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Symbolic Exploration of Transition Hierarchies

Abstract

In formal design verification, successful model checking is typically preceded by a laborious manual
process of constructing design abstractions. We present a methodology for partially - and in some cases,
fully - bypassing the abstraction process. For this purpose, we provide to the designer abstraction
operators which, if used judiciously in the description of a design, structure the corresponding state space
hierarchically. This structure can then be exploited by verification tools, and makes possible the automatic
and exhaustive exploration of state spaces that would otherwise be out of scope for existing model
checkers.

Specifically, we present the following contributions:

- A temporal abstraction operator that aggregates transitions and hides intermediate steps.
Mathematically, our abstraction operator is a function that maps a flat transition system into a two-level
hierarchy where each atomic upper-level transition expands into an entire lower-level transition system.
For example, an arithmetic operation may expand to a sequence of bit operations.

- A BDD-based algorithm for the symbolic exploration of multi-level hierarchies of transition systems. The
algorithm traverses a level-n transition by expanding the corresponding level-(n-1) transition system on-
the-fly. The level-n successors of a state are determined by computing a level-(n-1) reach set, which is
then immediately released from memory. In this fashion, we can exhaustively explore hierarchically
structured state spaces whose flat counterparts cause memory overflows.

- We experimentally demonstrate the efficiency of our method with three examples - a multiplier, a cache
coherence protocol, and a multiprocessor system. In the first two examples, we obtain significant
improvements in run times and peak BDD sizes over traditional state-space search. The third example
cannot be model checked at all using conventional methods (without manual abstractions), but can be
analyzed fully automatically using transition hierarchies.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-98-13.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/105


https://repository.upenn.edu/cis_reports/105

Symbolic Exploration of Transition Hierarchies*

Rajeev Alur™  Thomas A. Henzinger*>* Sriram K. Rajamanif

Abstract. In formal design verification, successful model checking is typically
preceded by a laborious manual process of constructing design abstractions. We
present a methodology for partially—and in some cases, fully—bypassing the
abstraction process. For this purpose, we provide to the designer abstraction
operators which, if used judiciously in the description of a design, structure the
corresponding state space hierarchically. This structure can then be exploited by
verification tools, and makes possible the automatic and exhaustive exploration
of state spaces that would otherwise be out of scope for existing model checkers.

Specifically, we present the following contributions:

— A temporal abstraction operator that aggregates transitions and hides in-
termediate steps. Mathematically, our abstraction operator is a function
that maps a flat transition system into a two-level hierarchy where each
atomic upper-level transition expands into an entire lower-level transition
system. For example, an arithmetic operation may expand into a sequence
of bit operations.

— A BDD-based algorithm for the symbolic exploration of multi-level hierar-
chies of transition systems. The algorithm traverses a level-n transition by
expanding the corresponding level-(n — 1) transition system on-the-fly. The
level-n successors of a state are determined by computing a level-(n — 1)
reach set, which is then immediately released from memory. In this fashion,
we can exhaustively explore hierarchically structured state spaces whose
flat counterparts cause memory overflows.

— We experimentally demonstrate the efficiency of our method with three
examples—a multiplier, a cache coherence protocol, and a multiprocessor
system. In the first two examples, we obtain significant improvements in
run times and peak BDD sizes over traditional state-space search. The
third example cannot be model checked at all using conventional methods
(without manual abstractions), but can be analyzed fully automatically
using transition hierarchies.

1 Introduction

Formal design verification i1s a methodology for detecting logical errors in high-level
designs. In formal design verification, the designer describes a system in a language with
a mathematical semantics, and then the system description is analyzed against various
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correctness requirements. The paradigm is called model checking when the analysis
is performed automatically by exhaustive state-space exploration. A variety of model
checkers, such as COSPAN [HZR96], Mur¢ [Dil96], SMV [CKSVG96], SPIN [HP96],
and VIS [BSVHT96] have been proven effective aids in the design of error-prone system
components such as cache coherence protocols [CK96].

As we seek to enhance the applicability of model checking to complex designs, we
are faced with the so-called state-ezplosion problem: the size of the state space grows
exponentially with the size of the system description, making exhaustive state-space
exploration infeasible. Consequently, to use the current tools effectively, one needs to
focus on a critical system component. Since the behavior of an individual component
typically depends on its interaction with other components, a component cannot be
analyzed in isolation; rather, for a meaningful analysis, all relevant aspects of the
surrounding system need to be identified. This process, called abstraction, is usually
performed in an informal, manual fashion, and requires considerable expertise. Indeed,
it 1s not uncommon that a successful verification or falsification run, using a few seconds
of CPU time, depends on months of manual labor for constructing abstractions that
are neither too coarse to invalidate the correctness requirements, nor too detailed to
exhaust the tool capacities.

The goal of our research is to systematize and, whenever possible, automate the
construction of useful abstractions. Our approach is to provide the designer, within
the system description language, with operators for writing mental design abstrac-
tions into the system description. The judicious use of such operators is called design
for verifiability, because it simplifies—and in some cases, eliminates—the process of
“rediscovering” abstractions after the design is completed.

Our abstraction operators are motivated by the two main, orthogonal structuring
principles for designs: (1) spatial aggregation together with hiding of spatial details,
and (2) temporal aggregation together with hiding of temporal details. Type-(1) ab-
stractions enable the design of components at different levels of spatial granularity: an
ALU can be designed by aggregating gates, then used as an atomic block (after hiding
internal gates and wires) in the design of a processor. Type-(2) abstractions enable the
design of components at different levels of temporal granularity: an arithmetic opera-
tion can be designed by aggregating bit operations, then used as an atomic step (after
hiding intermediate results) in the design of an instruction.

Spatial, type-(1) abstractions can be written into a system description using, for
aggregation, the parallel composition of subsystems and, for hiding, the existential
quantification of variables. According operators are provided by most system descrip-
tion languages. They are exploited heavily, both to facilitate the description of complex
systems, and to obtain heuristics for coping with state explosion. For instance, in sym-
bolic state-space exploration using BDDs, instead of building a single transition relation
for the entire system, one typically maintains a set of transition relations, one for each
component [TSLI0].

By contrast, most system description languages do not provide operators for defin-
ing temporal, type-(2) abstractions. We have introduced such an operator, called next,
and shown how it facilitates the description of complex systems, in a language called
Reactive Modules [AH96]. In this paper, we show how the next operator can be ex-
ploited in symbolic state-space exploration to enhance the power of model checking.

Specifically, if M is a system description, and ¢ is a condition on the variables of M,
then next ¢ for M describes the same system at a more abstract temporal level: a



single transition of next ¢ for M aggregates as many transitions of M as are required
to satisfy the condition ¢, and hides the intermediate steps. For example, if M is a gate-
level description of an ALU, and ¢ signals the completion of an arithmetic operation,
then next ¢ for M is an operation-level description of the ALU. Mathematically, the
semantics of next ¢ for M is defined as a two-level hierarchy of transition systems:
each transition of the upper-level (e.g., operation-level) transition system abstracts an
entire lower-level (e.g., gate-level) transition system. Then, by nesting next operators
we obtain multi-level hierarchies of transition systems. The structuring of a state space
into a multi-level transition hierarchy makes possible the exhaustive exploration of
very large state spaces. This is because after the traversal of a level-n transition, the
computed reach set for the corresponding level-(n — 1) transition system represents
hidden intermediate steps and can be removed from memory.

In Section 2, we briefly review the language of Reactive Modules and give a simple
example of a transition hierarchy. In Section 3, we introduce an algorithm for the
symbolic exploration of transition hierarchies. In Section 4, we present experimental
results that demonstrate the efficiency of our algorithm. For this purpose, we design a
system comprising two processors with simple instruction sets, local caches, and shared
memory. If we simply put together these components, using parallel composition but no
next operator, the resulting flat transition system is far beyond the scope of existing
model checkers. If, however, we use the next operator to aggregate and hide internal
transitions between synchronization points before composing the various subsystems,
the resulting transition hierarchy can be explored using the search routines of VIS, and
correctness requirements can be checked fully automatically. Thus, the description of
a design using next can eliminate the need for manual abstractions in verification.

Related work. The concept of temporal abstraction is inspired by the notion of
multiform time in synchronous programming languages [BIGJ91, Hal93], and by the
notion of action refinement in algebraic languages [AH89]. All of that work, however,
concerns only the modeling of systems, and not automatic verification.

Temporal abstraction is implicitly present also in the concept of stuitering [Lam83]:
a stuttering transition of a system is a transition that leaves all observable variables
unchanged. Ignoring differences in the number of stuttering transitions leads to various
notions of stutter-insensitive equivalences on state spaces (e.g., weak bisimulation).
This suggests the following approach to model checking: for each component system,
compute the appropriate stutter-insensitive equivalence, and before search, replace the
component by the smaller quotient space. This approach, which has been implemented
in tools such as the Concurrency Workbench [CPS93], requires the manipulation of the
transition relations for individual components, and has not been shown competitive
with simple search (cf. Section 3.1 vs. Section 3.2).

Partial-order methods avoid the exploration of unnecessary interleavings between
the transitions of component systems. Gains due to partial-order reduction, in space
and time, for verification have been reported both in the case of enumerative [HP94]
and BDD-based approaches [ABHT97]. By declaring sequences of transitions to be
atomic, the next operator also reduces the number of interleavings between concurrent
transitions. However, while partial-order reductions need to be “discovered” a posterior:
from the system description, transition hierarchies are specified a prior: by the designer,
as integral part of the system description.



2 Example: From Bit Addition to Word Addition

2.1 Reactive Modules

We specify systems as Reactive Modules. A formal definition of reactive modules can
be found in [AH96]; here we give only a brief introduction. The state of a reactive
module is determined by the values of three kinds of variables: the external variables
are updated by the environment and can be read by the module; the interface variables
are updated by the module and can be read by the environment; the private variables
are updated by the module and cannot be read by the environment (this distinction is
similar to I/O automata [Lyn96]).

For example, Figure 2 shows a module that adds two words. The environment of the
word-adder consists of two modules: a command module, which provides the operands
to be added and an instruction that they be added, and a bit-adder, which is called
repeatedly by the word-adder. Hence the word-adder has the external variables addOp1
and addOp?2 of type WORD, which contain the two operands provided by the command
module, the external variable doAdd of type BOOLEAN, which is set by the command
module whenever the two operands should be added, and three output bits of the
bit-adder: the sum bitResult, the carry-out cQOut, and the flag doneBitAdd, which is
set whenever a bit-addition is completed. The word-adder has the interface variables
addResult of type WORD, which contains the sum, overflow of type BOOLEAN, which
indicates addition overflow, doneAdd of type BOOLEAN, which is set whenever a word-
addition is complete, and four input bits for the bit-adder: the operands b:¢1 and b:t2,
the carry-in ¢/n, and the flag doBitAdd, which instructs the bit-adder to perform a bit-
addition. The word-adder has the private variables state of type FLAGTYPE, which
indicates if an addition is being executed, and bitCount of type LOGWORD, which
tracks the position of the active bits during the addition of two words. We assume that,
once a word-addition is requested, the command module keeps the variable doAdd true
until the word-adder signals completion of the addition by setting doneAdd to true.

The state of a reactive module changes in a sequence of rounds. In the first round,
the initial values of all interface and private variables are determined. In each sub-
sequent round, the new values of all interface and private variables are determined,
possibly dependent on some latched values of external, interface, and private variables
from the previous round, and possibly dependent on some new values of external vari-
ables from the current round. No assumptions are made about the initial values of
external variables, nor on how they are updated in subsequent rounds. However, in
order to avoid cyclic dependencies between variables, it 1s not permitted that within a
single round, a module updates an interface variable z dependent on the new value of
an external variable y while the environment updates y dependent on the new value
of z. This restriction is enforced by collecting variables into atoms that can be ordered
linearly such that in each round, the variables within an atom can be updated simul-
taneously provided that all variables within earlier atoms have already been updated.
Thus, a round consists of several subrounds—one per atom.

A round of the word-adder consists of four subrounds: first, the command module
may provide new operands and issue an add instruction; second, the word-adder may
initiate a bit-addition; third, the bit-adder may perform a bit-addition; fourth, the
word-adder may record the result of a bit-addition and signal a completion of the
word-addition. Accordingly, the interface and private variables of the word-adder are



addOp1 addOp2 doAdd

= addResult

WordAdder overflow
= doneAdd
doBitAdd bit? bit2 | cin
cOut
BitAdder bitResult
doneBitAdd

Fig.1. Word-adder and bit-adder

grouped into two atoms: bit1, bit2, cln, doBitAdd, state, and bitCount are updated in
the second subround of each round; addResult, overflow, and doneAdd in the fourth.
The first and third subrounds of each round are taken by the command module and
the bit-adder, respectively. The bit-adder, shown in Figure 3, needs one round for bit-
addition, but can choose to wait indefinitely before servicing a request. A word-addition
of two n-bit numbers, therefore, requires at least n rounds—one round for each bitwise
addition. In the first of these rounds, the word-adder reacts to the command module,
and the first bits may (or may not) be added. In the last of these rounds, the n-th bits
are added, and the word-adder signals completion of the addition.

Figure 1 gives a block diagram of the word-adder composed with the bit-adder, and
Figures 2 and 3 provide formal descriptions of both components. For each atom, the
initial values of the variables and their new values in each subsequent (update) round
are specified by guarded commands (as in UNTTY [CM88]). In each round, unprimed
symbols, such as x, refer to the latched value of the variable z, and primed symbols,
such as z’, refer to the new value. An atom reads the variable z if its guarded commands
refer to the latched value of z. The atom awaits x if its guarded commands refer to the
new value z’. The await dependencies between variables are required to be acyclic. A
variable is history-free if 1t is not read by any atom. For obvious reasons, the values of
history-free variables do not have to be stored during state-space traversal.

2.2 Flat vs. Hierarchical Models

We discuss two operations for building complex reactive modules from simple ones. The
parallel-composition operator abstracts spatial complexities of a system by collecting
the atoms of several modules within a single module. The nezt operator abstracts tem-
poral complexities of a system by combining several rounds of a module as subrounds
of a single round. Intuitively, if M is a reactive module and ¢ is a condition on the



Module WordAdder
type FLAGTYPE : {IDLE, WORKING};
interface addResult : WORD;
bit1, bit2, cIn, doBitAdd, doneAdd, overflow : BOOLEAN
private state : FLAGTYPE;
bitCount : LOGWORD
external addOp1, addOp2 : WORD;
doAdd, doneBitAdd, bitResult, cOut : BOOLEAN

atom controls state, bitCount, doBitAdd, bit1, bit2, cin
reads doneBitAdd, bitResult, cOut
awaits addOp1, addOp2, doAdd
init
[] true — state’ := IDLE
update
[] (state = IDLE) A doAdd' —
state’ := WORKING; bitCount’ := false; doBitAdd' := true;
bit1' := addOp1'[0]; bit2' := addOp2'[0]; cIn’ := false
[] (state = WORKING) A (bitCount < WORDLENGTH — 1) A doneBitAdd —
bit1' := addOp1'[bitCount + 1]; bit2' := addOp2'[bitCount + 1];
cln’ = cOut; bitCount' = bitCount + 1
[] (state = WORKING) A (bitCount = WORDLENGTH — 1) A doneBitAdd —
doBitAdd' = false; state’ := IDLE
endatom

atom controls addResult, doneAdd, overflow
reads bitCount
awaits bitResult, doneBitAdd, cOut
init
[] true — doneAdd' := false
update
[] (bitCount < WORDLENGTH — 1) A doneBitAdd' —
addResult'[bitCount] := bitResult’
[] (bitCount = WORDLENGTH — 1) A doneBitAdd' —
addResult'[bitCount] := bitResult; doneAdd’ := true; overflow’ = cOut’
endatom

endmodule

Fig. 2. Word-adder

variables of M, then next ¢ for M is a module that, in a single round, iterates as

many rounds of M as are necessary to make the so-called aggregation predicate ¢ true.

Formal definitions of parallel composition and next-abstraction can be found in [AH96].
Consider, for example, the following two modules:

ConcreteAdder = WordAdder || BitAdder
AbstractAdder = next (doAdd = doneAdd) for ConcreteAdder

Each of the two modules is a model for an addition unit that consists of two components,



Module BitAdder
interface doneBitAdd, bitResult, cOut : BOOLEAN
external bit1, bit2, cIn, doBitAdd : BOOLEAN
atom doneBitAdd, bitResult, cOut
awaits bit1, bit2, cIn, doBitAdd
init
[] true — doneBitAdd' := false
update
[] doBitAdd —
bitResult' := bit1' © bit2' & cln’;
cOut' = (bit1'&bit2")|(bit2'&clIn')|(cIn'&bit1');
doneBitAdd := true
[] true — doneBitAdd' := false;
endatom
endmodule

Fig. 3. Bit-adder

a word-adder composed with a bit-adder. The two models differ only in their level of
temporal granularity. In the flat model ConcreteAdder, the addition of two n-bit words
takes at least n rounds. In the hierarchical model AbstractAdder, the addition of two
n-bit words takes a single round. This is because the next-abstracted module combines
into a single round as many rounds as are necessary to make either doAdd false or
doneAdd true. In other words, in the flat model, bit-additions are atomic. Thus the
flat model is adequate under the assumption that the addition unit is put into an
environment that interacts with the addition unit only before and after bit-additions,
but does not interrupt in the middle of a bit-addition. By contrast, in the hierarchical
model, word-additions are atomic. Therefore the hierarchical model is adequate only
under the stronger assumption that the addition unit is put into an environment that
interacts with the addition unit only before and after word-additions, but does not
interrupt in the middle of a word-addition. While the flat model is adequate in more
situations, we will see that the hierarchical model can be verified more efficiently, and
therefore should be preferred whenever it 1s adequate.

3 Symbolic Exploration of Hierarchical State Spaces

The reason why next-abstraction can be exploited by model checking can be seen as
follows. If the semantics of a reactive module is viewed as a state-transition graph, with
each round corresponding to a transition, then the hierarchical module next ¢ for M
may have many fewer states than the flat module M. In particular, the next operator
removes all states of M in which the aggregation predicate ¢ is not true; these states
are called transient. When exploring the state space of the flat module, both transient
and nontransient reachable states need to be stored as they are computed. By contrast,
when exploring the state space of a hierarchical module, transient states need to be
computed in order to find nontransient successor states, but once these states are found,
the transient states need not be stored. Moreover, some of the variables that are not
history-free in the flat model may become independent of (nontransient) predecessor



states in the hierarchical model, and thus in effect history-free. This results in further
savings in memory for storing states.

The savings are particularly pronounced when hierarchical models are composed.
Consider two flat models M and N, and two hierarchical models M’ = (next ¢ for M)
and N’ = (next @ for N). The hierarchical composition M’ || N’ is an adequate
model for the composed systems if the aggregation predicates ¢ and ¢ characterize the
synchronization points of the two components; that is, if M interacts with N whenever
¢ becomes true, and N interacts with M whenever 1 becomes true. The possible
interleavings of transitions of M and N may lead to an explosion of transient states of
M || N (states in which neither ¢ nor ¥ is true), which can be avoided by exploring
instead M’ || N'. In other words, if the interaction between two component systems
can be restricted, then some of the state-explosion problem may be avoided. Indeed, as
we shall see, in complex systems with many components but well-defined interactions
between the components, the computational savings, both in time and memory, can be
enormous.

In the following, we first define the transition relations of composite and hierarchical
modules from the transition relations of the components. Then we present a nested-
search algorithm that explores the state space of a hierarchical module efficiently. The
nested-search algorithm uses an implicit, algorithmic representation of the transition
relation of a hierarchical module for image computation.

3.1 Explicit Definition of Transition Relations

The state-transition graph of a reactive module can be specified by a symbolic transition
relation. Given a module M with variables X, the symbolic transition relation of M
is a boolean function T (X, X'). Let X and X’ be two states of M, i.e., valuations
to the variables of M. Then the function Tjy; (X, X’) evaluates to true iff there is an
edge in the state-transition graph from state X to state X’. All modules are built from
individual atoms using parallel composition and the next operator. It is straightforward
to construct the symbolic transition relation of an atom. For complex modules, the

symbolic transition relation is defined inductively.

Parallel composition. Consider the module M = M; || Ma. Let Tpr, (X1, X1) and
Tar, (X2, X%) be the symbolic transition relations of My and My, respectively. Then the
symbolic transition relation of M is given by the conjunction

T (X, X') = Tag, (X1, X7) A T, (X2, X5).

Next abstraction. Consider the module M = (next ¢ for N). Let Ty (X, X') be the
symbolic transition relation of N. For all natural numbers ¢ > 0, define

- TJ?/I(X,X’) =Tn(X, X');

— TN X, X = T (X, X))V AY)(—e(Y) A TN (X, Y) AT (Y, X')).
Let T, = T}Jl be the limit of the fixpoint computation sequence Ty, Ths, T, - ..

(finite convergence is guaranteed for finite-state systems). Then the symbolic transition
relation of M is given by

Ty (X, X') = 9(X) A p(X') A Ty (X, X'),



The reachable state set of a module can be computed by iterated application of the
transition relation. For this purpose, it is theoretically possible to construct, using
the above definitions, a BDD for the symbolic transition relation of a hierarchical
module. In practice, however, during the construction the intermediate BDDs often
blows up and results in memory overflow. For parallel composition, it is a common
trick to leave the transition relation conjunctively decomposed and represent it as a
set of BDDs, rather than computing their conjunction as a single BDD [TSL90]. Early
quantification heuristics are then used to efficiently compute the image of a state set
under a conjunctively partitioned transition relation. For next abstraction, we propose
a similar approach.

3.2 Efficient Computation with Implicit Transition Relations

For model checking, it suffices to represent the symbolic transition relation of a module
not explicitly, as a BDD, but implicitly, as an algorithm that given a state set, computes
the set of successor states. This algorithm can then be iterated for reachability analysis
and more general verification problems. Given a module M, the single-step successor
function of M is a function R}, from state sets of M to state sets of M. Let o be a
set of states of M. Then R}, (o) is the set of all states X' of M such that there is a
state X € o with TM(X,X’); that is, R};(c) is the image of ¢ under the transition
relation Thy. It is straightforward to compute R}, (o) for single atoms. For complex
modules, the single-step successor function is computed recursively.

Parallel composition. Consider the module M = M; || M2 and a set ¢ of states
of M. Let Ry, (¢) and Ry, (o) be the images of ¢ for My and My, respectively. Then

Ry (o) = Ry, (0) A Ry, (o).

Next abstraction. Consider the module M = (next ¢ for N) and a set o of states
of M. Let RL (o) be the image of ¢ for N. Then R},(c) is computed by the nested-
search procedure described in Algorithm 3.2.

Algorithm 3.2

{Given module M = (next ¢ for N), single-step successor function R}y, and state set o,
compute R} (o)}

{We will assume o C ¢}

FirstLevellmage := {}

SecondLevellmage := Ry (o)

SecondLevelReachSet := {}

loop
FirstLevellmage := FirstLevellmage U (SecondLevellmage N @)
SecondLevelReachSet := SecondLevelReachSet U (SecondLevellmage N @)
SecondLevellmage := R}y (SecondLevelReachSet)

until (SecondLevelReachSet does not change)

return (FirstLevellmage)

In contrast to a BDD for T (X, X”), which explicitly represents the transition relation
of module M, the recursive algorithm for computing the function R}, implicitly repre-
sents the same information. In practice, a mixture of explicit symbolic representation of



transition relations (for small modules) and implicit image computation (for complex
modules) will be most efficient. We report on our experiences with nested search in the
following section.

4 Experiments

The aim of our experiments is to investigate the efficiency of the proposed method
for the automatic reachability analysis of complex designs. All experimental results
reported in this paper were obtained by modeling the systems in Verilog and using the
vl2mv Verilog compiler along with VIS [BSVH*96]. We implemented a new command
in VIS, called abstract_reach, based on Algorithm 3.2.

4.1 Multiplier

We model a word-multiplier that functions by repeated addition, using the word-adder
described earlier. With help of the next operator, we can model the multiplier at
various levels of temporal detail. We experiment with two options:

— Model 1: For addition, use the flat module ConcreteAdder explained in Section 2.
In this model, bit-additions appear as atomic actions of the multiplier.

— Model 2: For addition, use the hierarchical module AbstractAdder. In this model,
word-additions appear as atomic actions.

We perform reachability analysis with both models. Model 1 is given to VIS directly,
and reachability analysis 1s performed using the compute_reach command of VIS. In
order to analyze Model 2, we use the abstract_reach command with the aggregation
predicate doAdd = doneAdd. As a result, the states in which doAdd is true and
doneAdd is false become transient states.

We experiment with two 4-bit operands and an 8-bit result. In this case, Model 1
has 68 latches and 1416 gates. After the next abstraction, 24 of these latches become
history-free; that is, their values are independent of previous nontransient values. In
particular, the local variables of the adder become history-free, and hence, are repre-
sented by trivial functions in the BDD that represents the reachable states. Table 1
shows the peak BDD sizes for both models.

4.2 Cache Coherence Protocol

We describe the various components of a generic cache coherence protocol before
discussing our results. Each cache block can be in one of three states: INVALID,
READ_SHARED, or WRITE_EXCLUSIVE. Multiple processors can have the same
memory location in their caches in the READ_SHARED state, but only one processor
can have a given location in the WRITE_EXCLUSIVE state. There is a directory that,
for each memory location, has a record of which processors have cached that location
and what states (READ_SHARED, WRITE_EXCLUSIVE) these blocks are in. Due to
want of space, we will not explain the protocol formally. An example scenario gives the
general flavor. Suppose that Processor 1 has a location in WRITE_EXCLUSIVE, and
Processor 2 wants to read this location. First Cache 2 records a write miss and com-
municates that to the directory. The directory then sends a message to Processor 1, re-
questing it to move the state of the block under consideration from WRITE_EXCLUSIVE



to READ_SHARED. Cache 1 acknowledges this request and also sends the latest ver-
sion of the data in this block to the directory. The directory then services Cache 2 with
this data, and Cache 2 gets the block as READ_SHARED. Each of these steps involves
a transaction on the bus, which could take an arbitrary number of rounds due to the
asynchronous nature of the bus.

We experiment with two levels of temporal granularity. Model 1 is a flat model of
the memory system, and Model 2 is a hierarchical model that abstracts temporal detail
about the bus. While a bus transaction can consume multiple rounds in Model 1, it
is forced to always complete in a single round in Model 2. For our experiments, we
choose a 1-bit address bus and 1-bit data bus. In this case, Model 1 has 44 latches, of
which 6 latches become history-free in Model 2. The peak BDD sizes during reachability
analysis for both models are reported in Table 1.

4.3 Processor-Memory System

Aiming for a more dramatic improvement over flat modeling, we compose several sys-
tems whose interactions are limited. We put together two processors, each with an
ALU consisting of the adder and multiplier described earlier, and the cache proto-
col, to obtain a complete processor-memory system. A block diagram of the system is
shown in Figure 4. The processors have a simple instruction set: load/store register
to/from memory, add two register operands, multiply two register operands, com-
pare two registers, and a conditional branch. Again we experiment with two models.
Model 1 is flat, and Model 2 is constructed by composing next-abstracted versions of
the multipliers, adders, and bus protocol.

Py Py
Cacheq Cacheg
\ \
w ¢ Bus
Memory

Fig. 4. Processor-Memory System

We choose an 1-bit wide address bus and a 2-bit wide data bus. In this case, Model 1



has 147 latches, of which 36 latches become history-free in Model 2 (15 latches in each
multiplier, and 6 in the cache protocol). Here, reachability analysis for Model 1 is be-
yond the capability of current verification tools. However, fully automatic reachability
analysis succeeds for Model 2, which structures the design using the next operator.
Consider, for example, the situation where both processors start a multiplication at
the same time. In Model 1, there are several transient states due to the interleaving of
independent suboperations of the two multipliers. These transient states are entirely
absent in Model 2. Tndeed, nested search (Algorithm 3.2) is the key to verifying this
example: we run out of memory when trying to compute an explicit representation of
the transition relation for Model 2.°

4.4 Processor-Memory System with Programs

Finally, we add programs to the processors of the processor-memory system. Proces-
sor 1 computes A x B. Processor 2 computes C' % D. Processor 1 then adds up both
results and computes A * B + C'* D. The two processors synchronize through a flag in
memory. The last entry of the table shows the reachability results for the processor-
memory system constrained by these programs. Again, Model 2 completes reachability
using abstract_reach, whereas Model 1 does not. Thus we are able to verify invariants
on Model 2, such as confirming that the results computed by the programs are correct.

Peak BDD size Time for reachability (sec)

Example Model 1 | Model 2 | Model 1 Model 2
Multiplier 26979 6561 157 122
Cache Coherence 42467 21498 310 227
Proc/Mem System | space out 53103 * 816
with Program space out 9251 * 153

Table 1. Experimental Results

5 Conclusions

We introduced a formal way of describing a design using both temporal and spatial ab-
straction operators for structuring the description. The temporal abstraction operator
next induces a hierarchy of transitions on the state space, where a high-level transition
corresponds to a sequence of low-level transitions. We exploited transition hierarchies
in symbolic reachability analysis and presented an algorithm for proving invariants of
reactive modules using hierarchical search. We tested the algorithm on arithmetic cir-
cuits, cache coherence protocols, and processor-memory systems, using an extension of
VIS. The experimental results are encouraging, giving fully automatic results even on
systems that are amenable to existing tools only after manual abstractions. Transition
hierarchies can be exploited to give efficiencies in enumerative reachability analysis as

® The transition relation for the multiplier module alone, as computed by VIS, has 7586
BDD nodes and is composed of 6 conjunctive components. Even “and”-ing the components
together results in memory overflow.



well [AH96]. We are currently building a formal verification tool for reactive modules,
called MOCHA, which will incorporate both symbolic and enumerative hierarchical
search as primitives.

While the next operator is ideally suited for abstracting subsystems that interact
with each other at predetermined synchronization points, it does not permit the “out-of-
order execution” of low-level transitions. We currently investigate additional abstrac-
tion operators, such as operators that permit the temporal abstraction of pipelined
designs.
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