 0.001

(1) Analysis excluding dealers that have another GM dealer within a 15 miles radius.

(2) Analysis including variety as a count of different submodels.

(3) Analysis including the logarithm of variety as a count of different submodels.

(4) Analysis considering a negative binomial specification.

Table 6: The impact of inventory allocation
Average CBSA Improvement Average State Improvement

Vehicle Swap Reallocation

Cobalt 0.7% 2.0%
Equinox 0.5% 1.5%

G6 0.5% 2.0%
HHR 0.5% 4.8%

Impala 0.9% 3.9%
Suburban 1.4% 1.2%

Tahoe 0.9% 1.7%
TrailBlazer 0.7% 0.6%

Saturn VUE 5.6% 3.0%
Yukon 4.5% 2.6%

WEIGHTED AVERAGE 1.7% 2.5%
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CHAPTER 3 : Severe Weather and Automobile Assembly Productivity

3.1. Introduction

It is well known that there is a relationship between climate and economic activity. For

example, not only are hot countries poorer, temperature even explains variation in economic

output within countries (Dell et al., 2009). It is intuitive that climate can impact outdoor

activities like agriculture, forestry, construction and tourism. Less clear is the impact on

“climate-insensitive” sectors such as manufacturing and services (Nordhaud, 2006).

In this paper we study the relationship between severe weather and weekly automobile

production at 64 facilities within the United States over a ten-year period. Although au-

tomobiles are made indoors, there are several mechanisms through which bad weather at a

plant could influence production. For example, high winds, icy roads or heavy precipitation

could cause delays in in-bound delivery of parts from suppliers, possibly due to additional

traffic congestion, accidents or cancelled shipments. (See Brodsky and Hakkert (1988);

Golob and Recker (2003) for data on precipitation and traffic accidents.). Finished vehicles

might be damaged during periods of high wind or hail once they exit the plant. In addition,

if a plant operates in a “just-in-time” fashion with relatively little buffer stock of parts, the

plant may need to delay the start of a shift or cancel a shift altogether due to the absence

of needed parts. The same concern applies to “in-bound” employees – production could be

curtailed if workers are unable to (or choose not to) travel to the plant. Finally, even if

all of the workers and parts are available, it is possible that bad weather could influence

employee productivity. For example, with extreme heat conditions outside, even if the plant

has a cooling system, it is possible that the indoor temperature rises to a level that slows

down the manual labor associated with automobile production.1 Alternatively, bad weather

outside could influence the affect of employees which in turn may lower their productivity.2

1It has been established that thermal heat stress has a non-linear impact on productivity – the impact
of increased temperature begins around 25◦ C (Ramsey and Morrissey (1978) and Wyon (2001)). Internal
temperatures in a automobile plant may exceed this threshold, especially if the outside temperature is high.

2Simonsohn (2010) finds that the decisions of admissions officers at an academically oriented college are
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In short, it seems reasonable to conclude that weather could influence seemingly sheltered

indoor economic activity.

For our study it is safe (we believe) to assume that production does not cause changes in the

weather - whether a plant produces more or fewer cars in a week is unlikely to influence its

local weather in that week. Of greater concern is whether weather exerts a causal influence

on production - are there omitted variables that could lead to an endogeneity bias? For

example, maybe automobile production is seasonal for reasons unrelated to local weather.

If production seasonality is correlated with a plant’s weather (e.g., if fewer cars are made

in the summer because demand across the country is lower during the summer), then local

weather may only be a proxy for this seasonality. To address this issue we take advantage of

the panel structure of our data to include a number of controls: product introduction and

ramp-down dummies to account for the possibility that vehicles are introduced at certain

times of the year (and their obvious influence on the level of production); plant fixed effects

to account for idiosyncratic plant characteristics associated with seasonality; planned shifts

to account for known variations in production; weekly dummies to account for national

variations in demand, monthly segment dummies (e.g., cars, vans, etc.) to account for

segment specific demand seasonality; regional year-month dummies to account for regional

differences in weather fluctuations and the possibility that the influence of weather varies

by region; and seasonal average weather measures for each plant (e.g., average amount of

rain in week t for plant i). In sum, given our extensive set of controls, we believe we have

identified a causal impact of severe weather on production.

We also find that weather has a substantial economic impact on automobile production. For

example, we estimate that for an average plant, within a week, six or more days with a high

temperature of 90oF or one additional day of heavy winds reduces that week’s production by

approximately 8%, and six or more days of rain within a week reduces production relative to

influenced by cloud cover even though admission decisions are not made outside nor should they objec-
tively be influenced by the weather. However, Lee and Staats (2012) argue that bad weather may increase
productivity as it eliminates cognitive distractions associated with good weather.
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no rain by 6%. Furthermore, we find that average weekly production losses due to weather

events (snow, rain, heat and wind) ranges from a low of 0.5% (Princeton, IN) to a high

of 3% (Montgomery, AL), with an overall average of 1.5%. Hence, even though the severe

events we identify are not common (e.g., there is only about 2.5 high wind days per year

per plant), they are sufficiently common that their collective effect is meaningful.

Our data are suitable for measuring the short term impact of weather on production. An

interesting question is how do plants react to the productions shocks we observe? On one

extreme, the production could be “lost forever”, while at the other extreme, the plant may

fully recover the lost production in the same week the weather event occurs. Even if they are

able to recover some production in the same week, we find the net impact of severe weather

on a week’s production to be negative. In addition, we do not find evidence that they are

able to recover in the following week - plants are not more likely to schedule overtime in

a week that follows bad weather, nor is production higher in weeks following bad weather

(all else being equal). Nevertheless, we cannot rule out the possibility that plants recover

the production at some point in the future. However, even if they were to fully recover at

some point, at the very least, such recovery increases the variability of production (which

is costly) and may lead to delayed shipments and stockouts.

Our work is related to a growing literature on the impact of climate and weather on eco-

nomics. A number of studies focus on agriculture (e.g., Crocker and Horst (1981); Mendel-

sohn et al. (1994); Olesen and Bindi (2002); Deschenes and Greenstone (2007) ). Others

include more (or all) sectors of the economy. For example, Dell et al. (2008) find in a long

time horizon sample that a 1◦ C increase in temperature in a given year decreases economic

growth in a sample of poor countries by 1.1 percentage points. However, they do not find

evidence that annual shocks in temperature or precipitation have an impact on growth of

“rich” countries. Using import and export data, Jones and Olken (2010) report results

that are consistent with those from Dell et al. (2008). Andersen et al. (2010) report that

at the state level, the incidence of lightning strikes influences growth rates in the United
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States over the period of 1990-2007. Also with U.S. data, Bansal and Ochoa (2009) re-

port a substantial negative correlation (-0.79) between 10-year changes in temperature and

10-year GDP growth. Hsiang (2010) finds that a 1◦ C temperature increase in a year’s av-

erage temperature decreases output in 28 Caribbean-basin countries. The largest negative

impact is in the “wholesale, retail, restaurants and hotel” sector (-6.5%) and the smallest

is in “manufacturing” (+1.4%). Our study differs in that we focus on a single industry

(automobile production), we measure the short term effect (weekly data) of local weather

on local productivity (a single plant) and we expand the array of observed weather variables

beyond temperature and precipitation (e.g., wind). The fine granularity of our data allows

us to identify meaningful effects that could be masked in more aggregated data (regional,

annual data).

There is a considerable literature on supply chain disruptions. For example, a number of

papers investigate sourcing strategies when suppliers have varying reliability (e.g. Tom-

lin (2006), Wang and Tomlin (2010), Dong and Tomlin (2012)). Some work investigates

disruptions empirically (e.g., Hendricks and Singhal (2005)) but in none of these cases is

a connection made between the disruption and severe weather. Furthermore, the focus is

generally on upstream disruptions whereas we investigate the impact of local disruptions

(i.e., local weather).

Our results could be useful in several ways. First, they are related to the issue of climate

change. While there is low confidence of the impact of climate change on wind (Pryor

(2009)), the Intergovernmental Panel on Climate Change (Field et al. (2012)) projects that

climate change is likely to increase the frequency of extreme weather events, such as heat

waves and heavy precipitation. It follows that climate change could have a consequential

impact even on indoor economic activities. Second, given that weather varies across the

country, our findings should be considered in the location decision for new plants, along

with the traditional factors like labor cost and availability, access to suppliers, proximity

to markets, etc. Third, our results complements the existing literature on productivity
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in the automobile industry (Lieberman et al. (1990), Lieberman and Demeester (1999),

among others) by presenting evidence of the impact of extreme weather on productivity;

plant managers may be unaware of the impact of weather on their output (e.g., attributing

variation in output to unexplained causes or to mechanisms that are caused by weather,

such as absenteeism or parts shortages), and can use our results to implement policies to

counteract these negative effects (e.g., accelerating deliveries in anticipation of weather).

Finally, this paper confirms that weather can be used as an exogenous shock in automobile

production, which may be useful in the development of valid instruments for other research.

3.2. Data

Our study combines two main data sets. The first is weekly vehicle production in the United

States at the plant-model level. The second includes daily weather conditions at our sample

of vehicle assembly plants. Both cover the period of January 1994 to December 2005.

3.2.1. Production data

For the period January 1994 to December 2005, we obtained from Wards Auto weekly

production of each model produced at all 64 U.S. vehicle assembly plants making light-

passenger vehicles, including cars, sport utility vehicles, mini-vans, and pick-up trucks. (We

exclude heavy-truck production.) Manufacturers report these data to market analysts. In

addition, for each plant and each week we obtained data on the number of shifts and hours

scheduled from Automotive News, The Harbour Report and the Interuniversity Consortium

for Political and Social Research (ICPSR). Similar data were used by (Bresnahan and

Ramey, 1994).

As the production data is reported at the model level, we are able to infer when a plant

was closed during a particular week (i.e., zero production), when a particular model was

introduced (first week of reported production) or discontinued (last week of reported pro-

duction). Naturally, we also can infer when a plant is opened or permanently closed.
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Table 1 provides descriptive statistics on the production data for the plants in our sample

and Figure 1 shows their geographic location.

3.2.2. Geographic location and weather

For each of the 64 plants in our sample we obtained its address and exact geographic location

(longitude and latitude). We identified the closest weather station to each plant. Using

the National Weather Service Forecast Office (NWSFO) and the weather.com website, we

obtained from these weather stations daily data for the period January 1994 to December

2005. Included in the sample are for each day the day’s maximum, mean and minimum

values for the following weather variables: temperature, wind speed, humidity, pressure,

visibility and dew point. We also obtained information on the type of event during a day

(rain, thunderstorm, snow, etc.). Finally, we obtained historical weather data for each

day: the historical average high, low and mean temperature and the record high and low

temperature.

The selected weather stations are close to our plants with a mean and median distance

of 13 and 10 miles, respectively. No plant is further than 36 miles from its corresponding

weather station. To assess whether a station’s weather is likely to be similar to the weather

at its nearby plant, we constructed a sample of weather stations that are between 30 and

60 miles apart. In this sample, the correlation in our weather variables is no less than 95%,

suggesting that the weather reported at the nearby weather station is representative of the

weather at the plant.3

3.3. Model Specification

Using the collected data on plant production and weather, we constructed a panel dataset

that relates weekly plant production to weather-related factors and other control variables.

We use i to index a plant (e.g. Fort Wayne, Indiana) and t to index a specific week

3The locations consider for this analysis were: Marysville, Ohio and Columbus, Ohio; Washington DC and
Baltimore, Maryland; Kansas City, Missouri, and Topeka, Kansas; Lansing, Michigan and Grand Rapids,
Michigan.
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(e.g. 3rd week of 2002). Because there is substantial heterogeneity in the production vol-

ume across plants, we define the dependent variable in the regression as the logarithm of

weekly production (logProdit). Hence, the impact of weather on production is measured

in relative terms (percent of total production) rather than in absolute terms. The covari-

ates in the regression can be grouped into three categories: (i) factors related to local

plant weather (denoted WEATHERit); (ii) variables related to seasonality, which could

potentially vary across plants (SEASONALit); and (iii) other factors that affect plant

productivity (PRODFACTORSit). The linear regression model can be summarized as

follows:

logProdit = βWEATHERit + γ1SEASONALit + γ2PRODFACTORSit + δi + εit. (3.1)

The term δi is a fixed-effect that captures the plant’s average production, and εit is the error

term. In what follows, we describe the covariates included in WEATHER, SEASONAL and

PRODFACTORS.

Using daily weather data, we constructed several measures capturing weather conditions

at each plant for every week in our sample period. The literature in climate and weather

research uses two main approaches to measure severe weather: (1) based on the likelihood

of occurrence of the event, typically measured as percentiles of the probability distribution

for a given time period and location; (2) number of days above specific absolute thresholds

of temperature or precipitation (Field et al. (2012) Box 3-1). An advantage of the second

(the absolute threshold) approach is that it facilitates the comparison across regions. For

this reason, we use this approach in most of our analysis. The main disadvantage is that the

impact of an event exceeding a fixed threshold may depend on its location and the time of

the year. As a robustness analysis, we also estimated and discuss specifications that allow

the impact of weather to vary across geographic regions.

Table 8 defines the main weather variables used in our analysis. Wind is the number of days

in a week in which a wind advisory was issued by the National Weather Service Forecast
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Office. A wind advisory is issued when maximum winds in a area achieve a threshold defined

for that area, typically in excess of 40 miles per hour. Rain and Snow are the number of days

in which the respective event is recorded in the week. We include Wind, Rain and Snow

because each may influence travel to and from a plant. Although foggy conditions may

also affect travel, we found some inconsistencies on how this weather variable was recorded

and therefore decided to leave it out of the analysis.4 Heat and Cold are the number

of days in a week in which the extreme temperature for the day exceeds a threshold: 90

degrees Fahrenheit for Heat and 15 degrees Fahrenheit for Cold. Heat is included because it

could influence ambient temperature within the plant or employees that must work outside,

such as at the loading docks (e.g. Soper (2011)). Cold may proxy for hazardous road

conditions (e.g., ice). Many of the variables, such as Wind, Heat and Cold, directly capture

extreme weather shocks. To capture extreme events related to the other weather variables,

we estimated specifications including multiple levels of the variable to capture potential

non-linear effects on production (described in Section 3.4).

Table 9 shows summary statistics for the weather variables. We defined four regions that

cover the locations of the plants in the study: Lakes, Central, Gulf and East, which are

illustrated in Figure 8. (The plant in California, not shown in the figure, is included in the

Gulf region.) The weather statistics are shown by region, and for some weather variables

there are marked differences across regions (e.g. Snow). Table 10 shows a correlation matrix

for the weather variables. Except for the higher correlation between Cold and Snow, all

the correlations are less than 0.4 in magnitude. To check for potential multicollinearity,

we regressed each weather variable on the others; the maximum R-square was less than

0.35, suggesting that multicollinearity is not a major concern in identifying the effect of the

multiple weather measures in our study.

Note that Rain and Snow are measured in the number of days with rain and snow in that

4Between 1994 and 1996, several plants exhibited a frequency of fog that was orders of magnitude higher,
which cannot be explained by changes in the weather patterns. This made the estimates of the effect of fog
unstable, leading some plants to be highly influential in the estimation.
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week. Alternatively, one could use cumulative precipitation to measure the intensity of

rain and snow. However, our weather data only includes information about total precipi-

tation, aggregating snow and rain precipitation together. Moreover, total precipitation was

unavailable for some weeks in our sample, usually at the smaller weather stations. The

precipitation data also appears to be subject to more measurement error: for example, the

correlation for precipitation (measured in inches) across a sample of weather stations lo-

cated 30-60 miles away is between 0.47 and 0.85, substantially lower than the other weather

variables in our data (see footnote 3 for the sample). To summarize, we feel that the number

of days of rain and snow is a more reliable measure to capture the effect of these weather

shocks.

We include weekend observations in each weather variable even though plants are often

(though not always) closed on weekends. This is appropriate if weather may have an effect

on production that extends a few days before or a few days after the day in which it occurs.

For example a weekend snow storm could influence deliveries both on Friday and especially

on Monday. In addition, we are using the number of days of an event to proxy for the

intensity of an event. A week with 7 days of rain is likely to be more extreme than a week

with 5 days of rain. Similarly, a week with snow Friday through Sunday (i.e., three days of

snow in our coding) may be more like a week with snow Wednesday through Friday (again,

three days of snow in our coding) than a week with snow only on Wednesday (which is

one day of snow in our coding, as the first example would be if we ignored the weekend).

In addition, plants may attempt to recover lost production during weekdays by working

on days off, but this recovery strategy would be limited if bad weather continues through

the weekend (see Detroit (2011) for an example on how auto plants attempt to recover

production in days off).

PRODFACTORS includes covariates that capture adjustments to the production schedule

and changes in productivity. Gopal et al. (2012) show that productivity is lower during the

launch of a new model, so we include the dummy variable, New Model, that indicates the
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first 9 weeks during which a plant is producing a new model. We also include the dummy

variable, Drop Model, to indicate the last 9 weeks before the production of the model is

phased out. While New Model and Drop Model control for changes in productivity during

the life-cycle of a model, temporary production stoppages of a model could also affect

productivity. Assembly plants can be temporarily closed for several reasons, for example,

due to holidays, plant re-tooling and also to adjust inventories of finished vehicles in the

supply chain (Bresnahan and Ramey (1994)). Two dummy variables, Prod Start and Prod

Stop indicate the week following and preceding a full stoppage of the plant, respectively.

Note that all time-invariant factors affecting the productivity of the plant, such as plant

capacity and proximity to suppliers, are captured by the fixed effect δi.

Using our data on scheduled production, we constructed a new variable capturing the total

planned labor hours per week:

PLANHRS = Number Of Shifts×Hours Per Shift

PLANHRS controls for scheduled shifts in production that may be associated with an

anticipated reaction to weather. For example, PLANHRS controls for cases in which a

plant schedules maintenance in a week in which they expect heavy snow. This may be

viewed as a conservative approach as one could argue that if production is reduced due to

scheduled maintenance in anticipation of bad weather, then there is indeed a causal effect

of bad weather on production. However, it is possible that PLANHRS captures seasonality

in production schedules that are not due to weather but still correlated with weather. (For

example, the plant shuts down for a week in August for vacation no matter if that week

turns out to be hot or not.) Hence, we include PLANHRS in our regressions.

As just mentioned, seasonality is an important potential confounder in our estimation. For

example, seasonality in demand for new vehicles can lead to seasonal production patterns. If

these seasonal production patterns are correlated with weather, then we cannot interpret the

effect of weather in regression (3.1) as a causal effect on production. Hence, it is important
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to include controls in SEASONALit that capture seasonality patterns in weather and

production. These seasonal controls are discussed next.

The first set of controls for seasonality includes weekly dummy variables, τt, which control

for seasonal production patterns and macro-economic effects affecting production of plants

nation-wide. For example, this controls for differences in nation-wide plant productivity

during different weeks of the year. But τt also controls for any nationwide-trends in pro-

duction – such trends may be caused by economic shocks affecting aggregate demand for

vehicles (e.g. oil prices). The weekly dummies also control for reduced working hours dur-

ing national holidays. Note that if weather is perfectly correlated across plant locations,

we cannot identify its effect separately from the weekly dummy τt. However, weather pat-

terns vary substantially across regions. Figures 5 and 6 show two example that illustrate

differences in local weather patterns across geographic regions– there is clearly more snow

in the Lakes region than in the Gulf region. There is also some variation across plants

within the same region – for example, there are differences in the number of Wind events

among different plants in the East region. Hence, the inclusion of weekly dummies doesn’t

preclude the identification of the weather effects.

Because τt is common to all plants, it does not control for differences in seasonality or

trends across plants. Therefore, the second set of controls that we use capture potential

differences in seasonality across plants. In particular, we include region-specific year-month

dummy variables, ρr(i)m(t), where r(i) is the pre-defined region where plant i is located,

and m(t) is the month of week t. This controls for monthly seasonality that could differ

across regions (e.g., Spring arrives earlier in the year in the Gulf than in the Lakes region).

We chose these regions because they have marked differences in their weather patterns; if

regional production seasonality is correlated with weather patterns, omitting ρr(i)m(t) from

the regression would lead to biased estimates. In addition, we also include controls that

capture potential differences in demand seasonality, which could thereby lead to different

production patterns across plants. Specifically, we classified the production of each plant
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into one of the following segments: cars, vans, sport vehicles and pick-ups. If a plant

is producing vehicles on multiple segments, we used the segment with higher production

volume to classify the plant. The dummy variables ψs(i)m(t), where s(i) is the segment of

plant i, control for these potential differences in production across plants.5

Two plants located in the same region and classified within the same segment could still

have differences in their production patterns. If these patterns are related to weather then

this could generate a bias in the causal effect we seek to estimate. To mitigate this kind of

bias, we propose a third set of controls which captures seasonal average weather patterns

specific to a plant. To explain the construction of these controls, let Wit be a weather-

related variable (e.g. Wind) for plant i in week t and let w(t) be week t’s number within its

year (e.g. the 54th week in the sample is in week 2 of the second year). We define W̄ (i, w(t))

as the average weather at plant i during a 5 week time window around week w(t) across all

of the years in our sample:

W̄ (i, w(t)) =
1

5 ·N

N−1∑
y=0

2∑
u=−2

Wi,w(t)+52y+u


where N = 10 is the number of years in our sample. Hence, if there is correlation between

production seasonality at a plant and the seasonality of any of our weather variables at

that plant, this should be captured by W̄ (i, w(t)). We calculated these average weather

measures for Wind, Rain and Snow. Notice that when we include this third set of controls

in the model, the β coefficients for these weather variables are estimated using deviation

from the weekly average at each plant.

3.4. Main results

Table 11 presents the first set of estimation results of regression (3.1). This specification

includes all the seasonality controls: weekly dummies (τt), segment-month and region-

month dummies (ρr(i)m(t) and ψs(i)m(t)), and the average weather variables at each location

5Only four plants in our sample shifted their production from one segment to another.
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(W̄ (i, w(t))). (The estimates associated to these controls are not reported in the table for

space considerations.) Among the weather variables, Heat, Wind and Snow are negative and

statistically significant (Cold and Rain are not significant). We also estimated a specifica-

tion with fewer seasonal controls – only the weekly dummies – and the results were similar,

suggesting that the estimated effect of the weather variables is not driven by potential con-

founders related to seasonality. In addition, the controls for other production-related factors

(grouped as PRODFACTORS in regression (3.1)) are highly statistically significant; these

suggest productivity drops associated with production ramp-ups and ramp-downs, and new

model introductions. As expected, the total schedule hours (PLANHRS ) during a week has

a positive and significant effect on the number of vehicles produced.

A second specification, reported in Table 12, includes the weather variables in multiple levels

to analyze the extent to which extreme weather events impact productivity. This specifi-

cation also includes all the seasonality and production factor controls; all the coefficients

of the production factors were similar to those in Table 11 and so they are omitted in the

table. For Rain and Snow we include three levels based on the number of days the weather

event occurred during the week. The cut-off points are indicated in the variable name and

correspond to the 50th and 95th percentile of each measure, conditional on having at least

one day of precipitation that week. In both cases, the effect of each level is relative to

weeks with zero days of the respective precipitation (i.e. the excluded dummies are Rain=0

and Snow=0 ). For example, Snow[1] indicates weeks with one day of snow and Rain [3,5]

indicates weeks with 3,4 or 5 days of rain. We find empirical evidence that the effect of

precipitation is non-linear for both rain and snow. One day of snow has no significant effect

on production, but the effect is significant for 2 to 4 days of snow. The highest level of snow

is also negative and larger in magnitude, but is not statistically significant at the 5% level

(p-value=0.1), possibly due to the small number of observations for this extreme event (see

Table 13). Nevertheless, we expect its impact should be as severe and we cannot reject the

null hypothesis that the effect of Snow[5,7] is larger than Snow[2,4]. For rain, the effect is

statistically significant for 6 or more days of rain, but not significant for fewer days of rain.
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We defined three levels for Heat, and Cold. The highest level for heat, 6 or 7 days with a

high temperature exceeding 90◦F , is closely related to the definition of a heat wave.6 We

find strong evidence of a non-linear effect of Heat, but the effect of Cold is still insignificant

at all levels.

Because days with Wind advisory alert are relatively infrequent (See Table 13), levels for

this variable were defined based on thresholds of wind-speed. Two levels were defined with

cut-offs at 34 and 44 mph, and each level counts the number of days with maximum wind

speed on each level’s range. For example, Wind[35,44] counts the number of days with

wind speed between 34 and 44 mph. The results suggest evidence of non-linear effects of

Wind. Next, we describe the economic significance of these results.

For all the variables reported in Table 12, except for the Wind variables, the coefficient rep-

resents (approximately) the percentage drop in weekly production when the corresponding

weather event occurs during a given week (net of any production recovery that might occur

in that week). For Wind, the coefficient measures the percentage drop in weekly production

of an additional day with the indicated wind speed. To put the effect of weather in per-

spective, the productivity reduction during the first week a vehicle model is introduced is

32%, similar in magnitude to the combined effect of one day of high wind, a heat wave with

6 or more days of high temperature and 6 or more days of rain during a week. But such

extreme weather incidents are also rare – for example, weeks with wind-speeds above 44

mph have a frequency of 0.6% in the sample. To estimate the economic impact, we measure

the expected production reduction which combines the likelihood of the weather incident

with the impact estimated in Table 12. Table 13 reports these calculations for the weather

variables that have a statistically significant effect on production as reported in Table 12

along with Snow[5,7], as we cannot reject the null hypothesis that the effect of Snow[5,7] is

larger than Snow[2,4]. Here, we see that snow and rain tend to have the largest economic

6The Warm Spell Duration Index (WSDI) – commonly used to characterize the frequency of heat waves –
is defined as the fraction of days belonging to spells of at least 6 days with maximum temperature exceeding
the 90th percentile (Field et al. (2012)).
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effect on weekly production.

Based on the average weather variables observed at each location, we calculated the average

percent drop in productivity due to weather shocks for each plant location (this calculation

considers all the weather variables included in regression (3.1)). Table 14 shows the results

for the 49 cities in our sample. (Plants in the same city have the same weather and therefore

the same effect.) Table 16 shows the average percent loss in productivity due to weather for

each of the four regions. While the average loss is not statistically different across regions

it is possible to observe a statistically significant difference for the impact of snow and heat

across the different regions.

Regression Diagnostics and Robustness Analysis

We conducted a series of regression diagnostics to analyze the robustness of our results.

To check the generalizability of the results to other time periods, we expanded our dataset

to include production from 2006 to 2009 using data provided by Automotive News. In

2006, manufacturers stopped reporting weekly production and moved to monthly production

reports. Automotive News interpolated weekly production based on monthly production

and information on shift patterns, parts shortages, etc. Because we view these data as

less reliable we do not use them for our main results, but they are useful as a robustness

check. All of the results are qualitatively similar to the period 1994-2009, but some of the

coefficients are estimated with less precision and are not significant (specifically Heat). This

is consistent with the larger measurement error associated with the dependent variable for

those additional years.

Because some of the weather events are infrequent, we checked for influential points in the

data. To do this, we re-estimated the model removing each of the plants (one-at-a-time),

and found no significant difference in our results. We conclude that the estimates are not

driven by influential locations in the sample.

As the nearest weather stations to the plants are located on average 13 miles away from the
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plants, a potential concern is measurement error with our weather variables. To address this

issue, we estimated the regressions using only plants with corresponding weather stations

within 25 miles of the plant. The sample size in this regressions drops to about 26,000

observations. All the results are similar in magnitude and statistical significance, and all

the point estimates are within the 95% confidence interval of the results reported in Table

12. This analysis alleviates concerns with potential measurement error in the dependent

variable due to the location of weather stations.

The measures of weather used in our main analysis include weather events on weekends even

though most plants do not work on weekends. This is reasonable if adverse weather can

have an impact on production just before or after the actual weather event. Furthermore,

including weekends allows us to better use the duration of the event for a proxy of its

intensity. Nevertheless, we estimated our model with weekend weather excluded and found

that the results were consistent with those reported in Table 12.

Plant Heterogeneity

Our results provide a measure of the average impact of weather on automobile production.

It is possible that individual plants may experience different effects depending on their

idiosyncratic features, such as the location of the parts suppliers, or inventory management

practices or other operating procedures. For example, while we have measured the impact

of severe heat on plants A and B, given the same level of heat, plant A may experience

less of an adverse reaction than plant B. As long as the magnitude of the impact of a

weather event on a plant is uncorrelated with the frequency of the event at that location,

the estimates of the economic impact reported in Tables 13 to 16are unbiased. However,

if plant location decisions are endogenous so that plants for which the effect of a weather

event is larger are located in areas with lower frequency of these events, then our estimates

would overestimate the average economic impact on production even though the estimated

impact conditional on an event occurring, i.e., the β coefficients, remain unbiased. This

potential bias can be corrected by accounting for the heterogenous effect of weather across
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plants.

Since it is not possible to estimate a separate coefficient for each plant (the estimates would

be too imprecise), we instead categorize plants into groups and estimate a different vector of

coefficients for each group. The idea is to group plants based on their weather similarities,

so that weather patterns are similar within group but different across groups. If there is

any selection based on the incidence of weather events, then one should observe differences

in the estimated coefficients across groups.

We conducted a hierarchical cluster analysis to segment plants into groups. Let X̄kiq denote

the average incidence of weather variable k at plant i during quarter q (using the weather

variables defined in Table 8), and X̄i the vector containing all these weather metrics that

characterize a plant i. The cluster analysis calculates the distance between plants based

on these metrics, generating a partition of plants into groups. We used Ward’s hierarchical

clustering method to create the groups (see Johnson and Wichern (1992) for details of the

method). For the regression analysis, we considered using two clusters which are shown in

Figure 7. There is a clear geographic segmentation of the two groups, which we name the

North and South clusters.

We estimated regression (3.1) including interactions of the weather variables and an indica-

tor variable for the South cluster. The results of this analysis are presented on Table 17 (the

first column, “Main Results”, shows the original estimates for comparison; the interactions

are labeled “SC”). Given the larger number of coefficients to estimate, the standard errors

increase and many of the variables are no longer statistically significant. We focus in testing

the null hypotheses of equal coefficients between the North and South clusters, which can

be done by testing the significance of the interactions. These results show a difference on

the coefficients estimated for the highest level of Rain – the effect tends to be higher in

magnitude for the South cluster – and no significant difference for the other coefficients.

A possible explanation for this difference is that on average the South locations receive 10

inches more of rain per year than the North locations (44 vs 34 inches) even though rain in
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the South is about as frequent as in the North. Overall, the differences in the coefficients are

observed for weather variables whose frequency is similar across the two groups: about 60%

of the Rain[6,7] events happened in the south cluster. Although there is some heterogeneity

across plants, it is not systematically related to the frequency of extreme weather events,

and so we conclude that the average economic impact deduced from Tables 13 and 16 are

correct.

To the extent that these differences between plants exist, it is worthwhile to know if they

are associated with managerial decisions. Unfortunately, while our data is well suited for

measuring the average impact, because we have heterogeneity in weather across different

plants, it is not particularly well suited for identifying practices that are more or less robust

to weather disruptions. To explain, to understand if plant A is more robust to weather

than plant B, ideally we want them to have similar weather, or at least weather that is

uncorrelated with the practices that make them different. Most of the plants in our sample

are located far away from other plants, so few plants have similar weather. Furthermore,

we lack data on the specific relevant operational characteristics that could be used to infer

differences across plants. Put another way, our panel data is appropriate for identifying

the average impact of weather of automobile production, but to understand differences

across plants requires a cross-section analysis and that introduces a host of identification

challenges. Nevertheless, we can make some initial exploration based on our data.

It is possible that plants owned by GM, Ford and Chrysler (labeled the US group) operate

in a different way than all other plants (non-US group). For example, they may be more

unionized or use fewer “lean manufacturing” techniques ( Bennett et al. (2011) provides

some anecdotal evidence on how lean plants may be more prone to disruptions). To test for

differences in these two groups, we estimated regression (3.1) including interactions of the

weather variables and a binary variable indicating the non-US group. Again, the estimated

coefficients on this analysis are measured with less precision. Interestingly, the results seem

to replicate the North/South segmentation reported in Table 17: the Rain appears to have a
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larger impact on plants in the non-US group. Nevertheless, we do not wish to conclude that

U.S. plants are better able to cope with Rain because of their managerial practices. U.S.

plants tend to be located more in northern regions and non-US plants are more prevalent

in southern regions (see Figure (8)). Consequently, the differences we observe could be due

to differences in the nature of weather in the north relative to the south. For example, six

days of rain in Tennessee (which has a non-US plant) may be more intense than six days

of rain in Michigan, which is dominated by US plants (as reported earlier, rain tends to be

more intense in the south). Therefore, those results may suggests a north/south difference

rather than a US/non-US difference.

To further explore this issue, we identified sets of plants which are collocated within 100

miles and have different ownership (US vs non-US). Four pairs of US/non-US plants were

identified. We estimated regression (3.1) with interactions with the non-US group indicator.

This regression has little power due to the small sample size, and none of the coefficients

are statistically significant. Hence, we believe that with our data and estimation strategy

it is not possible to determine if US plants are differentially robust to weather relative to

non-US plants or if southern weather is different than northern weather in ways that our

main regression does not capture. Put another way, we cannot provide evidence that our

average effects are different between US and non-US plants.

Short-term production recovery

Another question of interest is the extent to which plants are able to recover from the short

term productivity losses we observe due to weather shocks. At one extreme, plants may

be able to recover all of their lost production at some point in the future. Even if this is

true, the short term productivity losses would be costly as they can lead to stockouts at

dealerships and to volatile production (which could require costly overtime). To further

explore the extent of recovery, we analyzed how weather incidents could impact production

in the week after the time the incident occurs. Specifically, we estimated regression (1)

using “lagged” weather variables. Table 18 shows the results of this analysis. For reference,
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column (1) reports the estimates of Table 12 and column (2) includes the weather variables

that were significant on the main analysis with one week of lag. For the most part, the

results when we include the lag variables are similar in sign, magnitude and significance

relative to the weekly analysis. In addition, the lagged effects for Rain [6,7], Snow [5,7]

and Wind >44 are negative and significant. Not only does this contradict the hypothesis

that plants are able to recover their production in the following week of bad weather, it

suggests that bad weather may have an impact beyond the week it occurs. Alternatively,

it may due to how we code weather events - a six day period of rain that straddles two

weeks is probably one weather event, but because we divide time into weeks, it is viewed

as two weather events in our analysis. Either way, we do not find evidence suggesting that

firms recover their lost production in the week immediately following an adverse weather

event. We also considered specifications that added further lags, but these were jointly

insignificant.

To further analyze production recovery after a weather incident, we estimated the impact

of weather on the likelihood of scheduling overtime during the weeks after the incident, as

overtime is a likely mechanism to recover lost production. We defined an indicator variable

that is equal to one if the plant scheduled overtime during the three weeks following any week

t. We estimated a Probit regression of this indicator variable, including the weather factors

and all the other independent variables of regression (3.1) as covariates. The estimates

suggest that the none of the factors have a significant influence on the probability of overtime

(p-values<0.05) The evidence suggest that the production schedule is rarely affected in the

weeks immediately following a weather incident.

Although we do not find evidence of a short term recovery, we cannot rule out that recovery

occurs with a greater lag. However, plants may choose different lags for recovery - e.g.,

some may recover in four weeks while others within eight weeks, and even the same plant

may take a different amount of time to recover from different events. Hence, it is difficult

to use our data to identify this recovery, if it occurs. One possible approach is to aggregate
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data over time. For example, regress quarterly production on quarterly weather. If recovery

occurs within the quarter, we should not observe significant relationships between weather

and production. However, this substantially reduces the sample size, thereby complicating

the interpretation of the results - failing to reject that null that weather has no adverse

impact on production is not the same as accepting the null. Clearly, further research is

needed on the long term impact of weather on production. But even if long run recovery

is possible, we can conclude that adverse weather has a short term impact on productivity,

and therefore leads to a costly increase in the volatility of production.

3.5. Conclusion

Based on our sample of U.S. automobile assembly plants over a ten-year period, we find

that a plant’s local weather can have a substantial impact on production, ranging from a

reduction of 0.5% to 3.0%, with an average of 1.5%. The immediate follow-on question

is “Can automobile companies do a better job managing this problem?”. The answer

depends on the underlying mechanisms. Given that we find heavy winds, snow and rain are

associated with production losses, it is possible that disruptions to in-bound deliveries is a

major cause. If this is the case, firms could mitigate this factor by carrying more inventory of

parts or at least increasing deliveries of parts in anticipation of bad weather. This approach

goes against the “just-in-time” philosophy of carrying lean inventory and ensuring a smooth

production flow, but avoiding the productivity losses due to weather may justify a more

flexible operating strategy. If, on the other hand, bad weather is problematic because it

increases employee absenteeism, then mitigating strategies may be more difficult to develop.

For example, it would be costly to “pre-position” workers in anticipation of bad weather -

people are not likely to want to live at the plant for an extensive period. However, it may be

possible to provide employees with alternative transportation options (company operated

shuttles), as long as these transportation options are available during poor weather.

We find that high temperatures reduce production. The obvious mitigating strategy for heat

is to provide cooling systems. It is possible that heat is influencing worker productivity in
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“interface” areas between the outside and inside environments, such as on loading and

unloading areas, because these areas may be difficult to cool. Alternatively, if the ambient

temperature outside is significant, then it is possible that existing cooling systems are unable

to maintain the interior temperature under 77◦ F (a threshold for heat stress). If this is

the case, then maybe an investment in higher capacity cooling systems could be justified.

It is not clear the extent to which automobile companies are aware of the impact of weather

on their productivity beyond obvious effects like “a blizzard can disrupt production”. About

half of companies in a survey, Staff (2011), report that they experienced a weather related

disruption to their supply chain, but magnitudes were not estimated and our results suggest

that nearly all facilities may experience some form of weather disruption. If they are indeed

not aware, then it is possible that the mitigating strategies discussed above (or others)

could improve productivity. But if they are already aware of these effects, then they may

have already implemented all cost effective mitigating strategies. That would leave only

the option to move production to a more weather friendly location. Of course, moving

production is costly and raises a host of other issues - labor costs, access to suppliers, etc.

Our study focuses on the automobile industry, which offers several advantages: it is an

economically significant industry, there are many geographically dispersed assembly plants

operated by a number of different companies, and detailed production data is available

over a long period of time (ten years) at the weekly level (rather than monthly, quarterly

or annually). However, it is not clear to what extent these results carry over to other

industries. Again, the answer depends on the underlining mechanism. If disruptions in in-

bound parts deliveries are the cause of the productivity loss, then these effects are likely to

occur in any manufacturing industry that operates with limited buffer stocks of inventory.

Industries that carry substantial inventory are probably more robust. But if the cause is

due to disruptions in in-bound employees, then these effects are likely to be common across

many industries, including services. Additional data are needed to tease out which of the

mechanisms we have identified (or others) are responsible for these effects.
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Our findings provide an interesting contrast with the existing literature on climate change

and economic activity. For example, Dell et al. (2008) find that hot years only impact

poor countries, but we find that hot temperatures impact production in a “rich” country.

Furthermore, they find that rainy years neither impact poor nor rich countries but we find

that intense periods of rain do negatively affect productivity. Similarly, Hsiang (2010) find

that adverse weather actually increases manufacturing output in Caribbean basin countries.

But those studies work with annual shocks (e.g., a hot year) and annual output measures

across a wide range of industries. It is possible that their level of aggregation masks pro-

ductivity losses in specific industries. Furthermore, because their estimation is based on

annual shocks, they are unable to measure short term shocks (e.g., weekly shocks) that

nevertheless add up to a substantial annual impact - if the frequency of short term shocks

is relatively constant, then there may not be enough variation in annual data to identify

their effect (e.g., if there are 5 windy weeks each year and every year, the effect of wind

cannot be estimated with annual data).

Finally, our work provides additional evidence on the impact of climate change on economic

output. Climate change is forecasted to be associated with increases in severe weather (Field

et al. (2012)), in particular with heat and rain, and we find a direct link between severe

weather (high winds, high heat, and extensive periods of snow or rain) and productivity

losses. Long run forecasts of extreme weather are challenging and there can be uncertainty

in the direction of the change (e.g., wind) as well as the magnitude of the change (e.g.,

temperature). Hence, even though we are not comfortable combining our estimates of

productivity losses with extreme weather forecasts to yield a long fun forecast of potential

losses in the North American automobile industry due to climate change, we believe the

impact of weather on manufacturing productivity is likely to be a growing concern.
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Data Sources

Automotive News, Crain Communications, 1995-2009.

National Oceanic and Atmospheric Administration, NOAA, 1994-2009.

The Weather Channel, www.weather.com, 1994-2009.

Ward’s AutoWorld, Ward’s Auto, 1994–2005.

Weather Underground, www.wunderground.com, 1994-2009.
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Table 8: Weather variables included in the empirical study
Variable Description

Wind Number of days in which a wind advisory is issued by the National
Weather Service Forecast Office. A wind advisory is issued when
maximum wind speed exceeds a threshold for the area which is
typically in excess of 40 miles per hour.

Rain Number of days with rain during the week.
Snow Number of days with snow during the week.
Heat Number of days with a high temperature above 90 degrees Fahrenheit.
Cold Number of days with low temperature below 15 degrees Fahrenheit.

Table 9: Mean and standard deviation (in parentheses) of the weather variables, by geo-
graphic region.

Central East Gulf Lakes Total

Wind 0.006 0.010 0.011 0.007 0.007
(0.076) (0.101) (0.106) (0.083) (0.087)

Rain 2.508 2.804 2.678 2.334 2.507
(1.848) (1.804) (1.892) (1.793) (1.841)

Snow 0.490 0.264 0.065 0.870 0.518
(1.128) (0.712) (0.336) (1.524) (1.193)

Heat 0.480 0.428 1.001 0.211 0.483
(1.299) (1.128) (1.997) (0.708) (1.326)

Cold 0.382 0.176 0.038 0.652 0.390
(1.168) (0.724) (0.294) (1.557) (1.206)

Table 10: Correlation matrix of weather variables.

Wind Rain Snow Heat Cold

Wind 1.000
Rain 0.021 1.000
Snow -0.009 -0.357 1.000
Heat 0.009 0.013 -0.161 1.000
Cold -0.009 -0.314 0.599 -0.117 1.000

67



Table 11: Estimation results of regression (3.1).
Production factors Weather Additional Controls

Prod. Start -0.1006∗∗∗ Heat -0.0127∗∗∗ Week
(0.0257) (0.0037) Region-Month

Prod. Stop -0.0578∗ Cold 0.0004 Segment-Month
(0.0240) (0.0043) Avg. Weather

New Model -0.3236∗∗∗ Wind -0.0800∗

(0.0202) (0.0337)
Drop Model -0.0145 Rain -0.0033

(0.0121) (0.0023)
PLANHRS 0.7272∗∗∗ Snow -0.0138∗∗∗

(0.0167) (0.0043)

Number of observations=31,174. R-square=0.61. Robust Standard errors in parentheses.
∗ p < 0.05 , ∗∗ p < 0.01 , ∗∗∗ p < 0.001

Figure 4: Plant locations and geographic regions (The plant in Fremont, CA, — not shown — is

classified within the Gulf region)
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Table 13: Frequency and economic impact of weather variables
Weather incident Frequency (per week) Average production reduction (weekly)

Snow [2,4] 11.8% 0.34%
Snow [5,7] 2.1% 0.09%

Rain [6,7] 6.3% 0.37%

Heat [6,7] 1.7% 0.14%

Wind ¿44 0.6% 0.05%

Table 14: Ranking of average productivity reduction due to weather by location

Rank City State
Total productivity Snow Rain Temp. Wind

loss (%) loss (%) loss (%) loss (%) loss (%)

1 Montgomery AL 2.88% 0.00% 0.34% 2.45% 0.10%

2 Arlington TX 2.41% 0.01% 0.52% 1.71% 0.17%

3 Shreveport LA 2.18% 0.02% 0.48% 1.56% 0.12%

4 Canton MS 1.93% 0.00% 0.53% 1.40% 0.00%

5 Avon Lake OH 1.83% 0.74% 0.54% 0.22% 0.33%

6 St Paul MN 1.81% 1.03% 0.23% 0.41% 0.14%

7 Oklahoma City OK 1.81% 0.10% 0.17% 1.23% 0.30%

8 Lorain OH 1.80% 0.78% 0.45% 0.25% 0.33%

9 Warren OH 1.78% 1.00% 0.44% 0.21% 0.13%

10 Roanoke IN 1.77% 0.79% 0.43% 0.29% 0.25%

11 Hazelwood MI 1.70% 0.35% 0.50% 0.70% 0.16%

12 Lansing MI 1.66% 0.93% 0.38% 0.27% 0.08%

13 Toledo OH 1.65% 0.70% 0.42% 0.35% 0.18%

14 Vance AL 1.63% 0.03% 0.35% 1.10% 0.16%

15 Wayne MI 1.63% 0.76% 0.35% 0.26% 0.26%

16 Edison NJ 1.61% 0.28% 0.70% 0.42% 0.21%

17 Linden NJ 1.59% 0.28% 0.67% 0.38% 0.26%

18 Fenton MO 1.58% 0.36% 0.32% 0.73% 0.17%

19 Smyrna TN 1.57% 0.19% 0.54% 0.74% 0.10%

20 Flint MI 1.55% 0.92% 0.26% 0.28% 0.09%

21 Spring Hill TN 1.52% 0.17% 0.54% 0.73% 0.08%

22 Lake Orion MI 1.50% 0.87% 0.26% 0.28% 0.10%

23 Baltimore MD 1.50% 0.17% 0.67% 0.49% 0.18%

24 Wentzville MO 1.48% 0.37% 0.27% 0.65% 0.19%

25 Sterling Heights MI 1.45% 0.98% 0.20% 0.27% 0.00%
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Table 15: Ranking of average productivity reduction due to weather by location (continued)

Rank City State
Total productivity Snow Rain Temp. Wind

loss (%) loss (%) loss (%) loss (%) loss (%)

26 Norfolk VA 1.44% 0.09% 0.70% 0.47% 0.17%

27 Moraine OH 1.42% 0.56% 0.38% 0.29% 0.19%

28 Wixom MI 1.41% 0.92% 0.20% 0.25% 0.03%

29 Belvidere IL 1.40% 0.58% 0.36% 0.33% 0.13%

30 Spartanburg SC 1.39% 0.02% 0.62% 0.69% 0.05%

31 Janesville WI 1.36% 0.62% 0.29% 0.30% 0.15%

32 Kansas City MO 1.36% 0.28% 0.33% 0.60% 0.15%

33 Louisville KY 1.33% 0.32% 0.36% 0.53% 0.12%

34 Kansas City KS 1.33% 0.28% 0.35% 0.55% 0.14%

35 Bowling Green KY 1.31% 0.19% 0.36% 0.60% 0.16%

36 Pontiac MI 1.30% 0.83% 0.17% 0.26% 0.04%

37 Lafayette IN 1.30% 0.43% 0.30% 0.36% 0.20%

38 Lincoln AL 1.30% 0.03% 0.31% 0.93% 0.03%

39 Georgetown KY 1.29% 0.30% 0.51% 0.39% 0.08%

40 Normal IL 1.27% 0.42% 0.29% 0.48% 0.08%

41 Chicago IL 1.22% 0.60% 0.11% 0.39% 0.12%

42 Marysville OH 1.19% 0.47% 0.20% 0.28% 0.23%

43 Atlanta GA 1.15% 0.01% 0.42% 0.55% 0.17%

44 Warren MI 1.15% 0.67% 0.16% 0.26% 0.06%

45 Wilmington DE 1.15% 0.14% 0.36% 0.38% 0.27%

46 Dearborn MI 1.15% 0.66% 0.16% 0.26% 0.06%

47 Detroit MI 1.14% 0.65% 0.17% 0.26% 0.06%

48 Fremont CA 0.81% 0.00% 0.61% 0.16% 0.04%

49 Princeton IN 0.46% 0.05% 0.05% 0.33% 0.03%

Average 1.50% 0.43% 0.37% 0.56% 0.14%
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Table 17: Estimation results considering two weather clusters

Main Results
Weather Clusters Results

Main Effects Interactions

Snow [1] 0.0019 0.0011 SC*Snow [1] 0.0143

(0.0106) (0.0139) (0.0189)

Snow [2,4] -0.0278* -0.0242 SC*Snow [2,4] -0.0038

(0.0133) (0.0162) (0.0231)

Snow [5,7] -0.0429 -0.0457 SC*Snow [5,7] -0.0036

(0.0270) (0.0296) (0.0627)

Rain [1,2] -0.0053 -0.0046 SC*Rain [1,2] -0.0007

(0.0101) (0.0142) (0.0191)

Rain [3,5] 0.0039 -0.0017 SC*Rain [3,5] 0.0133

(0.0117) (0.0160) (0.0199)

Rain [6,7] -0.0590∗∗ 0.0013 SC*Rain [6,7] -0.0963∗∗∗

(0.0182) (0.0263) (0.0307)

Heat [1] -0.0065 0.0025 SC*Heat [1] -0.0163

(0.0163) (0.0260) (0.0297)

Heat [2,5] -0.0273 0.0061 SC*Heat [2,5] -0.0477

(0.0155) (0.0288) (0.0289)

Heat [6,7] -0.0875∗∗ -0.0212 SC*Heat [6,7] -0.0727

(0.0291) (0.1181) (0.1203)

Cold [1] -0.0035 0.0090 SC*Cold [1] -0.0298

(0.0176) (0.0207) (0.0307)

Cold [2,5] -0.0020 0.0102 SC*Cold [2,5] -0.0378

(0.0183) (0.0215) (0.0259)

Cold [6,7] -0.0212 -0.0057 SC*Cold [6,7] -0.1825

(0.0297) (0.0294) (0.1284)

Wind [35,44] -0.0196 -0.0162 SC*Wind [35,44] -0.0081

(0.0128) (0.0178) (0.0239)

Wind ¿44 -0.0791∗ -0.0779 SC*Wind ¿44 -0.0041

(0.0339) (0.0438) (0.0660)

Additional controls

Region-Month YES YES

Segment-Month YES YES

Avg. Weather YES YES

Cold (in levels) YES YES

Production Factors YES YES

Number of observations=31,174. R-square = 0.61. Robust Standard errors in parentheses.
∗ p < 0.05 , ∗∗ p < 0.01 , ∗∗∗ p < 0.001

“SC” = South Cluster
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Table 18: Estimation results including lagged effects for the weather variables.

Main Results
Including Lags

Main Effects Lagged Variables

Snow [1] 0.0019 0.0015

(0.0106) (0.0105)

Snow [2,4] -0.0278* -0.0287* Lagged Snow [2,4] -0.0199

(0.0133) (0.0130) (0.0121)

Snow [5,7] -0.0429 -0.0416 Lagged Snow [5,7] -0.0608*

(0.0270) (0.0272) (0.0280)

Rain [1,2] -0.0053 -0.0015

(0.0101) (0.0102)

Rain [3,5] 0.0039 0.0088

(0.0117) (0.0118)

Rain [6,7] -0.0590** -0.0448* Lagged Rain [6,7] -0.0529***

(0.0182) (0.0183) (0.0159)

Heat [1] -0.0065 -0.0063

(0.0163) (0.0164)

Heat [2,5] -0.0273 -0.0238

(0.0155) (0.0158)

Heat [6,7] -0.0875** -0.0759* Lagged Heat [6,7] -0.0431

(0.0291) (0.0292) (0.0265)

Wind [35,44] -0.0196 -0.0195

(0.0128) (0.0127)

Wind > 44 -0.0791* -0.0793* Lagged Wind >44 -0.1364**

(0.0339) (0.0338) (0.0503)

Additional controls

Region-Month YES YES

Segment-Month YES YES

Avg. Weather YES YES

Cold (in levels) YES YES

Production Factors YES YES

Observations 31174 30712

R-square 0.6126 0.6166

Robust Standard errors in parentheses

* p < 0.05 , ** p < 0.01 , *** p < 0.001
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Figure 5: Wind map (The scale on the map corresponds to the total number of high wind days at each location

during a 10 year period)

Figure 6: Snow map (The scale on the map corresponds to the total number of weeks with more than five days

of snow at each location during a 10 year period)

75



Figure 7: Weather-based clusters (The plant in Fremont, CA, — not shown — is classified within the South

cluster)
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CHAPTER 4 : Store pick-up

4.1. Introduction

Online retailing has grown steadily over the last few years. Some retailers operate ex-

clusively through online channels, and traditional brick and mortar (B&M) retailers have

incorporated online sales channels since the early stages of the commercial Internet (e.g.,

the Barnes and Noble website launched in May 1997). Today, retailers’ online channels are

no longer an experiment but a relevant and growing part of their business. Originally, most

of the B&M retailers decided to separate the operations of traditional and online channels.

Now, some B&M retailers are exploring integration strategies for their online and B&M

channels to enrich the customer value proposition and/or reduce costs. Online-offline inte-

gration efforts can occur in a variety of configurations. For example, B&M retailers often

show in-store inventory availability information online. More advanced integration includes

shipping the product ordered from the store closest to its destination, or offering the option

to buy products online and pick them up in the store.

In particular, over the last few months, a number of traditional B&M retailers across differ-

ent categories (e.g., The Home Depot, Apple, Crate & Barrel, Toys ”R”Us, among others)

have implemented buy-online-pickup-in- store (BOPS) functionality. The retailer shows

online viewers the locations at which the item is available, and gives customers the option

to close the transaction online and then pick up the product at one of the locations within

two hours of closing the purchase1.

The integration of online and offline channels provides an opportunity to empirically study

issues that have been the subject of theoretical research in operations management. In this

paper, we use an online-offline integration project that implements BOPS functionality as

a natural experiment to study the impact of sharing reliable inventory availability infor-

1Most retailers announce that they need a two hour window to have the item ready to pick up. In some
cases this time can be less but two hours is representative of the most common commitment. This short
lead-time restricts the retailer to fulfill the order with in store inventory
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mation with the customers. Implementing a buy-online-pick-up-in-store project provides

an exogenous shock to the verifiability of the inventory information that the firm shows to

their customers; because the inventory information becomes more credible, the risk that

customers face when deciding whether to visit the store is reduced.

We have collected a novel proprietary dataset from a nationwide retailer that has been

among the pioneers in implementing BOPS functionality. Using this dataset and a series of

natural experiments, we make the following contributions:

First, we evaluate the impact of BOPS implementation on company sales and customer

behavior, and give the first piece of empirical evidence on this emerging trend in retailing2.

We study the impact of the deployment of a BOPS project on both the online and brick and

mortar channels. Conventional wisdom within the industry suggests that offering the BOPS

functionality will improve online channel revenue (since BOPS transactions are considered

online revenue), and that the traditional B&M stores will carry the burden of having the

item ready for the customers to pick up, without receiving any significant benefit in their

sales. However, as we will describe in detail, a series of natural experiments leads us to

conclude that these assumptions are not correct. Our results show that, contrary to what

we would expect, sales transacted online decrease and B&M sales increase when the BOPS

functionality is deployed.

Second, we show how the increase of inventory information verifiability affects customer

behavior. The impact of availability information and its verifiability on customer behavior

has been the subject of recent modeling research in the field of operations management (e.g.,

Allon and Bassamboo (2011); Su and Zhang (2009)) but to our knowledge, no empirical

results were available prior to this paper. Implementing BOPS functionality can be seen as a

shock to the verifiability of inventory information online. To implement BOPS functionality,

the online system must have access to accurate real-time information about availability of

2See, for example, http://operationsroom.wordpress.com/2012/05/16/macys-warehouse-at-the-mall/
and http://operationsroom.wordpress.com/2010/08/25/pooling-inventory-at-nordstrom/
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in-store inventory. If the retailer offers the option to pick up an online order at a particular

store, the customer knows with very high certainty that the item ordered is available at

that store. Therefore, inventory availability information is perceived as very reliable. This

contrasts with situations whereby the store simply shows inventory information but does

not offer the option to close the transaction online. For example, consider a car dealership

showing information online about their inventory. This information is typically unverifiable;

if a customer visits the dealer and the product is not available, the dealer can claim that

the online information was not updated in real time. We find that increased reliability

of in-store availability information increases the probability that customers will visit the

store. We present an explanation consistent with empirical evidence we observed regarding

the impact of BOPS functionality: Providing BOPS functionality increases the reliability

of the inventory information, resulting in an increase in the number of customers visiting

the stores to purchase items after checking product availability online. This provides an

explanation to the counterintuitive finding described above. We further check the validity

of this explanation by presenting further evidence from the shopping cart abandonment

behavior.

Finally, we use this project as an example of the evaluation of an online-offline strategy,

illustrating the complex interactions between the online and offline channels and the chal-

lenges of relying on single channel data to evaluate the impact of interventions that affect

multiple channels. Retailers often run experiments in their online channel (for example,

A/B testing) to evaluate the impact of interventions on their conversion rates or other

measures of interest. In our case, an isolated evaluation of the online channel would have

considered the impact of the BOPS implementation to yield negative results. Only when

closing the loop and looking at the effects in the brick and mortar channel we can quantify

the net effects of the BOPS implementation, which are positive.

The rest of the document is organized as follows: Section 2 reviews the literature related to

our problem of interest; Section 3 describes the empirical setting and data; Section 4 shows
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the impact of the deployment of BOPS functionality on the online channel and the brick-

an-mortar channel. Section 5 provides an interpretation of the results based on information

verifiability and tests the validity of this interpretation with additional analyses. Finally,

Section 6 concludes by highlighting the managerial insights that can be drawn from our

analysis.

4.2. Context and Related Literature

Integration of online and offline retail channels is a very recent phenomenon. In the early

stages of online business, many traditional B&M retailers developed online branches of

their traditional businesses. In some cases, they saw in online stores a new version of their

traditional catalog channel since there were, and still are, several similarities.

Today, the online channel has developed characteristics of its own. The relevance of this

channel in the retail sector and the pressure from customers that want to interact with

the company in a cohesive way have pushed B&M retailers to consider channel integration

efforts with varying characteristics. Integration is not always evident to the customer, as is

the case when a retailer ships an online purchase from a store rather than the warehouse.

In other cases, integration is driven by the need to offer a homogenous and more rewarding

online-offline customer experience. Examples include offering customers the possibility to

return to a store items that were bought online, place online orders from the store and have

the products shipped to the customer address, buy items online and pick them up later at

the store in which they are stocked, or buy an item online and pick it up at the store once

it has been delivered to the store.

Online-offline integration efforts are challenging for companies. The retailer must integrate

inventory systems, warehouses, marketing campaigns, pricing strategies, etc. Even before

these integration attempts are made, retailers often struggle to discern what is really avail-

able at their stores or warehouses, as has been studied in previous empirical research docu-

menting substantial inventory record inaccuracy (DeHoratius and Raman, 2008). Another
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challenge faced in the implementation of some of these integration efforts is an increased

complexity in store execution (Fisher et al., 2006). Store processes are designed to sell and

not necessarily to support the quick delivery or shipment of goods, activities that these

integration strategies allocate to physical stores.

Given that online-offline integration is a recent phenomenon, it is not surprising that there

is limited literature that studies it. Some recent work in marketing and information systems

has explored related issues, such as the difference in price elasticity between the online and

brick and mortar channels (Chu et al., 2008, Granados et al., 2011), customer channel

migration (Ansari et al., 2008), the choice between online and offline channels in grocery

stores (Chintagunta et al., 2012), the impact of product returns on a multi-channel retailer

(Ofek et al., 2011), or customer behavior in multi-channel customer service (Jerath et al.,

2012). To our knowledge, no previous work has considered a buy-online-pickup-at-store

channel. The competition between brick and mortar and online channels has been studied

by Brynjolfsson et al. (2009) and Forman et al. (2009), among others.

In operations management, some work has examined fulfillment and supply chain choice

on the Internet. For example, Netessine and Rudi (2006) study the effects of inventory

ownership in online channels, and Randall et al. (2006) empirically study the decision to

invest in fulfillment capabilities, although we are not aware of any work that has explored

the integration of online and offline channels. We contribute to the literature by studying

the impact of the implementation of an online-offline integration strategy, namely the ”buy-

online-pickup in store” functionality, on the online and brick and mortar channel.

When consumers decide to visit a physical store to buy a product, they face the risk that the

product is out of stock. Fitzsimons (2000) and Anderson et al. (2006) study how customers

respond to stockouts and how to measure and mitigate stockout costs. Substitution effects

and its consequences for demand estimation are studied by Kok and Fisher (2007) and

Musalem et al. (2012).
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Some models in operations management consider the costs that of visiting a store (Dana and

Petruzzi, 2001). Recent work has modeled the impact of inventory availability information

in attracting consumer demand. In this stream, Su and Zhang (2009) study the value of

commitment and availability guarantees when selling to strategic consumers. In a related

work, Allon and Bassamboo (2011) explore the issue of cheap talk when the information

shared is not verifiable. Our paper contributes to this stream of literature by providing

the first empirical analysis of the impact of sharing verifiable inventory information. In our

case, implementing the BOPS functionality can be interpreted as providing a commitment

device to the inventory availability information, which is perceived by the customer as

more credible. In this context, customers are able to ”reserve” inventory that exists in the

store. We can establish an analogy between the ”inventory reservation” aspect of BOPS

functionality and a restaurant reservation system; Alexandrov and Lariviere (2012) show

that a reservation system reduces the uncertainty that customers face and may attract more

people to the restaurants in certain situations.

4.3. Empirical Setting and Data

We have partnered with one of the leading nationwide retailers in the US that has imple-

mented buy-online-pickup-at-store (BOPS) capabilities. This retailer specializes in house-

wares, furniture (indoor and outdoor), and home accessories, and has more than 80 B&M

stores in the US and Canada. In addition to traditional B&M stores, this retailer has an

online store that ships to ship to anywhere in the US.

We have obtained data spanning April 2011 to April 2012. Throughout this period, the

online store offered information about the availability of inventory at each of the stores.

After October 11, 2011, the retailer offered the option of placing orders online and picking

them up at a B&M store. Under the BOPS mode of interaction, customers pay for the items

through the online store (and therefore sales are considered online sales), but the order is

fulfilled using inventory from the store. The pickup option was available simultaneously for

every store in the US, but was not implemented for stores in Canada. The period of analysis
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considered in our analysis covers six months before the store pickup implementation (since

April 11, 2011) and extends six months after the implementation (until April 11, 2012).

The information used in our analysis comes from two main data streams, one related to the

online channel and the other related to the brick and mortar channel.

Data related to the online channel

We obtained daily data from the online channel at the designated market area (DMA)3

level. For our main analysis of the impact of BOPS, we used data on total number of

transactions, total dollar sales, and total number of unique visitors in the US for each day.

Our data includes a total of 210 DMAs that completely cover the US populated areas.

Table 19 shows the main summary statistics for these variables. We also obtained data

about online shopping cart abandonment behavior for each DMA and day, using them in

Section 4.5 to validate our interpretation of the findings.

Data related to the brick and mortar channel

We obtained daily data for each of the stores in the US and Canada. During the period of

analysis, the retailer had a total of 83 stores in the US and Canada. For our analysis of the

impact of the BOPS implementation on the B&M channel, we collected data on the total

number of transactions, total dollar sales, and total visitors for each day and store in the

US and Canada. Table 19 shows relevant summary statistics for these variables.

In addition, we collected data specifically related to the BOPS orders. We obtained in-

formation on the date that a BOPS transaction was placed online and the date and store

where each one of these pickup transactions was collected by the customer. We use this

data in Section 4.4.3.

3A designated market area (DMA) is a region where the population can receive the same (or similar)
television and radio station offerings, and may also include other types of media including newspapers and
Internet content. They can coincide or overlap with one or more metropolitan areas, though rural regions
with few significant population centers can also be designated as markets. They are widely used in audience
measurements, which are compiled in the United States by Nielsen Media Research (television) and Arbitron
(radio) (from Wikipedia)
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4.4. Evaluating the Impact of BOPS

A naive approach to evaluating the impact of BOPS would look at the difference in the vari-

ables of interest between the pre-implementation period and the post-implementation pe-

riod. Clearly, this approach would be flawed; many things can differ in the pre-implementation

and post-implementation period that are completely unrelated to the BOPS implementa-

tion. For example, there might be seasonal factors that cause a change in sales. In order to

deal with this challenge, we consider a difference-in-differences approach (DiD).

In general, to implement a DiD approach we need to identify a portion of the population

that is not affected by the intervention for which we are trying to estimate the causal effect

(the BOPS implementation in our case). In other words, we need a control group. After

identifying a control group, we can measure the effect of the treatment by comparing the

differences between treatment and control groups before and after the treatment is applied.

Figure 9 shows a schematic summary of the DiD approach. For a more detailed discussion

on this topic, see Angrist and Pischke (2008).

The rest of this section applies a DiD approach to evaluate the impact of BOPS in the

online and brick and mortar channels. Subsection 4.4.1 estimates the effect of BOPS on the

online channel using a control group based on the distance between the online customers

and the closest store. Customers that visit the website from locations that are very far from

a store are used as a control group in the DiD framework. Subsection 4.4.2 uses Canadian

stores, where the BOPS functionality was not deployed, as a control group for the DiD

framework. Subsection 4.4.3 studies whether BOPS transactions lead to cross-selling of

additional in-store purchases by customers who ordered goods online.

4.4.1. Impact on the Online Channel

We start our analysis of the impact of BOPS by focusing on its effects on traffic and sales

observed in the online channel. For this purpose, we use data from the online business that

covers the six months preceding the implementation of BOPS and the six months following
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the implementation.

As mentioned before, if we simply compared what happened before and after the inter-

vention, we would not be able to find a causal effect of the intervention, because the pre

and post-implementation periods might differ in aspects other than the intervention. For

example, the post-intervention period includes the Christmas season, which we can expect

to have higher sales independent of the BOPS project. In order to control for differences

not related to the BOPS implementation, we define two different groups in our population.

The first group includes the portion of the population that was affected by the BOPS imple-

mentation (the treatment group); the second group includes the portion of the population

that was not affected by this decision (the control group). In the definition of a control

group, we take into account the fact that customers who live far from physical B&M stores

will be unaffected by the deployment of the BOPS capabilities.

More specifically, we conduct our analysis for the online channel at the DMA level. The

retailer has a total of 79 B&M stores in the U.S.; this relatively small number of stores

helps us to identify a treatment and control group in our population. Our treatment group

is defined to include those DMAs within the area of influence of a B&M store. The control

group includes DMAs that are not within the area of influence of a B&M store. As a

baseline, we assume that the area of influence of a B&M store covers a radius of 50 miles,

but our results are robust to choosing different distances. This classification is used because

customers visiting the online store from DMAs that are not within the area of influence

of a B&M store will find no use for the pickup implementation. The store’s inventory

information shown online and the option to pick up online purchases at a store should not

affect customer behavior within those DMAs, as it is not practical for customers to visit a

physical store. Hence, it is reasonable to assume that customers within these DMAs can

behave as a control group, in the sense that they will be affected by the general dynamics

of behavior of the online channel (for example, they will respond to the seasonal Christmas

period), but not by the BOPS implementation. In contrast, online customers who visit the
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website from DMAs that are in the area of influence of a store can benefit from this new

alternative. It is possible for customers in those DMAs to actually visit a store to pick up

the items they bought online, or decide to go to the store shown online to have the item

desired in order to make their purchase.

Figure 8 shows the location of the B&M stores and the geographic center of each of the

DMAs. From the total of 210 DMAs, 162 of those DMAs do not include a B&M store

within their geographic area and the other 48 DMAs have at least one store within their

geographic area4 . In our analysis, following the company’s practice, we considered all the

pickup sales as online sales.

In the first place, we study whether changes in online traffic can be attributed to the BOPS

implementation. To do this, we consider the number of unique visitors (NUMV ISITORSit)

from a DMA i in a day t as our dependent variable. Our independent variables include a

dummy variable that indicates whether or not the DMA i is within the area of influence of

a store (CLOSEi), a dummy variable that indicates if the observation corresponds to the

period after the pickup implementation (AFTERt), and the interaction between these two

terms (CLOSEi ∗AFTERt), which is our variable of interest.

In addition to defining our treatment and control groups and the independent variables

described in the previous paragraph, we include an exhaustive number of control variables,

taking advantage of the panel structure in our data. Our model includes fixed effect for each

DMA i, week and day of the week in our sample. Our model specification is the following:

NUMV ISITORSit =µi + α1CLOSEi + α2AFTERt+

α3CLOSEi ∗AFTERt + α4CONTROLSit + εit (4.1)

4We defined a DMA as being within the area of influence of a store if a 50 miles radius circle centered
at a store overlaps with the DMA area. We consider a distance of 50 miles as this is the distance that the
retailer’s management team estimates as the area of influence of their stores in their business analysis. We
tested other distance specifications (e.g., 40 and 60 miles) and our results were robust to these alternatives.
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Since we have DMA fixed effects µi, it is not possible to identify α1 separately from µi,

because there is no variation in CLOSEi for a given store in the period of analysis. This

is not problematic, because we are interested in the value of the coefficient α3 in this

specification, which is identified5. The results of the estimation of this model are presented

on the first column of Table 21. We can observe that after the BOPS implementation, for

those DMAs that are in the area of influence of a store (i.e., CLOSEi∗AFTERt = 1), there

was a positive and significant effect on the number of unique website visitors, relative to

those DMAs that were not within the area of influence of a store (CLOSEi∗AFTERt = 0).

In other words, visits from DMAs that were in the catchment area of a B&M store increased

more than visits from DMAs that were not close to a B&M store.

The next step is to study the impact on online sales, before and after the implementation.

For this analysis we implement a similar model to the one described above, but now our

dependent variable, SALESit, corresponds to the total dollar sales from online visits from

DMA i on day t. In addition, we also tested the specification including the number of

unique visitors (NUMV ISITORSit) as an additional control in our model.

SALESit =µi + β1CLOSEi + β2AFTERt+

β2CLOSEi ∗AFTERt + β4 ∗ CONTROLS + εit (4.2)

The results of this analysis are presented on the second and third columns of Table 21. The

third columns presents the results when the online traffic is included as an additional control

variable. After the BOPS implementation, for those DMAs in the area of influence of a store

(i.e., CLOSEi∗AFTERt = 1), we observe a negative and significant effect on sales, relative

to DMAs that are not within the area of influence of a store (CLOSEi ∗ AFTERt = 0).

That is, BOPS implementation reduces online sales.

Although the brick and mortar store locations are decided endogenously, we do not believe

5This also happens in equations 4.2, 4.3, 4.4, 4.6 and 4.7. We leave the unidentified variables in the model
specification for clarity, but we focus our analysis on the interaction terms that are identified.
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that this poses a serious concern for the validity of our results. During the period of analysis,

no stores were opened or closed, and the store locations were determined many years before

the BOPS implementation. The BOPS implementation was executed at the same time at

every location. In addition, the panel structure of the data gives us the ability to add fixed

effects that fully control for all the invariant characteristics across the DMAs. For further

robustness of our analysis we include the results obtained when a previous sample matching

is used. For this analysis, we consider DMAs that have a comparable traffic pattern (less

than 900 daily visits to the online store), to make sure that our results are not driven

by fundamental differences between the treatment and control groups. These results are

presented on Table 26, where the second column includes the online traffic as an additional

control.

The results presented in this section go against intuition and conventional wisdom, which

suggest that online sales should increase after the BOPS implementation, because customers

are given more options to order online. We find that, although online traffic increases at

the DMAs affected by the BOPS implementation, sales decrease at those DMAs, relative

to the DMAs that were unaffected by the change. Section 4.5 gives a holistic interpretation

of this unexpected phenomenon.

4.4.2. Impact on the Brick and Mortar Channel

We now tackle the analysis of the impact of BOPS on the B&M stores. In particular, we

want to understand how the implementation of the store pickup option impacts traffic and

sales at the B&M stores.

Again, we face the challenge that an appropriate answer cannot be obtained simply by

observing what happened with store sales before and after the pickup implementation. To

answer this question properly, we propose a difference-in-differences approach with new

treatment and control groups.

In this case, the key variation that allows us to identify the effect of BOPS comes from the
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fact that while the retailer owns B&M stores both in the US and Canada, the BOPS option

was not deployed for stores in Canada. This situation allows us to use the B&M stores in

Canada as a control group for our analysis. The treatment group includes all the B&M

stores in the US. The reasoning behind this definition is that customers visiting the stores

in Canada were not influenced by the BOPS pickup implementation while customers in the

U.S. were exposed to this new alternative and could benefit from it.

After BOPS implementation, the retailer had a total of 79 stores in the US that offered the

pickup option and 4 stores in Canada that did not offer this alternative.

As before, we want to focus first on the impact on customer traffic at the B&M stores. To

do this, we consider the traffic count at a store i on day t (TRAFFICit) as our dependent

variable. Our independent variables in the model include a dummy variable that indicates if

store i is located in the U.S. or not (USi); a dummy variable that indicates if the observation

corresponds to the period after the pickup in the store implementation (AFTERt); and the

interaction between these two terms (USi∗AFTERt), which is our main variable of interest.

Our model also includes also fixed effects for each store i, week and day of the week in our

sample. The model specification is the following:

TRAFFICit = µi + α1USi + α2AFTERt + α3USi ∗AFTERt + α4CONTROLS + εit

(4.3)

The results for the estimation of this model are presented in the first column of Table 22.

We observe that there was a positive and significant effect on the traffic of the US stores (i.e.,

USi ∗ AFTERt = 1) compared to the traffic in the Canada stores, after the store pickup

implementation. In other words, stores that were affected by the BOPS implementation

saw a higher increase in their store traffic.

The next step is to study the impact on store sales. To do this, we define the following
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model:

SALESit = µi + β1USi + β2AFTERt + β3USi ∗AFTERt + β4CONTROLS + εit (4.4)

where SALESit, the dependent variable, corresponds to the total dollar sales at store i

during day t. In addition, some of our specifications include the total traffic at store i on

day t (TRAFFICit) as a control variable (recent work in retail operations has considered

how store traffic affects conversion rates, see (Perdikaki et al., 2012).. The results of this

analysis are presented on the second and third column of Table 22. We observe a positive

and significant effect on sales for the US stores after the pickup implementation (i.e., USi ∗

AFTERt = 1) compared to the stores in Canada. This result suggests that the B&M stores

that were affected by the BOPS implementation (i.e., stores in the US) saw an increase in

sales compared to the control group (i.e., stores in Canada).

It is important to notice that our analysis includes, as an additional control, a daily measure

for currency exchange rate between the US and Canada. This variable can capture changes

in the economic situation between the two countries during the period of analysis that could

potentially affect our results.

For additional robustness checks of our results, we restrict our attention to different sub-

samples of the data, such as a shorter period before and after the implementation of BOPS

(e.g., considering only one month before and after). The results do not qualitatively change.

The analysis of the impact of BOPS on the B&M stores indicates that B&M stores received

more traffic and increased their sales as a consequence of the BOPS implementation.

4.4.3. Positive Externality of Store Pickup

There is an additional mechanism by which B&M sales can benefit from the pickup in the

store implementation. Customers who visit the B&M stores to pick up an item they bought

online might decide to buy extra items during their visit. Also, some customers may go to
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pick up the items with someone else who may make additional purchases while visiting the

store. In any case, we are interested in testing whether there is evidence about this positive

externality effect in our data.

Our data does not allow us to uniquely identify purchases made by customers when visiting

the store to pick up an item they have ordered online. If this were possible, we could

evaluate whether BOPS customers add extra items to their purchase while at the store.

The main limitation here is that the pickup transactions are done; hence, if the customer

makes a purchase while at the store, the retailer records this as a different transaction. We

do not have access to the data that could potentially enable the link between these two

transactions.

To overcome this challenge, we test whether the total number of customers that picked up

items at a store on a particular day (NUMPICKUPTXit) is correlated with an increase

in store sales on that day. By doing this analysis we can observe if more pickup customers

at the stores generate more store sales. We propose the following model:

SALESit =µi + β1NUMPICKUPTXit + β2TRAFFICit+

+ CONTROLS + εit (4.5)

where SALESit corresponds to the total dollar sales at store i during day t. The indepen-

dent variables in the model include total traffic at each store (TRAFFICit), store fixed

effects, and week and day of the week dummies. Controlling for traffic mitigates the poten-

tial bias that we would have if people choose to pick up items on days that have particular

characteristics that might be correlated with sales. Obviously, this analysis only applies

to the period that follows the BOPS implementation, since no customers were picking up

items before that.

The results of this analysis are presented on Table 23. In the first column we observe that

the number of pick up transactions has a positive and significant effect on the number of
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transactions. The second and third columns on Table 23 present the analysis for the impact

of the pickup transactions on the store sales. This result is consistent with the hypothesis

that there are positive externalities on store sales due to those customers that visit a store

to pick up their online order.

4.5. Interpretation of Results: The Role of Verifiability

The results presented on the previous section are somewhat perplexing. Conventional wis-

dom suggests that when the retailer decides to offer a new service to online customers (the

store pickup option), if anything, this service should benefit the retailer’s online sales. How-

ever, the results presented on Section 4.4.1 tell us the opposite: online sales decrease after

the pickup implementation6. On the other hand, as presented on Section 4.4.2, B&M sales

benefit from this new online service. This is also surprising since, a priori, we could have

assumed that a service level increase on the online store could have hurt B&M sales.

As discussed in Section 4.4.3, part of the increase in B&M sales can be explained by the

positive externality generated by customers picking up their online orders at the stores.

However, this does not give the entire picture. For example, this does not explain why

online sales go down in areas close to a store or why traffic increases online and at the stores

subject to the BOPS implementation. Section 4.5.1 proposes an explanation based on how

the implementation of BOPS provides a shock to the credibility of the inventory information

shown online. Based on this explanation, two additional hypotheses are developed and

tested in Sections 4.5.2 and 4.5.3.

4.5.1. Credibility of Inventory Information

Our explanation draws from recent models proposed by the operations management liter-

ature to study how strategic consumers react to inventory information. Following Su and

6To make our exposition more clear we will refer to our results in absolute terms. However, it is important
to note that the results obtained on section 4.4.1 should be interpreted in relative terms, since we are always
comparing a treatment and a control group and their relative differences. For example, it is possible that
both the treatment and the control group sales increased during the period under analysis, but at different
rates.
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Zhang (2009), there is a cost for customers to visit a store. Customers form rational expec-

tations of product availability and make patronage decisions based on their expectations.

Our retailer was sharing inventory availiability online during the entire period of analysis.

However, customers do not necessarily perceive inventory information shown to them as

reliable. For example, in Su and Zhang (2009) the seller has an incentive to convince cus-

tomers that inventory will be available, because that increases the probability that they

visit the store. Accordingly, buyers should ignore the seller’s claims. Similarly, Allon and

Bassamboo (2011) provide a model in which a retailer shares unverifiable inventory infor-

mation with strategic consumers. In equilibrium, the information becomes cheap talk and

consumers ignore it. Furthermore, DeHoratius and Raman (2008) report a considerable

amount of inventory record inaccuracy, and it is possible that some consumers consider any

inventory information as unreliable.

Su and Zhang (2009) show that committing to an inventory level is valuable. In our case,

offering ”buy-online, pick up at store” provides an exogenous shock to the credibility of

inventory information and works as a commitment device. Offering an online customer the

option to pick up her online purchase at a nearby store can be beneficial to the customer

for several reasons. For example, she can get the item in a couple of hours (not a couple of

days) or avoid the payment of shipping costs. However, there is an additional benefit to the

customer that might not be evident right away: She now knows that the item she wants

is available in a nearby store. Hence, the customer can decide to check the availability

online and drive to the store to pick up the item without closing the transaction online.

This behavior will allow her the benefit of getting the item fast with no shipping cost,

and additionally, let her evaluate the item at the store before actually paying for it (while

avoiding the risk of making a trip to the store and not finding the item she is looking for).

We want to emphasize that the customer is facing reliable availability information. Everyone

has suffered the unpleasant experience of cheap talk regarding inventory information; car

dealers are a good example of this type of cheap talk. However, the information released by
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the retailer under the BOPS alternative is different. After BOPS implementation, online

customers do not observe a vague promise of availability; they can actually buy the item

online and pick it up at the store two hours later. They know that the item is actually

there. Furthermore, customers can anticipate that offering the BOPS functionality requires

increased accuracy in the retailer’s internal inventory records, lending even more credibility

to the inventory information.

In addition, some customers will obtain additional information by touching the fabric, seeing

the color, or evaluating the actual size of the product they want to purchase. There is a

benefit to seeing and touching the type of items that this retailer sells before committing to

the purchase. This first-hand experience is less relevant for customers when buying other

types of products that are more standardized (e.g. books or electronics).

Hence, our results can be explained by the following behavior: After implementing BOPS,

some customers (more than before) visit the online store to browse the catalog, find the

item they want to buy, check its availability and travel to their local store to close the sale

knowing the item is there. The customers, after observing reliable availability information,

decide to visit the store without closing the sale online.

We predict that a shock to the credibility of inventory information would reduce the cost

of visiting the stores and would result in:

1. Increase in store visits to stores that share credible inventory information, relative to

those that do not.

2. Increase in store sales in stores that share credible inventory information, relative to

those that do not.

3. Decrease in online sales in DMAs that are within the area of influence of the stores,

relative to those DMAs that not.

These are precisely the results that we found in Section 4.4. In order to confirm that our
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explanation is indeed valid, we develop two additional tests in Sections 4.5.2 and 4.5.3.

4.5.2. Cart Abandonment

In order to validate that the aforementioned mechanism is in place, we have established a

hypothesis that would be supported if the described mechanism occurs. This hypothesis

is related to shopping cart abandonment. A number of customers abandon their online

shopping carts before finishing the transaction. After BOPS was deployed, customers could

place an order for an item in their shopping cart and pick it up from the store. The fact

that a product is available in a local store can prompt some customers to abandon their

shopping carts and buy the items directly from the store without closing the transaction

online. If, as our explanation suggests, the inventory availability information is perceived

as more reliable after the BOPS project has been implemented, we can hypothesize that

the rate of shopping cart abandonment will increase after BOPS is implemented.

Once again, we follow a DiD approach. We want to compare what happened before and

after the BOPS implementation. To do this we consider the group of DMAs that were

affected by the BOPS implementation (our treatment group) and the group of DMAs that

were not affected (our control group). These groups are the same as those described on

Section 4.4.1.

Our dependent variable (ABANDONit) corresponds to the fraction of customers that, after

placing an item in their cart, did not close the sale7. As described before, if our inventory

credibility story holds, we would expect a higher increase in cart abandonment rate after

BOPS implementation for those DMAs that are in the area of influence of a store (some

customers in those DMAs may decide to rely on the inventory availability information and

visit the store to make a purchase), relative to those DMAs that are not. This is captured

7The abandonment rate in our sample has a mean of 51% with a standard deviation of 24%.
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by the CLOSEi ∗AFTERt variable in the following model:

ABANDONit =µi + β1CLOSEi + β2AFTERt+

β3CLOSEi ∗AFTERt + β4CONTROLS + εit (4.6)

The results of this analysis are presented in Table 24. Our hypothesis is validated. Shopping

cart abandonment rate increased after BOPS was deployed for those DMAs where the BOPS

was available compared to those DMAs where customers could not take advantage of this

new feature.

4.5.3. Online Sales in the Area of Influence of a Store

In this subsection we present an additional analysis that attempts to further validate the

explanation presented on Section 4.5.1. If our explanation is correct, we expect that, for

those DMAs that are within the area of influence of one or more stores, online sales will

decrease compared to the B&M store sales in those DMAs. In other words, we expect that

in DMAs within driving distance to the store, the sales share of B&M stores will increase

after the pickup implementation.

Note that this analysis is different but complementary to the analysis shown in Section 4.4.

The model developed in Section 4.4.1 compares the lift in online sales that occur in DMAs

far from stores with the lift in online sales that occur in DMAs that are close to stores. The

model developed in Section 4.4.2 compares the lift in store sales in the US with the lift in

store sales in Canada. Although consistent with a shift from the online to the brick and

mortar channel, the models in Section 4.4 do not provide a direct test. The present analysis

looks at the area of influence of a store, and compares the lift in online sales in the area of

influence of a store to the lift in sales of the store. Combined with the previous evidence,

finding that sales in a store increase more than online sales in the area of influence of the

store would suggest that there is a shift of customers from the online channel to the brick

and mortar channel.
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To implement this analysis, we consider daily online and B&M sales (SALESit) aggregated

at the DMA level as our dependent variable. Our independent variables consist of a dummy

that indicates whether the daily sales observation corresponds to an online or B&M sales

(ONLINEi), a dummy variable that indicates whether the observation corresponds to the

period after the pickup implementation (AFTERt), and the interaction of these two terms

(ONLINEi ∗AFTERt), our variable of interest. :

SALESit =µi + β1ONLINEi + β2AFTERt+

β3ONLINEi ∗AFTERt + CONTROLS + εit (4.7)

The results of this analysis are presented on Table 25. As expected, the coefficient for our

variable of interest (ONLINEi ∗AFTERt) has a negative and significant effect. This tells

us that, after the pickup implementation, the share of online sales decreases with respect

to the share of B&M sales.

4.6. Conclusions

Our analysis of the impact of an online-offline integration strategy offering the option of buy-

ing items online and picking them up in a physical store shows that, contrary to conventional

wisdom, online sales do not increase with the implementation of the BOPS functionality.

We find that the BOPS implementation results in lower online sales, higher store sales and

higher store traffic. We explain these results in light of recent models from the operations

management community that study sharing inventory information with strategic consumers.

The implementation of BOPS provides a natural experiment that gives a positive shock to

the credibility of the inventory information shared with the customers. As this information

becomes more credible, more customers use the online channel to browse store inventory

availability but make their purchases online.

One question unaddressed so far is whether the increase in store sales compensates for the

decrease in online sales. It turns out that, in our particular case, it does. Based on our
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results, we can give an estimation of the net effect of the BOPS implementation. Using

representative values from our sample, the decrease in online sales that can be attributed

to the BOPS implementation is approximately 1.8% of the total retailer sales, while the

increase in the store sales amounts to around 3.6% of the total retailer sales, giving a net

increase of 1.8% of the total sales. Interestingly, without the holistic interpretation of online

and store sales, an evaluation of the effects on the online channel might have suggested that

BOPS was not a good idea.

One of the consequences of the increase in online activity in retail is the availability of richer

data that can be used to evaluate the impact of operational interventions and to discover

relationships between different operational aspects of the business. However, the available

data is often channel dependent. Incentives for managers are also often channel dependent,

and making decisions based on own-channel data is often tempting. Our results show that

decisions affecting one channel should be evaluated holistically. A partial analysis of this

project based on online sales might give the wrong conclusions, as illustrated in Section 4.4.1.

For example, in online settings it is customary to evaluate potential changes by conducting

A/B testing (which consists of showing one condition to a fraction of the visitors and a

different condition to the rest of the visitors) and monitor how conversion rates differ across

conditions. Typically, interventions that A/B testing identifies as negatively affecting the

channel conversion rate are ruled out. Evaluating the impact of online-offline integration

strategies requires a holistic view of company operations, since an intervention that might

be detrimental in one channel can yield substantial benefits in the other one. Our results

show that when evaluating actions that perform integration between channels, it is very

important to close the loop and evaluate their impact on all channels.

To our knowledge, this is the first academic study of the impact of implementing a buy-

online-pickup-at-store channel. Contrary to the a priori expectation that a BOPS interven-

tion would result in an increase of transactions closed online, we find that the additional

reliability of the inventory information prompts some customers to actually visit the stores,
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which in turn increases the relative importance of the brick and mortar stores in terms of

share of sales. Our explanation of the observed results is related to the credibility of the

inventory information that retailers share. When retailers share reliable inventory infor-

mation, the perceived risk that customers experience in visiting the stores is reduced; they

visit stores more frequently and stores sell more.

Our results raise questions about where the value of BOPS for customers comes from. The

value proposition for the customer was originally to increase the speed of the delivery for

online customers and to allow them to save shipping costs. Interestingly, if we examine

the time that it takes BOPS customers to pick up their items, we see that speed does not

seem such an important concern for the average customer (see Figure 3). Besides saving

shipping costs, the BOPS project seems to offer a positive externality to customers in the

form of more reliable inventory information that can be used before going to the store. For

the company, BOPS results in additional traffic and sales in the stores and cross-selling of

products for customers that visit stores to pick up their orders.

Our results might depend substantially on the type of products transacted. In our empirical

setting, most of the products have an experiential component and shopping in the store is

a pleasant experience. For highly standardized products, or for products which lead to a

less pleasant store experience, it is possible that BOPS implementation does not result in

such a substantial shift from the online channel to the store channel.

Randomized field experiments are an ideal way to cleanly identify the impact of retail

online-offline strategies implementations. In situations where randomized field experiments

are not feasible, we believe that the framework we have presented, consisting of identifying

natural experiments and performing DiD estimation of the effect of the treatment, can help

retailers achieve a more precise estimation of the effect of their online-offline integration

strategies.
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4.7. Appendix: Tables and Figures

In this appendix, we provide tables and figures for the empirical studies in Chapter 4.

Table 19: Summary Statistics
B&M Stores - Daily Parameters per Store

Traffic Transactions Sales

Mean StDev Mean StDev Mean StDev

1018.1 801.8 285.5 205.9 27424.2 20716.1

Online Store - Daily Parameters per DMA

Visitors Orders Sales

Mean StDev Mean StDev Mean StDev

912.4 2485.2 24.7 71.2 3722.7 12907.7

Figure 8: Brick and mortar stores and DMAs
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Figure 9: Natural Experiment

Figure 10: Pickup Delay
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Table 21: DMA’s Online Store
TRAFFIC SALES SALES

AFTER -50.30*** 366.48** 686.99
(13.05) (111.80) (173.91)

CLOSE*AFTER 135.56** -410.72* -1274.55***
(42.39) (188.81) (355.15)

ONLINE TRAFFIC 6.37***
(0.36)

Fixed Effects YES YES YES
Week YES YES YES
Day of the Week YES YES YES

N 76903 76903 76903
DMA 210 210 210
R2 0.96 0.77 0.83

Robust standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 22: BM Stores
TRAFFIC SALES SALES

AFTER -375.00*** 7995.71*** 12486.33***
(53.63) (1598.99) (1526.24)

US*AFTER 246.71*** 4857.41*** 2210.21**
(39.33) (754.02) (711.54)

TRAFFIC 10.93***
(0.17)

Fixed Effects YES YES YES
Macroeconomic controls YES YES YES
Week YES YES YES
Day of the Week YES YES YES

N 28138 28133 28133
Stores 83 83 83
R2 0.75 0.66 0.70

Robust standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 23: Pickup Visits in the Stores
TRANSACTIONS SALES SALES

PICKUP VISITS 5.13*** 318.03*** 139.68**
(0.91) (61.95) (46.20)

TRAFFIC 0.22*** 10.83***
(0.02) (1.28)

Fixed Effects YES YES YES
Week YES YES YES
Day of the Week YES YES YES

N 12093 12547 12088
Stores 79 79 79
R2 0.92 0.61 0.68

Robust standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 24: Cart Abandonment
ABANDONMENT

AFTER 0.004
(0.013)

CLOSE*AFTER 0.009***
(0.007)

Fixed Effects YES
Week YES
Day of the Week YES

N 73500
DMA 210
R2 0.136

Robust standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 25: Store sales vs online sales in the area of influence of a store
SALES

AFTER 21759.35***
(1862.40)

ONLINE*AFTER -3685.37***
(572.74)

Fixed Effects YES
Week YES
Day of the Week YES

N 55412
DMA 161
R2 0.41

Robust standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 26: DMA’s Online Store with Average Traffic less than 900 daily visits
SALES SALES

AFTER 34.54 24.02
(27.58) (28.29)

CLOSE*AFTER -65.20* -51.08*
(25.45) (24.49)

ONLINE TRAFFIC 4.03***
(0.21)

Fixed Effects YES YES
Week YES YES
Day of the Week YES YES

N 42405 42405
DMA 116 116
R2 0.18 0.22

Robust standard errors in parentheses

* p < 0.05, ** p < 0.01, ***p < 0.001
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