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Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene lead to the expression of
MLL fusion proteins and acute leukemia. MLL fusion protein-induced leukemia is aggressive, and often
refractory to therapy, highlighting the importance of studying the pathogenesis of this disease. MLL fusion
proteins upregulate wild-type MLL target genes, including HOX genes, and block hematopoietic
differentiation, promoting leukemogenesis. However, the precise mechanism by which MLL fusion proteins
upregulate HOX genes and block differentiation has been unclear. My thesis

research shows that leukemia cells expressing the MLL fusion protein MLL-AF9 also express wild-type MLL
from the non-translocated MLL allele. Wild-type MLL is required for MLL-AF9-mediated HOX gene
upregulation and leukemogenesis. Menin, a

nuclear DNA-binding protein, recruits both wild-type MLL and MLL-AF9 to HOX genes to activate their
transcription, highlighting the central role of menin in this disease. We also found that menin blocks MLL-
AF9 leukemia cell differentiation by promoting the

expression of the polycomb group protein EZH2. EZH2 represses target genes of the pro-differentiation
transcription factor C/EBP&alpha, a previously unknown mechanism for blocking differentiation. The
cooperation between EZH2 and trithorax-associated menin is counter to the classical opposing roles of
polycomb and trithorax proteins. These findings have uncovered novel insights into how menin and MLL-
AF9 upregulate target genes and block leukemia cell differentiation, highlighting novel potential therapeutic
targets for this disease.
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ABSTRACT 
 

THE CENTRAL ROLE OF MENIN AND WILD-TYPE MLL IN MLL-AF9 

LEUKEMIA 

Austin T. Thiel 

Dr. Xianxin Hua 

 

Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene lead to 

the expression of MLL fusion proteins and acute leukemia.  MLL fusion protein-induced 

leukemia is aggressive, and often refractory to therapy, highlighting the importance of 

studying the pathogenesis of this disease.  MLL fusion proteins upregulate wild-type 

MLL target genes, including HOX genes, and block hematopoietic differentiation, 

promoting leukemogenesis.  However, the precise mechanism by which MLL fusion 

proteins upregulate HOX genes and block differentiation has been unclear.  My thesis 

research shows that leukemia cells expressing the MLL fusion protein MLL-AF9 also 

express wild-type MLL from the non-translocated MLL allele.  Wild-type MLL is 

required for MLL-AF9-mediated HOX gene upregulation and leukemogenesis.  Menin, a 

nuclear DNA-binding protein, recruits both wild-type MLL and MLL-AF9 to HOX genes 

to activate their transcription, highlighting the central role of menin in this disease.  We 

also found that menin blocks MLL-AF9 leukemia cell differentiation by promoting the 

expression of the polycomb group protein EZH2.  EZH2 represses target genes of the 

pro-differentiation transcription factor C/EBPα, a previously unknown mechanism for 

blocking differentiation.  The cooperation between EZH2 and trithorax-associated menin 
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is counter to the classical opposing roles of polycomb and trithorax proteins.  These 

findings have uncovered novel insights into how menin and MLL-AF9 upregulate target 

genes and block leukemia cell differentiation, highlighting novel potential therapeutic 

targets for this disease. 
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CHAPTER 1 - INTRODUCTION 
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Cancers are comprised of a heterogeneous population of cells, and experimental models 

have demonstrated that only a subset of these cells is capable of propagating oncogenic 

disease (Visvader, 2011).  These tumor-propagating cells must be eradicated in order to 

effectively treat cancers and prevent recurrence (Mills, 2010).  Cancer cells frequently 

utilize developmental pathways that control the function of normal stem cells, such as 

self-renewal in order to propagate disease (Mills, 2010).  Therefore, understanding how 

these developmental pathways are deregulated in cancer cells is critical to developing 

therapies to target these cells in various types of cancer.  

 

Epigenetic regulation of gene expression is critical for development 

The development of multicellular organisms is a complex process, requiring cell fate 

decisions, which result in the generation and maintenance of diverse cell types.  The 

generation of these cell types from stem and progenitor cells that contain the same 

genetic material is regulated at the level of gene expression (Schuettengruber et al., 

2011).  The maintenance of an expression pattern specific to a particular cell lineage, and 

the ability to pass on this expression pattern to daughter cells is critical to maintaining 

specialized cell types and proper development.  The establishment and maintenance of 

this transcriptional program is governed by epigenetics (Mills, 2010).  Epigenetics, 

broadly defined as the heritable pattern of gene expression and/or cell phenotype not 

related to changes in DNA sequence, is controlled at least in part through mechanisms 

that regulate chromatin structure (Krivtsov and Armstrong, 2007). 
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In the nucleus, DNA is wrapped around histone octamers, which consist of two copies 

each of the histone proteins H2A, H2B, H3 and H4.  The 147 base pairs of DNA wrapped 

around the histone octamer constitute a nucleosome, the basic subunit of chromatin 

(Dawson and Kouzarides, 2012).  Nucleosomes are packed into higher-ordered 

structures, with regions of expressed genes, termed euchromatin, being more loosely 

packaged than non-expressed heterochromatin.  The loose packaging of euchromatin 

allows transcriptional machinery to access DNA, increasing the expression of genes in 

these regions.  Conversely, heterochromatin is resistant to transcription due to its tight 

packaging, yielding a mechanism for transcriptional regulation based on chromatin 

organization (Dawson and Kouzarides, 2012). 

 

Enzymes that catalyze chromatin modifications, including DNA methylation and post-

translational modification of histones, regulate chromatin structure and gene expression 

patterns.  The N-terminal tails of histones are highly modified, and there is increasing 

evidence for a complex “histone code”, in which combinations of these modifications 

dictate whether, and to what extent, a gene is activated or repressed (Lee et al., 2010).  

Various histone modifications are specifically recognized by “reader” proteins, which can 

remodel chromatin as a means of regulating transcription (Dawson and Kouzarides, 

2012).   

 

Initially, these modifications were considered to be long-lived, if not permanent.  While 

this seems to be the case for the long-term silencing of transposons and imprinted genes, 

the regulation of many genes through chromatin modification is a dynamic process 
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(Dawson and Kouzarides, 2012).  For example, certain genes that are expressed in 

progenitor cells may need to be repressed, while others must be activated during 

differentiation and cell type specification.  Two major groups of proteins that govern 

transcriptional programs leading to cell fate decisions are polycomb (PcG) and trithorax 

(Trx) group proteins (Mills, 2010). 

  

PcG and Trx proteins have opposing roles in transcriptional regulation 

PcG and Trx group proteins have antagonizing roles in the transcriptional regulation of 

common target genes, many of which are critical for development (Figure 1.1).  The 

regulation of these genes is tightly controlled, and an imbalance in this regulation can 

lead to the improper expression of target genes and cancer (Mills, 2010).  One set of 

genes that is regulated by PcG/Trx, that becomes dysregulated in cancer are Hox Genes 

(Argiropoulos and Humphries, 2007; Schuettengruber et al., 2007).  Hox genes were first 

discovered due to their role in determining positional identity along the anterior-posterior 

axis of developing animals, which is critical for proper body patterning during 

development (Krumlauf, 1994).  Hox genes are highly conserved across species and 

encode DNA-binding transcription factors.  In mammalian cells, there are 39 Hox genes 

residing in 4 distinct clusters (A-D) on 4 respective chromosomes (He et al., 2011).   

 

PcG genes were initially discovered in Drosophila through genetic screens that caused 

homeotic transformations through the upregulation of Hox genes.  This inappropriate 

activation of Hox genes led to the understanding that PcG proteins are involved in 

transcriptional repression (Mills, 2010).  Further investigation into how these proteins 
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mediate repression led to the discovery that PcG proteins repress target genes through 

chromatin modification (Schuettengruber et al., 2007).  In mammals, there are two PcG 

complexes, polycomb repressive complex 1 (PRC1) and polycomb repressive complex 2 

(PRC2).  EZH2, the catalytic component of PRC2, tri-methylates histone H3 at lysine 27 

(H3K27m3), leading to repression (Figure 1.1) (Margueron and Reinberg, 2011).   

 

In contrast to the repressing function of PcG proteins, Trx proteins activate the expression 

of target genes, and share many of the same targets as PcG proteins.  Trx group genes 

were discovered due to their ability to counteract PcG function, which led to the 

subsequent finding that Trx proteins activate gene transcription (Mills, 2010).  The 

Drosophila trithorax protein and its mammalian homologs methylate histone H3 at lysine 

4 (H3K4), which is associated with transcriptional activation (Figure 1.1) 

(Schuettengruber et al., 2011).  Common PcG/Trx target genes are frequently enriched 

for both H3K4 tri-methylation (H3K4m3) and H3K27m3, and termed “bivalent” (Fisher 

and Fisher, 2011).  These genes remain repressed, but are poised for activation, and the 

balance between H3K4m3 and H3K27m3 determines whether, and to what extent, these 

genes are expressed (Fisher and Fisher, 2011).  The mammalian Trx group protein MLL 

is a critical regulator of this balance in hematopoietic cells. 

 

MLL maintains Hox gene expression and is essential for hematopoiesis 

Like other organ systems, hematopoiesis, or blood cell development, must be properly 

regulated to ensure the maintenance of a stem cell population and proper differentiation, 

as well as prevent tumorigenesis.  Blood cells arise from the hematopoietic stem cell 
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(HSC), which has the ability to give rise to an identical daughter cell, termed self-

renewal, or more differentiated progenitor cells that give rise to further differentiated 

lineages.  Hematopoietic differentiation is regulated through both extracellular signals 

and the transcription of developmentally relevant genes, such as Hox genes (Argiropoulos 

and Humphries, 2007).  The maintenance of Hox gene transcription in hematopoietic 

stem/progenitor cells is regulated at least in part by the Trx group protein MLL (Krivtsov 

and Armstrong, 2007). 

 

MLL is expressed as a large ~4,000 amino acid protein, which is post-translationally 

cleaved by the protease taspase-1 into N-terminal (MLL-N) and C-terminal (MLL-C) 

fragments.  These fragments re-associate to form the MLL complex (Figure 1.2) (Hsieh 

et al., 2003).  Knockout studies have demonstrated a critical role for MLL in 

hematopoiesis, as MLL is required for the expansion of hematopoietic stem and 

progenitor cells during development (Ernst et al., 2004a; Ernst et al., 2004b; Hess et al., 

1997; Yu et al., 1995). 

 

MLL is required for the maintenance of Hox gene expression in hematopoietic stem and 

progenitor cells.  Hox genes are expressed at high levels in these cells, and decreased 

expression of Hox genes correlates with cell differentiation (Maillard et al., 2009; 

Pineault et al., 2002).  The hematopoietic deficiency imparted by MLL KO can be 

partially rescued by the ectopic expression of Hox genes, demonstrating the importance 

of Hox genes for the maintenance of hematopoietic stem and progenitor cells (Ernst et al., 

2004b). 
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Menin is required for MLL complex recruitment to target genes 

The MLL complex is recruited to target genes, such as Hox genes, via its N-terminal 

domains, including its menin-interacting domain (Yokoyama et al., 2004).  Menin, 

encoded by the Men1 gene, was first characterized as a bona-fide tumor suppressor in 

endocrine organs, due to frequently occurring Men1 mutations in multiple endocrine 

neoplasia (Lemmens et al., 1997).  However, in the hematopoietic system, menin was 

found to activate the expression of Hox genes, which can promote tumorigenesis 

(Yokoyama et al., 2004).  Menin, a DNA-binding protein, directly interacts with MLL-N 

and is required for MLL recruitment to target genes (La et al., 2004; Yokoyama et al., 

2004).  Menin also provides a bridge for interactions with LEDGF, a chromatin binding 

protein, and c-myb, a specific DNA-binding transcription factor, both of which are 

necessary for proper targeting of MLL to gene loci (Figure 1.2) (Jin et al., 2010; Nakata 

et al., 2010; Yokoyama and Cleary, 2008).  In addition, menin is required for MLL target 

gene transcription (Yokoyama et al., 2004).  These findings place menin as a central 

scaffold protein linking MLL with chromatin that is essential for MLL function.   

 

Chromosomal Translocations Disrupt MLL Function and Cause Leukemia 

MLL function becomes disrupted through chromosomal translocations involving the 

MLL gene, which cause leukemia.  These translocations occur with one of multiple 

partner genes, leading to the expression of MLL fusion proteins (MLL-FPs) and the 

development of acute leukemias.  These leukemias can be lymphoid (ALL), myeloid 

(AML), or biphenotypic in nature (Daser and Rabbitts, 2004).  MLL translocations are 
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found in ~10% of all leukemias and the majority of infant leukemia cases, and patients 

harboring this genetic abnormality have a particularly poor prognosis (Holleman et al., 

2004; Liu et al., 2009), highlighting the importance of studying the pathogenesis of this 

disease.  

 

MLL-FPs consist of an N-terminal portion of MLL fused to one of over 60 proteins 

(Figure 1.3).  Some less frequently occurring MLL-FPs have cytosolic fusion partners, 

such as AF6, GAS7, EEN, and Septin proteins, and the mechanism by which these fusion 

proteins induce leukemia is not well understood (Krivtsov and Armstrong, 2007; So et 

al., 2004).  However, the most common MLL-FPs have nuclear fusion partners, and these 

MLL-FPs upregulate Hox genes to promote leukemogenesis (Krivtsov and Armstrong, 

2007; Lavau et al., 1997; Wei et al., 2008).  

 

Hox genes are critical downstream targets of MLL-FPs, as overexpression of Hoxa9 in 

combination with its cofactor Meis1 is able to transform mouse bone marrow (Kroon et 

al., 1998).  As Hox genes are important for the maintenance of stem and progenitor cells 

in normal bone marrow (Ernst et al., 2004b), it is likely that MLL-FP-driven Hox gene 

overexpression inappropriately activates stem cell-associated programs to promote 

leukemogenesis.   
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MLL-FPs retain the N-terminal menin-interaction domains, and the oncogenic potential 

of nuclear MLL-FPs is dependent on the MLL-FP interaction with menin (Caslini et al., 

2007).  These findings have led to a model where menin interacts with and recruits MLL-

FPs to MLL target genes, leading to the upregulation of these genes, and leukemia 

(Figure 1.3) (Okada et al., 2005).  However, MLL-FPs are lacking a large C-terminal 

portion of WT MLL that is normally required for MLL target gene upregulation (Figures 

1.2 and 1.3).  Although it has been unclear how these fusion proteins compensate for the 

loss of MLL-C, MLL-FPs gain the ability to promote gene expression through their 

interaction with complexes containing pTEFb and Dot1L. 

 

MLL-FPs upregulate MLL target genes and can cause leukemia through their 

interaction with Dot1L and pTEFb 

Many MLL-FPs recruit the histone H3 lysine 79 (H3K79) methyltransferase Dot1L to 

target genes, promoting leukemogenesis (Figure 1.3A).  MLL translocation partners, 

including AF9, ENL, and AF10, exist in a complex with Dot1L, and MLL-FPs 

containing these fusion partners retain the ability to interact with Dot1L, leading to 

increased H3K79 methylation at target genes (Bitoun et al., 2007; Mohan et al., 2010).  

Although it is not yet known how H3K79 methylation regulates transcription, this 

modification is frequently found at active genes (Steger et al., 2008).   
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Enhanced transcription of MLL targets is associated with MLL-FP recruitment of Dot1L 

to these genes.  Hox gene upregulation and leukemic transformation is contingent upon 

the interaction between MLL-AF10 and Dot1L (DiMartino et al., 2002; Okada et al., 

2005).  Additionally, direct fusion of Dot1L to MLL-N transforms mouse BM, while a 

Dot1L catalytic mutant fused to MLL-N fails to do so (Okada et al., 2005).  These 

findings demonstrate that Dot1L catalytic activity is necessary for MLL-FP-mediated 

target gene upregulation and leukemogenesis.  

 

In addition to Dot1L, MLL-FPs recruit the pTEFb complex to target genes to promote 

transcriptional elongation, providing another mechanism for transformation by MLL-FPs 

(Figure 1.3B).  Some of the same MLL fusion partners that interact with Dot1L, such as 

AF9 and ENL, as well as other fusion partners, including AF4, are part of a distinct 

complex containing pTEFb, a kinase consisting of the Cyclin T and CDK9 proteins, that 

promotes transcriptional elongation (Bitoun et al., 2007; Dahmus, 1996; Liao et al., 

1995).  Transcriptional elongation is regulated at many developmentally relevant genes 

that have an initiated or “poised” RNA polymerase II (Pol II) resting at their promoters 

(Muse et al., 2007).  Initiated Pol II is phosphorylated by pTEFb at serine 2 of its C-

terminal domain (CTD), causing Pol II to be released from the promoter, and allowing 

transcriptional elongation (Peterlin and Price, 2006). 
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The expression of MLL-FPs, including MLL-AF9 (MA9), -ENL, and –AF4, leads to 

pTEFb recruitment to MLL target genes and enhanced transcriptional elongation (Figure 

1.3B) (Mueller et al., 2009; Yokoyama et al., 2010).  MLL-FP leukemia cell lines are 

more sensitive to the CDK9 inhibitors flavopiridol and alsterpaullone than non-MLL-FP 

cell lines, suggesting that dysregulated transcriptional elongation at MLL targets is at 

least one mechanism for leukemic transformation by MLL-FPs (Mueller et al., 2009).  

The finding that MLL-FPs recruit Dot1L and/or pTEFb to target genes, leading to their 

upregulation, has provided insight into the mechanism by which MLL-FPs cause 

leukemia.  However, this gain of function due to chromosomal translocation also results 

in the loss of MLL C-terminal domains that are normally required for transcriptional 

activation of MLL target genes, and it remains unresolved whether MLL-FPs can activate 

target genes in the absence of MLL-C function. 

  

It is unknown whether WT MLL has a role in MLL-FP-induced leukemia  

MLL C-terminal domains that are lacking in MLL-FPs, and are important for the normal 

activation of MLL target genes include the su(var)3-9 and enhancer of zeste (SET) 

domain and trans-activation domain (TAD) (Figures 1.2 and 1.3).  The WT MLL SET 

domain works in concert with the cofactors Wdr5, Ash2L and Rbbp5 to catalyze 

H3K4m3, which is associated with transcriptional activation (Figure 1.2) (Dou et al., 

2005; Nakamura et al., 2002).  Mice expressing MLL lacking the SET domain are viable, 

but exhibit skeletal defects and decreased expression of Hox genes (Terranova et al., 
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2006), suggesting that the SET domain and H3K4m3 are normally required for the 

optimal expression of MLL target genes.  In addition, the WT MLL TAD interacts with 

the histone acetyltransferase (HAT) enzymes MOF and CREB binding protein (CBP) 

(Figure 1.2) (Dou et al., 2005; Ernst et al., 2001).  CBP directly interacts with the WT 

MLL TAD, and is required for MLL transactivation activity in normal cells (Ernst et al., 

2001), suggesting that histone acetylation mediated by the WT MLL TAD also plays a 

role in target gene upregulation.   

 

Although MLL-FPs do not contain C-terminal domains of WT MLL that are normally 

critical for target gene upregulation, they are able to enhance Hox genes to a greater 

extent than WT MLL.  These findings suggest that WT MLL C-terminal domains are not 

required for Hox gene upregulation in MLL-FP-expressing cells.  Along these lines, a 

prevalent model for MLL-FP-driven leukemogenesis suggests that MLL-FPs enhance 

H3K79m2 and transcriptional elongation, while WT MLL-mediated H3K4 methylation is 

reduced at the Hoxa9 promoter (Okada et al., 2005).  However, one allele of MLL 

remains intact in these cells, and enrichment for H3K4m3 has been reported at Hox genes 

in MLL-FP-expressing cells (Chen et al., 2006; Krivtsov et al., 2008), raising the 

possibility that residual expression of WT MLL from the non-translocated MLL allele 

promotes Hox gene expression and MLL-FP-mediated leukemogenesis.  
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The mechanism by which MLL-FPs block differentiation is not well understood 

One of the consequences of MLL-FP expression, and a hallmark of leukemia, is a block 

in differentiation (Figure 1.4) (Lavau et al., 1997).  As HSCs differentiate along various 

lineages, their self-renewal capability is lost (Seita and Weissman, 2010).  However, 

ectopic expression of the MLL-FP MA9 in HSCs, common myeloid progenitors, or 

granulocyte-macrophage progenitors (GMPs) leads to the generation of cells that have a 

block in myeloid differentiation, and have gained the ability to self-renew (Figure 1.4) 

(Krivtsov et al., 2006).   

 

These cells have been termed leukemia stem cells (LSCs) due to their ability to propagate 

leukemic disease. (Figure 1.4) (Krivtsov et al., 2006).  In contrast to normal stem cells, 

which are few in number, LSCs may make up as much as 25% of the total leukemia cell 

population in MA9-expressing leukemias (Somervaille and Cleary, 2006).  The 

eradication of these self-renewing LSCs is key to the effective treatment of MLL-FP 

leukemia, and understanding how MLL-FPs, such as MA9, block differentiation and 

promote self-renewal may provide novel therapeutic targets for the treatment of this 

disease.  Menin is critical for MLL-FP-mediated leukemogenesis (Yokoyama et al., 

2005).  However, little is known as to the effect of menin depletion on MLL-FP leukemia 

cell differentiation in vivo, or the mechanism by which menin may block leukemia cell 

differentiation.  Uncovering the mechanism by which menin/MLL-FPs block 

differentiation could lead to the discovery of novel therapeutic targets for this disease. 
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C/EBPα  is critical for normal myeloid differentiation and its function is suppressed 

by various leukemogenic oncogenes 

In many types of leukemia, differentiation is suppressed by inhibiting the function of the 

C/EBPα protein (Koschmieder et al., 2009).  C/EBPα is a leucine zipper transcription 

factor that promotes myeloid differentiation through the repression of proliferation and 

the activation of target genes involved in differentiation, such as the cytokine receptors 

G-CSF receptor (GCSFR) and M-CSF receptor (MCSFR) (Heath et al., 2004; Zhang et 

al., 1996; Zhang et al., 1997).  C/EBPα knockout mice completely lack granulocytes 

(Zhang et al., 1997), and are deficient in the ability to produce macrophages (Heath et al., 

2004) demonstrating the critical role of C/EBPα in myeloid differentiation.  

 

Many leukemogenic fusion proteins arising from chromosomal translocations block 

C/EBPα function as a means of suppressing leukemia cell differentiation.  For example, 

the AML1-ETO fusion protein represses CEBPA transcription, Bcr-Abl blocks CEBPA 

translation, and PLZF-RAR represses C/EBPα binding to target genes (Koschmieder et 

al., 2009).  However, although there is a block in myeloid differentiation in MA9-

expressing LSCs, it is not known whether C/EBPα suppression contributes to this block, 

opening up the possibility for investigating how C/EBPα might be repressed by MA9 and 

menin.   
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MLL-FP-induced leukemia is highly aggressive, and patients with this disease have a 

poor prognosis (Holleman et al., 2004).  It is therefore critical to understand the 

pathogenesis of this disease.  MLL-FPs cooperate with menin to upregulate Hox genes 

and promote leukemic transformation (Yokoyama et al., 2005).  However, little is known 

about how MLL-FPs might compensate for the lack of WT MLL domains normally 

required to upregulate Hox genes.  In addition, it is unknown how menin, likely in 

combination with MLL-FPs, might act to block leukemia cell differentiation.  A greater 

understanding of the mechanism by which menin and MLL-FPs upregulate target genes 

and block differentiation could identify additional targets for the treatment of this disease. 

 

Project Aims 

Aim 1: 

MLL-FPs cause leukemic transformation at least in part through the upregulation of Hox 

genes (Zeisig et al., 2004).  However, MLL-FPs lack a large C-terminal region of WT 

MLL that is normally required to Hox gene upregulation, including the SET domain, 

which catalyzes H3K4m3.  Intriguingly, H3K4m3 is even more enriched at Hox gene loci 

in MLL-FP leukemia cells than normal hematopoietic cells (Krivtsov et al., 2008).  It is 

possible that WT MLL expression from the non-translocated Mll allele is responsible for 

H3K4m3 at Hox loci in MLL-FP leukemia cells.  These findings lead to the hypothesis 

that WT MLL is required for MA9-induced Hox gene upregulation leukemogenesis.  To 

determine the role of WT MLL in MA9 leukemia, we will use shRNAs to knock down 

(KD) WT MLL in MA9-expressing cell lines and test the effect of WT MLL KD on 
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Hoxa9 transcript levels and cell growth.  We will also establish a murine model with the 

ability to acutely deplete WT Mll.  Using this model, we will test the role of WT MLL in 

MA9-mediated transformation in vitro and the effect of WT MLL depletion on MA9 

leukemia in vivo.  The demonstration of a role for WT MLL in MLL-FP leukemia could 

pave the way to developing inhibitors of MLL C-terminal domains to treat this disease. 

 

Aim 2: 

A consequence of MLL-FP expression is a block in differentiation, which is critical for 

maintaining the LSC pool and propagating leukemic disease (Cleary, 2009; Lavau et al., 

1997).  Menin is an essential cofactor for MLL-FP function, and is critical for MLL-FP-

mediated leukemogenesis, but it is unclear how menin might suppress leukemia cell 

differentiation.  Differentiation is blocked in many types of leukemia through suppression 

of C/EBPα function.  However, there is no known mechanism for C/EBPα inhibition in 

MLL-FP leukemias, leading to the hypothesis that menin blocks MA9 leukemia cell 

differentiation by suppressing C/EBPα function.  To investigate the potential interplay 

between menin and C/EBPα in blocking MA9 leukemia cell differentiation, we will use a 

murine model for MA9-induced leukemia, and an MA9-transformed cell line, with the 

ability to acutely deplete menin.  Investigating how menin suppresses MLL-FP leukemia 

cell differentiation may reveal novel potential targets for the treatment of MLL-FP 

leukemias. 
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Figure 1.1.  The classical opposing roles of PcG and Trx proteins in the regulation of 
common target genes.  Trx group proteins, such as MLL catalyze H3K4m3 and activate 
target genes.  PcG proteins, such as EZH2 methylate H3K27, and repress target genes.  
One group of genes commonly regulated by PcG and Trx proteins are Hox genes. 
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Figure 1.2.  The MLL complex, and chromatin modifications catalyzed by this 
complex.  MLL-N recruits the MLL complex to target genes through multiple 
interactions.  Menin directly interacts with the extreme N-terminus of MLL-N and DNA, 
as well as c-myb and LEDGF, coordinating multiple linkages between MLL-N and 
chromatin.  The MLL-C SET domain catalyzes H3K4m3. The MLL-C TAD interacts 
with the histone acetyltransferases CBP and MOF.  These chromatin modifications are 
associated with transcriptional activation. 
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Figure 1.3.  Menin/MLL-FP complexes, and chromatin modifications catalyzed by 
these complexes.  (A) Many MLL-FPs interact with and recruit the H3K79 
methyltransferase Dot1L to MLL target genes.  (B) Many MLL-FPs also recruit the 
pTEFb (cyclin T/CDK9) kinase complex to MLL target genes, leading to dysregulated 
transcriptional elongation.  MLL-FPs retain N-terminal domains required for recruitment 
to MLL target genes, including the menin-interaction domain. 
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Figure 1.4.  MLL-AF9 LSCs have a block in differentiation at the GMP stage of 
myeloid differentiation.  Expression of MLL-AF9 in HSCs, CMPs, or GMPs leads to 
the generation of GMP-like cells that have improper self-renewal and the ability to 
propagate leukemic disease. 
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CHAPTER 2 - MLL-AF9-MEDIATED LEUKEMOGENESIS REQUIRES CO-

EXPRESSION OF THE WILD-TYPE MLL ALLELE 

The data in Chapter 2 have been published in Cancer Cell (Thiel et al., 2010). 
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Summary 

Oncogenic fusion proteins are capable of initiating tumorigenesis, but the role of their 

wild-type counterparts in this process is poorly understood.  The mixed lineage leukemia 

(MLL) gene undergoes chromosomal translocations, resulting in the formation of 

oncogenic MLL fusion proteins (MLL-FPs).  Here we show that menin recruits both 

wild-type (WT) MLL and MLL-AF9 to the loci of Hox genes to activate their 

transcription.  WT MLL not only catalyzes histone methylation at key target genes, but 

also controls distinct MLL-AF9-induced histone methylation. Notably, the WT Mll allele 

is required for MLL-AF9-induced leukemogenesis and the maintenance of MLL-AF9-

transformed cells.  These findings suggest an essential cooperation between an oncogene 

and its WT counterpart in MLL-AF9-induced leukemogenesis. 
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Introduction 

Multiple oncogenic fusion proteins resulting from chromosomal translocations are 

capable of initiating tumorigenesis.  The mixed lineage leukemia gene (MLL) is fused 

with one of over 60 distinct partner genes through chromosomal translocations in various 

human acute leukemias, resulting in the formation of MLL fusion proteins (MLL-FPs) 

(Hess, 2004; Krivtsov and Armstrong, 2007).  MLL-FPs enhance HOX gene expression 

and cause leukemic transformation.  In one well-characterized example, MLL-AF10 

directly interacts with Dot1L, the only known H3K79-specific methyltransferase, via the 

AF10 moiety, and recruits Dot1L to the Hoxa9 locus to aberrantly increase H3K79 

dimethylation (H3K79m2) (Okada et al., 2005).  The methyltransferase activity of Dot1L 

is required for enhanced transcription of certain Hox genes and for MLL-AF10-induced 

bone marrow (BM) transformation.  MLL-AF4 also enhances Dot1L-mediated H3K79 

methylation at Hox genes (Krivtsov et al., 2008), and the wild type counterparts of 

additional MLL fusion partners such as AF9 and ENL have been shown to interact with 

Dot1L in a large protein complex (Bitoun et al., 2007; Mueller et al., 2007), illustrating a 

common mechanism for leukemic transformation.  

 

WT MLL is homologous to the Drosophila trithorax gene, a positive regulator of gene 

expression.  WT MLL is proteolytically cleaved into two parts, MLL-N and MLL-C, by 

the protease Taspase 1 (Hsieh et al., 2003).  MLL-C contains a conserved SET domain, 

which catalyzes histone H3K4 methylation and upregulates the transcription of HOX 

genes in fibroblasts and epithelial cell lines (Milne et al., 2002; Nakamura et al., 2002).  



 
 

24 

H3K4m3 is associated with euchromatin and active genes, and specifically recruits 

chromatin-remodeling proteins to stimulate gene expression (Berger, 2007; Flanagan et 

al., 2005).  

 

WT MLL forms a large complex with several proteins including menin (Hughes et al., 

2004; Yokoyama et al., 2005), a DNA-binding scaffold protein that is mutated in an 

inherited human endocrine tumor syndrome (La et al., 2004).  Menin interacts with the 

N-terminus of both MLL and MLL-FPs through their identical N-terminal sequences 

(Yokoyama et al., 2005), promotes H3K4m3 at the Hoxa9 locus, and upregulates Hoxa9 

transcription in MLL-FP-transformed hematopoietic cells (Chen et al., 2006; Yokoyama 

et al., 2005).  Moreover, menin is required for the proliferation of cells transformed by 

MLL-AF9 fusion protein (MA9 hereafter) (Caslini et al., 2007; Chen et al., 2006).  

However, little is known as to whether menin affects MA9-regulated H3K79 methylation 

and whether WT MLL, potentially expressed from the remaining non-translocated MLL 

allele, is important for MA9-mediated leukemic transformation. 

 

A potential role for WT MLL in MA9 leukemogenesis has been unclear.  Despite lacking 

the WT MLL SET domain, MA9 remains capable of initiating leukemogenesis when 

introduced into murine or human hematopoietic progenitors (Barabe et al., 2007; 

Krivtsov et al., 2006; Somervaille and Cleary, 2006; Wei et al., 2008).  Moreover, MLL-

AF10 reduces H3K4 dimethylation at the Hoxa9 locus (Okada et al., 2005), which is 

mediated at least in part by WT MLL.  Further, in MLL-FP-expressing human leukemia 
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cells, which lose one of the two WT MLL alleles via chromosomal translocation, 

expression of WT MLL target genes such as HOXA9 is even higher than in non-MLL-FP-

leukemia cells (Armstrong et al., 2002).  These studies suggest that WT MLL may not be 

involved in oncogenic transformation mediated by MLL-FPs.  On the other hand, WT 

MLL promotes H3K4 methylation and Hox gene expression in fibroblasts and HeLa cells 

(Milne et al., 2002; Nakamura et al., 2002).  Also, WT Mll excision compromises the 

expression of 5' Hoxa genes including Hoxa9 and hematopoietic stem cell (HSC) 

function (Jude et al., 2007; McMahon et al., 2007).   The role of WT MLL in Hox gene 

upregulation, coupled with the fact that Hox genes are upregulated in MA9-transformed 

leukemia cells, raises the possibility that WT MLL is involved in MA9-induced 

leukemogenesis.  

 

Many oncogenic fusion proteins resulting from chromosomal translocations have been 

identified in various leukemias and solid cancers (Nambiar et al., 2008).  However, it is 

poorly understood whether the WT alleles of genes involved in these translocations 

influence tumorigenesis induced by the majority of known oncogenic fusion proteins.  A 

better understanding of the function of these WT alleles in tumorigenesis could yield new 

insights into transformation mechanisms.  Our earlier findings on the role of menin in 

proliferation and gene transcription in MA9-transformed cells prompted us to investigate 

a potential role for WT MLL in MA9-induced leukemogenesis. 
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Results 

Menin is required for methylation of both histone H3 lysine 4 (H3K4) and histone 

H3 lysine 79 (H3K79) at the Hoxa9 locus 

The MLL-AF10 fusion protein has been reported to transform mouse BM by promoting 

Dot1L-catalyzed H3K79 methylation, but repressing H3K4 methylation at the Hoxa9 

locus, suggesting that H3K79-methylating Dot1L, but not H3K4-methylating WT MLL, 

is crucial for MLL-FP-induced leukemic transformation (Okada et al., 2005).  Although 

menin interacts with the N-terminus of WT MLL and MLL-FPs (Yokoyama et al., 2005), 

it has been unclear whether menin promotes H3K79 methylation at Hoxa9 in MA9-

transformed BM cells. To address this question, we excised the floxed Men1 gene in 

MA9-transformed BM cells (AT-1 cells), which harbor Men1f/f;Cre-ER, using 4-hydroxyl 

tamoxifen (4-OHT) to induce Cre activity (Figure 2.1A, lane 2).  We then performed 

chromatin immunoprecipitation (ChIP) assays to determine the effect of menin depletion 

on H3K79 methylation.  Men1 excision reduced H3K79 dimethylation (H3K79m2) in 

two separate locations at the Hoxa9 locus (Figure 2.1B).  As Dot1L is the only known 

H3K79 methyltransferase in mammals, this finding is consistent with the notion that 

menin is crucial for MA9-induced Dot1L recruitment to the Hoxa9 locus, enhancing 

H3K79 methylation.  

 

Men1 excision also reduced H3K4 trimethylation (H3K4m3) at the Hoxa9 promoter 

(Figure 2.1C), in agreement with our previous findings (Chen et al., 2006).  However, 

this finding contrasts with the proposed role of MLL-AF10 in reducing H3K4 
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methylation at the Hoxa9 locus (Okada et al., 2005), which could be at least partly 

mediated by WT MLL.  As a control, ChIP assays showed that menin bound the Hoxa9 

promoter, and menin binding was abrogated in Men1Δ/Δ cells (Figure 2.1D).  Together, 

these results demonstrate that menin is crucial not only for Dot1L-mediated H3K79 

methylation, but also H3K4 methylation at the Hoxa9 locus in the MA9-transformed 

cells.  As WT MLL catalyzes H3K4 methylation at HOX genes, these results raised the 

possibility that WT MLL is crucial for MA9-induced HOX gene expression. 

 

Menin recruits both WT MLL and MA9 to the Hoxa9 locus  

To explore whether WT MLL participates in upregulating Hox gene expression in MA9-

transformed cells, we first examined whether WT MLL binds the Hoxa9 locus, and if so, 

whether WT MLL binding is dependent on menin in MA9-transformed BM cells.  Since 

MA9 lacks the MLL-C portion of WT MLL, detection of MLL-C at the Hoxa9 locus 

indicates WT MLL enrichment.  Hence, we chose to use an antibody that specifically 

recognizes MLL-C to detect WT MLL.  ChIP assays showed that MLL-C bound the 

Hoxa9 promoter, and this binding was dependent on menin (Figure 2.2A).  These results 

indicate that menin is required for recruiting WT MLL to Hoxa9 in MA9-transformed 

cells.  

 

As menin interacts with the N-terminus of MLL (Yokoyama et al., 2005), we determined 

if menin affects the recruitment of MA9 (which contains the N-terminus of MLL) to 
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Hoxa9 by ChIP assay, using an anti-AF9 antibody that specifically recognizes the AF9 

portion of the MA9 fusion protein (Figure 2.2B).  Our results show menin-dependent 

MA9 enrichment at the Hoxa9 promoter (Figure 2.2B).  As the C-terminal portion 

(residues 397-557) of AF9 has been reported to bind Dot1L (Zhang et al., 2006), we 

decided to test whether the AF9 part of MA9 interacted with Dot1L using a GST-AF9 

pull-down assay, and found that the AF9 portion from MA9 bound Dot1L (Figure 2.3 A-

C).  To further evaluate whether menin affects the recruitment of MA9 to the HOXA9 

locus in human MA9-expressing leukemia cells, we knocked down menin expression in 

THP-1 cells (Figure 2.3D, F).  Menin knockdown (KD) reduced the number of THP-1 

cells (Figure 2.3E), HOXA9 expression (Figure 2.3F), and menin binding to the HOXA9 

promoter  (Figure 2.3G).  Menin KD also reduced enrichment for both MA9 and Dot1L 

at HOXA9 (Figure 2.2C).  Together with the data from Figure 2.1, these results indicate 

that menin promotes the recruitment of both WT MLL and MA9/Dot1L to the HOXA9 

locus, thereby increasing WT MLL-mediated H3K4 methylation and Dot1L-mediated 

H3K79 methylation. 

 

WT MLL is required for MA9-transformed leukemia cell growth and HOX gene 

expression 

It has been unclear whether WT MLL has a role in MLL-FP-induced leukemia.  H3K4 

methylation, which is at least partly mediated by WT MLL, has been reported to be 

repressed in MLL-AF10-transformed cells (Okada et al., 2005).  However, WT MLL is 

crucial for H3K4 methylation at HOX gene loci and the expression of HOX genes (Milne 
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et al., 2002; Nakamura et al., 2002), some of which are critical for BM transformation by 

MLL-FPs (Ayton and Cleary, 2003).  Our data indicate a crucial role for menin in WT 

MLL recruitment to, and H3K4 methylation at, HOXA9 (Figure 2.2A and 2.1C).  To 

determine if WT MLL is important for the expression of HOX and cell cycle genes and 

for the growth of MA9-transformed BM cells, we transduced AT-1 cells with either 

control scrambled or MLL-C-targeting shRNAs (Figure 2.4A, shRNA 11).  The rationale 

for targeting the C-terminus was to avoid affecting the mRNA encoding MA9, which 

lacks the MLL-C sequence.  The MLL-C shRNAs, but not the scrambled vector, reduced 

the expression of WT Mll, Hoxa9, and Ccna2, which encodes cyclin A2 (referred to as 

cyclin A hereafter) (Figure 2.4C, D), and AT-1 cell growth (Figure 2.4B). 

 

To determine if WT MLL is also crucial for proliferation of human MA9-expressing 

leukemia cells, we knocked down WT MLL in THP-1 cells using shRNAs that targeted 

the C-terminus of human MLL (Figure 2.4A).  Two independent MLL-C shRNAs, but 

not the control scrambled shRNA, reduced the number of THP-1 cells (Figure 2.4E).  As 

expected, WT MLL expression was reduced in the shRNA-transduced cells, as shown by 

qRT-PCR and Western blotting (Figure 2.4F, G).  The protein level of MLL-N was also 

reduced.  However, menin and MA9 levels were not affected (Figure 2.4H).  HOXA9 and 

CCNA2 were also reduced in WT MLL KD cells (Figure 2.4F, G).  Collectively, these 

results indicate that WT MLL upregulates the expression of HOXA9 and CCNA2 as well 

as promoting the proliferation/survival of human MA9 leukemia cells. 
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To further confirm the impact of WT Mll on primary MA9-transformed BM cells, we 

used a genetically tractable mouse model to specifically excise the WT Mll gene.  We 

bred Mllf/f mice (Jude et al., 2007) with ubc9-Cre-ER mice (Ruzankina et al., 2007), and 

demonstrated efficient Mll excision induced by 4-hydroxyl tamoxifen (4-OHT) 

treatment in splenocytes from the resulting Mllf/f;Cre-ER mice (Figure 2.5A, B).  Mll 

excision after BM cells were transformed with MA9-expressing retrovirus reduced the 

number of the MA9-transformed BM cells (Figure 2.5C) and the expression of Hox 

genes in these cells (Figure 2.5D).  Together, these experiments demonstrate that WT 

MLL is required for the optimal expression of HOX genes and the proliferation/survival 

of MA9-transformed leukemia cells. 

 

WT MLL is required for maximal methylation of both H3K4 and H3K79 at target 

genes 

The SET domain of WT MLL methylates H3K4, yet is lacking in the MA9 fusion protein 

(Milne et al., 2002).  However, loss of menin, an MLL-interacting protein, reduced H3K4 

methylation at Hoxa9 in MA9-transformed cells (Figure 2.1C).  It has been unclear 

whether the remaining WT MLL allele has a role in promoting H3K4 methylation in 

human MA9-expressing leukemia cells.  To determine whether WT MLL promotes 

H3K4m3 at its target genes in MA9 leukemia cells, we performed ChIP assays with 

control and WT MLL KD THP-1 cells.  WT MLL KD reduced both MLL-C and 

H3K4m3 enrichment at HOXA9 (Figure 2.6A, B), indicating that WT MLL catalyzes 

H3K4m3 at HOX genes in MA9 leukemia cells. 
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Notably, H3K79 methylation was also reduced at the HOXA9 locus in these WT MLL 

KD cells (Figure 2.6B), indicating a role for WT MLL in MA9/Dot1L-mediated H3K79 

methylation.  Similarly, WT MLL is also required for maximal methylation of both 

H3K4 and H3K79 at the CCNA2 locus (Figure 2.6C), reinforcing the role of WT MLL in 

both H3K4 and H3K79 methylation.  Collectively, these results suggest that WT MLL 

controls both H3K4 and H3K79 methylation at MA9 target genes in leukemia cells. 

 

WT MLL depletion reduces the colony formation of MA9-transformed bone 

marrow  

Regulation of H3K79 methylation by WT MLL raised an intriguing possibility that WT 

MLL is important for the maintenance of MA9-mediated BM transformation.  Therefore, 

we examined the impact of WT MLL knockdown on colony formation of MA9-

transduced BM using a colony formation assay.  Plating of MLL-ENL-transduced BM in 

a semi-solid medium for three consecutive rounds leads to immortalization and 

transformation of the hematopoietic progenitors (Lavau et al., 1997).  To examine the 

impact of WT MLL KD on MA9-induced BM transformation, we transduced either 

control scrambled shRNA or each of the two MLL-C shRNAs into MA9-transduced BM 

cells after the second plating, followed by puromycin selection (Figure 2.7A).  The titers 

of these distinct shRNA and control lentiviruses were comparable, and WT Mll KD was 

efficient in mouse cells (data not shown).  At the fourth plating, numerous colonies 

appeared from the control cells (Figure 2.7B, Scram).  However, WT MLL KD with each 

of the MLL-C shRNAs reduced colony formation from the MA9-transduced BM, 
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suggesting that WT MLL is required to maintain MA9-mediated leukemogenesis (Figure 

2.7B, C).  

 

To further confirm the role of WT MLL in maintaining MA9-induced BM 

transformation, we used Mllf/f;Cre-ER BM to excise WT Mll after transformation. BM 

from control Mllf/f or Mllf/f;Cre-ER mice was transduced with MA9 retrovirus and serially 

replated on a semi-solid medium (Figure 2.8A).  Mll excision induced by 4-OHT 

significantly reduced the number of colonies from the MA9-transformed Mllf/f;Cre-ER 

BM (Figure 2.8B).  As a control, 4-OHT failed to reduce colony formation from MA9 

Mllf/f BM (Figure 2.8C).  4-OHT-induced excision of the floxed Mll in MA9-transformed 

BM from the Mllf/f;Cre-ER mice was confirmed by genomic PCR (Figure 2.8D, lane 2).  

These results demonstrate that WT MLL is required for the maintenance of MA9-

transformed cells.  

 

 Hoxa9 and Meis1 have previously been shown to have the ability to transform primary 

BM (Kroon et al., 1998).  WT Mll excision did not inhibit BM colony formation induced 

by Hoxa9/Meis1 (Figure 2.8E).  These results indicate that WT Mll is not required for 

colony formation induced by Hoxa9/Meis1, likely because both Hoxa9 and Meis1 are 

direct MLL targets and act downstream of MLL (Guenther et al., 2005; Nakamura et al., 

2002). This finding is consistent with the notion that WT MLL is essential for the 

maintenance of MA9-transformed cells at least partly through upregulating certain HOX 

genes.   
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We further examined the effect of pre-existing WT Mll excision on colony formation 

from normal BM as well as MA9-transduced BM.  BM from MLLf/f; Cre-ER mice that 

were treated with tamoxifen (TAM) displayed effective excision of the floxed Mll allele 

(Figure 2.8F, bottom), and Mll excision reduced the ability of normal BM to form 

colonies (Figure 2.8F, top).  Moreover, BM with WT Mll or with previous deletion of 

WT Mll was transduced with MA9-expressing retrovirus, and plated on semi-solid 

medium.  We found that previous deletion of WT Mll reduced colony formation at the 

first plating (Figure 2.8G).  These results, coupled with other results from the colony 

formation assay, indicate that WT Mll is crucial for survival and/or proliferation of BM 

progenitors and the maintenance of MA9-transformed cells, but not necessarily for MA9-

induced transformation.  From a standpoint of leukemia therapy, inhibiting the 

maintenance of MA9-transformed cells is more important than inhibiting MA9-induced 

transformation, because failure in maintaining MLL-FP-transformed cells could lead to 

eradication of the leukemia cells.  

 

Mll excision in MA9-transformed cells inhibits the development of MA9-induced 

leukemia in mice 

We next determined the role of WT MLL in MA9-induced leukemogenesis using the 

murine leukemia model with Mllf/f;Cre-ER BM.  BM from Mllf/f;Cre-ER mice was 

transduced with MA9 retrovirus and transplanted into lethally irradiated recipient mice 

(Figure 2.9A).  Flow cytometry analysis of peripheral blood demonstrated successful 

engraftment of MA9-transduced donor BM (CD45.2+ only) and co-transplanted wild-
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type BM (CD45.1+/2+) (Figure 2.9B).  The percentage of cells expressing CD11b or 

CD11b/Gr-1 (myeloid markers) was much higher in the MA9-transduced BM (Figure 

2.9D) than the co-transplanted normal BM (Figure 2.9C).  Overt acute leukemia 

developed, indicated by obvious leukemia cell infiltrations in various organs including 

the femur, liver, and spleen (Figure 2.9H-J). 

 

To examine the impact of WT Mll excision on the development of MA9-induced acute 

myeloid leukemia (AML), the mice transplanted with MA9-overexpressing BM were 

treated with either control corn oil (CO) or TAM to excise the floxed Mll from MA9-

transduced cells, then monitored for peripheral white blood cell (WBC) number, WBC 

immunophenotype, and survival rate (Figure 2.9A).  As expected, effective Mll excision 

in peripheral WBCs in TAM-treated mice was observed (data not shown).  The number 

of total peripheral WBCs and the percentage of MA9-transduced BM-derived CD11b+ 

myeloid cells were significantly lower in TAM-treated mice than in the corn oil-fed 

control mice (Figure 2.10A, B, p<0.001 and 0.011, respectively).   

 

In splenocytes from terminally ill CO- or TAM-treated mice, WT Mll excision reduced 

the percentage of cells bearing the markers for L-GMP (Figure 2.10C, D), namely c-

kit+/Sca-1-/FcRgII/III+/CD11b+/CD34+, which have been reported to be enriched in 

MA9-induced leukemia stem cells (LSCs) (Krivtsov et al., 2006).  WT Mll excision from 

the MA9-expressing cells also significantly increased the survival rate of recipient mice, 

based on Kaplan-Meier analysis (Figure 2.10E, p<0.001).  Together, these results suggest 
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that WT Mll is critical for the development of MA9-induced leukemia, partly through 

enhancing leukemia stem cell proliferation and/or survival. 

 

Discussion 

WT MLL controls MA9-induced leukemogenesis 

Oncogenic fusion proteins resulting from chromosomal translocations represent a major 

molecular lesion in leukemia and certain solid tumors.  Studies about these malignant 

diseases are often focused on the fusion protein, with little attention paid to the potential 

role of the remaining WT alleles of the translocated genes in tumorigenesis.  The WT 

MLL SET domain was not thought to be crucial for MLL-FP-triggered leukemogenesis, 

as MLL-AF10 even suppresses H3K4 dimethylation.  Therefore, it has been unclear 

whether WT MLL plays a role in MLL-FP-mediated leukemic transformation. 

 

We have shown that WT MLL is required for MA9-mediated leukemogenesis.  WT MLL 

may control MA9-induced leukemogenesis by facilitating the expression of HOX genes 

and other self-renewal genes, supporting LSC maintenance.  Although WT MLL is 

crucial for preventing HSCs from abnormal cell cycle entry, it may be particularly 

important for promoting the proliferation and survival of MA9 LSCs (Figure 2.10C, D), a 

function distinct from that in HSCs (Jude et al., 2007; McMahon et al., 2007).  In support 

of this thoery, Hoxa9 expression is reactivated in MA9-transformed LSCs (Krivtsov et 

al., 2006), and WT MLL promotes MA9 LSC maintenance (Figure 2.10C, D).   
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There are over 60 distinct MLL-FPs, and further work remains to determine whether our 

findings are generally applicable to other MLL-FPs.  Given that MLL-AF10 and MLL-

AF4 enhance H3K79 methylation at target gene loci (Krivtsov et al., 2008; Okada et al., 

2005), and WT MLL is also necessary for maximal H3K79 methylation (Figure 2.6B), it 

is likely that many MLL-FPs require WT MLL for leukemogenesis.  On the other hand, 

deletion of  the WT Mll allele does not change Hoxa9 expression, but reduces the colony 

forming activity (CFU-GEMM) of mouse fetal liver cells expressing MLL-PTD (partial 

tandem duplication) (Dorrance et al., 2008). MLL-PTD retains the C-terminal SET 

domain, yet WT MLL is silenced in leukemia  cells expressing MLL-PTD (Whitman et 

al., 2005), raising the possibility that MLL-PTD-initiated leukemia arises through a 

distinct mechanism.  

 

The mechanism for WT MLL-dependent epigenetic regulation and MLL-AF9-

induced leukemogenesis 

WT MLL promotes H3K4m3 at the HOXA9 and CCNA2 loci in MA9 leukemia cells, 

which is associated with transcriptional activation.  Although MLL-AF10 suppresses 

H3K4 dimethylation (H3K4m2), as WT MLL is able to convert dimethylated H3K4m2 to 

H3K4m3, the decrease in H3K4m2 by MLL-AF10 could actually result from increased 

WT MLL-mediated conversion of H3K4m2 to H3K4m3.  This explanation is consistent 

with the observation that MLL-ENL induces H3K79 methylation, but does not suppress 

H3K4m3 at Hoxa9 (Milne et al., 2005a).  Additionally, in MLL-AF4-expressing human 

leukemia cells, H3K4 and H3K79 methylation are colocalized at large chromatin 
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domains, including the domain harboring the HOXA7 and HOXA9 loci (Guenther et al., 

2005).  

 

WT MLL controls not only H3K4m3, but also H3K79m2, two distinct positive histone 

H3 modifications, at HOXA9 and CCNA2 loci in MA9-transformed cells.  It is likely that 

menin recruits WT MLL and MLL-FPs/Dot1L to target genes, enhancing H3K4m3 and 

H3K79m2, because menin physically interacts with the N-terminus of both WT MLL and 

MLL-FPs (Yokoyama et al., 2005).  A combination of H3K4m3 and H3K79m2 may 

cooperatively activate the transcription of HOX genes and cell cycle genes, triggering 

leukemic transformation and supporting the maintenance of LSCs (Figure 2.10F).  

 

It remains unclear how WT MLL controls H3K79m2.  Several WT counterparts of MLL 

fusion partners, such as AF4, AF9 and ENL, form a transcriptional elongation complex 

containing RNA polymerase II  transcription elongation factor b (pTEFb) and Dot1L to 

increase gene expression (Bitoun et al., 2007; Mueller et al., 2007).  It is unknown 

whether WT MLL is also in this complex and crucial for the function of this transcription 

elongation complex or Dot1L-mediated H3K79 methylation.  It is also possible that WT 

MLL-mediated H3K4m3 is important for the role of WT MLL in MA9-induced 

H3K79m2.  In this regard, methylated H3K4 serves as a docking site to recruit various 

transcription-activating proteins such as WDR5 and BPTF (Wysocka et al., 2005; 

Wysocka et al., 2006).  It is possible that H3K4m3-binding proteins may affect the 

recruitment or activity of Dot1L and subsequent H3K79 methylation.  
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Contrary to WT MLL-dependent H3K79 dimethylation at HOXA9, H3K4m3 does not 

appear to rely on Dot1L-mediated H3K79 methylation.  MLL-ENL enhances H3K79m2 

at Hoxa9, but is dispensable for H3K4m3 at the locus (Milne et al., 2005b).  Moreover, 

Dot1L ablation from cells abrogates H3K79m2 but does not affect H3K4m3 (Steger et 

al., 2008), suggesting a uni-directional order of H3K4 and H3K79 methylation that is 

controlled by WT MLL (Figure 2.10F).  

 

WT MLL as a potential target for leukemia therapy 

Our findings demonstrate that WT MLL is crucial for maximal expression of HOXA9 and 

MA9-induced leukemogenesis.  The necessity for WT MLL in multiple processes of 

leukemogenesis,  including MA9/Dot1L-mediated H3K79m2 at HOX genes and 

maintenance of MA9-expressing LSCs, could render MLL-FP-containing leukemia cells 

selectively sensitive to inhibition of WT MLL.  Despite our finding that WT Mll excision 

decreases colony formation in normal BM progenitors, WT Mll deletion in adult mice is 

well tolerated and does not adversely affect homeostatic hematopoiesis (McMahon et al., 

2007).  MLL-FP-expressing  leukemia cells may become particularly "addicted" to WT 

MLL for the expression of stem cell-related HOX genes and certain cell growth/survival-

related genes.  This addiction may be attributable to the reduced cellular WT MLL levels 

in human leukemia cells  that result from disruption of one WT MLL allele due to the 

chromosomal translocation.  In agreement with this interpretation, in murine HSCs 

harboring endogenous knockin MA9, the amount of WT MLL is only half that found in 

normal HSCs (Chen et al., 2008).  WT MLL may also be more important in MLL-FP-
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expressing leukemia cells because these cells rely on WT MLL for MLL-FP-induced 

H3K79m2 and enhanced target gene transcription (Figure 2.10F).  However, it cannot be 

ruled out that WT MLL also plays a role in transformation induced by non-MLL-FPs. 

 

Collectively, our findings support the development of strategies to treat MLL-FP-induced 

leukemia, in part by targeting WT MLL.  These studies raise the possibility for 

developing lead compounds that specifically inhibit WT MLL, its interacting proteins, 

processing enzymes, or its methyltransferase activity to treat MLL-FP-induced acute 

leukemia. 
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Figure 2.1.  Menin is required for both H3K4m3 and H3K79m2 at Hoxa9 in MA9-
transformed cells.  (A) Western blot for menin in control or Men1 excised MA9-
transformed AT-1 cells, which harbor Men1f/f;Cre-ER.  The cells were treated with either 
control DMSO (Men1f/f) or 4-OHT (Men1Δ/Δ)  to excise the floxed Men1.  (B-D) ChIP 
assay, with two distinct amplicons, for detecting H3K79m2 (B), H3K4m3 (C), and menin 
binding (D) at Hoxa9 in Men1f/f and Men1Δ/Δ AT-1 cells. 
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Figure 2.2.  WT MLL and MA9 are recruited to Hoxa9 in a menin-dependent 
manner.  AT-1 cells were treated with either DMSO (Men1f/f) or 4-OHT (Men1Δ/Δ) and 
processed for ChIP assay with either (A) anti-MLL-C or (B) anti-AF9c antibodies.  (C) 
THP-1 cells were transduced with either control scrambled or Men1 shRNA-expressing 
lentivirus, and used for ChIP assay with anti-AF9c or anti-Dot1L antibodies.  
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Figure 2.3.  Menin KD in THP-1 cells reduces HOXA9 expression and cell growth.  
(A-C) Immunoprecipitation of HA-tagged Dot1L expressed in 293T cells with 
recombinant GST-tagged AF9c purified from E. coli.  (D) Western blot for menin in 
menin KD THP-1 cells.  (E) Growth curve of control and menin KD THP-1 cells.  (F) 
The mRNA levels of MEN1 and HOXA9 genes in the control and menin KD THP-1 cells.  
(G) ChIP assay for menin binding to the HOXA9 promoter in the control and menin KD 
THP-1 cells. 
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Figure 2.4.  WT Mll is required for the growth of MA9-transformed leukemia cells 
and expression of Hoxa9 and CCNA2.  (A) A diagram for the structure of WT MLL, 
MA9 fusion protein, and shRNAs targeting various parts of MLL-C, but not MA9. (B) 
AT-1 cells were transduced with retrovirus containing either vector or MLL-C shRNA 11 
and monitored for cell number.  (C, D) WT Mll, Hoxa9, and cyclin A (CCNA2) mRNA 
(C) and MLL-C/cyclin A protein levels (D) in control of WT MLL KD AT-1 cells.  THP-
1 cells were transduced with either control scrambled shRNA lentivirus (Scram) or MLL-
C shRNAs. The resulting cells were monitored for change in number (E), mRNA levels 
of WT Mll, Hoxa9, and CCNA2 (F) and the protein levels of MLL-C, cyclin A (G), 
MLL-N, MA9, and menin (H).   
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Figure 2.5.  WT MLL depletion reduces MA9-transformed cell number and Hox 
gene expression.  (A) A diagram for the floxed Mll and the primers used to detect the 
intact or excised Mll.  (B) 4-OHT induced excision of the floxed Mll.  Splenocytes from 
an Mllf/f;Cre-ER mouse were cultured with either DMSO or 4-OHT, followed by the 
isolation of genomic DNA and PCR amplification.  (C) A growth curve for MA9-
transformed BM cells with either Mllf/f or MllΔ/Δ.  (D) Quantification of Hoxa9 and 
Hoxa5 transcript levels in either Mllf/f or MllΔ/Δ MA9-transformed cells. 
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Figure 2.6.  WT MLL promotes H3K4 and H3K79 methylation at key target genes.  
ChIP assay in control or WT MLL KD (shRNA 14) THP-1 cells for MLL-C enrichment 
at Hoxa9 (A) and for histone H3K4m3 and H3K79m2 at HOXA9 (B) and CCNA2 (C). 
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Figure 2.7.  WT MLL KD suppresses colony formation of MA9-transduced BM.  (A) 
Procedure for the colony formation assay.  BM cells from a C57B6 mouse were 
transduced with pMSCV-MA9 retrovirus, and replated in triplicate weekly in 
methylcellulose medium with G418.  After the second plating, surviving MA9 cells were 
transduced with each of the MLL-C shRNAs (12 and 14) or scrambled vector.  (B) A 
summary of colony numbers for control or Mll shRNA-transduced BM.  (C) 
Representative colonies from the culture plates (Scale bars 5mm). 
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Figure 2.8.  WT Mll is required for colony formation of MA9-induced BM.  (A) A 
flowchart for procedures of MA9-induced transformation and 4-OHT-induced Mll 
excision.  (B) Mll excision reduced the number of colonies formed by MA9-transduced 
BM from the Mllf/f;Cre-ER mice.  (C) 4-OHT failed to reduce colony formation of MA9 
retrovirus-transduced BM from Mllf/f mice.  (D) Genotyping with genomic DNA showed 
that 4-OHT induced Mll excision in MA9-transformed cells with the Mllf/f;Cre-ER 
genotype (lane 2) but failed to induce Mll excision in MA9-transformed BM cells with 
Mllf/f but without the Cre-ER transgene (lane 4).  (E) WT Mll excision failed to reduce 
Hoxa9/Meis1-induced BM colony formation (Top).  4-OHT-induced WT Mll excision in 
Hoxa9/Meis1-transformed BM (Bottom).  (F) WT Mll excision reduced colony formation 
from normal BM.  BM from CO or TAM-treated Mllf/f;Cre-ER mice was plated on 
methylcellulose medium and the colony number was scored at the first plating (Top).  
WT Mll was excised in BM from TAM-treated, but not from corn oil-fed, Mllf/f;Cre-ER 
mice (Bottom).  (G) BM from corn oil or TAM-treated Mllf/f;Cre-ER mice was first 
transduced with MA9,  followed by plating on methylcellulose medium, and the colony 
number was scored at the first plating. 
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Figure 2.9.  Tamoxifen-induced WT Mll excision in MA9-transduced cells in 
recipient mice.   (A) A diagram for MA9-induced leukemogenesis and WT Mll excision 
in mice.  (B) Peripheral white blood cells from MA9-BM-transplanted mice were isolated 
seven weeks after transplantation and stained fluorescence-labeled antibodies, as 
indicated.  The donor cells were only CD45.2+ (lower right quadrant), while recipient or 
normal co-transplanted BM-derived cells were CD45.1+/2+ (upper right quadrant).  A 
small percentage (4%) of cells in WT recipient PB WBCs were myeloid (CD11b+/Gr1+) 
(C), but a large percentage (~62%) of the MA9-transformed BM-derived cells were 
CD11b+ (D).  (E-G) H&E stained sections of normal BM transplanted mice.  (H-J)  
H&E stained sections from MA9-transduced BM transplanted mice.  
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Figure 2.10.  WT MLL is required for MA9-induced leukemogenesis in mice.  (A) 
The total peripheral white blood cells (WBCs) in mice transplanted with MA9-transduced 
Mllf/f;Cre-ER BM measured five weeks after CO or TAM feeding.  (B) Flow cytometry 
analysis of MA9-transformed donor cells from transplanted mice, five weeks after the 
mice were fed with CO or TAM.  (C) Flow cytometry analysis of CD45.2+ splenocytes 
from terminally ill CO- or TAM-fed mice.  (D) A summary of the percentage of c-kit 
high cells that were FcRgII/III+/CD34+ from CO or TAM-fed mice.  (E) Kaplan-Meier 
curve for mice transplanted with MA9-transduced Mllf/f;Cre-ER BM that were fed with 
either CO (n=11) or TAM (n=7), 3 weeks after MA9 BM transplantation.  (F) A model 
for menin, WT MLL, and MA9/Dot1L-controlled regulation of coupled yet distinct 
histone methylation events, enhancing target gene transcription, leading to 
leukemogenesis. 
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CHAPTER 3 – THE TRITHORAX PROTEIN PARTNER MENIN ACTS IN 
TANDEM WITH EZH2 TO SUPPRESS C/EBPα  AND DIFFERENTIATION IN 

MLL-AF9 LEUKEMIA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

51 

Summary 

Trithorax (Trx) and Polycomb (PcG) proteins antagonistically regulate the transcription 

of many genes, and cancer can result from the disruption of this regulation.  Disruption of 

Trx function occurs through chromosomal translocations involving the Trx group gene 

MLL, which lead to the expression of MLL fusion proteins and acute leukemia.  It is 

poorly understood how MLL fusion proteins block differentiation, a hallmark of 

leukemogenesis.  Here we show that acute depletion of the Trx protein MLL, or menin, a 

close partner of MLL that is critical for MLL and MLL-AF9 recruitment to target genes, 

triggers MLL-AF9 cell differentiation.  Differentiation occurs independent of Hoxa9/ 

Meis1, known MLL-AF9 target genes.  We have found that menin binds the promoter of 

the polycomb gene Ezh2, and promotes its expression, also independent of Hoxa9/Meis1.  

EZH2 interacts with the differentiation-promoting transcription factor C/EBPα, and 

specifically represses C/EBPα target genes.  Menin depletion reduces EZH2 expression, 

EZH2 binding and repressive H3K27 methylation at C/EBPα target genes, and induces 

the expression of pro-differentiation C/EBPα targets.  In contrast to its classical role 

antagonizing Trx function, the PcG protein EZH2 collaborates with Trx-associated menin 

to block MLL-AF9 leukemia cell differentiation, uncovering a novel mechanism for 

suppression of C/EBPα and leukemia cell differentiation. 
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Introduction 

Trithorax (Trx) and polycomb (PcG) group proteins have opposing roles in the regulation 

of key genes involved in development and stem cell maintenance (Schuettengruber et al., 

2011).  The expression of these common target genes is tightly regulated during cell 

differentiation, with PcG complexes repressing and Trx promoting transcription (Mills, 

2010).  PcG and Trx proteins regulate transcription by influencing chromatin structure, in 

part through covalent modification of histones.  One group of genes regulated in this 

manner is HOX genes (Hanson et al., 1999).  HOX gene expression is maintained at high 

levels in hematopoietic progenitors, and is coordinately decreased during blood cell 

differentiation (Pineault et al., 2002).   

 

The Trx group protein MLL maintains HOX gene expression in hematopoietic 

progenitors, at least in part through trimethylation of histone H3 at lysine 4 (H3K4m3) 

via its C-terminal SET domain (Terranova et al., 2006).  Chromosomal translocations 

involving the MLL gene result in the formation of MLL fusion proteins (MLL-FPs), 

which disrupt normal MLL function, causing acute leukemia.  MLL translocated 

leukemias represent ~10% of adult acute leukemias and the majority of infant leukemia 

cases, and these patients have a poor prognosis (Daser and Rabbitts, 2004; Holleman et 

al., 2004).   
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MLL-FPs promote the expression of a subset of wild-type (WT) MLL target genes, 

including HOX genes, through the recruitment of the histone H3K79 methyltransferase 

Dot1L and the pTEFb complex, enhancing transcriptional elongation (Bernt et al., 2011; 

Mueller et al., 2009; Nguyen et al., 2011; Okada et al., 2005; Wang et al., 2011).  MLL-

FPs lack a large C-terminal portion of the WT MLL protein, including the histone H3 

lysine 4 (H3K4)-methylating SET domain.  This functional deficiency is remedied by 

expression of WT MLL from the non-translocated MLL allele.  WT MLL works in 

concert with MLL-FPs to upregulate HOX genes and promote leukemia, highlighting a 

critical role for WT MLL in this disease (Chapter 2) (Thiel et al., 2010).     

 

WT MLL and MLL-FPs are recruited to target genes through their interaction with 

menin, a protein encoded by the Men1 gene (Figure 2.2) (Chen et al., 2006; Hughes et al., 

2004; Thiel et al., 2010; Yokoyama et al., 2004).  X-ray crystallographic studies have 

recently shown that menin interacts with the identical N-terminal sequences of both WT 

MLL and MLL-FPs via a deep central pocket, demonstrating that menin is a close partner 

of these proteins (Huang et al., 2012; Murai et al., 2011).  This interaction is required for 

leukemic transformation, demonstrating a central role for menin in MLL-FP leukemia 

(Caslini et al., 2007).  

 

A major hallmark of leukemia and consequence of MLL-FP expression is a block in 

hematopoietic differentiation (Huntly and Gilliland, 2005).  MLL-AF9 (MA9) leukemia 
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cells have a block in the myeloid lineage at the granulocyte-macrophage progenitor stage, 

with cells expressing high levels of the cell surface receptor c-kit being enriched for 

leukemia-initiating cells (LICs) (Chen et al., 2008; Krivtsov et al., 2006; Somervaille and 

Cleary, 2006; Wang et al., 2010).  While HOX genes are at least partially responsible for 

this suppression of differentiation, it remains unclear how MLL-FP leukemia cells are 

blocked at the progenitor stage (Faber et al., 2009; Kroon et al., 1998).  In addition, 

global analysis has identified over 200 direct MLL-FP target genes, some of which could 

also have a role in blocking differentiation (Wang et al., 2011). 

 

C/EBPα is a leucine zipper transcription factor that promotes myeloid differentiation in 

part through the activation of differentiation-associated genes.  Many leukemogenic 

oncogenes and pathways inhibit the expression/function of C/EBPα as a means of 

blocking differentiation, including Bcr-Abl, AML-ETO, and Notch/Trib2 (Koschmieder 

et al., 2009).  However, little is known as to whether repression of C/EBPα is involved in 

blocking differentiation in MLL-FP leukemias. 

 

Polycomb repressive complex 2 (PRC2) consists of Suz12, EED, RbAp46/48, and the 

catalytic component EZH2, which methylates H3K27, leading to transcriptional 

repression.  EZH2 point mutations are found in about 10% of MDS cases, suggesting that 

PRC2 acts as a tumor suppressor in the myeloid lineage (Ernst et al., 2010; Nikoloski et 

al., 2010).  However, recent work has demonstrated that ectopic expression of EZH2 
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causes a block in myeloid differentiation, leading to the development of 

myeloproliferative disease (Herrera-Merchan et al., 2012).  Thus, the role of EZH2 in 

hematopoietic development and leukemia is not well understood.  Utilizing murine 

models for MA9 leukemia, we set out to examine the role of the Trx protein MLL and its 

partner menin in regulating MA9 cell differentiation in vivo, which led to the finding that 

the polycomb protein EZH2 is a collaborating factor in suppressing C/EBPα and 

differentiation in MA9-induced leukemia. 

 

Results 

Acute menin depletion causes MA9 cell differentiation in culture 

To determine the effect of acute menin depletion on MA9 cell differentiation, we utilized 

the murine MA9 cell line AT-1, which contains floxed Men1 alleles and the Cre-ER 

transgene, allowing Men1 excision by addition of 4-hydroxytamoxifen (4-OHT) to the 

culture medium (Chen et al., 2006).  4-OHT treatment effectively excised the floxed 

Men1 alleles within 2 days (Figure 3.1A), and markedly reduced menin protein 

expression by day 4 (Figure 3.1B).  We measured cell differentiation by flow cytometry 

using the terminal myeloid differentiation marker Gr-1, and found little effect on Gr-1 

cell surface expression 4 days after Men1 excision, but a marked increase in the 

percentage of cells expressing high levels of Gr-1 by day 6 (Figure 3.1C), indicating that 

terminal myeloid differentiation follows reduced menin expression.  This increase in Gr-1 
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high cells also corresponded with a cell morphology change consistent with myeloid 

differentiation (Figure 3.1D, right).   

 

The ability to observe cell differentiation in this setting allowed us to next explore how 

menin depletion affects genes that regulate this process over time.  The direct 

menin/MA9 target gene Hoxa9, which is at least partially responsible for the MA9-

mediated differentiation block (Faber et al., 2009; Kroon et al., 1998), was decreased as 

early as day 4 post 4-OHT treatment, prior to cell differentiation (Figure 3.1E).  

However, overexpression of Hoxa9 in combination with its cofactor Meis1 did not 

completely rescue differentiation caused by menin depletion (Figure 3.1F), suggesting an 

additional function for menin in suppressing MA9 leukemia cell differentiation.  

Interestingly, Mcsfr and Gcsfr, cytokine receptors important for myeloid differentiation, 

were upregulated by day 6 post 4-OHT treatment (Figure 3.1G, H).  To determine if 

menin is also important for blocking the differentiation of human MLL-FP-expressing 

leukemia cells, we used shRNAs targeting MEN1 in the human MA9 cell line THP-1. 

Menin knockdown (KD) increased cell surface expression of CD11b, a prominent 

myeloid differentiation marker in human leukemia cells, and also increased MCSFR 

transcript levels (Figure 3.2 A, B).  Together, these results indicate that menin depletion 

upregulates genes associated with myeloid differentiation and causes MA9 cell 

differentiation. 
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Acute menin depletion causes MA9 cell differentiation in vivo 

To determine if menin depletion is pathologically relevant to MA9-induced leukemia, we 

transduced Men1f/f; Cre-ER bone marrow (BM) with MA9-ires-GFP retrovirus and 

transplanted these cells into lethally irradiated recipient mice (Figure 3.3A).  When we 

observed substantial GFP+ cells in the peripheral blood of recipient mice, we treated the 

mice with either corn oil (CO) control or CO with tamoxifen (TAM) by oral gavage to 

excise Men1 in the transplanted cells.  At days 4 and 7 post-initial gavage, we isolated 

splenocytes from each treatment group for analysis by flow cytometry.  Flow cytometry 

analysis revealed a striking increase in the percentage of Gr-1high MA9 (GFP+) cells in 

Men1-excised splenocytes as early as 4 days post-initial gavage, and this effect became 

even more pronounced at day 7 (Figure 3.3B, D).  Consistent with this increased Gr-1high 

population, we observed mature differentiated myeloid cells in H&E-stained spleen 

sections from mice treated with TAM to deplete menin (Figure 3.3C).  In contrast to the 

immediate increase in the percentage of Gr-1high cells, the c-kithigh population, which is 

enriched for LICs, was unchanged at day 4 post-treatment, but decreased significantly by 

day 7 (Figure 3.3E).  Further analysis of the relationship between c-kit and Gr-1 revealed 

an increase in the c-kithigh/Gr-1high population at day 4 (Figure 3.4A), followed by a loss 

of this population at day 7 (Figure 3.4B).  We also observed increased staining for the 

apoptotic marker Annexin V at day 7 (Figure 3.4C).  These results suggest that as a 

consequence of menin depletion, c-kit high cells first gain expression of Gr-1, then either 

lose c-kit expression during the process of differentiation or undergo cell death, leading 

to the depletion of c-kit high MA9 LICs. 
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WT MLL depletion causes MA9 cell differentiation in vivo 

Due to the observed effect of menin depletion on MA9 cells, we hypothesized that acute 

depletion of WT MLL, which interacts with menin and is required to maintain MA9-

mediated transformation (Chapter 2), would also cause MA9 cell differentiation in vivo.  

To this end, we isolated control and WT Mll-excised MA9 (GFP+) Splenocytes for 

plating in methylcellulose and performed flow cytometry to evaluate leukemia cell 

differentiation status.  WT MLL-depleted MA9 splenocytes were deficient in colony 

formation in methylcellulose as compared to their WT MLL-containing counterparts, 

suggesting that MA9 cells lacking WT MLL are deficient in LICs when derived from an 

in vivo setting (Figure 3.5A).  Consistent with the effect of menin depletion, flow 

cytometry analysis of MA9 splenocytes lacking WT MLL demonstrated a significant 

increase in the percentage of Gr-1high cells, and a significant decrease in the c-kithigh 

population compared to controls, suggesting that MA9 cells also undergo differentiation 

in response to WT MLL depletion (Figure 3.5C-E).  These findings demonstrate that a 

key Trx group gene, Mll, is critical for blocking MA9 leukemia cell differentiation. 

 

Given that WT MLL depletion had a less pronounced increase in Gr-1high MA9 cells than 

that of menin, we wondered whether Gr-1 low cells lacking WT MLL were defective in 

propagating leukemic disease.  To address this question, we isolated control and WT Mll-

excised MA9 splenocytes from primary recipients, sorted into either Gr-1low or Gr-1high 

MA9 cell populations, and transplanted these cells into lethally irradiated secondary 
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recipient mice.  WT MLL-depleted Gr-1low recipients had a significantly longer survival 

rate than the WT MLL-containing Gr-1low cohort (Figure 3.5F), likely due to the 

decreased population of c-kithigh cells in this group (Figure 3.5E).  This survival effect 

may have been less pronounced due to the eventual outgrowth of MA9 cells resistant to 

Mll excision in about half of the TAM-treated Gr-1low recipients (data not shown).  

Consistent with previously published results, Gr-1high recipient mice from each treatment 

group had significantly longer survival rates than their Gr-1low counterparts (Figure 3.5F) 

(Wang et al., 2010).  Together, these data demonstrate a role for WT MLL in maintaining 

a population of Gr-1low/c-kithigh MA9 cells, which possess the ability to propagate 

leukemic disease. 

 

Menin depletion leads to the upregulation of C/EBPα  target genes in MA9 cells in 

vivo 

To investigate a potential mechanism for the menin/WT MLL-mediated block in myeloid 

differentiation, we performed a cDNA microarray using primary GFP+ MA9 splenocytes 

from either control or Men1-excised recipient mice.  We isolated cells at day 4 post-

initial gavage to determine genes affected by menin depletion, and performed gene set 

enrichment analysis (GSEA) of the microarray data to identify groups of genes regulated 

by menin that are associated with differentiation.  GSEA revealed a significant overlap of 

menin-regulated genes with C/EBP transcription factor target genes (Figure 3.6A), 
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consistent with upregulation of C/EBPα target genes Mcsfr and Gcsfr in AT-1 cells, 

leading us to investigate a role for menin in repressing C/EBPα function.   

 

As multiple leukemogenic pathways affect the expression level of C/EBPα p42 or 

increase the ratio of the dominant negative p30 isoform over p42 (Koschmieder et al., 

2009), we first explored whether menin depletion affected C/EBPα expression or target 

gene binding in AT-1 cells.  Although overexpression of C/EBPα-ER followed by 

activation via addition of 4-OHT to the culture medium was able to drive differentiation 

(Figure 3.6B), we failed to observe a menin-dependent effect on C/EBPα protein levels 

(Figure 3.6C).  In addition, there was no detectable expression of C/EBPα p30, which has 

been reported to promote leukemia development (Figure 3.6C) (Kirstetter et al., 2008).  

Chromatin immunoprecipitation (ChIP) assay indicated that C/EBPα was also able to 

bind the promoter of its target gene Mcsfr regardless of menin expression (Figure 3.6D).  

The lack of a direct effect on C/EBPα protein led us to investigate a potential role for 

menin in actively repressing C/EBPα target genes.  

 

Menin promotes EZH2 and Evi-1 expression in MA9-expressing leukemia cells 

In exploring potential repressors of C/EBPα function that may be regulated by 

menin/WT MLL, we observed that Mecom, which encodes the transcription factor Evi-1, 

was the most down-regulated gene in response to acute menin depletion in vivo and was 
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also decreased in Men1-excised AT-1 cells (Figure 3.7A).  Evi-1 is directly activated by 

MA9, and is required for the maintenance of MLL-ENL transformed cells (Goyama et 

al., 2008).  An Evi-1 oncogenic fusion protein has been shown to repress C/EBPα at 

target genes, and Evi-1 has been reported to mediate transcriptional repression of the 

tumor suppressor PTEN through its interaction with PcG proteins, including EZH2 (Arai 

et al., 2011; Tokita et al., 2007; Yoshimi et al., 2011).   

 

Surprisingly, we found that expression of EZH2, the catalytic component of polycomb 

repressive complex 2 (PRC2), was also decreased upon menin depletion in MA9-

expressing cells (Figure 3.7 A, B), while PTEN expression, which is suppressed by EZH2 

in Evi-1-induced leukemia cells (Yoshimi et al., 2011), was unaffected (data not shown).  

This effect on EZH2 occurs independent of Hoxa9/Meis1, as overexpression of these 

genes is unable to rescue the decrease in Ezh2 transcript levels due to menin depletion 

(Figure 3.7C).  These findings suggest that in addition to Mecom, Ezh2 is a direct target 

of menin/MA9.  Along these lines, ChIP assay showed enrichment for menin and the 

portion of AF9 found in MA9 (AF9c) at the Ezh2 and Mecom promoters.  As expected, 

this enrichment was diminished by menin depletion (Figure 3.7 D, E).  H3K4m3 and 

H3K79m2, which are associated with upregulation of gene transcription (Schuettengruber 

et al., 2011; Steger et al., 2008), were also substantially decreased at the Mecom locus in 

response to menin depletion (Figure 3.7F).  Men1 excision also reduced these marks at 

certain part of the Ezh2 locus (Figure 3.7G, amplicon 1), albeit with a milder effect than 

at the Mecom locus.  Together, these results demonstrate that menin promotes EZH2 and 
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Evi-1 expression, suggesting that menin/MA9 promote EZH2-mediated repression of 

C/EBPα target genes, leading to a block in MA9 leukemia cell differentiation. 

 

EZH2 interacts with C/EBPα  and represses its transcriptional activity 

To test whether EZH2 inhibits C/EBPα function, we first determined whether EZH2 

could repress C/EBPα-mediated transcriptional activation.  To this end, we transfected 

293T cells with a C/EBPα binding site-containing promoter-driven luciferase reporter 

(Keeshan et al., 2006), C/EBPα, and increasing amounts of EZH2 expression plasmids.  

C/EBPα robustly activated the luciferase reporter, and EZH2 repressed C/EBPα-

mediated activation in a dose-dependent manner (Figure 3.8A).  As a control, EZH2 was 

unable to repress Gli1-activated luciferase (Figure 3.8B).  As EZH2 could repress 

C/EBPα-mediated activation, we decided to test the possibility that EZH2 physically 

interacts with C/EBPα in MA9 cells by performing immunoprecipitation (IP) 

experiments using endogenously expressed proteins in THP-1 cells.  IP of C/EBPα was 

able to bring down EZH2 (Figure 3.8C), and conversely, IP of EZH2 pulled down 

C/EBPα (Figure 3.8D), showing that these proteins physically interact at endogenous 

levels in MA9 leukemia cells.   
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EZH2 binds C/EBPα  target genes and suppresses MA9 cell differentiation 

Since EZH2 interacts with C/EBPα in MA9 cells and represses its transcriptional 

activity, we reasoned that EZH2 and its interacting protein Evi-1 could bind C/EBPα 

target genes to mediate direct repression.  To explore this possibility, we performed ChIP 

to determine whether Evi-1 and EZH2 bind to the promoter of the C/EBPα target gene 

Mcsfr in AT-1 cells.  ChIP assay showed that Evi-1 and EZH2 binding were enriched at 

the Mcsfr promoter, and menin depletion by addition of 4-OHT led to decreased promoter 

occupancy of both Evi-1 and EZH2 (Figure 3.9A).  As EZH2 mediates transcriptional 

repression through catalysis of histone H3 lysine 27 trimethylation (H3K27m3), we also 

tested whether H3K27m3 is reduced at the Mcsfr promoter in response to Men1 excision.  

Consistent with EZH2 ChIP results, H3K27m3 was enriched at the Mcsfr promoter, and 

was decreased in menin-depleted cells (Figure 3.9B), supporting a model where EZH2 

interacts with C/EBPα at target gene promoters, leading to increased H3K27m3 and 

transcriptional repression of C/EBPα target genes in MA9 cells.  

 

Since EZH2 occupies the Mcsfr promoter in MA9 cells and inhibits C/EBPα−mediated 

transcriptional activation, we decided to test whether loss of EZH2 causes upregulation of 

C/EBPα target genes and MA9 cell differentiation by using shRNAs to knock down 

EZH2 in THP-1 cells.  Transduction of THP-1 cells with each of three different shRNAs 

resulted in a reduction of EZH2 expression compared to the scrambled (Scr) control 

(Figure 3.9C, D).  EZH2 KD led to a dose-dependent increase in MCSFR transcript 
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levels, but did not affect HOXA9 expression (Figure 3.9D).  EZH2 KD also caused a 

dose-dependent increase in the percentage of CD11b positive cells (Figure 3.9E).  Taken 

together, these results highlight EZH2 as a necessary component for the MA9-mediated 

block in myeloid differentiation, revealing a novel mechanism by which myeloid 

differentiation is inhibited via EZH2-mediated repressive histone methylation. 

 

Discussion 

Depletion of the Trx protein MLL or its partner menin triggers MA9 cell 

differentiation 

One of the major mechanisms for MA9-mediated leukemogenesis is causing a block in 

mature myeloid differentiation (Schreiner et al., 2001), but it is poorly understood how 

MA9 cells are blocked in their mature differentiation.  While Trx and PcG proteins are 

well known for their antagonizing function in regulating gene expression, little has been 

known as to whether and how they might work together to regulate differentiation in 

acute myeloid leukemia.   

 

We found that excision of either Men1 or Mll in MA9-expressing leukemia cells in vivo 

significantly increased the mature myeloid differentiation of the MA9 leukemia cells and 

decreased the population of c-kithigh cells, which are enriched for LICs.  In addition to c-

kit, Gr-1 expression is a functional indicator, as Gr-1high cells are deficient in the ability to 

cause transplantable leukemic disease (Figure 3.5F). 
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Interestingly, menin depletion increased the Gr-1high population as early as 4 days after 

the initial TAM treatment, before the c-kithigh population was diminished (Figure 3.3D, 

E).  Closer examination of flow cytometry data showed an increase in c-kithigh cells 

expressing Gr-1 at the day 4 time point, and this population was lost at day 7, either due 

to decreased c-kit expression or apoptotic cell death, as Annexin V staining was also 

increased as a result of menin loss at day 7 (Figure 3.4C).  These results suggest that 

increased Gr-1 expression is an early indicator of MA9 cell differentiation, followed by 

c-kit loss and/or cell death following Men1 deletion. While Hoxa9 and Meis1 are well 

known for their crucial role in MLL-FP-induced leukemia (Faber et al., 2009; Kroon et 

al., 1998; Zeisig et al., 2004), we found that menin blocks the mature differentiation of 

MA9 leukemia cells independent of Hoxa9/Meis1 (Figure 3.1F). 

 

The acute effect of menin depletion in MA9 cells was more drastic than that of WT MLL 

depletion on differentiation and apoptosis.  WT MLL KD in human MA9 cells causes 

decreased H3K79m2 at target genes, suggesting that WT MLL is required for MA9 

function (Figure 2.6B, C) (Thiel et al., 2010).  Additionally, in MLL-null MEF cells, 

MA9 is unable to bind the Hoxa9 promoter (Milne et al., 2010).  However, there is no 

physical interaction between WT MLL and MA9, suggesting that MA9 recruitment 

resulting from WT MLL function at target gene promoters is an indirect process.  In 

contrast, menin directly binds both WT MLL and MA9 via their common N-terminal 

domains and is required for their recruitment to target genes.  The acute effect of menin 

loss could be more drastic than WT MLL loss alone, because menin is directly 
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responsible for the recruitment of both WT MLL and MA9 to target genes to enhance 

their transcription. 

 

Menin promotes EZH2 transcription in MA9 leukemia cells 

Little has been known about the role of Trx complex components menin and MLL in 

regulating the expression of their rival polycomb genes.  We have found that menin binds 

the Ezh2 promoter (Figure 3.7D), and menin promotes EZH2 expression in MA9 

leukemia cells.  We have observed a substantial reduction in EZH2 expression following 

Men1 excision and modest decrease in H3K4m3 and H3K79m2 at the locus in response 

to menin loss (Figure 3.7G), indicating a crucial role for menin in promoting the EZH2 

expression (Figure 3.7A, B). It is not yet clear whether menin regulates the expression of 

EZH2 in other leukemias or normal hematopoietic cells, or why menin might promote the 

expression of protein complexes that oppose its function at common target genes.  One 

possibility is that during development or in stem/progenitor cells, menin/MLL promote 

the expression of PRC components to preserve “bivalent” histone methylation, with both 

H3K4m3 and H3K27m3 at relevant promoters, leaving these genes repressed, but poised 

for activation (Mills, 2010).  The maintenance of bivalency is critical for the regulated 

expression of these genes, and may be the rationale behind menin/MLL-mediated 

activation of PRC protein expression in a developmental context. 
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EZH2 represses C/EBPα  target genes in MA9 leukemia cells 

C/EBPα is a critical transcription factor that controls myeloid differentiation (Nerlov, 

2004), and its normal function is inhibited through mutation, aberrant expression, or 

oncogene-mediated suppression, contributing to a block in myeloid differentiation in 

various leukemias (Nerlov, 2004; Reckzeh and Cammenga, 2010).  Little has been 

known about whether and/or how C/EBPα is regulated in MA9 leukemia cells.  Forced 

expression of C/EBPα drives MLL-FP cell differentiation (Figure 3.6B) (Matsushita et 

al., 2008), but C/EBPα protein levels and target gene promoter binding are unchanged in 

response to menin depletion (Figure 3.6C, D), suggesting an alternative method for 

menin-mediated repression of C/EBPα target genes in MA9 leukemia cells.  

 

We have found that EZH2 physically associates with C/EBPα, binds to the promoter of 

the C/EBPα target gene Mcsfr in MA9 cells, and represses C/EBPα target genes (Figure 

3.8, 3.9A).  The direct MA9 target Evi-1 is required for MLL-ENL-mediated 

transformation, is found in polycomb complexes, and also binds the Mcsfr promoter 

(Figure 3.9A) (Arai et al., 2011; Goyama et al., 2008).  Menin does not affect C/EBPα 

expression.  Rather, menin induces expression of EZH2, which then suppresses the 

expression of C/EBPα targets and blocks the differentiation of MA9 cells. These findings 

reveal a previously unappreciated mechanism for suppressing C/EBPα and MA9 

leukemia cell differentiation (Figure 3.9F).   
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Consistent with our findings, recent reports show that EZH2 depletion causes primary 

MLL-FP leukemia cell differentiation (Neff et al., 2012; Shi et al., 2012).  The role of 

EZH2 in regulating C/EBPα function during normal hematopoiesis and in other leukemia 

types remains to be examined.  Although EZH2 is required for stem/progenitor cell 

expansion in developmental hematopoiesis, EZH2 depletion in adult BM is less severe, 

with no effect on LSK cells, but impaired differentiation of lymphoid cells, and increased 

myelo-erythroid progenitors, suggesting that EZH2 does regulate at least some stages of 

myeloid differentiation (Mochizuki-Kashio et al., 2011).  Future studies will clarify 

whether EZH2 specifically regulates C/EBPα function in MA9 cells or in a broader 

spectrum of cell types.  

 

A context-dependent role for EZH2 in hematopoietic malignancies 

The role of EZH2 in hematopoietic malignancies is complex, and seems to be context 

dependent.  In myelodysplastic/ myeloproliferative disorders, mono- or bi-allelic 

mutations were found in 12% of patients, suggesting EZH2 may be a tumor suppressor in 

the myeloid lineage (Ernst et al., 2010; Nikoloski et al., 2010).  However, in lymphomas 

of germinal center origin, a specific recurring point mutation in the SET domain of 

EZH2, converting tyrosine 646 to cytosine has been observed (Morin et al., 2010; Ryan 

et al., 2011).  This mutation causes increased H3K27 methyltransferase activity, 

suggesting that EZH2 function promotes tumorigenesis in this disease (Sneeringer et al., 

2010; Yap et al., 2011).  EZH2 is involved in suppressing PTEN expression and 
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promoting AKT signaling in Evi-1-induced leukemia cells (Yoshimi et al., 2011), yet we 

found that EZH2 knockdown did not affect PTEN expression in MA9 leukemia cells, 

suggesting an alternative mechanism for EZH2 in regulating MA9 cell differentiation.   

 

Consistent with the role of EZH2 in regulating differentiation, EZH2 has been reported to 

promote MA9 leukemias (Neff et al., 2012; Shi et al., 2012).  It has been unclear as to 

how mature differentiation of MA9-induced leukemia is blocked.  We found for the first 

time that in MA9-induced leukemia, menin plays a key role in promoting the expression 

of the polycomb protein EZH2.  EZH2 cooperates with menin to epigenetically suppress 

the expression of pro-differentiation C/EBPα targets and block the mature differentiation 

of MA9 leukemia cells (Figure 3.9F).  These findings unravel a novel mechanism for 

EZH2 in blocking MLL-AF9 leukemia cell differentiation. 
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Figure 3.1.  Acute menin depletion leads to MA9 cell differentiation in culture.  (A) 
Genotype for Men1 excision in AT-1 cells 2 days post 4-OHT treatment.  (B) Western 
blot for menin in control and Men1-excised AT-1 cells 4 days post 4-OHT treatment.  (C) 
Flow cytometry for Gr-1 cell surface expression in control and Men1-excised AT-1 cells.  
(D) Wright-Giemsa staining of control and Men1-excised AT-1 cells 6 days post 4-OHT 
treatment.  (E) Real-Time PCR examining Hoxa9 transcript levels in control and Men1-
excised AT-1 cells.  (F) Flow cytometry for Gr-1 cell surface expression in control and 
Men1-excised AT-1 cells with or without Hoxa9/Meis1 overexpression day 6 post 4-
OHT treatment.  (G, H) Real-Time PCR examining Mcsfr (G) and Gcsfr (H) transcript 
levels in control and Men1-excised AT-1 cells.     
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Figure 3.2.  Menin KD causes human MLL-AF9 leukemia cell differentiation.  (A) 
Flow cytometry analysis of CD11b+ population in control and menin KD THP-1 cells.  
(B) Real-Time PCR analysis of MCSFR transcript levels in control and menin KD THP-1 
cells. 
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Figure 3.3.  Menin depletion results in MA9 cell differentiation in vivo.  (A) A 
schematic for examining the acute effect of menin depletion on MA9 cells in vivo.  
Men1f/f; Cre-ER BM was transduced with MA9-ires-GFP and transplanted into lethally 
irradiated recipients.  Recipient mice were treated with CO control or TAM to excise the 
floxed Men1 allele.  GFP+ cells were analyzed for MA9 cell immunophenotype.  (B) 
FACS plot showing increased Gr-1high percentage in Men1-excised MA9 primary cells 7 
days post-initial TAM treatment.  (C) H&E staining of spleen sections from control (left) 
and TAM-treated (right) Men1f/f; Cre-ER MA9 primary recipients 7 days post-initial 
TAM treatment.  (D, E) A summary of the Gr-1high (D) and c-kithigh (E) MA9 cell 
population in response to menin depletion 4 and 7 days post-initial TAM treatment.   
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Figure 3.4.  Menin depletion causes MA9 cell differentiation in vivo.  (A, B) Flow 
cytometry analysis of control and Men1-excised MA9 primary cells, examining c-kithigh 
cells in different Gr-1 populations 4 and 7 days post-TAM treatment.  (C) Flow 
cytometry analysis of control and Men1-excised MA9 primary cells for Annexin V and 
DAPI staining.  
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Figure 3.5.  WT MLL depletion causes MA9 cell differentiation in vivo.  (A) 
Methylcellulose plating of GFP+ MA9 cells treated with CO or TAM in vivo 7 days post-
initial treatment.  (B) FACS plot for CD11b/Gr-1 in control or WT MLL-depleted MA9 
cells in vivo 7 days post-initial TAM treatment.  (C, D) A summary of flow cytometry for 
Gr-1high (C) or c-kithigh (D) in control or WT MLL-depleted MA9 cells 7 days post-initial 
TAM treatment.  (E) Analysis of c-kithigh cells in different Gr-1 populations in control or 
WT MLL-depleted MA9 cells in vivo 7 days post-initial TAM treatment.  (F) Kaplan-
Meier analysis of Gr-1low and Gr-1high secondary recipient mice with or without WT 
MLL. 
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Figure 3.6.  Men1 excision leads to C/EBPα  target gene upregulation but does not 
affect C/EBPα  expression.  (A) GSEA analysis comparing Men1f/f; Cre-ER MA9 
primary cells treated with TAM in vivo to the C/EBP targets data set.  (B) Flow 
cytometry analysis of Gr-1 cell surface expression in vector or C/EBPα-ER transduced 
AT-1 cells 2 days post 4-OHT treatment.   (C) Western blot for C/EBPα expression in 
control or Men1-excised AT-1 cells 6 days post 4-OHT treatment.  (D) ChIP for C/EBPα 
enrichment at the Mcsfr promoter in control or Men1-excised AT-1 cells 6 days post 4-
OHT treatment. 
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Figure 3.7.  Menin promotes EZH2 and Evi-1 expression in MA9 cells.  (A) Real-
time PCR analysis of Mecom and Ezh2 transcript levels in control or Men1-excised AT-1 
cells.  (B) Western blot for EZH2 in control or Men1-excised AT-1 cells. (C) Real-Time 
PCR analysis of Ezh2 transcript levels in control and Men1-excised AT-1 cells with or 
without Hoxa9/Meis1 overexpression. (D, E)  ChIP assays for menin (D) and AF9c (E) 
binding at the Mecom and Ezh2 promoters in control or Men1-excised AT-1 cells. (F, G) 
ChIP assays for H3K4m3 and H3K79m2 at the Mecom (F) and Ezh2 (G) promoters in 
control or Men1-excised AT-1 cells. 
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Figure 3.8.  EZH2 interacts with C/EBPα  in MA9 cells and represses C/EBPα  
target genes. (A) Luciferase assay in HEK 293T cells with a C/EBPα binding site-
containing promoter-driven luciferase plasmid, C/EBPα and increasing amounts of 
EZH2.  (B) Luciferase assay in HEK 293T cells with a Gli-1 binding site-containing 
promoter-driven luciferase plasmid, Gli-1 and increasing amounts of EZH2.  (C) IP for 
C/EBPα followed by western blotting for EZH2 (top) or C/EBPα (bottom).  (D) IP for 
EZH2 followed by western blotting for C/EBPα (top) and EZH2 (bottom) in THP-1 cells.  
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Figure 3.9.  EZH2 knockdown induces MA9 cell differentiation. (A) ChIP assay for 
Evi-1 and EZH2 enrichment at the Mcsfr promoter in control or Men1-excised AT-1 
cells. (B) ChIP assay for H3K27m3 enrichment at the Mcsfr promoter in control or 
Men1-excised AT-1 cells. (C) Western blot for EZH2 expression in Scr control and 
EZH2 KD THP-1 cells. (D) Real-Time PCR analysis of Scr control and EZH2 KD THP-
1 cells for EZH2, HOXA9, and MCSFR transcript levels. (E) Flow cytometry analysis of 
CD11b cell surface expression in Scr and EZH2 KD THP-1 cells. (F) A model for the 
role of EZH2 in MA9 leukemia. 
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CHAPTER 4 – CONCLUSIONS AND FUTURE DIRECTIONS 
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MLL-FP-induced acute leukemia is highly aggressive and often refractory to therapy 

(Holleman et al., 2004).  The studies described in my thesis provide insights into the 

mechanism by which MLL-FPs promote leukemogenesis.  We have shown that menin 

recruits both WT MLL and MLL-FPs to target genes, and WT MLL is required for MLL-

FP target gene upregulation and leukemogenesis (Chapter 2).  The role of menin in 

recruiting both WT MLL and MLL-FPs to target genes highlights menin as a central 

scaffold protein controlling this type of leukemia (Figure 4.1).  One consequence of 

MLL-FP expression is a block in differentiation (Figure 1.4) (Lavau et al., 1997), and we 

have shown that depletion of menin alleviates this differentiation block (Figure 3.1-3.3).  

We found that this block in differentiation is at least partially controlled through menin-

mediated up regulation of EZH2, which interacts with C/EBPα and represses C/EBPα 

target genes (Figure 3.9F).  The findings that WT MLL is required for MLL-FP leukemia 

cell maintenance, and that EZH2 is an important downstream target of menin, have 

revealed new potential therapeutic targets to improve the treatment of MLL-FP 

leukemias. 

 

WT MLL is required for MA9-induced leukemogenesis 

MLL-FPs lack a large C-terminal portion of WT MLL that is normally necessary for 

target gene activation (Figures 1.2 and 1.3).  However, we have shown that in MLL-FP-

expressing cells, WT MLL function is retained through expression of full-length WT 

MLL from the non-translocated allele.  We found that WT MLL is critical for 
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maintaining the transformed state of MA9-induced leukemia, and the survival of MA9 

leukemic mice is prolonged by WT MLL knockout (Figures 2.8B and 2.10E), 

demonstrating the critical role of WT MLL in MA9-induced leukemogenesis. 

 

It remains to be tested whether WT MLL is required for transformation mediated by other 

MLL-FPs.  It is likely that the most common MLL-FPs, which contain nuclear 

translocation partners, require WT MLL for transformation, as these MLL-FPs have a 

common transformation mechanism (Krivtsov and Armstrong, 2007).  It is also unknown 

if WT MLL has a role in promoting leukemias that do not have MLL-FPs.  The role of 

WT MLL in these other leukemia types could be tested in a manner similar to the 

experiments performed to demonstrate a role for WT MLL in MA9 leukemia, which are 

described in Chapter 2. 

 

WT MLL is required for Hox gene expression in MA9 leukemia cells 

We found that WT MLL is required for the maintenance of MA9-mediated 

transformation, at least in part through promoting Hox gene transcription, as 

overexpression of Hoxa9 and Meis1 is able to compensate for the abrogation of colony 

formation due to WT MLL depletion (Figure 2.8B, E).  However, it remains unclear 

exactly how WT MLL upregulates Hox genes in MLL-FP leukemia cells.  MLL C-

terminal domains, which are lacking in MLL-FPs, are normally required for MLL target 
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gene activation, and may be important for Hox gene upregulation in MLL-FP-expressing 

cells.   

 

The WT MLL TAD, which promotes histone acetylation, and the SET domain, which 

catalyzes H3K4m3, are critical for target gene upregulation in non-MLL-FP containing 

cells.  Therefore, it is likely that the WT MLL TAD and SET domain also have a role in 

upregulating MLL-FP target genes and promoting leukemogenesis.  The potential roles of 

these domains could be evaluated by creating MLL conditional knockout models to 

remove the TAD, the SET domain, or both domains while retaining the rest of the MLL 

protein.  The experiments described in Chapter 2 could then be performed to determine 

the role of each of these domains in MLL-FP-induced Hox gene upregulation and 

leukemogenesis.   

 

In addition to its potential role in promoting target gene expression through its normal 

function in transcriptional regulation, WT MLL also controls the function of MA9.  We 

found that WT MLL depletion in MA9-expressing cells leads to a decrease in MA9-

mediated H3K79m2 at the Hoxa9 promoter (Figure 2.6B).  In addition, WT MLL is 

necessary for MA9 recruitment to Hox genes in MEF cells (Milne et al., 2010), providing 

evidence that WT MLL is involved in MLL-FP recruitment to target genes in leukemia 

cells.  However, WT MLL does not directly recruit MLL-FPs to target genes, as there is 

no physical interaction between MA9 and WT MLL (Milne et al., 2010).  Therefore, WT 
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MLL may indirectly lead to MLL-FP recruitment through functions that are lacking in 

the MLL-FP.  The role of each of these domains in MLL-FP recruitment and H3K79 

methylation at Hox genes could be determined by establishing MA9-transformed cell 

lines with the ability to conditionally remove each domain of WT MLL individually, as 

described above, followed by ChIP assay.  Future studies will further elucidate the 

mechanism by which WT MLL promotes MLL-FP-induced Hox gene upregulation and 

leukemogenesis. 

 

WT MLL as a therapeutic target to treat MLL-FP leukemias 

As we showed that WT MLL is essential for maintaining MA9-mediated transformation, 

inhibiting WT MLL function could hold therapeutic value for patients with this disease.  

Specific inhibitors of the WT MLL SET domain could inhibit WT MLL function in 

MLL-FP-mediated leukemias.  In addition, it might be possible to target the WT MLL 

TAD or HAT proteins associated with the TAD to treat this disease.  However, the exact 

mechanism by which WT MLL promotes MLL-FP-mediated leukemogenesis remains 

unknown, and a detailed understanding of how WT MLL promotes MLL-FP-induced 

leukemia is necessary before inhibitors can be developed.  Also, while pharmacological 

inhibition rarely completely inhibits the function of a protein, deletion of WT MLL 

causes hematopoietic defects, suggesting that inhibition of WT MLL function could have 

deleterious effects on normal BM (Gan et al., 2010; Jude et al., 2007; McMahon et al., 

2007).  Future studies will determine which domains of WT MLL are important for 
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MLL-FP-induced leukemogenesis, and the feasibility of targeting these domains for 

therapy. 

 

Menin is essential for MLL-FP-mediated leukemogenesis and a potential 

therapeutic target 

Menin directly interacts with WT MLL and MLL-FPs, and we found that menin is 

necessary for the recruitment of these two components required for leukemogenesis to 

HOX genes, establishing menin as a central player in this disease (Figure 4.1) (Chen et 

al., 2006; Grembecka et al., 2012; Huang et al., 2012; Murai et al., 2011; Thiel et al., 

2010; Yokoyama et al., 2004).  Since menin is involved in the recruitment of both WT 

MLL and MA9, two critical proteins involved in leukemogenesis, inhibiting menin would 

likely be more effective than blocking a single function of either WT MLL or MLL-FPs 

(Figure 4.1).  In addition, WT MLL and MLL-FPs interact with menin via identical N-

terminal motifs, raising the possibility of disrupting the menin-WT MLL and menin- 

MLL-FP interactions with a single inhibitor.   

 

Recently, the structure of menin in complex with MLL N-terminal domains has been 

elucidated, revealing potential targets for inhibition of menin function with small 

molecules (Huang et al., 2012; Murai et al., 2011).  Menin interacts with the N-terminus 

(residues 6-25) of MLL (Huang et al., 2012), a region that is found in both WT MLL and 

MLL-FPs.  MLL-N adopts a highly coiled conformation and plugs into a deep 
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hydrophobic pocket in menin.  The hydrophobic menin pocket that interacts with MLL-N 

is specifically shaped for the phenyl ring of phenylalanine (Huang et al., 2012), 

suggesting that small aromatic compounds could inhibit the menin-MLL-N interaction.  

Along these lines, a potent inhibitor of the menin/MLL-N interaction has recently been 

developed.  This thienopyromidine class compound, MI-2, inhibits the interaction 

between MLL-FPs and menin, and blocks MLL-FP induced transformation (Grembecka 

et al., 2012), establishing the menin-MLL-N interaction as a druggable target, and a 

potential therapy for MLL-FP leukemias.  Future studies will focus on the development 

of similar inhibitors, and the testing of these inhibitors for their efficacy in vivo. 

 

Acute menin depletion causes MA9 leukemia cell differentiation 

As menin is a central mediator of MLL-FP leukemia and potential therapeutic target, it is 

critical to understand the effect of menin depletion/inhibition in vivo.  In addition, 

characterization of pathways regulated by menin that are involved in leukemogenesis 

may lead to the discovery of previously unappreciated therapeutic targets for this disease.  

We found that the function of the pro-differentiation transcription factor C/EBPα is 

suppressed through menin-mediated upregulation of the polycomb group protein EZH2.  

EZH2 interacts with C/EBPα and represses C/EBPα target genes.  Our findings provide a 

novel mechanism for blocking C/EBPα function and MA9 leukemia cell differentiation, 

and potential targets for the treatment of this disease downstream of menin. 
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Menin does not directly regulate C/EBPα  in MA9 leukemia cells 

We found that acute menin depletion causes C/EBPα target gene upregulation and MA9 

leukemia cell differentiation.  As C/EBPα is a transcription factor that promotes myeloid 

differentiation, we sought to determine how menin regulates C/EBPα function.  Many 

leukemogenic oncogenes and pathways repress C/EBPα expression to block 

differentiation.  The Bcr-Abl fusion protein inhibits C/EBPα translation, reducing its 

protein levels.  In addition, the Notch signaling pathway leads to degradation of the pro-

differentiation C/EPBα p42 isoform to the p30 isoform, which suppresses differentiation.  

These observations led us to investigate whether C/EBPα p42 expression is regulated by 

menin in MA9 leukemia cells.  However, we found that C/EBPα p42 is expressed in 

MA9 leukemia cells, while p30 levels were not detectable by Western blot, and menin 

depletion had no effect on C/EBPα expression (Figure 3.6C). 

 

The lack of an effect on C/EBPα expression led us to test whether menin depletion had 

an effect on C/EBPα target gene binding, as the PLZF-RARα leukemogenic fusion 

protein has been shown to block C/EBPα localization to target genes to suppress 

differentiation.  In contrast to PLZF-RARα leukemia, we found that C/EBPα was already 

bound to the promoter of one of its key target genes, Mcsfr, in the presence of menin, and 

menin depletion had no effect on C/EBPα target gene binding (Figure 3.6D).  Together, 

these results show that menin does not affect C/EBPα expression or target gene binding, 

two mechanisms that are utilized in other types of leukemia to block C/EBPα function. 

However, menin depletion leads to the upregulation of the C/EBPα target gene Mcsfr, 
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and MA9 leukemia cell differentiation, suggesting that menin might block C/EBPα 

function through a previously uncharacterized mechanism.  The lack of a direct effect on 

C/EBPα led us to investigate how menin might act to repress C/EBPα target genes.   

 

Menin promotes EZH2 expression in MA9 leukemia cells 

Our search for transcriptional repressors that are regulated by menin and could potentially 

repress C/EBPα target genes led to the finding that that menin promotes the expression of 

the polycomb group protein EZH2.  Menin depletion leads to a decrease in EZH2 

transcript and protein levels (Figure 3.7A, B).  In addition, EZH2 expression is reduced 

when Hoxa9 and Meis1, known menin targets that are critical for MA9-induced 

leukemia, are overexpressed (Figure 3.7C).  These results suggest that menin directly 

regulates EZH2, and ChIP assay showed that menin binds the Ezh2 promoter (Figure 

3.7D).  Menin depletion led to a decrease in AF9c the portion of AF9 found in MA9 at 

the Ezh2 promoter, and a modest decrease in H3K79m2, suggesting that menin recruits 

MA9 to the Ezh2 promoter, leading to its upregulation (Figure 3.9E, G).  As EZH2 is a 

transcriptional repressor, our finding that menin regulates EZH2 expression raised the 

possibility that independent of its role in upregulating HOX genes to promote 

leukemogenesis, menin upregulates EZH2 expression to repress C/EBPα target genes and 

block MA9 leukemia cell differentiation.   

 

 



 
 

88 

EZH2 represses C/EBPα  target genes and suppresses MA9 leukemia cell 

differentiation 

We found that EZH2 does in fact repress C/EBPα target genes and block MA9 leukemia 

cell differentiation.  EZH2 interacts with C/EBPα, binds C/EBPα target genes, and 

represses their transcription (Figures 3.8 and 3.9).  Menin depletion leads to a decrease in 

EZH2 binding and EZH2-mediated H3K27m3 at the Mcsfr promoter (Figure 3.9A, B).  

In addition, EZH2 depletion caused MCSFR upregulation and differentiation (Figure 

3.9D, E), demonstrating a role for EZH2 in blocking MA9 leukemia cell differentiation.    

 

Various oncogenes and pathways inhibit C/EBPα function as a mechanism for blocking 

differentiation and maintaining leukemogenesis (Reckzeh and Cammenga, 2010).  These 

previously characterized mechanisms directly inhibit C/EBPα either at the level of 

expression or target gene binding.  In the case of MA9 leukemia, the block in C/EBPα 

function is indirect, through menin, and likely MA9-mediated upregulation of EZH2 

(Figure 3.9F).  EZH2 then interacts with C/EBPα, catalyzing H3K27m3 at C/EBPα 

target genes and repressing these genes (Figure 3.9F).  These findings highlight a 

previously uncharacterized mechanism for blocking leukemia cell differentiation. 

 

Cooperation between polycomb and trithorax-related proteins to block MA9 cell 

differentiation 

Polycomb and trithorax proteins have classically opposing roles in the transcriptional 

regulation of common target genes (Mills, 2010).  Therefore, the finding that trithorax-
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related menin promotes EZH2 expression was unexpected.  It is unclear whether menin 

promotes EZH2 expression specifically in MLL-FP leukemia cells, or menin regulates 

EZH2 expression in a broader context.  It is possible that in normal cells, menin promotes 

both MLL function through its recruitment to target genes and EZH2 expression as a 

mechanism for maintaining bivalent chromatin.  The maintenance of bivalent chromatin, 

containing both MLL-mediated H3K4m3 and EZH2-catalyzed H3K27m3 is essential for 

the proper regulation of genes during development and differentiation (Mills, 2010).   

 

We could test the role of menin in regulating EZH2 expression in other contexts using 

our model for acute Men1 depletion.  Cell populations could be isolated from various 

tissues in developing and adult mice to determine how menin affects EZH2 expression.  

We could also test whether menin depletion affects EZH2 expression in other types of 

leukemia by transforming mouse BM with various leukemic oncogenes and examining 

EZH2 expression levels in menin-depleted cells. 

 

In addition, menin and EZH2 cooperate to block differentiation in MA9-expressing 

leukemia cells.  We initially thought that EZH2 might function as a tumor suppressor in 

MA9 leukemia, due to its classical role in repressing Hox genes, downstream targets of 

menin and MA9 that are critical for leukemogenesis.  In addition, loss of function EZH2 

mutations are prevalent in myelodysplastic syndrome and myeloproliferative disorders 

(Ernst et al., 2010; Nikoloski et al., 2010), providing further evidence the EZH2 is a 

tumor suppressor in the myeloid lineage.  Loss of EZH2 in the context of 
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myelodysplastic syndrome and myeloproliferative disorders may lead to HOX gene 

upregulation and enhanced self renewal. 

 

However, in MA9-expressing leukemia cells, EZH2 depletion has no effect on HOXA9 

expression (Figure 3.9D).  It is possible that in the context of MLL-FP leukemia, HOX 

gene expression is driven to such high levels by the MLL-FP that loss of EZH2 does not 

further increase HOX gene levels.  The lack of an effect on HOX gene expression by 

EZH2 depletion in MLL-FP cells may provide a context for observing previously 

uncharacterized functions for EZH2 in blocking differentiation.   

 

It is not yet known whether EZH2-mediated suppression of C/EBPα target genes is a 

more general mechanism for blocking differentiation, or specific to MLL-FP leukemias.  

Determining whether EZH2 interacts with C/EBPα and binds C/EBPα target genes, 

followed by determining the effect of EZH2 depletion on C/EBPα target gene expression 

in other types of leukemia and normal cells will give further insight into the context in 

which EZH2 blocks C/EBPα function.  

 

Targeting EZH2 to treat MLL-FP leukemia 

The findings presented here and other recently published results demonstrate that EZH2 

depletion causes MA9 leukemia cell differentiation in cell culture (Figure 3.9E) (Neff et 

al., 2012; Tanaka et al., 2012).  However, EZH2 knockout seems to have a less severe 

effect on MA9 cells in vivo (Neff et al., 2012).  One potential reason for this more mild 
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effect is partial compensation for loss of EZH2 function by the closely related EZH1 

protein, which can also be found in the PRC2 complex and catalyzes H3K27 methylation.  

In fact, depletion of the core PRC2 component EED, which is essential for both EZH1 

and EZH2 function, more effectively extends the life span of MA9 leukemic mice than 

EZH2 knockout (Neff et al., 2012).  In addition, combined knockdown of EZH1 and 

EZH2 more effectively reduces MA9 cell growth than EZH2 knockdown alone (Shi et 

al., 2012).   

 

These results suggest that inhibition of EZH2 would be insufficient to effectively treat 

MLL-FP leukemia patients.  However, EZH1 and EZH2 SET domains, which catalyze 

H3K27 methylation to repress target genes, are highly homologous (Laible et al., 1997), 

and it may be possible to design small molecule inhibitors that can simultaneously block 

EZH1 and EZH2 catalytic activity.  However, the finding that loss of function EZH2 

mutations are prevalent in myelodysplastic and myeloproliferative diseases suggests that 

inhibition of EZH2 could itself lead to hematopoietic disorders in patients (Ernst et al., 

2010; Nikoloski et al., 2010).  Therefore, caution should be exercised when developing 

EZH2 inhibitors.  Nonetheless, these studies have highlighted EZH2 and PRC2 as 

potential targets for the treatment of MLL-FP leukemia. 

 

Concluding Remarks 

Recently, significant progress has been made in understanding how MLL-FPs cause 

leukemia.  The findings presented in my thesis provide insights into the molecular 

pathways governing MLL-FP-mediated upregulation of target genes, and downstream 
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effectors that are critical for blocking differentiation and promoting leukemogenesis.  The 

lack of MLL C-terminal domains in MLL-FPs is remedied by expression of WT MLL 

from the non-translocated Mll allele, and WT MLL is required for MLL-FP target gene 

upregulation and leukemogenesis.  These findings highlight the possibility for targeting 

WT MLL to treat MLL-FP leukemias.   

 

Notably, menin is involved in the recruitment of both WT MLL and MLL-FPs to target 

genes in MLL-FP leukemia cells, placing menin as a central mediator of two critical 

components required for leukemogenesis and candidate for therapeutic targeting (Chapter 

2).  Inhibition of the menin/MLL-N interaction with the small molecule MI-2 is effective 

in blocking MLL-FP-induced transformation (Grembecka et al., 2012), providing proof 

of principle for targeting this interaction to treat patients with this disease.  

 

Investigating the mechanism by which menin/MLL-FPs block leukemia cell 

differentiation led to our discovery that menin promotes the expression of the PcG 

protein EZH2, which interacts with C/EBPα at target genes, suppressing C/EBPα target 

gene upregulation and differentiation.  This cooperation between Trx-related menin and 

the PcG protein EZH2 is counter their classical opposing functions.  As EZH2 depletion 

causes MLL-FP leukemia cell differentiation, inhibition of EZH2 could potentially be 

used as a therapy for patients with this disease.  These studies have uncovered novel 

mechanisms and pathways that promote MLL-FP target gene upregulation and block 
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leukemia cell differentiation, and could lead to novel therapies and a more favorable 

prognosis for MLL-FP leukemia patients in the future. 
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Figure 4.1.  Menin as a central hub regulating WT MLL and MLL-FPs.  Menin 
binds the N-terminus of either WT MLL or MLL-FPs, together with C-Myb and LEDGF 
(middle).  The interaction between menin and LEDGF requires the MLL-N.  The PAF 
complex interacts with the CxxC domain of both WT MLL and MLL-FPs.  The proteins 
interacting with the C-terminal part of WT MLL or MLL-FPs are distinct (top and 
bottom).  WT MLL and MLL-FPs are recruited to many of the same target genes. 
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CHAPTER 5 – MATERIALS AND METHODS 
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Plasmids and cell culture 

Various plasmids were as previously described: pMX-GFP, pMX-puro, pMX-puro-

menin, pMSCV-MLL-AF9, pMSCVpgk-Hoxa9-GFP, pMSCVpacMeis1A, pMSCV-

GFP, pMIG-MLL-AF9-ires-GFP, and pcDNA3-CEBPA-HA (Chen et al., 2006; Jin et al., 

2003).  Dr. Alan Friedman provided MigRI-CEBPA-ER.  pCMV-HA-EZH2 and 

lentiviral packaging plasmids, pMD2G and pAX2G were obtained from Addgene.  

Retroviral or lentiviral constructs expressing shRNAs were obtained from Open 

Biosystems (Huntsville, AL) or Sigma (Cambridge, MA).  

 

AT-1 cells were generated from BM cells of Men1f/f;Cre-ER mice by transduction with 

retrovirus expressing MA9 and cultured in medium with 15% FBS for LT myeloid 

culture (Cat #06500, Stem Cell Technologies) and 10 ng/ml IL3. In AT-1 cells, Men1f/f 

was excised by treating the cells with 4-OHT (200 nM). THP-1 cells were maintained in 

RPMI-1640 containing 10% FBS and 1% Pen/Strep supplemented with 0.05 mM 2-

mercaptoethanol. HEK293T cells were cultured in DMEM supplemented with 10% fetal 

bovine serum (FBS) and 1% Pen/Strep.  

 

Packaging of recombinant retrovirus and lentivirus and transduction of cells 

Plasmids for retroviral packaging were co-transfected with psi-2 helper plasmid into 

293T cells using the calcium chloride precipitation method. For lentiviral shRNA 

packaging, scrambled pLKO.1 vector or specific shRNA in pLKO.1 vector were co-

transfected into 293T cells with pAX2G and pMD2G. The resulting recombinant virus 
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was collected for transduction of cells by spinoculation, followed by selection in 2 µg/ml 

puromycin for 3 days.  

 

RNA isolation and quantitative real-time PCR  

RNA was isolated using Trizol (Ambion) and the RNeasy kit (Qiagen). 1µg of total RNA 

was used to make cDNA with the SS III RT system (Invitrogen), and real-time PCR was 

performed using the 7500 fast real-time PCR system (Applied Biosystems) and 

Quantitect Sybr Green kit (Qiagen). Transcript levels were normalized to GAPDH 

between samples, and relative quantity was calculated using the ΔΔCt method.  

 

Immunoprecipitation and Western blotting 

Cells were transfected, and the resulting cells were lysed in RIPA buffer supplemented 

with 1x protease inhibitor cocktail (Sigma) for IP.  For Western blot, cell lysates were 

separated through SDS-PAGE and processed for detection with ECL Western blotting 

detection reagents (GE Healthcare). 

 

ChIP assay 

ChIP assays were performed as previously described using the Imgenex kit (Chen et al., 

2006). Briefly, 106- 107 formaldehyde crosslinked cells were lysed and sonicated to 

obtain sheared DNA. This lysate was then incubated with control IgG or an antigen-

specific antibody overnight, then bound to beads and washed. Samples were eluted from 
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the beads and incubated at 65°C overnight to reverse crosslinking. Eluted DNA was 

quantified using the 7500 fast real-time PCR system (Applied Biosystems) with the 

Quantitect Sybr Green kit (Qiagen), and normalized to input DNA, as well as total H3 for 

histone modifications.  

 

Mice and bone marrow transformation 

All laboratory mice were maintained on a 12-h light-dark cycle in the animal facility at 

the University of Pennsylvania.  All experiments on mice in our research protocol were 

approved by Institutional Animal Care and Use Committee (IACUC) of the University of 

Pennsylvania and were performed in accordance with relevant institutional and national 

guidelines and regulations.  Mllf/f mice (in C57B6-SJL background) (Jude et al., 2007) 

were bred with ubc9-Cre-ER mice (in C57B6 background) (Schnepp et al., 2006), and 

BM from the mice was isolated and transformed, as previously described (Chen et al., 

2006).  C57B6 mice or Mllf/f;Cre-ER mice (6-8 weeks old) were injected with 5-FU, and 

BM cells were collected from femurs and prestimulated with a cocktail of cytokines and 

growth factors, as previously described (Chen et al., 2006). The cells were transduced 

with pMSCV-neo-MA9 retrovirus by spinoculation and replated weekly in MethoCult 

GF M3434 medium (StemCell Technologies) with 1mg/ml G418. After the second 

plating, surviving cells from C57B6 or Mllf/f;Cre-ER mice were transduced twice with 

either scrambled control retrovirus or lentivirus or their counterparts expressing one of 

the MLL-C shRNAs.  The transduced cells (2 x104) were seeded in a 35-mm Petri dish 

with methylcellulose-based medium containing 2µg/ml puromycin and scored for 
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colonies with >50 cells one week after plating.  To excise the floxed Mll, MA9-

transformed BM with Mllf/f;Cre-ER were treated with either DMSO or 4-OHT (400 nM) 

at the fourth plating.  For in vivo Mll excision prior to the first plating, Mllf/f;Cre-ER mice 

were treated with CO or 200 mg/kg body weight TAM to excise the floxed Mll, then 

isolated BM was either plated directly in methylcellulose, or transduced with MA9, 

followed by plating. 

 

Leukemia induction and WT Mll excision from leukemic cells in mice 

The Mllf/f mice were backcrossed with C57B6sjl mice (CD45.1+) for over nine 

generations (Jude et al., 2007), and the mice were then bred with transgenic mice 

expressing ubc9-Cre-ER (in C57B6 background, CD45.2+) (Ruzankina et al., 2007). The 

Mllf/f; Cre-ER or Men1f/f; Cre-ER mice were intercrossed to maintain the CD45.2+ 

marker.  BM cells from these mice were transduced with MA9-retrovirus, and 

transplanted retro-orbitally into C57B6 x C57B6-SJL F1 female mice (CD45.1+/2+, 6-8 

weeks old, 106 cells per mouse, Taconic), together with 2.5x105 BM cells from an F1 

mouse.  The recipient mice were irradiated with 900 rad prior to transplantation. The 

mice were fed with either control CO or TAM (Sigma, St. Louis, MO) at a dose of 200 

mg/kg body weight to excise the floxed Mll or Men1.  Organs from control and leukemic 

mice were isolated, fixed, and processed for H & E staining and analyzed under 

microscope.  
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Engraftment of human leukemia cells into NOG mice 

NOD/Shi-scid/IL-2Rγnull mice, 6-8 weeks old, were obtained at the Stem Cell Core 

Facility at the University of Pennsylvania and irradiated at 275 rad 24 hrs prior to tail 

vein injection with 1.5 x106 scrambled vector control THP-1 cells or cells transduced 

with shRNA 14 targeting MLL-C. Mice were weighed weekly starting from the time of 

injection. The recipient mice were sacrificed 6 weeks after injection, and the long bones 

(femurs) and spleens were collected for histological analysis by H&E staining. 

 

Isolation of Peripheral Blood Cells  

Blood samples collected from submandibular bleeds were stored in Microtainer tubes 

with EDTA (BD Biosciences). The hematology profile of each mouse was analyzed 

immediately on a Hemavet blood cell counter (CDC Technologies).  For flow cytometry 

or genotyping of peripheral white blood cells, mice were bled into 4% Sodium Citrate in 

FACS tubes and IMDM (1ml) with 2% FBS was added to the tube, followed by addition 

of an underlay of 1ml Ficoll solution (GE healthcare).  The samples were centrifuged at 

1,000 x g for 20 min, and the white layer was collected, washed once in 1x PBS, and used 

for further analysis.  

 

Flow cytometry analysis  

Cells from peripheral blood, bone marrow or spleen were harvested for analysis of 

immunophenotypes. After blocking unspecific binding with unlabeled Rat+Mouse IgG 
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(Sigma), cells were stained on ice in PBS + 1% FBS and analyzed on LSR II, 

FACSCalibur or FACSAria (Becton Dickinson). Files were analyzed in FlowJo (Tree 

Star).  

 

Antibodies for Western Blotting, ChIP, and IP 

Cyclin A2 (Cat #ab7596, Abcam), Cyclin E2 (Cat#ab40890, Abcam), HA (Cat#ab1893, 

Abcam), Dot1L (Cat#A300-953A, Bethyl), MLL-N (Cat#A300-086A, Bethyl), MLL-C 

(Cat#A300-374A, Bethyl), ß-actin (Cat#A-4700, Sigma), GST (Cat#13-6700, Zymed), 

EZH2 (Cat#612666, BD or Cat#17-662, Millipore), C/EBPα (Cat#2295, Cell Signaling 

or Cat# SC-61, Santa Cruz), IgG (Abcam Cat#ab46540), Evi-1 (Cat #C50E12 Cell 

Signaling), Menin (Cat#A300-105A, Bethyl), AF9c (Cat#A300-597A, Bethyl), H3K4m3 

(Cat #ab8580, Abcam), H3K79m2 (Cat #ab3594, Abcam), H3K27m3 (Cat #17-622 

Millipore), and total H3 (Cat #ab1791, Abcam). 

 

Antibodies used for Flow Cytometry 

Pharmingen (San Diego, CA): anti-CD45.2 (104), c-Kit (2B8), CD34 (RAM34), B220 

(RA3-6B2), Gr1 (RB6-8C5), CD4 (RM4-5), and CD8 (53-6.7); from eBioscience (San 

Diego, CA): CD45.1 (A20), Sca-1 (E13-161.7), and CD11b (M1/70).  Biotinylated 

antibodies were revealed with Streptavidin-Pacific Blue (Molecular Probes, Eugene, OR) 

or PE-Texas Red (Caltag, Burlingame, CA).  Lineage+ cells were defined with anti-Gr1, 

TER119, B220, CD19, CD8, CD4, CD3, and CD127 (IL-7R). 
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shRNA sequences (antisense sequence): 

MLL-C 11: GCTGGCCTCCCATAATTTAT, MLL-C 12: CGCGGTATTATCCTAATT 

TAA, MLL-C 14: CGCCTTCACTTGACCATAATT, MEN1-1(25): TATGATCCTTTC 

AGGTACAGC, MEN1-2(26): TTTCTGCTTCTTC ATCTGCAC, EZH2-1: TTTGGTC 

CCAATTAACCTAGC, EZH2-2: ATTTGGTCC ATCTATGTTGGG, EZH2-3: TGATC 

ACCGTTAACCATCATA  

 

Primer sequences for mouse real-time PCR to amplify cDNA 

Mll-C: F: 5’-TGAGCCGTGAGGGTTCAAG-3’, R: 5’-GTGAACGGTTTGCGGATG-3’ 

Hoxa5: F: 5’-TTCCACTTCAACCGCTACCT -3’, R: 5’-CGGCCATACTCATGCTTTT 

C-3’, Hoxa9: F: 5’-CCCCGACTTCAGTCCTTGC-3’, R: 5’-GATGCACGTAGGGGTG 

GTG-3’ or  F: 5’-CCACGCTTGACACTCACACT-3’, R: 5’-CAGCGTCTGGTGTTTTG 

TGT-3’, Meis1 F: 5’-AAGGTGATGGCTTGGACAAC-3’, R: 5’-TGTGCCAACTGCTT 

TTTCTG-3’, Ccna2:  F: 5’-GCCTTCACCATTCATGTGGAT-3’, R: 5’-TTGCTGCGGG 

TAAAGAGACAG-3’, Gcsfr F: 5’-CCCACCAGCTTCATCCTAAA-3’, R: 5’-ACTCGC 

TGGACCCTAGCATA-3’, Mcsfr F: 5’-AACACTGGGACCTACCGTTG-3’, R: 5’-ACC 

GTTTTGCGTAAGACCTG-3’, Mecom F: 5’-GGAGGAGGACTTGCAACAAA-3’, R: 

5’-GACAGCATGTGCTTCTCCAA-3’, Ezh2 F: 5’-GGGACTGAAACTGGGGGAGA-

3’, R: 5’-CATGGAGGCTTCAGCACCAC-3’  

 

 



 
 

103 

Primer sequences for human real-time PCR to amplify cDNA  

MLL-C F: 5’-GGCCTGAATTTCTCCACAGA-3’, R: 5’-TTCGACAGACGCTGTAGGT 

G-3’, HOXA9:  F: 5’-AGACCGAGCAAAAGACGAG-3’, R: 5’-CTGAGGTTTAGAGC 

CGCTTT-3’, CCNA2: F: 5’-CGCTGGCGGTACTGAAGTC-3’, R: 5’-AAGGAGGAAC 

GGTGACATGC-3’, CCNE2: F: 5’-AAGTAGCCGTTTACAAGCTAAGC-3’, R: 5’-

TGATGTTTCTTGGTGACCTCC-3’, EZH2 F: 5’-CGATGATGATGATGGAGACG-3’, 

R: 5’-GCTGTGCCCTTATCTGGAAA-3’, HOXA9 F: 5’-CACGCTTGACACTCACACT 

-3’, R: 5’-CGCTCTCATTCTCAGCATTG-3’, MCSFR F: 5’-GGACATTCATCAACGG 

CTCT-3’, R: 5’-GCTCAGGACCTCAGGGTATG-3’, MEN1 F: 5’-CGCAAAGGCCTCT 

GAACTAC-3’, R: 5’-GGAGAAAATCGTGGGTTTGA-3’  

 

Primer sequences for murine genes for ChIP assay 

Hoxa9 A: F: 5’-TGGAAGGCACAAAATTCACA-3’, R: 5’-AATTAACCCGGGAGGA 

ACAC-3’, Hoxa9 B: F: 5’-CATCGATCCCAGTAAGTGTCTC-3’, R: 5’-CCGCCCCCT 

CACTGCAGCAGC-3’, Mecom F: 5’-GTACCACCCACATTTCTTTCTCTC-3’, R: 5’-

CCAAAATGAATTAGTCACCACCTC-3’, Ezh2­1  F: 5’-TCCTGGAAATCCCTATGT 

GG-3’, R: 5’-TAGATCCTGGCTGCTGACCT-3’, Ezh2­2  F: 5’-TCGCCTTTTCTTCCG 

TCGTC-3’, R: 5’-CACTTTTGTTGGCGCCACTG-3’, Mcsfr     F: 5’-TTACCAGTTGGT 

CCCAGAGG-3’, R: 5’-AGCAGCAACTGGAAGTCTCC-3’  
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Primer sequences for human genes for ChIP assay 

HOXA9 F: 5’-AGTGGCGGCGTAAATCCT-3’, R: 5’-TGATCACGTCTGTGGCTTATT 

TGAA-3’ or  F: 5’-CCGCCTTTATTCCTCTCTCC-3’, R: 5’-AGTGCAACAGAGTGCC 

C-3’, CCNA2: F: 5’-CCAGCCAGTTTGTTTCTCCC-3’, R: 5’-GACCAATGAAAGCGC 

TCG -3’ 

 

cDNA microarray and GSEA 

Seven control (CO) samples and six Men1-excised (TAM) samples were hybridized on an 

Affymetrix Mouse Gene 1.0 ST chip. The data analysis was done in the statistical 

environment R for the quality analysis the affyPLM library available through 

Bioconductor (www.bioconductor.org). The gene expression normalization and 

summarization was done using RMA from the same library mentioned above. 

A principal components analysis (PCA) was done to visually assess similarities and 

differences among the samples. For the identification of differentially expressed genes, 

we used the Cyber-T method. Multiple testing correction was applied using the p.adjust 

function. GSEA was performed to identify gene sets that were enriched in the microarray 

data. Gene sets were taken from the MSigDB database.  

 

Statistical analysis  

Microsoft Excel and GraphPad Prism software was used for statistical analysis. Student's 

t test was used to determine the significance of the results unless otherwise indicated. 
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Kaplan-Meier statistical analysis was performed using the log rank test.  Statistical 

analysis of microarray results is detailed above.  
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