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Soil Ecosystem Responses to Climate Change and Land-Use Simulations
and Estimation of Carbon Stocks in Steppe and Forest Ecosystems in
Northern Mongolia

Abstract
Northern Mongolia currently sequesters 31 Tg C yr-1 but it may become a carbon source if respiration rates
increase due to climate change and overgrazing, or if projected boundary shifts between forest and steppe
cause a change in the carbon storage of ecosystems. The objectives of the thesis are to study soil ecosystem
response to simulated climate change and grazing, and to assess C stocks in the steppe and forest. Open-top
chambers (OTCs) have been frequently used for simulating climate change. However, the pattern of
temperature increase by OTCs contradicted the IPCC predictions. An alternative method, open-sided
chambers (OSCs), was evaluated based on its effects on abiotic and biotic factors. The results indicated that
OSCs manipulated air temperature in a pattern that was predicted by IPCC models, but the overall effect was
too small, hence it is not an optimal device. In the subsequent study, OTCs were used to study soil respiration
response to experimental warming in three ecosystems. Temperature increase by OTCs had no effect on soil
respiration in the steppe but increased soil respiration in the forest (by 0.20 g CO2 m-2 h-1), demonstrating
the importance of ecosystem setting. Although warming increased soil respiration, it decreased its
temperature sensitivity as well (Q10 = 5.82 in control versus 2.22 in OTC). In addition to OTCs, watering and
grazing effects on CO2 effluxes (ecosystem and soil respiration) were studied across the topographical
gradients in the steppe. Our results show a robust, positive effect of soil moisture on CO2 effluxes across
topography, and the contrasting effects of grazing on CO2 effluxes. Interactive effects of the treatments were
minimal. Soil carbon of the forest was the same (8.3 kg C m-2) as the steppe (8.1 kg C m-2) but aboveground
carbon in the forest (2.9 kg C m-2) was 3-7 times greater than that in the steppe. In summary, the results show
that warming will slightly increase soil respiration in the forest, but in steppe precipitation will have stronger
effect on CO2 flux than temperature change. The results also indicated that overgrazing and deforestation
could trigger a greater loss of carbon
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ABSTRACT 

 

SOIL ECOSYSTEM RESPONSES TO CLIMATE CHANGE AND LAND-USE 

SIMULATIONS AND ESTIMATION OF CARBON STOCKS IN STEPPE AND 

FOREST ECOSYSTEMS IN NORTHERN MONGOLIA 

 

 

Anarmaa Sharkhuu 

Dr. Alain F. Plante 

 

Northern Mongolia currently sequesters 31 Tg C yr−1 but it may become a carbon 

source if respiration rates increase due to climate change and overgrazing, or if projected 

boundary shifts between forest and steppe cause a change in the carbon storage of 

ecosystems. The objectives of the thesis are to study soil ecosystem response to simulated 

climate change and grazing, and to assess C stocks in the steppe and forest. Open-top 

chambers (OTCs) have been frequently used for simulating climate change. However, the 

pattern of temperature increase by OTCs contradicted the IPCC predictions. An 

alternative method, open-sided chambers (OSCs), was evaluated based on its effects on 

abiotic and biotic factors. The results indicated that OSCs manipulated air temperature in 

a pattern that was predicted by IPCC models, but the overall effect was too small, hence 

it is not an optimal device. In the subsequent study, OTCs were used to study soil 

respiration response to experimental warming in three ecosystems. Temperature increase 

by OTCs had no effect on soil respiration in the steppe but increased soil respiration in 
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the forest (by 0.20 g CO2 m-2 h-1), demonstrating the importance of ecosystem setting. 

Although warming increased soil respiration, it decreased its temperature sensitivity as 

well (Q10 = 5.8 in control versus 2.2 in OTC). In addition to OTCs, watering and grazing 

effects on CO2 effluxes (ecosystem and soil respiration) were studied across the 

topographical gradients in the steppe. Our results show a robust, positive effect of soil 

moisture on CO2 effluxes across topography, and the contrasting effects of grazing on 

CO2 effluxes. Interactive effects of the treatments were minimal. Soil carbon of the forest 

was the same (8.3 kg C m-2) as the steppe (8.1 kg C m-2) but aboveground carbon in the 

forest (2.9 kg C m-2) was 3-7 times greater than that in the steppe. In summary, the results 

show that warming will slightly increase soil respiration in the forest, but in steppe 

precipitation will have stronger effect on CO2 flux than temperature change. The results 

also indicated that overgrazing and deforestation could trigger a greater loss of carbon.  
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BACKGROUND 

1. Terrestrial ecosystem carbon, its fluxes and impacts of climate change 

Carbon (C) stored in terrestrial ecosystems and C fluxes between the atmosphere 

and terrestrial ecosystems are important and dynamic components of global carbon 

cycling. Terrestrial ecosystems contain considerably more C (2100-3600 Pg C) than the 

surface layer of the ocean (700 Pg C) and the atmosphere (750-800 Pg C) (Amundson 

2001; Houghton et al. 2003; Denman et al. 2007). C fluxes between terrestrial ecosystems 

and the atmosphere are also large. Terrestrial ecosystems annually sequester ~60 Pg C 

and release ~120 Pg C to the atmosphere, of which ~60-70 Pg C comes from soil 

(Schlesinger 1997; Houghton et al. 2003). The majority of C in terrestrial ecosystems is 

stored in soil. Soil contains 2300 Pg C in the top 3 m of which 1500 Pg C is in the top 1 

m. Additionally, 450 Pg C and 400 Pg C is stored in wetlands and permafrost soil 

(Amundson 2001; Johnson and Matchett 2001).  

Currently terrestrial ecosystems sequester 0.3-1.0 Pg C, mainly into soil, thereby 

mitigating climate change (Denman et al. 2007; Grace 2004; Houghton 2003). Whether 

terrestrial ecosystems continue to sequester C or not will be determined by the rate of 

photosynthesis and ecosystem respiration that consists of aboveground (canopy) 

respiration and soil respiration (Janzen et al. 1998; Schlesinger 1999; Smith et al. 2008). 

As biochemical processes, soil and ecosystem respiration respond positively to 

temperature increase (Rustad et al. 2001; Wu et al. 2011). Meta-analysis has showed that 

soil respiration increased with increasing air temperature on a global scale over the last 

two decades (Bond-Lamberty and Thomson 2010). Therefore the projected global air 
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temperature increase of 2.2 °C (Solomon et al. 2007) may increase ecosystem and soil 

respiration, and potentially create a positive feedback to climate change (Heimann and 

Reichstein 2008).  

Shifts in the boundary between forest-grassland and forest-tundra boundaries, 

induced by climate change and human activities, have been reported around the world 

(Devi et al. 2008; Field et al. 2007; Saxe et al. 2001; Mast et al. 1997). These changes in 

dominant functional types of plants or shift in vegetation zones can alter terrestrial C 

dynamic and storage (Luo 2007). Meta-analysis and prior researches suggest that woody 

plant encroachment to grassland causes a net loss of carbon (Guo and Gifford 2002) due 

to loss of large amount of organic carbon contained in the grassland soils (Jackson et al. 

2002). However, some studies have demonstrated that expansion of forest can lead to 

carbon accumulation (Devi et al. 2008) or conversion from forest to grassland can result 

in net loss of carbon (Bradley et al. 2006; Guo and Gifford 2002). Understanding the 

responses of terrestrial carbon cycling to climate and land-use change, particularly 

regarding the significance of climate-carbon coupling and the nature of ecosystem as a 

potential carbon sink, has become a major question in terrestrial ecology (Luo 2007).  

2. Experimental methods to study impacts of climate change 

Experimental warming is frequently used to study responses of ecosystems to 

potential climate change. Several techniques have been proposed to manipulate air 

temperature in field conditions, which can be divided into two broad categories: (1) 

active warming techniques, including heating cables (Peterjohn et al. 1993) and infra-red 

lamps (Harte et al. 1995), and (2) passive warming techniques, including infra-red 

reflective curtains (Beier et al. 2004), closed greenhouses (Hobbie and Chapin 1998), 
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unvented open-top chambers (Marion et al. 1997) and ventilated, regulated open-top 

chambers (Godfree et al. 2010). The main disadvantages of the active warming 

techniques are the need for external power and an automated temperature regulation 

system, which are logistically problematic to use in remote areas (Aronson and McNulty 

2009). On the other hand, passive open-top chambers (OTC) have been proposed as an 

inexpensive, effective, non-destructive method to induce warming, and have been 

effectively used in a number of ITEX (International Tundra Experiment) experiments to 

raise air and soil temperatures (Marion et al. 1997). However, the specific pattern of 

temperature manipulation caused by OTCs differs from that predicted by the IPCC 

(Solomon et al. 2007). Open-sided chambers (OSC) with a louvered top have been 

suggested as an alternative passive warming method (Germino and Smith 1999). To 

determine the whether OSCs can overcome the shortcomings of OTCs, the effects of 

OSCs on abiotic and biotic factors needed to be tested in the field setting. 

3. Soil and ecosystem respiration responses to climate change simulations 

The majority of warming experiments has found that warming increased 

ecosystem and soil respiration (Rustad et al. 2001; Wu et al. 2011). However, some 

studies have shown that warming decreases soil and ecosystem respiration (Liu et al. 

2009) or does not affect (Wan et al. 2007). The different responses of ecosystem and soil 

respiration to warming could arise due to differences in ecosystems studied or warming 

techniques used, presence of unmeasured direct and indirect experimental effects, and 

duration of experimental manipulation(Klein et al. 2005; Rustad et al. 2001; Shaver et al. 

2000). It has been suggested to conduct experimental warming studies in different 
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ecosystems using the same warming technique (Klein et al. 2005; Rustad et al. 2001; 

Shaver et al. 2000).  

Some ecosystems, such as temperate and boreal forest ecosystems, regions at 

higher latitude with low precipitation, and arid and semi-arid ecosystems, are 

underrepresented in experimental warming and soil respiration studies (Aronson and 

McNulty 2009; Raich and Schlesinger 1992; Rustad 2008). The majority of warming 

studies using passive experimental warming have been conducted in moist tussock 

tundra, wet sedge tundra of North American or European Arctic (Aronson and McNulty 

2009; Rustad 2008; Rustad et al. 2001). Experimental warming studies using OTC in 

coniferous temperate forest and mountain semi-arid steppe grassland are rare. There are 

only two published studies using OTCs to manipulate temperature in forest ecosystems 

(De Frenne et al. 2010; Xu et al. 2010). Warming experiments in semi-arid grasslands 

have been concentrated in western USA, except some studies in northern China (Harte et 

al. 1995; Liu et al. 2009; Xia et al. 2009; Wu et al. 2010).  

Warming can also indirectly affect soil and ecosystem respiration by increasing 

evapotranspiration and thus decreasing soil moisture. Soil moisture limitation can 

decrease soil respiration and its temperature sensitivity by limiting substrate diffusion 

rate (Moyano et al. 2012; Schmidt et al. 2004; Suseela et al. 2012). Besides of 

temperature change, precipitation amount and timing can affect soil and ecosystem 

respiration. Experimentally reduced rainfall (by 30%) and altered rainfall timing 

decreased soil respiration by 8% and 13%, respectively (Harper et al. 2005).  

Climate change does not involve only temperature change; often several 

environmental factors are involved in climate change. Hence, the net effect of climate 
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change on soil and ecosystem respiration will depend not only on independent effects of 

climate variables but also their interactive effects. Results of field experiments and 

modeling studies show that experimental treatments could have strong interactive effects 

on CO2 effluxes (Luo et al. 2008; Selsted et al. 2012), while other studies suggest that the 

interactive effects of warming and precipitation are minor compared to the main factors 

(Zhou et al. 2006). Hence, it is important to evaluate interaction effects of multiple 

factors involved in climate change on CO2 effluxes along with main independent effects 

in boreal forest and semi-arid temperate grassland ecosystems. 

4. Study area: Hövsgöl region 

The Hövsgöl region of northern Mongolia is located on the southern fringe of 

Siberian continuous permafrost, and represents a transition zone of Siberian boreal forest 

to Central Asian steppe grassland. Due to topography, solar radiation and presence of 

permafrost, three ecosystems have developed in close proximity: (1) semi-arid mountain 

steppe on permafrost-free south-facing slopes, (2) shrub-dominated riparian zone, 

underlain by permafrost in the valley bottom, and (3) larch forest, underlain by 

permafrost on the north-facing slope (see Figure 1). It is a unique and important region 

where soil carbon stocks and soil respiration can be studied in both forest and grassland 

ecosystems which have same climate and soil parent material. Furthermore, the forest in 

this region is underlain by permafrost with very low ice content which makes this region 

different from other high-latitude regions.   

The climate of this region is harsh continental, with high annual and diurnal 

temperature amplitudes, and low annual precipitation (Nandintsetseg et al. 2007). Mean 

annual air temperature is -4.5 °C, with the coldest average temperature of -21 °C in 
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January, and the warmest average temperatures of 12 °C in July (Nandintsetseg et al. 

2007). Mean annual rainfall is 290-300 mm (Namkhaijantsan 2006). Grassland in 

northern Mongolia has been subject to grazing for centuries. Like many other places in 

Mongolia, grazing has recently become a serious issue in the region. Since the 

experimental site is a part of the Hövsgöl national park grazing is not as intensive as in 

other valleys in the region, though the steppe on the south-facing slope has been used as 

pastureland. 

5. Observed and predicted climate change in Mongolia 

Study of climate change impacts on carbon dynamics in northern Mongolia is of 

particular interest because the area is expected to undergo greater climatic changes than 

global average (Dagvadorj et al. 2009b; Meehl et al. 2007). The mean annual temperature 

in northern Mongolia has been increased by 1.8 °C for 1963-2002 (Nandintsetseg et al. 

2007), greater than the global average temperature increases in that period (IPCC 2007). 

Air temperature is predicted to increase by < 1 °C in winter and 2 °C in summer within 

80 years (Sato and Kimura 2006). Precipitation is projected to increase according to 

global models (IPCC 2007), however the opposite has been predicted by a regional model 

(Sato et al. 2007). It is predicted that increased evapotranspiration caused by air 

temperature increase (Dagvadorj et al. 2009b) or simultaneous changes in temperature 

and precipitation (Sato and Kimura 2006; Sato et al. 2007) will worsen water stress. 

Currently, higher evapotranspiration has been observed over the last 60 years (Batima et 

al. 2005) while the mean annual precipitation over this region has not significantly 

changed over the last 40 years (Nandintsetseg et al. 2007). The observed climate change 

in Mongolia have already induced other ecological changes, including the thaw of 
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discontinuous permafrost, disappearance of water bodies and shift in biomes (Batima et 

al. 2005; Sato et al. 2007; Sharkhuu et al. 2007). Evaluation of NDVI data showed that 

desert area has increased and forest area has decreased overall in Mongolia (Dagvadorj et 

al. 2009b). According to model simulation, taiga forest and semi-desert biome will 

increase while semi-arid mountain-steppe and steppe will decrease (Dagvadorj et al. 

2009b). The projected boundary shifts between ecosystems due to climate change are 

expected to be more prominent in the transition zones of the forests; forest-tundra and 

forest-steppe (Walker et al. 2006). 

6. Climate change and grazing effects on carbon dynamics  

Temperature and evapotranspiration increases in this semi-arid region, coupled 

with human activities such as overgrazing can trigger significant changes in C dynamics 

of this region. For instance, Lu et al. (2009) modeled C dynamics in Mongolia and 

concluded that this region was a sink of 31 Tg C yr-1 in the 1990s. They proposed that 

this sink will decline because of enhanced soil respiration caused by temperature 

increase. This proposal has not been tested in this region. Alternatively, water stress due 

to temperature increase may suppress soil respiration. Furthermore, changes in the forest-

steppe boundary are likely to influence C storage and C and nutrient cycling processes 

such as litter production and decomposition, and soil respiration over a long term. 

However how this projected shift would affect C stored in the ecosystems is highly 

uncertain for this region due to lack of data on current C stocks.  

Previous research demonstrated that grazing reduces soil respiration (Cao et al. 

2004; Johnson and Matchett 2001; Stark et al. 2003) by decreasing substrate supply (Rees 

et al. 2005; Stark et al. 2003). Alternatively, light grazing increased carbon allocation into 
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roots, belowground biomass and root deposition (Hafner et al. 2012; Sjögersten et al. 

2012), which may enhance soil respiration. Grazing also alters vegetation composition 

(Frank et al. 1995), removes live biomass and affects soil temperature and moisture 

(Klein et al. 2005), and thus indirectly affects ecosystem and soil respiration. However, 

current results contradict with each other and no clear trend has been observed. 

Furthermore, no experiments have been conducted to address the response of carbon 

efflux to direct and interactive effects of grazing and warming in this region. 

7. Objectives/questions 

The general objective of this thesis is to study soil ecosystem responses of 

different ecosystems to simulated climate change and land-use, and to assess carbon 

stocks in steppe and forest ecosystems in northern Mongolia. Within this general 

objective, I had the following objectives, structured into thesis chapters: 

Chapter 1: test whether open-side chambers, suggested as an alternative passive 

warming method, can overcome the known shortcomings of OTCs and perform better in 

field setting.  

Chapter 2: study how experimental warming will affect microclimatic variables, 

and how experimental warming and subsequent changes in environmental variables affect 

soil respiration and its temperature sensitivity in three ecosystems. 

Chapter 3: study how experimental warming, watering, grazing and topography 

affect soil and ecosystem respiration, whether the effects of experimental warming on 

soil and ecosystem respiration differ across topographical gradient, and how interactions 

of main treatments affect soil and ecosystem respiration.  
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Chapter 4: assess aboveground and soil carbon stocks in the forest and the steppe 

in order to determine whether or not the projected ecotonal shift will result in carbon loss.  
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Figure 1. 

Dalbay Valley in northern Mongolia. Lake Hövsgöl is behind the viewer. Numbers 

indicate ecosystems; (1) grassland, (2) riparian area and (3) forest. 
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Abstract 

Passive open-top chambers (OTC) increase air temperature mainly by decreasing 

convective cooling, resulting in daily maximum temperature increases, whereas IPCC 

models predict daily and seasonal minimum temperature increases. Passive open-sided 

chambers (OSC) have been suggested as an alternative method to manipulate air 

temperature and create the pattern of temperature change predicted by IPCC models with 

minimal artifacts. We monitored abiotic and biotic factors to compare the effectiveness of 

these two chamber designs in the semi-arid steppe of northern Mongolia during two 

consecutive growing seasons. OTCs increased mean daily air temperature by 0.8 °C, 

mainly as a result of an increased daily maximum air temperature of 2.4 °C. OSCs did not 

increase either daily air temperature or maximum temperature, though they slightly 

increased night-time air temperature by 0.2 °C in 2010. Neither chamber design affected 

soil temperatures. Incident rainfall in the chambers was 52% of that received in control 

plots, and soil moisture was 1.6-4.1 % VWC less in the chambers. The biotic responses in 

the two chamber designs were similar: both OTCs and OSCs delayed the flowering of 

graminoids and accelerated the flowering of forbs, while flower production of either 

forbs or graminoids was unaffected by chamber design. Our study suggests that decreases 

in soil moisture rather than temperature increases were likely the key factor driving the 

observed biotic responses in this semi-arid steppe system. 
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1.1. Introduction 

Experimental manipulation of temperature in-situ is an important tool for 

investigating climate change impacts on ecosystem functions and processes (Rustad et al. 

2001). Passive open-top chambers (OTC) have been frequently used to for this purpose 

because they are inexpensive, non-destructive, and suitable for remote areas where it is 

logistically challenging to supply electricity (Aronson and McNulty 2009; Marion et al. 

1997). OTCs are effective at raising daily mean air and soil temperatures (Marion et al. 

1997; Yin et al. 2009), but the specific pattern of temperature manipulation caused by 

OTCs differs from that predicted by the IPCC (Solomon et al. 2007). OTCs significantly 

increase daily maximum temperature and amplify diurnal temperature range (Kennedy 

1995; Klein et al. 2005) whereas IPCC predictions are for a reduced diurnal temperature 

range due to increased night-time temperatures. In addition, OTCs may have other 

confounding effects, including changes in convective air flow, interception of 

precipitation, and decreases in soil moisture (Kennedy 1995; Marion et al. 1997).  

Open-sided chambers (OSC) with a louvered top have been suggested as an 

alternative passive warming method (Germino and Smith 1999). OSCs are designed to 

accomplish predicted temperature patterns of increased (night-time) minimum 

temperature by decreasing losses of long-wave radiation, thus reducing diurnal 

temperature range. Their open sides and louvered tops also help to minimize adverse 

effects on wind and water regimes. Studies examining the abiotic response to the two 

chamber designs, set side by side, are needed to determine the relative performances of 

two chambers.  
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Since the primary interest of ecosystem experimentation is to find impacts of 

climate manipulation on ecosystem functions and biological processes, in addition to 

examining the relative abiotic changes caused by passive warming, it is useful to assess 

the biological responses to the two chamber designs. Studies of plant responses to 

warming have shown that flowering phenology and flower production are sensitive to 

temperature increase (Henry and Molau 1997; Arft et al. 1999; Walker et al. 2006; 

Hudson and Henry 2010; Liancourt et al. 2012b). Hence we have chosen flowering 

phenology and flower production as biological responses to our treatments. Particularly, 

flowering phenology and flower production have responded more positively to spring 

temperature manipulation and snow melt than summer warming (Aerts et al. 2004; 

Dunne et al. 2003), which could be related to more frequent occurrence of frost during 

spring at high latitudes and altitudes. In this respect, OSCs may have a more positive 

effect on flowering than OTCs if they increase night-time temperature to a greater extent. 

However, to our knowledge, the biological responses to these two chamber designs have 

never been compared. 

In this study, we compare the effects of the two passive warming chamber designs, 

OTCs and OSCs, on abiotic (air and soil temperatures, rainfall interception and soil 

moisture) and biotic factors (flowering time and flower production) in a mountain steppe 

area in Northern Mongolia. We hypothesized that (1) both chamber designs would 

increase air and soil temperatures relative to the control, with OTCs increasing mainly 

day-time air and soil temperatures and OSCs increasing mainly night-time air and soil 

temperatures. We also predicted that (2) both chamber designs would affect the spatial 

distribution of rainfall within the chambers but would not necessarily affect overall soil 
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moisture; and that (3) both chamber designs would advance flowering time and increase 

flower production, with OSCs generating a larger positive effect if OSCs would increase 

nighttime temperature during early spring, and thus decrease the number of cold nights. 

 

1.2. Materials and methods 

1.2.1 OTC and OSC construction 

Hexagonal open-top chambers (OTCs) were built to International Tundra 

Experiment specifications (Marion et al. 1997). The frame was constructed of clear 

acrylic panels that were 1 ± 0.1 mm thick and had 95% transparency to visible shortwave 

radiation, but near blackbody absorbance and emissivity in the long wavelengths (Sun-

Lite HP©, Solar Components Corp, Manchester NH, USA). Each trapezoidal panel was 

58 cm long at the top and 87 cm long at the base, and was inclined inward at 

approximately 60° from the ground surface. This created a hexagonal chamber with a 

footprint of 1.96 m2 and an opening 0.87 m2 at 40 cm above the ground surface.  

Louvered open-side chambers (OSCs) were built according to a design by Germino 

& Demshar (pers. comm.). Frames were constructed of lumber (4.5 × 4.5 cm) and were 

1.2 m long × 1.2 m wide, with the roof positioned at 50-52 cm height. The 3.2 mm thick 

acrylic strips comprising the roofs of louvered OSCs were 1.2 m long and 10.2 cm wide, 

and inserted at 7 cm spacing between strips with each strip inclined 45° towards the 

center of the frame (i.e., the slope aspect of the strip faced away from plot center).  
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1.2.2 Experimental site 

The experimental site is located in Dalbay Valley, part of the Lake Hövsgöl 

International Long-Term Ecological Research (ILTER) site on the eastern shore of the 

lake in northern Mongolia (51° 01.405' N 100° 45.600' E; 1670 m asl). The climate of the 

Hövsgöl region is described as harsh continental, with high annual and diurnal 

temperature amplitudes (Nandintsetseg et al. 2007). Regionally, mean annual air 

temperature is −4.5 °C, with the coldest average temperature of −21 °C in January, and 

the warmest average temperature of 12°C in July (Nandintsetseg et al. 2007), and mean 

annual rainfall ranges between 290-300 mm in lower altitudes (Namkhaijantsan 2006). A 

U30 HOBO weather station (Onset Computers Inc., Bourne MA) was installed 

approximately 300 m from the experimental blocks to collect local meteorological data as 

supplemental data to the control plots. Air temperature (2 m above ground), relative 

humidity, precipitation, wind speed and direction, soil temperature and moisture at 10 cm 

depth, and photosynthetically active radiation were recorded continuously (five-minute 

frequency) during two growing seasons (June 1 to August 31). 

Experimental blocks are located on the south-facing slope of the valley, where 

vegetation is dominated by sedges (e.g., Carex pediformis), grasses (e.g., Festuca 

lenensis, and Koeleria macrantha), forbs (e.g., Potentilla acaulis, and Artemisia 

commutata) and dwarf shrubs (e.g., Thymus gobicus) (Ariuntsetseg et al. 2005). Average 

vascular plant cover in each block was 95% (unpublished data). Soils are non-calcareous 

sandy loams, classified as dark Kastanozems (Aridic Borolls or Typic Ustolls). 

Permafrost exists in the north-facing slopes of the region, but not under the plots 

(Sharkhuu et al. 2007).  



23 
 

Eight 9 × 9 m blocks, each consisting of an OTC, an OSC, and a non-warmed 

control plot area, were installed at ~40 m spacing on the toe-slope position of the south 

facing slope of the valley. Blocks were fenced to exclude livestock throughout the year. 

The passive warming chambers were in place for the 2009 (June 10 to August 16, 67 

days) and 2010 (June 2 to August 16, 75 days) growing seasons. 

 

1.2.3 Environmental monitoring 

Air temperature at 15 cm height and soil temperature at 10 cm depth were recorded 

for each treatment (control, OTC and OSC) in four of the eight replicate blocks by 

HOBO dataloggers (Pro v2 or Pendant, Onset Computers Inc., Bourne MA) at ten-minute 

intervals. Air temperature sensors were placed inside RS3 radiation shields (Onset 

Computer Corporation, Pocasset MA). They were located randomly either on the west or 

east sides of the chambers but away from side walls to avoid sheltering. Instruments were 

installed in early June (June 12, 2009 and June 3, 2010) and recorded until mid-August 

(Aug 15 in both 2009 and 2010). 

Rainfall inside and outside the chambers was assessed during three storms in the 

2010 summer season. Rainfall was collected by 9-cm diameter cups placed in each 

treatment in the evening of July 7, August 10 and 16, and retrieved the following 

mornings. For OTCs and control plots, two cups were placed on the east and two on the 

west side of chambers or control plots (~40 cm away from the corner), and three cups 

were placed in the middle. OSCs were divided into four equal quadrats, such that one cup 

was placed in the center of each quarter of the plot (NW, NE, SW and SE). The volume 
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of incident rainfall collected in the cups was summed, normalized to the total surface area 

of cups within each plot, and expressed in units of mm.  

Single, daily (between 10am and 12pm) soil moisture measurements (volumetric 

water content – VWC%) were taken manually for each treatment in all eight blocks using 

a WET sensor connected to a HH2 handheld recording device (DeltaT Devices Ltd., 

Cambridge England). Measurements began on June 26, 2009 and June 7, 2010, and 

continued until August 13, 2009 and August 17, 2010 (Liancourt et al. 2012a).  

 
1.2.4 Flowering phenology and production 

Flowering phenology and flower production were assessed weekly from June 20 to 

August 10, 2009, and from June 4 to August 11, 2010 by counting the number of flowers 

or inflorescences in a 50 × 100 cm subplot centered in each chamber or control plot. For 

forbs, only fully opened flowers, or for some species, inflorescences with at least one 

fully open flower were counted (Appendix 1). For graminoids, inflorescences were 

counted as “flowering” from the beginning of the transition to reproductive stage (i.e., 

bolting stage) to the anthesis stage, but not after anthesis (Liancourt et al. 2012b). 

Vegetative cover of each species in each subplot was also calculated in mid-July each 

year and used to weight flower number per plot for each species. The sampling subplot 

was divided into fifty 10 x 10 cm cells, and percentage cover per species was estimated to 

the nearest 10% in each cell and averaged to estimate percentage cover per plot. Flower 

counts and % cover of three co-occurring Carex spp. were combined due to difficulty in 

distinguishing between them when not in flower. 
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1.2.5 Data analyses 

Daily sinusoidal fluctuations in measured air and soil temperatures were removed 

using Fourier transform and applying high frequency filters (MATLAB v5, MathWorks, 

Inc, Natick, MA). Data points that fell outside of three standard deviations from mean-

normalized data were considered erroneous and excluded from analysis. The proportion 

of erroneous temperature measurements was typically < 1 %, however one OTC 

treatment had ~30% erroneous measurements in 2010 and was excluded from analysis. 

Air and soil temperature data were split into night-time (9 pm – 6 am) and day-time (6 

am – 9 pm) data sets based on solar radiation measurements. Mean daily day- and night-

time temperatures were then computed and used for separate, further analyses. 

Effects of treatments on air and soil temperatures, and soil moisture were evaluated 

separately for each year using repeated-measures ANOVA, with blocks as a random 

factor, chamber treatment, date expressed as Julian days, and all their interactions as 

fixed factors (JMP v8, SAS Institute, Cary, NC). Planned contrasts (OTC vs. control, and 

OSC vs. control) were carried out with Bonferroni-corrected P-values. Differences in 

rainfall interception among treatments were assessed by one-way ANOVA, with blocks 

as a random factor, cup location as a nested random factor, and Tukey’s HSD test for 

mean separations. 

The effects of chamber treatment (OTC, OSC, and control), year, and the 

interaction between treatment and year on the date of peak flowering and on 

flower/inflorescence production were examined at the plant community level, separately 

for graminoids and for forbs. For each species within each plot, flowering date was 
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calculated as  where Fij is the number of flowers produced by species i on 

a given plot in week j, and Tj is the Julian day on which the count of week j was 

performed. Flower production was calculated as ∑ �𝐹𝑖𝑗 𝑃𝑖⁄ �𝑗  where Pi is the percentage 

cover by species i in a given plot. The summation included the week of peak flowering, 

and one week before and after the peak.  

Canonical analysis of principal coordinates (CAP, see Anderson and Willis 2003) 

was used to examine plant community-level responses. Data matrices contained 48 

objects - eight replicates of the three treatments sampled in two years. Species were only 

included if they occurred in more than eight objects. This resulted in seven graminoid 

species, including the Carex spp., and 15 forbs (Appendix 1), all of them perennial except 

for the single annual forb Draba nemorosa. Species present on a plot, but not flowering, 

were assigned the average value for that treatment and year in the timing data set and the 

value of zero in the flower production data set. Distances were calculated using Gower’s 

dissimilarity, which can handle the inclusion of objects (plots) in which some species 

were not present or present without flowering. Effects of treatment, year, and their 

interaction were analyzed using permutation ANOVAs performed using the R statistical 

package (R Development Core Team 2011) with the FD (Laliberte and Legendre 2010) 

and Vegan (Oksanen et al. 2011) packages. When either the treatment effect or the 

treatment × year interaction was significant, differences among treatments within a year 

were tested using Tukey’s HSD tests with Bonferroni correction after ANOVA using R. 

Differences in peak flowering date and peak flower production between chamber 

treatments and years, as found in the CAP analysis, are visualized as mean values (± 

∑∑
j

ij
j

jij FTF /
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standard error) for each treatment-year combination, graphed in two-dimensional space, 

using the two (of five) axes accounting for greatest proportions of variation explained by 

the model. Contours representing the average Julian date of flowering or the average 

number of flowers/inflorescences were fitted to these plots. 

 

1.3. Results 

1.3.1. Environmental variables 

Compared to the 2010 growing season, the 2009 growing season was cooler (9.8 °C 

in 2009 vs. 10.2 °C in 2010). Mean night-time temperatures were warmer in 2009 

(6.9 °C) than in 2010 (5.3 °C), and day-time temperatures were cooler in 2009 (11.3 °C) 

than in 2010 (13.1 °C). Although total rainfall amounts were similar (200 mm in 2009 vs. 

178 mm in 2010), they were not similarly distributed through the growing seasons 

(Figure 1.1). Average wind speeds were 1.6 m s-1 in 2009 and 1.7 m s-1 in 2010. 

Mean day-time air temperatures were significantly warmer in OTCs than control 

plots in 2009 (+1.6 ± 0.05 °C, P < 0.001), and 2010 (+1.2 ± 0.09 °C; P < 0.05), but mean 

day-time air temperature of OSCs did not differ significantly from control plots in either 

year (Figure 1.2 and Table 1.1). Maximum day-time temperatures in OTCs were also 

significantly warmer than control plots in 2009 (+3.3 ± 0.10 °C, P < 0.001) and 2010 

(+2.5 ± 0.16 °C; P < 0.001), but there was no significant difference in maximum day-

time temperature between OSC and control plots (Table 1.1). The warming effect of 

OTCs on day-time air temperature decreased through the season in both years, 

corresponding to decreased solar radiation through the growing season (Figure 1.2; 

repeated measures ANOVA date and date × treatment, P < 0.0001).  
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Mean night-time air temperatures in OTCs were significantly cooler than control 

plots in each year (-0.3 ± 0.02 °C, P < 0.025). Mean night-time temperatures of OSC 

were not statistically different from control plots in 2009 (0.1 ± 0.01 °C warmer in OSC, 

P = 0.25), but were significantly warmer than control plots in 2010 (0.2 ± 0.01 °C 

warmer in OSC, P = 0.03, Figure 1.2). The maximum and minimum night-time air 

temperatures in OTCs and OSCs were not statistically different from control plots in 

either year of the study (Table 1.1), although the minimum night-time air temperature 

was always warmer in OSCs than in OTCs and control plots (0.2-0.3 °C in 2009 and 0.3-

0.5 °C in 2010). In addition, there were no seasonal trends of increase or decrease in 

warming by any of the treatments (Figure 1.2).  

Neither chamber design generated soil temperatures that were statistically different 

from the control plots (Figure 1.3). Mean daytime soil temperatures in 2009 and 2010 

combined were 13.1 ± 0.1 °C in the control plots, 12.8 ± 0.1 °C in the OTCs (P = 0.5, 

compared to control) and 13.6 ± 0.1 °C in the OSCs (P = 0.3, compared to control). Mean 

nighttime soil temperatures in 2009 and 2010 were 13.5 ± 0.1 °C in the control plots, 13.1 

± 0.1 °C in the OTCs (P = 0.4, compared to control) and 13.6 ± 0.1 °C in the OSCs (P = 

0.6, compared to control). Differences in mean daily minimum and maximum soil 

temperatures between the control plots and chamber treatments were also non-significant 

(P values were between 0.2-0.8). 

Overall, both chamber designs significantly decreased incident rainfall in the three 

observed rainfall events (P < 0.005): OTCs received 41% and OSCs received 52% of the 

2.9 ± 0.16 mm rainfall received in the control plots. Differences in incident rainfall 

between OTCs and OSCs were not statistically significant for the events of July 7 and 
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August 11, but were statistically significant on August 17 (Tukey HSD, P < 0.05), likely 

due to differences in rainfall intensity and wind speed and direction among the individual 

events.  

Incident rainfall within the OTCs and OSCs was also spatially heterogeneous, with 

some locations appearing to receive less than 5% of available precipitation. Although the 

centers of the OTCs received similar amounts of rainfall compared to control plots in the 

three events (2.6 ± 0.23 mm in control vs. 2.6 ± 0.25 mm in the center of OTCs), the 

western and eastern sides received less precipitation (0.2-0.4 ± 0.1 mm, P < 0.001). 

Depending on wind direction and strength (as measured by the local meteorological 

station), rainfall was also unequally distributed in the OSCs in all three events (0.9 ± 0.19 

mm in NE, 2.2 ± 0.56 mm in NW, 1.1 ± 0.24 mm in SE, and 1.8 ± 0.50 mm in SW, P < 

0.001). It should also be noted that these results may have been affected by evaporation 

because no oil was used in the collection cups to prevent evaporation during the relatively 

long (overnight) collection period. 

Soil moisture in our system is relatively sensitive to precipitation events because 

the soil is a well-drained sandy loam. Hence, it seemed that rainfall interception by the 

chambers resulted in significantly drier (by 1.6-4.1 VWC%) conditions in both OTCs and 

OSCs compared to control plots (P < 0.01) in both growing seasons (Table 1.2). 

Differences among treatments were highly variable over the growing season due to pulses 

from precipitation events (Figure 1.4). Soil moisture in OSCs was significantly lower 

than OTCs (by 2 ± 0.2 VWC%, P < 0.001) and controls (by 4.1 ± 0.2 VWC%, P < 0.001) 

in 2009. In contrast, soil moisture in OTCs was significantly lower than OSCs (by 2.5 ± 

0.1 VWC%, P < 0.001) and controls (by 4.1 ± 0.1 VWC%, P < 0.001) in 2010.  
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1.3.2. Flowering timing and production 

Chamber treatment altered the timing of flowering of both graminoids and forbs but 

more so in 2009 than in 2010, resulting in a chamber × year interaction (Table 1.3). In 

general, the OSCs and OTCs changed flowering times in similar ways. Both chamber 

designs delayed flowering time of graminoids in 2009 (Figure 1.5a, Table 1.3), each 

differing significantly from controls (P < 0.01 in each case, Tukey’s HSD test) but not 

from each other. There was no effect of chamber treatment on the timing of flowering for 

graminoids in 2010. In contrast, both the OTC and OSC treatments (Figure 1.5a) caused 

forbs to flower earlier in comparison to control plots in 2009 (P < 0.01 in each case), and 

flowering time did not differ significantly between the two chamber designs. In 2010, 

forbs flowered earlier in the OSCs in comparison to controls (P < 0.05), but their 

flowering time in the OTCs was intermediate between the OSCs and the controls and not 

significantly different from either. 

Flower production at the time of peak flowering, weighted by percent cover of the 

species, did not respond to chamber treatment in either graminoids or forbs in either year 

(Figure 1.5c, d). Overall, there were differences between years in both the timing of 

flowering and flower production (Table 1.3): flowering was earlier in 2010 than in 2009 

for both graminoids and forbs (Figure 1.5a, b), and flower production was greater in 2010 

than in 2009 for graminoids (Figure 1.5c) but greater in 2009 for forbs (Figure 1.5d). 
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1.4. Discussion 

The first objective of this study was to assess the relative effects of two passive 

warming devices, open-top chambers (OTCs) and open-sided chambers (OSCs), on air 

and soil temperatures and soil moisture, and to determine whether OSCs overcome 

previously identified shortcomings of OTCs. Results corroborated previous findings that 

OTCs increased mean day-time temperature by increasing maximum day-time 

temperature rather than a small, constant amount of warming throughout the day (Marion 

et al. 1997). However, OTCs decreased night-time mean temperature, which is consistent 

with some previous observations (Danby and Hik 2007; Shen et al. 2009), though other 

studies report either warming or no effect of OTCs on night-time temperature (Charles 

and Dukes 2009; Hoffmann et al. 2010). This pattern of maximum and minimum 

temperature change by OTCs differed from the IPCC projections. Models predicted  a 

greater increase in daily minimum temperature than daily maximum temperature 

(Solomon et al. 2007). Nevertheless, OTCs increased daily air temperature (day- and 

night-time together) by 0.7 °C which is realistic compared to the observed global air 

temperature increase of 0.6 °C in the last century (Solomon et al. 2007). 

OSCs, in contrast, had no effect on maximum day-time temperature and increased 

night-time mean air temperature in 2010 by decreasing radiative losses (Germino and 

Smith 1999), similar to studies using passive reflective curtains (Mikkelsen et al. 2008). 

OSCs increased minimum daily temperature rather than maximum temperature, similar to 

the projected pattern of temperature change, but this night-time air temperature increase 

by OSCs was less than the reported range of warming (0.7-1.2 °C) by passive reflective 

curtains (Beier et al. 2004; Mikkelsen et al. 2008). OSCs may not provide the desired 
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warming effect of bulk air or soil in the chamber, but have been shown to effectively 

warm biological and soil surfaces (Germino and Smith 1999). The observed differences 

in warming patterns were caused by the different chamber designs, where warming in 

OTCs is caused by decreased convective cooling (Marion et al. 1997; Kennedy 1995), 

while convective flows are largely unaffected by the OSC design. Instead, the OSCs were 

designed to warm surfaces at night, which may substantially change the number of frost-

free nights during the growing season.  

Observed soil temperature changes were not statistically significant, but were of the 

same magnitude as those reported in previous studies with similar increases in air 

temperature (Beier et al. 2004; Hollister et al. 2006). These differences among studies 

indicate that it is important to consider other site-specific factors, including vegetation 

cover, soil moisture, or a potential temperature inversion at night, rather than only the 

magnitude of air temperature increase (Dabros et al. 2010; Hollister et al. 2006; Klein et 

al. 2005; Marion et al. 1997). 

Soil moisture in the chambers was significantly less than in control plots due to the 

interception of precipitation, but evapotranspiration rates may also have been affected. 

Plant biomass, convective air flow and relative humidity differences among chamber 

designs and control plots may further reduce soil moisture by increasing 

evapotranspiration. Chambers can increase evapotranspiration through increased 

temperatures, and thus decreasing relative humidity (Dabros et al. 2010; Marion et al. 

1997). Conversely, OTCs can decrease evapotranspiration by increasing relative 

humidity by shielding near surface wind (De Frenne et al. 2010; Gedan and Bertness 
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2009). OSCs likely have less effect on evapotranspiration rates than OTCs because they 

allow convective air flow.  

The primary objective of using passive warming chambers was to observe the 

biotic responses of plant communities in response to changes in abiotic conditions. Both 

OTCs and OSCs delayed the flowering of graminoids but accelerated flowering of forbs, 

regardless of their different effects on air and soil temperatures. This is in contrast to 

some previous warming studies using either OTCs, corner passive chambers or infra-red 

heaters conducted in tundra or subalpine systems, which documented advancement of 

flowering in both forbs and graminoids (Dunne et al. 2003; Arft et al. 1999; Hollister and 

Webber 2000; Hoffmann et al. 2010). It is possible that snow melt or spring temperature 

manipulation in those studies may have had a stronger effect than summer warming 

(Dunne et al. 2003; Aerts et al. 2004). Other warming studies conducted in temperate 

deciduous forest and prairie grassland showed either no effect of warming on flowering 

time, or advancing flowering and fruiting time of some species as well as delaying 

flowering and fruiting time of other species (De Frenne et al. 2010; Sherry et al. 2007). 

Our results where neither chamber design (OTC, OSC) affected flower production 

contrast with some studies showing an increase in flower production in response to 

warming (Aerts et al. 2004). However, it is possible that we did not observe larger 

differences because of the relatively short duration of the experiment, which captured 

only short-term effects (Arft et al. 1999). In general, warming has a cumulative effect 

over time that is more evident for some species than others (Elmendorf et al. 2012; 

Hoffmann et al. 2010). 
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Similar biological responses to the OTC and OSC treatments, regardless of their 

differing effects on air and soil temperature, suggest that there is another abiotic factor 

controlling the biotic responses. Decreased soil moisture in both chambers could explain 

the similar flowering responses to the OTCs and OSCs. Although temperature may be the 

main controlling factor of plant phenology and growth at higher latitude (e.g. Menzel et 

al. 2006; Aerts et al. 2004; Wielgolaski 2001), Elmendorf et al. (2012) demonstrated that 

soil moisture modulates the warming effect on plant phenology and that vegetation 

therefore exhibits strong regional variation to warming. At the sites reviewed by 

Elmendorf et al. (2012), gravimetric soil moisture of 20% or less was considered to be 

dry. By comparison, gravimetric soil moisture measured in the current study was 

considerably drier: ~10% in the control plots and ~8-9% in the chambers.  These results 

and similar studies in semi-arid and arid environments such as xeric Mediterranean or 

steppe areas, suggested that plant phenology might be more responsive to water 

availability or rainfall events rather than temperature (Ma and Zhou 2012; Liancourt et al. 

2012b; Shinoda et al. 2007; Llorens and Peñuelas 2005).  

Results of previous warming experiments suggest that plant phenology would 

advance by 1.9-3.3 days per degree Celsius of warming, while results from observational 

studies predict that phenology advancement would be 2.5-5 days per degree Celsius. This 

timing disparity between observational study and warming experiments may be caused 

by co-changing multiple drivers in the observational data, or by artifacts in the 

experiments. De Valpine and Harte (2001) noted that abiotic factors other than warming 

that are manipulated unintentionally or intentionally by the warming devices may play a 

more important role than the warming itself.  Similar to our study, some warming studies 
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reported the artifact of drying (e.g. Xu et al. 2010). Such artifacts of experimental 

warming may attenuate the positive effect of warming on plant phenology and result in 

underestimate of the advancement of plant phenology in experimental studies. 

The comparison between OTC and OSC provided useful information to interpret 

biological responses to chamber designs. OTCs had a complex effect on abiotic 

environmental variables while OSCs largely affected soil moisture only. Although OSCs 

manipulated air temperature in a similar pattern that was predicted by IPCC models, the 

overall effect was too small. Hence it may not optimal device to simulate air temperature 

increase. Instead, OTCs might be better option, although it generates some adverse 

effects and increase daily maximum temperature rather than minimum temperature. 

However, both of them decreased soil moisture. The similar responses of biological 

variables to OTC and OSC treatments suggest that flower phenology might have been 

more strongly affected by soil moisture and precipitation regime which altered by 

chamber rather than its warming effect. The observed biological responses to simulated 

climate change have important implications in predicting the productivity of the 

Mongolian steppe and potential impacts on herders’ livelihoods.  
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Table 1.1 

Day-time and night-time mean, minimum, and maximum, and seasonal minimum and 

maximum air temperature (°C) in open-top chamber (OTC), open-side chamber (OSC) 

and control plots (n = 4). Statistically significantly different values in chambers from 

those in controls are shown in bold. 

  Day-time (6am - 9pm) Night-time (9pm - 6am) 
  Control OSC OTC Control OSC OTC 

20
09

 
(J

un
 1

3-
A

ug
 1

5)
 

Seasonal 
minimum 4.5 4.5 5.6 -5.4 -5.0 -5.5 

Mean daily 
minimum 

3.8±0.2 4.0±0.2 3.9±0.3 2.2±0.2 2.3±0.2 2.0±0.2 

Mean daily 14.2±0.2 14.3±0.2 15.8±0.2 5.6±0.2 5.7±0.2 5.4±0.2 

Mean daily 
maximum 

19.7±0.3 19.8±0.3 23.0±0.3 11.0±0.2 11.1±0.2 10.8±0.2 

Seasonal 
maximum 

21.2 21.4 23.7 11.1 11.2 10.7 

20
10

 
(J

un
 5

-A
ug

 1
5)

 

Seasonal 
minimum 3.9 3.9 3.9 -2.2 -2.2 -2.8 

Mean daily 
minimum 

3.2±0.2 3.4±0.2 3.2±0.3 1.4±0.2 1.7±0.2 1.2±0.2 

Mean daily 15.5±0.2 15.2±0.2 16.9±0.3 5.2±0.2 5.5±0.2 5.0±0.2 

Mean daily 
maximum 

22.1±0.3 21.3±0.3 25.0±0.3 11.0±0.2 11.3±0.2 11.0±0.2 

Seasonal 
maximum 24.0 23.3 26.3 15.3 15.4 14.8 
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Table 1.2 

Volumetric soil moisture content (% VWC) in open-top chambers (OTC), open-side 

chambers (OSC) and the control plots (n = 4). Statistically significantly different values 

in chambers from those in controls are shown in bold. All P-values were highly 

significant (P < 0.0001), except P-value of comparison of OSC and OTC in 2010 (P < 

0.01) 

 Control OSC OTC 

2009 (Jun 26-Aug 13) 17.3 ± 0.3 13.2 ± 0.3 15.2 ± 0.3 

2010 (Jun 7-Aug 17) 12.1 ± 0.2 10.5 ± 0.2 8.0 ± 0.2 
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Table 1.3 

P-values of permutation tests for the community-level CAP analysis examining the date 

of peak flowering and flower production weighted by percent cover of each species (n = 

8). Graminoids and forbs were examined separately. In parentheses, percentage of 

variance explained by each model. Statistically significant values are shown in bold. 

Treatment 
Date of peak flowering Flower production 

Graminoids 
(29.7%) 

Forbs 
(33.3%) 

Graminoids 
(25.8%) 

Forbs 
(13.0%) 

Chamber  < 0.001 < 0.001  0.872 0.685 
Year < 0.001 < 0.001 < 0.001 < 0.001 
Chamber × year 0.013 0.024  0.296 0.985 
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Figure 1.1 

Growing season meteorological data for 2009 and 2010. Lines represent mean daily air 

temperature in 2009 (closed symbols) and 2010 (open symbols). Bars represent rainfall in 

2009 (black) and 2010 (open). Data between June 12 and June 24 in 2009 are missing 

due to device failure. 
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Figure 1.2 

Differences in air temperature at 15 cm height between open-side chambers (OSC) or 

open-top chambers (OTC) and controls (n = 4) during the day (left panels) and night 

(right panels) in 2009 and 2010. See Table 0.1 for summary descriptive statistics. 
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Figure 1.3 

Differences in soil temperature at 10 cm depth between open-side chambers (OSC) or 

open-top chambers (OTC) and control (n = 4) during the day (left panels) and night (right 

panels) in 2009 and 2010. 
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Figure 1.4 

Differences in volumetric soil moisture (VWC %) at 5 cm depth between open-side 

chambers (OSC) or open-top chambers (OTC) and control plots (n = 8) and rainfall (mm) 

in 2009 and 2010.   
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Figure 1.5 

Canonical analysis of principal coordinates (CAP) output plots for the average date of 

peak flowering for graminoids (a) and forbs (b) and the mean (± standard error) flower 

production at the peak of flowering for graminoids (c) and forbs (d) for the three chamber 

treatments in both 2009 and 2010 (n = 8). The overall pattern is visualized by overlaying 

the plots of the first two CAP axes upon the gradient (contour plots) of the averages of 

either flowering time in Julian date or flower production. Shown also is the percentage of 

explained variation attributable to each of the first two axes. Abbreviations for treatments 

are OTC-open-top chamber and OSC- open-side chamber 
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Abstract 

The response of soil respiration to warming has been poorly studied in regions at 

higher latitude with low precipitation. We manipulated air and soil temperature using 

passive, open-top chambers in three different ecosystem settings in close proximity 

(boreal forest, riparian area, and semi-arid steppe) to investigate how experimental 

warming would affect environmental factors and soil respiration across different 

ecosystems for 2009-2011 growing seasons. The results indicate that OTCs significantly 

increased air and soil temperature in areas with open canopy and short-statured 

vegetation (i.e., riparian and steppe areas). OTCs affected not only air and soil 

temperature but also soil moisture; however, the sign of change in soil moisture in OTCs 

depended on the ecosystem, and the magnitude of change was highly variable. Generally, 

OTCs did not affect soil respiration in steppe and riparian areas. Although soil respiration 

was slightly greater in OTCs of the forest, the difference was not statistically significant. 

Analyses of relationship between soil respiration and environmental variables suggested 

that different factors control soil respiration in different ecosystems. Results indicated 

that soil temperature was main controlling factor for soil respiration in the forest, which 

was supported by stronger seasonal fluctuation in soil respiration. In contrast, soil 

respiration in steppe responded to rainfall events rather than temperature, creating 

respiration pulses. Our results suggest that soil respiration rate will increase in the forest 

in response to warming but the warming effect on soil respiration will likely to lessen due 

to lower temperature sensitivity of soil respiration in warmer condition. In the steppe, soil 

respiration will be regulated by soil moisture availability rather than temperature change. 

These contrasting responses highlight the importance of taking account of biome shifts in 
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C cycling modeling to generate more accurate predictions of responses to anticipated 

climate change. 
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2.1. Introduction 

Soil respiration plays an important role in terrestrial ecosystem carbon cycling. 

Globally, the flux of C to the atmosphere from terrestrial respiration is 6-7 times larger 

than current anthropogenic emissions (~60 Pg C yr-1 versus ~9 Pg C yr-1, IPCC 2007). As 

a major component of ecosystem respiration, soil respiration accounted for 71% of 

terrestrial ecosystem respiration in a mixed hardwood (Curtis et al. 2005) and 52% of 

ecosystem respiration in an alpine grassland (Zhang et al. 2009), and was positively 

correlated with litterfall amount in forests (Schlesinger 1977) and with net primary 

productivity in grasslands (Raich and Schlesinger 1992; Raich and Tufekcioglu 2000). 

Soil respiration measurement may therefore represent a good proxy for ecosystem carbon 

cycling. 

On a global scale, soil respiration increases with increasing air temperature (Bond-

Lamberty and Thomson 2010), and thus potentially generates a positive feedback with 

warming (Heimann and Reichstein 2008). However, responses of carbon cycling to 

climate change varied drastically among different modeling simulations (Heimann and 

Reichstein 2008) and among experimental warming studies. Some field studies have 

shown that soil respiration increases (Biasi et al. 2008; Wan et al. 2005), while other 

studies have shown that it decreases (Liu et al. 2009) or does not change (Wan et al. 

2007).  

These varying results highlight that effects of climate change on ecosystem 

processes, including carbon cycling, can be complex and obscured by differences in the 

main driving factors of soil respiration in different environments. For instance, soil 

respiration in a grassland was 20% greater than in a forest under similar conditions 
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(Raich and Tufekcioglu 2000) due to higher input of carbon in grassland, but the effect 

size of experimental warming on soil respiration was greater in the forest than in the 

grassland (Rustad et al. 2001). Previous studies have shown that experimental warming 

changes not only soil temperature, but also soil moisture (Dabros et al. 2010; Xu et al. 

2010). Soil moisture affects soil respiration and its temperature sensitivity by changing 

oxygen availability or by alleviating substrate diffusion limitation (Moyano et al. 2012; 

Schmidt et al. 2004; Suseela et al. 2012). The reduced effect of experimental warming on 

soil respiration in grassland compared to forest could have been caused by a soil moisture 

limitation in grassland, occurring either naturally or caused by experimental warming. 

Although no significant difference has been found between responses to various 

warming techniques (Rustad et al. 2001), most studies in the Arctic region have used 

open-top chambers, while most studies in grasslands have used infra-red radiator and 

passive nighttime warming chambers (Aronson and McNulty 2009). This suggests that 

varying responses between ecosystems might have been caused by methodological 

differences (Klein et al. 2005). The way different ecosystems respond to warming and the 

soil respiration response to those environmental changes can be studied using one 

experimental warming technique in different ecosystems. In addition, temperate and 

boreal forest ecosystems, regions at higher latitude with low precipitation, and arid and 

semi-arid biomes are underrepresented in experimental warming and soil respiration 

studies (Aronson and McNulty 2009; Rustad 2008; Raich and Schlesinger 1992). Most 

experimental warming studies have been conducted in North America and Europe, in 

mid- to high latitudes and moderate to high annual precipitation.  
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We conducted an experimental warming study in northern Mongolia. Our study site 

is located at the southern fringe of Siberian continuous permafrost and comprised of three 

ecosystems in close proximity: Siberian boreal forest, tussocky peat, and Central Asian 

semi-arid steppe. This allowed us to compare the microclimatic responses of different 

ecosystems to experimental warming without regional climatic variation. Our study 

across three ecosystem types was carried out to answer to the following questions: (1) 

how does experimental warming affect environmental variables, and (2) how does 

experimental warming and subsequent changes in environmental variables affect soil 

respiration. 

Aside from being an under-studied area, study of climate change impacts in 

northern Mongolia are of particular interest because the area is expected to undergo 

larger than global average changes in climate (Dagvadorj et al. 2009b; Meehl et al. 2007). 

The observed temperature increase in northern Mongolia has been 1.8 °C for years 

between 1963-2002 (Nandintsetseg et al. 2007), greater than the global average 

temperature increases (IPCC 2007). Air temperature in this region is predicted to increase 

an additional 1-2 °C within the next century (Sato and Kimura 2006). Precipitation is 

projected to increase according to global models (IPCC 2007), however it has been 

projected to decrease by regional model, causing decreases in soil moisture (Sato et al. 

2007). This region currently acts as a carbon sink (Lu et al. 2009), however, this may be 

at risk due to climate change. 
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2.2.Methods 

2.2.1. Study site 

The study site is located in the Dalbay valley, in the Lake Hövsgöl International 

Long-Term Ecological Research (ILTER) site, in northern Mongolia (51° 01.405' N, 

100° 45.600' E; 1670 m asl). The mean annual temperature of this region is -4.5 °C, with 

the coldest average temperature of -21 °C in January, and the warmest average 

temperature of 12°C in July (Nandintsetseg et al. 2007). The mean annual rainfall ranges 

between 290-300 mm in lower altitudes (Namkhaijantsan 2006).  

The experiment was performed in three ecosystems located in close proximity to 

each other within Dalbay valley: (1) semi-arid steppe, located on the south-facing slope, 

which is free of permafrost, (2) shrub-dominated riparian zone, located in the valley 

bottom with underlying permafrost, and (3) larch forest, with underlying permafrost, on 

the north-facing slope (Figure 2.1). Of two commonly occurring trees, Siberian larch 

(Larix sibirica) and Siberian pine (Pinus sibirica), Siberian larch is the dominant tree in 

the forest. Dominant understory species in the forest are sub-shrub (Vaccinum vitis-

idaea), moss (e.g., Rhytidium rugosum), grass (Festuca lenensis) and forbs (e.g., Galium 

boreale, Chrysanthemum zawadskii, Peucedanum sp.). The riparian zone where our 

experimental blocks were located is characterized by tall shrubs (Salix sp.) up to a height 

of 1.8 m and clear patches dominated by forbs (e.g., Artemisia tanacetifolia, Silene 

repense, Myosotis sylvatica), grass (e.g., Leymus chinensis, Poa subfastigiata, Agrostis 

mongolica) and sedges (e.g., Carex melanocephala, Carex sp.). The foot of the south-

facing slope of the valley where our steppe experimental blocks were located is 

dominated by sedges (Carex pediformis), grasses (e.g., Festuca lenensis, Helictotrichon 
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schellianum, Koeleria macrantha), forbs (e.g., Potentilla acaulis, Aster alpinus, 

Artemisia commutata) and sub-shrubs (Thymus gobicus).  

Dominant soil texture is sandy loam in all three ecosystems; however ecosystems 

differ by their dominant soil types and their total organic carbon contents. The dominant 

soil type is Mountain taiga-derno (Cryept) in the forest, Alluvial meadow boggy 

cryomorphic soil (Fluvent) in the riparian area, and non-calcareous dark Kastanozem 

(Aridic Borolls or Typic Ustolls) in the steppe (Batkhishig 2006). Since the study area 

became a national park, land-use has been minimized, though the steppe on the south-

facing slope has been used as grazing pasture and some parts of the riparian area has been 

used for hay preparation. 

Four replicate transects across the three ecosystems were established in mid-June of 

2009, yielding 12 blocks (Figure 2.1). The distances between blocks are approximately 1 

km in the same environmental setting and approximately 300-700 m along the cross-

section of Dalbay valley. In each block, International Tundra Experiment (ITEX)-style 

open-top passive warming chambers (OTC) and a non-warmed control area were 

installed. The OTCs were consistently installed in the same locations for three growing 

seasons beginning in June in the summers of 2009, 2010 and 2011 and retrieved at the 

end of August of each year. Forest blocks were located under larch forest canopy. The 

vegetation inside OTCs and control plots were typical understory vegetation of the forest, 

and the average coverage was 74.5% according to 2009 and 2011 plant cover estimates. 

Riparian blocks had no shrub inside chambers or control plots but had dense cover of 

vegetation with 99.9% coverage. Vegetation grew taller than OTCs in two riparian 
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blocks. The steppe blocks were characterized by vegetation with short stature and sparse 

coverage of 68.5%. 

 
2.2.2. Environmental monitoring 

Air temperature, soil temperature and soil moisture were measured to record 

changes in environmental variables in response to the chamber treatment. Above-ground 

air temperature (15 cm) was continuously recorded in each treatment (OTC and control) 

using HOBO pendant dataloggers (± 0.5 °C accuracy; Onset Computers Inc., Bourne, 

MA, USA) at intervals of 30 minutes. The air temperature dataloggers were placed inside 

of RS3 radiation shields (Onset Computer Corporation, Pocasset, MA), which were 

placed in the middle of plot. Soil temperature and moisture were measured and recorded 

using EC-TM sensors (± 1 °C and 1-3% VWC accuracy) and EM50 dataloggers 

(Decagon Devices Inc., Pullman, WA, USA) at intervals of 30 minutes in each treatment 

of blocks. The soil temperature and moisture sensors were placed horizontally at depths 

of 10 cm.  

To determine how experimental warming and subsequent changes in environmental 

variables affect soil respiration, surface CO2 efflux was measured using a portable infra-

red gas analyzer (IRGA, EGM-4, PP Systems Inc.) and soil respiration chamber (SRC-1, 

PP Systems Inc.) in consistently the same location, where green and standing dead plants 

were removed before measurements. Plant material was returned to the measurement 

location immediately after analysis to avoid changes in surface temperature, moisture and 

decomposition regime. Soil respiration was measured three times per treatment per block, 

and the mean was used for statistical analyses. Each measurement lasted three minutes. It 
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was possible to measure only three blocks per day without introducing diurnal variation 

in the soil respiration measurements. Therefore, one block (out of four) was chosen 

randomly from each ecosystem, and these three blocks were measured in a given day. In 

subsequent days, additional sets of three blocks were randomly chosen (one from each 

ecosystem, and previously sampled blocks left out of the selection), until all 12 blocks are 

sampled in a four-day span before restarting the random selection process. The order of 

measurement of these three blocks was randomized to avoid a measurement order bias. 

During each growing season, 13-15 measurements were taken in each block. 

 

2.2.3. Data analysis 

Daily sinusoidal fluctuations in measured air and soil temperatures were removed 

using Fourier transform and applying high frequency filters (MATLAB v5, MathWorks 

Inc, Natick, MA) to identify outliers in the environmental data set caused by instrumental 

errors. Data points that fell outside of three standard deviations from mean-normalized 

data were considered erroneous and excluded from analysis. The proportion of erroneous 

temperature measurements was typically 0.6% for air temperature data and 1.0-1.3% for 

soil temperature data. A small proportion (< 0.5%) of soil moisture data were negative 

values and thus considered erroneous and excluded. Mean daily values were calculated 

from non-transformed outlier-free data and used for further statistical analyses.  

Chamber effects on environmental variables (air temperature, soil temperature and 

moisture) and CO2 efflux rates were evaluated using repeated-measures ANOVA with 

ecosystems, chamber treatment, and all their interactions as fixed factors, and blocks as a 

random factor nested within ecosystems. Significant inter-annual variability was 
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detected, and therefore the effects of the chamber treatment and ecosystems were 

evaluated separately for each year. When analyzing CO2 efflux response to chamber 

treatment, the four-day span required for measuring CO2 efflux in all replicate blocks was 

considered the time unit for the repeated measures analyses. Mean daily values were time 

units for other analyses. When differences among ecosystems were statistically 

significant, these differences were tested using Tukey’s HSD test. All ANOVA analyses 

were carried out with JMP v8 (SAS Institute, Cary, NC). 

The relationship between soil temperature at 10 cm depth and soil respiration was 

modeled by fitting an exponential function to the OTC and control data of each 

ecosystem, pooled across years: 

Rij = b0eb1Tij 

where: Rij is the soil respiration rate (g CO2 m-1 h-1) in either chamber or control 

plot (i) of one of ecosystems (j), Tij is the soil temperature (°C) at 10 cm depth recorded 

at the same time as the respiration measurement, b0 is the modeled intercept of soil 

respiration, and b1 is the modeled temperature sensitivity coefficient. The b1 values were 

used to calculate apparent Q10 values of each data set using the following equation: 

Q10 = e10b1 

Nonlinear regression curve fitting and corresponding parameters and goodness-of-

fit tests were carried out using SigmaPlot v12 (Systat Software Inc. San Jose, CA).  

The model selection method using AICc was used to determine relationships 

between soil respiration and environmental variables, and to test the relative importance 

of environmental variables. We used model selection instead of stepwise multiple linear 
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analyses because of high correlation between soil temperature and moisture. 

Relationships between soil respiration and soil temperature, soil moisture, and a 

combination of soil temperature and moisture were described by linear models. These 

models were assessed based on Akaike weights (i.e., model probabilities) and evidence 

ratios of the ranked models according to AICc, such that models with less plausible AICc 

weights and evidence ratios compared with model with minimum AICc among set of 

models were discarded. Estimates of environmental variables were computed by 

weighing partial regression coefficients of the linear models by corresponding Akaike 

weights. To test the relative importance of each environmental variable, standardized 

partial regression coefficients (bʹ) were computed and reported. Model selection, and 

estimation of coefficients of environmental variables were carried out using the R 

statistical package (R Development Core Team 2011) with the AICcmodavg package 

(Mazerolle 2012). 

 

2.3.Results 

2.3.1. Environmental variables 

Ambient air temperatures differed among the forest, riparian and steppe areas (P < 

0.001) and among the three years (P < 0.001, Figure 2.2). OTCs significantly increased 

air temperature in 2010 and 2011 (P < 0.01) but not in 2009 (P = 0.25) across the three 

ecosystems. The magnitude of the increase in air temperature by OTCs also differed 

among ecosystems (OTC × zones, P < 0.05). The air temperature increase by OTCs was 

greatest in the steppe compared to other ecosystems (1.0-2.1 °C, P < 0.05 in 2010 and 

2011). In contrast, the air temperature increase by OTCs was smallest (0.2-0.4 °C, P = 
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0.4-0.8), and was followed by shrub-dominated riparian areas (0.5-0.6 °C, P = 0.3-0.6). 

The magnitude of warming by OTCs significantly decreased in the riparian area after mid 

of June (P < 0.001), but this trend was not consistently observed in the forest and steppe 

(data not shown).  

Mean daily soil temperatures at 10 cm depth were lowest in the forest, followed by 

the riparian zone, and were greatest in the steppe, but no interactive effect between 

ecosystem and chamber treatment was observed (Figure 2.3). Although soil temperature 

appears greater in OTCs than in controls (by 0.6-1.4 °C in forest, and by 1.0-1.7 °C in 

steppe), the differences were not statistically significant. Soil temperature differences due 

to the chamber effect in the riparian zone were highly variable (positive in some blocks 

and negative in others) and therefore not statistically significant overall. 

Soil moisture differed significantly among ecosystems (P < 0.05), where it was 

greatest in the riparian area, followed by the forest, and was least in the steppe. Due to 

high spatial variability among replicate blocks (65% of total variance) and of treatments 

× blocks (26-28%), chambers had no statistically significant effect on soil moisture. 

However, soil moisture was less in OTCs than in control of the steppe (by 3.0-6.2 %), 

and riparian area (by 1.6-2.3 % in 2009 and 2010, and by 11.1% in 2011), but greater in 

OTCs in the forest (by 3.9-10.6 ± 0.6 in 2009 and 2010, with no difference in 2011) 

(Figure 2.4).  

 
2.3.2. Soil respiration  

Soil respiration rates in the control plots varied significantly across ecosystems (P < 

0.05) and years (P < 0.05) (Figure 2.5; Figure 2.6). The largest soil respiration rates were 
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observed in the riparian area (0.73 ± 0.02 – 1.14 ± 0.03 g CO2 m-2 h-1), followed by the 

forest (0.59 ± 0.02 – 0.81 ± 0.03 g CO2 m-2 h-1), and was least in the steppe (0.43 ± 0.01 – 

0.62 ± 0.01 g CO2 m-2 h-1). Soil respiration rates were greatest across all ecosystems in 

2009 (18.9 – 20.1% greater than average), were least in 2010 (11.4 – 22.7% less than 

average), and varied considerably in 2011 (9.7% less than average in the forest, but 

14.7% and 1.9% greater than average in the riparian area and the steppe, respectively). 

The greater variability in 2011 is likely attributable to fewer and sporadic measurements 

due to equipment problems. 

Soil respiration rates were greater by 0.20 g CO2 m-2 h-1 in OTCs than in controls 

only in 2009 in the forest, although statistically, the difference was marginally non-

significant (P = 0.08). Soil respiration rates in OTCs and controls were similar in the 

riparian area and steppe (Figure 2.5). The lack of differences between OTCs and controls 

are likely to be attributable to the high variability among interactions between blocks (16-

41%), blocks × measurement dates (21-70 % of total variance), and blocks × treatment × 

measurement dates (20-64%) (Figure 2.6). 

The temperature sensitivity of soil respiration varied widely among treatments and 

ecosystems, with estimated Q10 values ranging from 1.3 to 5.8 (Table 2.1). In the forest, 

the OTC and control treatments generated different temperature sensitivity coefficients. 

The upper 95% confidence intervals of the temperature sensitivity coefficient of control 

did not overlap with lower confidence limit of coefficient of OTCs. These coefficients 

yielded different apparent Q10 values. Conversely, 95% confidence limits of temperature 

sensitivity coefficients of control and OTC treatments overlapped with each other in both 

the riparian and steppe blocks. The 95% confidence intervals also showed that 
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temperature sensitivity coefficients of the forest plots were consistently greater than those 

of the riparian and steppe plots, with the exception of the control-steppe plots. Hence, Q10 

values for the riparian and steppe blocks were smaller than the Q10 values for forest 

blocks (Table 2.1).  

Relationships between soil respiration and environmental variables were tested two 

ways: by ecosystem with annual data pooled, and by year with ecosystems pooled. 

Separating data by ecosystem allowed us to explore the main driving factors within each 

ecosystem, while separating data by year allowed us to examine driving factors among 

years, which varied by their climatic combinations. In the first approach, soil respiration 

rate was positively correlated with soil temperature (bʹ = 0.49) and negatively correlated 

with soil moisture (bʹ = -0.13) in forest blocks. Among tested models, a linear model with 

both soil temperature and moisture was the best-fit model and the second best fit was a 

linear model with soil temperature only, indicating that soil respiration in the forest was 

more responsive to soil temperature (Table 2.2). In the riparian zone, the best-fit model 

was a linear model with both soil temperature and moisture, indicating the importance of 

both variables. Soil temperature (bʹ = 0.67) and moisture (bʹ = 0.60) contributed almost 

equally to soil respiration variation (Table 2.2). Similarly, the best-fit model for soil 

respiration in the steppe was a linear model with both soil temperature and moisture, and 

other linear models could not compete. However, the soil moisture partial regression 

coefficient (bʹ = 0.50) was greater than soil temperature (bʹ = 0.39), suggesting that soil 

moisture might be more important than soil temperature in the semi-arid steppe.  

When relationships between soil respiration and environmental variables were 

tested for each year with ecosystems pooled, the partial regression coefficient of soil 
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moisture (bʹ = 0.27 in 2010 and bʹ = 0.70 in 2011) was greater than the partial regression 

coefficient of soil temperature (bʹ = 0.08 in 2010 and bʹ = 0.19 in 2011), except in the 

cooler, wetter growing season of 2009. Both 2010 and 2011growing seasons were drier 

and hotter, therefore best-fit models were a model containing soil moisture only and a 

model with both soil moisture and temperature. In 2009, both soil temperature (bʹ = -

0.15) and moisture (bʹ = 0.10) were relatively poorly correlated with soil respiration. 

None of the competing models for 2009 data were the best-fit model since main driving 

factors varied across ecosystems. 

 

2.4.Discussion 

We assessed the performance of OTCs in three ecosystems (i.e., forest, riparian and 

steppe) differing by their microclimatic conditions. The comparable soil texture in the 

forest and steppe ecosystems allowed us to examine soil respiration responses to changes 

in climatic conditions as a proxy of ecosystem response to warming and drying.  

To the best of our knowledge, there are only two published studies using OTCs in 

forested systems. Compared to these studies air temperature increase in our study was 

smaller: 0.2-0.4 °C in our study versus 0.4 °C in a deciduous forest (De Frenne et al. 

2010) and 1.2 °C in a spruce-fir forest (Xu et al. 2010). Conversely, soil temperature 

increase by OTCs was greater in our study (0.6-1.4 °C) compared to previously reported 

values (0.25-0.6 °C; De Frenne et al. 2010; Xu et al. 2010). In contrast, warming by 

OTCs in the steppe in our study (1.0-2.1 °C for air temperature and 1.0-1.7 °C for soil 

temperature) was slightly greater than the warming of OTCs in similar open systems with 
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short stature vegetation (0.7-1.4 °C for air temperature and 0.2-0.8 °C for soil 

temperature; Carlyle et al. 2011; Kudernatsch et al. 2008).  

Results showed that warming by OTCs was affected by the openness of canopy 

surrounding the blocks and stature of the vegetation inside of the chamber, which differed 

among ecosystems. Forest canopy might have limited direct sunlight, shifted spectrum of 

solar radiation, or reduced wind speed (De Frenne et al. 2010). Thus, OTCs did not 

significantly increase air and soil temperature in forest. Unlike the forest, the riparian 

area had no initial limitation or change in solar radiation, but air and soil temperature 

were cooler in OTCs during the mid- and latter-part of the growing season when 

vegetation grew taller than the chambers. In those blocks, vegetation might have also 

reflected much of the solar radiation and decreased turbulence, as observed in studies 

using OTCs in Alaska (Callaghan and Jonasson 1995; Van Wijk et al. 2004). In contrast, 

OTCs achieved the greatest warming in the steppe, where vegetation was short and 

coverage was not dense.  

Our results also showed that OTCs altered soil moisture depending on the 

ecosystem, indicating the importance of ecosystem setting (Shaver et al. 2000). Soil 

moisture decreases in OTCs in the steppe and riparian blocks can be attributed mainly to 

reductions in incident rainfall and were consistent with other studies (Carlyle et al. 2011; 

Kudernatsch et al. 2008; Xia et al. 2009). In contrast, soil moisture was greater in OTCs 

in the forest compared to control plots. De Frenne et al. (2010) also reported soil moisture 

increases in OTCs, though the amount of soil moisture increase was smaller than in our 

study. 
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Soil respiration rates were comparable to previously reported values, and differed 

significantly among ecosystems. Overall mean soil respiration rates in forest blocks were 

similar to reported values of 0.57-0.78 g CO2 m-2 h-1 in a boreal forest (Hibbard et al. 

2005; Kang et al. 2003), but measured values in the steppe blocks were slightly greater 

than reported values of 0.27-0.41 g CO2 m-2 h-1 in a temperate semi-arid grassland 

(Hibbard et al. 2005; Liu et al. 2009; Xia et al. 2009).  

The causes of the differences of soil respiration among the ecosystems in our study 

may be threefold. First, soil C content in the surface horizon (0-10 cm) was 5.8 ± 0.7 kg 

C m-2 in riparian, 3.7 ± 0.9 kg C m-2 in forest and 3.0 ± 0.3 kg C m-2 in steppe, thus 

decreasing in the same order as soil respiration. However, it is interesting to note that 

when normalized to soil C concentrations, the overall mean respiration rates of riparian 

and steppe were similar while respiration in the forest was slightly higher (0.16 mg CO2-

C g-1 soil C h-1 in riparian, 0.17 mg CO2-C g-1 soil C h-1 in steppe and 0.20 mg CO2-C g-1 

soil C h-1 in forest). Second, these ecosystems differ in their aspects, which affect solar 

radiation, evapotranspiration, and subsurface water level, and thus energy and water 

balance of the systems. Kang et al. (2003) showed that a more mesic, north-facing slope 

had greater soil respiration rates than less mesic, south-facing slope in a temperate forest. 

Third, some studies have shown that canopy had a strong indirect positive effect on soil 

respiration particularly in semi-arid areas by slightly decreasing soil temperature and 

increasing moisture and soil C pool (Conant et al. 1998; Matías et al. 2012). In our 

studies, canopy openness and structure differences may have interfered with incident 

rainfall, solar radiation and wind. If canopy openness and structure affected climatic 

variables, this would create soil temperature and moisture differences between chamber 
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and control treatments, as well as different responses to the chamber treatment between 

ecosystems.   

In our studies, slightly higher soil respiration rates were observed in response to 

OTCs in the forest due to compounding effects of OTCs on environmental factors. Soil 

temperature increases in OTCs in this study were comparable to other studies in which 

soil respiration was stimulated by OTCs (Biasi et al. 2008; Welker et al. 2004). However, 

the observed slight but consistent increase in soil respiration rates in OTCs of the forest 

in 2009 and 2010 was not statistically significant in our study. Nevertheless, temperature 

sensitivity of soil respiration in OTCs has been decreased drastically compared to control 

plots in the forest, and it is more likely to be attributable to soil temperature increase in 

OTCs. Contrary to our expectations, soil moisture and respiration had negative 

relationship in the forest in 2009 and 2010, but not in 2011. In general, soil moisture 

increases soil heat capacity and decreases thermal diffusivity in sandy soil when moisture 

content is higher than 20% (Abu-Hamdeh 2003; Oke 1979), and thus wetter soil would 

be more resistant to warming. We observed strong negative relationship between soil 

moisture and temperature in the forest. Therefore increases in soil moisture in OTCs in 

cooler years of 2009 and 2010 potentially could have counteracted against warming by 

OTCs, and could have affected negatively on soil respiration.  

In addition, we found that the factors governing soil respiration also varied across 

ecosystems. Soil respiration was mainly regulated by temperature in the forest, which is 

consistent with other studies (Bergner et al. 2004; Pan et al. 2008; Xu et al. 2010). The 

dominance of temperature as a controlling factor for soil respiration in the forest was also 

illustrated by greater Q10 values compared to those from the riparian and steppe blocks. 
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Meanwhile, soil respiration in the steppe was mainly affected by soil moisture, which is 

also consistent with many studies in arid and semi-arid systems (Davidson et al. 2006; 

Lellei-Kovacs et al. 2008; Liu et al. 2009; Luo et al. 2001; Matías et al. 2012). In the 

steppe, the soil moisture limitation caused by OTCs (Liancourt et al. 2012a) probably 

counteracted with the warming effect on soil respiration (Liu et al. 2009; Niu et al. 2008). 

Furthermore, soil respiration in steppe responded to timing and amount of precipitation 

events, which caused variation in baseline soil moisture (Liancourt et al. 2012a). Such a 

pattern of coupling soil respiration pulse after rainfall was not observed in the forest and 

riparian area. Instead, soil respiration rates in the forest seemed to respond to seasonal 

temperature variation. These different variations of background environmental factors 

should be taken into account to understand how ecosystems might respond to warming 

experiments. 

When the relationship between soil respiration and environmental variables were 

analyzed across ecosystems, it indicated that precipitation may have a stronger impact 

than future warming in northern Mongolia. Although it is not conclusive, changes in 

precipitation may have stronger effects on soil respiration than warming by affecting 

primary productivity (Knapp et al. 2002), substrate supply and drought stress (Davidson 

et al. 2006), particularly in semi-arid systems.  

 

2.5.Conclusions 

Identifying the relevant environmental factors that govern soil respiration in 

different ecosystem is of importance for predicting potential changes in carbon cycling in 

different ecosystems in response to anticipated climate change. Ecosystem boundaries 
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may change due to direct and indirect effects of climate change, further altering the 

potential carbon balance of a given area. Evaluation of normalized difference vegetation 

index (NDVI) data showed that desert area has increased and forest area has decreased 

overall in Mongolia (Dagvadorj et al. 2009b), and this trend may continue in the future. 

Lu et al. (2009) modeled C dynamics in Mongolia and concluded that this region was a 

sink of 31 Tg C yr-1 in the 1990s. They proposed that this sink will decline because of 

enhanced soil respiration caused by temperature increases. However, soil respiration rates 

may not increase if semi-arid steppe and desert area increases. Our results highlight the 

necessity of taking into account the heterogeneity of ecosystems to more accurately 

predict carbon flux responses to global change. 
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Table 2.1 

Temperature sensitivity coefficients (b1 ± standard error) of soil respiration and apparent 

Q10 values calculated by fitting an exponential function to the relationship between soil 

respiration and soil temperature at 10 cm depth.  

Ecosystem Treatment b1 R2 P Q10 
Forest Control 0.176 ± 0.025 0.32 <0.0001 5.82 
 OTC 0.080 ± 0.017 0.16 <0.0001 2.22 
Riparian Control 0.023 ± 0.010 0.04 0.03 1.26 
 OTC 0.0311 ± 0.013 0.05 0.02 1.36 
Steppe Control 0.0562 ± 0.014 0.12 0.0002 1.75 
 OTC 0.0305 ± 0.015 0.03 0.04 1.36 
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Table 2.2 

Linear regression equations relating soil respiration rate (Soil resp, g CO2 h-1 m-2) to both 

soil temperature (Temp, °C) and moisture (Moist, % VWC) at a depth of 10 cm, to soil 

temperature only, and to soil moisture only. The relationships between soil respiration 

and environmental variables in each ecosystem were expressed by the standardized 

partial regression coefficients of environmental variables, weighed by Akaike weights. 

The models in each ecosystem are listed according to their rank given using AICc weight 

and evidence ratio. 

 

Forest 
(𝑺𝒐𝒊𝒍 𝒓𝒆𝒔𝒑 =  𝟎.𝟒𝟗 × 𝑻𝒆𝒎𝒑 –  𝟎.𝟏𝟑 ×  𝑴𝒐𝒊𝒔𝒕) 

 K AICc ΔAICc AICc Weight Evidence 
ratio 

Soil resp ≈ Temp + Moist 4 62.67 0.00 0.82  
Soil resp ≈ Temp 3 65.74 3.08 0.18 4.66 
Soil resp ≈ Moist 3 122.56 59.89 0.00 1.01e+13 

Riparian 
(𝑺𝒐𝒊𝒍 𝒓𝒆𝒔𝒑 =  𝟎.𝟔𝟕 × 𝑻𝒆𝒎𝒑+  𝟎.𝟔𝟎 ×  𝑴𝒐𝒊𝒔𝒕) 

 K AICc ΔAICc AICc Weight Evidence 
ratio 

Soil resp ≈ Temp + Moist 4 255.65 0.00 1  
Soil resp ≈ Temp 3 306.56 50.90 0 1.13e+11 
Soil resp ≈ Moist 3 318.47 62.81 0 4.36e+13 

Steppe 
(𝑺𝒐𝒊𝒍 𝒓𝒆𝒔𝒑 =  𝟎.𝟑𝟗 × 𝑻𝒆𝒎𝒑+  𝟎.𝟓𝟎 ×  𝑴𝒐𝒊𝒔𝒕) 

 K AICc ΔAICc AICc Weight Evidence 
ratio 

Soil resp ≈ Temp + Moist 4 -126.28 0.00 1  
Soil resp ≈ Moist 3 -82.24 44.04 0 3.66e+9 
Soil resp ≈ Temp 3 -56.66 69.62 0 3.66e+9 
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Figure 2.1 

Schematic map of the study site on the eastern shore of Lake Hövsgöl in northern 

Mongolia. The site is framed in rectangle in the inset map. Forested area is represented 

by dark grey shading, the riparian zone by light grey shading, and the white area 

represents the steppe area. The four transects are represented by dotted lines.  

 

 
  



76 
 

Figure 2.2 

Seasonal mean air temperature (°C, mean ± standard error) in open-top passive warming 

chambers (OTC, solid bars) and control plots (open bars) in three ecosystems (n = ~280). 
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Figure 2.3 

Seasonal mean soil temperature (°C, mean ± standard error) at 10 cm depth in open-top 

passing warming chambers (OTC, solid bars) and control plots (open bars) in three 

ecosystems (n = ~280). 
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Figure 2.4 

Seasonal mean soil moisture (%VWC, mean ± standard error) at 10 cm depth in open-top 

passive warming chambers (OTC, solid bars) and control plots (open bars) in three 

ecosystems (n = ~280). 
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Figure 2.5 

Seasonal mean soil respiration rates (g CO2 m-2 h-1) in open-top passive warming 

chambers (OTC, solid bars) and control plots (open bars) in three ecosystems. 
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Figure 2.6 

Soil respiration rates (g CO2 m-2 h-1) in open-top passive warming chambers (OTC, closed symbols) and control plots (open symbols) 

in three ecosystems over three growing seasons (n = 4). 
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Abstract 

We conducted a number of experiments to study independent and combined 

impacts of warming, watering and grazing manipulations on soil and ecosystem 

respiration in northern Mongolia, which is highly vulnerable region to climate change 

and overgrazing. In addition, we investigated whether warming effect on soil carbon 

effluxes was altered by topographic gradients across the landscape. Our results indicated 

that warmed plots using open-top passive warming chambers (OTCs) had 10-12% and 

12-16% lesser soil and ecosystem respiration than in control plots. These decreases could 

be attributed to soil moisture decrease in OTCs. Watering treatment significantly 

enhanced ecosystem and soil respiration, although watering slightly decreased soil 

temperature. Grazing decreased ecosystem respiration but increased soil respiration rate, 

indicating different impacts of grazing on above- and belowground parts. Vegetation 

cover and soil moisture decreased and plant available nutrient increased from lower to 

upper slope across the landscape. Greater vegetation cover and soil moisture in the lower 

slope could have caused greater ecosystem respiration compared with the upper slope. 

Although the upper slope had greater plant available nitrate and ammonia, it had lesser 

ecosystem respiration. The responses of ecosystem respiration to OTCs differed between 

the upper and the lower slopes, while the responses of soil respiration to OTCs did not 

differ between the upper and the lower slopes. We found no interactive effects of main 

treatments, but OTCs on the upper slope increased ecosystem respiration if not watered. 

Our results suggest that the soil and ecosystem respiration in this semi-arid steppe is more 

sensitive to soil moisture change and grazing pressure than temperature change.  
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3.1.Introduction 

Ecosystem respiration is the largest C flux (~120 Pg C yr-1) in terrestrial carbon 

cycling (Schlesinger 1997). A relatively minor disturbance could trigger the loss of 

significant amounts of CO2 to the atmosphere, and potentially create a positive feedback 

to climate change. Hence, understanding responses of the terrestrial carbon cycle to 

climate change and land-use at the landscape scale becomes a major question in 

terrestrial ecosystem ecology (Luo 2007).  

Soil and ecosystem respiration rates vary across the landscape in response to 

spatial variations in microclimate, topography, soil and vegetation characteristics and 

disturbance regime (Luo and Zhou 2006). It has been demonstrated that soil and 

ecosystem respiration respond positively to temperature increase (Rustad et al. 2001; Wu 

et al. 2011) but negatively to alteration of precipitation timing and decrease in soil 

moisture in semi-arid grassland (Liu et al. 2002; Harper et al. 2005). Temperature and 

moisture vary with topographic gradients, resulting in spatial variability in CO2 

production and efflux (Pacific et al. 2008; Sotta et al. 2006). In addition, plant species 

diversity (Fu et al. 2004), productivity (Nippert et al. 2011) and nutrient availability (Fisk 

et al. 1998; Hook and Burke 2000; Casper et al. 2012) also vary along topography. Plant 

and soil nutrients can affect ecosystem and soil respiration (see Chapin III et al. 2009; 

Bardgett et al. 2009) directly by regulating substrate supply, or indirectly by altering 

temporal dynamics of soil moisture (Liancourt et al. 2012a). These topographically 

induced microsite conditions may introduce increased uncertainty due to their 

interactions. However, little is known about how topographical variation might alter 

temperature effects on carbon fluxes.  
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Land-use change also affects soil and ecosystem respiration at the landscape 

level. Previous research demonstrated that a substrate supply decrease due to grazing 

(Stark et al. 2003; Rees et al. 2005) can reduce soil respiration (Cao et al. 2004; Johnson 

and Matchett 2001; Stark et al. 2003). Alternatively, light grazing increased carbon 

allocation into roots, belowground biomass and root deposition (Hafner et al. 2012; 

Sjögersten et al. 2012), which may increase soil respiration. Grazing also alters 

vegetation composition (Frank et al. 1995), removes live biomass and affects soil 

temperature and moisture (Klein et al. 2005), and thus indirectly affects ecosystem and 

soil respiration. 

Northern Mongolia is located in the transition zone between the Siberian boreal 

forest and the Eurasian steppe and has experienced grazing by domestic animals for 

centuries. Over the last 40 years, the area experienced a significant increase in mean 

annual temperature (1.8 °C) (Nandintsetseg et al. 2007), which is greater than the global 

average temperature increases (IPCC 2007). In the future, air temperature in this region is 

projected to increase by 2-3 °C by the end of 2070-2080 (Sato and Kimura 2006), and 

simultaneously soil moisture is predicted to decrease due to the temperature increase and 

precipitation decrease (Sato et al. 2007, but see IPCC 2007). Thus, the net effect of 

climate change on soil and ecosystem respiration will depend not only on independent 

effects of climate variables but also their interactive effects. Results of experiments and 

modeling show that experimental treatments could have strong interactive effects on CO2 

effluxes (Selsted et al. 2012; Luo et al. 2008), while other experiments suggest that the 

interactive effects of warming and precipitation are minor compared to the independent 

main effects of treatments (Zhou et al. 2006). Hence, it is necessary to evaluate the 
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interactive effects of multiple factors involved in climate change along with the 

independent effects to predict ecosystem response to climate change accurately. 

Although northern Mongolian grasslands currently act as a carbon sink (Lu et al. 

2009), the net carbon balance may change in response to climate change and intensified 

grazing pressure. However, no experiments have been conducted to address the response 

of carbon efflux to direct and interactive effects of grazing and warming in this region. 

We conducted a number of field experiments to determine how ecosystem and soil 

respiration respond to independent and interactive effects of temperature, soil moisture, 

and grazing manipulations across a topographic gradient. Temperature was altered using 

passive open-top chambers (OTCs), similar to those used in International Tundra 

Experiment (Marion et al. 1997). Experimental blocks with OTCs and control plots were 

set up on the opposite ends of the topographic gradient, which are the upper and lower 

slopes. While grazing effect was manipulated by fencing off the blocks on the lower 

slope, soil moisture was altered by weekly watering applied only on the upper slope. In 

this study, we aimed to answer three main questions. How do treatments of chamber, 

watering, grazing and topography affect soil and ecosystem respiration? Do effects of 

experimental warming differ between upper and lower slopes? How do these treatments 

interact with each other? 

 

3.2.Methods 

3.2.1. Study site 

The study site is located in the Dalbay valley, in the Lake Hövsgöl International 

Long-Term Ecological Research (ILTER) site, in northern Mongolia (51° 01.405' N, 
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100° 45.600' E; 1670 m asl). The mean annual temperature of this region is -4.5 °C, with 

the coldest average temperature of -21 °C in January and the warmest average 

temperature of 12°C in July (Nandintsetseg et al. 2007). Mean annual rainfall ranges 

between 290-300 mm in lower altitudes (Namkhaijantsan 2006). The study area is 

located on the southern fringe of Siberian continuous permafrost. Forests on north-facing 

slopes and riparian areas in valley bottoms are underlain by permafrost, but steppe areas 

on south-facing slopes are permafrost free. Dominant soil texture in the steppe is sandy 

loam and steppe soil is classified as non-calcareous dark Kastanozem (Aridic Borolls or 

Typic Ustolls) (Batkhishig 2006).  

The north-facing slope of the valley is covered with the taiga forest which 

consists of Larix sibirica and Pinus sibirica. The south-facing slope, where our 

experimental plots were located, is semi-arid steppe, characterized by grasses (e.g. 

Festuca lenensis, Helictotrichon schellianum, Koeleria macrantha, Agropyron 

cristatum), sedges (e.g. Carex pediformis, Carex dichroa) and forbs (Potentilla acaulis, 

Aster alpinus, Artemisia commutata). The upper slope has less total plant cover (64%) 

and dominated by Potentilla acualis, while the lower slope is characterized by greater 

total plant cover (78%) and dominated by Carex spp.  

Soil moisture and soil depth gradients exist on the south-facing slope because of 

natural topographical variation. These gradients dictate nutrient availability, vegetation 

composition and plant cover percentage (Casper et al. 2012). The upper slope (elevation 

1800 m asl and incline ~20°) has shallower A horizon and less soil moisture (mean 

summer soil moisture is 8.4% VWC) compared to the lower slope (elevation 1670 m asl 

and gentle to flat slope) where mean summer soil moisture is 14% VWC and A horizon 
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of soil is depper. Since the study area is a part of the Hövsgöl national park grazing is not 

as intensive as other valleys in the region, though the steppe on the south-facing slope has 

been used as grazing pasture and some parts of the riparian area has been used for hay 

preparation. Cattle, yaks, and horses graze mainly on the lower slope. 

 

3.2.2. Experimental design and measurements 

Fifteen blocks were installed at ~40 m spacing on the south facing slope of the 

valley. Eight 9 × 13 m blocks were located on the lower slope and seven 9 × 9 m blocks 

were located in upper slope. All fifteen blocks had two control plots and two open-top 

passive warming chambers (OTCs). The OTCs were consistently set-up in the same 

locations in the beginning of June of 2009, 2010 and 2011 and retrieved at the end of 

August of each year. The chamber treatment was fully crossed with topographical 

locations (upper and lower slopes). This area has been grazed for centuries, and currently 

it is used as year-round pastureland by 1-2 families. We fenced off experimental blocks 

in June of 2009 to exclude grazing throughout year. On the lower slope only, we took 

down the fence of part of each block (9 × 4 m) in August to allow livestock to graze 

during fall, winter and spring and set-up the fence in June of each year. The rest of each 

block (9 × 9 m squares) were fenced throughout the year. Each grazed and non-grazed 

parts of lower blocks contained a pair of OTC and control plot. Grazing treatment was 

applied only on the lower slope and was fully crossed with OTCs. Soil moisture was 

manipulated by watering on the drier upper slope, where a pair of OTC and control plots 

of a block did not receive any watering, while the other pair received a weekly watering 
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treatment equal to 4.5 mm of rainfall per week. Experimental design with watering and 

warming was fully factorial for the upper slope. All blocks on the upper slope was fenced 

to exclude livestock grazing. 

A triangular area of 0.55 m2 of bare soil within each OTC and control plot was 

created by removing the aboveground vegetation (Liancourt et al. 2012a). The hexagonal 

chamber was always positioned in a way that one side faced towards the north, while the 

parallel side faced towards the south. This bare soil was located in one corner of OTCs 

(either in east or west corner of OTCs), formed by two sides of the chamber. The same 

triangular bare soil was located in either the east or the west corner of the paired control 

plot. The bare soil was trenched to 20 cm to exclude roots, and kept vegetation-free by 

weekly hand weeding. CO2 efflux measured in the vegetated area is hereafter referred to 

as ecosystem respiration because it includes CO2 efflux originated from both plants 

(above- and belowground) and soil. In contrast, CO2 efflux measurements made on the 

bare soil area of plots is referred as soil respiration because it did not include 

aboveground respiration but it includes root and microbial respiration.  

To study direct and indirect effects of climate manipulation treatments (OTCs 

and watering), grazing and their interactions, we measured soil temperature and soil 

moisture in four of the eight blocks on the lower slope, and in three of the seven blocks 

on the upper slope. Soil temperature (at 10 cm depth) was monitored in each treatment by 

HOBO dataloggers (Pro v2 or Pendant, Onset Computers Inc., Bourne MA) at ten-minute 

intervals during the growing seasons. Instantaneous soil temperature and moisture 

(volumetric soil content, VWC %) were measured using a calibrated WET-2 sensor 

connected to a HH2 handheld device (DeltaT Devices Ltd., Cambridge England). These 
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soil temperature and moisture measurements were done daily between (10 am and 12 pm) 

in both vegetated and bare areas of each plot in all treatments. An in-depth study of the 

vegetation effects on soil moisture is reported by Liancourt et al. (2012a). Vegetation 

decreased soil moisture by 1.5% VWC and temperature by 0.6 °C on the lower slope 

plots in 2009. However, the vegetation effect was not statistically significant in other 

years, and no statistically significant interactions were observed. Therefore, we excluded 

temperature and moisture data sets collected from bare areas from further analyses. 

Ecosystem respiration was measured using a portable infra-red gas analyzer 

(IRGA, EGM-4, PP Systems Inc.) and soil respiration opaque chamber (SRC-1, PP 

Systems Inc.) in vegetated areas, and soil respiration was measured at bare areas of plots 

with the same device. Ecosystem and soil respiration were measured twice per treatment 

per block, and averaged for statistical analyses. Each measurement lasted three minutes. 

Measurements were conducted biweekly between approximately 10 am – 3 pm. Blocks 

were measured in completely randomized order. During each growing season, 4-5 

measurements were taken in each block in 2009 and 2010, but  only 3 measurements 

were made in 2011.  

 

3.2.3. Data analysis 

Daily sinusoidal fluctuations in soil temperatures were removed using Fourier 

transform and applying high frequency filters (MATLAB v5, MathWorks Inc, Natick, 

MA) to identify outliers. Data points that fell outside of three standard deviations from 

mean-normalized data were considered as outliers and excluded from analysis. The 

percentage of outliers was typically < 1%. However, one OTC-non-grazed plot had ~30% 



90 
 

erroneous data points in 2010, and therefore, the plot was excluded from the analysis. We 

had to exclude several data series due to datalogger malfunctions in 2011. Soil 

temperature data were split into night-time (9 pm – 6 am) and day-time (6 am – 9 pm) 

data sets based on solar radiation measurements, and only daytime soil temperature data 

was used for characterizing environmental conditions for CO2 efflux and soil respiration. 

Mean daily daytime temperatures were then computed and used for further analyses. 

We conducted three separate comparisons to evaluate treatment effects. First, we 

analyzed the effects of topography (upper versus lower slope) effects to determine how 

topographical variation alters microclimate and CO2 efflux. In this analysis, we included 

only data (soil temperature, soil moisture, ecosystem and soil respiration) measured in 

non-grazed OTCs and control plots of lower slope, and non-watered OTCs and control 

plots of upper slope. In a second analysis, we focused on the grazing effect, and 

therefore, data (soil temperature, soil moisture, ecosystem and soil respiration) measured 

only in the lower slope blocks were used. The third analysis was to examine the watering 

effect, hence data from only the upper slope blocks were used. In all three comparisons, 

the main effect of OTCs and the interaction with other treatments were tested.  

Main treatment effects on soil temperature, soil moisture, ecosystem and soil 

respiration were evaluated separately for each year using two-way, repeated-measures 

ANOVA with measurement dates were included as within-subject factor (SPSS v20, IBM 

Corp.). Treatment, date, and all interactions were included as fixed factors, and block as a 

random factor for all three types of comparisons. Blocks were nested within slope factor 

only in the first comparison. Planned contrasts were carried out with Bonferroni-

corrected P-values if significant interactions of main treatments were detected. When a 
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main treatment effect was consistent among years, we reported a mean of three years of 

response variable (i.e. mean soil respiration of 2009-2011). If a main treatment effect was 

not consistent among years, treatment effects were reported separately for each year.  

 

3.3.Results 

3.3.1. Soil temperature 

Mean daytime soil temperatures in the non-watered upper slope plots were 

warmer than in the non-grazed lower slope plots by 3.3 °C in control plots and 3.7 °C in 

OTC plots (P < 0.05; Figure 3.1a and b). Grazing consistently increased mean daytime 

soil temperatures by 1.1 °C in OTCs and by 0.5-0.7 °C in control plots (P < 0.05, Figure 

3.1a). Watering decreased mean daytime soil temperature, but the cooling effect was not 

consistent from year to year. In 2009, watering did not affect mean daytime soil 

temperature. In 2010 and 2011, watering decreased mean daytime soil temperature by 

0.6 °C in OTCs and 0.2 °C in control plots (P < 0.01, Figure 3.1b).  

In general, OTCs had cooler soil temperatures compared with control plots. The 

effect, however, was not consistent year to year, and was affected by grazing and 

watering treatments but not by topography. OTCs did not significantly change soil 

temperature in 2009. In 2010, soil temperatures were cooler by 0.3 ± 0.08 °C in the non-

grazed OTCs and by 0.4 ± 0.04 °C in the grazed OTCs compared with the non-grazed 

and the grazed control plots, respectively (P < 0.005; Figure 3.1a, 2010 data). On the 

upper slope plots, no significant effect of OTCs on soil temperature was detected, but 

interactive effects of watering and OTCs were statistically significant (P < 0.05). Soil 

temperature in the watered OTCs was cooler by 0.7 ± 0.04 °C compared to the watered 
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control plots, but it did not differ between the non-watered OTCs and the control plots 

(Figure 3.1b). In 2011, OTCs significantly decreased soil temperature (P < 0.01, Figure 

3.1a and b). The effect of OTCs on soil temperature also changed due to grazing (P < 

0.05, Figure 3.1a). OTCs decreased soil temperature by 0.5 ± 0.06 °C in the non-watered 

plots, by 0.6 ± 0.06 °C in the watered plots, and by 0.9 ± 0.09 °C in the non-grazed plots, 

but OTCs did not change soil temperature in the grazed plots (P < 0.01, Figure 3.1a and 

b). 

 

3.3.2. Soil moisture 

The non-watered plots (OTCs and control plots) of the upper slope were drier by 

3.7-6.6% VWC in comparison with the non-grazed plots on the lower slope (P < 0.01, 

Figure 3.2). The mean soil moisture of non-watered control plots of upper slope was 

8.6% VWC while the mean soil moisture of non-grazed control plots of lower slope was 

13.5% VWC. On the lower slope, grazing did not affect soil moisture (Figure 3.2a). On 

the upper slope, the watering treatment increased the mean soil moisture of OTC and 

control plots by 2.0-2.8% VWC (P < 0.01, Figure 3.2b).  

Mean soil moisture was consistently less in OTCs than in controls plots (P < 

0.01, Figure 3.2). We did not observe a significant interaction between OTCs and 

topography in 2009 and 2011. In 2010, decrease in the soil moisture by OTCs was more 

prominent in non-grazed lower slope plots than in non-watered upper slope plots (P < 

0.01, Figure 3.2). The drying effect of OTCs was negated by the watering treatment on 

the upper slope plots (Figure 3.2). Soil moisture was less in the non-watered OTCs than 

in the non-watered control plots by 2.6% VWC, while the difference between the watered 
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OTCs and the watered control plots was 0.9% VWC in 2009 (P < 0.05). A similar pattern 

was observed in 2010 and 2011, but the interactive effects of watering and OTCs were 

not statistically significant. 

 

3.3.3. Ecosystem respiration 

The largest seasonal mean ecosystem respiration rate (1.01 g CO2 m-2 h-1) was 

measured in 2009 when seasonal mean air temperature was coolest (9.8 °C), and 

precipitation was greatest (200 mm) among the three summers of the study. The lowest 

seasonal mean ecosystem respiration rate (0.78 g CO2 m-2 h-1) occurred in 2011, which 

was the hottest and driest summer (10.9 °C and 137 mm).  

Ecosystem respiration varied with topography in two of the three years. In 2009 

and 2010, the non-grazed OTCs and control plots of the lower slope had greater 

ecosystem respiration than non-watered OTCs and control plots of the upper slope, by 

0.31 g CO2 m-2 h-1 (40%) in control plots and 0.24 g CO2 m-2 h-1 (33%) in OTCs (P < 

0.01, Figure 3.3a and b). Topography had no significant effect on ecosystem respiration 

in 2011. Grazing decreased ecosystem respiration only in 2011, by 0.11 g CO2 m-2 h-1 

(12%) in control plots and 0.07 g CO2 m-2 h-1 (9%) in OTCs compared to non-grazed 

control and non-grazed OTCs (Figure 3.3a, P = 0.02). The watering treatment increased 

ecosystem respiration in 2009 and 2010 (P < 0.01) but not in 2011. Watering increased 

ecosystem respiration by 0.09 g CO2 m-2 h-1 (12%) in control plots and 0.05 g CO2 m-2 h-1 

(7%) in OTCs (Figure 3.3b). 

Across all comparisons and years, the mean ecosystem respiration was lesser by 

0.08 g CO2 m-2 h-1 in OTCs than in control plots. However, the magnitude of response, 
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thus statistical significance, depended on a treatment and a year. In 2009, mean 

ecosystem respiration in OTCs were less than in control plots by 0.08 g CO2 m-2 h-1 (7%) 

in non-grazed lower slope plots, by 0.12 g CO2 m-2 h-1 (14%) in non-watered upper slope 

plots and 0.09 g CO2 m-2 h-1 (10%) in watered upper slope plots (P < 0.05, Figure 3.3a 

and b). In 2010, grazed and non-grazed OTCs on the lower slope had significantly less 

ecosystem respiration than grazed and non-grazed control plots (by 0.12-0.13 g CO2 m-2 

h-1 or relative decreases of 12-13%, P < 0.05; Figure 3.3a). However, there was no 

significant effect of OTCs on ecosystem respiration on the upper slope plots in 2010 

(Figure 3.3b). No significant difference between OTCs and control plots was detected in 

2011 (Figure 3.3a and b). The interactions between topography and OTCs, and watering 

and OTCs were statistically significant only in 2010 (P < 0.05). No other interaction 

effects were detected.  

 

3.3.4. Soil respiration 

The seasonal mean soil respiration was 0.68 g CO2 m-2 h-1 in 2009, the wettest 

summer, and 0.40 g CO2 m-2 h-1 in 2011, the driest and hottest summer. The non-grazed 

OTCs and control plots of the lower slope and non-watered OTCs and control plots of the 

upper slope plots did not differ in soil respiration rates (P = 0.6-0.7, Figure 3.4a and b), 

except 2010. In 2010, mean soil respiration of the non-watered OTCs and control plots of 

the upper slope was 0.12 g CO2 m-2 h-1 (23%) less than mean soil respiration of the non-

grazed lower slope plots (P = 0.014, Figure 3.4a and b). Grazing did not affect soil 

respiration in 2010. However grazing increased soil respiration of OTCs by 0.11 g CO2 

m-2 h-1 (33%) and soil respiration of control plots by 0.09 g CO2 m-2 h-1 (22%) in 2011 (P 
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= 0.04, Figure 3.4a). The watering treatment increased soil respiration by 0.06-0.07 g 

CO2 m-2 h-1 in 2009 and 2010 (P < 0.01) which represents relative increases of 10-15%. 

The watering did not affect soil respiration in 2011 (Figure 3.4b). Mean soil respiration in 

OTCs was consistently less, by 0.06-0.08 g CO2 m-2 h-1 than in control plots in 2010 and 

2011 across all comparisons (P<0.05) but not in 2009 (P=0.25, Figure 3.4a and b). No 

significant interactions between OTCs and other treatments were observed.  

The average contribution of soil respiration to ecosystem respiration declined 

from 75% in 2009 to 54% in 2011 (Table 3.1). The contribution of soil respiration to 

ecosystem respiration differed between the upper and the lower slopes only in 2009 (63% 

on the lower slope and 85% on the upper slope). Grazing altered the relative contribution 

of soil respiration to ecosystem respiration in 2011 (45% in non-grazed and 64% in 

grazed plots) but not in 2010. Watering did not affect the relative contribution of soil 

respiration to ecosystem respiration.  

 

3.4.Discussion 

We aimed to understand how microclimate manipulation, grazing and their 

interactions would affect soil and ecosystem respiration, and how these effects would 

vary along topographical gradients by conducting a multi-factor experiment for three 

years in the semi-arid steppe of northern Mongolia. Our results show a robust, strong 

positive effect of soil moisture across topography and contrasting effects of grazing on 

ecosystem and soil respiration. Interactive effects of climate manipulations (OTCs and 

watering), grazing and topography were minimal, and the combined effects of the factors 

were equal to the sum of their separate effects.  
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The results of several comparisons suggest that soil moisture is a more important 

driving factor for biological processes in this semi-arid environment than temperature 

change or nutrient availability. First, ecosystem and soil respiration were lesser in OTCs 

across all comparisons, which were drier than control plots. The watering treatment 

negated the drying effect of OTCs on ecosystem and soil respiration in watered OTCs 

compared with non-watered OTCs, and caused an increase in ecosystem and soil 

respiration in control plots compared with non-watered control plots, although watering 

slightly decreased soil temperature (Brown & Archer, 1999). This result is consistent 

with previous studies where water addition resulted in increased ecosystem respiration 

(Niu et al. 2008), and soil respiration (Liu et al. 2009). Second, the upper slope had less 

ecosystem and soil respiration compared to the lower slope, although the upper slope is 

warmer and has greater total plant available nitrogen (21 g per 10 cm2 ion exchange 

surface per day on the upper slope vs. 13 g per 10 cm2 ion exchange surface per day on 

the lower slope; Liancourt et al. in press). Third, the seasonal average of ecosystem and 

soil respiration decreased over three summers (by 25-42%) as rainfall amount decreased 

and timing of rainfall shifted in 2010 and 2011. Likewise, a reduction in soil and 

ecosystem respiration due to decrease in rainfall or change in rainfall timing has been 

observed in semi-arid grassland (Chou et al. 2008; Liu et al. 2009; Hao et al. 2010). The 

soil respiration decrease in response to moisture limitation could have caused either shift 

in soil microbial community or decrease in microbial activity due to moisture limitation 

(Manzoni et al. 2012; Allison and Treseder 2008), but it is impossible to discern exact 

mechanism involved in the process with the current data set. Alternatively, it is also 

possible that the soil respiration decline over years could have been caused not only by 
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changes in rainfall timing and amount, but also by gradual root decomposition (Parton et 

al. 2007; Díaz-Pinés et al. 2010). Nevertheless, all our results suggest that CO2 efflux and 

soil respiration will be more sensitive to soil moisture, and increasing evapotranspiration 

due to warming will reduce CO2 efflux and soil respiration in semi-arid steppe. 

The contrasting effects of grazing on soil and ecosystem respiration suggest 

these two components of CO2 flux may be controlled by different factors. Decrease of 

ecosystem respiration in the grazed plots may have been caused by plant biomass 

reduction due to grazing (Owensby et al. 2006; Susiluoto et al. 2008). Preliminary data of 

plant and litter biomass suggest that they were significantly less in the grazed plots, 

supporting our argument. While grazing reduces aboveground plant biomass, it could 

increase belowground biomass (Sjögersten et al. 2012) or carbon allocation to roots 

(Hafner et al. 2012), and thus increase labile carbon input into soil (Hafner et al. 2012; 

Gao et al. 2009). These changes could cause the greater soil respiration that we observed 

in the grazed plots in 2011. In the future, light grazing may enhance soil respiration 

because light grazing in our study increased soil temperature and did not affect soil 

moisture. However, the effect of grazing may be cumulative and exclusion of grazing for 

three years is not adequate for determining the long-term effect. The effects of grazing on 

CO2 fluxes may also vary depending on grazing pressure and stocking density 

(Sjögersten et al. 2012; Cao et al. 2004).  

The results also demonstrated that the effects of climate change simulated by 

OTCs (temperature, moisture and wind change) on soil respiration did not vary with 

topography. In contrast, effects of OTCs on ecosystem respiration varied with topography 

and watering. In accordance with our expectation, ecosystem respiration was lesser in 
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OTCs than in control plots of the lower slope, but ecosystem respiration did not differ 

between non-watered OTCs and non-watered control plots of the upper slope although 

soil moisture was lesser in non-watered OTCs. Since soil respiration was lesser in non-

watered OTCs than in non-watered control plots, the difference of CO2 flux may have 

originated from aboveground vegetation. Likewise, Liancourt et al. (in press) found that 

the survival and the biomass of Festuca lenensis significantly increased in non-watered 

OTCs than in non-watered control plots. However, the unexpected positive effect of 

OTCs was not observed when OTCs and control plots of the upper slope were watered. 

This result suggests that global change involving multiple factors (temperature, 

precipitation and wind) could have a surprising effect on ecosystem processes, and plants 

could mediate environmental stress and alter sensitivity of CO2 effluxes to environmental 

variables (Aanderud et al. 2011). 

In summary, our results indicate that soil moisture is the key controlling factor 

of carbon fluxes in this semi-arid grassland, and thus changes in precipitation may have 

stronger effects on the ecology of the system than temperature change. However, the 

predicted temperature increase may exacerbate evapotranspiration and thus decrease both 

plant and soil respirations. Grazing could also trigger greater loss of carbon from soil if it 

continues to increase soil respiration, and if it decreases net primary productivity. Future 

research needs to investigate how grazing pressure change would alter processes of 

carbon allocation to roots, root deposition to soil under different precipitation regime. 
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Table 3.1 

Relative contribution of soil respiration to ecosystem respiration, expressed in percentage 

of ecosystem respiration. 

 2009 2010 2011 
Control OTC Mean Control OTC Mean Control OTC Mean 

Not grazed 61 65 63 56 55 55 48 43 45 
Grazed - - - 57 57 57 66 62 64 
Lower slope 
mean 61 65 63 56 56 56 56 52 54 

Not watered 79 89 84 62 52 57 56 47 51 
Watered 82 92 87 59 58 59 56 55 55 
Upper slope 
mean 80 91 85 60 55 58 56 51 53 

Overall mean 71 78 75 58 55 57 56 51 54 
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Figure 3.1 

Seasonal mean soil temperature (°C, mean ± standard error) in open-top warming 

chambers (OTCs, solid bar) and control plots (open bar) in response to the grazing 

treatment on the lower slope (n=4; a panel) and the watering treatment on the upper slope 

(n=3; b panel). 
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Figure 3.2 

Seasonal mean soil moisture (% VWC, mean ± standard error) in open-top warming 

chambers (OTCs, solid bar) and control plots (open bar) in response to the grazing 

treatment on the lower slope (n=8; a and c panels) and the watering treatment on the 

upper slope (n=7; b and d panels) 
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Figure 3.3 

Seasonal mean ecosystem respiration (g CO2 m-2 h-1, mean ± standard error) in open-top 

warming chambers (OTCs, solid bar) and control plots (open bar) in response to the 

grazing treatment on the lower slope (n=4; panel a) and the watering treatment on the 

upper slope (n=3; panel b). 
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Figure 3.4 

Seasonal mean soil respiration (g CO2 m-2 h-1, mean ± standard error) in open-top 

warming chambers (OTCs, solid bar) and control plots (open bar) in response to grazing 

(n=4; panel a) and watering treatments (n=3; panel b). 
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Abstract 

The projected conversion between forest and steppe ecosystems in Mongolia due to 

climate change will have a large impact on the carbon (C) balance of this region. 

Quantifying the current C stocks in these ecosystems is a useful initial step to determine 

the value of forest C and the C sequestration capacity of the systems. We estimated the 

aboveground C content of the forest and steppe by converting aboveground biomass data. 

Allometric equations for estimating biomass of stem, branch, needle and whole tree 

biomass were developed at the individual tree level using a tree diameter at breast height 

and tree height. These allometric equations were applied to estimate aboveground forest 

biomass. The steppe aboveground biomass data was obtained from a previous study 

conducted in this region. The results show that the forest contained 29.8 Mg C ha-1, and 

the steppe contained 3.6-4.6 Mg C ha-1 in the aboveground biomass. Belowground C 

content was determined to a depth of 100 cm in the steppe and to a depth of 70 cm in the 

forest by excavating quantitative soil pits. The soils of the forest contained 81.4 ± 16.3 

Mg C ha-2, and steppe soil contained 82.9 ± 8.2 Mg C ha-1. Thus, the forest contained at 

least 3-7 times greater C aboveground compared to the steppe, but the forest and steppe 

did not differ in belowground soil C content. A shift in biomes from boreal forest to 

steppe, which is projected to occur due to climate change, may therefore result in a 

significant loss of C at the ecosystems level in this area of northern Mongolia.  
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4.1.Introduction 

Terrestrial ecosystems contain a large amount of carbon (~2100-3600 Pg C), 

approximately 2-4 times than in the atmosphere (Houghton 2003; Denman et al. 2007), 

and act as a carbon sink, sequestering 0.3-1.0 Pg C year-1 mostly into soil (Houghton 

2003; Denman et al. 2007; Grace 2004). The amount of carbon (C) stored in terrestrial 

ecosystems has been subjected to the influence of natural and anthropogenic 

disturbances, such as climate change and land use management (Smith et al. 2008; Janzen 

et al. 1998; Schlesinger 1999). Climate change and land use also cause shifts of 

boundaries between grassland and forest (Field et al. 2007; Saxe et al. 2001), which cause 

a net loss or gain of C. Meta-analysis and prior research suggested woody plant 

encroachment into grassland causes a net loss of C (Jackson et al. 2002). Conversely, 

some studies demonstrated that conversion from forest to steppe can result in net loss of 

C or no change in C stock (Bradley et al. 2006; Devi et al. 2008; Guo and Gifford 2002). 

These contradictions among studies may have been caused by the climate and initial C 

stock of the ecosystems studied (Guo and Gifford 2002), and therefore, the extent of C 

loss or gain due to ecosystem boundary shift is highly uncertain in some regions 

(Houghton 2007).  

According the climate change models, the areal extent of taiga forest in 

Mongolia is expected to increase by 2050, but forest at lower latitudes and altitudes is 

likely to be replaced by steppe due to the projected temperature increase and increase in 

evapotranspiration (Batima et al. 2005; Dagvadorj et al. 2009b). The majority of the 

conversion between forest and steppe is expected to occur in northern Mongolia because 

this region is located in the transition zone between the Siberian boreal forest and the 
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Central Asian steppe grassland, and is experiencing greater temperature change than the 

rest of Mongolia (Natsagdorj et al. 2000). How this projected shift would affect C stored 

in the ecosystems is highly uncertain for this region due to lack of data on current C 

stocks. 

Although the concentration of soil organic matter in the Hövsgöl region was 

previously estimated (Batkhishig 2006), soil C stocks were not determined quantitatively 

and aboveground C content was never estimated. Quantifying C stocks stored in the 

forest and steppe of the Hövsgöl region is, therefore, of critical importance. Such 

estimates will help to determine a potential C gain or loss caused by the conversion 

between forest and steppe. Furthermore, estimating C stocks is an important initial step 

for implementing Reduce Emissions from Deforestation and forest Degradation (REDD) 

programs, which aim to evaluate the economic value of forests as well as environmental 

values such as C sequestration capacity (Defries et al. 2007; Baker et al. 2010).  

Soil C stocks can be estimated using quantitative pits, which provide a direct 

measurement. In contrast, estimating aboveground C in forest typically relies on proxy 

data such as diameter at breast height (DBH) and height of tree. These proxy values are 

used to estimate species- and site-specific biomass by applying empirically developed 

allometric equations (Hoover 2008). Allometric equations often vary between sites and 

species. Using an allometric equation that is developed off-site can result in an 

underestimation of up 20% or an overestimation of up to 11% (Clark et al. 2001). It is 

therefore desirable to use allometric equations developed within a study region for a 

target species. However, to the best of our knowledge, no published allometric equation 
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is available for Siberian larch (Larix sibirica) or Siberian pine (Pinus sibirica) in northern 

Mongolia. 

The primary objective this study was to estimate aboveground and soil C stocks 

in the forest and the steppe ecosystems typical of the Hövsgöl region. We hypothesized 

that the steppe would contain more soil C than the forest because previous studies 

demonstrated that grassland contain more C due to deeper rooting zone (Jackson et al. 

2002; Jobbagy and Jackson 2000; Stevenson 1982). We also expected that the forest 

would contain significantly greater C in aboveground biomass.  Soil nutrients, root 

biomass, and soil texture were analyzed because these factors are known to affect soil C 

content. Previous research indicated that vegetation, particularly tree species, has a strong 

influence on soil C, nitrogen, phosphorus and exchangeable cations (Díaz-Pinés et al. 

2011; Vesterdal et al. 2008; Shiels and Sanford Jr 2001; Berthrong et al. 2009), hence we 

also expected significant differences in nutrient contents among ecosystems. 

 

4.2.Materials and Methods 

4.2.1. Study site 

The study area is located in the Dalbay Valley, part of the Lake Hövsgöl 

International Long-Term Ecological Research (ILTER) site, in northern Mongolia (51° 

01.405' N, 100° 45.600' E; 1670 m asl). The climate of the Hövsgöl region is described as 

harsh continental, with high annual and diurnal temperature amplitudes (Nandintsetseg et 

al. 2007). The mean annual air temperature of this region is -4.5 °C, with the coldest 

average temperature of -21 °C in January, and the warmest average temperature of 12°C 

in July (Nandintsetseg et al. 2007). The mean annual rainfall ranges between 290-300 
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mm in the lower altitudes (Namkhaijantsan 2006).The topography of the study site is 

characterized by elongated, almost parallel valleys and ridges that run east to west due to 

the drainage system of Lake Hövsgöl. In this region, forest is mainly distributed on north-

facing slopes, which is underlain by permafrost. On average, active layer thickness is 1.4 

(Sharkhuu et al. 2007). In contrast, grassland is mainly distributed on south-facing slopes 

where permafrost is absent. Riparian zone, which is a boggy area characterized by 

vegetative tussocks and underlain by permafrost, is located between the grassland and the 

forest.  

The dominant soil parent material at the eastern shore is Neogenic olivine basalt 

of volcanic origin. The northeastern shore consists of Proterozoic gneiss-slate, Late 

Riphean ophiolites, and Cambrian metamorphic groups with intrusions of Ordovician and 

Devonian granitoids and sub-alkaline granitoids (Goulden et al. 2006; Tomorhuu et al. 

2004). The dominant soil type in the forest is Mountain taiga-derno (Cryept), Alluvial 

meadow boggy cryomorphic soil (Fluvent) in the riparian zone, and non-calcareous dark 

Kastanozem (Aridic Borolls or Typic Ustolls) in the steppe (Batkhishig 2006).  

A distinctive tree-line is formed on the ridge tops between the north-facing 

forested area and the south-facing grassland. There is no definite tree-line between the 

riparian zone and the north-facing forest. The forest is dominated by Siberian larch (Larix 

sibirica), which composes 60-70% or more of the forest trees. At the study site, the 

second abundant tree species is Siberian pine (Pinus sibirica). Understory vegetation in 

the forest includes sub-shrubs (e.g. Vaccinum vitis-idaea), mosses (e.g., Rhytidium 

rugosum), grasses (Festuca lenensis) and forbs (e.g., Galium boreale, Chrysanthemum 

zawadskii, Peucedanum sp.). The vegetation on the south-facing slope is composed of 
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sedges (e.g. Carex pediformis), grasses (e.g., Festuca lenensis, Helictotrichon 

schellianum, Koeleria macrantha), forbs (e.g., Potentilla acaulis, Aster alpinus, 

Artemisia commutata) and sub-shrubs (e.g. Thymus gobicus).  

 

4.2.2. Belowground carbon estimation 

Soil sampling: 

To compare C content of the steppe and the forest, eight quantitative soil pits (50 × 

50 cm) at each ecosystem were excavated in 2009 and 2010, according to a method 

described by Hamburg (1984). In the steppe, vegetation cover and the thin litter layer was 

removed before excavation. Three to five mineral soil samples were taken at depths of 0-

10, 10-20, 20-30, 30-50, 50-70 and 70-100 cm during excavation of each pit in the steppe 

but samples from same depth and pit were composited before any analysis. Likewise, 

several mineral soil samples were taken at depths of 0-10, 10-20, 20-30, 30-50 and 50-70 

cm of each forest pit and were composited before any analysis. In the forest, coarse 

woody debris and vegetation cover was removed from the surface before excavation. 

Organic horizons (Oi, Oe, Oa) of the forest were also weighed and subsamples were 

taken. Care was taken to limit error in our bulk density estimations by maintaining 

straight sides for each pit and by measuring profile depths as precisely as possible. 

During the excavations, rocks in the pit walls were removed and weighed whenever 

possible. Larger rocks that could not be removed during the excavations were removed 

and weighed afterwards. In two cases, the rocks were too large to be removed so 

equivalent volume of rocks was used to estimate mass. The amount of rock material 

within the boundaries of a profile was estimated visually in all cases. Rocks, roots and 
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mineral soil were weighed separately. Subsamples of soil were weighed, air-dried in the 

field, and re-weighed to determine soil moisture content.  

 

Soil laboratory analyses: 

Whole-soil bulk density of each depth interval was estimated using the total air-

dried weight of soil excavated from each depth interval. The soil samples were further 

separated using a 2-mm sieve into coarse (2-10 mm) and < 2 mm fractions, and the 

relative weight percentage of < 2 mm fraction was calculated to estimate air dried weight 

of the < 2 mm fraction of a depth interval. Approximately 2 g subsamples of < 2 mm soil 

fraction were weighed and dried at 105° for 24 hr to determine weight conversion from 

air-dry to oven-dry weight. Bulk density of the < 2 mm fraction of any depth interval was 

based on the estimated oven-dry weight of the < 2 mm fraction of that depth interval. For 

further chemical analyses, < 2 mm soil samples were used. 

Soil texture was determined by the hydrometer method, modified from Gee and Or 

(1996). No pretreatment was applied to the samples. Approximately 30 g of < 2mm soil 

fractions were dispersed with 5% w/v Na-hexametaphosphate (HMP) by shaking for 12 

hr. The soil suspensions were transferred to sedimentation columns and manually 

inverted end-over-end for 30 seconds prior to initiation of sedimentation. Hydrometer 

readings were carried out at 1.5 hr and 24 hr to determine the clay fraction. After the 

hydrometer reading, each soil suspension was wet sieved using a 50 µm sieve and rinsed 

until no visible particles passed through the sieve. The texture classification was carried 

out by calculating the proportions of sand by mass retained on the sieve, clay from the 
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hydrometer data, and silt by difference, and using the USDA soil texture classification 

scheme (Gee and Or 1996). 

Soil pH was measured using 1:1 deionized water-to-soil ratio and an OAKTON® 

Waterproof pH Meter (Thomas 1996). Exchangeable cations were determined by 

displacement of cations with 1N NH4Cl. The extraction was carried out with 25:1 

solution-to-soil ratio on an extraction machine for eight hours (Sumner and Miller 1996). 

The extracted solution was analyzed for concentrations of K+, Ca2+, Mg2+, Na+ and Al+ 

by inductively-coupled plasma emission spectroscopy (Spectro Genesis, Mahwah, NJ). 

Plant available phosphorus was analyzed using the method of Kuo (1996) and Tiessen et 

al. (1984). Soil samples were extracted by shaking for 16 hours with 0.5 M NaHCO3 

(60:1 solution-to-soil ratio). Before adding sodium bicarbonate to soil, its pH was brought 

to pH=8 by adding 4 M NaOH. After extraction, the solution was centrifuged at 10000 

rpm and -1 °C for 12 min. Due to excess Na, the supernatant was diluted before analysis 

and concentrations of plant available P were determined using inductively coupled 

plasma spectroscopy (Spectro Genesis, Mahwah, NJ).  

Concentrations of organic C and total nitrogen were analyzed by dry combustion 

method using an elemental analyzer (Carlo Erba NA 1500 C/N Analyzer and Costech 

ECS 4010 CHNSO Analyzer). Prior research suggests that calcium carbonate was 

leached out (Batkhishig 2006), and field tests with dilute HCl suggested no presence of 

calcium carbonate. Therefore, we assumed that total C measurements reflected the 

organic C in the soil.  
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Statistical analysis:  

The element concentrations (μg g-1) as well as the C and nitrogen percentage 

concentrations were converted to content per meter square area (kg m-2 or g m-2) using 

bulk density of the <2 mm soil fraction. Visual examination of the data suggested that 

assumptions of the ANOVA analysis had been violated. Therefore, normality of the data 

and error terms were tested using the Shapiro-Wilk’s test. Homogeneity of the variance 

of the data and error terms were tested using O’Brien, Brown-Forsythe, Levene and 

Bartlett’s tests. The majority of the data and error terms were neither normally distributed 

nor in accordance with the variance homogeneity assumption. Hence, we transformed 

data using Log10 and tested again for ANOVA assumptions. In a few cases, ANOVA 

assumptions had been violated. In those conditions, Welch’s and Kruskal-Wallis’s tests, 

instead of ANOVA, were used to test whether ecosystems differ in C and nutrient 

content. When ANOVA assumptions were met, Log10 transformed data were tested using 

a one-way ANOVA with ecosystems treated as a fixed factor for each profile depth. All 

these analyses were carried out with JMP v8 (SAS Institute, Cary, NC). 

 

4.2.3. Aboveground carbon estimation 

Sampling procedure: 

To estimate plot-level tree biomass from DBH and height of tree using 

allometric equation, six blocks were randomly selected and established. Three of the 

blocks were located in the forest, south of the Dalbay River (south-blocks) while the 

other three blocks were located in the forest, north of the Dalbay River (north-blocks). In 

each location, two blocks were located near the forest edge (but at least 100 m away from 
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the edge), and one block was located in the deep forest (> 400 m from the edge). Within 

each block, four plots with a diameter of 14.6 m and an area of 167 m2 were established. 

The centers of the plots were located at least 36 m away from each other. Within the 

plots, one microplot with a diameter of 4 m was established to collect data on understory 

biomass and small trees with diameter at breast height (DBH) of 10 cm or less (U.S. 

Department of Agriculture Forest service 2005).The US Forest Inventory and Analysis 

(FIA) plot design was adapted for establishing plots.  

Data collection was done in summers of 2009 and 2010. Living trees larger than 

10 cm DBH at 1.3 m on each plot and saplings (DBH < 10 cm) on 4 m diameter 

microplot within a plot were measured.  In total, data of 354 trees were collected. DBH 

and height of tree were used to estimate individual biomass of trees using an allometric 

equation. Individual biomass of trees within a plot was summed and dived by the plot 

area to estimate plot level biomass. 

Nine trees were harvested to obtain actual biomass data to test fitness of 

allometric equations obtained from publications or from this study. DBH at 1.3 m and 

height of nine trees were measured before cutting them down. The DBH of the nine trees 

fell within two ranges; DBH of 11.5-13.5 cm and DBH of 21.0-21.9 cm, which 

represented two dominant DBH ranges of trees at the study site. For each tree, wet 

biomass of stem (with bark), branches and needles were measured in the field. Total 

biomass of each tree was obtained by adding stem, branch and needle biomass. Dry 

biomass of stem, branches and needles was obtained by drying them in an oven at 80 °C 

for 48 hours. Dry biomass of individual components (stem, branches and needles) of 

those three trees was used to estimate average water content. Dry biomass of the 
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components of nine trees was estimated using the average water content of the 

corresponding component. Biomass was converted into C using the default IPCC value of 

50% C in dry matter (Watson et al. 2000; Houghton et al. 1997).  

 

Allometric equations  

It is desirable to use allometric equations developed within a study region for a 

target species. However, no published site-specific allometric equations were available 

for Siberian larch (Larix sibirica) or Siberian pine (Pinus sibirica) in northern Mongolia. 

Hence, two approaches were applied to estimate aboveground biomass. The first 

approach was to apply allometric equations obtained from publications, in spite of the 

fact they were not specific to the current site or species. The second approach was to 

develop an allometric equation using harvested tree data.  

 

Allometric equations from other publications  

The number of allometric equations from the publications was constrained by 

two limitations. First, allometric equations must be developed for L. sibirica or P. 

sibirica specifically, regardless of growing location. Second, allometric equations must 

be developed for a species of Larix or Pinus genus which grows in similar ecological 

conditions. All allometric equations from the publications that met either of these 

requirements are listed in Appendix 3.  

The fit of allometric equations was assessed using linear regressions of 

measured biomass by estimated biomass. Criteria for goodness of fit included coefficient 

of determination, percentage deviation, intercept and slopes of linear regressions. For 
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estimated biomass of each component (i.e. stem, branch etc.), the average percentage 

deviation for each allometric equation was calculated as 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

∑
�𝐵𝑖𝑗−𝐵𝑖�

𝐵𝑖
×100%𝑖

9
  where: Bij is the estimated dry biomass of tree i by allometric equation j, 

and Bi is measured dry biomass of tree i by harvesting. The intercepts and slopes of 

regressions were tested whether intercepts were significantly different than zero and 

slopes were significantly different than one.  

 

Allometric equations developed in this study  

The allometric equations for biomass of each component of tree was obtained by 

estimating coefficients of the following equations, then by determining the best equation 

among these equations.  

 𝐵 = 𝑏0𝐷𝑏1    (1) 

𝐵 = 𝑏0𝐷𝑏1𝐻𝑏2   (2) 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1   (3) 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1𝐻𝑏2   (4) 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 + 𝑐0𝐻𝑐1  (5) 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 + 𝑐0𝐷𝑐1𝐻𝑐2  (6) 

where B was the dry biomass (kg) of various components, D was the diameter at 

the breast height (cm), H was the height of tree (m), and  𝑎, 𝑏0, 𝑏1, 𝑏2, 𝑐0, 𝑐1, 𝑐2 were 

allometric coefficients calculated from a non-linear function. Some other, less frequently 

used, derivative forms of the above equations were neglected. To avoid introducing 

systematic bias, data was not transformed. Two statistical procedures were used to 
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determine coefficients of equations and determine the best fit equation. Firstly, non-linear 

equation coefficients were determined by least square procedure, which were carried out 

using the R statistical package (R Development Core Team 2011). Adjusted coefficients 

of determination were obtained from the non-linear curve fitting procedure and the 

pseudo coefficients of determination were obtained by partitioning sums of squares 

manually. Goodness of fit of equations was assessed using the adjusted coefficients of 

determination. Secondly, equations for each biomass components were fitted using the 

maximum likelihood method using the R statistical package (R Development Core Team 

2011) with the bbmle package (Bolker 2012). The fit of the equations was assessed based 

on corrected Akaike weights of the ranked models according to corrected Akaike scores. 

The coefficients of determinations may be misleading when used for non-linear 

equations. Therefore, the selection criterion was primarily based on corrected Akaike 

weights. 

 

4.3.Results and discussion 

4.3.1. Belowground carbon and nutrients  

Soil carbon 

The C concentration of each depth did not differ between the steppe and the forest, 

except the C concentration of the first 0-10 cm soil (Table 4.1). The C concentration of 

mineral soils in the forest and the steppe was comparable with the organic matter 

concentration of the forest and the steppe, which was determined in a previous study at 

this site (Batkhishig 2006). Mean soil C contents of each given depth, as well as carbon 

content of the whole profile, did not differ between forest and steppe (Table 4.1, Figure 
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4.1). Contrary to our initial hypothesis, the vertical distribution of C content of the forest 

was also similar to the steppe. The proportion of C in the top 20 cm to the C in the first 1 

m of the steppe was 63% , which was greater than the global average value of 42% 

(Jobbagy and Jackson 2000) or the value of 49% in alpine steppe (Yang et al. 2010). 

Previous research demonstrated soil sand, silt, clay percentages, soil mass and root 

biomass were well correlated with soil C content (Wu et al. 2012; Parton et al. 1987; 

Burke et al. 1989), hence they were analyzed. Results show that these variables did not 

differ between the forest and the steppe soil, except at the depth of 0-10 cm (Table 4.2). 

Contrary to our initial hypothesis, the proportion of the root biomass of a depth of 0-30 

cm compared with the total root biomass did not differ between the forest and the steppe 

(91% in the forest versus 93% in the steppe, Table 4.2) and a greater proportion of root 

biomass was found in the upper part of the steppe soil profile (Table 4.2). The proportion 

of root biomass in the top 30 cm of the steppe profile was 93%, which was also greater 

than the global average value of 65% (Jackson et al. 1996) and 90% in alpine steppe 

(Yang et al. 2009).  

The C content of the whole soil profile in the forest (8.1 kg C m-2) was slightly 

greater than the soil C content of the Larch forest (6.3 kg C m-2) of Central Siberia 

(Matsuura and Hirobe 2010) but less than the soil C content of the forest (16.8 kg C m-2) 

in northeastern Siberia. The soil C content of the steppe at depths of 0-10 and 10-20 was 

comparable with other alpine steppe regions where C content was 2.42-2.07 kg C m-2 and 

1.80 kg C m-2 (Shi et al. 2012).  

Matsuura and Hirobe (2010) concluded that the soil C storage difference among 

different Siberian regions caused by the difference in parent material of soil. Consistent 
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with the results of Matsuura and Hirobe (2010), we found similar soil C content between 

the forest and the steppe which are underlain by the same soil parent material. 

Furthermore, soil of the Central Siberia and soil from the forest and steppe of our study 

site were both derived from basalt of volcanic origin (Goulden et al. 2006; Tomorhuu et 

al. 2004; Batkhishig 2006; Matsuura and Hirobe 2010) and had similar C content. In 

contrast, soils in the riparian zone of our study site and soils of the Northeastern Siberia 

were both derived from fluvial/alluvial or lacustrine deposits, having been developed 

during Pleistocene and Holocene by large river system (Matsuura and Hirobe 2010; 

Batkhishig 2006). The C content is greater in these two sites (25.5 kg C m-2 in the 

riparian zone and 16.8 kg C m-2 in the Northeastern Siberia) than the C content of either 

the steppe, forest at our study site or Central Siberian soil. Similar texture of soils, 

derived from the same parent material might have influenced the similarity of C content 

of soils with same parent material.  

 

Soil nutrients  

Soil nitrogen content was significantly greater in the steppe than that in the forest at 

depths of 0-10 cm, 10-20 cm and 20-30 cm (Table 4.3). We did not observe any 

significant difference of plant available phosphorus content between the steppe and the 

forest, although the mean plant available phosphorus concentration was greater in the 

forest than that in the steppe. Similarly, steppe and forest soil did not differ in 

exchangeable cations, except K+ and Al3+ content in the first 10 cm soil (Table 4.3). 

Although the mean value of Al3+ and Na+ were higher in the forest as expected, the 

difference was not statistically significant.  
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The difference in nitrogen content between the steppe and the forest was consistent 

with our expectations. This nitrogen content difference could have been caused by the 

presence of N-fixing plants, including lichens and legumes (Oxytropsis viridiflava, 

Oxytropsis strobilacea, Astragalus mongolicus, and Vicia multifida) in the steppe and 

efficiency of trees at translocating needle N before a needle senescence. The similar 

amount of exchangeable cations between the steppe and the forest could be the result of 

the similar amount of organic C content and clay fractions in the forest and the steppe 

soil.  

 

4.3.2. Aboveground biomass and carbon estimation 

Comparison of allometric equations developed in this study 

Different allometric equations were established to predict total, stem, branch and 

needle biomass, using DBH and tree height in addition to the allometric equations 

obtained from publications. Coefficients of determination of equations for total and stem 

biomass were greater than 0.9 and highly significant (P < 0.0001, Appendix 4). Among 

all forms of allometric equations, developed in this study for total and stem biomass, the 

simplest two forms of allometric equations (𝐵 = 𝑏0𝐷𝑏1 and 𝐵 = 𝑏0𝐷𝑏1𝐻𝑏2) had the best 

AICc scores and AICc weights (Appendix 4). Particularly, equations relating both height 

and DBH with total or stem biomass (𝐵 = 𝑏0𝐷𝑏1𝐻𝑏2) provided a better fit than the 

equation with only DBH (𝐵 = 𝑏0𝐷𝑏1). In contrast, equations relating only DBH with 

either branch or needle biomass (𝐵 = 𝑏0𝐷𝑏1) provided a better fit according to AICc 

score and AICc weights (Appendix 4). Adding tree height as the second independent 



125 
 

variable slightly improved DBH only equations. However, due to the greater variability 

of branch and needle biomass among the sampled trees, the best allometric equations 

developed for branch and needle were not statistically significant (Appendix 4). The 

second best equations for branch and needle biomass with both tree height and DBH were 

statistically significant but some coefficients of the equations were not statistically 

significant (Table 4.4). The deviation coefficients for total and stem biomass estimated 

using the allometric equations developed in this study were 9% and 12% while the 

deviation coefficients for the branch and needle biomass were 43-44%. The biomass 

equations for branch and needle were the poorest among those of the biomass 

components. Hence, branch and needle biomass data was not used for C calculation.  

There are limitations for estimating biomass of tree components. First, the number 

of destructively harvested trees was too few. Second, trees with bigger DBH (>25 cm) 

were not included in the sampling. The distribution of DBH was not normal and had long 

positive tail. Therefore, the number of trees with bigger DBH constituted less than 15% 

of the number of total trees. Hence, bigger trees were not included in the harvesting and 

DBH of trees that were harvested fell within two dominant ranges: DBH of 11.5-13.5 cm 

and DBH of 21.0-21.9 cm. However, the exclusion of trees with bigger DBH in the 

destructive sampling could have introduced a bias in biomass estimation of bigger trees 

and caused the increasing variation of total and stem biomass estimations with increasing 

DBH (Figure 4.2). For instance, the equation developed by Kajimoto et al. (2006) for 

trees of which DBH range is 2.24-18.6 cm noticeably underestimated the biomass of the 

trees of which DBH was around 21 cm. Therefore, it should be noted that the total or 
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stem biomass estimation for bigger trees using equations developed in this study would 

be highly unreliable. 

 

Comparison of allometric equations from other publications 

The total biomass estimated using the allometric equations obtained from 

publications were 39-42% greater than the measured total biomass (Figure 4.3, Appendix 

5). The coefficients of determination, intercepts and slopes of regressions did not vary 

much among allometric equations from the publications. The stem biomass estimated 

using equation for L. sibirica, growing in Iceland was relatively 13% less than the 

measured stem biomass, while the stem biomass using equation for L. sibirica, growing 

Manchuria region was relatively 23% more than the measured stem biomass. The stem 

biomasses estimated using allometric equations developed for L. gmelinii were either 

51% less or 41% more than the measured stem biomass (Figure 4.3, Appendix 5). The 

goodness-of-fit indicate that the equations for L. sibirica performed better than the 

equations for L. gmelinii. Particularly, Snorrason and Einarsson (2006) equation provided 

the best fit for the measured stem biomass. All allometric equations obtained from 

publications resulted in poor estimation of branch and needle biomass, although the 

coefficients of determination were relatively high (Figure 4.3, Appendix 5). For instance, 

the estimated branch biomasses using equations were relatively 25-34% less than the 

measured stem biomass, while the estimated needle biomasses were relatively 26-71% 

less than the measured needle biomass.  
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Aboveground biomass  

The plot level forest biomass and stem biomass estimated using allometric 

equations developed in this study ranged from 24 Mg ha-1 to 102 Mg ha-1 (Figure 4.4). 

The average total biomass estimated using allometric equations from this study was 59.6 

± 7.5 Mg ha-1, and stem biomass was 59 ± 7.4 Mg ha-1. The difference between total tree 

biomass and stem biomass was negligible, which could have been caused by the bias in 

the estimation of allometric equation coefficients and relatively small contribution of the 

branch and needle biomass to the total biomass (3-7% of the total biomass). 

Comparisons with total and stem biomass using other equations from publications 

gave divergent results. The total and stem biomass estimated using the equation 

developed for L. sibirica in Iceland (Bjarnadottir et al. 2007) were comparable to the total 

and stem biomass estimated using our allometric equation. Other allometric equations 

yielded results either too greater or too lesser (Figure 4.4) compared with total and stem 

biomass estimated using our allometric equations. Very conservatively, the aboveground 

biomass in the forest was 59 Mg ha-1 or 5.9 kg m-2.  

Data of total aboveground plant biomass of the steppe was obtained from the 

previous study conducted in the Dalbay valley (Ariuntsetseg 2003). The average dry total 

aboveground biomass of seven quadrats with area of 0.25 m2 per slope location was 

230.57 ± 42.65 g per 0.25 m2 for the upper slope and 179.55 ± 40.13 g per 0.25 m2 for the 

lower slope. The dry live aboveground biomass, excluding litter biomass, was 48.36 ± 

26.64 g per 0.25 m2 for the upper slope and 23.77 ± 6.05 per 0.25 m2 for the lower slope. 

The dry live aboveground biomass of the lower slope estimated in 2003 was similar to 
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the dry live aboveground biomass of the lower slope estimated in 2010 (23.77 ± 6.05 g in 

2003 versus 27.76 ± 4.28 g in 2010).  

 

4.3.3. Comparison of carbon content between the steppe and the forest  

Contrary to our initial hypothesis, C content of each depth and C content of the 

whole soil profile were similar between the forest and the steppe. The forest soil 

contained 8.14 ± 1.63 kg C m-2, and the steppe soil contained 8.29 ± 0.82 kg C m-2 

(Figure 4.5). Meta-analysis by Guo and Gifford (2002) indicated that soil C stock would 

increase by 8% after a land-cover conversion from forest to grassland. However, the 

meta-analysis also demonstrated that this soil C stock increase mainly occurred primarily 

in wetter ecosystem. In contrast, soil C stock was observed to decrease following a 

change from forest to grassland when annual precipitation was less than 1000 mm (Guo 

and Gifford 2002; Jackson et al. 2002). The soil C stock decrease following a change 

from forest to grassland in semi-arid environment could have been caused by limited C 

input due to shallower rooting depth as observed in our study and other studies (Schenk 

and Jackson 2002). Given the similar rooting depth and soil characteristics between the 

steppe and the forest, and low mean annual precipitation of northern Mongolia (200-400 

mm), it is unlikely that the projected conversion of forest to steppe in this region 

(Dagvadorj et al. 2009b) will result in an increased soil C stock. 

The C content of the total tree and the tree stem ranged from 12 Mg C ha-1 to 51 

Mg C ha-1, and was 29.8 ± 4 Mg C ha-1 (2.9 ± 0.4 kg C m-2) on average. This C estimate 

is based on stem biomass of live trees. The biomass of branches, needles, roots of live 

trees, biomass of snag and biomass of understory were not included in C estimation due 
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to great amount of uncertainty in the data collection and estimation. Therefore, the real C 

content in the forest would be much greater than the current estimation. The total 

aboveground plant biomass of the steppe measured in 2003 was 7.2 ± 0.06 Mg ha-1 for 

the lower slope and 9.2 ± 0.07 Mg ha-1 for the upper slope (Ariuntsetseg 2003). Using the 

same value of conversion factor of dry biomass to C content (0.5), steppe contained 3.6-

4.6 Mg C ha-1 (0.36 - 0.46 kg C m-2) in aboveground biomass. Compared with the C 

contained in the aboveground biomass of the steppe, the forest contained at least 3-7 

times greater C in the aboveground tree biomass (Figure 4.5)  

 

4.4.Concluding remarks 

Data generated from this study contains considerable uncertainty due to a small 

number of replicates and limited areal coverage. While further research is needed to 

estimate C sequestration capacity of the forest accurately, our study provided initial data 

on above- and belowground C stocks in this region. Our  estimations of aboveground 

biomass and above- belowground C content were comparable with the results of research 

conducted in similar ecosystem, suggesting the C stock estimations in this study are 

acceptable within the limit of the data.  

Although our estimate of aboveground C content was conservative, the C stored 

in the forest was at least 3-7 times greater than the C stored in the steppe. Hence, the 

projected biome conversion from forest to steppe will result in a substantial C loss, rather 

than gain, in this region. Furthermore, the projected increase in temperature, 

evapotranspiration and dust storms (Sato and Kimura 2006; Sato et al. 2007; Dagvadorj 

et al. 2009a) may cause a net loss of C, considering that a larger proportion of total soil 
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organic C is stored in near surface soil. The results of this research highlight the 

importance of the forest in the C balance of Mongolia.  
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Table 4.1 

The mean ± standard error of carbon concentration (%) and carbon content (kg m-2) of 

each horizon of the forest and the steppe (n = 8). Bold values were significant different at 

P < 0.05 level. All data were log transformed for statistical analyses but mean and 

standard error of original data are reported in this table. 

 

Depth, cm 
Concentration (%) Content (kg m-2) 

Forest Steppe Forest Steppe 

0-10 4.87 ± 1.10 2.63 ± 0.24 3.68 ± 0.94 2.99 ± 0.30 

10-20 1.17 ± 0.15 1.25 ± 0.16 1.74 ± 0.31 1.86 ± 0.28 

20-30 0.57 ± 0.09 0.65  ± 0.10 0.93 ± 0.14 1.06 ± 0.17 

30-50 0.42 ± 0.20 0.38 ± 0.08 1.16 ± 0.40 1.19 ± 0.24b 

50-70 0.20 ± 0.05 0.15 ± 0.04 0.62 ± 0.12 0.53 ± 0.14 

70-100  0.11 ± 0.03  0.66 ± 0.19 
Total sum 

carbon   8.14 ± 1.63a 8.29 ± 0.82a 
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Table 4.2 

The mean ± standard error of bulk density of <2 mm fraction (g cm-3), soil mass of <2 mm fraction (kg cm-2), coarse root biomass (g), 

and soil of each horizon of the forest and the steppe (n = 8). Significant differences at P < 0.05 level is indicated by different letters 

and bold face. Only root biomass data was Log10 transformed for statistically analysis but original data is reported. All data except pH 

were log transformed for statistical analyses but mean and standard error of original data were reported in this table. 

Note: * The percentage of sand, silt and clay fractions at a depth of 10-20 cm were not statistically significantly different between the steppe and 
the forest. However, soil texture classification was different. 
 

Depth, 
cm 

<2 mm fraction bulk 
density, g cm-3 <2 mm fraction mass kg m-2 Coarse root biomass, g Soil texture 

Forest Steppe Forest Steppe Forest Steppe Forest Steppe 

0-10 0.81 ± 0.05a 1.24 ± 0.05b 73.82 ± 4.94a 113.68 ± 4.94b 232.99 ± 54.66b 437.08 ± 69.32a Sandy loam Loamy sand 

10-20 1.50 ± 0.07a 1.57 ± 0.07a 144.87 ± 7.92a 146.58 ± 7.92a 48.32 ± 8.50ab 18.16 ± 2.62b Sandy loam* Loamy 
sand* 

20-30 1.72 ± 0.10a 1.52 ± 0.10ab 165.31 ± 8.83a 161.47 ± 8.83ab 14.55 ± 3.15ab 6.43 ± 1.29b Sandy loam/ 
Loamy sand Sandy loam 

30-50 1.65 ± 0.08a 1.58 ± 0.08a 330.42 ±  18.95a 315.60 ±  18.95a 21.15 ± 8.24ab 3.80 ± 0.48b Loamy sand Loamy sand 

50-70 1.68 ± 0.13a 1.68 ± 0.13a 321.23 ± 31.42a 329.63 ± 31.42a 7.41 ± 3.89a 1.44 ± 0.36a Loamy sand Loamy sand 

70-100  1.85 ± 0.13  563.22 ± 40.24 . 0.78 ± 0.22  Sand 
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Table 4.3 

The mean of pH, total nitrogen content (g m-2), plant available phosphorus (g m-2), exchangeable calcium (g m-2), exchangeable 

potassium (g m-2), exchangeable magnesium (g m-2), exchangeable aluminum (g m-2), exchangeable sodium (g m-2) and effective 

cation exchange capacity (cmol kg-1) of each horizon of the forest and the steppe (n = 8). Significant differences at P < 0.05 level is 

indicated by different letters and bold face. All data except pH were log transformed for statistical analyses but mean and standard 

error of original data are reported in this table. 

Depth, 
cm 

pH N (g m-2) P (g m-2) Effective cation exchange 
capacity (cmol kg-1) K+ (g m-2) 

Forest Steppe Forest Steppe Forest Steppe Forest Steppe Forest Steppe 

0-10 4.7 5.5 159.9 ± 45.9a 275.2 ± 31.5b 3.1 ± 1.4a 2.1 ± 0.8a 12.7 ± 2.1a 9.1 ± 0.9a 6.8 ± 0.9a 11.2 ± 0.7b 

10-20 4.8 5.6 88.8 ± 27.4a 175.6 ± 26.7b 4.1 ± 3.1a 1.8 ± 0.7a 6.8 ± 0.8a 6.3 ± 1.3a 10.2 ± 1.3a 7.9 ± 1.0a 

20-30 4.8 5.7 57.1 ± 10.9a 106.5 ± 16.3b 2.3 ± 1.5a 1.4 ± 0.6a 5.6 ± 0.8a 6.0 ± 0.7a 10.4 ± 1.1a 10.1 ± 1.1a 

30-50 5.0 5.7 74.6 ± 14.6a 136.1 ± 19.4a 3.7 ± 1.8a 3.4 ± 1.6a 5.8 ± 1.2a 5.7 ± 0.6a 17.8 ± 1.2ab 20.1 ± 1.1a 

50-70 5.2 6.6 49.7 ± 6.5a 82.3 ± 17.9a 1.7 ± 0.7a 3.2 ± 1.5a 6.2 ± 0.6a 5.1 ± 0.8a 14.6 ± 1.4a 18.2 ± 2.4a 

70-100  5.8  105.0 ± 26.1a  2.7 ± 1.3a  4.6 ± 1.0a  28.1 ± 3.2a 

Depth, cm 
Ca2+ (g m-2) Mg2+ (g m-2) Al3+ (g m-2) Na+ (g m-2) 

Forest Steppe Forest Steppe Forest Steppe Forest Steppe 

0-10 139.9 ± 32.1a 156.3 ± 14.1a 20.9 ± 4.5a 23.5 ± 1.9a 6.1 ± 2.1a 1.6 ± 0.4b 0.9 ± 0.4a 0.5 ± 0.2a 

10-20 135.9 ± 22.1a 160.2 ± 29.4a 20.6 ± 3.1a 26.5 ± 4.6ab 10.2 ± 3.1a 2.3 ± 0.9a 1.2 ± 0.5a 0.8 ± 0.3a 
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20-30 123.8 ± 22.6a 141.0 ± 26.4a 19.6 ± 3.8a 26.3 ± 5.6ab 10.8 ± 3.2a 3.7 ± 1.1a 1.0 ± 0.4a 0.8 ± 0.3a 

30-50 245.0 ± 43.3a 241.8 ± 24.8a 37.0 ± 6.7a 51.4 ± 7.4a 19.6 ± 6.2a 8.9 ± 2.8a 2.7 ± 1.0a 2.4 ± 1.0a 

50-70 290.3 ± 29.8a 217.6 ± 39.7a 34.7 ± 6.2a 45.6 ± 8.6a 15.8 ± 5.0a 12.3 ± 4.1a 1.9 ± 0.7a 1.5 ± 0.7a 

70-100  332.2 ± 76.7a  73.9 ± 21.6a  20.4 ± 6.4a  3.3 ± 2.5a 

* Not normally distributed; + variance were heterogeneous 
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Table 4.4 

Estimated coefficients, probability of coefficients, confidence interval of each coefficient, 

adjusted R2 and probability of the allometric equation 𝐵 = 𝑏0𝐷𝑏1𝐻𝑏2, used to estimate 

biomass of tree components. The allometric equations of tree components were fitted to 

the data from nine trees that were destructively harvested. 

  
Estimates ± 
Std. error Prob (z) 

Confidence 
interval 

2.5% 

Confidence 
interval 
97.5% 

R2
adj P 

Total 
𝑏0 0.03 ± 0.01 0.03* 0.01 0.05 0.98 <0.0001 
𝑏1 1.23 ± 0.27 <0.0001*** 1.17 1.66 
𝑏2 1.68 ± 0.30 <0.0001*** 1.62 1.93 

Stem 
𝑏0 0.02 ± 0.01 0.045* 0.01 0.03 0.98 <0.0001 
𝑏1 1.63 ± 0.27 <0.0001*** 1.02 1.73 
𝑏2 1.33 ± 0.30 <0.0001*** 0.65 1.43 

Branch 
𝑏0 0.004 ± 0.01 0.64 0.002 0.01 0.62 0.007 
𝑏1 -0.99 ± 1.39 0.48 -2.69 1.81 
𝑏2 3.83 ± 1.69 0.02* 1.68 5.79 

Needle 
𝑏0 0.002 ± 0.00 0.62 0.00 0.00 0.63 0.007 
𝑏1 -0.99 ± 0.39 0.01* -1.50 -0.21 
𝑏2 3.85 ± 0.31 <0.0001*** 1.39 3.96 
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Figure 4.1 

Carbon content (kg m-2) of the whole profile with a common depth of 70 cm. The boxes 

represent the upper and lower quartiles while solid and dashed lines represent the media 

and mean, respectively. The whiskers represent the 5th and 95th percentile of the data. 

  

  



142 
 

Figure 4.2 

Relationships of stem biomass (kg) of individual tree against diameter at breast height. 

Dark circles represent stem biomass measured by destructively harvesting, grey triangles 

represent estimated stem biomass using DBH and height of trees that was destructively 

harvested, and open rhombus represent all estimated stem biomass. 
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Figure 4.3 

Comparisons of estimated individual tree component (needle, branch, stem and total) 

biomass (kg) with measured component biomass. DBH and height of trees that was 

destructively harvested were used to estimate the component biomasses employing 

allometric equations obtained from the publications (listed in the Appendix 3) and 

equation developed in this study.  
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Figure 4.4 

The estimated biomass (Mg ha-1) for tree components (needle, branch, stem and total) 

employing allometric equations from the publications (listed in the Appendix 3) 

compared to the estimated biomass employing allometric equation developed in this 

study. DBH and height of trees measured in 24 sub-plots were used. 
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Figure 4.5 

Comparison of above- and belowground carbon 
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SUMMARY AND CONCLUSION 

Recent climate change may trigger changes in the terrestrial ecosystem’s C 

balance, enhancing decomposition and respiration, which could cause a positive feedback 

to atmospheric C and climate change. The need to better understand the response of 

terrestrial ecosystem to climate change regarding the significance of C storage and flux of 

the terrestrial ecosystem in global C cycling has resulted in increased research effort at 

experimental warming studies. The majority of warming studies have been conducted in 

moist tussock tundra, wet sedge tundra of North American or European Arctic, meaning 

that temperate and boreal forest ecosystems, regions at higher latitude with low 

precipitation, and arid and semi-arid biomes are underrepresented in experimental 

warming studies.  

The Hövsgöl region of northern Mongolia is located on the southern fringe of the 

Siberian continuous permafrost, and represents a transition zone of Siberian boreal forest 

to Central Asian steppe grassland. It is a unique and important region where soil C stocks 

and C fluxes can be studied in both forest and grassland that are in close proximity, and 

have the same climate and soil parent material. Furthermore, the forest in this region is 

underlain by permafrost with very low ice content which makes this region different from 

other high-latitude regions. This region has already experienced greater temperature 

increase than the global average and is under the increasing grazing pressure due to 

socio-economic transition. The study of climate change and grazing impacts on C 

dynamics in northern Mongolia is of particular interest because the area is expected to 

experience greater climate change than the global average and major shift in the forest 
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and steppe boundary, and grazing pressure is expected to increase as well. However, a 

study on how ecosystem and soil respiration would respond to climate change and 

grazing pressure, and how much carbon stored in the forest and steppe ecosystems has 

not yet conducted in this region.  

The general objective of this thesis was to study soil and ecosystem respiration 

responses to simulated climate change and grazing, and to assess C stocks in steppe and 

forest ecosystems in northern Mongolia.  

Chapter 1: The objective of this chapter was to test whether OSCs, suggested as 

an alternative warming method, can overcome the known shortcomings of OTCs and 

perform better in a field setting.  

Experimental manipulation of temperature in-situ using passive warming open-top 

chambers (OTCs) has been a common method to study climate change impact on soil and 

ecosystem respirations in a remote areas. OTCs have been used for investigating climate 

change impacts on ecosystem processes because they are inexpensive, non-destructive, 

and effective at generating temperature increase and suitable for remote areas that are 

logistically challenging to supply electricity. However, OTCs are known for increasing 

daily maximum temperature and amplifying diurnal temperature range while diurnal 

temperature range is predicted to decrease due to increased daily minimum temperature 

according to the IPCC predictions.  

Open-sided chamber (OSC) with a louvered top has been suggested as an 

alternative passive warming method that is designed to increase daily minimum 

temperature by decreasing losses of long-wave radiation, thus reducing diurnal 

temperature range. Their open sides and louvered tops also help to minimize adverse 
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effects on wind and water regimes. Studies examining the abiotic and biotic responses to 

the two chamber designs, set side by side, are needed to determine the relative 

performances of two chambers.  

The performance of both chambers was compared with control plots. OTCs 

significantly increased mean daytime temperature by 1.5 °C by increasing daily 

maximum temperature by 2.9 °C. In contrast, OSCs had no effect on either mean daytime 

temperature or daily maximum temperature. Mean nighttime air temperature was 

significantly cooler in OTCs (by 0.3 °C) than in control plots, but it was warmer in OSCs 

(by 0.2 °C). Soil temperature of both chamber designs did not significantly differ from 

soil temperature of control plots. However, soil moisture in the chambers was 

significantly less than in control plots. Both OTCs and OSCs delayed the flowering of 

graminoids but accelerated flowering of forbs, regardless of their different effects on air 

and soil temperatures. This suggests that the decreased soil moisture in both chambers 

could be the main reason of the similar flowering responses of forbs and graminoids to 

OTCs and OSCs. 

These results show that OSCs may not be an optimal method to simulate 

temperature increase, although OSCs manipulated air temperature in a similar pattern that 

was predicted by IPCC models. Instead, OTCs might be better option, although they 

generate an increase in daily temperature by increasing daily maximum temperature 

rather than minimum temperature.  

Chapter 2: I used OTCs to simulate climate changes and aimed to study how 

experimental warming will affect microclimate variables, and how experimental warming 

and subsequent changes in environmental variables affect soil respiration and its 
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temperature sensitivity in three ecosystems. Results of this study may allow us to discern 

soil respiration responses to the direct effect of climate change and indirect effect via 

changing microclimate of ecosystem.  

OTCs significantly increased air temperatures by 1.0-2.1 °C in the steppe 

compared to the control plots. OTCs had slightly warmer temperatures in the forest (0.2-

0.4 °C) and in the riparian (0.5-0.6 °C) compared to the corresponding control plots but 

the temperature increases were not statistically significant. The degree of warming by 

OTCs was affected by the canopy and openness and vegetation stature inside the 

chamber. Although soil temperature was greater in OTCs than in controls (by 0.6-1.4 °C 

in forest, and by 1.0-1.7 °C in steppe), the differences were not statistically significant. 

OTCs affected soil temperature of the riparian in not consistent manner. OTCs decreased 

soil moisture in the steppe (by 3-6%) and in the riparian (by 2%) but increased soil 

moisture in the forest (by 4-10%), indicating that responses of microclimate could vary 

due to ecosystem setting. Soil respiration rates were greater in OTCs than controls plots 

(by 0.20 g CO2 m-2 h-1) in the forest. Our results also indicated that soil respiration was 

mainly controlled by temperature in the forest, which was consistent with other studies. 

Meanwhile, the temperature increase by OTCs had little effect on soil respiration in the 

steppe, but soil moisture decrease caused by the chambers had a stronger effect, which is 

also consistent with many studies in arid and semi-arid systems. Although soil respiration 

in the forest was greater in OTCs than in control plots, temperature sensitivity of soil 

respiration was lower in OTCs (Q10 = 2.2 in OTCs versus Q10 = 5.8 in control). This 

result suggests that soil respiration may not respond to warming as strongly as 

anticipated. Although warming could enhance soil respiration rate in the forest, its effect 
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would lessen due to lower temperature sensitivity. Meanwhile soil respiration may not 

respond to warming in the steppe due to greater water stress. Overall, our results 

highlight the necessity of taking into account the heterogeneity of ecosystems to predict 

C flux responses to global change more accurately.  

Chapter 3: The ecosystems of northern Mongolia are under pressure of not only 

climate change but also intensified grazing due to recent socio-economic change. 

Livestock husbandry is the most common and important agricultural practice in Mongolia 

and has been part of the grassland ecosystem for thousands of years. However, no 

experiment has been conducted to address the response of C efflux to direct and 

interactive effects of grazing and warming in this region. We aimed to study how 

experimental warming, watering, and grazing affect soil  and ecosystem respiration, 

whether the effect of experimental warming differs across a topographical gradient, and 

how interactions of main treatments affect soil and ecosystem respiration.  

While OTCs had consistently less ecosystem and soil respiration, watering 

increased ecosystem and soil respiration regardless of the temperature decrease in 

watered plots. These results suggest that soil moisture is more important driving factor 

for biological processes in this semi-arid environment than temperature change. Grazing 

had contrasting effects ecosystem and soil respiration. Grazing decreased ecosystem 

respiration by reducing plant biomass. However, grazing increased soil respiration which 

could be result of greater carbon allocation to roots in response to grazing. Due to the 

greater plant biomass and coverage, the lower slope had greater ecosystem respiration 

than the upper slope, although the upper slope had greater plant available total nitrogen. 

Soil respiration on the other hand did not differ between upper and lower slopes. The 
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results show a robust effect of OTCs across the topographical gradient. Interactive effects 

of climate manipulations (chamber and watering), grazing and topography were minimal 

and the combined effects of the main factors were equal to the sum of their independent 

effects. 

The results indicate that changes in precipitation may have a stronger effect than 

temperature change in this semi-arid environment. However, the predicted temperature 

increase may exacerbate evapotranspiration and thus decrease both plant and soil 

respiration. Moreover, grazing could trigger greater loss of C from soil if it continues to 

increase soil respiration for a longer-term and if it decreases net primary productivity. 

Future research needs to be done on how grazing pressure would alter processes of C 

allocation to roots, root deposition to soil under different precipitation regimes. 

Chapter 4: According climate change models, forest at lower latitudes and 

altitudes in Mongolia is likely to be replaced by steppe due to the projected temperature 

increase and change in precipitation. This projected shift in forest and steppe boundary 

may result in substantial changes in ecosystem C storage. Quantifying C stocks stored in 

the forest and steppe of the Hövsgöl region is, therefore, of critical importance. We aimed 

to assess aboveground and soil C stocks in the forest and steppe in order to determine 

potential C gain or loss caused by the conversion between forest and steppe. 

Previous researches suggested that the conversion of forest to grassland could 

increase soil C stock because grassland can sequester more C due to deeper root 

penetration. Contrary to the global assessment of vertical C contentdistribution and root 

penetration in the grassland, no difference in vertical distributions of C and root biomass 

was observed between the forest and steppe. The forest and steppe soil contained 8.14 ± 



152 
 

1.63 kg C m-2 and 8.29 ± 0.82 kg C m-2, respectively. Carbon stock stored in the tree 

biomass ranged from 12 Mg C ha-1 to 51 Mg C ha-1, and was 29.8 Mg C ha-1 (2.98 kg C 

m-2) on average. In contrast, steppe contained 3.6-4.6 Mg C ha-1 (0.4-0.5 kg C m-2) in 

aboveground biomass. Compared with C contained in the aboveground biomass of the 

steppe, the forest contained at least 3-7 times greater C in the aboveground tree biomass 

but did not differ in soil C, and therefore, the projected decrease in forested area and 

expansion of steppe area may result in net C loss.  

Conclusions 

 Our results have indicated that temperature increase will have different effects on 

soil respiration in different ecosystems, even though those ecosystems have same mean 

annual temperature, precipitation and soil C content. Therefore, it is important to take 

into account the heterogeneity of ecosystems to predict C flux responses to global change 

more accurately. Climate change simulation by OTCs has showed that warming is likely 

to increase soil respiration in the forest but that warming effect on soil respiration will be 

lessened due to decreased temperature sensitivity of soil respiration in warmer condition. 

In contrast, we found that soil moisture is the key controlling factor of C fluxes in semi-

arid grassland, and thus changes in precipitation may have a stronger effect than 

temperature change.  

Although our results demonstrated that grazing increased soil respiration, it is still 

inconclusive how grazing will affect soil respiration in future due to the complex 

responses of soil and plants to the grazing intensity change. Grazing could reduce 

substance supply to a root system and thus decrease soil respiration. Alternatively, 

grazing may induce plants to allocate more C to their root system which could enhance 



153 
 

root exudates and soil respiration. Nevertheless grazing will likely to decrease overall 

CO2 flux due to larger impact on aboveground plant biomass. 

We conclude that CO2 flux of the region will not increase as predicted due to the 

projected steppe area expansion and insensitivity of soil respiration to warming in the 

steppe. Simultaneously, the capacity for the region to absorb more CO2 will likely to 

decline in both magnitude and extend due to the projected loss of forest and water stress 

for plants caused by temperature increase. While further research is needed to determine 

whether this region will act as C sink or source in future, this research provides initial 

data on C stocks of this region and findings of climate change and grazing impacts on C 

fluxes.   
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APPENDICES 

Appendix 1 

List of species, separated by graminoids and forbs, used in the analyses examining effects 

of chamber treatment and year on the timing of flowering and flower production. All are 

perennial except the annual Draba nemorosa. 

Graminoids   Structures counted 
Agrostis mongholica Inflorescences  

Carex spp.     Inflorescences 

Festuca lenensis    Inflorescences 

Helictotrichon schellianum   Inflorescences  

Hierochloe odorata    Inflorescences 

Koeleria macrantha    Inflorescences  

Poa attenuata     Inflorescences 

Forbs 

Amblynotus rupestris    Flowers 

Androsace incana    Flowers 

Arenaria capillaris    Flowers 

Artemisia commutata    Inflorescences 

Aster alpinus     Inflorescences 

Bupleurum bicaule    Inflorescences 

Draba nemorosa    Flowers 

Gentiana pseudoaquatica   Flowers 

Potentilla acaulis    Flowers 

Potentilla bifurca    Flowers 

Potentilla sericea    Flowers 

Sibbaldianthe adpressa    Flowers 

Thalictrum minus    Inflorescences 

Thymus gobicus     Flowers 

Veronica incana    Inflorescences  
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Appendix 2 

Summary of the plots 

 

Location Blocks Plots Slope 
Tree 

density 
(No ha-1) 

Basal 
area  

(m2 ha-1) 

Trees of which DBH is > 10 cm 

# of 
trees 

Average 
height (m) 

Average 
DBH (cm) 

South 
facing 
slope-edge 

P1 

A 20 4131.74 21.3 11 12.08 18.45 
B 10 4431.14 12.0 11 11.41 14.74 
C 5 6287.43 33.6 20 12.24 17.33 
D 25 3353.29 25.5 11 13.95 21.59 

South 
facing 
slope-edge 

P2 

A 17 4610.78 24.0 17 10.01 15.93 
B 15 9401.20 22.1 14 11.05 16.71 
C 5 1916.17 30.3 14 11.43 18.33 
D 4 8502.99 14.2 12 9.58 14.96 

South 
facing 
slope-deep 

P3 

A 11 2275.45 33.2 16 12.23 19.06 
B 7 1377.25 18.5 12 12.11 17.52 
C 7 2095.81 25.7 15 11.71 17.65 
D 5 299.40 10.2 3 12.40 25.09 

North 
facing 
slope-edge 

P4 

A 10 1137.72 37.7 19 13.82 19.63 
B 10 1017.96 53.8 16 15.67 25.86 
C 10 658.68 38.4 10 15.01 27.72 
D 10 538.92 20.0 8 12.18 22.83 

North 
facing 
slope-deep 

P5 

A 34 1317.37 23.4 15 11.65 17.47 
B 32 11976.05 9.05 2 12.09 31.01 
C 45 1197.60 1.4 2 8.31 12.35 
D 30 2155.69 11.4 13 9.91 13.48 

North 
facing 
slope-edge 

P6 

A 10 3592.81 13.9 5 14.94 24.20 
B 9 1437.13 21.3 5 15.12 28.87 
C 14 6586.83 31.4 9 16.81 23.80 
D 10 4610.78 18.8 8 11.77 21.33 

Total      268   
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Appendix 3 

All available allometric functions from other publications either developed for Larix 

sibirica or Pinus sibirica specifically, or developed for a species of Larix or Pinus genus, 

growing in similar ecological condition 

Species Function Constraints of a 
function Source 

Larix sibirica 
Bt = [119.734 × D50

1.4251 × (D50
2)0.2539]/1000 

D50 < 9cm Bjarnadottir et 
al. 2007 Bt = 102.1374 × D1.8073 × H0.3191 

Larix sibirica 
Bt= 0.1081 × D1.53 × H0.9482 3.3 cm < D < 31.6 

cm Snorrason and 
Einarsson 2006 

Bs= 0.0444 × D1.4793 × H1.2397 

Pinus contorta 
Bt = 0.1429 × D1.8887 × H0.4332 4.2 cm < D < 26.3 

cm Bs = 0.0669 × D1.5958 × H0.9096 
Pinus 
sylvestris Bs=[132.268 × (D2 × H)0.9287]/1000 3 cm < D < 49 cm Wirth et al. 

1999 

Larix sibirica 
Bs= 0.03994 × (D2 × H)0.8718 

Age=120 Wang et al. 
2005 Bb= 0.03389 × (D2 × H)0.5511 

Larix gmelinii 

Bt=101.977 × D2.451 
13.7 < D < 41.4 
equation modified 
from logarithmic 
equation for B 

Wang 2006 
Bs=102.311 × D2.154 

Bb=10-1.593 × D4.340 

Bn=10-1.851 × D3.934 

Larix gmelinii 

Bt=0.439 × D1.7 

2.24 < D < 18.6; 86 
< age <281 

Kajimoto et al. 
2006 

Bs=0.19 × D1.81 

Bb=0.0428 × D1.79 

Bn=0.0148 × D1.68 

Larix decidua 

Bt = 1.3245 × 10 + 1.8785 × 10-2 × D2 × 
H+3.2315 × 10-1 × D 

7.7 < D < 53.9; 5.6 
< H <24.9 

Muukkonen and 
Makipaa 2006 

Bb=-3.003+2.093 × ln(D) 
Bb=-2.62+2.613 × ln(D)+(-0.726) × 
ln(H) 
Bn=-3.201+1.578 × ln(D) 
Bn=-2.874+2.021 × ln(D)+(-0.618) × 
ln(H) 

Note: V – volume of stem (dm3); D – DBH at 1.3 m (cm); D50 – DBH at 0.5 m (cm); H – height 
(m); B – biomass (kg); Bt – total aboveground biomass, Bs – stem biomass, Bb – branch biomass, 
Bn – needle biomass.  
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Appendix 4 

Comparison of equations 

Dependent 
variable Equations AICc k AICc 

weighs Radj P 

Total 
biomass 

𝐵 = 𝑏0𝐷𝑏1𝐻𝑏2 75 3 0.96 0.98 <0.0001 

𝐵 = 𝑏0𝐷𝑏1 82.1 2 0.03 0.92 <0.0001 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1𝐻𝑏2 83.5 4 0.01 0.99 <0.0001 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 89.2 3 <0.001 0.92 <0.0001 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 + 𝑐0𝐻𝑐1 125.1 5 <0.001 0.92 <0.0001 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 +
𝑐0𝐷𝑐1𝐻𝑐2  

179.2 6 <0.001 0.99 <0.0001 

Stem 𝐵 = 𝑏0𝐷𝑏1𝐻𝑏2 73.6 3 0.85 0.98 <0.0001 

𝐵 = 𝑏0𝐷𝑏1 77.2 2 0.14 0.94 <0.0001 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 84.2 3 0.004 0.95 <0.0001 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1𝐻𝑏2 84.5 4 0.004 0.99 <0.0001 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 + 𝑐0𝐻𝑐1 120.1 5 <0.001 0.95 <0.0001 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 +
𝑐0𝐷𝑐1𝐻𝑐2  

180.6 6 <0.001 0.99 <0.0001 

Branch 𝐵 = 𝑏0𝐷𝑏1 55.5 2 0.76 0.35 0.055 

𝐵 = 𝑏0𝐷𝑏1𝐻𝑏2 57.9 3 0.22 0.62 0.007 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 62.6 3 0.02 0.35 0.054 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1𝐻𝑏2 68.8 4 <0.001 0.66 0.005 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 + 𝑐0𝐻𝑐1 92.8 5 <0.001 0.61 0.008 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 +
𝑐0𝐷𝑐1𝐻𝑐2  

162.5 6 <0.001 0.74 0.002 

Needle 𝐵 = 𝑏0𝐷𝑏1 40.4 2 0.75 0.35 0.055 

𝐵 = 𝑏0𝐷𝑏1𝐻𝑏2 42.8 3 0.23 0.63 0.007 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 47.5 3 0.02 0.35 0.053 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1𝐻𝑏2 54.9 4 <0.001 0.62 0.007 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 + 𝑐0𝐻𝑐1 78.2 5 <0.001 0.59 0.009 

𝐵 = 𝑎 + 𝑏0𝐷𝑏1 +
𝑐0𝐷𝑐1𝐻𝑐2  

155.6 6 <0.001 0.35 0.054 
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Appendix 5 
Comparison among available equations 

 
Larix sibirica 
(Snorrason) 

Larix sibirica 
(Wang) 

Larix gmelinii 
(Wang) 

Larix gmelinii 
(Kajimoto) Larix decidua Larix decidua 

with height On-site equation 

To
ta

l b
io

m
as

s Deviation 42%  39% 17% 41%  12% 

R2 0.97  0.93 0.93 0.97  0.99 

Intercept -6.22 ± 5.17 
(P=0.268)  

-0.73 ± 8.38 
(P=0.933) 

-28.50 ± 10.76 
(P=0.033) 

-8.68 ± 5.25 
(P=0.142)  

1.60 ± 3.59 
(P=0.559) 

Slope 0.81 ± 0.05 
(P=0.007)  

0.74 ± 0.08 
(P=0.014) 

1.95 ± 0.20 
(P=0.002) 

0.85 ± 0.05 
(P=0.026)  

0.98 ± 0.05 
(P=0.701) 

St
em

 b
io

m
as

s Deviation 23% 13% 56% 42%   9% 

R2 0.98 0.98 0.95 0.95   0.99 

Intercept -3.58 ± 3.64 
(P=0.358) 

-4.61 ± 3.98 
(P=0.285) 

-11.63 ± 6.89 
(P=0.135) 

-24.42 ± 7.81 
(P=0.017)   

0.91 ± 3.29 
(P=0.791) 

Slope 0.91 ± 0.04 
(P=0.082) 

1.28 ± 0.07 
(P=0.005) 

0.86 ± 0.07 
(P=0.088) 

2.91 ± 0.25 
(P=0.000)   

0.99 ± 0.05 
(P=0.847) 

B
ra

nc
h 

bi
om

as
s Deviation  48% 45% 38% 43% 43% 44% 

R2  0.87 0.93 0.91 0.87 0.91 0.67 

Intercept  
-2.75 ± 1.40 
(P=0.097) 

2.23 ± 0.56 
(P=0.007) 

-2.05 ± 1.08 
(P=0.106) 

-13.06 ± 2.93 
(P=0.004) 

-14.57 ± 2.67 
(P=0.002) 

0.56 ± 1.45 
(P=0.713) 

Slope  
3.06 ± 0.48 
(P=0.004) 

0.67 ± 0.08 
(P=0.004) 

1.38 ± 0.18 
(P=0.073) 

7.29 ± 1.14 
(P=0.001) 

8.00 ± 1.05 
(P=0.000) 

0.92 ± 0.24 
(P=0.749) 

N
ee

dl
e 

bi
om

as
s Deviation   71% 39% 50% 49% 43% 

R2   0.93 0.91 0.87 0.91 0.67 

Intercept   
0.84 ± 0.25 
(P=0.016) 

-1.13 ± 0.50 
(P=0.064) 

-1.75 ± 0.69 
(P=0.044) 

-2.06 ± 0.61 
(P=0.015 

0.24 ± 0.62 
(P=0.71) 

Slope   
1.88 ± 0.21 
(P=0.005) 

2.51 ± 0.33 
(P=0.003) 

4.19 ± 0.66 
(P=0.002) 

4.65 ± 0.61 
(P=0.001) 

0.92 ± 0.24 
(P=0.749) 
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