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Abstract

Timed and hybrid automata are extensions of finite-state
machines for formal modeling of embedded systems with
both discrete and continuous components. Reachability
problems for these automata are well studied and have been
implemented in verification tools. In this paper, for the
purpose of effective error reporting and testing, we con-
sider the membership problems for such automata. We con-
sider different types of membership problems depending on
whether the path (i.e. edge-sequence), or the trace (i.e.
event-sequence), or the timed trace (i.e. timestamped event-
sequence), is specified. We give comprehensive results re-
garding the complexity of these membership questions for
different types of automata, such as timed automata and lin-
ear hybrid automata, with and without � -transitions.

In particular, we give an efficient �����	��
��� algorithm
for generating timestamps corresponding a path of length �
in a timed automaton with 
 clocks. This algorithm is im-
plemented in the verifier COSPAN to improve its diagnostic
feedback during timing verification. Second, we show that
for automata without � -transitions, the membership ques-
tion is NP-complete for different types of automata whether
or not the timestamps are specified along with the trace.
Third, we show that for automata with � -transitions, the
membership question is as hard as the reachability ques-
tion even for timed traces: it is PSPACE-complete for timed
automata, and undecidable for slight generalizations.

�
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1. Introduction

Finite state machines are widely used in the modeling
of systems for analysis of performance and reliability. De-
scriptions using FSMs are useful to represent the flow of
control (as opposed to data manipulation) and are amenable
to formal analyses such as testing and model checking. Tra-
ditional definitions of FSMs do not admit an explicit model-
ing of time, and are thus, unsuitable for describing real-time
systems whose correctness depends on relative magnitudes
of different delays. Consequently, timed automata [3] were
introduced as a formal notation to model the behavior of
real-time systems. Its definition provides a natural way to
annotate FSMs with timing constraints using finitely many
real-valued clock variables. For describing hybrid systems,
dynamical systems whose behavior exhibits both discrete
and continuous change, we need to model evolution of con-
tinuous variables such as temperature and pressure. A hy-
brid automaton [2] is a mathematical model for hybrid sys-
tems, which combines, in a single formalism, automaton
transitions for capturing discrete change with differential
equations for capturing continuous change.

In recent years, there has been extensive research on
timed and hybrid automata (see [8, 1] for surveys). The
focus of this research has been on their application to mod-
eling and verification of real-time and hybrid systems. The
best studied problem is the reachability question: given an
automaton � and a set � of target states, is there an exe-
cution of the automaton starting in an initial state and end-
ing in a target set? It turns out that, for timed automata,
the reachability problem is decidable (in PSPACE), and the
solution relies on the construction of a finite quotient of
the infinite space of clock valuations. Most generalizations
of timed automata have undecidable reachability problem.
However, for a subclass of hybrid automata called linear
hybrid automata, we can obtain a semi-decision procedure
using a symbolic fix-point computation procedure that ma-



Timed Traces Untimed Traces Timestamps
Timed Automata w/o � -transitions NP-complete NP-complete ����� � 
 � �

with � -transitions PSPACE-complete PSPACE-complete
Timed Automata with w/o � -transitions NP-complete NP-complete P
linear constraints with � -transitions undecidable undecidable
Linear Hybrid w/o � -transitions NP-complete NP-complete P
Automata with � -transitions undecidable undecidable

Figure 1. Summary of results

nipulates state-sets represented by linear constraints. For
both timed and hybrid automata, a variety of of optimiza-
tions of the basic procedure have been investigated, and
have been implemented in tools such as COSPAN [5], KRO-
NOS [6], UPPAAL [11], and HYTECH [9]. These tools have
been demonstrated to be useful for modeling and analysis
in case-studies involving asynchronous circuits, distributed
protocols, and real-time scheduling.

In this paper, we consider membership questions for
timed and hybrid automata. In the membership question,
we are given an automaton � and some partial information
about a possible execution of the automaton � , and we are
required to determine if there is an execution consistent with
the given partial information. In particular, we consider the
following three problems for various classes of hybrid au-
tomata:

1. Timestamp generation: Given a path, i.e. a sequence
of edges, of the automaton, we wish to check if there
is a corresponding execution, and if so, generate a pos-
sible sequence of time values at which the individual
edges are traversed.

2. Timed traces: Given a timed trace, i.e. a sequence of
events together with the corresponding timestamps, we
wish to check if there is a corresponding execution.

3. Untimed traces: Given a trace, i.e. a sequence of
events, we wish to check if there is a corresponding
execution.

Our motivation for studying the first problem is reporting of
counterexamples during timing verification: once the verifi-
cation tool determines the sequence of transitions that leads
to a violation of the safety property, the timestamp genera-
tion algorithm can be used to augment it with timestamps,
thereby providing greater diagnostic feedback. The motiva-
tion for studying the last two problems is testing: a trace or a
timed trace can be used as a test to check consistency of the
model. This paper studies these three problems for timed
automata, timed automata with linear constraints, and linear
hybrid automata. For the last two problems, the complex-
ity depends on whether or not the automaton has “hidden”
� -transitions. The results are summarized in Figure 1.

The timestamp generation problem for linear hybrid au-
tomata reduces to finding a solution to a set of linear in-
equalities. For a timed automaton, the inequalities are of
a special form, and consequently, the problem reduces to
computing shortest paths in a weighted digraph (with pos-
sibly negative cost cycles). Instead of using standard algo-
rithms for this problem, we present a more efficient solu-
tion that exploits the structure of our problem better. The
running time of our algorithm is ����� � 
 � � , where � is
the length of the path and 
 is the number of clocks in
the timed automaton. Note that an ��� � � 
 � � algorithm
for checking whether there is an execution corresponding
a given sequence of edges was already known (see, for in-
stance, [4]), however, generating timestamps in ����� ��
 � �
requires a nontrivial modification. The timestamp genera-
tion algorithm for timed automata has been implemented in
the tool COSPAN to improve its error-reporting capability.

The second set of results concerns automata in which
all the edges are labeled with observable events (no � -
transitions). We show that for timed automata as well as
linear hybrid automata, checking consistency of timed as
well as untimed traces is NP-complete. The fact that all
these problems are in the same class is noteworthy: speci-
fying timestamps together with the trace does not help, and
the problem is NP-hard even for timed automata.

Finally, we present results concerning automata with � -
transitions. Here again our results indicate that specifying
timestamps together with the trace has no influence on the
complexity of the membership problem. We show that the
membership problem for timed automata is no easier than
the reachability problem, and is PSPACE-complete. Surpris-
ingly, the membership problem for linear hybrid automata is
undecidable just like its reachability problem. This result is
proved by establishing a stronger result: for timed automata
with linear constraints—a restricted class of linear hybrid
automata, the bounded reachability problem, namely, given
an automaton � , a location ��� , and a deadline � , is there an
execution from an initial state of � that leads to location � �
before time � , is undecidable.



2. Timed and Hybrid Automata

A hybrid automaton [2] is a formal model to describe
reactive systems with discrete and continuous components.
It consists of a graph wherein the system evolves continu-
ously while at a vertex, and experiences discrete changes in
the edges.

Definition 1 A hybrid automaton � consists of the follow-
ing seven components.

� A finite set of real valued variables � . The cardinal-
ity of � is called the dimension of � . We denote by�
� , and ��� , the set of variables representing the first
derivatives with time and the set of variables represent-
ing the values after a discrete change, respectively, of
the variables in � . A valuation � is a function that
assigns a real value � ��� � to each variable �
	�� .

� A finite directed multi-graph ������ � . The vertices are
called the control modes while the edges are called the
control switches.

� A function � ����� , that assigns to each vertex ��	�� , a
predicate � ������ , whose free variables are from � . This
describes the set of valid initial values for the variables.

� A function � ��� , that assigns to each vertex � , a predi-
cate � ��� � whose free variables are from � . This pred-
icate describes the invariant condition for each control
mode.

� A function �����! , that assigns to each vertex � , a pred-
icate �����! � whose free variables are �#"

�
� . This

describes the way variables change in each state.

� A function $ � 
&% , that maps a predicate $ � 
&%�' to each
control switch ()	*� , whose free variables are from
�+",��� .

� A finite set - (not containing � ) of events and an edge
labeling function (.�/( ��� that assigns to each control
switch an event from -�")0��21 . Here � denotes an un-
observable transition.

During an execution of a hybrid automaton, its state, which
is given by the control mode and the value of its variables,
can change in one of two ways. A discrete change causes
the automaton to change both its control mode and the val-
ues of its variables according to the $ � 
&% function. Oth-
erwise, a time delay, causes only the value of variables to
change according to the flow predicate. The execution be-
havior is defined more formally below.

Definition 2 For states 35476 �8�94:���94 � and 3 � 6 ��� � �;� � � of
the automaton � , an edge (&6 �8�<4!��� � � , and real number � ,
we say 3 4>= '? 3 � , if there is a function �A@CB DE�F��G = � , where
� is the set of valuations, having the following properties:

� � ��D ��6H� 4 .
� For all DJI+�K�LIM� , � ���N�;O��� �8�K� � � , and �����! P�;O � �� ���K� � � ,

i.e., while the automaton is in control mode � 4 it satis-
fies the invariance and flow conditions.

� The edge ( can be taken at time � to go to state 3 � :$ � 
&%Q'��� �8� �R��� � � holds.

For states 3 4 6 ��� 4 ��� 4 � and 3 � 6 ��� � �;� � � of the au-
tomaton � , an event S from -�"A0 �21 , and real number � , we
say 3!4 =UT? 3 � if there is an edge ( such that 354 = '? 3 � and
(.�/( ��� ��( �V6*S .

We will denote the � th member of a sequence W by W�X .

Definition 3 For a sequence Y of edges, a run of a hybrid
automaton � from a state 3 , is a pair �8ZQ��[ � , where Z is a
sequence of states, and [ is a sequence on real numbers,
such that

� The sequences Y , Z , and [ are of same length,

� Z/\L6]3 , and

� For every � , Z<X =_^.`a ` Z<Xcb 4 .

The total time of the run is d X [ X .

To define runs of an automaton on a sequence of events,
we must account for the possibility of taking a sequence of
� -labeled edges between successive events.

Definition 4 For states 3545�F3 � of the automaton � , an event
Se	f- , and a real number � , we say 354Pg T? 3 � , if there exists
a run starting from 354 and ending at 3 � , for the sequence
�;hiS �;j , for some �V� 
 , where the total time of the run is � .
In other words, there is a run that takes an arbitrary (finite)
number of unobservable transitions before and after taking
a control switch labeled S , to reach 3 � after � units of time.

For a sequence W of events, a run of a hybrid automaton
� from a state 3 over W , is a pair �8ZQ��[ � , where Z is a se-
quence of states, and [ is a sequence of real numbers, such
that

� Z \ 6]3 , and

� For every � , Z<Xkg_l `a ` Z<Xcb 4 .

Example 1 Consider the hybrid automaton described in
Figure 2. It models a system that controls the percent-
age of oxygen and carbon-dioxide in the room. The vari-
ables � and m represent the volume of oxygen and carbon-
dioxide. When the system is in the control mode “Off”,
oxygen is consumed to produce carbon-dioxide and other
gases (which have not been modeled). This is reflected by
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��flow: 	���� 	�
inv: �������

flow:
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Pure, ������� �!�����"�

Normal, ���#�$�%�!����"��&'�������

Figure 2. Example of a Hybrid automaton

the fact that the rate at which carbon-dioxide increases is re-
lated to the rate at which oxygen is consumed. The system
can remain in this control mode as long as there is enough
oxygen compared to the carbon-dioxide ( �)(+*Nm ), and the
total volume of the other gases in the room is not too much
(i.e. �-, m.(0/.D ). In the control mode “On”, the system turns
on the purifier which pumps in oxygen and takes out the
carbon-dioxide. The two control switches “Pure” and “Nor-
mal” can be taken at any time and these leave the volumes
of the gases unchanged. Initially the system is assumed to
be in “Off” mode, with the value � 621:D and m 621 for the
variables.

We will now define some special classes of hybrid au-
tomata. Recall, that a linear inequality over a set of vari-
ables � is an inequality involving linear terms of the vari-
ables in � .

Definition 5 A linear hybrid automaton is a hybrid automa-
ton, where, for any control mode � and switch ( ,
� The predicates � �����K� , � ���:� , and $ � 
 %�' are conjunc-

tions of linear inequalities 1 over � , and

� The predicate �����! >� is a conjunction of linear inequal-
ities over

�
� .

The automaton in Example 1 is an example of an linear hy-
brid automaton.

Definition 6 A variable ��	 � is a clock if for every con-
trol mode � , �����! >��@ ��]63/ (in other words, value of �
increases uniformly with time), and if every discrete change
either resets � to D or leaves it unchanged.

A timed automaton with linear constraints is a linear hy-
brid automaton all of whose variables are clocks.

A timed automaton is a linear hybrid automaton all of
whose variables are clocks and whose linear expressions

1In literature, most papers consider 4657468:9 , 4;5=<�9 , >%?A@CBD9 , and E�F�G�H�I
to be any boolean combination of linear inequalities. Though in this paper
we consider these predicates to be only conjunctions, our algorithms and
proofs can be easily modified to handle to more general case. See footnote
in proof of Proposition 5.

are boolean combinations of inequalities of the form �KJML ,
where J is a comparison operator and L is an integer con-
stant.

For a class N of hybrid automata we define different mem-
bership problems depending on whether we are given a se-
quence of edges or a sequence of events or a sequence of
events together with corresponding timestamps.

Timestamp
Generation

Given an automaton � 	 N and a
sequence Y of edges, check if there
is a run ��Z �F[ � of � on Y starting
from some initial state, and if so,
output the time sequence [ .

Timed Traces

Given an automaton � 	 N , a se-
quence of events W and a sequence
of real numbers [ , check if there is
a run �8ZQ��[ � of � on W starting from
some initial state.

Untimed Traces

Given an automaton � 	 N and a
sequence of events W , check if there
is a run ��Z �F[ � of � on W starting
from some initial state.

3. Generating Timestamps

In this section, we consider the problem of checking
whether a sequence of edges can be taken, and if so, gener-
ating a corresponding consistent sequence of timestamps.

3.1. Timed Automata

We are given a timed automaton � and a sequence Y of
edges of � , and we wish to determine if � has a run over Y ,
and if so, determine a possible sequence [ of timestamps at
which the edges in Y can be taken.

3.1.1 Graph-theoretic formulation

The problem timestamp generation for timed automata can
be reformulated as a graph theoretic problem. We will first
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Figure 3. A sample path in a timed automaton

illustrate this through an example, before giving the formal
translation of this problem into a graph theoretic one.

Example 2 Consider the sample path shown in Figure 3.
If we denote the initial time by ��\ , and the time at which
edge ( X is traversed by � X , then the path is traversable iff the
following set of constraints has a solution:

� \ IU�F4LI � � IU�,+ I �.-N� �F40/ � \21 1E�

�,+3/ �F4 I *E� �.-4/ �F45176C� �,+)/ � � 62/9�k�,+)/ �F4 ( 198
Furthermore, a solution to the above set can be used to con-
struct the desired timestamps. To solve this problem, we
can consider the weighted graph shown in Figure 4. Note
that for an upper bound constraint such as � + /�� 4 I * , we
put an edge from node 3 to 1 with cost 3, and for a lower
bound constraint such as � + / � 4 ( 1 , we put an edge from
1 to 3 with cost /�1;: . The superscript “-” indicates that
the corresponding constraint is strict. The set of constraints
is not consistent if there is a cycle with total cost D<: or
less. If there is no negative cost cycle, then let � ��DE�F� � de-
note the cost of the shortest path from 0 to node � . Setting
� X 6=/ � ��DC��� � gives a feasible solution to the set of con-
straints.

Now we formalize the graph theoretic formulation of the
problem. Assume that the sequence Y contains � edges
( 4 �
8�8
8�( h , where the edge (5X 6 ���:X��F�:Xcb 4 � . Recall that a
timed automaton uses constraints of the form � J=L for a
clock � and a comparison operator J . A lower bound on
� is a constraint of the form �+( L or �?> L , while an
upper bound on � is a constraint of the form �@1 L or
�*I L (a constraint ��6 L is modeled as the conjunction
� I L#A �B> L ). For vertex � X , the invariant � ��� �8� X � is
a conjunction of lower and upper bound constraints. For
edge (!X , the jump predicate $ � 
&% ��(5X � contains lower and
upper bound constraints on some of the clocks (unprimed
values), and resets some of the clocks. Let C�X denote the
set of clocks reset on edge (5X , and let C \ contain all the
clocks. For a clock � and index � , let ��S;D2�FE X denote the posi-
tion where the clock � has been reset most recently before
� . That is, ��S;D2� EX 6 $ if $�1 � and � 	�C;G and �IH	�C<J for
$K1 LL1 � .

The lower and upper bound constraints can be strict or
non-strict. In order to deal with different types of bounds

uniformly, we define the domain of bounds, similar to [7],
to be the set

M 6 0N8
8�8O/�1i�
/M/9�FDC��/N��1i��8
8
8 1 "
0N8
8�8O/�1 : �
/M/ : �FD : ��/ : �C1 : �
8
8�8 1 "
0N/5P]�	P 1N8

For a constraint of the form � I L , upper bound on � is
L , while for a constraint of the form �I1 L , upper bound
on � is LQ: . Similarly, for a constraint of the form �R>+L ,
lower bound on � is L , while for a constraint of the form
��( L , lower bound on � is LQ: . To compute shortest paths,
we need to add bounds and compare bounds. The ordering
1 over the integers is extended to

M
by the following law:

for any integer S , /5P 1#S<:S1 ST1 ��S , /��	:U1VP .
The addition operation , over integers is extended to

M
by:

(i) for all W 	 M , W ,XP 6=P , (ii) for all WU	 M with
WYH6ZP , W�, �,/5P � 6[/5P , and (iii) for integers S and W ,
S.,�W\: 6]S]: ,�W 6]S]: ,�W\:�6 ��SM,�W ��: .

Generating timestamps corresponding to the path Y re-
duces to computing shortest paths in the graph ^ defined
below. The graph has � , / nodes numbered 0 through � .
The edges are defined by the following rules

1. Monotonicity: for each node D_IM�_1 � , there is an
edge from node � to node � , / with cost D .

2. Upper bounds: for each clock � and position / I
�eI � , if L is the upper bound on � in $ � 
&% ��(:X�� or
in � ��� ���:X � , then there is an edge from node � to node
��S;D2� EX with cost L .

3. Lower bounds: for each clock � and position / I
�eI � , if L is the lower bound on � in $ � 
&% ��(:X�� or
in � ��� �8�:X b 4 � then there is an edge from node ��S;D2�FEX to
� with cost /�L .

Proposition 1 The timed automaton � has a run over the
path Y of edges iff the graph ^ defined above has no nega-
tive cost cycle. Furthermore, if ^ has no negative cost cy-
cle, then for / IU� I � , let �<X denote the shortest path from
node 0 to node � . Then, the sequence / � 4 � � 4 / � � � � � /� + �
8�8
8 � h`: 4 / � h is a feasible time sequence corresponding
to Y .
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Figure 4. The weighted graph for the path of Figure 2

3.1.2 An efficient algorithm for timestamp generation

We have shown that generating timestamps reduces to find-
ing negative-cost cycles and shortest paths in graph ^ . Let
� be the length of the given sequence of edges and 
 be
the number of clocks in � . In our applications, 
 usually
denotes the number of processes, and is quite small, while �
can be quite large. Consequently, instead of using standard
algorithms for computing shortest distances in a weighted
graph, we present an algorithm that exploits the structure of
our problem in a better way.

For two nodes � and $ in graph ^ , let mR�OD2� �8�;�$ � denote
the weight of the edge from node � to node $ (if there are
multiple edges between a pair of nodes, we need to consider
only the one with minimum cost). For /
I � I � , define
the subgraph ^7X to consist of nodes numbered 0 through � .
Let �/X �c$9�F� � , for D�I�$9�F� I � denote the cost of the shortest
path from $ to � in the graph ^ X . In particular, �<X ��DC��� � is the
cost of the shortest path from D to � without visiting a vertex
numbered higher than � .

Let � X�� 0.DC�
8�8
8 ��1 contain the node 0, the node � , and
any other node of ^7X that has an edge to some node outside
^ X . Note that for a node D 1 $X1#� to be in �QX , there
must be some position ��(]� and a clock � with ��S`D2�%E	 6 $ .
Consequently, besides 0 and � , �QX can contain at most one
node per clock, and has at most 
 , 1 nodes. The nodes not
in �CX are “internal” to the subgraph ^ X . From the graph ^ X
let us define another weighted graph �eX , called the reduced
graph of ^7X , as follows: the set of nodes is ��X , and for every
pair of nodes $ and � in � X there is an edge from $ to � with
cost equal to the cost � X � $N��� � of the shortest path from $ to
� in the graph ^ X (note that this cost can be P if there is no
path from $ to � , and can be /5P if there is no “shortest”
path because of a negative cost cycle).

The algorithm for generating timestamps is outlined in
Figure 5. In the first phase, the algorithm successively com-
putes the reduced graphs �,4 , � � , and so on. While imple-
menting the algorithm, each such graph is represented by
the matrix 
 that gives, for every pair of nodes, the cost of
the edge connecting them (the entries in the matrix are from
the domain

M
). Since the number of vertices in a reduced

graph is bounded by 
 , 1 , the size of the matrix 
 is
� 
 ,'1���� ��
 ,'1 � . Consider the matrix 
 representing the

reduced graph � X : 4 . Step / corresponds to adding an extra
row and column to 
 . At step 1 , we need to check if the
updated matrix has a negative cost cycle, and if not, com-
pute the new shortest distances. Observe that, for any pair
of vertices $ and � , the new shortest distance between $ and
� is different from the old one, only if the new shortest path
visits the new vertex � . This fact can be used to compute
the new shortest distances efficiently in time ����
 � � . Step
3 ensures that the updated matrix 
 stores only the nodes
that are external to � X . In particular, if a clock � gets reset
on edge (!X , then the node ��S;D2� EX can become internal, and
get deleted.

The shortest distances computed during the first phase
are stored in the array  and the matrix � : at the end of
the first phase, for each node � ,  B �G equals �iX ��DC��� � , and for
each clock � , �fB ��G B �EG equals �<X ����S;D2� EX ��� � . The distance  B �G
computed at the end of the first phase does not consider
paths to node � that visit vertices numbered higher than � .
Such paths are accounted for in the second phase. First note
that the distance � ��DE� � � equals � h ��DE� � � , and thus, the entry
 B ��G contains the optimal shortest path to the last node � .
Observe that the shortest path from 0 to a node � is either
contained in ^7X (and hence equals �/X ��DC��� � ), or consists of
a shortest path from D to a node $ ( � , an edge from $ to
some vertex � in � X , and shortest path from � to � in ^ X :
� ��DE�F� � equals


,� � 0 �9X ��DE�F� � � 
A� �<G��QX�� 	���� ` 0 � ��DC�$ � , �/X ���K��� � ,�m �OD � � $9�F� � 1N1
The second phase consists of a loop that processes nodes
in decreasing order starting from � . Just before processing
node � , we know that the entries  B $NG for nodes $ numbered
higher than � , denote the true costs � ��DC�$ � . Furthermore, the
entries  B �8G for nodes �7	H�QX have been updated to reflect
edges from nodes numbered higher than � : for each � 	���X
and $ (_� ,  B � G is at most the sum of  B $NG and the cost of the
edge from $ to � . Consequently, the correct value of � ��DC��� �
can be computed as shown in the algorithm.

Proposition 2 At the end of the execution of the algorithm
of Figure 5, for each � , the value  B �G equals the cost � ��DE��� �
of the shortest path from D to � in the graph ^ .

The running time of the first phase is �����	� 
 � � , while
of the second phase is ����� � 
 � .



Input: A timed automaton � and a sequence Y of edges.
Output: Decides if � has a run over Y , and if so, outputs a sequence [ of timestamps.
Data structures: 
 : � 
 ,�1�� � � 
 ,�1 � matrix;  : array of length � ; � : � � 
 matrix
Algorithm:
Phase One:

Initialize 
 to denote the graph with a single node D .
For � @ 6 / to � do

0 Comment: 
 denotes the graph � X : 4>1
1. To 
 , add the node � and all edges of � X involving node � .
2. Compute new shortest distances within 
 .

If a negative cost cycle is detected, stop (there is no run over Y ).
3. Remove all the nodes not in � X .
4. Set  B �G to shortest distance from 0 to � in 
 .
5. For each clock � , set �fB �G�B �EG to shortest distance from ��S;D �%EX to � in 
 .

Phase Two:
For � @ 6 � downto / do

0 Comment:  B $NG for $ ( � denotes the shortest distance � ��DE�$ ��1
0 Comment: for � 	��QX and $ (U� ,  B � GkI  B $:G ,_m �OD � � $9�F� � 1
For each clock � do

 B �G�6 
,� � �  B �G�  B ��S;D �,EX G-, ��B �G B �CG � ;
For each clock � do

 B ��S;D2�,EX G�6 
A� � �  B ��S;D �,EX G�  B �G-,_mR�OD2� �8�;�F��S;D �,EX � � ;

Figure 5. Algorithm for generating timestamps in timed automata

Theorem 3 Given a timed automaton � with 
 clocks, and
a sequence of Y of � edges, the timestamp generation prob-
lem can be solved in time ��� � � 
� � time.

3.1.3 Implementation in COSPAN

The timestamp generation algorithm is implemented in the
tool COSPAN. We begin with an overview of COSPAN, a
model checker based on the theory of � -automata devel-
oped at Bell Labs. The system to be verified is modeled
as a collection of coordinating processes described in the
language S/R [10]. The semantics of such a model 
 is
the � -language

� � 
 � corresponding to the infinite execu-
tions of the model. The property to be checked is described
as another process � , and the model 
 satisfies the prop-
erty � if the language of the product of 
 and � is empty.
The language-emptiness test can be performed via a variety
of highly optimized algorithms such as on-the-fly enumera-
tive search and symbolic search using binary decision dia-
grams. In the real-time extension of COSPAN[5], real-time
constraints are expressed by associating lower and upper
bounds on the time spent by a process in a local state. An
execution is timing-consistent if its steps can be assigned
real-valued timestamps that satisfy all the specified bounds.
The semantics of a timed S/R model 
 with a table � of
bounds is, then, the set

� � 
 ��� � of executions of 
 that

are timing-consistent with the bounds-table � . The timing
verification problem corresponds to checking emptiness of
the language

� � 
�� �>��� � for a suitably chosen process
� . A variety of correctness requirements such as invariants,
absence of deadlocks, liveness, and bounded response, can
be modeled in S/R. The expressiveness of timed S/R is the
same as that of timed automata [3]. For checking emptiness
of the language

� � 
 ��� � , the verifier automatically con-
structs another automaton ��� , also as a S/R process, which
when composed with the original model, rules out execu-
tions that do not satisfy the timing constraints:

� � 
	� � � �
equals

� � 
 ��� � . The existence of such a finite-state con-
straining automaton � � follows from the so-called region
construction for timed automata [3].

As explained above, the timing verification problem re-
duces to language emptiness problem, which in turn is a
reachability problem. If the model does not satisfy the prop-
erty the tool reports a counterexample that consists of a path
consisting of states and events. The counterexample pro-
vides debugging information that is helpful is isolating the
problem, and is of crucial importance in practice. The input
to the timestamp generation algorithm is the counterexam-
ple reported by COSPAN. The timestamp generation algo-
rithm computes the sequence of time values corresponding
to the path, and outputs the counterexample together with
timestamps. Thus, it enhances the error reporting capabili-



ties of COSPAN. In practice, the running time of the times-
tamp generation algorithm is much smaller than the model
checking algorithm that generates the path corresponding to
the counterexample.

3.2. Linear Hybrid Automata

Theorem 4 The timestamp generation problem, for the
class of linear hybrid automata, can be solved in polyno-
mial time.

Proof: Given a sequence Y of edges and a linear hybrid
automaton � , the problem of timestamp generation can be
reduced to that of solving a linear programming problem.
If C is the sequence of control modes of � that are visited
when traversing the sequence of edges Y , then the linear
program is defined as follows.

For each variable �)	 � and control mode CQX in the se-
quence C , we will introduce variables ��� ` , � � � ` , and [�� ` in
the linear programming formulation. Intuitively, the vari-
ables �Q� � ` and ��� ` denote the value of the variable � of the
automaton, at the time of entering and leaving the control
mode C X , respectively. The variable [ � ` denotes the total
time spent in control mode C X during the run. Let � X and
�i�X denote the vector of variables � � ` and �Q� � ` , respectively,
for ��	 � . We will now introduce constraints correspond-
ing to the predicates associated with the control modes and
switches of � . Since � C \9�;�!\ � is the initial state of this run,
we will have constraints � �������� ��� \ � which will ensure that
the valuation � \ is a valid initial valuation. For the invari-
ance predicate � ����� ` , we will introduce linear constraints
� ����� ` ��i�X � and � ����� ` ���5X � . For a flow condition of the form

d G S G � �� G I L , we add constraints d G S G � E�	�
 ` :QE�	

 `a 
 ` � I L

and for each predicate $ � 
 %�' ` , where (!X�6 � C X��	CCX b 4 �
and ��S;W (!� ��(!X��P6 W X , we have constraints $ � 
&%�' ` ���5XF���i�X b 4 � .
These constraints essentially check that if we assume that in
each control mode C X of the run, the variables evolve along
the straight line joining � �X and � X then that will correspond
to a correct execution of the automaton � .

So clearly if the above linear programming problem has
a solution then ��Z �F[ � , where [ is the sequence [ � O:��[ ��� ��8
8�8 ,
and Z is the sequence � C 4 ��� 4 � � � C � ��� � � ��8
8�8 , is a run of � on
W . Furthermore, if there is an execution in which, in each
control mode, the variables evolve so that the invariance and
flow conditions are not violated, then the straight line evolu-
tion from �E�X to �5X would also conform to the invariance and
flow conditions. This follows from the central limit theo-
rem in calculus and the fact that the predicate � ����� ` defines
a convex region. Since the solution of a linear program can
be found in polynomial time [12], the the timestamp gener-
ation problem in in P.

Remark: The timestamp generation problem for timed au-
tomata with linear constraints also can be solved by reduc-

ing it to solving a similar linear programming problem. We
cannot do much better than this because the linear program-
ming formulation for timestamp generation, in the cases of
linear hybrid automata and timed automata with linear con-
straints, does not have a special form like in the case of
timed automata.

Example 3 Consider the hybrid automaton given in Exam-
ple 1, and suppose we want to see if there is valid run of
the automaton on the sequence of edges “Pure, Normal”.
The sequence of control modes is then Off, On, Off. The
existence of a run can be reduced to the feasibility of the
following linear program.

�5�Off O 6 1ND m �Off O 6 1 �
initial condition

�5�Off O 601:D mR�Off O 601
� �Off O ( * � m �Off O � �Off O ,_m �Off O (0/2D
� Off O ( * � m Off O � Off O ,_m Off O (0/2D�

Off O : � Off Oa
Off O 1 D � Off O : �


Off Oa

Off O 6 /7B
�

Off O : � Off Oa
Off O G

� ����
����

Mode Off

�5�On 6]� Off O mR�On 6 m Off O
�5�On 10/.D � mR�On � On 1 /2D �.m On�

On : � Ona
On

601 � On : �

Ona

On
6 /M/

� �
� Mode On

�5�Off � 6*� On mR�Off � 6*m On

�5�Off � ( * � mR�Off � �5�Off � ,_mR�Off � (0/2D
� Off � ( * � m Off � � Off � ,_m Off � (0/2D�

Off � : � Off �a
Off � 1 D � Off � : �


Off �a

Off � 6 /7B
�

Off � : � Off �a
Off � G

� ����
����

Mode Off

4. Automata without unobservable transitions

In this section we will investigate the complexity of
membership questions for automata that do not have � -
transitions.

Proposition 5 The problem of membership of untimed
traces for linear hybrid automata is in NP.

Proof: In order to check if a sequence of events W is an un-
timed trace of a linear hybrid automaton � , our algorithm
will first guess a sequence C of control modes that the au-
tomaton � visits in a run on W . Once we have guessed a se-
quence of control modes, the problem of checking if there is
a sequence of real numbers [ , and a sequence of valuations
� such that �8ZQ��[ � (where ZiX 6 � CCXF���:X � ) is a run on W is then
reduced to checking the feasibility of a linear programming
problem, defined in a manner similar to that in the proof of
Theorem 4.2

2In the more general case, when the invariant predicate is a boolean
combination of linear inequalities, the predicate defines a union of convex
regions. The algorithm then will guess not only the sequence of control
modes � that are visited, but will also guess the sequence of convex re-
gions visited, for each control mode. The linear program will then have
additional variables, for each control mode, that will correspond to the val-
ues of the clock and the variables of the automaton, at the time of entering
and leaving each convex region.



Proposition 6 The problem of membership of timed traces
for timed automata is NP-hard.

Proof: We will reduce the directed hamiltonian path prob-
lem to the problem of membership of timed traces. In the
directed hamiltonian path problem, we are given a graph ^
and we want to know if there is a directed path in ^ that
visits each vertex exactly once.

Now the control graph of the timed automaton � that we
will construct will be exactly the same as the graph ^ that
is input to the directed hamiltonian path problem. The idea
will be to ensure that transitions of the timed automaton are
taken after every time unit and that when we visit a vertex
� of the graph ^ , we “mark” the vertex. The way we will
“mark” the vertex is by resetting a clock ��� corresponding
to the vertex � .

More formally, the automaton � will have clocks � and
� , and clocks � � corresponding to each vertex � of ^ . Clock
� will be used mark out 1 unit of time since the last transi-
tion, while � will be used to store the total time elapsed
since the start of execution. The clocks � � will be used to
mark the vertices visited. All the edges in the control graph
will be labeled S . A transition from � to � will check if
��� 6 / � i.e., 1 unit of time has passed, and if ����� 6 � � i.e.,
the vertex � has not been visited. Taking the transition from� to � will have the effect of resetting the clocks � and ��� .
It can be easily seen that the string S]8 S<8
8�8
8FS with timing
sequence /N��/N�
8�8
8 ��/ is a valid timed trace of � if and only
if ^ has a directed hamiltonian path.

The following theorem then can be seen as an immediate
corollary of propositions 5 and 6.

Theorem 7 The problems of membership of timed traces
and untimed traces for linear hybrid automata, timed au-
tomata with linear constraints, and timed automata are NP-
complete.

5. Automata with unobservable transitions

We will now examine the question of membership of
traces with � -transitions for various classes of hybrid au-
tomata. This problem is closely related to the well-studied
problem of control mode reachability.

Definition 7 The reachability problem for a class N of hy-
brid automata asks, given an automaton � from class N
and a control mode � of the automaton, if there exists a run
�8ZQ��[ � for some trace W such that �8�Q��� � 6�Z X for some � and
valuation � .

The problem of membership of untimed traces with � -
transitions is, in some sense, “equivalent” to the reachabil-
ity problem. Clearly, the reachability problem can be re-
duced to a problem of membership of untimed traces with

� -transitions. Now, if we have a membership problem, then
we simply guess a sequence of states Z and then check if
Z X b 4 is reachable from Zi�X , where Z<�X is the state such that
Z X = l.` Z<�X . Since we know that the reachability problem
is PSPACE-complete for timed automata [3], and is unde-
cidable for timed automata with linear constraints [3] and
linear hybrid automata [2], we get the following theorem as
a corollary of the above observation.

Theorem 8 The problem of membership of untimed traces
with � -transitions is PSPACE-complete for timed automata
and is undecidable for timed automata with linear con-
straints and linear hybrid automata.

Similarly, the problem of membership of timed traces with
� -transitions is “equivalent” to the bounded reachability
problem. In the bounded reachability problem, we are given
an automaton � , a control mode � and time � , and we want
to know if we can reach the control mode � at time � .
Proposition 9 The bounded reachability problem for timed
automata is PSPACE-complete.

Proof: This result essentially follows from Savitch’s theo-
rem and from the PSPACE-completeness proof of reacha-
bility for timed automata [3]. In [3], they reduce the ques-
tion of deciding whether a given linear bounded automaton

 accepts a given input string to the reachability problem
for timed automata.

In the construction, a computation of 
 is encoded by a
word

W 44 S \ 8
8�8�W 4h S \ W �4 S \ 8�8
8FW �h S \ 8
8�8FW
G 4 S \ 8
8�8FW Gh S \ 8
8
8

where W G 4 W G� 8�8
8�W
G
h encodes the $ th configuration of the ma-

chine 
 . One tries to ensure that the time difference be-
tween successive S<\ ’s is some constant L ,$/ (depending on
the tape alphabet of 
 ), while the time difference between
W GX and the preceding S<\ encodes the symbol W GX . The timed
automaton then reaches a special control mode 3 � precisely
when the word encodes an accepting computation of 
 .

Observe that in the above construction, the timed au-
tomaton processes each configuration of the machine 
 in
a fixed time of � � � L�,�/ � . Now from Savitch’s theorem, we
know that a linear bounded automaton has at most 1 � h con-
figurations, where m is a constant. Therefore, we know that
the timed automaton reaches the control mode 3 � at time
� � � L , / � ��1 � h if and only if the linear bounded automa-
ton accepts the input string. (If the computation of 
 has
less than 1 � h configurations then in the timed automaton we
will simply idle in some control state 3 X until the time is
� � � L , / � �=1 � h .) Since � � � L , / � �=1 � h can be written
using polynomially many bits, this is a polynomial time re-
duction. Hence, the bounded reachability problem for timed
automata is PSPACE-complete.



The bounded reachability problem, which shall now investi-
gate, turns out to be undecidable for even the class of timed
automata with linear constraints. The proof shall use the
fact that the halting problem for two-counter machines is
undecidable.

A two-counter machine has a finite sequence of instruc-
tions and two unbounded counters. Each instruction can
be one of three kinds; branching conditionally based upon
the value of a certain counter being 0, or incrementing a
counter, or decrementing a counter. Initially the counters
are assumed to be 0. Now, it is known that the halting prob-
lem for two-counter machines is undecidable. We shall use
this fact in our proofs.

Proposition 10 The bounded reachability problem for
timed automata with linear constraints is undecidable.

Proof: The proof is very similar to the undecidability proof
of the reachability problem for 2-rate timed systems in [2].
We shall encode the computation of a two-counter machine

 by a timed automaton with linear constraints, � . The
control mode of � encodes the program counter of 
 ,
while the value of the counters is encoded by two clocks � 4
and � � . Every step of the two-counter machine is simulated
in L 1 / time units, where L is a constant that is nondeter-
ministically chosen by the automaton in the first step; hence
in one time unit the automaton simulates approximately 4J
steps of the two-counter machine. The way we measure out
L units of time is by using two clocks — � � and � ' . The
absolute value of the difference between these two clocks
will always be L ; at the start of each odd step we will reset
the clock � � when � � 6 1 � �9' , and at the start of each even
step, we will reset the clock �<' when �/' 601 � � � . A counter
value of � at the � th step in the computation of machine 

is encoded by the clock � 4 (or � � ) having the value J

� � at
time � � L .

Testing for the counter being zero essentially is checking
to see if � 4 60L (or � � 60L ); this can be done by comparing
� 4 (or � � ) to �/' / � � , if it is the odd step, and to � � / �9' if it
is an even step. Now suppose the value of the clock � 4 is J� �at time � �%L . If the value of the counter remains unchanged
in the next step of computation, then simply reset the clock
� 4 when its value becomes L (i.e. at time ��� , / � ��L�/ J

� � ),
and that way its value at time �8� ,0/�� ��L will be J

� � . If the
value of the counter is to be incremented, then we reset a
clock � at the time when � 4 60L , and reset � 4 at some time
after ���%,)/ � � L / J

� � but before �8��,�/�� � L . At time �8��,�/�� � L ,
we test if � 6 1 �5��4 , and this will ensure that the value of
��4 is 4� �

J
� � 6 J

� ��� O . In order to decrement the counter in
the � th step, we first nondeterministically reset a clock � in
the interval � �8�</$/�� ��L���� ��L / J

� � � and check if at time L ��� ,
� 6 1 �.� 4 . This will ensure that the value of � at time L �.�
represents the counter value �0/ / . We will then reset � 4

when � 6 L , and so at time ��� , /�� �#L , the value of � 4 isJ
� ��� O .Now, it can be seen that at time / the automaton � will
reach a particular control mode 3 � if and only if the two-
counter machine 
 halts. Hence, the bounded reachability
problem for timed automata with linear constraints is unde-
cidable.

The propositions 9 and 10 imply the following theorem.

Theorem 11 The problem of membership of timed traces
with � -transitions is PSPACE-complete for timed automata,
and is undecidable for timed automata with linear con-
straints and linear hybrid automata.
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