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ABSTRACT

COMMUTING-LIFTABLE SUBGROUPS OF GALOIS GROUPS

Adam Topaz

Florian Pop

Let n denote either a positive integer or ∞, let ` be a fixed prime and let K

be a field of characteristic different from `. In the presence of sufficiently many

roots of unity, we show how to recover much of the decomposition/inertia structure

of valuations in the Z/`n-elementary abelian Galois group of K, while using only

the group-theoretical structure of the Z/`N -abelian-by-central Galois group of K

whenever N is sufficiently large with respect to n. Moreover, if n = 1 then N = 1

suffices, while if n 6=∞, we provide an explicit N0 6=∞, as a function of n and `, for

which all N ≥ N0 suffice above. In the process, we give a complete classification of

so-called “commuting-liftable subgroups” of elementary-abelian Galois groups and

prove that they always arise from valuations.
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Chapter 1

Introduction

What information is encoded in Galois groups? This question is at the origins of

anabelian geometry. Several results in the subject suggest that, in many special but

important cases, the answer is “everything” when one deals with all of the Galois-

theoretical information. For instance, the celebrated Neukirch-Uchida-Iwasawa-Pop

theorem [Neu69b], [Neu69a], [Uch76], [Pop94], [Pop00] shows that an infinite field

K which is finitely generated over its prime subfield is completely characterized

by its absolute Galois group GK = Gal(K̄|K). These results form the birational

portion of a collection of conjectures proposed by Grothendieck in his famous letter

to Faltings [Gro97]. Grothendieck’s vision was that certain objects (varieties resp.

function fields, etc.) should be completely determined by their Galois theory (étale

fundamental group resp. absolute Galois group, etc.), and thus dubbed anabelian,

when there is sufficiently rich interplay between the arithmetic and geometric
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portions of the Galois group.

Going beyond Grothendieck’s original intuition, in the early 1990’s Bogomolov

[Bog91] introduced a program whose final goal is to reconstruct function fields

of purely geometric nature (i.e. function fields over an algebraically closed

field of transcendence degree ≥ 2) from almost-abelian pro-` Galois-theoretical

information. This program has since been carried through for function fields over

the algebraic closure of a finite field by Bogomolov-Tschinkel [BT08] in dimension

2 and by Pop [Pop12] in general. Bogomolov’s program suggests that the birational

geometry of such geometric function fields should be encoded even in very small

Galois groups. If successful, this program would go far beyond Grothendieck’s

original birational anabelian philosophy – see [Sza04] for more on the connection

between Bogomolov’s program and Grothendieck’s birational anabelian geometry.

While one cannot expect analogous results to hold true for arbitrary fields as

there are many non-isomorphic fields which have isomorphic absolute Galois groups,

one can still recover much of the arithmetic/geometric information of the base-

field using Galois theory. For instance, essentially all of the information about

the structure of valuations of a field is encoded in its absolute Galois group (see

[Koe03]). Actually, such results which detect valuations, called the “local-theory,”

are the essential first step in the birational anabelian results mentioned above. On

the other hand, in light of Bogomolov’s program among other results, current trends

in the literature suggest that these so-called “almost-abelian” Galois groups play
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an essential role in encoding various important properties of a field. The purpose

of this thesis is to develop a theory which recovers valuations using almost-abelian

Galois groups in arbitrary situations.

1.1 Local Theories

The first key step in most strategies towards anabelian geometry is to develop

a local theory, by which one recovers inertia and/or decomposition groups of

“points” using the given Galois theoretic information. In the context of anabelian

curves, for example, one should eventually detect decomposition groups of closed

points of the given curve within its étale fundamental group. On the other hand,

in the birational setting, which is the focus of the present work, this corresponds to

detecting decomposition groups of arithmetically and/or geometrically meaningful

places of the function field under discussion within its Galois groups.

The first instance of a local theory is the famous Artin-Shreier theorem from the

1920’s which relates torsion elements of absolute Galois groups to orderings of a field;

this theorem is considered by many to be the first result in birational anabelian ge-

ometry. On the other hand, the first local-theory involving valuations is Neukirch’s

group-theoretical characterization of decomposition groups of finite places of global

fields [Neu69b]. This was the basis for the celebrated Neukirch-Uchida-Iwasawa the-

orem mentioned above. The Neukirch-Uchida-Iwasawa theorem was expanded by

Pop to all higher dimensional finitely generated fields by developing a local-theory
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based on his q-Lemma [Pop94], [Pop00]. The q-Lemma deals with the absolute

pro-q Galois theory of fields – dealing with q-Sylow subgroups of absolute Galois

groups – and, as with Neukirch’s result, works only in arithmetical situations.

On the other hand, at about the same time, two non-arithmetically based meth-

ods were proposed for detecting valuations. The first approach uses the theory

of rigid elements which was first introduced by Ware [War81] in the context of

quadratic forms and further developed by many including [AEJ87], [Koe95], [Efr99]

in the context of valuation theory. Rigid elements have since been used in Galois

theoretical settings to detect valuations using Galois groups. In the pro-` case, one

can detect inertia/decomposition groups of `-tamely branching valuations of almost

arbitrary fields using the full pro-` Galois group as the input – see [EN94], [Efr95]

for the pro-2 situation and [EK98] for the pro-` situation with ` 6= 2. Moreover,

using rigid elements one can also detect inertia/decomposition groups associated to

almost arbitrary valuations of arbitrary fields using the absolute Galois group

as the input [Koe03]. The main benefit of this approach is that it works for ar-

bitrary fields (which contain sufficiently many roots of unity in the pro-` case);

the draw-back is that the input – the full pro-` Galois group resp. absolute Galois

group of a field – is completely unapproachable in terms calculation except for very

few exceptional cases (see [Koe98]).

The second approach is Bogomolov’s theory of commuting liftable pairs in Galois

groups which was first proposed in [Bog91] and further developed together with
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Tschinkel in [BT02]. The benefit of this theory is that it requires certain “almost-

abelian” pro-` Galois groups as its input, which are far more computable in

comparison with the full pro-` Galois group; however, this theory only works for

fields which contain an algebraically closed subfield. Nevertheless, this theory

was a key technical tool in the local theory needed to settle Bogomolov’s program in

birational anabelian geometry for function fields over the algebraic closure of finite

fields – see Bogomolov-Tschinkel [BT08] in dimension 2 and Pop [Pop10b],[Pop12]

in general.

Until now, the two approaches – that of rigid elements versus that of commuting-

liftable pairs – remained almost completely separate in the literature, with a few

notable exceptions. Pop suggested in his Oberwolfach report [Pop06a] that the two

methods should be linked, even in the analogous (Z/`n)-abelian-by-central situation,

but unfortunately never followed up with the details. Also, the work done by Mahé,

Mináč and Smith [MMS04] in the (Z/2)-abelian-by-central situation, and Efrat-

Mináč [EM11b] in special cases of the (Z/`)-abelian-by-central situation suggest a

connection between the two methods in this analogous context.

The purpose of this thesis is to provide an approach which unifies the method of

commuting pairs with the method of rigid elements. At the same time, we provide

simpler arguments for the pro-` abelian-by-central assertions of [BT02], and prove

more general versions of these assertions which assume only that the field contains

µ`∞ and not necessarily an algebraically closed subfield as required by [BT02]. Our

5



theory also generalizes many of the Galois-theoretical results arising from the theory

of rigid elements. The following Main Theorem is a summary of the more detailed

Theorems 1.4.1 and 1.4.2.

Main Theorem. Let n ≥ 1 or n = ∞ be given. Then there exists an explicit

function R : {1, 2 . . . ,∞} → {1, 2, . . . ,∞} satisfying: R(1) = 1, R(m) ≥ m, and

R(m) 6= ∞ if m 6= ∞, so that for all N ≥ R(n) the following holds. Let K be a

field such that CharK 6= ` which contains µ2`N . Then there is a group-theoretical

recipe which recovers (minimized) inertia and decomposition subgroups in the maxi-

mal Z/`n-elementary-abelian Galois group of K using the group-theoretical structure

encoded in the Z/`N -abelian-by-central Galois group of K.

1.2 Overview

We now give a brief overview of the two local theories mentioned above. Let K be

a field with CharK 6= ` which contains the `th roots of unity µ` ⊂ K. Denote by

K(`) the maximal pro-` Galois extension of K (inside a chosen separable closure

of K) so that GK := Gal(K(`)|K) is the maximal pro-` quotient of the absolute

Galois group GK of K. Let w be a valuation of K(`) and denote by v = w|K its

restriction to K; denote by k(w) the residue field of w and k(v) the residue field
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of v, and assume that Char k(v) 6= `. We denote by Tw|v ≤ Zw|v ≤ GK the inertia

resp. decomposition subgroup of w|v inside GK . Recall that Zw|v/Tw|v = Gk(v) and

that the canonical short exact sequence

1→ Tw|v → Zw|v → Gk(v) → 1

is split. Moreover, since Char k(v) 6= `, Tw|v is a free abelian pro-` group of the same

rank as v(K×)/`, and the action of Gk(v) on Tw|v factors via the `-adic cyclotomic

character. Thus, if σ ∈ Tw|v, τ ∈ Zw|v are given non-torsion elements so that the

closed subgroup 〈σ, τ〉 is non-pro-cyclic, then 〈σ, τ〉 = 〈σ〉 o 〈τ〉 ∼= Z` o Z` is a

semi-direct product. Here and throughout we denote by 〈S〉 the closed subgroup

generated by S.

Rigid elements were first considered by Ware [War81] in the context of quadratic

forms, then further developed in the context of valuation theory and/or Galois the-

ory by Arason-Elman-Jacob in [AEJ87], Engler-Nogueria in [EN94], Koenigsmann

in [Koe95], Engler-Koenigsmann in [EK98], Efrat in [Efr95], [Efr99], [Efr07] and

also by others. In a few words, the theory of rigid elements in the context of pro-`

Galois groups (as in [EN94], [Efr95], [EK98]) asserts that the only way the situation

in the previous paragraph can arise is from valuation theory. More precisely, let

K be a field such that CharK 6= ` and µ` ⊂ K. If σ, τ ∈ GK are non-torsion

elements such that 〈σ, τ〉 = 〈σ〉o 〈τ〉 is non-pro-cyclic, then there exists a valuation

w of K(`) such that, denoting v = w|K , one has Char k(v) 6= `, v(K×) 6= v(K×`),

σ, τ ∈ Zw|v and 〈σ, τ〉/(〈σ, τ〉 ∩ Tw|v) is cyclic. The key technique in this situation
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is the explicit “creation” of valuation rings inside K using rigid elements and so-

called “`-rigid calculus” developed, for instance, in [Koe95] and/or [Efr99]. Indeed,

under the assumption that GK = 〈σ, τ〉 = 〈σ〉o 〈τ〉 as above, one shows that K has

sufficiently many “strongly-rigid elements” to produce an `-Henselian valuation v

of K with v(K×) 6= v(K×`) and Char k(v) 6= `.

Assume, on the other hand, that µ`∞ ⊂ K. In this case, we denote by

Πa
K :=

GK
[GK ,GK ]

, and Πc
K :=

GK
[GK , [GK ,GK ]]

the maximal pro-` abelian resp. maximal pro-` abelian-by-central Galois groups of

K; this terminology and notation was introduced by Pop [Pop10b]. In the above

context, assume again that Char k(v) 6= `, then the `-adic cyclotomic character of K

(and of k(v)) is trivial. Hence, Gk(v) acts trivially on Tw|v; we conclude that Zw|v ∼=

Tw|v×Gk(v) and recall that Tw|v is abelian. Denote by Kab the Galois extension of K

such that Gal(Kab|K) = Πa
K , vab := w|Kab , Tv := Tvab|v and Zv := Zvab|v; since Πa

K

is abelian, Tv and Zv are independent of choice of w. We deduce that for all σ ∈ Tv

and τ ∈ Zv, there exist lifts σ̃, τ̃ ∈ Πc
K of σ, τ ∈ Πa

K which commute in Πc
K ; since

Πc
K is a central extension of Πa

K , we conclude that any lifts σ̃, τ̃ ∈ Πc
K of σ, τ ∈ Πa

K

commute as well – such a pair σ, τ ∈ Πa
K is called commuting-liftable.

Bogomolov and Tschinkel’s theory of commuting-liftable pairs [BT02] asserts

that, under the added assumption that K contains an algebraically closed subfield

k = k̄, the only way a commuting pair can arise is via a valuation as described
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above.1 The method of loc.cit. uses the notion of a “flag function;” in particu-

lar, this is a homomorphism K× → Z` which corresponds, via Kummer theory,

to an element in Tv for some valuation v. One then considers σ, τ ∈ Πa
K as ele-

ments of Hom(K×,Z`) = Hom(K×/k×,Z`) via Kummer theory, and produces the

corresponding map:

Ψ = (σ, τ) : K×/k× → Z2
` ⊂ A2(Q`).

When one views K×/k× = Pk(K) as an infinite dimensional projective space over

k, the assumption that σ, τ are a commuting-liftable-pair ensures that Ψ sends

projective lines to affine lines. This severe restriction on Ψ is then used to show

that some Z`-linear combination of σ and τ is a flag function.

As mentioned above, the theory of commuting-liftable pairs was originally out-

lined by Bogomolov in [Bog91], where he also introduced a program in birational

anabelian geometry for fields of purely geometric nature – i.e. function fields over

an algebraically closed field of characteristic different from ` and dimension ≥ 2

– which aims to reconstruct such function fields K from the Galois group Πc
K . If

CharK > 0, the above technical theorem eventually allows one to detect the decom-

position and inertia subgroups of quasi-divisorial valuations inside Πa
K using the

group-theoretical structure encoded in Πc
K (see Pop [Pop10b]). In particular, for

1It turns out that Char k(v) 6= ` is not needed in order to produce a commuting-liftable pair,

under a modified notion of decomposition and inertia. It turns out that valuations with residue

characteristic equal to ` can and do arise from commuting-liftable pairs, as we will see in this

thesis.
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function fields K over the algebraic closure of a finite field, one can detect the de-

composition/inertia structure of divisorial valuations inside Πa
K using Πc

K . While

Bogomolov’s program in its full generality is far from being complete, it has been

carried through for function fields K over the algebraic closure of a finite field by

using Bogomolov’s theory of commuting-liftable pairs to develop the local theory

(see [BT02] and [Pop11] for more on the local theory).

In this thesis, we obtain analogous results to those in the theory of commuting-

liftable pairs, for the (Z/`n)-abelian-by-central and the pro-`-abelian-by-central sit-

uations, by elaborating on and using the theory of rigid elements, while working

under less restrictive assumptions than Bogomolov and Tschinkel’s approach. We

now begin by introducing some technical assumptions and notation.

1.3 Notation

For the remainder of the discussion, ` will denote a fixed prime. A “subgroup”

in the context of profinite groups will always mean a closed subgroup, and all

homomorphisms we consider will be continuous. For an abelian group A, we will

denote by Â the `-adic completion of A; namely:

Â := lim
n
A/`n.

To simplify the notation somewhat, for a field F we will denote by F̂ = F̂×, the

`-adic completion of F×.

10



Let K be a field whose characteristic is different from `. Let n denote either

a positive integer or n = ∞ and assume that µ2`n ⊂ K. In this case, we denote

by Ga,nK the maximal (Z/`n)-abelian (resp. pro-` abelian if n = ∞) and Gc,nK the

maximal (Z/`n)-abelian-by-central (resp. pro-`-abelian-by-central) Galois groups of

K. Explicitly, denote by G(2,n)
K := [GK ,GK ]·(GK)`

n
and G(3,n)

K = [GK ,G(2,n)
K ]·(G(2,n)

K )`
n
,

then

Ga,nK := GK/G(2,n)
K , and Gc,nK := GK/G(3,n)

K .

The canonical projection Π : Gc,nK � Ga,nK induces the following maps; we denote

ker Π additively. First, [•, •] : Ga,nK × Ga,nK → ker Π defined by [σ, τ ] = σ̃−1τ̃−1σ̃τ̃

where σ̃, τ̃ ∈ Gc,nK are some lifts of σ, τ ∈ Ga,nK ; since Π is a central extension, this

is well-defined and bilinear. Second, (•)π : Ga,nK → ker Π defined by σπ = σ̃`
n

(resp.

σπ = 0 if n = ∞) where, again, σ̃ ∈ Gc,nK is some lift of σ ∈ Ga,nK ; since Π is a

central extension with kernel killed by `n, this map is well defined and, if ` 6= 2,

this map is linear. We will furthermore denote by σβ = 2 · σπ, thus (•)β is a linear

map Ga,nK → ker Π regardless of `.

A pair of elements σ, τ ∈ Ga,nK will be called a commuting-liftable pair (or

a CL-pair for short) provided that [σ, τ ] ∈ 〈σβ, τβ〉. Our definition of a CL-pair

diverges from Bogomolov-Tschinkel’s definition since we must account for situations

where the cyclotomic character is non-trivial; in fact, if µ`∞ ⊂ K, our notion of a

CL-pair agrees with Bogomolov and Tschinkel’s. For a (closed) subgroup A ≤ Ga,nK ,

11



we denote by

ICL(A) = {σ ∈ A : ∀τ ∈ A, [σ, τ ] ∈ 〈σβ, τβ〉}.

Then ICL(A) is a subgroup2 of A; the group ICL(A) is the so-called “commuting-

liftable-center” of A. We say that A is a CL-group provided that ICL(A) = A.

Remark 1.3.1. Let K be a field such that CharK 6= ` and µ2` ⊂ K, and let

A ≤ Ga,1K be given. In this case, we can give an alternative definition for ICL(A)

which is the same definition given in [Top12]. Using this alternative definition, our

main results generalize the situation of [EM11b]. Namely, for A ≤ Ga,1K one has

ICL(A) = {σ ∈ A : ∀τ ∈ A, [σ, τ ] ∈ Aβ}. See Remark 12.0.4 for the proof of this

equivalence.

Suppose v is a valuation of K. We will denote by Γv = v(K×) the value group,

Ov the valuation ring with valuation ideal mv, and k(v) = Ov/mv the residue field

of v. We reserve the notation Uv = O×v for the v-units and U1
v = 1 + mv for the

v-principal units. We denote by Ka,n = K( `n
√
K) the Galois extension of K such

that Gal(Ka,n|K) = Ga,nK , and pick a prolongation v′ of v to Ka,n. We denote by

T nv := Tv′|v and Zn
v = Zv′|v the decomposition and inertia subgroups of v′|v inside

Ga,nK ; since Ga,nK is abelian, these groups are independent of choice of v′. Moreover,

2This is not immediate if n 6= ∞, but follows from Theorem 12.0.2. See also Remark 1.3.1

and/or 12.0.4 for the case n = 1. See also Proposition 13.0.8 alongside the main results of the

paper to see that this definition of ICL is indeed sufficient in the context of valuation theory.
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we introduce the minimized decomposition and inertia subgroups:

Dn
v := Gal(Ka,n|K( `n

√
U1
v )), and Inv := Gal(Ka,n|K( `n

√
Uv)).

Observe that Inv ≤ Dn
v ; more importantly, however, Inv ≤ T nv and Dn

v ≤ Zn
v with

equality whenever Char k(v) 6= ` (see Proposition 13.0.6). It turns out that the

minimized inertia and decomposition groups, Inv ≤ Dn
v , have an abelian-by-central

Galois theoretical structure which resembles that of the usual inertia and decompo-

sition, even for valuations whose residue characteristic is `; see Proposition 13.0.8

for the details. In particular, for any valuation v of K, one has Inv ≤ ICL(Dn
v )

regardless of Char k(v), just as T nv ≤ ICL(Zn
v ) for v with Char k(v) 6= ` as discussed

above.

We denote byWK,n the collection of valuations v of K which satisfy the following

conditions:

1. Γv contains no non-trivial `-divisible convex subgroups.

2. v is maximal among all valuations w such that Dn
v = Dn

w and Γw contains no

non-trivial `-divisible convex subgroups; i.e. for all refinements w of v such

that Dn
w = Dn

v as subgroups of Ga,nK , one has Inw = Inv .

Furthermore, denote by VK,n the subset of valuations v ∈ WK,n such that k(v)×/`n

(resp. k̂(v) if n = ∞) is non-cyclic. It turns out that many valuations of interest

are contained in WK,n. For instance, if K is a function field over an algebraically

closed field k, then all Parshin chains of divisors are contained in WK,n and, if

13



the transcendence degree of K|k is ≥ 2, then those Parshin chains of non-maximal

length are contained in VK,n (this is also true when k is a “strongly” `-closed field

– see Example 8.1.2).

Remark 1.3.2. Using the results of this thesis, we can give an alternative equivalent

definition for VK,n, in the case where CharK 6= ` and µ2`n ⊂ K, which is much

easier to describe – see Lemma 8.2.6 and Theorem 12.0.2. VK,n is precisely the

collection of valuations v of K such that:

1. Γv contains no non-trivial `-divisible convex subgroups.

2. I1
v = ICL(D1

v) 6= D1
v.

In particular, we see that VK,m = VK,n for all m ≤ n.

In a similar way, we will denote by V ′K,n the collection of valuations v of K which

satisfy the following conditions:

1. Char k(v) 6= `.

2. Γv contains no non-trivial `-divisible convex subgroups.

3. v is maximal among all valuations w such that Char k(w) 6= `, Dn
v = Dn

w and

Γw contains no non-trivial `-divisible convex subgroups; i.e. for all refinements

w of v such that Char k(w) 6= ` and Dn
w = Dn

v as subgroups of Ga,nK , one has

Inw = Inv .

4. Ga,nk(v) is non-cyclic.
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Observe that any valuation v ∈ VK,n, whose residue characteristic is different

from `, lies in V ′K,n. Moreover, note that VK,n = V ′K,n provided that CharK > 0.

In general, however, the two sets are quite different.

Denote by N the collection of positive integers and N = N ∪ {∞}; we declare

that ∞ > n for all n ∈ N. If N ≥ n and µ`N ⊂ K, we will denote the canonical

map Ga,NK → Ga,nK by f 7→ fn. Furthermore, for an extension L|K of fields, we will

denote by f 7→ fK the canonical map Ga,nL → Ga,nK . These two maps commute:

(fn)K = (fK)n.

1.4 Main Results

The main goal of this thesis is to produce a function R : N → N, satisfying the

following conditions:

• If n ∈ N then R(n) ∈ N.

• R(1) = 1 and R(∞) =∞.

• R(n) ≥ n for all n ∈ N.

so that Theorems 1.4.1 and 1.4.2 below hold true. While we succeed to construct

such a function R (in the notation introduced in Part II, R(n) = N(M2(M1(n)))

suffices), we do not expect that our function is optimal. However, the requirement

that R(1) = 1 and R(∞) = ∞ ensures that Theorems 1.4.1 and 1.4.2 include

the main results of [Top12] and therefore also [BT02] as special cases. See also

15



Theorem 1.4.2 parts (1) and (2) along with Remark 1.3.1 in comparison with the

main theorems of [EN94], [Efr95], [EK98], and also the main theorem of [EM11b].

In particular, our Theorem 1.4.2 generalizes these previous results in almost all

cases.

Theorem 1.4.1. Let n ∈ N be given and let N ≥ R(n). Let K be a field such that

CharK 6= ` and µ2`N ⊂ K.

1. Let D ≤ Ga,nK be given. Then there exists a valuation v of K such that D ≤ Dn
v

and D/(D∩Inv ) is cyclic if and only if there exists a CL-group D′ ≤ Ga,NK such

that D′n = D.

2. Let I ≤ D ≤ Ga,nK be given. Then there exists a valuation v ∈ VK,n such that

I = Inv and D = Dn
v if and only if the following hold:

(a) There exist D′ ≤ Ga,NK such that (ICL(D′))n = I and D′n = D.

(b) I ≤ D ≤ Ga,nK are maximal with this property – i.e. if D ≤ E ≤ Ga,nK and

E ′ ≤ Ga,NK is given such that E ′n = E and I ≤ (ICL(E ′))n, then D = E

and I = (ICL(E ′))n.

(c) ICL(D) 6= D (i.e. D is not a CL-group).

In particular, Theorem 1.4.1 part 2 provides a group theoretical recipe to detect

Inv ≤ Dn
v for v ∈ VK,n using only the group-theoretical structure of Gc,NK , whenever

µ2`N ⊂ K where N = R(n).
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By enlarging the group Gc,NK we can detect which of those valuations v in the

theorem above have residue characteristic different from `. This therefore gives a

group-theoretical recipe to detect the usual decomposition and inertia subgroups

associated to valuations v ∈ VK,n whose residue characteristic is different from `.

Theorem 1.4.2. Let n ∈ N be given and let N ≥ R(n). Let K be a field such that

CharK 6= ` and µ2`N ⊂ K.

1. Let D ≤ Ga,nK be given and denote by L := (Ka,n)D. Then there exists a

valuation v of K such that Char k(v) 6= `, D ≤ Zn
v and D/(D ∩ T nv ) is cyclic

if and only if there exists a CL-group D′ ≤ Ga,NL such that (D′n)K = D.

2. Assume that ICL(Ga,nK ) 6= Ga,nK and consider (ICL(Ga,NK ))n =: T . Then there

exists a (possibly trivial) valuation v ∈ VK,n such that Char k(v) 6= `, T = T nv

and Ga,nK = Zn
v .

3. Let v ∈ VK,n be given and denote by I := Inv ≤ Dn
v =: D, L := (Ka,n)D and

L1 := (Ka,1)D1. Then the following are equivalent:

(a) Char k(v) 6= `.

(b) There exist subgroups I ′ ≤ D′ ≤ Ga,NL such that I ′ ≤ ICL(D′), (I ′n)K = I

and (D′n)K = D.

(c) There exist subgroups I ′ ≤ D′ ≤ Ga,1L1
such that I ′ ≤ ICL(D′), I ′K = I1

and D′K = D1.
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Moreover, if these equivalent conditions hold then we have: I = Inv = T nv and

D = Dn
v = Zn

v .

4. Let I ≤ D ≤ Ga,nK be given and denote by L := (Ka,n)D. Then there exists a

valuation v ∈ V ′K,n such that I = T nv and D = Zn
v if and only if the following

hold:

(a) There exist D′ ≤ Ga,NL such that ((ICL(D′))n)K = I and (D′n)K = D.

(b) I ≤ D ≤ Ga,nK are maximal with this property – i.e. if D ≤ E ≤ Ga,nK

and E ′ ≤ Ga,NLE
(where LE := (Ka,n)E) is given such that (E ′n)K = E and

I ≤ ((ICL(E ′))n)K, then D = E and I = ((ICL(E ′))n)K.

(c) ICL(D) 6= D (i.e. D is not a CL-group).

Let n ∈ N be given and denote by N = R(n). Denote by GM,n
K the smallest

quotient of GK for which Gc,NK is a quotient and Gc,1L is a subquotient for all K ⊂

L ⊂ Ka,1. Therefore, Theorem 1.4.1 part 2 along with Theorem 1.4.2 part 3 (in

particular the equivalence of (a) and (c)) provide a group-theoretical recipe to detect

T nv ≤ Zn
v for valuations v ∈ VK,n such that Char k(v) 6= `, using only the group-

theoretical structure of GM,n
K .

Furthermore, denote by GW,nK the smallest quotient of GK for which Gc,NL is a

subquotient for all K ⊂ L ⊂ Ka,n. Therefore, statement 4 of Theorem 1.4.2

provides a group-theoretical recipe to detect T nv ≤ Zn
v for valuations v ∈ V ′K,n using

only the group-theoretical structure of GW,nK .
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1.5 A Guide Through the Thesis

In part I, we give an overview of valuation theory. We review the notions of coarsen-

ing/refinement of valuations and the approximation theorem. We also give a brief,

but fairly comprehensive summary of decomposition theory of valuations and the

theory of rigid elements. Finally, we review the construction of generalized Gauß

valuations which are certain special valuations of function fields; these valuations

will play an important role providing some surprising examples and corollaries in

Chapter 15.

In Part II, we develop the underlying theory which proves the main results of the

paper. This theory works for an arbitrary field K, and is based on an abstract notion

of “C-pairs” (Definition 6.0.6) which is related to a condition in the Milnor K-theory

of the field (Proposition 10.2.1). The main theorem of this part, and perhaps the

most important theorem in this thesis, is the “Main Theorem of C-Pairs” (Theorem

6.1.1) which relates our notion of C-pairs to restrictions on rigid elements and thus

on the corresponding valuations. We then deduce results which are analogous to

Theorems 1.4.1 and 1.4.2, but in the abstract setting of C-pairs – this is mostly all

done in Section 8.2 and Chapter 9. Finally, we give our K-theoretic characterization

of C-pairs which characterizes C-pairs using certain canonical quotients of Milnor K-

theory (see Section 10.2). The main results in Part II, in particular, give a method

to recover/detect valuations using mod-`n Milnor K-theory. Namely, one is able

to recover the map K×/`n → Γv/`
n induced by a valuation v using KM

∗ (K)/`N ,
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whenever N ≥ R(n).

In Part III, we provide the Galois-theoretic analogue of a C-pair using Kummer

theory and the Merkurjev-Suslin theorem. More precisely, when we identify ele-

ments of Ga,nK as homomorphisms from K to Z/`n resp. Z` using Kummer Theory,

we prove that the abstract notion of a C-pair is equivalent to the notion of a CL-pair

(Definition 11.1.2) as defined above (see Theorem 12.0.2). The Main Theorems of

the thesis, Theorems 1.4.1 and 1.4.2, are then a mere translation of the main re-

sults from Part II to the Galois-theoretical setting using the results of Part III. In

Chapter 15, we prove the following corollary which provides a sufficient condition

to detect whether or not CharK = 0 using the Galois group GM,n
K :

Corollary 1.5.1. Let n ∈ N be given and denote by N = R(n). Let K be a field

such that CharK = 0 and µ2`N ⊂ K. Assume that there exists a field F such

that CharF > 0, µ2`N ⊂ F and GM,n
K
∼= GM,n

F . Then for all v ∈ VK,n one has

Char k(v) 6= `.

As a consequence of this, we find many examples of fields K of characteristic 0

whose maximal pro-` Galois group GK is not isomorphic to GF for any field F of

positive characteristic (which also contains µ2`).

Corollary 1.5.2. Suppose that K is one of the following:

• A function field over a number field k such that µ2` ⊂ k, and dim(K|k) ≥ 1.

• A function field over a strongly `-closed3 field k (e.g. k an algebraically closed

3See Example 8.1.2 for the definition of a strongly `-closed field.
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field) of characteristic 0 such that dim(K|k) ≥ 2.

Then there does not exist a field F such that µ2` ⊂ F , CharF > 0 and GK ∼= GF .

This is obtained by proving that, for K as in the corollary above, VK,1 contains

a valuation whose residue characteristic is `; it is here that we use the construction

of Chapter 5. Actually, such valuations exist in much more general situations than

the two classes of examples above and thus many more examples exist. However,

the two classes of examples above are of particular interest in birational anabelian

geometry and so we have mentioned these explicitly.

To summarize, here is a sketch of the proofs of our main results (Theorems 1.4.1

and Theorem 1.4.2) along with the surrounding results of the thesis:

The Abstract Setting:

1. For a field K define GaK(n) = Hom(K×/ ± 1,Z/`n) if n ∈ N resp. GaK(n) =

Hom(K×,Z`) if n = ∞. Two elements σ, τ ∈ GaK(n) are called a C-pair

provided that σ(x)τ(1− x) = σ(1− x)τ(x) for all x 6= 0, 1.

2. If σ, τ ∈ GaK(n) lift to a C-pair σ̃, τ̃ ∈ GaK(N) for some N ≥ R(n), then σ, τ

come about from a valuation (Theorem 6.1). Conversely, valuations provide

many C-pairs (Chapter 6).

3. In the presence of a certain configuration of C-pairs, the valuations which

arise in the “Main Theorem of C-Pairs” are comparable (Chapter 7).
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4. If K contains sufficiently many roots of unity, for a given N ≥ R(n), one has

a supply of C-pairs which lift to C-pairs in GaK(N), arising from valuations.

This allows us to detect which elements of GaK(n) are trivial on U1
v and which

are trivial on Uv for v in a special class of valuations VK,n (Section 8.2). We

prove that VK,n contains essentially all valuations of geometric origin (Example

8.1.2).

5. We then prove analogous results to those above which further restrict the

residue characteristic to be different from ` provided that our given C-pairs

lift to C-pairs in GaL(N) for some N ≥ R(n) and for certain field extensions

L|K (Chapter 9).

6. Finally, we prove that σ, τ ∈ GaK(n) form a C-pair if and only if the quo-

tient KM
2 (K)/〈{K×, T}〉 is sufficiently non-trivial, where T = ker σ ∩ ker τ

(Proposition 10.2.1).

The Galois Theoretical Setting:

1. Here we deal with the situation where CharK 6= ` and K contains sufficiently

many roots of unity. In this case, we identify Ga,nK with GaK(n) using Kummer

Theory. Under this isomorphism (which depends on a choice of isomorphism

µ`n ∼= Z/`n), a C-pair maps to a CL-pair (see Definition 11.1.2 for the defini-

tion of CL-pairs and Theorem 12.0.2 for the equivalence of the two notions).

2. Theorem 1.4.1 is then a reformulation of the results of Section 8.2 using this

22



equivalence (see Theorem 14.0.10).

3. The proof of Theorem 1.4.2 uses the equivalence of C-pairs with CL-pairs,

along with the results of Chapter 9 and proofs similar to those in Section 8.2

(see Theorem 14.0.11).

4. Using Theorem 1.4.2 and/or 14.0.11, if GK ∼= GF for some field F of positive

characteristic which contains sufficiently many roots of unity, then all valu-

ations v ∈ VK,n have residue characteristic different from `. This is because

CharF = Char k(w) for all valuations w of F and thus, if CharF 6= `, the

equivalent conditions of Theorem 14.0.11 claim (3) always hold true.

5. Therefore, if VK,n contains a valuation of residue characteristic ` (and thus

CharK = 0), then GK 6∼= GF for all such F ; this is Corollary 15.0.12.

6. If K is a function field of transcendence degree ≥ 1 over a number field or a

function field of transcendence degree ≥ 2 over an algebraically closed field

(or, more generally, a strongly `-closed field), then VK,n contains a valuation of

residue characteristic `. The proof of this statement uses the argument from

Example 8.1.2, along with the construction of so-called “generalized Gauß

valuations” which are described in Chapter 5, to find a valuation v ∈ VK,n

whose residue characteristic is `.
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Part I

Valuation Theory
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Chapter 2

Valuations of a Field

Let K be a field and O ⊂ K a subring. We say that O is a valuation ring provided

that for all x ∈ K× either x ∈ O or x−1 ∈ O. It is easy to see from this definition

that O is integrally closed in K. Indeed if x ∈ K r O then x−1 ∈ O. Thus there

cannot exist a monic equation in K:

xn + a1x
n−1 + · · ·+ an = 0, ai ∈ O

for otherwise, multiplying the equation above by x−(n−1), we have

x = −a1 + · · ·+ x−(n−1)an ∈ O.

A valuation v of K is a surjective homomorphism v : K× → Γv onto a totally

ordered abelian group Γv which satisfies the ultra-metric inequality:

v(x+ y) ≥ min(v(x), v(y));

here and throughout we will formally set v(0) = ∞ > Γv. If v(x) < v(y) then
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the ultra-metric inequality implies v(x + y) = v(x); indeed if v(x + y) > v(x) then

v(x) = v((x + y) − y) ≥ min(v(x + y), v(−y)) > v(x) which is absurd. To each

valuation v of K we can associate a valuation ring Ov = {x ∈ K : v(x) ≥ 0}. We

will say that two valuations v, w are equivalent provided that Ov = Ow. In the

sequel, we will not distinguish between equivalent valuations.

Conversely, suppose that O is a valuation ring of K. Then we can construct

a valuation vO : K× → K×/O× =: ΓO where ΓO is totally ordered by the rule:

a · O× ≤ b · O× if and only if b/a ∈ O. It is easy to see that the valuation ring

associated to vO is precisely O and thus there is a 1-1 correspondence between

valuation rings of K and equivalence classes of valuations v of K.

A field K endowed with a valuation v will be called a valued field and denoted

(K, v). From the discussion above, we see that Ov r O×v = {x ∈ K : v(x) > 0}

is an ideal of Ov; thus Ov is a local ring with unique maximal ideal mv = {x ∈

K : v(x) > 0}. We call Ov the valuation ring associated to v, mv the valuation

ideal of v, Γv = v(K×) ∼= K×/O×v the value group of v, and k(v) = Ov/mv the

residue field of v; for x ∈ Ov we will usually denote by x̄ the image of x in k(v).

Also, we will sometimes denote by k(v) = kv in places where the former notation is

too cumbersome. The subset U1
v := 1 + mv is a multiplicative group of Uv := O×v ;

we call U1
v the principal v-units and Uv the v-units of v. These groups fit into

two canonical short exact sequences:

1. 1→ Uv → K×
v−→ Γv → 1
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2. 1→ U1
v → Uv

x 7→x̄−−→ k(v)× → 1

These short exact sequences will be of utmost importance later on, especially in

their relationship with decomposition/inertia groups.

2.1 Coarsenings of Valuations

Let Γ be a totally ordered group. We say that a subgroup ∆ of Γ is convex in Γ

provided that for all a, b ∈ ∆ and γ ∈ Γ with a ≤ γ ≤ b, one has γ ∈ ∆. Let (K, v)

be a valued field and suppose ∆ is a convex subgroup of Γv. Then the composition

v′ : K×
v−→ Γv � Γv/∆ =: Γv′ is again a valuation of K. We see from the definition

that Ov′ ⊃ Ov. In fact, the set p∆ := {x ∈ K : v(x) > ∆} is a prime ideal of

Ov and Ov′ = (Ov)p∆
is the localization of Ov at this prime; it is easy to see that

p∆ = mv′ .

On the other hand, any over-ring Ov ⊂ O′ with O′ ⊂ K is a valuation ring

of K (this is immediate from the definition of a valuation ring); say that v′ is an

associated valuation to O′ so that Ov′ = O′. Consider the surjective homomorphism

Γv = K×/Uv → K×/Uv′ = Γv′ ; the kernel of this homomorphism must be a convex

subgroup ∆ of Γv as the map Γv � Γv′ respects the ordering. And, denoting by p∆

as above, we see again that O′ = Ov′ = (Ov)p∆
.

Lastly, given a prime ideal p of Ov, we can consider the over-ring (Ov)p = Ov′ .

By considering the canonical surjective homomorphism Γv → Γv′ as above with

kernel ∆, we find that p∆ = p. Thus we obtain the following proposition:
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Proposition 2.1.1. Suppose that (K, v) is a valued field. Then there is a 1-1

correspondence between the following sets:

1. Convex subgroups ∆ of Γv.

2. Prime ideals of Ov.

3. Over-rings O′ ⊃ Ov contained in K.

The correspondences are defined as follows:

1. To a convex subgroup ∆, associated the prime ideal p∆ = {x ∈ K : v(x) > ∆}

resp. the valuation ring associated to the valuation v′ : K×
v−→ Γv � Γv/∆ =:

Γv′.

2. To a prime ideal p of Ov, associate the over-ring (Ov)p =: Ov′ resp. the convex

subgroup ∆ = ker(Γv � Γv′).

3. To an over-ring Ov′ ⊃ Ov, associate the convex subgroup ∆ = ker(Γv � Γv′)

resp. the prime ideal p = mv′ (this is an ideal of Ov).

If w is a valuation of K with Ow ⊃ Ov as above, we will say that w is a

coarsening of v and write w ≤ v. One easily finds that the following conditions

are, in fact, equivalent:

1. w is a coarsening of v.

2. Uv ⊂ Uw.
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3. U1
w ⊂ U1

v .

Thus, if w ≤ v, we obtain two short exact sequences:

1. 1→ Uw/Uv → Γv → Γw → 1 and

2. 1→ U1
v /U

1
w → Uv/U

1
w → k(v)× → 1.

Of course, the field itself K is a valuation ring of K which is a coarsening of every

other valuation of K; we call this valuation the trivial valuation and observe that

its value group is {0}, its units are K×, its principal units are {1} and its residue

field is K.

One very important fact about coarsenings of a valuation v, is that they are

totally ordered. In other words, if w1, w2 are two coarsenings of v then w1 ≤ w2 or

w2 ≤ w1. This fact will be used again and again in the remainder of the discussion.

To prove this property, by Proposition 2.1.1, it suffices to prove that the prime

ideals of Ov are totally ordered, and we show this in the following proposition:

Proposition 2.1.2. Let (K, v) be a valued field. Then any two ideals of Ov are

comparable with respect to inclusion. In particular, any two elements of the following

sets are comparable by Proposition 2.1.1:

1. Convex subgroups ∆ of Γv.

2. Prime ideals of Ov.

3. Over-rings O′ ⊃ Ov contained in K (and thus also coarsenings of v).
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Proof. Suppose a = (a) and b = (b) are principal ideals of Ov. Since either a/b ∈ Ov

or b/a ∈ Ov we see that either a ∈ (b) or b ∈ (a) and thus (a) ⊂ (b) or (b) ⊂ (a).

If a and b are arbitrary ideals with b ∈ b r a and a ∈ a, then we must have

(a) ⊂ (b); the other option is (b) ⊂ (a) which would imply that b ∈ a. Thus

a ⊂ b.

2.2 Compositions of Valuations

In the previous subsection, we saw how to coarsen valuations – i.e. make the value

group smaller. In this subsection, we will see how to refine valuations – i.e. make

the value group bigger.

Suppose that (K, v) is a valued field and w is a valuation of k(v). Consider the

subring O of Ov which is the pre-image of Ow ⊂ k(v) under the canonical projection

Ov → k(v). Then O is a valuation ring of K, and we denote by w ◦v the associated

valuation – this is called the valuation-theoretic composition of v and w. In

fact, it is immediate that v is a coarsening of w◦v and the kernel ∆ of the canonical

projection Γw◦v � Γv is canonically isomorphic to Γw; i.e. we obtain the following

canonical short exact sequence of value groups:

0→ Γw → Γw◦v → Γv → 0.

Conversely, if Ov′ ⊂ Ov is a subring which is also a valuation ring (whose

associated valuation is v′) then the image Ow of Ov′ in k(v) is again a valuation ring
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(with associated valuation w). In this case, v′ will be called a refinement of v (note

that v is a coarsening of v′); we will write v′ ≥ v and denote the induced valuation

on k(v) by v′/v. In particular, one has (v′/v) ◦ v = v′, and the corresponding value

groups fit into the following short exact sequence:

0→ Γv′/v → Γv′ → Γv → 0.

We summarize the discussion in the following proposition:

Proposition 2.2.1. Let (K, v) be a valued field. Then there is a 1-1 correspon-

dence between refinements of v and the valuations w of k(v) defined by sending a

refinement v′ of v to v/v′ (defined above) resp. sending a valuation w of k(v) to

w ◦ v (defined above).

Moreover, if v′ is a refinement of v, then k(v′) = k(v′/v) and one has a canonical

short exact sequence of ordered groups:

0→ Γv′/v → Γ′v → Γv → 0.

Lastly, the coarsening of v′ associated to Γv′/v, considered as a convex subgroup of

Γv′ (see Proposition 2.1.1) is precisely v.

2.3 The Approximation Theorem

In this subsection we will recall the general analogue of a well-known result from

basic number theory called the approximation theorem which deals with the p-adic
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absolute values resp. the Archemedian absolute values of a number field. We will

provide the statement of the theorem without proof, referring the reader to [EP05]

Theorem 2.4.1 for the detailed proof.

Two valuations v, w of a field K are called independent provided that the

finest common coarsening of v and w is the trivial valuation – i.e. K is generated,

as a ring, by Ov and Ow.

Theorem 2.3.1 (The Approximation Theorem for Independent Valuations). Sup-

pose that v1, · · · , vm are pairwise independent valuations of a field K. Let γi ∈ Γvi,

i = 1, . . . ,m be given and a1, . . . , am ∈ K. Then there exists x ∈ K such that

vi(x− ai) > γi for all i = 1, . . . ,m.

We explicitly state and prove the following corollary of the approximation the-

orem since it will be used later on.

Corollary 2.3.2. Let v, w be two valuations of a field K. Then the following

conditions are equivalent:

1. v, w are independent.

2. Uv · Uw = K×.

3. U1
v · U1

w = K×.

Proof. The following implications are trivial: (3) ⇒ (2) ⇒ (1). Thus, it suffices

to prove that (1) ⇒ (3). We know from the approximation theorem that for any
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given a ∈ K×, there exists an x such that v(x− 1) > 0 and w(x− a) > w(a). Thus

x ∈ U1
v while w(x/a− 1) > 0 implies that x/a ∈ U1

w. Thus a/x ∈ U1
w as well and so

a = x · (a/x) ∈ U1
v · U1

w. Therefore we see that K× = U1
v · U1

w.
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Chapter 3

Decomposition Theory of

Valuations

Hilbert’s Decomposition theory deals with the behavior of valuations in Galois ex-

tensions of valued fields. In this chapter, we will state many facts about decompo-

sition, inertia and ramification groups of valuations which will be used later on, but

this will be done without proof. The details behind all of these facts, most of which

are in fact theorems, can be found in [ZS75] which is still, in the author’s opinion,

the best source for ramification theory of general valuations.

An extension of valued fields (K, v) ⊂ (L,w) is an extension of the underlying

fields L|K so that Ov = K ∩ Ow; alternatively, one has an embedding Γv ⊂ Γw of

value groups so that the restriction of w : L× → Γw to K× is precisely v : K× → Γv.

In this case we will also say that w is a prolongation of v to L|K and write w|v.
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Observe that Uw ∩ K× = Uv and mw ∩ K = mv; we thus obtain an extension of

residue fields k(w)|k(v) and, in particular, U1
w ∩K = U1

v .

If L|K is an algebraic extension and v is a valuation of K, we can describe all

prolongations of v to L as follows. Consider the integral closure Õv of Ov in L|K.

Suppose m is a maximal ideal of Õv and that m ∩ Ov = mv. Then the localization

(Õv)m is a valuation ring of L which prolongs Ov. Moreover, any prolongation of v

to L|K arises in this way. We will denote by Xv(L) the prolongations of v to L|K

(as always, we identify equivalent valuations).

Suppose that w ∈ Xv(L) and σ ∈ Aut(L|K). Then w ◦σ is again a prolongation

of v to L|K; we say that w◦σ is conjugate to w. It is easy to see thatOw◦σ = σ−1Ow

as subrings of L; indeed, w(x) ≥ 0 iff w ◦ σ(σ−1x) ≥ 0. In particular, we see that

Aut(L|K) acts on Xv(L).

3.1 General Decomposition Theory of Valuations

Suppose that K ′|K is a Galois extension, v is a valuation of K and v′ ∈ Xv(K
′)

is fixed. Thus, in particular, (K, v) ⊂ (K ′, v′) is an extension of valued fields. We

define the decomposition group of v′|v to be:

Zv′|v := {σ ∈ Gal(K ′|K) : σ(Ov′) = Ov′}

The extension k(v′)|k(v) is normal and, since σmv′ = mv′ for any σ ∈ Zv′|v, such

a σ induces a k(v)-automorphism of k(v′). This yields a canonical homomorphism
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Zv′|v → Aut(kv′|kv) which is known to be surjective. The kernel of this homomor-

phism is called the inertia group of v′|v defined as:

Tv′|v = {σ ∈ Zv′|v : ∀x ∈ K ′, v′(σx− x) > 0}.

Thus we have a canonical short exact sequence

(†) : 1→ Tv′|v → Zv′|v → Aut(kv′|kv)→ 1.

Denote by µ(kv′) the set of roots of unity inside k(v′). Then one has a canonical

pairing:

Ψv′|v : Tv′|v × Γv′/Γv → µ(kv′)

which is defined by (σ, v′(x)) 7→ σx/x. The right kernel of this pairing is trivial

while the left kernel is the ramification group of v′|v defined as:

Vv′|v = {σ ∈ Tv′|v : ∀x ∈ K ′ v′(σx− x) > v′(x)}.

Denote by p = Char k(v) = Char k(v′). Then Vv′|v is the unique Sylow-p-subgroup

of Tv′|v if p 6= 0 and Vv′|v is trivial if p = 0; in fact, Vv′|v is a normal subgroup

of Zv′|v. In other words, we see that Tv′|v/Vv′|v is abelian and one has a perfect

pairing Tv′|v/Vv′|v × Γv′/Γv → µ(kv′). Moreover, the action of Aut(kv′|kv) is com-

patible with Ψv′|v in the natural sense, and, in particular, the action of Aut(kv′|kv)

on Tv′|v/Vv′|v induced by (†) factors via the cyclotomic character Aut(kv′|kv) →

Aut(kv(µ(kv′))|kv).

Denote by KZ resp. KT resp. KV the fixed field of Zv′|v resp. Tv′|v resp. Vv′|v
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of K ′|K and denote by vZ resp. vT resp. vV the restriction of v′ to KZ resp. KT

resp. KV . Then the following hold:

1. The following value groups are equal: Γv = ΓvZ = ΓvT .

2. kv = kvZ and kvT |kvZ = kvT |kvZ is the maximal separable sub-extension of

kv′|kv = kv′|kvZ ; thus kvT |kvZ is Galois and Aut(kv′|kv) = Gal(kvT |kvZ).

3. The extension KV |KT is totally tamely ramified – namely kvV = kvT and the

p-primary component of ΓvV /ΓvT is trivial.

As K ′|K is Galois, the action of Gal(K ′|K) on Xv(K
′) is transitive. As we’ve

mentioned above, Vv′|v and Tv′|v are both normal subgroups of Zv′|v. More precisely,

we have the following fact about conjugation by elements of Gal(K ′|K). Suppose

that v′′ is another element of Xv(K
′) and say that v′′ = v′◦σ (equivalently σ(Ov′′) =

Ov′ and/or σ−1(Ov′) = Ov′′). Then σZv′′|vσ
−1 = Zv′|v, σTv′′|vσ

−1 = Tv′|v and

σVv′′|vσ
−1 = Vv′|v.

3.2 Compatability Properties

Using the notation above, suppose that K0 is a sub-extension of K ′|K and v0

denotes the restriction of v′ to K0. Thus we have a tower of valued fields (K, v) ⊂

(K0, v0) ⊂ (K ′, v′). Then Zv′|v∩Gal(K ′|K0) = Zv′|v0 , Tv′|v∩Gal(K ′|K0) = Tv′|v0 and

Vv′|v ∩ Gal(K ′|K0) = Vv′|v0 . If moreover K0|K is Galois, then the restriction map
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Gal(K ′|K) � Gal(K0|K) induces canonical surjective homomorphisms Zv′|v �

Zv0|v, Tv′|v � Tv0|v and Vv′|v � Vv0|v.

Suppose that w is a valuation of k(v) and w′ is a prolongation of w to k(v′);

then w′ ◦ v′ =: v′1 is a prolongation of w ◦ v =: v1. One has the following canonical

inclusion of subgroups of Gal(K ′|K):

Tv′|v ≤ Tv′1|v1
≤ Zv′1|v1

≤ Zv′|v.

Moreover, the image of Tv′1|v1
resp. Zv′1|v1

under the canonical surjection Zv′|v �

Aut(kv′|kv) is precisely Tw′|w resp. Zw′|w; here we define the decomposition/inertia

for a normal extension (which may or may not be Galois) in the same way as for a

Galois extension.

3.3 The Pro-` Case

In this subsection we will investigate the pro-` situation. So, let ` be a fixed prime

and assume that CharK,Char kv 6= ` and µ` ⊂ K. Consider the maximal pro-`

extension K(`) of K and denote the Galois group GK = Gal(K(`)|K). Choose a

prolongation v` of v to K(`). Then k(v`) = kv(`) and the corresponding short exact

sequence (see (†)) is split:

1→ Tv`|v → Zv`|v → Gkv → 1.

Thus we can describe the structure of Zv`|v in a very precise way: Zv`|v
∼= Tv`|voGkv

where the action is given by the cyclotomic character of Gkv via the perfect pairing
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Tv`|v × Γv`/Γv → µ`∞ ; note that Vv`|v = 1 since Char kv 6= `. In particular, Tv`|v is

abelian, while if σ ∈ Tv`|v and τ ∈ Zv`|v then σ−1τ−1στ = σa for some a ∈ ` · Z`;

more precisely, a = −1−χ(τ̄) where τ̄ denotes the image of τ in Gkv and χ : Gkv →

(1 + ` ·Z`)× denotes the cyclotomic character of Gkv. We will see an analogous fact

later when describing the structure of inertia/decomposition in certain canonical

quotients of GK (see Proposition 13.0.8). Also, if µ`n ⊂ K, then the image of χ

above lands in (1 + `n · Z`)×; therefore a ∈ `n · Z` in this case.
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Chapter 4

Rigid Elements

The theory of rigid elements describes minimal conditions for the existence of a

valuation v in a field K with certain boundedness conditions for the units and

principal units. Suppose that (K, v) is an arbitrary valued field, T ≤ H ≤ K× are

subgroups with U1
v ≤ T and Uv ≤ H. Suppose x /∈ H. If v(x) > 0 then 1± x ∈ T

while if v(x) < 0 then 1 ± x ∈ x · T ; thus 1 ± x ∈ T ∪ x · T . On the other hand,

x · t /∈ H for all t ∈ T and thus 1± x · T ⊂ T ∪ x · T ; therefore:

T ± x · T ⊂ T ∪ x · T.

Suppose that T ≤ K× is an arbitrary subgroup and H ≤ K× is a subgroup

which contains T as well as all x /∈ T for which T ±x ·T 6⊂ T ∪x ·T ; in particular, if

x /∈ H then T ± x · T ⊂ T ∪ x · T . The theory of rigid elements provides an explicit

method for constructing a valuation v of K using such a T ≤ H in almost all cases.

For such a T ≤ H, define:
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1. O−(H,T ) = {x ∈ K : x /∈ H and 1 + x ∈ T}.

2. O+(H,T ) = {x ∈ K× : x ∈ H and x · O(T,H)− ⊂ O−(T,H)}.

3. O(H,T ) = O−(T,H) ∪ O+(T,H).

4. U(H,T ) = {x ∈ O+(H,T ) : x−1 ∈ O+(H,T )}.

The goal of this construction is for O(H,T ) to be a valuation ring with unit group

U(H,T ) and we’ll see that many cases this actually works as intended. The idea

is that H can be used to determine the relationship between the value of certain

x, y ∈ K×. More precisely, if x, y ∈ K× have different H-cosets, x ·H 6= y ·H, the

resulting valuation v will satisfy v(x) < v(y) iff x+y ∈ x·T . In most situations, this

provides enough information to define the valuation v and the construction above

is the result of this procedure.

The following theorem is a general summary of the theory of rigid elements in

the context of valuation theory. This theorem is essentially a reorganization of the

main results of Arason-Elman-Jacob [AEJ87]. Since it is not immediately clear how

one can derive these statements from loc.cit., this theorem will require some proof;

in statement (2) below, loc.cit. proves the equivalence of (a) and (b) while the

equivalence of (c) is not explicitly considered.

Theorem 4.0.1 (Arason-Elman-Jacob [AEJ87]). Let K be an arbitrary field, and

let T ≤ H ≤ K× be given so that H contains all x /∈ T with T ± x · T 6⊂ T ∪ x · T .

Then the following hold:
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1. If O(H,T ) is a valuation ring, with associated valuation w, then U1
w ≤ T ,

U(H,T ) = Uw and Uw ≤ H.

2. The following conditions are equivalent:

(a) O(H,T ) is a valuation ring.

(b) 1 +O−(H,T ) ⊂ O+(H,T ).

(c) There exists some valuation v of K so that Uv ≤ H and U1
v ≤ T .

3. There exists an H ≤ H̃ with #(H̃/H) ≤ 2 so that O(H̃, T ) is a valuation

ring.

4. If there exists an x ∈ H r T such that T ± x · T 6⊂ T ∪ x · T , then O(H,T ) is

a valuation ring.

5. If there exists a valuation v of K so that U1
v ≤ T and Uv ≤ H then Ov ⊂

O(H,T ). In particular, denoting by w the valuation associated to O(H,T ), w

is a coarsening of v.

Proof. To 1. This follows from Theorem 2.10, Remark 2.5 and Observation 2.3 (3)

of [AEJ87].

To 2. (a) ⇔ (b) is again Theorem 2.10 and Remark 2.5 of loc.cit.; (b) ⇒ (c)

follows from statement (1) along with Theorem 2.10 of loc.cit.. It remains to show

that (c) ⇒ (b). Observe that whenever x /∈ H then v(x) 6= 0 so that 1 + x ∈ T

iff v(x) > 0 and 1 + x ∈ x · T iff v(x) < 0. Suppose that y ∈ O−(H,T ); we need

42



to show that 1 + y ∈ O+(H,T ). I.e. we need to show that, if x ∈ O−(H,T ), then

(1 + y) · x ∈ O−(H,T ); equivalently, 1 + x · (1 + y) ∈ T .

So, let x, y be given as above. Then x, y ∈ O−(H,T ) and thus v(x), v(y) > 0.

Now we see that v(x · (1 + y)) = v(x) > 0 so that 1 + x · (1 + y) ∈ U1
v ≤ T , as

needed.

To 3. This is Theorem 2.16 of loc.cit..

To 4. This follows from Proposition 2.14 of loc.cit. (Proposition 2.14 of loc.cit.

is actually stronger than we need).

To 5. It follows from the definitions immediately that Uv ≤ U(H,T ). Thus,

if O(H,T ) is a valuation ring with associated valuation w then Uv ≤ Uw from

statement (1). Thus w ≤ v and so Ov ⊂ Ow, as required.

The following follows immediately from theorem above; this corollary unravels

the definition/construction of O(H,T ) above and attempts to axiomatize those

subgroups H which contain the units of a valuation ring in the simplest possible

way.

Corollary 4.0.2. Let K be a field and let H ≤ K× be given. The following are

equivalent:

1. There exists a valuation v of K such that Uv ≤ H.

2. −1 ∈ H, for all x ∈ K× r H one has 1 + x ∈ H ∪ xH, and whenever

x, y ∈ K× rH are such that 1 + x, 1 + y ∈ H, one has 1 + x(1 + y) ∈ H.
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Proof. First assume that there exists a valuation v such that Uv ≤ H. Let x ∈

K× rH be given. Then, in particular, v(x) 6= 0 and thus 1 + x ∈ Uv iff v(x) > 0;

also, 1 + x ∈ x · Uv iff v(x) < 0. Thus 1 + x ∈ H ∪ x ·H for all such x. Moreover,

if x, y /∈ H and 1 + x, 1 + y ∈ H one has v(x), v(y) > 0 and thus, similarly to the

proof of 4.0.1 (2), v(x · (1 + y)) > 0 so that 1 + x(1 + y) ∈ H as required.

The converse, which is the non-trivial direction, follows from [AEJ87] Theorem

2.10 taking T = H in loc.cit.. Using our summary in Theorem 4.0.1, this is precisely

the equivalence of (b) and (a) of statement (2), in the situation where H = T and

−1 ∈ H.

Remark 4.0.3. In the case where K×`
n ≤ H and ` is odd, the condition of Corollary

4.0.2 can be made simpler. Using the notation of Corollary 4.0.2, the following are

equivalent in this case:

1. There exists a valuation v of K such that Uv ≤ H.

2. For all x ∈ K× rH one has 1 + x ∈ H ∪ xH.

Again, see [AEJ87] Theorem 2.10 and/or our summary in Theorem 4.0.1 for the

proof of the non-trivial direction of this claim.

44



Chapter 5

Generalized Gauß Valuations

In this chapter we will recall the classical construction of generalized Gauß valua-

tions and their relationship with geometry. The valuations constructed below are

very special as so-called “valuations with no relative defect.” For the purposes of

the rest of the work, we will not require a discussion of relative-defect in general so

we will refer the interested reader to the appendix of Pop [Pop06b]; below, we also

use the notation of loc.cit..

Let K be a function field over k, assume that k is relatively algebraically closed

in K, and say v0 is a valuation of k. Let T0 = (t1, . . . , tr) be an ordered collection

of k-algebraically independent elements of K and extend T0 to T = (t1, . . . , td) a

transcendence base for K|k; denote by T1 = (tr+1, . . . , td). We will consider the

rational function fields k(T1) ⊂ k(T ).

For a polynomial p(t) = p(tr+1, . . . , td) ∈ k[T1], say p(t) =
∑

i ait
i (where i is a
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multi-index), define

v1(p(t)) := min
i
v0(ai).

Then v1 extends to a unique valuation v1 on k(T1) which satisfies the following

properties:

1. Γv1 = Γv0 .

2. v1|k = v0.

Now consider the totally ordered abelian group:

Γv =: Γv0 ⊕ Z · γ1 ⊕ · · · ⊕ Z · γr

which we endow with the lexicographic order – namely, 〈γr〉 is the unique minimal

non-trivial convex subgroup of Γv. Then v1 extends to a unique valuation v of k(T )

with value group Γv as above, which is defined by the following two properties:

1. v|k(T1) = v1 and

2. v(ti) = γi for i = 1, . . . , r.

The residue field k(v) of v is precisely k(v1) which is the rational function field

kv0(t̄r+1, . . . , t̄d); here t̄i denotes the image of ti in k(v).

Lastly, since K is a finite extension of k(T ) and k is relatively algebraically

closed in K, we see that v has prolongations w to K whose value group is of the

form

Γw = Γv0 ⊕ Z · γ̃1 ⊕ · · · ⊕ Z · γ̃r.
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And we immediately see that k(w) is a function field of transcendence degree d− r

over k(v0).

Moreover, the groups ∆i = 〈γ̃i, · · · , γ̃r〉, for i = 1, · · · , r + 1 are convex. The

coarsening wi of w associated with ∆i has a residue field k(wi) which is a function

field in d− i+ 1 variables over k(v0).

Remark 5.0.4. A valuation v which arises using the process outlined above is called

a quasi-r-divisorial valuation. By taking a coarsening associated to the convex

subgroup 〈γs+1, . . . , γr〉, one obtains a valuation v′ whose value group is canonically

isomorphic to Γv0 ⊕ Z · γ̃1 · · · ⊕ Z · γ̃s and this is a quasi-s-divisorial valuation. If

v0 is the trivial valuation on k, then the corresponding valuations are, actually,

compositions of divisorial valuations in the usual sense.

In the sequel, we will only use these quasi-divisorial valuations as examples of

valuations v of a function field K which satisfy the following properties:

1. The restriction of v to k is v0.

2. The value group Γv contains no non-trivial (`-)divisible convex subgroup.

3. If k is `-closed, then Γv/`
∞ = Z · γ̃1 ⊕ · · · ⊕ Z · γ̃r.

The precise construction of such valuations v will not matter too much – in Chapter

15, we will only use such v as examples of valuations with these properties above.
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Part II

Detecting Valuations: the

Abstract Setting

48



Chapter 6

C-pairs and Valuations

We now begin to move from the very general and elementary setting of rigid el-

ements towards Galois theory. The results in Part II are still completely general

and elementary in nature in the sense that almost all of these results hold true

for completely arbitrary fields. The main benefit of the formulation here is in its

connections with Galois theory as will become apparent later on.

In this chapter, we introduce our general setting, while in the subsequent chap-

ters of Part II, we develop the general theory which shows how to recover/detect

valuations in this setting.

We denote by N = {1, 2, 3, . . .} the set of positive integers and N = N ∪ {∞}

the set of positive integers together with ∞. We declare that ∞ > n for all n ∈ N.

Recall that ` denotes a prime which is fixed throughout.

For positive integers n and r, we denote by
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1. Mr(n) = (r + 1) · n− r,

2. N′(n) = (6`3n−2 − 7) · (n− 1) + 3n− 2,

3. N(n) = M1(N′(n)).

To make the notation consistent, we denote by Mr(∞) = N(∞) =∞. In particular,

N(n) ≥M1(n) ≥ n for all n ∈ N, and N(n),Mr(n) ∈ N if and only if n ∈ N. Also,

observe that Mr(1) = N′(1) = N(1) = 1, and Mr(∞) = N′(∞) = N(∞) =∞.

The definition of N′ and N is a technicality and should not be considered as

important; in particular, we do not expect that this N is optimal. The precise

formula for N′ (and thus of N) will come in to play when proving Theorem 6.1.1.

This theorem, which is a generalization of the main theorem concerning commuting

pairs from [BT02], is the key technical tool which lets us detect valuations in both

the Galois theoretical and non-Galois theoretical settings. In fact, all the results

in this thesis have been written in such a way that, if Theorem 6.1.1 holds with a

different formula for N, then so do the rest of the results of the thesis which detect

valuations – we use Theorem 6.1.1 purely as a black box. On the other hand, the

definition of Mr will play an essential role throughout, and the importance of Mr

can be immediately seen in our “cancellation principle” (Lemma 6.0.5).

We will use the following notation:

Λn := lim
m≤n

Z/`m =


Z/`n, n ∈ N

Z`, n =∞
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In the context of pro-` Galois theory, we will also denote by Λn(i) = Λn ⊗Z`
Z`(i)

the ith Tate twist of Λn; this notation will not be needed until Part III and in

most situations we will choose an isomorphism of Galois modules Λn(i) ∼= Λn when

applicable.

Throughout we will tacitly use the following trivial observation which we dub

the “Cancellation Principle” which allows us to “divide” (or “cancel”) in equations

involving elements of the ring Λn; of course one must pay a price for this, and here

is where Mr comes in to play.

Lemma 6.0.5 (The Cancellation Principle). For a positive integer n, we denote

by Mr(n) = (r + 1) · n − r. Assume that R ≥ (r + 1) · n − r = Mr(n). Let

a, b, c1, . . . , cr ∈ Z/`R be given; assume that ci 6= 0 mod `n and that ac1 · · · cr =

bc1 · · · cr. Then a = b mod `n.

Proof. Let a be the minimal positive integer such that `a ·c1 · · · cr = 0 as an element

of Z/`R. Then the map Z/`a → Z/`R defined by x 7→ x · c1 · · · cr is injective. On

the other hand, as ci 6= 0 mod `n, we observe that a ≥ R − rn + r ≥ n and this

proves the claim.

Let M be an Λn-module. A collection of non-zero elements (fi)i, fi ∈M will be

called quasi-independent provided that

∑
i

aifi = 0 almost all ai = 0 ⇒ aifi = 0 ∀i.

A generating set which is quasi-independent will be called a quasi-basis. Observe
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that any finitely generated Λn-module M has a quasi-basis of unique finite order

which is equal to dimZ/`(M/`). Indeed, any finitely generated Λn-module M can be

considered as a Z`-module via the canonical homomorphism Z` → Λn. Since Z` is

a principal ideal domain, we see that a finitely generated Z`-module M can written

as a direct product of cyclic submodules:

M =
m∏
i=1

〈σi〉

and in this case, if all σi 6= 0, then (σi)i form a quasi-basis for M and m is the rank

of M .

Another trivial observation which we will use frequently in our arguments is the

following. Let m,m′ ∈ M be elements of the Λn-module M . Then 〈m,m′〉, the

Λn-submodule generated by m,m′, is cyclic if and only if m ∈ 〈m′〉 or m′ ∈ 〈m〉.

Indeed if a, b ∈ Λn then a|b or b|a since Λn is a quotient of a discrete valuation ring.

Let K be a field and n ∈ N be given. We denote by:

GaK(n) := Homcont(K×/± 1,Λn);

endowed with the point-wise convergence topology, we consider GaK(n) as a pro-

` group. This pro-` group should be thought of as the abstract analogue of the

maximal `n-elementary abelian Galois group of K which is isomorphic to GaK(n) in

the case where CharK 6= ` and µ2`n ⊂ K; until Part III, however, we make no such

sweeping assumptions on K.

If v is a valuation of K we denote by Iv(n) = Hom(K×/Uv,Λn) ≤ GaK(n) and

Dn(n) = Hom(K×/(±U1
v ),Λn) ≤ GaK(n). The groups Iv(n) resp. Dv(n), which
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are (closed) subgroups of GaK(n), should be thought of as the abstract analogues of

inertia resp. decomposition groups by mimicking the situation in the pro-` Galois

case (see Proposition 13.0.6).

We will frequently pass from GaK(N) to GaK(n) when n,N ∈ N and N ≥ n; let

us, then, introduce some notation. Suppose that f ∈ GaK(N), then we denote by

f 7→ fn the canonical map GaK(N) → GaK(n) induced by the projection ΛN � Λn.

I.e. fn(x) = f(x) mod `n; here `n is understood to be 0 in Z` if n =∞.

For a subgroup A ≤ GaK(n), we denote by A⊥ the subgroup of K×:

A⊥ =
⋂
f∈A

ker f.

This is the left kernel of the canonical pairing K× × A → Λn. More generally, it

is easy to see that we have a canonical pairing K× × GaK(n) → Λn whose right

kernel is trivial and whose left kernel is ±K×`n . If n 6= ∞, we therefore obtain a

perfect pairing between K×/(±K×`n) and GaK(n) by Pontryagin duality. On the

other hand, if n =∞, we have a perfect Z`-pairing between K̂/torsion and GaK(∞)

where K̂ = limnK
×/`n is the `-adic completion of K×.

We now introduce our abstract notion of C-pairs. Our definition of a C-pair

is motivated by Bogomolov and Tschinkel’s notion under the same name [BT02];

we note, however, that our notion of C-pairs is a priori much less restrictive than

that considered in loc.cit.. In Part III, we will show the connection between C-pairs

and Galois theory while the results of this part will explore the connection between

C-pairs, rigid elements, and valuations.
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Definition 6.0.6. Let f, g ∈ GaK(n) be given. We say that f, g are a C-pair provided

that for all x ∈ K r {0, 1} one has:

f(1− x)g(x) = f(x)g(1− x).

A subgroup A ≤ GaK(n) will be called a C-group provided that any pair of elements

f, g ∈ A form a C-pair. If A = 〈fi〉i is generated by fi ∈ GaK(n), we observe that A

is a C-group if and only if fi, fj form a C-pair for all i, j.

For a subgroup A ≤ GaK(n), we denote by IC(A) the subgroup:

IC(A) = {f ∈ A : ∀g ∈ A, f, g form a C-pair}.

and call IC(A) the C-center of A. In particular, A is a C-group if and only if

A = IC(A) if and only if A/IC(A) is cyclic.

One can start to see the deep connection between C-pairs and valuations in the

following two lemmas which will be used throughout. The first lemma shows that

valuations give rise to very many non-trivial C-pairs while the second proves the

compatibility of this fact in taking residue fields of valuations.

Lemma 6.0.7. Let n ∈ N be given and let (K, v) be a valued field. Suppose that

f ∈ Dv(n) and g ∈ Iv(n), and denote by Ψ = (f, g). Then for all x ∈ K× r {1}

one has:

〈Ψ(1− x),Ψ(x)〉 is cyclic.

In particular, f, g form a C-pair.
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Proof. Denote by Ψ = (f, g). If v(x) > 0 then Ψ(1 − x) = 0 since U1
v ≤ ker Ψ so

we obtain the claim. If v(x) < 0 then 1− x = x(1/x− 1) so that Ψ(1− x) = Ψ(x),

and this completes the proof. By replacing x with 1− x if needed, the last case to

consider is where x, 1 − x ∈ Uv. But then g(x) = 0 and g(1 − x) = 0 so the claim

is trivial.

Suppose that (K, v) is a valued field and f ∈ Dv(n). Then the restriction f |Uv

descends to a homomorphism fv : k(v)× → Λn such that fv(−1) = 0. In particular

this provides a canonical map Dv(n) → Gak(v)(n). This map, in some sense, forces

the C-pair property as we see in the following lemma.

Lemma 6.0.8. Let (K, v) be a valued field and let n ∈ N be given.

1. The map Dv(n) → Gak(v)(n) defined by f 7→ fv induces an isomorphism

Dv(n)/Iv(n) ∼= Gak(v)(n).

2. Let f, g ∈ Dv(n) be given, then f, g form a C-pair if and only if their images

fv, gv in Gak(v)(n) form a C-pair.

Proof. To 1. Assume with no loss that n ∈ N as the n = ∞ case follows in the

limit. Consider the short exact sequence:

1→ k(v)×/± 1→ K×/(±U1
v )→ Γv → 1.

Tensoring this with Z/`n and noting that Γv is torsion-free, we obtain:

1→ (k(v)×/`n)/± 1→ (K×/`n)/(±U1
v )→ Γv/`

n → 1.
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Taking Hom(•,Z/`n) we deduce that the following short sequence is exact by Pon-

tryagin Duality:

1→ Iv(n)→ Dv(n)→ Gak(v)(n)→ 1.

To 2. If f, g form a C-pair then clearly fv, gv are a C-pair. Conversely, assume

that fv, gv are a C-pair. Let x ∈ K r {0, 1} be given. If v(x) > 0 then 1 − x ∈

U1
v ≤ ker f ∩ ker g. Thus, f(1 − x)g(x) = 0 = f(x)g(1 − x). If v(x) < 0 then

x−1(1 − x) = x−1 − 1 ∈ −(U1
v ) so that (1 − x) ∈ −x · (U1

v ). Thus, f(1 − x)g(x) =

f(−x)g(x) = f(x)g(x) = f(x)g(−x) = f(x)g(1− x). If v(x) = 0 and v(1− x) > 0

we’re in one of the previous cases with y = 1−x. The last case to consider is where

x, 1− x ∈ Uv. Here, we note that f(z) = fv(z̄) (and similarly with g) for all z ∈ Uv

where z̄ = z + mv denotes the image of z in k(v)×. Thus, as fv, gv form a C-pair,

we see that f(x)g(1− x) = f(1− x)g(x) when x, 1− x ∈ Uv.

6.1 The Main Theorem of C-pairs

The following theorem is the main tool which allows us to detect valuations using

C-pairs. This theorem shows that a pair f, g ∈ GaK(n) which can be lifted to a C-pair

in GaK(N), for N sufficiently large, must come about from a valuation in a similar

manner to Lemmas 6.0.7 and 6.0.8. For the most part, the following theorem will

be used solely as a black box in the rest of the discussion. This is the most technical

theorem in this thesis, but, perhaps, the most important.
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Theorem 6.1.1. Let n ∈ N be given and let N ≥ N(n). Let K be an arbitrary field

and let f, g ∈ GaK(n) be given. Assume that there exist f ′′, g′′ ∈ GaK(N) such that

• f ′′, g′′ form a C-pair.

• f ′′n = f and g′′n = g.

Then there exists a valuation v of K such that

• f, g ∈ Dv(n)

• 〈f, g〉/(〈f, g〉 ∩ Iv(n)) is cyclic (possibly trivial).

Before we begin to prove Theorem 6.1.1, we will prove the following, quite trivial,

lemma which immediately follows from the cancellation principle.

Lemma 6.1.2. Let n ∈ N be given and denote by M = M1(n).

1. Suppose that a, b, c, d ∈ ΛM are given such that ad = bc. Then 〈(a, b), (c, d)〉

mod `n is cyclic.

2. In particular, let f, g ∈ GaK(M) be a given C-pair. Denote by Ψ = (fn, gn).

Then for all x 6= 1, 〈Ψ(1− x),Ψ(x)〉 is cyclic.

Proof. To 1. The n = 1 and n =∞ case are both trivial since Λ1 and Λ∞ are integral

domains. Thus, assume that n ∈ N is arbitrary. Assume, for example, that a = ec

for some e ∈ Z/`M (otherwise c = ea for some e ∈ Z/`M). Then ad = bc = edc. If

c 6= 0 mod `n then we see that de = b mod `n by the cancellation principle; thus

57



(a, b) = e · (c, d) mod `n. On the other hand, if c = 0 mod `n then a = 0 mod `n

as well, so that 〈(a, b), (c, d)〉 mod `n = 〈(0, b), (0, d)〉 mod `n is cyclic. Claim 2

follows immediately from Claim 1.

Proof of Theorem 6.1.1. First observe that we may, and will, assume that N =

N(n). The proof will proceed in two main steps. First, we will prove the theorem

for n ∈ N and then prove it for n = ∞ with a limit argument using the first case.

Alternatively in the n =∞ case, see [Top12] Theorem 3 in the “pro-` case” which

proves this case directly.

We briefly recall some facts from the theory of rigid elements (see Chapter 4)

which describe the minimal conditions for the existence of valuations in fields –

as in Chapter 4, we use the results of [AEJ87], but see also the various references

on this subject mentioned in the introduction. For a field K, and T ≤ H ≤ K×,

assume that −1 ∈ T and for all x /∈ H one has T + xT ⊂ T ∪ xT ; equivalently, for

all x /∈ H one has 1 + x ∈ T ∪ xT . If there exists an element a ∈ K×r T such that

T +aT 6⊂ T ∪aT then there exists a valuation ring (O,m) of K such that 1+m ≤ T

and O× ≤ H (see Proposition 2.14 of loc.cit.). On the other hand, if H = T , then

there exists a valuation ring (O,m) of K such that 1 + m ≤ T and O× · T/T has

order at most 2 (see Theorem 2.16 and/or Corollary 2.17 of loc.cit., as well as our

summary in Theorem 4.0.1).
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Case n 6=∞:

We denote by N = N(n) = M1(N′(n)), N ′ = N′(n) and M = M1(n) as defined

in § 6.1. Suppose we are given f, g ∈ GaK(n) as well as lifts f ′′, g′′ ∈ GaK(N) which

form a C-pair. The goal is to show that there exists a valuation v of K such that

f, g ∈ Dv(n) and 〈f, g〉/(〈f, g〉 ∩ Iv(n)) is cyclic.

We denote by f ′ = f ′′N ′ and g′ = g′′N ′ . Denote by Ψ = (f, g) and Θ = (f ′, g′),

and consider T = ker Ψ = ker f ∩ ker g. By Lemma 6.1.2, for all x ∈ K×, x 6= −1

one has:

〈Θ(1 + x),Θ(x)〉 is cyclic.

In particular, the same is true for Ψ. Denote by H the subgroup of K× generated

by T and all x ∈ K×rT such that 1+x 6= 1, x mod T (i.e. x such that Ψ(1+x) 6=

Ψ(1),Ψ(x)). Our central claim will be that H/T is cyclic.

Before we prove this claim, let us show how this would imply Theorem 6.1.1.

First, if H = T , then for all x ∈ K×, such that Ψ(x) 6= 0 one has Ψ(1 + x) = Ψ(1)

or Ψ(1 + x) = Ψ(x). I.e. if x /∈ T one has 1 + x ∈ T ∪ xT . By [AEJ87] Theorem

2.16 and/or Corollary 2.17 (see our summary Theorem 4.0.1 parts (1) and (3)) we

deduce that there exists a valuation v of K such that U1
v ≤ T and #(Uv ·T/T ) ≤ 2,

thus proving our claim.

On the other hand, if H 6= T then there exists some x /∈ T such that Ψ(1 +x) 6=

Ψ(1),Ψ(x) and so 1 + x /∈ T ∪ xT . Moreover, for all x /∈ H, one has 1 + x ∈ T ∪ xT

by construction of H. Again by [AEJ87] Proposition 2.14 (again, see our summary
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Theorem 4.0.1), we deduce that there exists a valuation v of K such that U1
v ≤ T

and Uv · T = H.

Thus, what remains to be shown is that H/T is cyclic and this will be done in

steps 1-5 below. In the case where n = 1, this claim can be obtained from [Koe98]

Lemma 3.3, a form of which also appears in [Koe95], and/or [Efr99] Proposition

3.2; this lemma is the key technical tool used in order to prove the main Theorem

of [EK98]. On the other hand, if n = ∞ and K contains an `-closed field, the

corresponding claim can be deduced in a similar way to [BT02] Proposition 4.1.2;

this proposition is in the core of the proof of loc.cit.’s main theorem. See also [Top12]

Theorem 3 where the n = ∞ case is proved directly, without the assumption that

K contains an `-closed field. Below, we prove the claim for an arbitrary n ∈ N.

Main Claim: H/T is cyclic.

The remainder of this section will be devoted to the proof of this claim. To

make the notation a bit less cumbersome, we will use the following convention. For

γ1, γ2, γ3 ∈ Z/`s, we will write:

γ1 : γ2 = γ3

to mean that γ1γ2 = γ1γ3. Also, we will write (i, j) = (γ1 : γ2 : γ3) to mean that

i·γ1 = γ2 and j·γ1 = γ3. Furthermore, we will use the notation (i, j) = γ(γ1 : γ2 : γ3)

to mean that (i, j) = (γγ1 : γγ2 : γγ3).

Suppose x, y are given such that Ψ(1+x) 6= Ψ(1),Ψ(x) and Ψ(1+y) 6= Ψ(1),Ψ(y)

and assume that Θ(1 + x) = aΘ(x) and Θ(1 + y) = bΘ(y). We will show that
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〈Ψ(x),Ψ(y)〉 is cyclic for all such x, y; this will suffice to show that H/T is cyclic

as follows.

Assume that, indeed, 〈Ψ(x),Ψ(y)〉 is cyclic for all x, y such that Ψ(1 + x) 6=

Ψ(1),Ψ(x), that Ψ(1+y) 6= Ψ(1),Ψ(y), that Θ(1+x) ∈ 〈Θ(x)〉, and that Θ(1+y) ∈

〈Θ(y)〉. First, we observe that H is generated by T and all z /∈ T such that

Ψ(1− z) 6= Ψ(1),Ψ(z) since Ψ(−1) = 0 and thus Ψ(z) = Ψ(−z). For any given z ∈

K×rT , one has Ψ(1−z) 6= Ψ(1),Ψ(z) iff Ψ(1−(1−z)) 6= Ψ(1),Ψ(1−z). Now since

Λn is a quotient of a discrete valuation ring and 〈Ψ(z),Ψ(1− z)〉 is cyclic, we either

have Ψ(1− z) ∈ 〈Ψ(z)〉 or Ψ(z) ∈ 〈Ψ(1− z)〉. Since Ψ(z) = Ψ(1− (1− z)), we see

that H is generated by T and all z /∈ T such that Ψ(1−z) ∈ 〈Ψ(z)〉r{Ψ(1),Ψ(z)}.

If Ψ(z) 6= 0, we note that Ψ(1− z) ∈ 〈Ψ(z)〉 if and only if Θ(1− z) ∈ 〈Θ(z)〉 since

Λn is a quotient of a discrete valuation ring and 〈Θ(1 − z),Θ(z)〉 is cyclic. Thus

our assumption ensures that H/T is generated as an Λn-submodule of K×/T by

the set:

{z · T : z ∈ K× r T, Ψ(1− z) 6= Ψ(1),Ψ(z), Θ(1− z) ∈ 〈Θ(z)〉}.

But, if x, y are in this set, our assumption ensures that 〈x · T, y · T 〉 is cyclic as a

submodule of H/T . From this, again along with the fact that Λn is a quotient of a

discrete valuation ring and that H/T is finite and killed by `n, it is easy to see that

H/T is indeed cyclic.

Let us now return to the proof of our claim – i.e. we wish to prove that

〈Ψ(x),Ψ(y)〉 is cyclic for x, y as above with Θ(1+x) = a·Θ(x) and Θ(1+y) = b·Θ(y).
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Since Θ(1 + 1/x) = Θ(1/x) + Θ(1 + x) = (a − 1)Θ(x) = (1 − a)Θ(1/x), we can

assume without loss that a, b as above are units by replacing x with 1/x and/or

y with 1/y if needed. We denote by D = f ′(x)g′(y) − f ′(y)g′(x) and take linear

combinations p, q of f ′, g′ so that:

• (p, q)(x) = (D, 0) and

• (p, q)(y) = (0, D).

And thus:

• (p, q)(1 + x) = (aD, 0) and

• (p, q)(1 + y) = (0, bD).

Furthermore, we will denote by a′ = a−1 and b′ = b−1. Recall that our assumptions

on a, b ensure that:

• a, a′ 6= 0 mod `n.

• b, b′ 6= 0 mod `n.

To show that 〈Ψ(x),Ψ(y)〉 is cyclic, it will suffice to prove that D = 0 mod `M

by Lemma 6.1.2. Furthermore, we observe that p, q form a C-pair and p(−1) =

q(−1) = 0. In particular for all z, w ∈ K×, z 6= −w, the following 2×2 determinant

is zero: ∣∣∣∣∣∣∣∣
p(z + w)− p(w) p(z)− p(w)

q(z + w)− q(w) q(z)− q(w)

∣∣∣∣∣∣∣∣ = 0.
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We will denote by Φ = (p, q) for the remainder of the proof.

Step 1: Consider Φ(1 + x + y); for simplicity, denote Φ(1 + x + y) = (P,Q). We

can write 1 + x+ y = (1 + x) + y and thus:∣∣∣∣∣∣∣∣
p(1 + x+ y)− p(y) p(1 + x)− p(y)

q(1 + x+ y)− q(y) q(1 + x)− q(y)

∣∣∣∣∣∣∣∣ = 0.

Making the appropriate substitutions:∣∣∣∣∣∣∣∣
P aD

Q−D −D

∣∣∣∣∣∣∣∣ = D ·

∣∣∣∣∣∣∣∣
P −a

Q−D 1

∣∣∣∣∣∣∣∣ = 0.

In other words we deduce (I) D : P + aQ = aD ; similarly (II) D : bP +Q = bD

since 1 + x+ y = (1 + y) + x. Using equations (I) and (II), we deduce the following

(in steps):

1. D : P + a(bD − bP ) = aD

2. D : P + ab(D − P ) = aD

3. D : P (1− ab) = Da(1− b)

4. D : P (ab− 1) = Dab′

5. D : P (a′b′+a′+ b′) = Dab′ and in a similar way D : Q(a′b′+a′+ b′) = Da′b.

In particular, we deduce:

Φ(1 + x+ y) = D(a′b′ + a′ + b′ : Dab′ : Da′b). (6.1.1)
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Step 2: We now consider Φ(2+x+y); for simplicity, we again denote Φ(2+x+y) =

(P,Q). Since 2 + x+ y = 1 + (1 + x+ y) one has:∣∣∣∣∣∣∣∣
p(2 + x+ y) p(1 + x+ y)

q(2 + x+ y) q(1 + x+ y)

∣∣∣∣∣∣∣∣ = 0

Use Equation (6.1.1) and multiply the second column of this matrix by D(a′b′ +

a′ + b′) to deduce:

D

∣∣∣∣∣∣∣∣
P Dab′

Q Dba′

∣∣∣∣∣∣∣∣ = D2

∣∣∣∣∣∣∣∣
P ab′

Q ba′

∣∣∣∣∣∣∣∣ = 0.

So that we deduce (III) D2 : ba′P = ab′Q .

On the other hand, 2 + x+ y = (1 + x) + (1 + y) so that:∣∣∣∣∣∣∣∣
P − p(1 + y) p(1 + x)− p(1 + y)

Q− q(1 + y) q(1 + x)− q(1 + y)

∣∣∣∣∣∣∣∣ = 0

Making the appropriate substitutions:∣∣∣∣∣∣∣∣
P aD

Q− bD −bD

∣∣∣∣∣∣∣∣ = D ·

∣∣∣∣∣∣∣∣
P a

Q− bD −b

∣∣∣∣∣∣∣∣ = 0

So that we deduce (IV) D : bP + aQ = abD . Using equations (III) and (IV), we

deduce the following, in steps (recall that a, b are units):

1. D2 : ba′P = b′(abD − bP )

2. D2 : ba′P = bb′(aD − P )

3. D2 : P (ba′ + bb′) = bb′aD
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4. D2 : P (a′ + b′) = b′aD and similarly D2 : Q(a′ + b′) = a′bD.

Thus:

Φ(2 + x+ y) = D2 · (a′ + b′ : ab′D : ba′D) (6.1.2)

Step 3 (an inductive step): Let m be a positive integer and denote by A =

De(a′)f (b′)g and B = Dh(a′)i(b′)j. Assume that the following statements hold:

• (P1)(m,A) : Φ((m− 1) +mx) = A · (a′b′ +mb′ : mDab′ : 0).

• (P2)(m,B) : Φ(m+mx+ y) = B · (a′b′ +mb′ + a′ : mDab′ : Da′b).

We will show, in particular, that the following statements hold:

• (P1)(m+ 1, E)

• (P2)(m+ 1, E)

where E = Dmax(2,e,h)+2(a′)max(f,i)+1(b′)max(g,j)+1 is determined by the exponents of

D, a′, b′ in A and B. To simplify the notation, we will denote:

• ∆0 = a′ + b′.

• ∆1 = a′b′ +mb′.

• ∆2 = a′b′ +mb′ + a′.

Let us first consider (P,Q) = Φ((m + 1) + (m + 1)x + y), and we observe that

(m+ 1) + (m+ 1)x+ y = ((m− 1) +mx) + (2 + x+ y). Thus,∣∣∣∣∣∣∣∣
P − p((m− 1) +mx) p(2 + x+ y)− p((m− 1) +mx)

Q− q((m− 1) +mx) q(2 + x+ y)− q((m− 1) +mx)

∣∣∣∣∣∣∣∣ = 0.
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Now by statement (P1)(m,A), we deduce that:

A ·

∣∣∣∣∣∣∣∣
∆1P −mDab′ ∆1p(2 + x+ y)−mDab′

Q q(2 + x+ y)

∣∣∣∣∣∣∣∣ = 0

Denote by A′ = Dmax(2,e)(a′)f (b′)g then by Equation (6.1.2) we deduce that:

A′ ·

∣∣∣∣∣∣∣∣
∆1P −mDab′ ∆1Dab

′ −∆0mDab
′

Q Da′b

∣∣∣∣∣∣∣∣ = 0.

Moving some terms around a bit, we have

A′ ·

∣∣∣∣∣∣∣∣
∆1P −mDab′ Dab′(∆1 −∆0m)

Q Da′b

∣∣∣∣∣∣∣∣ = 0

and now substituting into ∆1 and ∆0 we have:

A′ ·

∣∣∣∣∣∣∣∣
∆1P −mDab′ Dab′(a′b′ +mb′ −ma′ −mb′)

Q Da′b

∣∣∣∣∣∣∣∣ = 0

so that

A′ ·

∣∣∣∣∣∣∣∣
∆1P −mDab′ Dab′(a′b′ −ma′)

Q Da′b

∣∣∣∣∣∣∣∣ = 0

and finally

A′Da′ ·

∣∣∣∣∣∣∣∣
∆1P −mDab′ ab′(b′ −m)

Q b

∣∣∣∣∣∣∣∣ = 0.

Thus we obtain the following equations, by steps:

1. A′Da′ : b(a′b′ +mb′)P = Qab′(b′ −m) +mDabb′.

2. A′Da′ : bb′(a′ +m)P = Qab′(b′ −m) +mDabb′.
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3. (V) A′Da′b′ : Pb(a′ +m) = Qa(b′ −m) +mDab .

On the other hand, we can write (m+ 1) + (m+ 1)x+ y = (m+mx+ y) + (1 + x)

so that: ∣∣∣∣∣∣∣∣
P − p(1 + x) p(m+mx+ y)− p(1 + x)

Q− q(1 + x) q(m+mx+ y)− q(1 + x)

∣∣∣∣∣∣∣∣ = 0.

Making the appropriate substitutions, we have∣∣∣∣∣∣∣∣
P − aD p(m+mx+ y)− aD

Q q(m+mx+ y)

∣∣∣∣∣∣∣∣ = 0.

Now we use statement (P2)(m,B) to deduce that:

B ·

∣∣∣∣∣∣∣∣
P − aD mDab′ −∆2aD

Q Da′b

∣∣∣∣∣∣∣∣ = 0.

Rearranging a bit, we have:

BD ·

∣∣∣∣∣∣∣∣
P − aD a(mb′ −∆2)

Q a′b

∣∣∣∣∣∣∣∣ = 0

and, substituting into ∆2,

BD ·

∣∣∣∣∣∣∣∣
P − aD a(mb′ − a′b′ −mb′ − a′)

Q a′b

∣∣∣∣∣∣∣∣ = 0

so that

BD ·

∣∣∣∣∣∣∣∣
P − aD −aa′(b′ + 1)

Q a′b

∣∣∣∣∣∣∣∣ = 0.
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Now recall that b′ = b− 1; therefore

BD ·

∣∣∣∣∣∣∣∣
P − aD −aa′b

Q a′b

∣∣∣∣∣∣∣∣ = 0

and

BDa′ ·

∣∣∣∣∣∣∣∣
P − aD −a

Q 1

∣∣∣∣∣∣∣∣ = 0.

Thus finally, we deduce that (VI) BDa′ : P + aQ = aD . Denote by

C = Dmax(2,e,h)(a′)max(f,i)(b′)max(g,j).

So, using equations (V) and (VI), we deduce, in steps:

1. Da′b′C : Pb(a′ +m) = (aD − P )(b′ −m) +mDab.

2. Da′b′C : P (b(a′ +m) + b′ −m) = aD(b′ −m) +mDab.

3. Da′b′C : P (ba′ + bm+ b′ −m) = a(D(b′ −m) +mDb).

4. Da′b′C : P (ba′ + bm+ b′ −m) = aD(b′ −m+mb).

5. Da′b′C : P (ba′ + bm+ b′ −m) = aD(b− 1−m+mb).

6. Da′b′C : P (ba′ + bm+ b′ −m) = aD((m+ 1)b− (m+ 1)).

7. (VII) Da′b′C : P (ba′ + bm+ b′ −m) = (m+ 1)aDb′ .
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Let us write ba′ + bm+ b′ −m in a different way:

ba′ +mb+ b′ −m = b(a− 1) +mb+ b− 1−m

= ab− b+mb+ b− 1−m

= ab+mb− (m+ 1)

And on the other hand:

a′b′ + (m+ 1)b′ + a′ = (a− 1)(b− 1) + (m+ 1)(b− 1) + a− 1

= ab− a− b+ 1 + (m+ 1)b− (m+ 1) + a− 1

= ab+mb− (m+ 1)

Therefore we have the equality ba′ + mb + b′ − m = a′b′ + (m + 1)b′ + a′. This

calculation, along with equation (VII) then implies:

Da′b′C : P (a′b′ + (m+ 1)b′ + a′) = (m+ 1)Dab′. (6.1.3)

Using euqations (6.1.3) and (VI), we see that:

1. Da′b′C : (m+ 1)Dab′ + a(a′b′ + (m+ 1)b′ + a′)Q = aD(a′b′ + (m+ 1)b′ + a′).

2. Da′b′C : a(a′b′ + (m+ 1)b′ + a′)Q = aD(a′b′ + a′).

3. Da′b′C : (a′b′ + (m+ 1)b′ + a′)Q = Da′(b′ + 1).

4. (VIII) Da′b′C : (a′b′ + (m+ 1)b′ + a′)Q = Da′b .
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Thus: (P2)(m+ 1, Da′b′C) holds and, in particular, (P2)(m+ 1, E) holds for

E = D2a′b′C as above; however, we will use the stronger fact that statement

(P2)(m+ 1, Da′b′C) holds true in our calculations below.

Now we consider instead (P,Q) = Φ(m+(m+1)x). We can write m+(m+1)x =

((m− 1) +mx) + (1 + x) to deduce that:∣∣∣∣∣∣∣∣
P − p(1 + x) p((m− 1) +mx)− p(1 + x)

Q− q(1 + x) q((m− 1) +mx)− q(1 + x)

∣∣∣∣∣∣∣∣ = 0.

Making the appropriate substitutions, we have∣∣∣∣∣∣∣∣
P − aD p((m− 1) +mx)− aD

Q q((m− 1) +mx)

∣∣∣∣∣∣∣∣ = 0

and then, using statement (P1)(m,A), we have:

A ·

∣∣∣∣∣∣∣∣
P − aD mDab′ −∆1aD

Q 0

∣∣∣∣∣∣∣∣ = 0.

Factoring out a D and substituting into ∆1 we obtain:

AD ·

∣∣∣∣∣∣∣∣
P − aD mb′ − (a′b′ +mb′)

Q 0

∣∣∣∣∣∣∣∣ = 0

and so:

AD ·

∣∣∣∣∣∣∣∣
P − aD a′b′

Q 0

∣∣∣∣∣∣∣∣ = 0.

Thus, we have (IX) Q · (ADa′b′) = 0 .
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Let us now furthermore denote by (P ′, Q′) = Φ(m + 1 + (m + 1)x + y), and

∆′2 = a′b′ + (m+ 1)b′ + a′, C ′ = Da′b′C. Observe that m+ (m+ 1)x = ((m+ 1) +

(m+ 1)x+ y)− (1 + y) so that:∣∣∣∣∣∣∣∣
P − p(1 + y) P ′ − p(1 + y)

Q− q(1 + y) Q′ − q(1 + y)

∣∣∣∣∣∣∣∣ = 0

and making the appropriate substitutions:∣∣∣∣∣∣∣∣
P P ′

Q− bD Q′ − bD

∣∣∣∣∣∣∣∣ = 0.

Now we use the fact that (P2)(m+ 1, Da′b′C) (i.e. (P2)(m+ 1, C ′)) holds to de-

duce that:

C ′ ·

∣∣∣∣∣∣∣∣
P (m+ 1)Dab′

Q− bD Da′b−∆′2bD

∣∣∣∣∣∣∣∣ = 0

and so

C ′D ·

∣∣∣∣∣∣∣∣
P (m+ 1)ab′

Q− bD a′b−∆′2b

∣∣∣∣∣∣∣∣ = 0.

Now, we observe that ADa′b′|C ′D so that equation (IX) above implies that:

C ′D ·

∣∣∣∣∣∣∣∣
P (m+ 1)ab′

−bD a′b−∆′2b

∣∣∣∣∣∣∣∣ = 0

and, since b is a unit, we obtain

C ′D ·

∣∣∣∣∣∣∣∣
P (m+ 1)ab′

−D a′ −∆′2

∣∣∣∣∣∣∣∣ = 0.
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Now we substitute into ∆′2 to obtain:

C ′D ·

∣∣∣∣∣∣∣∣
P (m+ 1)ab′

−D a′ − (a′b′ + (m+ 1)b′ + a′)

∣∣∣∣∣∣∣∣ = 0.

Thus we have

C ′D ·

∣∣∣∣∣∣∣∣
P (m+ 1)ab′

D a′b′ + (m+ 1)b′

∣∣∣∣∣∣∣∣ = 0.

In particular, we obtain the following equation:

E = C ′D : P (a′b′ + (m+ 1)b′) = (m+ 1)Dab′ .

Therefore the statements (P1)(m+ 1, D2a′b′C), (P2)(m+ 1, Da′b′C) hold. Recall

that C = Dmax(2,e,h)(a′)max(f,i)(b′)max(g,j). Thus, denoting by

E = Dmax(2,e,h)+2(a′)max(f,i)+1(b′)max(g,j)+1,

we then deduce that the following statements hold:

(P1)(m+ 1, E), (P2)(m+ 1, E)

as contended.

Step 4 (calculating Φ((m− 1) +mx)): Our base case is m = 1. Indeed, observe

that Φ(x) = (D, 0) = (a′b′ + b′ : Dab′ : 0) (since a′ = a − 1) and from Step 1 (see

Equation (6.1.1)):

Φ(1 + x+ y) = D(a′b′ + a′ + b′ : Dab′ : Da′b).

Namely, the statements (P1)(1, 1) and (P2)(1, D) hold true. Thus by the inductive

step (Step 3) we obtain that (P1)(2, D4a′b′) and (P2)(2, D4a′b′) are true as well.
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From this, along with Step 3, we deduce that the statements (P1)(3, D6(a′)2(b′)2)

and (P2)(3, D6(a′)2(b′)2) are true. We deduce inductively that, in general, the

following statements hold:

(P1)(m,D2m(a′)m−1(b′)m−1), (P2)(m,D2m(a′)m−1(b′)m−1).

And in particular we deduce that, for any m ≥ 1, there exists Pm ∈ Z/`N ′ such

that the following equation holds:

D2m(a′)m−1(b′)m−1 : (a′b′ +mb′) · Pm = Dmab′.

Alternatively:

D2m(a′)m−1(b′)m : (a′ +m) · Pm = Dma.

This means that the following equation holds for the elements Pm, D, a
′, b′,m, a, b ∈

Z/`N ′ :

D2m(a′)m−1(b′)m ·Dma = D2m(a′)m−1(b′)m · (a′ +m) · Pm. (6.1.4)

Step 5 (Deduce that D = 0 mod `M): For non-zero elements η ∈ Z/`s we will

denote by o(η) = ord`(η̃) where η̃ denotes some lift of η to Z`; we observe that

o(rt) = o(r) + o(t) if r, t, rt 6= 0 mod `s.

Assume, for a contradiction, that D 6= 0 mod `M so that o(D) ≤ M − 1 =

2(n − 1). Take 1 ≤ m ≤ `3n−2 − 1 to be a representative for −a′ mod `3n−2 and

thus, in particular, o(m) ≤ n− 1. Observe that

N ′ = (6`3n−2 − 7)(n− 1) + 3n− 2 ≥ (6m− 1)(n− 1) + 3n− 2.
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Let us now consider the orders of the elements in the left-hand-side of Equation

(6.1.4). Since o(D) ≤ 2n− 2 and o(a′),o(b′),o(m) ≤ n− 1 we deduce that:

2mo(D) + (m− 1)o(a′) +mo(b′) + o(D) + o(m) + 1 ≤ (6m− 1)(n− 1) + 3n− 2

Moreover, we recall that o(a) = 0. Thus left-hand-side of equation (6.1.4) is non-

zero as an element of Z/`N ′ . We deduce, in particular, that o(D) + o(m) = o(a′ +

m) + o(Pm) by Equation (6.1.4). However, a′ +m = 0 mod `3n−2 so that:

3n− 3 ≥ o(D) + o(m) = o(a′ +m) + o(Pm) ≥ 3n− 2

and this is a contradiction.

We therefore obtain that D = 0 mod `M , as required. Using the discussion

preceeding Step 1 above, this then implies the Main Claim. And thus, finally, we’ve

proven Theorem 6.1.1 for n ∈ N.

Case n =∞:

This will follow from a limit argument using the n ∈ N case proved above. Let

f, g ∈ GaK(∞) be a given C-pair. Equivalently, fn, gn form a C-pair for all n ∈ N.

Consider, then:

T := ker f ∩ ker g, Tn := ker fn ∩ ker gn.

Then Tn ≥ Tn+1 and T =
⋂
n Tn. Denote by Ψ = (f, g) and Ψn = (fn, gn). Denote

by H the subgroup generated by T and all x /∈ T such that Ψ(1 + x) 6= Ψ(1),Ψ(x).
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Arguing as in the previous case, it suffices to show that

Hom(K×/T,Z`)/Hom(K×/H,Z`)

is topologically cyclic as a pro-` group. In order to show this, it suffices to prove

that (Tn ·H)/Tn is cyclic for all n ∈ N.

For each n ∈ N denote by Hn the subgroup generated by Tn and all x /∈ Tn

such that Ψn(1 + x) 6= Ψn(1),Ψn(x). Furthermore, if Ψn(x) 6= 0 and Ψn(1 + x) 6=

Ψn(1),Ψn(x) then also ΨN(x) 6= 0 and ΨN(1 + x) 6= ΨN(1),ΨN(x) for all N ≥ n.

Thus, Hn ≤ Tn · HN and so Hn/Tn ≤ (Tn · HN)/Tn. Therefore (Tn · H)/Tn =⋃
N≥n(Tn ·HN)/Tn is an inductive union. By the first case, HN/TN is always cyclic

(for all N) and thus (Tn ·HN)/Tn is cyclic for all N ≥ n. Therefore, (Tn ·H)/Tn is

cyclic, as required. This completes the proof of Theorem 6.1.1 for all n ∈ N.
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Chapter 7

Valuative Subgroups

In this chapter we prove the main theorems which allow us to detect valuations

using C-pairs in a more precise way. To begin, we introduce the notion of a valuative

subgroup I ≤ GaK(n) which generalizes the notion of a “flag function” from [BT02];

the familiar Galois theoretical analogue of a valuative subgroup is a subgroup which

is contained in an inertia group of some valuation. For a valuative subgroup I ≤

GaK(n) we will associate a canonical valuation vI which is reminiscent of Pop’s notion

of a core of a valuation in a Galois extension; our definition also agrees with the

valuation of the formO(H,H) constructed in [AEJ87] – see the definition in Chapter

4. To a valuative element f ∈ GaK(n), we also associate a canonical valuation vf

which resembles Pop’s canonical valuation associated to an inertia element – see

[Pop10b]. It turns out, as we will soon see, that the C-pair property is intimately

related to the comparability of these canonical valuations vI ; we will show that,
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in certain cases, we can “glue” valuative subgroups together to produce a larger

valuative subgroup.

In this section we will use results from the theory of rigid elements. While one

can use many references in the subject to deduce these results (see e.g. the overview

in the introduction), we will take [AEJ87] to be our reference of choice as we did

in Chapter 4. We begin by recalling some minimal conditions for the existence of a

valuation relative to a subgroup H ≤ K×.

Definition 7.0.3. A subgroup H ≤ K× will be called valuative if it satisfies

the equivalent conditions of Corollary 4.0.2 – i.e. H satisfies one of the following

equivalent conditions:

1. There exists a valuation v of K so that Uv ≤ H.

2. For all x, y ∈ K× r H one has 1 + x ∈ H ∪ x · H; and, if 1 + x, 1 + y ∈ H,

then 1 + x · (1 + y) ∈ H as well.

Similarly, I ≤ GaK(n) will be called valuative provided that I⊥ is valuative – equiv-

alently there exists a valuation v of K such that I ≤ Iv(n). We also say that

f ∈ GaK(n) is valuative provided that ker(f) is valuative – equivalently there exists

a valuation v of K such that f ∈ Iv(n).

Lemma 7.0.4. Let K be a field and let H be a valuative subgroup of K×. Then

there exists a unique coarsest valuation vH such that UvH ≤ H. If w is a valuation

of K such that Uw ≤ H, then vH is a coarsening of w; moreover w = vH if and
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only if w(H) contains no non-trivial convex subgroups.

In particular, let I ≤ GaK(n) be a valuative subgroup. Then there exists a unique

coarsest valuation vI , depending only on I, such that I ≤ IvI (n). If I ≤ Iw(n) then

vI is coarser than w. Moreover, vI = w if and only if w(I⊥) contains no non-trivial

convex subgroups.

Proof. Let w be any valuation such that Uw ≤ H and consider the coarsening v of w

which corresponds to the quotient of Γw by the maximal convex subgroup of w(H).

This is the coarsest coarsening v of w such that Uv ≤ H. By construction, v(H)

contains no non-trivial convex subgroups. We deduce that whenever x, y ∈ K×

such that v(x) = v(y) mod v(H) but v(x) < v(y), there exists a z ∈ K× such that

v(x), v(y) 6= v(z) mod v(H) and v(x) < v(z) < v(y).

Now suppose h ∈ H and x /∈ H. Then v(h) 6= v(x); moreover v(h) < v(x)

iff h + x ∈ H and v(h) > v(x) iff h + x ∈ x · H. An element h ∈ H such that

1 + x = h+ x mod H for all x ∈ K× rH must be in Uv by the discussion above.

We deduce that Uv depends only on H and K, but not at all on the original choice

of w. Indeed, Uv is precisely the set of all h ∈ H such that for all x ∈ K× rH one

has 1 + x = h+ x mod H.

Definition 7.0.5. We make the following definitions:

1. Suppose H ≤ K× is a valuative subgroup. We denote by vH the canonical

valuation associated to H as described in Lemma 7.0.4. I.e. vH is the unique

coarsest valuation such that UvH ≤ H.
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2. Similarly, suppose I ≤ GaK(n) is valuative. We denote by vI the valuation vH

for H = I⊥. I.e. vI is the unique coarsest valuation such that I ≤ IvI (n).

3. If f ∈ GaK(n) is a given valuative element, we denote by vf := v〈f〉 = vker f .

The way we will be able to “glue” valuative subgroups is by proving that their

associated valuations are comparable. Our first result which proves comparability

of valuations is the following avatar of the approximation theorem:

Lemma 7.0.6. Let v1, v2 be two valuations and assume that f is a non-valuative

element of GaK(n) such that f ∈ Dv1(n) ∩Dv2(n). Then v1, v2 are comparable.

Proof. Denote by w the valuation associated to the finest common coarsening of

v1, v2; i.e. Ow = Ov1 · Ov2 . Denote by H = ker f . As U1
v1
, U1

v2
≤ H, H 6= K× and

w is a coarsening of v1, v2 we deduce from the Approximation Theorem that w is

non-trivial – indeed otherwise v1, v2 would be independent valuations and therefore

(U1
v1

) · (U1
v2

) = K× by Corollary 2.3.2.

Consider Hw ≤ k(w)× the kernel of the canonical surjection k(w)× → Uw ·H/H.

Denote by wi = vi/w. One has U1
wi
≤ Hw while, if both wi are non-trivial, they must

be independent. However, we note that Hw 6= k(w)× since Uw ·H/H ∼= k(w)×/Hw

and Uw is not contained in H by our assumption on f . In particular, either w1 or

w2 must be trivial and so v1, v2 are comparable.

The following proposition and the remarks which proceed it are the main tech-

niques we use to prove the comparability of our canonical valuations vH in certain
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situations, and thus prove the existence of many valuative subgroups.

Proposition 7.0.7. Let f, g ∈ GaK(n) be given valuative elements. Denote by Ψ =

(f, g). Then the following are equivalent:

1. vf and vg are comparable.

2. 〈f, g〉 is valuative.

3. 〈Ψ(1− x),Ψ(x)〉 is cyclic for all x ∈ K× r {1}.

Proof. Clearly (1) and (2) are equivalent by Lemma 7.0.4 and (2) ⇒ (3) follows

from Lemma 6.0.7. Thus, it remains to show that (3)⇒ (2). Denote by Ψ = (f, g)

and denote by T = ker Ψ. Assume that whenever x 6= 0, 1 one has:

〈Ψ(1− x),Ψ(x)〉 is cyclic.

Since Ψ(−1) = 0, one equivalently has: 〈Ψ(1 + x),Ψ(x)〉 is cyclic whenever x 6=

0,−1. Since Λn is a quotient of a discrete valuation ring, we deduce that this

condition is equivalent to: Ψ(1 + x) = a · Ψ(x) or Ψ(x) = a · Ψ(1 + x) for some

a ∈ Λn.

Let x /∈ T be given; we will first show that Ψ(1 +x) = Ψ(1) or Ψ(1 +x) = Ψ(x).

As f, g are valuative, we recall that, for all x 6= 0 such that f(x) 6= 0, one has

f(1+x) = f(1) or f(x) and similarly with g. Assume first that Ψ(1+x) = a ·Ψ(x).

Thus: f(1 + x) = af(x) and g(1 + x) = ag(x). We have some cases to consider.

First, if g(x) = 0 or f(x) = 0 we trivially have Ψ(1 + x) = Ψ(1) or Ψ(x). On the

80



other hand, suppose f(x), g(x) 6= 0. Assume, for example, that f(1 + x) = f(x)

and g(1 + x) = g(1) = 0. Then f(x) = af(x) and ag(x) = 0. But then a must be a

unit in Λn (in fact a ∈ 1 + `Λn) and so g(x) = 0 which contradicts our assumption.

We therefore deduce that f(1 + x) = f(x) iff g(1 + x) = g(x) and f(1 + x) = 0 iff

g(1 + x) = 0. In particular, Ψ(1 + x) = Ψ(x) or Ψ(1 + x) = Ψ(1).

On the other hand, if Ψ(x) = aΨ(1 + x) but `|a, this contradicts the fact that

f and g are valuative and Ψ(x) 6= 0. Thus, we’ve shown that whenever Ψ(x) 6= 0

one has Ψ(1 + x) = Ψ(1) or Ψ(1 + x) = Ψ(x).

Assume now that x, y /∈ T are given such that Ψ(1 + x) = Ψ(1 + y) = 0. We

will show that Ψ(1 + x(1 + y)) = 0. Observe that Ψ(1 + x(1 + y)) = aΨ(x) with

a = 0 or a = 1, since Ψ(1 + y) = 0 and Ψ(x) = Ψ(x(1 + y)) 6= 0. Assume first that

Ψ(y) = −Ψ(x) then f(x) = 0 iff f(y) = 0 and g(x) = 0 iff g(y) = 0. If f(x) = 0

then f(1 + x(1 + y)) = 0 as well from the above and similarly for g. If f(x) 6= 0

then f(1 +x(1 + y)) = 0 since f is valuative and similarly for g; see Corollary 4.0.2.

On the other hand, assume that Ψ(x) 6= −Ψ(y). Then Ψ(1 + x(1 + y)) = Ψ(t+

xy) = bΨ(xy) for some t ∈ T and b = 0 or b = 1. Furthermore, Ψ(1 + x(1 + y)) =

a · Ψ(x) where a = 0 or a = 1, as above. But then aΨ(x) = bΨ(xy), a, b ∈ {0, 1},

Ψ(x),Ψ(y) 6= 0 and Ψ(xy) 6= 0; the only possibility for this is if a, b = 0. Now using

Corollary 4.0.2, we deduce that T is indeed valuative – i.e. 〈f, g〉 is a valuative

subgroup of GaK(n).

Remark 7.0.8. In this remark we will compare the condition of Proposition 7.0.7
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with the C-pair property. Let f, g ∈ GaK(n) be given and denote by Ψ = (f, g).

Assume that n = 1 or n =∞. Since Λn is a domain in this case, the following are

equivalent:

1. 〈Ψ(1− x),Ψ(x)〉 is cyclic for all x, 6= 0, 1.

2. f, g form a C-pair.

For general n ∈ N, however, this is completely false. However, we can say the

following in general using the cancellation principle or, more precisely, Lemma 6.1.2.

Let n ∈ N be arbitrary and denote by M = M1(n) = 2n−1 (M = M1(∞) =∞).

Let f, g ∈ GaK(n) be given, denote by Ψ = (f, g) and assume that 〈Ψ(1− x),Ψ(x)〉

is cyclic for all x 6= 0, 1. Then f, g trivially form a C-pair.

Conversely, assume that f ′, g′ ∈ GaK(M) form a C-pair and denote by Ψ =

(f ′n, g
′
n). Then 〈Ψ(1 − x),Ψ(x)〉 is cyclic for all x 6= 0, 1. Let us recall the proof

of this fact from Lemma 6.1.2. Assume, for example, that g′(1 − x) = ag′(x) (the

other option is g′(1− x) = bg′(x) and we simply replace x with 1− x in this case).

As f ′(1− x)g′(x) = f ′(x)g′(1− x) we deduce that:

f ′(1− x)g′(x) = f ′(x)ag′(x).

By the cancellation principle, we deduce that, if g(x) 6= 0, one has f(1−x) = af(x).

Thus Ψ(1 − x) = aΨ(x). On the other hand, g(x) = 0 implies that g(1 − x) =

ag(x) = 0 so that still 〈Ψ(1− x),Ψ(x)〉 is cyclic.
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Using the fact that for any valuation v of K the canonical map Iv(M1(n)) →

Iv(n) is surjective (since Γv = K×/Uv is torsion-free), along with Proposition 7.0.7

and the discussion of Remark 7.0.8, we deduce the following fact which summarizes

the discussion:

Lemma 7.0.9. Let f, g ∈ GaK(n) be valuative elements. Then the following are

equivalent:

1. vf and vg are comparable.

2. 〈f, g〉 is valuative.

3. There exists a C-pair f ′, g′ ∈ GaK(M1(n)) such that f ′n = f , g′n = g.

The results above allow us to say when a subgroup generated by valuative el-

ements is itself valuative. Indeed, assume that I is valuative and f ∈ I; then vf

is a coarsening of vI by Lemma 7.0.4. Thus, if fi ∈ GaK(n) are valuative, then the

following are equivalent:

1. I = 〈fi〉i is valuative.

2. vi := vfi are comparable.

Moreover, when these equivalent statements hold, then vI is the valuation-

theoretic supremum of the vi; we recall our convention that w ≤ v provided w

is a coarsening of v (i.e. Ow ⊃ Ov).

Now that we’ve explored the connection between C-pairs and elements of Iv(n),

we next treat Dv(n) as well in the following lemma:
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Lemma 7.0.10. Let n ∈ N be given and denote by M = M1(n). Let K be a field

and let f ∈ GaK(M) be a valuative element. Suppose that g ∈ GaK(M) forms a C-pair

with f . Denote by v = vfn. Then gn ∈ Dv(n).

Proof. For sake of notation, we will assume that n ∈ N, but the proof in the n =∞

case is virtually identical. Let x ∈ K× be given such that v(x) > 0 and f(x) 6= 0

mod `n. Then f(1−x) = 0 mod `n implies that f(1−x) = 0 as well – indeed, f is

valuative so f(1−x) = f(1) or f(x) and f(x) 6= 0 mod `n. Then f(1−x) = 0 and

thus f(x)g(1 − x) = 0. Since f(x) 6= 0 mod `n, we deduce from the cancellation

principle that g(1− x) = 0 mod `n.

On the other hand, if v(y) > 0 yet f(y) = 0 mod `n, by Lemma 7.0.4, there

exists x such that 0 < v(x) < v(y) and f(x) 6= 0 mod `n. Now by the first case,

we deduce that g(1 − x) = 0 mod `n. Moreover, v(x + y(1 − x)) = v(x) and so

f(x+y(1−x)) = f(x) 6= 0 mod `n; thus g((1−x)(1−y)) = g(1−(x+y(1−x)) = 0

mod `n by the first case. But this implies that g(1 − y) = 0 mod `n as well.

Therefore, g(U1
v ) = 0 mod `n, as required.

We are now ready to state the main theorem of the thesis which deals with

C-groups. This theorem, along with Theorem 12.0.2 directly generalizes the main

theorem of [BT02].

Theorem 7.0.11. Let n ∈ N be given and let N ≥ N(M1(n)). Let D′′ ≤ GaK(N)

be given and assume that D′′ is a C-group. Then D := D′′n contains a valuative

subgroup I ≤ D such that
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• D/I is cyclic.

• D ≤ DvI (n).

Proof. Denote by M = M1(n) and D′ = D′′M . Consider the subgroup I ′ of D′

generated by all valuative elements f ∈ D′. By Theorem 6.1.1, D′/I ′ is cyclic.

Moreover, by Lemma 7.0.9 and Remark 7.0.8, I ′ is valuative, since vf and vg are

comparable for any valuative f, g ∈ I ′ as N(M) ≥M1(M); thus I := I ′n is valuative

as well. Moreover, by Lemma 7.0.10, for all d ∈ D := D′n and i ∈ I, one has

d ∈ Dvi(n). Since vI = supi∈I vi is the valuation-theoretic supremum of vi as i ∈ I

varies, we have d ≤ DvI (n). Thus D ≤ DvI (n), as required.

We now prove a theorem which allows us to detect the groups Iv(n) within

subgroups of Dv(n). This will be needed later on in order to detect Iv(n) and

Dv(n) precisely in certain situations.

Theorem 7.0.12. Let n ∈ N be given and let N ≥ N(M2(M1(n))). Let I ′′ ≤ D′′ ≤

GaK(N) be given and denote by I = I ′′n and D = D′′n. Assume that whenever i ∈ I ′′

and d ∈ D′′, i, d form a C-pair (i.e. I ′′ ≤ IC(D′′)). Assume moreover that D is not

a C-group. Then I is valuative and D ≤ DvI (n).

Proof. Denote by M = M1(n) and denote by I ′ = I ′′M and D′ = D′′M . Arguing

similarly to Theorem 7.0.11 (i.e. using Lemma 7.0.10), it suffices to prove that

every f ∈ I ′ is valuative. Assume for a contradiction that f ∈ I ′ is non-valuative

and let g1, g2 ∈ D′ be given such that 〈f, gi〉 is non-cyclic – we will show that
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〈f, g1, g2〉 must form a C-group. Then, as we vary over all g1, g2, we deduce that D′

(and thus D) is a C-group as well which provides the required contradiction.

For the remainder of the proof, denote by M ′ = M2(M) = M2(M1(n)). Take

lifts f ′ ∈ I ′′M ′ and g′i ∈ D′′M ′ for f resp. gi. Then by Theorem 6.1.1, there exist

valuations vi such that:

• 〈f ′, g′i〉 ∈ Dvi(M
′)

• 〈f ′, g′i〉/(〈f ′, g′i〉 ∩ Ivi(M ′)) is cyclic.

For i = 1 and i = 2, we deduce that there exists (ai, bi) ∈ Λ2
M ′ r ` · Λ2

M ′ with

aif
′+big

′
i ∈ Ivi(M ′). Indeed otherwise 〈f ′, g′i〉∩Ivi(M ′) is contained in 〈` ·f ′, `·g′i〉 =

` · 〈f ′, g′i〉 but 〈f ′, g′i〉/` is non-cyclic by our assumption that 〈f ′, g′i〉 is non-cyclic.

Since f is non-valuative we deduce that big
′
i 6= 0 mod `M and thus bi 6= 0

mod `M . Indeed, if ai is a unit and big
′
i = 0 mod `M , this would imply that f is

valuative. On the other hand, if bi is a unit, then big
′
i 6= 0 mod `M since gi 6= 0

mod `M . Furthermore, since f ′ is non-valuative, the vi must be comparable by

Lemma 7.0.6. In particular, 〈f ′, a1f
′ + b1g

′
1, a2f

′ + b2g
′
2〉 = 〈f ′, b1g

′
1, b2g

′
2〉 forms

a C-group by Lemma 6.0.7 and Proposition 7.0.7. By the cancellation principle,

〈f, g1, g2〉 form a C-group as well. Indeed, for all x ∈ K× r {1} one has:

b1b2g
′
1(1− x)g′2(x) = b1b2g

′
1(x)g′2(1− x);

thus we also have g1(1−x)g2(x) = g1(x)g2(1−x) by the cancellation principle since

b1, b2 6= 0 mod `M and M ′ = M2(M).
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Chapter 8

Detecting Valuations using

C-pairs

In this chapter, we show how to detect precisely the subgroups Dv(n) and Iv(n) for

certain “maximal” valuations v. We also show that, in the case of function fields,

these “maximal” valuations include the Parshin chains of divisors.

First, let us make a few observations. Note that when GaK(n) is cyclic, one cannot

expect to detect anything. This is perhaps best illustrated with two contrasting

examples. First consider K = C((t)). Then GaK(n) is cyclic by Kummer theory,

the whole GaK(n) is valuative and its corresponding valuation is the t-adic one. On

the other hand, consider K = Fp(µ`) (p 6= `). By Kummer theory, GaK(n) is again

cyclic, but K has no non-trivial valuations since K ⊂ Fp. In particular, when GaK(n)

is cyclic, we cannot expect to determine whether anything is valuative. Because of
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this observation and the compatibility in taking residue fields (see Lemma 6.0.8),

one cannot expect to detect Iv(n) within Dv(n) when Gak(v)(n) is cyclic.

Furthermore, in light of Theorem 7.0.12, in order to detect Iv(n) and Dv(n), we

will need to ensure that the canonical maps Iv(N) → Iv(n) and Dv(N) → Dv(n)

are surjective so that we have sufficiently many C-pairs of GaK(n) which lift to

C-pairs in GaK(N). The first map, Iv(N) → Iv(n) is always surjective as Γv is

torsion-free; on the other hand, the map Dv(N) → Dv(n) need not be surjective.

Fortunately, it is surjective in two important cases which we consider below. First,

if K contains sufficiently many roots of unity (and thus the same is true for k(v))

this map is surjective. Secondly, if N = n, this map is trivially surjective; denoting

N = N(M2(M1(n))) as in Theorem 7.0.12, we see that N = n iff n = 1 or n =∞.

We will therefore eventually consider two separate cases. First will be the case

where K contains sufficiently many roots of unity – more precisely, we will require

that the polynomial X2`n−1 splits completely in K while making no other assump-

tions on K (in particular CharK might still be ` in which case this condition is

always satisfied). Second will be the case where n = 1 or n = ∞ in which case

N(n) = Mr(n) = n. However, we will begin by introducing the set of valuations v

of K for which we will be able to detect Iv(n) and Dv(n) precisely. This set, which

we denote by VK,n will be essentially independent of choice of n (see Lemma 8.2.6)

and will contain almost all valuations of arithmetic/geometric interest in the usual

contexts of birational anabelian geometry.
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8.1 The set VK

Definition 8.1.1. Let n ∈ N be given and denote by N := N(M2(M1(n))). Let

K be a field.

Consider the following conditions on a valuation v of K:

1. Γv contains no non-trivial `-divisible convex subgroups. Equivalently by

Lemma 7.0.4, v = vI for I = Iv(n); indeed, v(I⊥) = `n ·Γv contains the convex

subgroup ∆ if and only if ∆ is `n-divisible if and only if ∆ is `-divisible, since

∆, Γv and Γv/∆ are all torsion-free.

2. v is maximal among all valuations w such that Dn
v = Dn

w and Γw contains no

non-trivial `-divisible convex subgroups; i.e. for all refinements w of v such

that Dn
w = Dn

v as subgroups of Ga,nK , one has Inw = Inv .

3. Gak(v)(n) is non-cyclic.

We will denote by VK,n the collection of valuations v of K which satisfy conditions

(1),(2),(3) above. For the sake of Example 8.1.2 and some of the arguments in this

chapter, we will also denote by WK,n the collection of valuations v which satisfy

only conditions (1) and (2), although we will not use WK,n in the statement of any

theorem.

We also introduce notation for the group-theoretical analogue of VK,n, which will

make the statements of Remarks 8.2.5 and 8.3.4 much more elegant and intuitive.

We denote by DK,n the collection of subgroups D ≤ GaK(n) endowed with I ≤ D
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which satisfy the following conditions:

1. There exist D′ ≤ GaK(N) such that (IC(D′))n = I, D′n = D.

2. I ≤ D ≤ GaK(n) are maximal with this property. Namely, if D ≤ E ≤ GaK(n)

and E ′ ≤ GaK(N) is given such that E ′n = E and I ≤ (IC(E ′))n, then D = E

and I = (IC(E ′))n.

3. IC(D) 6= D (i.e. D is not a C-group).

To make the notation simpler in Remarks 8.2.5 and 8.3.4, we introduce notation

for subsets relative to a given fixed valuation v in VK,n. Namely, given a fixed

v ∈ VK,n we will consider the following subsets of VK,n resp. DK,n.

1. We denote by Dv,n the subset of DK,n consisting of I ≤ D such that Iv(n) ≤

I ≤ D ≤ Dv(n).

2. We denote by Vv,n the subset of VK,n consisting of valuations finer than v.

The set VK,n contains many valuations of arithmetic/geometric interest. The

main examples of such valuations arise from prime divisors as will be shown in the

following example.

To keep the discussion as general as possible, we introduce some terminology.

We will say that a field k is strongly `-closed provided that for any finite extension

k′|k one has (k′)× = (k′)×`. If Char k 6= `, then k is strongly ` closed if and only if

the `-Sylow subgroups of Gk are all trivial. Also, if Char k = `, then k is strongly `
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closed if and only if k is perfect. In particular, all algebraically closed fields of any

characteristic are strongly `-closed.

Observe that, if v0 is a valuation of a strongly `-closed field k, then k(v0) is also

strongly `-closed. In this example, we will show that geometric Parshin chains (i.e.

compositions of valuations of a function field associated to Weil prime divisors) are

elements of WK,n, where K is a function field over a strongly `-closed field k. In

particular the non-degenerate Parshin chains of non-maximal length will lie in VK,n

while the non-degenerate maximal length Parshin chains will lie in WK,n r VK,n.

This will be done in two steps. First, we show that valuations associated to Weil

prime divisors lie in WK,n for function fields K|k as above; in fact we will prove

a more general statement about valuations whose residue field is a function field.

Second, we will show that compositions of valuations from Wn lie in Wn and this

will hold for arbitrary fields.

Example 8.1.2. Our first claim will, in particular, imply that valuations associated to

prime divisors (and more generally quasi-prime divisors) are elements ofWK,n, and

in most cases of VK,n. The second claim concerns the valuation-theoretic composi-

tions of valuations in Wn. Together, these two claims imply that Parshin-chains of

(quasi-)prime divisors of non-maximal length are elements of VK,n while the chains

of maximal length are elements of WK,n.

Prime Divisors: Suppose K is a field in which the polynomial X2`n − 1 splits

completely. Let v be a valuation of K such that Γv contains no non-trivial `-divisible
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convex subgroups and that k(v) is a function field over a strongly `-closed field k.

We claim that v ∈ WK,n.

To prove this claim, first assume that k(v)|k has transcendence degree ≥ 1.

Assume that w is a refinement of v and that Dw(n) = Dv(n). Then Iv(n) ≤ Iw(n) ≤

Dw(n) = Dv(n). We must show that Iv(n) = Iw(n). Denote by F = k(v) and

consider the valuation w/v =: w′ of F induced by w. Observe that Iv(n) = Iw(n) if

and only if Iw′(n) = 1 as a subgroup of GaF (n) since we have a canonical isomorphism

Iw(n)/Iv(n) ∼= Iw/v(n). Thus, we can assume without loss of generality that n = 1

(see e.g. Lemma 8.2.1 and/or Lemma 8.2.6).

Assume, for a contradiction, that 0 6= f ∈ Iw′(1) and denote by T = ker f . Then

F×/T = 〈x mod T 〉 ∼= Z/`. Furthermore, for all g ∈ GaF (1), f, g form a C-pair by

Lemma 6.0.7. In particular, for all H ≤ F×, F×` ≤ H, such that F×/H ∼= Z/`, the

group Hom(F×/(H ∩ T ),Z/`) is a C-group.

Now assume that x, y are Z/` independent in F×/`. Then we can choose T0

such that F×` ≤ T0 ≤ T ≤ F× and F×/T0 = 〈x, y〉 ∼= Z/` × Z/`. Thus,

Hom(F×/T0,Z/`) is a C-group. By the K-theoretic criterion for C-pairs (see Propo-

sition 10.2.1, the proof of which is self-contained) we deduce, in particular, that

{x, y}T0 6= 0 as an element of KM
2 (F )/T0 (see Chapter 10 for a review of the def-

inition of Milnor K-theory mod T0). In particular, {x, y} 6= 0 as an element of

KM
2 (F )/`.

We will show that this provides a contradiction. First, since x /∈ F×` and k is
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strongly `-closed, we deduce that x is transcendental over k. Consider the subfield

L = k(x) ∩ F the relative algebraic closure of k(x) (the rational function field)

inside F . Our aim will be to find y ∈ k(x)× so that the images of x, y in L×/` are

independent.

If Char k 6= `, the existence of such a y is trivial since the image of the canonical

map k(x)×/` → L×/` is infinite – in fact, the image has finite index in L×/` by

Kummer theory since L|k(x) is a finite extension and µ` ⊂ k. If, on the other hand,

Char k = `, we see that k is perfect and, since x /∈ L×`, the extension L|k(x) is

separable. Consider the unique complete normal model C for L|k together with the

(possibly branched) cover C → P1
k induced by k(x) → L. By the approximation

theorem, there exists a prime divisor P of P1
k and a function y ∈ k(x)× such that P

is unramified in the cover C → P1
k, P 6= 0,∞, and vP (y) = 1 (here vP denotes the

valuation associated to P ). Since P is unramified in C, for any prolongation P ′ of

P to C, one also has vP ′(y) = 1. Moreover, as P 6= 0,∞ and the divisor associated

to x is precisely 0−∞, we deduce that y is not a power of x in L×/`.

We now recall a theorem of Milnor stating that the following sequence is exact:

0→ KM
2 (k)→ KM

2 (k(x))→
⊕
P∈A1

k

KM
1 (k(P ))→ 0

where the last map is the sum of the tame symbols associated to vP , as P ranges over

the prime divisors of P1
k with support in A1

k = Spec k[x]. However, the extension

k(P )|k is finite and thus k(P )×` = k(P )× since k is strongly `-closed. Also, this

implies that KM
2 (k)/` = 0. Thus, we deduce that KM

2 (k(x))/` = 0 and so {x, y} = 0
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in KM
2 (F )/`. Moreover, since L is relatively algebraically closed in F and x, y are

independent in L×/`, they must also be independent in F×/`. This provides the

desired contradiction to the discussion above, as we’ve produced an element y ∈ F×

such that x, y are independent in F×/` and {x, y} = 0. Thus we’ve proven that

v ∈ WK,n. Since Gak(v)(n) is non-cyclic (as k(v) is a function field of transcendence

degree ≥ 1) we see that, actually, v ∈ VK,n.

On the other hand, if the transcendence degree of k(v)|k is 0, we observe that

k(v)× is `-divisible since k is strongly `-closed, and so v ∈ WK,n r VK,n trivially.

Compositions of Valuations: We now show that compositions of valuations

in Wn lie in Wn. Suppose that v ∈ WK,n is given and w ∈ Wk(v),n. Denote by

w′ = w◦v the valuation theoretic composition of v and w. By considering the short

exact sequence of value groups:

1→ Γw → Γw′ → Γv → 1

we see immediately that Γw′ contains no non-trivial `-divisible convex subgroups

since both Γw and Γv satisfy this condition. Furthermore, suppose that w′′ is a

refinement of w′ such that Dw′(n) = Dw′′(n). Observe that v is a coarsening of w′,

and thus of w′′. Since Dw′(n) = Dw′′(n), we also have Dw(n) = Dw′′/w(n) and thus

Iw(n) = Iw′′/v(n) (this is condition (2) for w ∈ Wk(v),n). Hence Iw′(n) = Iw′′(n) as

well.
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8.2 Sufficiently Many Roots of Unity

In this section, we show how to detect Dv(n) and Iv(n) for valuations v ∈ VK,n

using C-pairs, in the situation where K contains sufficiently many roots of unity.

Note however that we do not require our field K to have residue characteristic

different from `, but rather that X`N − 1 splits completely for sufficiently large

N depending on n; this property is inherited in the residue field of any valuation

(since valuation rings are integrally closed). The main benefit of this property is the

following lemma. However we observe that the statements of the following lemma

hold without the assumption that X2`N − 1 splits completely in the case where

N = n (this observation will be used in the following section).

Lemma 8.2.1. Let (K, v) be a valued field. Let N, n ∈ N be given with N ≥ n and

assume furthermore that the polynomial X2`N − 1 splits completely in K (we make

no assumptions on CharK); if N = ∞ we take this to mean that X2`m − 1 splits

for all m ∈ N. Then the following hold:

1. The following canonical maps are surjective:

• GaK(N)→ GaK(n).

• Iv(N)→ Iv(n).

• Dv(N)→ Dv(n).

2. The rank of GaK(N) (as a pro-`-group) is the same as that of GaK(n).
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3. Let w ≥ v be valuations of K and consider the inclusion of subgroups of

GaK(N):

Iv(N) ≤ Iw(N) ≤ Dw(N) ≤ Dv(N).

Then Iv(N) = Iw(N) iff Iv(n) = Iw(n) and Dw(N) = Dv(N) iff Dw(n) =

Dv(n).

Proof. To 1. This is trivial if n =∞, and thus we can assume that both N, n ∈ N

as the case where N = ∞ would follow immediately from this. The Pontryagin

dual of the map GaK(N)→ GaK(n) is precisely the map:

K×/`n
`N−n

−−−→ K×/`N .

Indeed our assumption that X2`N − 1 splits completely ensures that −1 ∈ K×`N .

Thus, it suffices to prove that this map is injective. Suppose x ∈ K× is given such

that x`
N−n

= y`
N

. Then x = y`
n · ζ for some ζ such that ζ`

N−n
= 1. But our

assumptions ensure that ζ ∈ K×`n which shows that indeed this map is injective.

Dually, the map GaK(N)→ GaK(n) is surjective.

The second claim is trivial as Γv = K×/Uv is torsion-free. The proof of the

third claim follows from the first one applied to k(v), along with the fact that

Dv(N)/Iv(N) = Gak(v)(N) and Dv(n)/Iv(n) = Gak(v)(n) (see Lemma 6.0.8). Indeed,

the fact that X2`N − 1 splits in K implies that the same polynomial splits in k(v)

so that the map Gak(v)(N)→ Gak(v)(n) is surjective.

To 2. As above, we can assume with no loss that N, n ∈ N. Arguing as in claim
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(1), one has:

`n · GaK(N) = Hom(K×/± 1, `n · ΛN).

Thus the surjective map GaK(N) → GaK(n) corresponds precisely to GaK(N) →

GaK(N)/`n = GaK(n) and this proves the claim using the standard Frattini argu-

ment.

To 3. By (1), Iv(N) = Iw(N) implies that Iv(n) = Iw(n) and similarly Dv(N) =

Dw(N) implies that Dv(n) = Dw(n). To prove the converse it suffices to assume

that v is the trivial valuation by replacing K with k(v) and w by w/v; indeed

Iw(n)/Iv(n) = Iw/v(n) and Dw(n)/Iv(n) = Dw/v(n); see e.g. the first part of Lemma

6.0.8. As such, assume that Iw(n) = 1 then Γw = `n · Γw and so Γw = `N · Γw since

Γw is torsion-free; this implies that Iw(N) = 1. On the other hand, assume that

Dw(n) = GaK(n). Then U1
w ≤ K×`

n
. Let x ∈ U1

v be given, then x = y`
n

for some

y ∈ K×. Applying w to both sides we deduce that y ∈ Uw. Denote by a 7→ ā

the map Uw → k(w)×. Then ȳ`
n

= 1̄ so that there exists a z̄ ∈ k(w)× such that

z̄`
N−n

= ȳ; indeed, we recall that the polynomial X`N − 1 splits in K. Thus,

y = z`
N−n · a for some a ∈ U1

w. And thus x = z`
N
a`

n
. But as a ∈ K×`n we deduce

that a`
n ∈ K×`2n . Proceeding inductively, we deduce in this way that x ∈ K×`N .

This shows that, indeed Dw(N) = GaK(N), as required.

Proposition 8.2.2. Let n ∈ N be given and let N ≥ N(M1(n))). Let K be a field

and assume that X2`N − 1 splits completely in K (we do not make any assumptions

on CharK). Let D ≤ GaK(n) be given. Then the following are equivalent:
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1. There exists a valuation v of K such that D ≤ Dv(n) and D/(D ∩ Iv(n)) is

cyclic.

2. There exists a subgroup D′ ≤ GaK(N) such that D′ is a C-group and D′n = D.

Proof. First assume that D′ exists as above. Then (1) follows from Theorem 7.0.11.

Conversely, assume that there exists a valuation v of K such that D ≤ Dv(n) and

D/(D ∩ Iv(n)) is cyclic. Denote by I = D ∩ Iv(n) and choose f ∈ D such that

〈I, f〉 = D. Choose f ′ ∈ Dv(N) a lifting of f via Lemma 8.2.1 and consider the

pre-image I ′ ≤ Iv(N) of I ≤ Iv(n) under the surjective map Iv(N)→ Iv(n). Then

I ′n = I and f ′n = f . Moreover, by Lemma 6.0.7, we see that 〈I ′, f ′〉 is a C-group.

Taking D′ = 〈I ′, f ′〉 we obtain (2).

Proposition 8.2.3. Let n ∈ N be given and let N ≥ N(M2(M1(n))). Let K be

a field and assume that X2`N − 1 splits completely in K (we do not make any as-

sumptions on CharK). Assume that IC(GaK(n)) 6= GaK(n), consider I ′ = IC(GaK(N))

and denote by I = I ′n. Then I is valuative, v := vI ∈ VK,n, I = Iv(n) and

Dv(n) = GaK(n).

Proof. We know that I is valuative and, denoting v = vI , Dv(n) = GaK(n) from

Theorem 7.0.12. On the other hand, Dv(N) = GaK(N) by Lemma 8.2.1 and so we

see that Iv(N) ≤ I ′ by Lemma 6.0.7; thus Iv(n) ≤ I ≤ Iv(n) so that I = Iv(n).

Let us show that v ∈ WK,n. Suppose that w is a refinement of v such that

Dv(n) = GaK(n) = Dw(n). Then, as above, Iw(N) ≤ I ′ so that Iw(n) ≤ Iv(n) ≤
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Iw(n) and thus Iw(n) = Iv(n). Moreover, Gak(v)(n) = GaK(n)/I is non-cyclic since

GaK(n) is not a C-group and I ≤ IC(GaK(n)); thus we see that v ∈ VK,n.

Theorem 8.2.4. Let n ∈ N be given and let N ≥ N(M2(M1(n)))). Let K be a field

and assume that X2`N − 1 splits completely in K (we do not make any assumptions

on CharK). Let I ≤ D ≤ GaK(n) be given. Then there exists a valuation v ∈ VK,n

such that I = Iv(n) and D = Dv(n) if and only if the following holds:

1. There exist D′ ≤ GaK(N) such that (IC(D′))n = I, D′n = D.

2. I ≤ D ≤ GaK(n) are maximal with this property. Namely, if D ≤ E ≤ GaK(n)

and E ′ ≤ GaK(N) is given such that E ′n = E and I ≤ (IC(E ′))n, then D = E

and I = (IC(E ′))n.

3. IC(D) 6= D (i.e. D is not a C-group).

Proof. Let I ≤ D be given which satisfy conditions (1)-(3) as above. Then I

is valuative and D ≤ Dv(n), where v = vI , by Theorem 7.0.12. Consider I ′ =

Iv(N) ≤ Dv(N) = D′. By Lemma 8.2.1, one has I ′n = Iv(n) and D′n = Dv(n).

Furthermore, by Lemma 6.0.7, I ′ ≤ IC(D′). Thus, I ≤ Iv(n) = I ′n ≤ (IC(D′))n =: J

and D ≤ Dv(n) = D′n. By assumption (2) on I ≤ D we deduce that I = J and

D = Dv(n). Moreover, by Theorem 7.0.12, J is valuative and Dv(n) ≤ DvJ (n).

But Iv(n) ≤ J ≤ IvJ (n) implies that v is coarser than vJ so that DvJ (n) ≤ Dv(n).

Thus, Dv(n) = DvJ (n) and I = Iv(n), as required.

Since v = vI , we see immediately by the definition of vI that Γv contains no
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non-trivial convex `-divisible subgroups so that v satisfies assumption (1) of WK,n.

Assume that w is a refinement of v (i.e. v is coarser than w) such that Dv(n) =

Dw(n). Then Iv(n) ≤ Iw(n) ≤ Dw(n) = Dv(n). But then:

Iv(n) ≤ Iw(n) ≤ (IC(Dw(N)))n ≤ (Dw(N))n = Dw(n) = Dv(n)

implies that Iv(n) = Iw(n) by assumption (2) on I ≤ D, thus v ∈ WK,n. Moreover,

Gak(v)(n) = Dv(n)/Iv(n) is non-cyclic as Dv(n) is not a C-group by assumption (3)

(see Lemma 6.0.7), so we deduce that v ∈ VK,n.

Conversely assume that v ∈ VK,n is given. By Lemma 6.0.7, we have Iv(N) ≤

IC(Dv(N)) ≤ Dv(N) and by Lemma 8.2.1 we obtain:

Iv(n) ≤ (IC(Dv(N)))n ≤ Dv(n).

Moreover, I := (IC(Dv(N)))n is valuative and Dv(n) ≤ DvI (n) by Theorem 7.0.12.

Since Iv(n) ≤ I, vI is a refinement of v we see that DvI (n) ≤ Dv(n) ≤ DvI (n) and

so Dv(n) = DvI (n). Thus, Iv(n) = I by condition (2) on v ∈ VK,n from Definition

8.1.1.

Let us now show that I := Iv(n) ≤ Dv(n) =: D satisfy the condition (2) required

by DK,n. Assume that E ′ ≤ GaK(N) and D ≤ E := E ′n and I ≤ (IC(E ′))n =: J .

By Theorem 7.0.12, J is valuative and D ≤ E ≤ Dw(n) where w = vJ . But since

I ≤ J ≤ Dw(n), v is a coarsening of w and so, similarly to above, we deduce that

D = Dw(n). Now the condition (2) of v ∈ VK,n of Definition 8.1.1 ensures that

Iv(n) = Iw(n) = I, as required.

100



Lastly, we must show that D is not a C-group – i.e. condition (3) of the theorem.

Assume for a contradiction that D is a C-group; equivalently, Gak(v)(n) is a C-group

by Lemma 6.0.8. However, Gak(v)(n) is non-cyclic and thus Gak(v)(1) is non-cyclic as

well by Lemma 8.2.1. But Gak(v)(n) being a C-group implies that Gak(v)(1) is a C-

group as well. Thus, applying Theorem 7.0.11 with n = 1, there exists a valuative

subgroup J ≤ Gak(v)(1) such that Gak(v)(1) = Dw′(1) where w′ = vJ and Dw′(1)/Iw′(1)

is cyclic. But by Lemma 8.2.1, Dw′(n) = Gak(v)(n) and Dw′(n)/Iw′(n) is cyclic as

well. Denote by w = w′ ◦ v so that Iv(n) ≤ Iw(n) ≤ Dw(n) = Dv(n), with

Dw(n)/Iw(n) cyclic. But this contradicts condition (2) of v ∈ VK,n from Definition

8.1.1 as Dv(n)/Iv(n) = Gak(v)(n) is non-cyclic and thus Iv(n) 6= Iw(n).

Remark 8.2.5. Let n ∈ N be given. Suppose thatK is a field in which the polynomial

X2`N−1 splits completely for N = N(M2(M1(n)))). Then map v 7→ Iv(n) ≤ Dv(n)

defines a bijection VK,n → DK,n.

Let v ∈ VK,n be given. By Lemma 6.0.8, the bijection VK,n → DK,n restricts

to a bijection Vv,n → Dv,n. Furthermore, this restricted bijection is compatible

with the bijection Vk(v),n → Dk(v),n via the canonical bijections Vk(v),n → Vv,n and

Dk(v),n → DK,n.

We conclude this subsection by providing an alternative definition of VK,n, as

promised in Remark 1.3.2 from the introduction. This will prove that VK,n is inde-

pendent of n whenever n is small enough relative to the number of roots of unity

contained in K.
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Lemma 8.2.6. Let n ∈ N be given and let K be a field in which X2`n − 1 splits

completely. Then VK,n is precisely the collection of valuations v of K such that:

1. Γv contains no non-trivial `-divisible convex subgroups.

2. Iv(1) = IC(Dv(1)) 6= Dv(1).

In particular, VK,n = VK,m for all m ≤ n.

Proof. The argument of this lemma is similar to that of Theorem 8.2.4. Denote by

V the collection of valuations satisfying the two conditions (1),(2) of the lemma.

First, let us show that V ⊂ VK,n. Let v ∈ V be given; we need show the following

conditions:

(a) Γv contains no non-trivial `-divisible convex subgroups.

(b) If w is a refinement of v such that Dw(n) = Dv(n) then Iw(n) = Iv(n).

(c) Gak(v)(n) is non-cyclic.

Condition (1) for v ∈ V is precisely (a). First, as IC(Dv(1)) 6= Dv(1), we see

that Gak(v)(n) = Dv(n)/Iv(n) is non-cyclic since Iv(n) ≤ IC(Dv(n)); thus we obtain

(c). Suppose that w is a refinement of v such that Dw(n) = Dv(n). Consider

Iv(1) ≤ Iw(1) ≤ Dw(1) ≤ Dv(1). By Lemma 6.0.7, we see that:

IC(Dv(1)) = Iv(1) ≤ Iw(1) ≤ IC(Dv(1)) ≤ Dw(1) = Dv(1).

Thus, Iw(1) = Iv(1), and by Lemma 8.2.1, we see that Iw(n) = Iv(n) as well.
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Conversely we show that VK,n ⊂ V ; assume that v ∈ VK,n. Then condition (1)

of V holds trivially. Let us show that Iv(1) = IC(Dv(1)) 6= Dv(1). Clearly, Iv(1) ≤

IC(Dv(1)) by Lemma 6.0.7. Denote by I = IC(Dv(1)). Then by Theorem 7.0.12, I is

valuative and, denoting by w = vI , one has Dv(1) ≤ Dw(1). Since w is a refinement

of v we see that Dw(1) = Dv(1) and thus Dw(n) = Dv(n) by Lemma 8.2.1. By the

definition of VK,n we see that Iw(n) = Iv(n) and thus I ≤ Iw(1) = Iv(1) ≤ I so that

I = Iv(1). Also, Gak(v)(n) is non-cyclic and thus GaK(v)(1) is non-cyclic by Lemma

8.2.1 – in particular, Dv(1)/I cannot be cyclic, as required.

8.3 n = 1 or n =∞

Throughout this subsection, n will denote either 1 or∞. The key property to notice

is that Λn is a domain and that N(n) = Mr(n) = n (in fact, 1 and ∞ are the only

fixed points of N and of Mr). The proofs of the results below are virtually identical

(and in fact much easier) to those in §8.2 using this observation. Indeed, the added

assumption that X2`N−1 splits in K was only used in the fact that Dv(N)→ Dv(n)

is surjective. In this case, N = n so that this is trivially satisfied. We therefore

omit the proofs in this subsection as they would be identical (and actually end up

being much simpler) to the corresponding proof from section 8.2.

Proposition 8.3.1. Let n = 1 or n = ∞ and let K be an arbitrary field. Let

D ≤ GaK(n) be given. Then the following are equivalent:
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1. There exists a valuation v of K such that D ≤ Dv(n) and D/(D ∩ Iv(n)) is

cyclic.

2. D is a C-group.

Proposition 8.3.2. Let n = 1 or n = ∞ and let K be an arbitrary field. Assume

that IC(GaK(n)) 6= GaK(n) and consider I = IC(GaK(n)). Then I is valuative, v :=

vI ∈ VK,n, I = Iv(n) and Dv(n) = GaK(n).

Theorem 8.3.3. Let n = 1 or n = ∞. Let K be an arbitrary field and let I ≤

D ≤ GaK(n) be given. Then there exists a valuation v ∈ VK,n such that I = Iv(n)

and D = Dv(n) if and only if the following holds:

1. I = I(D).

2. I ≤ D ≤ GaK(n) are maximal with this property. Namely, if D ≤ E ≤ GaK(n)

and I ≤ IC(E), then D = E and I = IC(E).

3. IC(D) 6= D (i.e. D is not a C-group).

Remark 8.3.4. Suppose that K is an arbitrary field and n = 1 or n = ∞. Then

map v 7→ Iv(n) ≤ Dv(n) defines a bijection VK,n → DK,n.

Let v ∈ VK,n be given. By Lemma 6.0.8, the bijection VK,n → DK,n restricts

to a bijection Vv,n → Dv,n. Furthermore, this restricted bijection is compatible

with the bijection Vk(v),n → Dk(v),n via the canonical bijections Vk(v),n → Vv,n and

Dk(v),n → DK,n.
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Chapter 9

Restricting the Characteristic

In this chapter, we use C-pairs to specify which valuations have residue character-

istic different from `, in the situation where K has characteristic different from `

as well. In order to do this, we will need to force the C-pair property in a field

extension of K which contains the `n-th roots of U1
v . Later on, this condition will

have a very natural Galois-theoretic interpretation which arises from decomposition

theory.

Throughout this section we fix n ∈ N. Let L|K be an extension of fields. We

recall that the restriction map GaL(n) → GaK(n) is denoted by f 7→ fK . For a

subgroup H ≤ K× we denote by LH := K( `n
√
H) (if n =∞ we denote K( `∞

√
H) :=⋃

m∈NK( `m
√
H)); here, for S ⊂ K and n finite, K( `n

√
S) is a field obtained by

adjoining some root of X`n − s to K as s ∈ S varies. For a subgroup A ≤ GaK(n)

we will also denote by LA := LA⊥ .

105



Lemma 9.0.5. Let n ∈ N be given. Let (K, v) be a valued field such that CharK 6=

`. Denote by L := K( `n
√
U1
v ) and w a chosen prolongation of v to L. Let ∆ be the

convex subgroup of Γv generated by v(`) (this is trivial unless Char k(v) = `). Then

∆ ≤ `n · Γw (here we denote by `∞ · Γv =
⋂
m∈N `

m · Γv).

Proof. We can assume with no loss that n ∈ N as the n = ∞ case follows from

this. If Char k(v) 6= ` then v(`) = 0 and the lemma is trivial. So assume that

Char k(v) = `. Let x ∈ K× be such that 0 < v(x) ≤ v(`) and so 1 +x ∈ L×`n . Take

y ∈ L such that 1 + x = (1 + y)`
n
. Note that y ∈ Ow and, since 1 + x = (1 + y)`

n
=

1+y`
n

mod mw, we deduce that y ∈ mw. Expanding the equation 1+x = (1+y)`
n

we see that x = ` · y · ε+ y`
n

for some ε ∈ Ow. But w(x) ≤ w(`) < w(` · y · ε) since

w(y) > 0 and w(ε) ≥ 0; thus, w(x) = w(y`
n
) by the ultrametric inequality.

Proposition 9.0.6. Let n ∈ N be given. Let K be a field such that CharK 6= `.

Suppose that I ≤ GaK(n) and D ≤ GaK(n) are given. Denote by L := LD and assume

that there exists I ′ ≤ GaL(n) such that I ′ is valuative (denote w′ = vI′ and w = w′|K),

I ′K = I and D ≤ Dw(n). Then I is valuative, D ≤ DvI (n) and Char k(vI) 6= `.

Proof. First, as I ′ is valuative and I = I ′K , we see that I ≤ Iw(n) and is indeed

valuative. Moreover, as D ≤ Dw(n) and vI =: v is a coarsening of w, we see that

D ≤ Dv(n) as well; indeed, recall that v is the coarsening of w which corresponds

to the maximal convex subgroup of w(I⊥). On the other hand, since D ≤ Dw(n)

we see that `n
√
U1
w ⊂ L.

Denote by ∆ the convex subgroup of Γw generated by w(`). If n ∈ N, we
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consider the canonical injective map induced by taking the dual of the surjective

map I ′ � I:

Γw/w(I⊥) ↪→ Γw′/w
′((I ′)⊥).

By Lemma 9.0.5, we deduce that ∆ ≤ w(I⊥) since ∆ ≤ `n · Γw′ ≤ w′((I ′)⊥).

Therefore, ∆ is contained in the kernel of the canonical projection Γw → Γv. In

particular, v(`) = 0 so that Char k(v) 6= `.

On the other hand, if n =∞, the Z`-dual of I ′ � I is the injective map:

Γ̂w/ŵ(I⊥) ↪→ Γ̂w′/ŵ
′((I ′)⊥).

Observe that the image of ∆ lies in the kernel of this map. Thus, the image of

∆ under the map Γw → Γ̂w is contained in ŵ(I⊥); therefore, we still see that ∆

is contained in the kernel of Γw � Γv since the kernel of Γw → Γ̂w is `∞ · Γw ≤

w(Iw(∞)⊥).

We now prove three theorems which are analogous to the main results of Chapter

7. The main different is that here we show how to ensure that the valuations

produced have residue characteristic different from ` provided the same is true for

K. First is the analogue of Theorem 6.1.1:

Theorem 9.0.7. Let n ∈ N be given and let N ≥ N(n). Let K be a field such

that CharK 6= `, let f, g ∈ GaK(n) be given and denote by L := LH where H =

ker f ∩ ker g = 〈f, g〉⊥. Assume that there exist f ′′, g′′ ∈ GaL(N) such that

• f ′′, g′′ form a C-pair.
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• (f ′′n)K = f and (g′′n)K = g.

Then there exists a valuation v of K such that

• f, g ∈ Dv(n)

• 〈f, g〉/(〈f, g〉 ∩ Iv(n)) is cyclic (possibly trivial).

• Char k(v) 6= `.

Proof. Denote by f ′ = f ′′n and g′ = g′′n. Then by Theorem 6.1.1, there exists a

valuation w′ of L such that f ′, g′ ∈ Dw′(n) and 〈f ′, g′〉/(〈f ′, g′〉 ∩ Iw′(n)) is cyclic.

Denote by w = w′|K , I = (〈f ′, g′〉 ∩ Iw′(n))K and D = 〈f, g〉, and observe that

D ≤ Dw(n). Thus, the claim follows from Proposition 9.0.6.

Next is the analogue of Theorem 7.0.11:

Theorem 9.0.8. Let n ∈ N be given and let N ≥ N(M1(n)). Let K be a field

such that CharK 6= `. Let D ≤ GaK(n) be given and assume that there exists

D′′ ≤ GaLD
(N) such that D′′ is a C-group and that D = (D′′n)K. Then there exists a

valuative subgroup I ≤ D such that:

• D/I is cyclic.

• D ≤ DvI (n).

• Char k(vI) 6= `.
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Proof. Denote by L := LD and D′ = D′′n ≤ GaL(n). By Theorem 7.0.11, there exists

a valuative subgroup I ′ ≤ D′ such that D′ ≤ Dw′(n) where w′ = vI′ is the valuation

of L corresponding to I ′, and D′/I ′ is cyclic. Denote by I = I ′K , then D/I is cyclic

as D = D′K . Moreover, observe that D ≤ Dw(n) where w = w′|K . By Proposition

9.0.6, I is valuative, Char k(vI) 6= ` and D ≤ DvI (n), as required.

We finish the chapter with the analogue of Theorem 7.0.12:

Theorem 9.0.9. Let n ∈ N be given and let N ≥ N(M2(M1(n))). Let K be a field

such that CharK 6= `. Let I ≤ D ≤ GaK(n) be given and denote by L := LD. Assume

that there exists I ′′ ≤ D′′ ≤ GaL(N) such that I ′′ ≤ IC(D′′), (I ′′n)K = I, (D′′n)K = D,

and that D 6= IC(D). Then I is valuative, D ≤ DvI (n) and Char k(vI) 6= `.

Proof. The proof of this theorem is similar to the proof of Theorem 9.0.8 using

Theorem 7.0.12 instead of Theorem 7.0.11 along with, again, Proposition 9.0.6.

Remark 9.0.10. Using Theorem 9.0.7 resp. 9.0.8 resp. 9.0.9 instead of the analo-

gous Theorem 6.1.1 resp. 7.0.11 resp. 7.0.12, one can prove results analogous to

those in Chapter 8 while considering only valuations whose residue characteristic is

different from `. We will not state these results explicitly, as their Galois-theoretical

analogues are already stated in Theorem 1.4.2 and/or 14.0.11.
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Chapter 10

Milnor K-theory

As we move closer towards Galois theory, in this chapter we describe the connection

of the C-pair property with Milnor K-theory. Later on, we will use our K-theoretic

characterization of C-pairs, along with the Merkurjev-Suslin theorem and results

involving free presentations of pro-` Galois groups, to translate from the abstract

situation of C-pairs to the Galois-theoretical setting of CL-pairs.

10.1 Definition and Properties

Let K be any field. The usual construction of the Milnor K-ring is as follows:

KM
n (K) =

(K×)⊗n

〈a1 ⊗ · · · ⊗ an : ∃ 1 ≤ i < j ≤ n, ai + aj = 1〉
.

The tensor product makes KM
∗ (K) :=

⊕
nK

M
n (K) into a graded-commutative ring.

We denote by {•, •} the product KM
1 (K)×KM

1 (K)→ KM
2 (K). That is, we denote
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by {x, y} ∈ KM
2 (K) the product of x, y ∈ K× = KM

1 (K). The following properties

are well-known (see e.g. [GS06] Chapter 7):

1. {x,−1} = {x, x}.

2. {x, y} = −{y, x}.

We also consider certain canonical quotients of the Milnor K-theory ring. Let

T ≤ K× be given. We define KM
∗ (K)/T as the quotient of KM

∗ (K) by the graded

ideal generated by T ≤ K× = KM
1 (K) or explicitly as follows:

KM
n (K)/T =

(K×/T )⊗n

〈a1 · T ⊗ · · · ⊗ an · T : ∃ 1 ≤ i < j ≤ n, 1 ∈ ai · T + aj · T 〉
.

As before, the tensor product makes KM
∗ (K)/T =

⊕
nK

M
n (K)/T into a graded-

commutative ring. We denote the product in this ring by {•, •}T . Moreover, one

has a surjective map of graded-commutative rings: KM
∗ (K) � KM

∗ (K)/T . Since

{x,−1} = {x, x}, we also see that {x,−1}T = {x, x}T . For more on the arith-

metical properties of these canonical quotients of the Milnor K-ring, refer to Efrat

[Efr06a], [Efr07] where they are systematically studied. Since the precise definition

of KM
0 (K)/T will not be needed in the sequel, we will leave this ambiguous. How-

ever, we will mention that the most natural choice is KM
0 (K)/T = Λn provided

that K×`
n ≤ T .

Suppose that T ≤ K× and −1 ∈ T . Then the canonical surjective map

(K×/T )⊗ (K×/T ) � KM
2 (K)/T factors through

∧2(K×/T ) =
(K×/T )⊗ (K×/T )

〈x⊗ x : x ∈ K×/T 〉
.
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Moreover, the kernel of the canonical surjective map ∧2(K×/T ) → KM
2 (K)/T is

generated by z ∧ (1 − z) for z varying over the elements of K× r {1} (in fact, z

varying over K× r T suffices as well).

Suppose that n ∈ N and ±K×`n ≤ T ≤ K× is given such that K×/T has rank

2. Say e.g. that K×/T is generated by the two elements x, y:

K×/T = xZ/`
n−a × yZ/`n−b ∼= Z/`n−a × Z/`n−b.

Then ∧2(K×/T ) ∼= Z/`n−a ∧Z/`n−b is generated by x∧ y and has order `n−max(a,b).

In particular, we see that KM
2 (K)/T = 〈{x, y}T 〉 is cyclic of order `n−c where

c ≥ max(a, b), since KM
2 (K)/T is a quotient of ∧2(K×/T ). This observation will

become extremely important in our K-theoretic characterization of C-pairs.

10.2 K-Theoretic Characterization of C-pairs

We now prove our K-theoretic characterization of C-pairs. Given a pair of elements

f, g ∈ GaK(n), we consider T = ker(f)∩ker(g) and observe that (f, g) : K×/T → Λ2
n

is injective. In particular, if n is finite then so is K×/T . Without changing 〈f, g〉,

and thus without changing T , we can assume without loss of generality that f, g

are quasi-independent – thus 〈f, g〉 = 〈f〉 ⊕ 〈g〉. Furthermore, if the order of f

is `n−a and the order of g is `n−b, then (f, g) has image (`aZ/`nZ) ⊕ (`bZ/`nZ);

thus (f, g) induces an isomorphism K×/T → (`aZ/`nZ) ⊕ (`bZ/`nZ). Therefore

K×/T is generated by two elements x, y which can be chosen so that furthermore
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(f, g)(x) = (`a, 0) and (f, g)(y) = (0, `b). This will be the starting point for the

argument of our K-theoretic characterization of C-pairs.

Proposition 10.2.1 (K-theoretic characterization of C-pairs). Let n ∈ N be given.

Let f, g ∈ GaK(n) be given quasi-independent elements of order `n−a resp. `n−b; in

particular,

〈f, g〉 = 〈f〉 ⊕ 〈g〉 ∼= (Z/`n−a) · f ⊕ (Z/`n−b) · g.

Denote by T = ker f ∩ker g and say that KM
2 (K)/T has order `n−c. Then f, g form

a C-pair if and only if c ≤ a+ b.

On the other hand, let f, g ∈ GaK(∞) be given. Then f, g form a C-pair if and

only if fn, gn form a C-pair for all n ∈ N.

Proof. If f, g ∈ GaK(∞), the fact that f, g form a C-pair if and only if fn, gn form a

C-pair for all n ∈ N follows immediately from the definition. Let us therefore show

the first statement concerning n ∈ N, and note that a similar K-theoretic criterion

for n =∞ is given in Remark 10.2.3 (see also [Top12]).

Let n ∈ N be given and let f, g be quasi-independent elements of GaK(n) as in

the statement of the proposition. Thus, K×/T has quasi-independent generators

which are dual to f, g which we denote by x, y:

K×/T = xZ/`
n−a × yZ/`n−b

.

Denote by Ψ = (f, g) then Ψ(x) = (`a, 0) and Ψ(y) = (0, `b). Say that z = xhyi

mod T and (1 − z) = xjyk mod T where h, i, j, k ∈ Z/`n; equivalently, one has
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Ψ(z) = (`ah, `bi) and Ψ(1 − z) = (`aj, `bk). Since {z, 1 − z} = 0 we deduce that

(hk − ij) · {x, y}T = 0 and thus (hk − ij) = 0 mod `n−c. Assume that c ≤ a + b;

thus we see that `a+b · (hk − ij) = 0 mod `n and so f(z)g(1 − z) = f(1 − z)g(z).

As z was arbitrary, we see that f, g form a C-pair.

Conversely, assume that f, g are a C-pair and assume with no loss that a ≥ b.

Let z ∈ K× be given and say Ψ(z) = (`ah, `bi), Ψ(1 − z) = (`aj, `bk) as above

with h, i, j, k ∈ Z/`n. Since f, g are a C-pair, we see that `a+b · (hk − ij) = 0.

On the other hand, KM
2 (K)/T = ∧2(K×/T )/〈z′ ∧ (1 − z′) : z′ 6= 0, 1〉. Recall

that ∧2(K×/T ) is generated by x ∧ y and has order `n−a. For z as above, one has

z ∧ (1− z) = (hk − ij) · (x ∧ y) so that ∧2(K×/T )/〈z ∧ (1− z)〉 ∼= Z/`n−c for some

c ≤ a+ b. Varying over all z′, we see that KM
2 (K)/T ∼= Z/`n−c where c ≤ a+ b, as

required.

Remark 10.2.2. Proposition 10.2.1 provides a K-theoretic characterization of C-pairs

in terms of T = 〈f, g〉⊥. Since A is a C-group if and only if any pair f, g ∈ A form

a C-pair, this thereby provides a K-theoretic characterization of C-groups. In this

remark, we prove an alternative characterization of C-groups A in the case where

n = 1 which resembles the usual conditions related to rigidity – this K-theoretic

condition and its relationship with rigid elements has been extensively studied and

developed by Efrat [Efr07], [Efr06a], [Efr06b] in the case where n = 1. The case

where n =∞ is also treated in detail by the author in [Top12].

Let A ≤ GaK(n) be given and denote by T = A⊥. Proposition 10.2.1 gives
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a precise recipe to decide whether or not A is a C-group using the structure of

KM
∗ (K)/T . Indeed, we immediately see that the following conditions are equivalent:

1. A is a C-group.

2. For all subgroups A0 ≤ A of rank 2, A0 is a C-group.

3. For all subgroups T0 ≤ K× such that T ≤ T0 ≤ K× and K×/T0 has rank 2,

KM
∗ (K)/T0 satisfies the equivalent conditions of Proposition 10.2.1.

On the other hand, in the case where n = 1, we can provide a direct characteri-

zation of C-groups A ≤ GaK(1), without the need for an auxiliary T0, as follows; see

also [Top12] Lemma 2.12. Let A ≤ GaK(1) be given and denote by T = A⊥. Then

the following are equivalent:

1. A is a C-group.

2. For all subgroups T ≤ T0 ≤ K× such that K×/T0 = 〈x mod T0, y mod T0〉

has rank 2, one has {x, y}T0 6= 0 as an element of KM
2 (K)/T0.

3. For all x, y ∈ K× such that (x mod T ), (y mod T ) are Z/` independent in

K×/T one has {x, y}T 6= 0 as an element of KM
2 (K)/T .

4. For all x ∈ K× r T one has 〈1− x, x〉 mod T is cyclic.

5. For all T ≤ H ≤ K× and x ∈ K× rH one has 〈1− x, x〉 mod H is cyclic.

6. The canonical map ∧2(K×/T )→ KM
2 (K)/T is an isomorphism.
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7. For all T ≤ H ≤ K×, the canonical map ∧2(K×/H) → KM
2 (K)/H is an

isomorphism.

Indeed, (1)⇔ (2) is Proposition 10.2.1, while (2)⇒ (3)⇒ (4)⇒ (5)⇒ (6)⇒ (3)

and (5) ⇒ (7) ⇒ (2) follow immediately from the definitions. In particular, the

equivalence of conditions (1) and (6) above give a direct characterization of C-groups

A ≤ GaK(1) based on the structure of KM
∗ (K)/T where T = A⊥.

Remark 10.2.3. Passing to the limit over n ∈ N and using Proposition 10.2.1, we

can obtain a similar K-theoretic method to detect C-pairs in GaK(∞). Denote by

K̂M
i (K) the `-adic completion of KM

i (K) and denote by K̂ = K̂M
1 (K) the `-adic

completion of K×. By the universal property of completions one has:

GaK(∞) = Homcont(K̂/± 1,Z`).

Moreover, K̂/torsion is in perfect Z`-duality with GaK(∞). Let f, g ∈ GaK(∞) be

given and consider f, g as homomorphisms K̂ → Z`; assume that 〈f, g〉 is non-

cyclic. If f = `a · f ′ and g = `b · g′ then f, g form a C-pair if and only if f ′, g′

form a C-pair. Therefore, we can assume without loss that, first, GaK(∞)/〈f, g〉 is

torsion-free and, second, that f, g are Z`-independent. In particular 〈f mod `, g

mod `〉 is non-cyclic and fn, gn are quasi-independent elements of GaK(n) both of

order Z/`n. We denote by T = ker f ∩ ker g considered as a closed Z`-submodule of

K̂; i.e. here we consider f, g as continuous homomorphism K̂ → Z`. Thus we can

find generators x, y for K̂/T such that K̂/T = xZ` × yZ` with (f, g)(x) = (1, 0) and

(f, g)(y) = (0, 1).
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Moreover, denote by Tn = ker fn∩ ker gn, and observe that K̂/T = limnK
×/Tn.

From this we see that K̂M
2 (K)/T = limnK

M
2 (K)/Tn is a cyclic Z`-module generated

by {x, y}T . Recall that f, g form a C-pair if and only if fn, gn form a C-pair for all

n ∈ N. We thus deduce from Proposition 10.2.1 that f, g form a C-pair if and only

if {x, y}T has infinite order – i.e. K̂M
2 (K)/T = Z` · {x, y}T ∼= Z`. Thus, we see that

f, g form a C-pair if and only if the canonical map ∧̂2
(K̂/T ) → K̂M

2 (K)/T is an

isomorphism.

Furthermore, one should remark that Proposition 10.2.1 allows us to detect

valuations using the Milnor K-theory of the field. Indeed, using the results of

Chapter 8, we need to construct GaK(n) along with the C-pairs from Milnor K-theory.

First, assume that ` is odd and n is finite. Then GaK(n) = Hom(K×/`n,Z/`n) =

Hom(KM
1 (K)/`n,Z/`n), and Proposition 10.2.1 shows how to detect precisely the

C-pairs in GaK(n) using KM
∗ (K)/`n. Thus, one can detect valuations of K using

KM
∗ (K)/`N when N is sufficiently large with respect to n.

On the other hand, if ` = 2, consider the kernel H of the map:

K×/2n+1 x 7→x2

−−−→ K×/2n+1.

Then K×/〈K×2n ,−1〉 = (K×/2n+1)/H. Thus, we can reconstruct GaK(n) from

K×/2n+1 = KM
1 (K)/2n+1 and furthermore detect C-pairs using Proposition 10.2.1

from KM
∗ (K)/2n+1 and/or KM

∗ (K)/2n. Again, one can therefore detect valuations

of K using KM
∗ (K)/2N when N is sufficiently large with respect to n.

Lastly, if n = ∞ and ` is arbitrary, we consider K̂ = K̂M
1 (K) and observe that
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the image of −1 in K̂ is either trivial or is the unique element in K̂ whose square

is trivial. Thus, we obtain GaK(∞) = Hom(K̂/± 1,Z`) from K̂M
1 (K). Also, by the

discussion above, we obtain the C-pairs in GaK(∞) from K̂M
∗ (K). Thus, one can

detect valuations of K using K̂M
∗ (K).

In particular, if K is a field of characteristic different from `, we obtain a recipe

to detect valuations v ∈ VK,n using the cup-product structure of the cohomology

ring H∗(K,ΛN(∗)) where N ≥ n is sufficiently large (as above). In the presence of

sufficiently many roots of unity (or if n = 1,∞), this provides a recipe to recover the

corresponding maps H1(K,Λn(1)) = K×/`n
v−→ Γv/`

n for v ∈ VK,n as dual to the

inclusion Iv(n) ↪→ GaK(n), resp. H1(K,Z`(1)) = K̂
v̂−→ Γ̂v as dual to the inclusion

Iv(∞) ↪→ GK(∞).
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Part III

Detecting Valuations: the Galois

Theoretical Setting
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Chapter 11

Galois Cohomology

Let K be a field of characteristic different from ` such that µ` ⊂ K. Recall that

K(`) denotes the maximal pro-` Galois extension of K (inside some chosen algebraic

closure) and that GK = Gal(K(`)|K) denotes the maximal pro-` Galois group of

K. Also recall that Ga,nK denotes the maximal Λn-elementary abelian quotient of

GK (we reintroduce this notation below). In this chapter we will build up the

required cohomological machinery which will be required for Chapter 12. In the

following chapter, we give a Galois-theoretic characterization of the C-pair property

of elements f, g ∈ GaK(n) under an identification Ga,nK ∼= GaK(n), for fields K such

that CharK 6= ` and µ2`n ⊂ K, via Kummer theory. Throughout Chapters 11, 12

and 13 we will work with a fixed n ∈ N.
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11.1 Central Descending Series

Let G be an arbitrary pro-` group. We recall the Λn-central descending series of G:

G(1,n) = G, G(m+1,n) = [G,G(m,n)] · (G(m,n))`
n

.

For simplicity we denote by Ga,n = G/G(2,n) and Gc,n = G/G(3,n).

We will denote by H∗(G) := H∗cont(G,Λn) throughout this section. Recall, if n is

finite, that the short exact sequence:

1→ Z/`n `n−→ Z/`2n → Z/`n → 1

produces the Bockstein homomorphism:

β : H1(G)→ H2(G)

which is the connecting homomorphism in the associated long exact sequence in co-

homology. Note that the Bockstein map β is taken to be the trivial homomorphism

if n =∞.

One has a well-defined Λn-bilinear map:

[•, •] : Ga,n × Ga,n → G(2,n)/G(3,n)

defined by [σ, τ ] = σ̃−1τ̃−1σ̃τ̃ where σ̃ ∈ Gc,n resp. τ̃ ∈ Gc,n denotes a lift of σ ∈ Ga,n

resp. τ ∈ Ga,n to Gc,n. Similarly, one has a map:

(•)π : Ga,n → G(2,n)/G(3,n)
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defined by σπ = σ̃`
n

(here we define σπ = 0 if n =∞) where again σ̃ ∈ Gc,n denotes

some lift of σ ∈ Ga,n to Gc,n. The map σ 7→ σπ is Λn-linear if ` 6= 2. We will denote

σβ = 2 · σπ; thus the map (•)β : Ga,n → G(2,n)/G(3,n) is Λn-linear regardless of ` (see

[NSW08] Proposition 3.8.3).

Lemma 11.1.1. Let G be a pro-` group. Then

ker(H2(Ga,n)→ H2(G)) = ker(H2(Ga,n)→ H2(Gc,n)).

In particular, let f, g ∈ Hom(G,Λn) = H1(Ga,n) = H1(Gc,n) = H1(G) be given. The

following are equivalent:

1. f ∪ g = 0 ∈ H2(G).

2. f ∪ g = 0 ∈ H2(Gc,n).

Proof. The fact that

ker(H2(Ga,n)→ H2(G)) ⊃ ker(H2(Ga,n)→ H2(Gc,n))

is trivial. Assume that x ∈ ker(H2(Ga,n) → H2(G)) and consider the spectral se-

quence in cohomology associated to the group extension G � Ga,n. Then x = d2(ξ)

for some ξ ∈ H1(G(2,n))G. Observe that the inflation map H1(G(2,n)/G(3,n))G
c,n →

H1(G(2,n))G is an isomorphism. By the functoriality of the spectral sequence associ-

ated to a group extension above versus the group extension Gc,n � Ga,n, we deduce

that x ∈ ker(H2(Ga,n)→ H2(Gc,n)) as required.
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Definition 11.1.2. Let G be a pro-` group and let σ, τ ∈ Ga,n be given. We say

that σ, τ form a CL-pair provided that:

[σ, τ ] ∈ 〈σβ, τβ〉.

If ` 6= 2 we note that this condition is equivalent to [σ, τ ] ∈ 〈σπ, τπ〉 as 2 is invertible

in Λn. Furthermore, as (•)β is linear and [•, •] is bilinear, if 〈σ′, τ ′〉 = 〈σ, τ〉 and

σ, τ form a CL-pair, then σ′, τ ′ form a CL-pair as well. A subgroup A ≤ Ga,n will

be called a CL-group provided that any pair of elements σ, τ ∈ A form a CL-pair.

For a subgroup A ≤ Ga,n, we denote by ICL(A) the subset:

ICL(A) = {σ ∈ A : ∀τ ∈ A, σ, τ form a CL-pair.}

and call ICL(A) the CL-center of A. In particular, A is a CL-group if and only if

A = ICL(A).

Remark 11.1.3. Let G be a pro-` group and let A ≤ Ga,n be given. Suppose A = 〈σi〉i

is generated by (σi)i. Note, the fact that (σi)i are pairwise CL does not imply that

A is CL for a general pro-` group G. This fact will be a consequence of Theorem

12.0.2 in the case where G = GK for a field K of characteristic different from ` which

contains µ2`n .

Furthermore, suppose A is an arbitrary subgroup of Ga,n. We note that ICL(A)

is not a subgroup of A but merely a subset. It will be a consequence of Theorem

12.0.2, in the case where G = GK for a field K as above, that ICL(A) ≤ A is indeed

a subgroup which agrees with IC(A) of Part II under the Kummer identification
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Ga,nK = Hom(K×,Λn(1)) ∼= GaK(n).

11.2 Free Presentations

We now recall some basic facts about free presentations of pro-` groups. For a

reference, see e.g. [NSW08] Chapter 3.9. Let G be a pro-` group and S → G a

free presentation such that the induced map Sa,n → Ga,n is an isomorphism, and

denote by T the kernel of S → G. Say that (γ̃i)i∈Ω is a free generating set of S and

denote the image of γ̃i in Sa,n by γi; we consider γi also as an element of Ga,n via

the isomorphism above. We furthermore denote by (xi)i∈Ω the Λn-basis for H1(S)

which is dual to (γi)i and choose a total ordering for the index set Ω; by abuse of

notation, we will also denote by (xi)i∈Ω the corresponding Λn-basis for H1(G) given

by the canonical isomorphism H1(G)
∼=−→ H1(S). Every element of S(2,n)/S(3,n) has

a unique representation as:

ρ =
∏
i<j

[γi, γj]
aij(ρ) ·

∏
r

(γπr )br(ρ).

As T ≤ S(2,n), we can restrict aij and br to homomorphisms T → Λn. Moreover,

the spectral sequence associated to the extension:

1→ T → S → G → 1

induces an isomorphism d2 : H1(T )G → H2(G). This is because both S and T have

`-cohomological dimension≤ 1 and the inflationH1(G)→ H1(S) is an isomorphism.
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Thus, we obtain a canonical perfect pairing:

(•, •) : H2(G)×
(

T

[S, T ] · T `n
)
→ Λn

defined by (ξ, ρ) = (d−1
2 ξ)(ρ). We can describe this pairing explicitly using the cup

product and Bockstein (see [NSW08] Propositions 3.9.13 and 3.9.14) as follows:

• (xi ∪ xj, •) = −aij(•), i < j.

• (βxr, •) = −br(•).

Suppose that K is a field with CharK 6= ` and µ2`n ⊂ K, as above. In this

context, we will fix, once and for all, an isomorphism of GK-modules Λn(1) ∼= Λn

and use it tacitly throughout. Recall the canonical perfect pairing arising from

Kummer theory:

Ga,nK ×K
×/`n → Z/`n(1) if n 6=∞, Ga,nK × K̂ → Z`(1) if n =∞.

Using our fixed isomorphism Λn
∼= Λn(1), we thus obtain an identification of Ga,nK

with GaK(n) using the pairing above. On the other hand, the Merkurjev-Suslin

theorem states that KM
2 (K)/`n ∼= H2(K,Z/`n(2)) if n 6= ∞ resp. K̂M

2 (K) ∼=

H2(K,Z`(2)) if n = ∞. Thus, the cup product H1(K,Λn(1)) ⊗ H1(K,Λn(1))
∪−→

H2(K,Λn(2)) is surjective. In particular, the inflation map H2(Ga,nK ) → H2(GK)

is surjective as well. This observation will allow us to describe KM
2 (K)/`n resp.

K̂M
2 (K) via the pairings described above.

125



Proposition 11.2.1. Let K be a field such that CharK 6= ` and µ`n ⊂ K. Choose

a free presentation S → GK where S is a free pro-` group such that Sa,n → Ga,nK

is an isomorphism, and denote by R the kernel of the canonical surjective map

Sc,n → Gc,nK . Then one has a canonical perfect pairing:

H2(GK)×R→ Λn

induced by the free presentation. This pairing is compatible with the canonical perfect

pairing:

H2(Sa,n)× S(2,n)/S(3,n) → Λn

via the inflation map H2(S(a,n)) = H2(Ga,nK ) → H2(GK) resp. the inclusion R ↪→

S(2,n)/S(3,n).

Proof. Take a minimal free presentation S → GK as in the proposition and denote

by T the kernel of this map. The spectral sequence associated to this extension

induces an isomorphism:

d2 : H1(T )S → H2(GK)

so it suffices to show that the canonical map:

T/[S, T ]T `
n → (T · S(3,n))/S(3,n) = R

is an isomorphism; clearly this is a surjective map. Taking Λn-duals of the compo-

sition

T/[S, T ]T `
n → (T · S(3,n))/S(3,n) ↪→ S(2,n)/S(3,n),
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we obtain the inflation map H2(Ga,nK ) → H2(GK). This map is surjective by the

Merkurjev-Suslin theorem (see the discussion preceding this proposition). Thus

T/[S, T ]T `
n → S(2,n)/S(3,n) is injective by Pontryagin duality so that T/[S, T ]T `

n →

(T · S(3,n))/S(3,n) = R is injective as well.

The compatibility with the canonical pairing

H2(Sa,n)× S(2,n)/S(3,n) → Λn

is immediate by the functoriality of the situation, along with our requirement that

Sa,n → Ga,nK is an isomorphism.

127



Chapter 12

CL-pairs versus C-pairs

Having developed our general theory using C-pairs in Part II which allows us to

detect valuations using the abstract notion of C-pairs, in this chapter we will apply

our results to Galois theory. Namely, we will show the equivalence of our two notions

– that of C-pairs (a purely abstract notion in GaK(n)) and that of CL-pairs (a purely

group-theoretical notion in Ga,nK and Gc,nK ).

Let K be a field whose characteristic is different from `, n ∈ N and µ`n ⊂

K, as above. Our fixed isomorphism Λn(1) ∼= Λn allows us to explicitly express

the Bockstein morphism β : H1(GK ,Λn) → H2(GK ,Λn) using Milnor K-theory as

follows. First, if n =∞ this map is trivial, so there is nothing to say. Let us assume

that n ∈ N. It seems to be well known that the cup product 1∪ δ : H1(GK ,Z/`n)⊗

µ`n → H2(GK , µ`n) is precisely the map β ∪ 1 where δ denotes the canonical map

K× → H1(K,µ`n) (see [EM11a] Proposition 2.6 for a precise reference). Denote by
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ω the fixed generator of µ`n which corresponds to 1 ∈ Z/`n under our isomorphism

µ`n = 〈ω〉 ∼= Z/`n. This induces isomorphisms H1(GK ,Z/`n) ∼= H1(GK , µ`n) ∼=

KM
∗ (K)/`n and H2(GK ,Z/`n) ∼= H2(GK , µ

⊗2
`n ) ∼= KM

2 (K)/`n. Under these induced

isomorphisms, the Bockstein morphism H1(GK ,Z/`n)→ H2(GK ,Z/`n) corresponds

to the map KM
1 (K)/`n → KM

2 (K)/`n defined by x 7→ {x, ω}. Namely, the following

diagram commutes:

KM
1 (K)/`n

∼= //

x 7→{x,ω}
��

H1(K,µ`n)
∼= //

induced
��

H1(GK ,Z/`n)

β∪µ`n
��

H1(GK ,Z/`n)

β

��
KM

2 (K)/`n
∼= // H2(K,µ⊗2

`n )
∼= // H2(GK , µ`n)

∼= // H2(GK ,Z/`n)

where the isomorphisms on the left are canonical given by the Galois symbol, while

the isomorphisms on the right are induced by our fixed isomorphism µ`n = 〈ω〉 ∼=

Z/`n. We will use this fact in the remainder of the thesis without reference to this

commutative diagram. Also, we will tacitly use our isomorphism Λn
∼= Λn(1) to

identify Hm(GK ,Λn(i)) with Hm(GK ,Λn) whenever we’re dealing with a field K

which contains µ`n .

Theorem 12.0.2. Let K be a field such that CharK 6= ` and µ2`n ⊂ K. Let

σ, τ ∈ Ga,nK be given. Consider σ, τ as homomorphisms σ, τ : K× → Λn via our

chosen isomorphism of GK-modules Λn(1) ∼= Λn and the Kummer pairing. Then

σ, τ form a CL-pair if and only if they form a C-pair.

Proof. We can assume that n ∈ N is finite for then we obtain the n = ∞ case

in the limit as in Proposition 10.2.1 along with the comment at the end of this
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proof. Also, we can assume that 〈σ, τ〉 is non-cyclic for otherwise the claim is

trivial. Furthermore, we can assume without loss that σ, τ are quasi-independent

so that 〈σ, τ〉 = 〈σ〉 × 〈τ〉. As such, we can choose a minimal generating set

(σi)i∈Ω for Ga,nK so that 1, 2 ∈ Ω, σ`
a

1 = σ and σ`
b

2 = τ . We denote also by (σ̃i)i

a corresponding (convergent) set of generators for GK and (xi)i the dual basis for

H1(GK) = K×/`n associated to (σi)i. Consider σi as homomorphisms K× → Λn

and denote by H0 = kerσ1 ∩ kerσ2 and H = kerσ ∩ ker τ . Then H0 ≤ H, K×/H0

is a free rank 2 Z/`n-module generated by x1, x2 and H = 〈H0, x
`n−a

1 , x`
n−b

2 〉.

Assume first that σ, τ form a CL-pair. Denote by A = 〈σ1, σ2〉 and Ac = 〈σ̃1, σ̃2〉

mod G(3,n)
K ≤ Gc,nK . Consider the following commutative diagram:

H1(Ga,nK )×H1(Ga,nK )

res×res
��

inf◦∪ // H2(Gc,nK )

res

��
H1(A)×H1(A)

inf◦∪
// H2(Ac)

Via our Kummer isomorphism H1(Ga,nK ) ∼= K×/`n, the restriction map H1(Ga,nK )→

H1(A) corresponds precisely to the projection K×/`n → K×/H0. By Lemma

11.1.1, the top map factors via KM
2 (K)/`n and therefore the bottom map factors

via KM
2 (K)/H0. Let F be the free pro-` group on generators γ̃1, γ̃2, and consider

the surjective map F → Ac defined by γ̃i 7→ σ̃i mod G(3,n)
K ; denote by T the kernel

this presentation F → Ac and γi the image of γ̃i in F a,n. As σ`
a

1 , σ
`b

2 form a CL-pair,

we see that (T · F (3,c))/F (3,c) = T/F (3,c) contains an element of the form:

ρ = [γ1, γ2]`
a+b · (γβ1 )c1·`

a · (γβ2 )c2·`
b

.
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We recall the pairing associated to the presentation F → Ac,

(•, •) : H2(Ac)×
(

T

[F, T ] · T `n
)
→ Z/`n,

satisfies (x1∪x2, ρ) = −`a+b and thus KM
2 (K)/H0 = 〈{x1, x2}H0〉 has order `n−c0 for

some c0 such that c0 ≤ a + b. On the other hand, since H = 〈H0, x
`n−a

1 , x`
n−b

2 〉, we

see thatKM
2 (K)/H = 〈{x1, x2}H0〉/〈{x`

n−a

1 , x2}H0 , {x1, x
`n−b

2 }H0〉. Thus, KM
2 (K)/H

has order `n−c where max(a, b, c0) =: c ≤ a+ b. Therefore σ, τ form a C-pair by the

K-theoretic criterion (Proposition 10.2.1).

Conversely, assume that σ, τ form a C-pair. Let S → GK be a minimal free

presentation associated to the minimal generating set (σ̃i)i; i.e. S is free on (γ̃i)i

and γ̃i 7→ σ̃i under the map S → GK so that Sa,n → Ga,nK is an isomorphism. We

also denote by γi the image of γ̃i in Sa,n. Furthermore, we denote by R the kernel

of the induced surjective map Sc,n → Gc,nK . Then KM
2 (K)/H is a rank-1 quotient

of KM
2 (K)/`n which corresponds via the pairing of Proposition 11.2.1 to a rank-1

subgroup of R, generated by, say

ρ =
∏
i<j

[γi, γj]
aij ·

∏
r

(γπr )br .

As xi ∈ H for all i 6= 1, 2 we deduce that ρ = [γ1, γ2]a12 · (γπ1 )b1 · (γπ2 )b2 . Recall that

ω denotes the generator of µ`n which corresponds to 1 ∈ Z/`n. Write ω = x−2j
1 x2k

2

mod H (recall that µ2`n ⊂ K so that ω is indeed a square in K×) then:

• ({x1, x2}H , ρ) = −a12

• ({x1, ω}H , ρ) = 2k({x1, x2}H , ρ) = −2ka12 = −b1.
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• ({x2, ω}H , ρ) = 2j({x1, x2}H , ρ) = −2ja12 = −b2.

where (•, •) denotes the pairing of Proposition 11.2.1, identifying KM
2 (K)/H with

the corresponding quotient of H2(GK). Thus:

ρ = ([γ1, γ2](γβ1 )k(γβ2 )j)a12 .

Since 〈ρ〉 is in a perfect pairing with KM
2 (K)/H = 〈{x1, x2}H〉, we deduce from

the K-theoretic criterion (Proposition 10.2.1) that a12 ∈ Z/`n has (additive) order

`n−c where c ≤ a+ b. In particular, `a+b = a12 · t for some t so that there exists an

element of R of the form:

ρt = [γ1, γ2]`
a+b

(γβ1 )k`
a+b

(γβ2 )j`
a+b

= [γ`
a

1 , γ
`b

2 ] · ((γ`a1 )β)k`
b

((γ`
b

2 )β)j`
a

and in particular we deduce that [σ, τ ] ∈ 〈σβ, τβ〉 as required. To conclude the

theorem in the case where n = ∞, we note that j, k above would have been zero

provided that µ`∞ ⊂ K.

Remark 12.0.3. As an immediate corollary of Theorem 12.0.2 we deduce the fol-

lowing. Given (σi)i ∈ Ga,nK which are pairwise CL, then any pair σ, τ ∈ 〈σi〉i form

a CL-pair. We note that this doesn’t follow immediately from the definition of

CL-pairs. We also deduce that, for A ≤ Ga,nK , the subset ICL(A) ⊂ A is indeed a

subgroup which corresponds to IC(A) as defined in Part II under the isomorphism

Ga,nK ∼= GaK(n) arising from Kummer theory.

Remark 12.0.4. Let K be a field such that CharK 6= ` and µ2` ⊂ K and let A ≤ Ga,1K

be given. Using Remark 10.2.2, we can now give an alternative definition for ICL(A).
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Namely, in this remark we will show that:

ICL(A) = {σ ∈ A : ∀τ ∈ A, [σ, τ ] ∈ Aβ} =: I.

Observe that ICL(A) ≤ I by definition and so it suffices to prove that I ≤ ICL(A).

We will identify GaK(1) and Ga,1K via Kummer theory, as well as the notions of C-pairs

resp. CL-pairs using Theorem 12.0.2.

Denote by T = A⊥ and H = I⊥ and suppose that T ≤ G ≤ H ≤ K× is given

such that H/G is cyclic. We will show that Hom(K×/G,Z/`) ≤ A is a C-group,

therefore proving that 〈I, f〉 is a C-group for all f ∈ A. This would immediately

imply that I ≤ ICL(A) as required above.

Let x1 ∈ K× r H and x2 ∈ K× r T be given such that (x1 mod T ) and (x2

mod T ) are Z/`-independent. We can therefore complete x1, x2 to a Z/`-basis (xi)i

for K×/T , with dual basis (σi)i for A, in such a way so that σ1 ∈ I. Thus, we

see that [σ1, σ2] ∈ 〈σβi 〉i by the definition of I. Arguing as in the first part of the

proof of Theorem 12.0.2, we will deduce that {x1, x2}T 6= 0. Indeed, choose lifts

(continuously) σci ∈ G
c,1
K for σi, denote by Ac = 〈σci 〉i, F the free pro-`-group on

(γi)i, and F � Ac a free presentation sending γi to σci . Denote by R the kernel of

F → Ac; thus R/F (3,1) contains an element of the form:

ρ = [γ1, γ2] ·
∏
r

(γβi )br .

And, as in the proof of Theorem 12.0.2, we see that (x1 ∪ x2, ρ) = 1 where (•, •)

is the pairing of Proposition 11.2.1. Thus {x1, x2}T 6= 0 since the cup product
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H1(A,Z/`) × H1(A,Z/`) = H1(Ac,Z/`) × H1(Ac,Z/`) → H2(Ac,Z/`) factors

through KM
2 (K)/T .

Now suppose that x ∈ K× r G is given and consider 1 − x ∈ K×. If either

x /∈ H or 1 − x /∈ H, we deduce from the argument above that 〈x, 1 − x〉 mod T

is cyclic since {x, 1 − x}T = 0 (and thus (x mod T ), ((1 − x) mod T ) cannot be

Z/`-independent); therefore 〈x, 1−x〉 mod G is cyclic as well. On the other hand,

if both x, 1 − x ∈ H, then 〈x, 1 − x〉 mod G is cyclic since H/G is cyclic. Thus,

G satisfies condition (4) of Remark 10.2.2 which proves that Hom(K×/G,Z/`) is a

C-group.
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Chapter 13

Minimized Inertia and

Decomposition Groups

We would like now to describe the structure of decomposition/inertia with respect

to Kummer theory and Gc,nK � Ga,nK . Let n ∈ N and assume further that µ`n ⊂

K. Say that v is a valuation of K whose residue characteristic may or may not

be `. Recall that Ka,n = K( `n
√
K) denotes the maximal `n-elementary abelian

extension of K and let v′ be a prolongation of v to Ka,n|K. In other words, one has

Ga,nK = Gal(Ka,n|K). Recall that Kummer theory yields a perfect pairing (recall

K̂ = K̂× = limmK
×/`m denotes the `-adic completion of K×):

K×/`n × Ga,nK → µ`n , resp. K̂ × Ga,nK → µ`∞ if n =∞.

For simplicity, we denote by Zn
v = Zv′|v resp. T nv = Tv′|v the decomposition and

inertia subgroups of v′|v inside Ga,nK ; since Ga,nK is abelian, the subgroups T nv ≤ Zn
v
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are independent of choice of prolongation v′.

Motivated by the following proposition, we introduce the so-called minimized

decomposition/inertia groups:

Definition 13.0.5. Let K be a field of characteristic different from ` which contains

µ`n . Let v be a valuation of K. We call Dn
v resp. Inv the minimized decomposition

resp. minimized inertia group of v, defined as follows:

Dn
v := Gal(Ka,n|K( `n

√
U1
v )), and Inv := Gal(Ka,n|K( `n

√
Uv)).

The proof of the following proposition can be found in [Pop10b] Fact 2.1 in the

n =∞ case and in [Pop11] in the n = 1 case, but is explicitly stated for valuations

v such that Char k(v) 6= `. It turns out that the same proof works, at least in one

direction, even if Char k(v) = ` and we summarize this in the proposition below.

Proposition 13.0.6. Let (K, v) be a valued field such that CharK 6= ` and µ`n ⊂

K. Then Dn
v ≤ Zn

v and Inv ≤ T nv . If furthermore Char k(v) 6= ` then these inequali-

ties are actually equalities.

Proof. The n = ∞ case follows easily from the n ∈ N case. Thus, we prove the

claim for n ∈ N.

Suppose a ∈ K× is such that `n
√
a ∈ (Ka,n)Z

n
v and denote by vZ a prolongation

of v to (Ka,n)Z
n
v . Since ΓvZ = Γv, there exists y ∈ K× such that v(a) = `n · v(y).

Moreover, as k(v) = k(vZ), there exists z ∈ Uv such that `n
√
a/y ∈ z · U1

v . Namely,

a/(yz)`
n ∈ U1

v so that `n
√
a ∈ K( `n

√
U1
v ). Thus, Gal(Ka,n|K( `n

√
U1
v )) ≤ Zn

v since
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(Ka,n)Z
n
v ⊂ K( `n

√
U1
v ). The proof that KT := (Ka,n)T

n
v ⊂ K( `n

√
Uv) is similar using

the fact that v′(KT ) = Γv.

Assume furthermore that Char k(v) 6= `. Let (KZ , v) be some Henselization of

(K, v); recall that KZ ∩ Ka,n = (Ka,n)Z
n
v . Let a ∈ U1

v be given. The polynomial

X`n − a reduces mod mv to X`n − 1. Since Char k(v) 6= ` one has µ`n ⊂ k(v)

and this polynomial has `n unique roots in k(v). Namely, X`n − a has a root in

KZ ∩ Ka,n = (Ka,n)Z
n
v . By Hensel’s lemma, K( `n

√
U1
v ) ⊂ (Ka,n)Z

n
v . The proof

that K( `n
√
Uv) ⊂ (Ka,n)T

n
v =: KT is similar since KT is the maximal unramified

sub-extension of Ka,n|K.

By Proposition 13.0.6, we see that Dn
v = Zn

v and Inv = T nv provided that

Char k(v) 6= `, while Dn
v ≤ Zn

v and Inv ≤ T nv in general. If Char k(v) = `, however,

equality does not hold in general, as can be deduced from the following remark.

Remark 13.0.7. If CharK 6= `, µ` ⊂ K and Char k(v) = `, one has D1
v ≤ T 1

v . This

can be deduced in a similar way to [Pop10a] Lemma 2.3(2); we sketch the argument

below. Denote by λ = ω−1 ∈ K where ω = ω` is our fixed generator of µ` and recall

that v(λ) > 0 since Char k(v) = `. Let u ∈ Uv be given and set u′ = λ` ·u+ 1 ∈ U1
v .

Then the extension of K corresponding to the equation X` − u′ is precisely the

same as the extension of K corresponding to the equation Y ` − Y + λ · f(Y ) = u

for some (explicit) polynomial f(Y ); this is done by making the change of variables

X = λY + 1. On the other hand, the maximal (Z/`)-elementary abelian Galois

extension of k(v) is the extension of k(v) generated by roots of polynomials of the
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form X` − X = ū for ū ∈ k(w). Thus, the maximal (Z/`)-elementary abelian

Galois extension of k(v) is a subextension of the residue extension corresponding to

K(
√̀
U1
v )|K.

Proposition 13.0.8. Let (K, v) be a valued field such that CharK 6= ` and µ2`n ⊂

K. Let σ, τ ∈ Dn
v be given and consider them as homomorphisms K× → Λn via

Kummer theory and our fixed isomorphism Λn(1) ∼= Λn. Then the following hold:

1. If σ, τ ∈ Inv then [σ, τ ] = 0.

2. If σ ∈ Inv and τ ∈ Dn
v then [σ, τ ] ∈ 〈σβ〉; more precisely, if τ(ω) = 2a ∈ Λn

then [σ, τ ] = −2a · σπ = −a · σβ.

Proof. In order to prove this claim, it suffices to assume that σ, τ are actually Λn-

independent. Choose a minimal generating set (σi)i such that σ1 = σ and σ2 = τ

with corresponding dual basis (xi)i for H1(K,Λn(1)) ∼= H1(Ga,nK ,Λn). We then

choose a corresponding free presentation S → GK and use the same notation as

in the second part of the proof of Theorem 12.0.2 – in particular, R denotes the

kernel of Sc,n → Gc,nK . We see that it suffices to prove the stronger part of (2)

since, if τ = σ2 ∈ Inv , we see that σ2(ω) = 0; in both cases, we see that σ1(ω) = 0

since ω ∈ Uv. Suppose, then, that σ2(ω) = 2a and denote by H = ker σ1 ∩ kerσ2.

Therefore, ω = x
σ1(ω)
1 · xσ2(ω)

2 mod H = x2a
2 mod H. In light of Theorem 12.0.2

and Lemma 6.0.7, we see that R contains an element of the form

ρ = [γ1, γ2] · (γβ1 )c1 · (γβ2 )c2 ,
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and arguing as in the proof of Theorem 12.0.2 we see that 〈ρ〉 is in perfect dual-

ity with KM
2 (K)/H via the pairing of Proposition 11.2.1; namely, ({x1, x2}, ρ) =

1 and (βxi, ρ) = 2ci. Therefore, we see that 2c1 = (βx1, ρ) = ({x1, ω}, ρ) =

2a({x1, x2}, ρ) = 2a and 2c2 = (βx2, ρ) = ({x2, ω}, ρ) = 2a({x2, x2}, ρ) = 0. In

particular, R contains an element ρ of the form [γ1, γ2] · (γβ1 )a. Thus, we see that

[σ1, σ2] = −a · σβ1 , as required.

We therefore obtain the following structural properties of minimized inertia and

decomposition groups which are completely analogous to the usual structure of

inertia/decomposition groups for valuations of characteristic different from ` as

described in §3.3:

Remark 13.0.9. We use the notation/context of Proposition 13.0.8. Choose a mini-

mal generating set (ηi)i for Inv and complete it to a minimal generating set (ηi)j∪(τj)j

for Dn
v . Choose (continuously) lifts ηci ∈ G

c,n
K and τ cj ∈ G

c,n
K for ηi and τj. Denote

by Ic = 〈ηci 〉 and Dc = 〈ηci , τ cj 〉. We deduce from Proposition 13.0.8 above that Ic

is an abelian normal subgroup of Dc. Moreover, by construction we see that

Dc ∩ (Gc,nK )(2,n) = (Dc)(2,n), Ic ∩ (Gc,nK )(2,n) = (Ic)(2,n) = Ic ∩ (Dc)(2,n), the image of

Ic in Ga,nK is Inv , the image of Dc in Ga,nK is Dn
v and (Dc/Ic)a,n = Ga,nk(v).
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Chapter 14

Detecting Valuations in Galois

Groups

In this chapter we will translate the main results of Chapters 8 and 9 into the Galois-

theoretical setting using Theorem 12.0.2. Theorems 14.0.10 and 14.0.11 are the main

theorems of this thesis which provide a group-theoretical recipe to recover valuations

using our ΛN -abelian-by-central Galois groups Gc,NK for N ≥ N(M2(M1(n))). Below

we restate and prove the two main theorems from the introduction, recalling that

we take R(n) := N(M2(M1(n))) in §1.4. In order to stay consistent with the body

of the thesis, we will use the notation N(M2(M1(n))) below.

Theorem 14.0.10. Let n ∈ N be given and let N ≥ N(M2(M1(n))). Let K be a

field such that CharK 6= ` and µ2`N ⊂ K.

1. Let D ≤ Ga,nK be given. Then there exists a valuation v of K such that D ≤ Dn
v
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and D/(D∩Inv ) is cyclic if and only if there exists a CL-group D′ ≤ Ga,NK such

that D′n = D.

2. Let I ≤ D ≤ Ga,nK be given. Then there exists a valuation v ∈ VK,n such that

I = Inv and D = Dn
v if and only if the following hold:

(a) There exist D′ ≤ Ga,NK such that (ICL(D′))n = I and D′n = D.

(b) I ≤ D ≤ Ga,nK are maximal with this property – i.e. if D ≤ E ≤ Ga,nK and

E ′ ≤ Ga,NK is given such that E ′n = E and I ≤ (ICL(E ′))n, then D = E

and I = (ICL(E ′))n.

(c) ICL(D) 6= D (i.e. D is not a CL-group).

Proof. Using our isomorphism ΛN
∼= ΛN(1), along with the observation that −1 ∈

K×`
N

, we obtain isomorphisms using Kummer theory, φm : Ga,mK ∼= GaK(m) for all

m ≤ N which are compatible with the projections Ga,MK → Ga,mK resp. GaK(M) →

GaK(m) for m ≤ M ≤ N . Furthermore, let H ≤ K× be given. Via these isomor-

phisms, the subgroup Gal(Ka,m|K( `m
√
H)) of Ga,mK is mapped isomorphically onto

Hom(K×/H,Λm) ≤ GaK(m). Thus, in particular, Imv is mapped isomorphically onto

Iv(m) and Dm
v is mapped isomorphically onto Dv(m) for all valuations v of K and

m ≤ N . By Theorem 12.0.2, these isomorphisms send CL-pairs to C-pairs and in

particular, ICL(A) is sent to IC(φmA) for A ≤ Ga,mK . Now, in light of these com-

patible identifications, we immediately see the first part of Theorem 14.0.10 follows

from Proposition 8.2.2, and the second part from Theorem 8.2.4.
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Before we proceed to prove the next main theorem, let us first recall some

notation from the introduction. We denote by V ′K,n the collection of (possibly

trivial) valuations v of K such that:

1. Char k(v) 6= `.

2. Γv contains no non-trivial `-divisible convex subgroups.

3. v is maximal among all valuations w such that Char k(w) 6= `, Dn
v = Dn

w and

Γw contains no non-trivial `-divisible convex subgroups; i.e. for all refinements

w of v such that Char k(w) 6= ` and Dn
w = Dn

v as subgroups of Ga,nK , one has

Inw = Inv .

4. Ga,nk(v) is non-cyclic.

Thus V ′K,n is the analogue of VK,n when one only considers valuations with residue

characteristic different from `. As such, we observe that VK,n = V ′K,n whenever

` 6= CharK > 0. For an arbitrary field K on the other hand, one has the potentially

proper inclusion:

{v ∈ VK,n : Char k(v) 6= `} ⊂ V ′K,n.

We now restate Theorem 1.4.2 using the notation of the paper.

Theorem 14.0.11. Let n ∈ N be given and let N ≥ N(M2(M1(n))). Let K be a

field such that CharK 6= ` and µ2`N ⊂ K.
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1. Let D ≤ Ga,nK be given and denote by L := (Ka,n)D. Then there exists a

valuation v of K such that Char k(v) 6= `, D ≤ Zn
v and D/(D ∩ T nv ) is cyclic

if and only if there exists a CL-group D′ ≤ Ga,NL such that (D′n)K = D.

2. Assume that ICL(Ga,nK ) 6= Ga,nK and consider (ICL(Ga,NK ))n =: T . Then there

exists a (possibly trivial) valuation v ∈ VK,n such that Char k(v) 6= `, T = T nv

and Ga,nK = Zn
v .

3. Let v ∈ VK,n be given and denote by I := Inv ≤ Dn
v =: D, L := (Ka,n)D and

L1 := (Ka,1)D1. Then the following are equivalent:

(a) Char k(v) 6= `.

(b) There exist subgroups I ′ ≤ D′ ≤ Ga,NL such that I ′ ≤ ICL(D′), (I ′n)K = I

and (D′n)K = D.

(c) There exist subgroups I ′ ≤ D′ ≤ Ga,1L1
such that I ′ ≤ ICL(D′), I ′K = I1

and D′K = D1.

Moreover, if these equivalent conditions hold then we have: I = Inv = T nv and

D = Dn
v = Zn

v .

4. Let I ≤ D ≤ Ga,nK be given and denote by L := (Ka,n)D. Then there exists a

valuation v ∈ V ′K,n such that I = T nv and D = Zn
v if and only if the following

hold:

(a) There exist D′ ≤ Ga,NL such that ((ICL(D′))n)K = I and (D′n)K = D.
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(b) I ≤ D ≤ Ga,nK are maximal with this property – i.e. if D ≤ E ≤ Ga,nK

and E ′ ≤ Ga,NLE
(where LE := (Ka,n)E) is given such that (E ′n)K = E and

I ≤ ((ICL(E ′))n)K, then D = E and I = ((ICL(E ′))n)K.

(c) ICL(D) 6= D (i.e. D is not a CL-group).

Proof. Using our chosen isomorphism Λn
∼= Λn(1), we obtain the same compatible

isomorphisms Ga,mK ∼= GaK(m) for all m ≤ N , as in the proof of Theorem 1.4.1. We

furthermore obtain similar isomorphisms Ga,mF ∼= GaF (m) for all field extensions F |K,

in a compatible way with the isomorphisms Ga,mK ∼= GaK(m). We will tacitly use these

compatible isomorphisms and also the equivalence of “C-pairs” and “CL-pairs.”

We will further make use of the following observation. Suppose D ≤ Zn
v and

denote by L := (Ka,n)D. Choose a prolongation w of v to L. Then the image of the

canonical map Zn
w → Zn

v has image D. Moreover, the image of T nw → T nv is precisely

D ∩ T nv . In particular, we see that the image of the canonical map ZN
w → Zn

v is D

and the image of TNw → T nv is D ∩ T nv . Furthermore, we recall that by Proposition

13.0.6, Imv = Tmv and Dm
v = Zm

v whenever Char k(v) 6= ` and m ≤ N .

To 1. Let D ≤ Ga,nK be given and denote by L := (Ka,n)D. Assume first that

there exists a CL-group D′ ≤ Ga,NL such that (D′n)K = D. By Theorem 9.0.8, there

exists a valuative subgroup I ≤ D such that Char k(vI) 6= `, D ≤ Dn
vI

, and D/I is

cyclic.

Conversely, assume that there exists a valuation v such that Char k(v) 6= `,

D ≤ Zn
v and D/(D ∩ T nv ) is cyclic. Denote by I = D ∩ T nv and choose f ∈ D
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such that D = 〈I, f〉. Choose a prolongation w of v to L. By the observation

above, along with the discussion of §3.3, there exits f ′ ∈ ZN
w such that (f ′n)K = f .

Moreover, I is contained in the image of the canonical map TNw → T nv ; we denote

by I ′ the pre-image of I in TNw . By Lemma 6.0.7 and/or the discussion of §3.3,

D′ = 〈I ′, f ′〉 is a CL-group and (D′n)K = D.

To 2. Denote by I = (ICL(Ga,NK ))n. By Proposition 8.2.3, I = IvI (n) and

Ga,nK = DvI (n). Moreover, by Theorem 9.0.9, Char k(vI) 6= `, as needed.

To 3. Let v ∈ VK,n be given and denote by I = Inv and D = Dn
v , L := (Ka,n)D

and L1 := (Ka,1)D1 . One has v = vI = vI1 since v ∈ VK,n = VK,1 (Lemma 8.2.6),

D1 = D1
v and I1 = I1

v (Lemma 8.2.1). Thus, it suffices to prove the equivalence of

(a) and (b) for then the equivalence of (c) would follow if we take n = N = 1 (recall

that N(M2(M1(1))) = 1 so this is allowed).

Assume first that there exist I ′ and D′ with I ′ ≤ ICL(D′) ≤ D′ ≤ Ga,NL such

that (I ′n)K = I and (D′n)K = D. By Theorem 9.0.9, I is valuative, D ≤ Dn
vI

and Char k(vI) 6= `. On the other hand, v = vI by our assumption on v and I.

Therefore, we see that Char k(v) 6= `.

Conversely, assume that Char k(v) 6= `. Then I = T nv and D = Zn
v . Choose a

prolongation w of v to L and consider

I ′ := TNw = INw ≤ DN
w = ZN

w =: D′.

By Lemma 6.0.7 and/or decomposition theory (see the discussion of §3.3), we see

that I ′ ≤ ICL(D′), as required.
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To 4. The proof of this is almost identical to the proof of Theorem 8.2.4 using

the results of Chapter 9 instead of the results of Chapter 8 along with the discussion

about decomposition theory in §3.3 (see in particular the remarks at the beginning

of the proof); in particular, here we use Theorem 9.0.7 instead of Theorem 6.1.1,

Theorem 9.0.8 instead of Theorem 7.0.11, and Theorem 9.0.9 instead of Theorem

7.0.12.
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Chapter 15

Structure of Pro-` Galois Groups

In this chapter we provide a surprising corollary to the theory developed in this

thesis. Namely, we give many examples of fields K whose characteristic is zero

which contain µ2` so that the maximal pro-` Galois group GK is not isomorphic

(as an abstract pro-` group) to GF for any field F of positive characteristic which

contains µ2`. By Theorem 14.0.11, we know that for v ∈ VK,1, Char k(v) 6= ` if and

only if there exists I ′ ≤ ICL(D′) ≤ D′ ≤ Gc,NL (where L := LDn
v
) so that (D′K)n = Dn

v

and (I ′K)n = Inv ; this is a purely group-theoretical condition which can be tested

using a canonical quotient of GK , which we denote by GM,n
K (which we introduce

below).

Let n ∈ N be given and denote by N = N(M2(M1(n))). As in the introduction,

we denote by GM,n
K the smallest quotient of GK for which Gc,NK is a quotient and

Gc,1L is a subquotient for all K ⊂ L ⊂ Ka,1. In other words, denote by Lc,N the
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extension of L such that Gal(Lc,N |L) = Gc,NL ; take KM,n to be the compositum of

the fields Kc,N and Lc,1 as L varies over all fields such that K ⊂ L ⊂ Ka,1 then

GM,n
K = Gal(KM,n|K). In particular, GM,n

K is a characteristic quotient of GK and the

assignment GK 7→ GM,n
K is functorial.

Corollary 15.0.12. Let n ∈ N be given and denote by N = N(M2(M1(n))). Let

K be a field such that CharK = 0 and µ2`N ⊂ K. Assume that there exists a field

F such that ` 6= CharF > 0, µ2`N ⊂ F and GM,n
K
∼= GM,n

F . Then for all v ∈ VK,n,

one has Char k(v) 6= `.

Proof. Observe that for any valuation v of F , CharF = Char k(v). This therefore

follows from Theorem 1.4.2 part 3.

We recall that k is strongly `-closed provided that for all finite extensions k′|k

one has (k′)× = (k′)×`. For instance, any perfect field of characteristic ` is strongly

`-closed, and all algebraically closed fields are strongly `-closed.

Corollary 15.0.13. Suppose that K is one of the following:

• A function field over a number field k such that µ2` ⊂ k, and dim(K|k) ≥ 1.

• A function field over a strongly `-closed field k of characteristic 0 such that

dim(K|k) ≥ 2.

Then there does not exist a field F such that µ2` ⊂ F , CharF > 0 and GM,1
K
∼= GM,1

F .

In particular, for all fields F such that µ2` ⊂ F and CharF > 0, one has GK 6∼= GF

as abstract pro-` groups.
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Proof. Using Corollary 15.0.12, it suffices to find a valuation v ∈ VK,1 such that

Char k(v) = `. Furthermore, using the argument of Example 8.1.2, it suffices to find

a valuation v of K such that Γv contains no non-trivial `-divisible convex subgroups,

and k(v) is a function field over perfect field of characteristic `. In both cases, if

dim(K|k) ≥ 2, there exists such a valuation, taking, for example, v a quasi-prime

divisor prolonging the `-adic valuation of Q ⊂ k; see e.g. the Appendix of [Pop06b]

and in particular Facts 5.4-5.6 and Remark 5.7 of loc.cit. Alternatively, see our

summary in Chapter 5. Namely, in the notation of Chapter 5, take v0 to be any

valuation of k whose residue characteristic is `, and take r satisfying 0 < r < d;

then the corresponding valuation v of K will work.

On the other hand, if dim(K|k) = 1 in the first case, we can choose a model for

K, X → SpecO`, where O` denotes some prolongation of the `-adic valuation to

k; then take v the valuation associated to some prime divisor in the special fiber of

X → SpecO`. In the notation of Chapter 5, we take v0 to be an `-adic valuation

of k, and r = 0; then the corresponding valuation v of K will work.
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