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A Computational Role for Arousal in Optimal Inference

Abstract

Making accurate predictions is one of the most critical functions of the brain. Whether made by a monkey
deciding where to forage, a deer deciding which way to run, or a wall-street broker deciding how to invest,
decisions are informed by expectations about possible future outcomes. These expectations are learned over
time through experience and are rapidly adjusted when they fail to match observations. Here I propose and
support the thesis that learning systems in the brain optimize the accuracy of predictions in a changing world,
even though this necessitates becoming insensitive to incoming sensory information under some conditions.
Furthermore I propose a biologically inspired model for achieving accurate predictions and suggest a novel
role for the arousal system in optimally adjusting the influence of incoming sensory information. I support
these theses with a series of experiments that utilize computational modeling, as well as behavioral and
pupillometric measurements in humans.
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ABSTRACT

A COMPUTATIONAL ROLE FOR AROUSAL IN OPTIMAL INFERENCE
Matthew Nassar

Joshua Gold

Making accurate predictions is one of the most critical functions of the brain.
Whether made by a monkey deciding where to forage, a deer deciding which way to
run, or a wall-street broker deciding how to invest, decisions are informed by
expectations about possible future outcomes. These expectations are learned over
time through experience and are rapidly adjusted when they fail to match
observations. Here I propose and support the thesis that learning systems in the
brain optimize the accuracy of predictions in a changing world, even though this
necessitates becoming insensitive to incoming sensory information under some
conditions. Furthermore I propose a biologically inspired model for achieving
accurate predictions and suggest a novel role for the arousal system in optimally
adjusting the influence of incoming sensory information. I support these theses with
a series of experiments that utilize computational modeling, as well as behavioral

and pupillometric measurements in humans.
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CHAPTER 1

Understanding the brain: levels of analysis.

The human brain contains approximately 100 billion neurons interconnected by
100 trillion synapses (Williams and Herrup, 1988). This tremendous complexity
enables feats of information processing that humble even the greatest achievements
of artificial intelligence and computer vision. However, this complexity also poses a
formidable challenge to anyone wishing to understand the how the system
functions. Not only is measuring each cog in the machine technically impossible, it is
also not clear what one would do with perfect descriptions of each of the

components. David Marr best formalized the issue in terms of perception as follows:

“[T]rying to understand perception by studying only neurons is like trying to
understand bird flight by studying only feathers: It just cannot be done. In order to
understand bird flight, we have to understand aerodynamics; only then do the
structure of feathers and the different shapes of birds’ wings make sense” (Marr,

1982) (p. 27)

Marr suggests three complementary levels of analysis necessary for completely

understanding a system. The top level, which he refers to as the computational



level, requires a normative approach. That is, one must determine the critical
problem being solved by the system and ask how the problem could be optimally
solved. The normative approach does not necessarily provide any information about
“how” the brain might solve a certain problem, but it will likely provide a set of
rules, which must be obeyed for any possible solution to the problem, much like
aerodynamics provides for flight. The second level of analysis proposed by Marr is
the algorithmic or representational level: how does the brain represent the
variables necessary to solve the problem. What are the actual algorithms employed
to achieve the desired function? Marr’s third level of analysis is one of
implementation: how does the system realize the algorithm in physical hardware

(Marr, 1982).

My dissertation explores how the brain learns using each of these levels of analysis.
The following sections aim to provide a coherent introduction to the concepts
relevant to my theses at each level. The first section examines a possible normative
framework for understanding learning in terms of prediction. The second section
examines the constraints on animal and human learning algorithms revealed
through behavioral studies. Finally, the third section discusses the biological

architecture available for mediating those algorithms.

Learning as predictive inference.



Learning, or experience dependent change in behavior, is one of the most robust
behavioral phenomena observed across species. It has previously been suggested
that some forms of learning serve to provide predictions for the future, which in
turn can be used for appropriate behavioral modifications (Preuschoff and
Bossaerts, 2007;Courville et al., 2006). However, a point that has been
underappreciated is the extent to which optimal predictive behavior depends on the
exact nature of the environment for which it is designed. Here I examine some
features of a series of optimal prediction algorithms designed for increasingly
complex environments. The comparison of these different predictive models will
reveal hallmarks of optimal inference in dynamic environments that are very
different from what one sees in optimal inference models tailored to static or

continuously changing environments.

The outcome of future actions can often be predicted due to regularities in the
process by which outcomes are generated. For example, sticking ones finger in an
electrical outlet leads to a fairly unambiguous and consistent result. This makes the
problem of predicting future electrical socket-related outcomes fairly simple; it
takes only one such experience to recognize that all such future actions are likely to
lead to negative outcomes. Future decisions can then be biased away from actions

that involve self-electrocution.



Some processes lead to far less reliable results. Take for example a monkey
attempting to predict the caloric yields he might attain by choosing one of several
foraging locations. The yield attained on one day may differ from that on the next,
as there is a fair amount of variability that cannot be controlled by the monkey.
Within this document I will refer to a stable source of irreducible variability as
noise. To specifically define noise, here I will assume that the foraging values at a
given location are drawn independently on each observation from a normal

distribution with mean p and standard deviation ox:

Xt ~N(M7 an)

Noise does not prohibit predictions, but it does provide an upper bound on
prediction accuracy. The prediction minimizing squared errors simply becomes the
mean of the distribution, u. Furthermore, noise changes the optimal strategy for
updating those predictions over time. Unlike the electrical outlet example, each
daily yield provides a fairly unreliable estimate of the true underlying distribution of
possible daily yields. The best possible strategy for forming a prediction involves
pooling all of the pertinent data, which can be done by simply taking the average of
all previous yields, which provides the best possible approximation of u. This
strategy can also be implemented in a Markov form, such that the observer need not
store all previous outcomes in memory. One such strategy for maintaining and

updating predictions efficiently is the delta rule, which was simultaneously



developed in the fields of animal behavior and machine learning (Rescorla and

Wagner, 1972;Sutton and Barto, 1998):

Bt—|—1 = Bt +C¥t X 5t

Where B.1 is the updated belief, which serves as a prediction for time t+1. The
prediction error, dy, is the difference between the observed outcome (X:) and the the

predicted outcome (By) at time t:

5t:Xt_Bt

The learning rate, o, determines the extent to which each new observation
influences the updated prediction. When o is equal to 1 predictions are set equal to
the most recent observation, whereas when o is equal to 0 the updated prediction is
simply equal to the prediction on the previous time-step, irrespective of the new
observation. For the case of the average over all previous outcomes, which is the
optimal strategy for updating predictions in the presence of noise, a: depends on

the total number of observations (including the current one):

o = —



As is demonstrated in figure 1.1, this strategy for updating predictions rapidly
converges on the true mean of the underlying distribution. In addition, the learning
rate term, which determines the extent to which predictions are influenced by new
data, decays to zero.

Although the average of all data is the best prediction of a noisy but stable variable,
it does not perform well under situations where the variable of interest changes in
time. For example, it might be the case that certain foraging locations are slowly
becoming more fruitful, whereas other foraging locations are becoming more
barren. Statistically, we can model a continuous change by assuming that a random
variable, Dy, is added to the mean of the outcome distribution at each time-step (u:)

to produce the mean for the next trial:

pey1 = py + Dy

Here we will assume that D:is drawn from a normal distribution with mean wq and

variance og:

Dt ~N(/.Ld, Jd)

When oq s large, past observations rapidly become meaningless, as the u:is an
uncertain predictor of ut+1 and an even more uncertain predictor of uen . Such

circumstances require relying more on recent observations, as these observations



are more accurate predictions of the mean on the current time-step. The optimal
strategy for updating predictions under such conditions is referred to as the Kalman
filter and is depicted in figure 1.2. The Kalman filter does a relatively good job of
estimating the mean of the distribution (ie best possible prediction) even though the
mean is changing at each time-step. Unlike the optimal updating algorithm in the
absence of change, the Kalman filter uses a learning rate, referred to as the Kalman
gain, that decays to a non-zero asymptote that depends on the drift and noise

variances (oqand on).

Although the Kalman filter can provide optimal and efficient predictions in a
continuously changing environment, it does not account for abrupt and
discontinuous changes (ie. the fruit tree at a certain foraging location dies and stops
bearing fruit). Change-points can render past information irrelevant to the problem
of predicting future outcomes and thus pose a major problem to standard learning
algorithms. Optimal predictions in a discontinuously changing environment have
been derived according to Bayes rule and rely on the intuition that optimal
inference after a change-point simply requires taking the average of all observations
since the most recent change-point (Wilson et al., 2010;Adams and MacKay,
2007;Fearnhead and Liu, 2007). Since change-point locations are unknown, they
must be inferred from the data themselves (ie lack of fruit at a previously high yield
location). In order to do this, an optimal predictive model must consider all possible

run lengths and the distribution of outcomes predicted by these separate possible



models of the world. Each run length has a separate predictive distribution over
possible outcomes and thus the probabilities of each possible run length can be
computed recursively according to Bayes rule by taking into account the likelihood
with which each possible run length would produce the new outcome (Wilson et al,,
2010). Predictions made by such a model accurately reflect the mean during stable

periods but rapidly adjust to the new mean after a change-point (see figure 1.3).

One interesting feature of optimal inference amid change-points is that not all data
are equally influential. Where the inference model rapidly adjusts predictions in
response to some observations (such as those subsequent to change-points) it is
relatively unaffected by other observations (such as those occurring after a long run
of stable data). This effect is visible in the learning rates in figure 1.3 b. Thus,
environments with change-points demand an optimal agent to perform frequent
online adjustments of the influence of new observations on predictions, while
environments with only noise and continuous drift prescribe observation influence

to decay to some asymptotic value and then remain constant.

The thesis that I will support in the ensuing chapters is that predictive learning
systems in the brain are attempting to optimize predictions in discontinuously
changing environments. Following directly from this thesis is the prediction that the
influence of information on predictions should depend heavily on the structure of

outcomes including the presence and recency of change-points. To test this idea of



developed a predictive inference task in which subjects directly report predictions
allowing direct measurement of the influence of each outcome on the predictions of
the observer. I demonstrate that influence depends critically on features
characteristic of a discontinuously changing environment, in particular probability

and recency of change-points.

Algorithms underlying learning.

Over the last 50 years, behavioral psychology has gained substantial insight into the
exact rules that guide how humans and animals update expectations in response to
experience. Some of the earliest learning studies were performed in classical
conditioning paradigms where predictions were measured in terms of an implicit
response to an innocuous (conditioned) stimulus that was previously paired with an
aversive or rewarding (unconditioned) stimulus. Behavior in such paradigms
suggests that the transfer of implicit responding is greatest when the absolute
difference between the expected and actual outcome valence is greatest. These
findings gave rise to the Rescorla-Wagner model for classical conditioning, which
bears a notable resemblance to the delta rule described above (Rescorla and

Wagner):

AV;H_l = amﬁ()\ - V;tot)



e RN

where Vy is the strength of the association between the conditioned stimulus (x) and
the unconditioned stimulus, Vi is the total associative strength of all conditioned
stimuli, o and  are rate parameters specific to the conditioned and unconditioned
stimulus, and A is the maximum conditioning possible. A slight rearrangement of
the equations reveals that they are identical to the delta rule format described

above, albeit with two separate rate terms.

In contrast to classical conditioning, operant conditioning probes the extent to
which the research subject alters choice behavior based on outcome history. The
delta rule family of models, including an actor critic implementation based on
biological architecture, has been used to describe behavior in a broad range of
operant tasks across a broad range of species (Daw et al., 2011). However, until
very recently such models have been assumed to contain a learning rate that is
constant for all trials of a given task performed by a given subject. As described
above, this constraint does not allow optimal learning under a large subset of
circumstances. In particular, such models are not capable of performing well when
learning to predict outcomes that can change discontinuously. Equally important is
the functional implication of this idea: if learning rates are constant then each

observation should affect stored beliefs equivalently. That is to say, there is no

10



necessity for a mechanism to amplify the impact of some pieces of sensory

information.

[ contend that human learning might be better described by a delta rule where the
learning rate is not constant, but rather adjusted according to the statistics of recent
observations. To support this hypothesis I propose such a model to describe the
behavior of human subjects in a predictive inference task designed to probe the
influence of new observations on the predictions of the observer. The model, which
contains a learning rate that is adjusted according to Bayesian estimates of change-
point probability and uncertainty, provides an improved description of subject
behavior over a fixed-learning model, as well as achieving better predictive

performance in a dynamic environment.

Implementation of delta-rule updating in the brain.

The delta rule is a strong candidate for a neural belief updating algorithm because of
its computational simplicity, effectiveness for a wide range of problems, and
relationship to known brain mechanisms. For example, neurons with activity
reflecting decision-related beliefs have been reported in several prefrontal areas,
including anterior cingulate cortex (ACC) (Kennerley and Wallis, 2009),

orbitofrontal cortex (OFC) (Padoa-Schioppa and Assad, 2006), and lateral pre-

11



frontal cortex (LPFC) (Kennerley et al., 2009). Prediction error-like signals have
been reported most notably in the ascending dopaminergic system (Schultz et al,,
1997), but also in the lateral habenula (Matsumoto and Hikosaka, 2007) and the
ACC (Kennerley etal.,, 2011;Matsumoto et al., 2007). Although neural correlates of
learning rate have remained relatively unexplored relative to prediction errors, two
recent fMRI studies identified an area in dorsal ACC with BOLD activity related to
learning rate. Specifically, activity in dorsal ACC correlates with volatility, a
statistical estimate of the rate at which the reward contingencies are changing
(Behrens et al,, 2007). In a Bayesian belief-updating model, this volatility estimate
determined the influence of new outcomes on the adjusted belief. More recently, a
BOLD response in the same region was shown to correlate with trial-by-trial

learning rates used by a model fit to subject behavior (Krugel et al., 2009).

Although human fMRI studies suggest a cortical representation of learning rate,
rodent behavioral studies have suggested that learning rate might also depend on
the LC, a brainstem nucleus that provides the noradrenergic (NA) modulation of
cortical and thalamic circuitry. LC is reciprocally connected to prefrontal cortex
(ACC and OFC), and noradrenaline is thought to modulate processing related to
attention and action monitoring in these regions (Aston-Jones and Cohen, 2005). LC
activity and prefrontal NA are greatest after the action-outcome contingency is
altered in a manner similar to the environmental change-points discussed

previously (Bouret and Sara, 2004;Dalley et al., 2001). These increased prefrontal

12



NA levels are thought to facilitate behavioral adaptation. This idea is supported by
behavioral experiments involving set-shifting, in which an animal is forced to switch
from a behavioral strategy that depends on one sensory cue to a new behavioral
strategy that depends on a different sensory cue. The ability of rodents to adapt in
such experiments is enhanced by pharmacological activation of LC (Devauges and
Sara, 1990). This facilitation of behavioral adaptation can be blocked by direct
application of a1 antagonists to medial prefrontal cortex (mPFC) (Lapiz and
Morilak, 2006), the evolutionary precursor to the cortical region thought to encode
learning rate in humans (ACC). NA deafferentation in the mPFC also leads to
impairment of adaptive set-shifting behavior (McGaughy et al., 2008;Tait et al.,
2007). Such behavioral effects are also seen when NA levels are modulated through
manipulation of the NA transporter, NET. Inhibition of NA re-uptake leads to
increased prefrontal NA and enhanced performance of rodents and monkeys
performing tasks that require reversal of a previously learned action-outcome
contingency. This performance gain was specifically attributed to a decrease in
errors of perseveration, suggesting that NA plays a role in controlling the rate of
behavioral adaptation (Seu etal., 2009). Many of these results can be accounted for
by a computational model in which the LC responds to environmental change-
points, thereby modulating prefrontal cortical processing via NA release such that
unexpected outcomes lead to greater behavioral adjustment (Yu and Dayan,

2005;Yu and Dayan, 2003).
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Although measuring LC activity directly is technically difficult, there is a recent
move to establish pupil diameter as a proxy for LC activity. Although direct
confirmation is still needed, this idea is supported by several lines of evidence,
including 1) a compelling example of simultaneous measurements of locus
coeruleus activity and pupil diameter in a monkey that are closely correlated
(Aston-Jones and Cohen, 2005), 2) similar modulations of pupil diameter and locus
coeruleus activity under certain task conditions such as changes in utility that affect
behavioral engagement (Jepma and Nieuwenhuis, 2010;Gilzenrat et al., 2010) and
3) a proposed anatomical substrate involving common activation from the nucleus
paragigantocellularis, which contributes to both locus coeruleus and sympathetic

nervous system function (Nieuwenhuis et al., 2010;Aston-Jones et al., 1986).

[ examined whether LC activation might dictate an adaptive learning rate to allow
optimal predictions in dynamic environments by using pupillometry to measure
arousal levels, and by proxy LC activity, while subjects made predictive inferences in
a dynamic environment. Subject pupils were larger during periods of uncertainty
after change-points and increased in diameter during change-point trials. Trial-by-
trial learning rates used by subjects could be predicted based on pupil response
both within and across subjects. In addition, a task irrelevant manipulation that
caused a robust increase in pupil diameter also systematically altered learning rates,
suggesting that the pupil-linked arousal system plays a causal role in setting the

adaptive learning used to optimize inference in dynamic environments.
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Figure 1.1 Optimal inference in a stable but noisy environment. A) Optimal inference in a
noisy but stable environment. B) Influence of each successive observation on updated
prediction measured in units of the learning rate from a delta-rule model.
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Figure 1.2 Optimal inference in a noisy and continuously drifting environment. A) Optimal
inference in a noisy and continuously drifting environment. B) Influence of each successive
observation on updated prediction measured in units of the learning rate from a delta-rule

model.
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Figure 1.3 Optimal inference in a discontinuously changing environment with unknown
change-point locations. A) Predicted (blue) and actual (red) outcomes over time (ordinate).
B) Estimation of the influence of each observation on the updated prediction. Although the
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optimal algorithm cannot be represented as a simple delta rule, here we compute the learning

rate for each trial that would allow a delta rule to reproduce the behavior of the optimal

model exactly.
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CHAPTER 2

An approximately Bayesian delta-rule model explains the dynamics of belief
updating in a changing environment

Matthew R. Nassar, Robert C. Wilson, Benjamin Heasly, and Joshua I. Gold.
Journal of Neuroscience, 2010, 30:12366-78

Abstract

Maintaining appropriate beliefs about variables needed for effective decision-
making can be difficult in a dynamic environment. One key issue is the amount of
influence that unexpected outcomes should have on existing beliefs. In general,
outcomes that are unexpected because of a fundamental change in the environment
should carry more influence than outcomes that are unexpected because of
persistent environmental stochasticity. Here we use a novel task to characterize
how well human subjects follow these principles under a range of conditions. We
show that the influence of an outcome depends on both the error made in predicting
that outcome and the number of similar outcomes experienced previously. We also
show that the exact nature of these tendencies varies considerably across subjects.
Finally, we show that these patterns of behavior are consistent with a
computationally simple reduction of an ideal-observer model. The model adjusts the
influence of newly experienced outcomes according to ongoing estimates of
uncertainty and the probability of a fundamental change in the process by which
outcomes are generated. A prior that quantifies the expected frequency of such

environmental changes accounts for individual variability, including a positive

18



relationship between subjective certainty and the degree to which new information
influences existing beliefs. The results suggest that the brain adaptively regulates
the influence of decision outcomes on existing beliefs using straightforward
updating rules that take into account both recent outcomes and prior expectations

about higher-order environmental structure.
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Introduction

Behavior often depends on the ability to predict future outcomes from past
experiences. In an unchanging environment, beliefs that underlie effective
predictions are typically stable. However, in a dynamic environment the past does
not always predict the future, and beliefs must therefore sometimes adapt rapidly,
particularly after unexpected outcomes (Rushworth and Behrens, 2008). One
common and effective algorithm for describing such adaptation is the delta rule

(Sutton and Barto, 1998;Williams, 1992):

Bt—|-1 = Bt =+ a X 5t [1]

where a new belief at time t+1 (B«+1) depends on the previous belief (B:) and the
error made in predicting the most recent outcome (J¢). The influence of the new
outcome is controlled by the learning rate (a:). When a;=0, the updated belief
reflects the previous belief but not the most recent outcome. When a:=1, the

updated belief reflects the most recent outcome but not the previous belief.

Assigning influence to new outcomes in a dynamic environment is difficult because
the source of prediction errors is generally unknown (Behrens et al., 2007;Yu and
Dayan, 2005). One source of error is stochastic fluctuations in an otherwise stable

action-outcome relationship (“noise”). Noise can make each outcome a bad

20



predictor of the next, implying that new outcomes should affect beliefs only
minimally. Another source of error is a fundamental change-point in the action-
outcome relationship (“volatility”). Change-points can render historical outcomes

irrelevant, implying that new outcomes should influence beliefs strongly.

Previous work has shown that, on average, human subjects elevate learning rates
during periods of volatility on probabilistic decision tasks. Such behavior can be fit
by both a Bayesian model for optimal belief updating and a computationally frugal
extension of delta-rule updating (Behrens et al., 2007;Krugel et al., 2009). Our goal
was to build on these studies and, instead of relying on model fitting to average
behavior on simple choice tasks, directly measure the learning rates used by
subjects in noisy and volatile environments. We also sought to reconcile these data
with both the Bayesian and delta-rule models to better understand the underlying

neural computations.

We developed a novel task that required subjects to predict the next numerical
value to be presented in a sequence (Fig. 1A). The values were chosen randomly
from a Gaussian distribution with a mean that changed occasionally, giving rise to
both noisy and volatile prediction errors. The subject updated each prediction as a
fraction of the current prediction error, equivalent to setting the learning rate (o).

Thus, the task provided a trial-by-trial measurement of outcome influence.
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We present several new findings. First, subjects recognized change-points from
unexpectedly large prediction errors, which temporarily increased prediction
uncertainty and the influence of subsequent outcomes. Second, there were strong
individual differences, including some subjects who were highly influenced by new
outcomes and others who generally ignored them. Third, these behaviors were
consistent with a modified delta-rule model, derived from a systematic reduction of
the Bayesian ideal observer (Wilson et al., 2010;Adams and MacKay,
2007;Fearnhead and Liu, 2007), in which individual differences were attributed to
different expectations about the rate of occurrence of change-points. The results
provide a novel, quantitative framework describing the dynamics of belief updating

in a changing environment.

Materials and Methods

Behavioral tasks

Human subject protocols were approved by the University of Pennsylvania internal
review board. Thirty subjects (13 female, 17 male; mean age = 25.2 years, range = 19 —
31 years) participated in the study after providing informed consent. Twenty-seven
subjects completed both the estimation and confidence tasks (see below), in that order.
One subject completed only the estimation task, and two subjects completed only the

confidence task.
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Estimation task. This task required subjects to predict each subsequent number to
be presented in a series of numbers. For each trial ¢, a single number (X:) was
presented that was a rounded pick sampled independently and identically from a
Gaussian distribution whose mean (u¢) changed at unsignaled change-points and
whose standard deviation (o0:) was fixed for each of the four experimental blocks of
200 trials (5, 15, 25, or 35, presented blockwise in ascending order for 14 subjects
and descending order for 14 subjects); that is, X -N(pe, 1), Change-points in the
mean of the generative distribution occurred after at least 5 trials plus a random
pick from an exponential distribution with a mean of 20 trials. Thus, the true rate of
change-points, or hazard rate (H, in units of change-points/trial) was 0 for the first 5
trials after a change-point and 0.05 for all trials thereafter. The average hazard rate

of a change-point across all trials was 0.04.

The display showed a line representing the range of possible numbers (0 to 300), a
bar representing the current estimate, a bar representing the most recent number
presented, and a line between these bars representing the current prediction error
(Fig. 1A). The subject updated his or her prediction on each trial to an integer value
between the previous prediction and the newly generated number (ensuring that
learning rates would fall between zero and one) using a video gamepad. Each
subject first performed two training blocks (standard deviations of 3 and 20). Each

session consisted of four test blocks.
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Subjects were told that the numbers were generated from a noisy process that
would change over the course of the task. They were instructed to minimize their
prediction errors, on average, across all blocks of the task; i.e., minimize ([6¢]).
Payout depended on how well they achieved this goal. Because prediction errors
depended substantially on the specific sequence of numbers generated for the given
session, we computed two benchmark error magnitudes to help determine payout.
The lower benchmark (LB) was computed as the mean absolute difference between
sequential generated numbers, (IX: = Xi—1l). The higher benchmark (HB) was the
mean difference between mean of the generative distribution on the previous trial

and the generated number, (1 Xe — pe—1), Payout was computed as follows:

(16:) > LB = $8
LB >(l9:])>2/3 LB+ 1/3 HB =$10
2/3LB+1/3HB>(%l)>1/2 (LB +HB) =$12

(I6¢1) < 1/2 (LB + HB) = $15

The reduced Bayesian model, when given the true hazard rate (0.04), was capable of

achieving the maximum payout for all task sessions.

Confidence task. This task was similar to the estimation task, except subjects also
indicated their confidence in each prediction. A series of numbers was generated as

above (3 blocks of 200 trials with standard deviations 10, 20, and 30). Subjects were
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instructed not only to make a prediction on each trial, as described above, but also
to indicate a symmetric window around the prediction that they believed, with 85%
confidence, would contain the next number. Subjects earned “points” on each trial in
which the generated number fell within the specified window. Feedback included a
sound to indicate when the generated number fell within the specified window and

a running tally of points earned by the subject.

Point values were chosen to incentivize confidence windows that were 85% likely to
contain the next number in the sequence, as follows. The expected value of points
earned across all possible window sizes was defined by a Gaussian distribution with
a mean equal to the minimum range capable of including 85% of the probability
density under the generative distribution. The number of points at stake for a given
window size was computed by dividing the expected value of that window size by
the probability that the new outcome would fall within this window (assuming the
window is centered on the actual mean of the generative distribution). Thus, total
points earned at the end of the session depended both on the ability to correctly
estimate the mean, but also the use of windows that approximated 85% confidence
intervals. Points earned by subjects (SP) were compared to the number points that
would be earned by the two benchmark strategies described above, if those
strategies used confidence-window sizes that maximized expected point value (LBP

& HBP). Payout was computed as follows:
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SP < LBP =$8

LBP <SP < 2/3 LBP + 1/3 HBP =$10
2/3 LBP + 1/3 HBP < SP < 1/2 (LBP + HBP) = $12
SP>1/2 (LBP + HBP) = $15

Data analysis. Prediction errors were computed by subtracting the subject’s
prediction (B:in Eq. 1) from the actual outcome (X;) on each trial. Learning rates
were calculated for each trial according to Eq. 1: the current update, B:1-B:, was
divided by the current prediction error, 6. Trial-by-trial error z-scores were
computed by dividing the absolute error magnitude by the standard deviation of the
generative distribution. Error-independent learning rates were computed by first
fitting a sigmoid-shaped, cumulative Weibull function (with four parameters,
governing shape, offset, lower bound, and upper bound) to learning rate as a
function of error z-score. The residuals to this fit represented learning rates that
were relatively independent of error magnitude. Relative uncertainty was computed
by taking the z-score of confidence window size for a given generative standard

deviation.

Models
Optimal task performance requires knowledge about the probability distribution
p(Xe+1 [ X1:), which is the predictive distribution over possible outcomes on trial t+1,

p(Xe+1), given all previous samples, (X1::). Optimal performance on the estimation
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task requires specifying the mean of this predictive distribution, whereas optimal
performance on the confidence task requires knowledge about the width of this
predictive distribution, as well. Computing the mean of the current predictive
distribution is difficult because of unsignaled change-points in the generative
process. If the most recent change-point was known to have occurred r trials ago,
the predictive mean could be computed simply by taking the mean of the last r;

outcomes:

t—'f‘t+1 [2]

However, because change-points are unsignaled, the optimal solution must be
reformulated in terms of all possible run-lengths, which describe the number of data

points that could have been generated from the current distribution:

p(Xt—H ’X1;t) = Z P(Xt+1 \Tt)p(rt ’X1:t)
Tt [3a]

where p(X;11| ) is the predictive distribution in X, conditional on run length, which is

computed from the previous r; samples treated as if they were generated by the current

distribution:
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P(Xiq1|re) = p(Xeq1 | X 41:0) :/dudff p(weq1|p, o)p(p, o|Te—ry11:t) (3]

and p(r,| Xi.) is the distribution of possible run lengths, given all previous data. Thus, the

mean of the predictive distribution can be described in terms of 7;:

pesr = Y e (r)p(re] Xue)
. 4

We applied two different classes of model to our task: a Bayesian ideal-observer model
that computes the full run-length distribution, and a reduced Bayesian model that

approximates the run-length distribution using only its first moment.

Full Bayesian model. The full Bayesian model computes the entire run-length
distribution recursively to generate the predictive distribution (Fearnhead and Liu,
2007;Adams and MacKay, 2007). An alternative but mathematically equivalent
approach, which does not use run length explicitly but instead maintains
representations of probability distributions over all possible values of the
parameters of the generative process (Behrens etal., 2007), is also possible, but we
do not use it here. Both approaches depend strongly on the hazard rate, which
specifies the prior probability of a change-point. When the hazard rate is known, the
full, recursive solution of the run-length-based model uses the message-passing
algorithm depicted in Fig. 6A. After ¢ trials, the model updates predictive

distributions (in X:+1) for each of the t+1 possible run lengths, as well as the
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probability distribution over those run lengths. When the hazard rate is unknown,
like for our subjects, the optimal solution is more complicated. It requires
maintaining a distribution over not only possible run lengths, but also possible
hazard rates, thus at least (¢+1)3 separate predictive distributions are required for
inference at time ¢ (Wilson et al,, 2010). To make this algorithm more tractable
computationally, we implemented a pruning algorithm previously shown to reduce

computations with a minimal loss of performance (Wilson et al., 2010).

Reduced Bayesian model. We also developed an even more computationally tractable
and neurally feasible inference algorithm that is based on a systematic reduction of
the full Bayesian model. In this model, the predictive distribution is not computed
across all possible run lengths but instead with respect to a single, expected run
length (7). On each trial, the model considers two possibilities: that a change-point
did or did not occur. Accordingly, the probability of a change-point (cp) on a given

trial, {1, can be computed using Bayes’ rule:

p(Xilep)p(ep)

pleplXs) = = p(Xy)
_ p(Xi|ep)p(cp)
p(Xilep)p(cp) + p(Xi|-cp)p(-cp)
B U-(X¢]0, 300)H
-~ U-(X4/0, 300)H + N-(X;|iu,062)(1 — H) [5]
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where U(X¢|0, 300) is the uniform distribution from which X: is generated
(independent of the previous generative distribution) if a change-point occurred,
N-(Xe|fu, 5?) is the predictive distribution if a change-point did not occur (and
thus depends on both 't and recent outcomes), and H is the hazard rate (set to 0.04,

the average value for the task).

The variance of the predictive distribution depends on both the run length and the

expected amount of noise from the generative distribution:

67 =N*+
Tt [6]

where N is the standard deviation of the generative distribution; see below for an
alternative model in which this quantity is inferred from the data. In Eq. 6, the first
term on the right-hand side reflects uncertainty about the outcome for the given p,
and the second term reflects uncertainty about the actual location of . As run length
increases, uncertainty about the location of 4 decreases, but uncertainty implicit in

the stochasticity of the generative process (noise) remains.

The expected (mean) value of the predictive distribution is based on two
possibilities, one that a change-point occurred and thus only the most recent data

point is relevant:
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C

pt =Xy [7a]

and a second possibility that a change-point did not occur and thus the mean is

updated to take into account the new data point:

pJ~cp _ Xt + rAt X ﬂt—l
¢ fe 41 [7b]

The mean of the posterior distribution is an average of these two possibilities,

weighted by the probability that a change-point occurred:

X, P i—1)(1 —
ﬂt:( t+rt>iﬂ't 1)( t>+QtXt
re+1 [7c]

An advantage of this approach is that this update equation can be rearranged as a

delta rule:

fit = fig—1 + g X & [7d]

where 6 is the prediction error (Xt — fit) and a is the learning rate:

1+Qtlr’t
oy = ———
o+l [7e]
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Similarly, the expected run-length is updated on each trial according to the two

possible generative scenarios and their respective probabilities:

72t+1 = (’I/;t + 1)(1 — Qt) + Qt [8]

Computing best-fitting hazard rates. To test whether prior expectations about
hazard rate could account for across-subject variability, we fit the reduced model to
data from each subject with the hazard rate as a free parameter. The model was
applied separately to each block, with N (Eq. 6) fixed to the true generative standard
deviation for that block. The best-fitting hazard rates were determined using a
constrained search algorithm (fmincon in MATLAB, min/max hazard=0/1) that
found the value of H that minimized the total squared difference between model and

subject predictions.

We considered two possible implementations of the reduced Bayesian model. The
first made predictions as the mean of the current predictive distribution ( /). The
second made predictions as the mean of the distribution at time t+1. This quantity
depends on not only the current predictive distribution, but also the uniform prior
distribution, because there is a possibility that a change-point might occur and thus
the next number would come from a new distribution. All analyses were done with
the first implementation, which provided better fits to the behavioral data (the ratio

of Bayesian information criteria of fits using the first versus the second model had a
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median [interquartile range] value across task blocks of 0.93 [0.86-0.97], paired

Wilcoxon test for Hp: median=0, p < 0.001).

Inferring noise using the reduced model. Because subjects were not told explicitly the
amount of noise (the standard deviation of the distributions used to generate the
numbers), we also developed a version of the reduced model that included an
algorithm to infer the amount of noise from the data. This model computes a

quantity whose expectation is equal to the generative noise:

. . P52 .
N2, = N2 4 gy % [ ot — N2
t+1 t t(N) Pt 1 t (9]
where N? is the inferred variance, which is updated according to a delta rule that

depends on both the run length and prediction error. The expected value of the

prediction-error term (in parentheses) is zero for non-change-point trials.

The learning rate, a), affects the extent to which new prediction errors influence
the noise estimate and was assumed to be proportional to the probability that the
trial contained information about variance (i.e., was not a change-point trial) and

inversely proportional to the the amount of such information previously collected:
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1-Q,
Qi(N) =

>_(1—8)

Thus, ayw) goes to zero if a change-point is likely to have occurred or as the number

of previous non-change-point trials goes to infinity.

Although this algorithm is capable of inferring noise, it uses learning rates that tend
toward zero after only a few trials and thus seem unlikely to be used by subjects. We
therefore modeled the possibility that learning rates used to infer noise were
related to those used to infer u. Specifically, we instituted a minimum a(x that
depends on the hazard rate (H), the model parameter that dictates the average

learning rate (see Fig. 8B):

where k is a scaling constant. For Fig. 9C,F I, Kk was set to 0.5 (results were similar

using values ranging from 0.2 to 1).

Reduced Bayesian model with under-weighted likelihood information. To more closely
match our measured behavioral data, we revised the reduced model to reduce the
weight of likelihood information in change-point detection. Thus, in lieu of Eq. 5, this

version computed (; as:
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U(X;|0, 300)*H

0, —
"7 U(X,0, 300)2H + N- (X, 62)M(1 — H) [12]

i

where the likelihood weight, 4, is a fractional term (0...1) that limits the use of
likelihood information in change-point detection. When A=0, the model becomes a
fixed learning rate delta-rule model in which the learning rate is determined by H.
When A=1, the model is equivalent to the reduced Bayesian model discussed above.
This model was fit to subject data with A and H as free parameters, using a
constrained search algorithm to minimize the squared difference between subject

and model predictions.

Reduced Bayesian model with drifting mean. A final alternative model used a
generative framework that assumed that the mean of the generative distribution
drifted from trial to trial. Although such drift did not actually occur, we wanted to
test whether subjects behaved as if it did. This kind of drift is often accounted for
using a Kalman filter, which provides an efficient means for updating beliefs based
on noisy samples from a drifting process. However, this approach performs poorly
in environments with discontinuous changes, such as in our task. Conversely, the
pure change-point model provides an efficient algorithm for updating beliefs when
the world changes only at discreet change-points. We therefore combined these

approaches, as follows. The drift was assumed to be N ~ (0, D?), where D is the drift
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rate. This generative framework prescribes more uncertainty about the location of

the true mean, which leads to a wider predictive distribution (to replace Eq. 6):

7 [13]

To consolidate uncertainty about the mean into a single variable and allow correct
computation of the learning rate (Eq. 7e), we re-computed the run length to reflect

the total uncertainty about the mean of the distribution:

o [14]

This adjusted run length was used for the learning rate (Eq. 7e) and update (Eq. 8)

equations. This model was fit to subject data with N, D, and H as free parameters.

Results

We used a novel estimation task to quantify how human subjects update beliefs in
the face of both noise and volatility. Below, we first describe the task and show that
subjects tended to use different learning rates to update beliefs under different
conditions. Second, we show that the choice of learning rate depended on the degree

to which estimation errors were larger than expected, the recency of such an
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unexpectedly large error, and the relative uncertainty of the subject. Third, we
introduce a novel model, which is a form of Bayesian ideal observer reduced to
implement delta-rule updating, that captures many key aspects of the data. Fourth,
we use the model to show that individual differences in performance suggest
differences in whether errors tend to be interpreted as either noise or volatility.
Fifth, we introduce several model variants that even more closely match human

behavior.

Learning rate varied from trial to trial. Thirty subjects performed the estimation and
confidence tasks in 57 total sessions. The tasks required the subject to sequentially
update a belief about the next number in a series. The numbers were picked from a
Gaussian distribution with a mean that changed at random intervals (change-
points) and a standard deviation (noise) that was stable over each block of 200
trials (Fig. 1A). Subjects were instructed to estimate the next number that would be
generated by the computer and to minimize the error on these estimates. Visual
feedback consisted of a bar that reflected the difference between the subject's
estimate and the most recently generated number shown on each trial and the mean
absolute error shown at the end of each 200-trial block. Payment scaled inversely

with the mean absolute error for the session.

In principle, payout maximization required basing estimates on the median (in this

case also the mean) of the generative distribution. However, information about the
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generative distribution was not given to subjects explicitly. Therefore, they were
required to infer properties of this distribution based on the previously observed
numbers. The behavioral data were consistent with a sequential-updating strategy
that approximated the central tendency of the generative distribution (data from an
example session are shown in Fig. 1B). Estimates tended to approximate the mean
during periods of stability and then change relatively rapidly at change-points in the

generative distribution to re-settle at the new mean.

In theory, a delta-rule algorithm might generate qualitatively similar, adaptive
behavior even when the learning rate is fixed to a constant value, because update
magnitude would be proportional to error magnitude. However, such a fixed
learning-rate model was not a valid description of behavior for this task (Fig. 1D).
The subjects used learning rates that differed from trial to trial and spanned the
allowed range from 0 to 1. Moreover, although the learning rates used by different
subjects varied considerably (the mean learning rate per subject ranged from 0.07
to 0.71), the particular sequence of learning rates chosen by each subject provided
better predictions than randomly ordered sequences of the same values (the median
[95% confidence intervals] value, computed across subjects, of the difference in
mean absolute error between 1000 randomized sequences versus the actual
sequence per subject = 2.59 [2.46 2.72], Wilcoxon test for Hp:median=0, p < 0.001).

Thus, subjects made effective predictions by assigning some outcomes more
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influence than others. The remaining analyses aimed to understand the rules that

governed how this assignment of influence was made.

Learning rate depended on surprising outcomes. One important factor that governs
the magnitude of the chosen learning rate is the occurrence of change-points in the
mean of the generative distribution. In general, when a change-point occurs,
information obtained prior to the change-point is no longer useful in making
predictions, and thus the learning rate should increase to emphasize newly arriving
information. Consistent with this idea, subjects typically used higher learning rates
on change-point trials (the first trial of a new mean of the generative distribution)

than on other trials (Fig. 2A).

Change-point locations were unknown to the subjects and thus must have been
inferred from statistical features of the sequential trial outcomes. One such feature
is the magnitude of error () relative to expected errors. Change-points are likely to
correspond to a surprisingly large error, where surprise is defined with respect to
the expectation of |6|. Consistent with this idea, the overall positive relationship
between a and |6| depended heavily on the standard deviation of the generative
distribution (Fig. 2B,C). A given absolute error magnitude tended to lead to a higher
learning rate for less noisy distributions, when such an error was less expected. To
further quantify this effect, we normalized absolute prediction errors by the

standard deviation of the generative distribution. This “z-scored error” was
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predictive of learning rate, relatively independent of the noise magnitude (Fig. 2C;
Spearman’s p across all subjects was 0.15, permutation test for Hy: p=0, p < 0.001 ).
We also note that this basic trend was consistent but varied considerably in

magnitude across subjects (Fig. 2D), a finding that we analyze in more detail below.

The effect of a change-point on the choice of learning rate persisted for many trials
beyond the occurrence of the change-point. In the trials following a change-point,
prediction errors tended to decrease sharply, as subjects adjusted their estimates to
match the new distribution (Fig. 3A, gray). In contrast, learning rates tended to
decrease more gradually following a change-point (Fig. 34, black). This gradual
decay in learning rate did not depend on the magnitude of the relative (z-scored)
prediction error: after adjusting for the relationship between learning rate and z-
scored error (see Fig. 2D), there were still changes in learning rate that persisted for
many trials after a change-point. The peak value in this adjusted learning rate
tended to occur on the first trial following a change-point and then decay gradually

(Fig. 3B).

Learning rate magnitude was related to confidence. Ideal-observer theory suggests
that any information acquired after a change-point should be highly influential
because the observer is uncertain about the current belief (Wilson et al,, 2010;Yu
and Dayan, 2003). Conversely, subsequent acquisition of information from a stable

environment should lead the observer to become more confident and less
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influenced by each new outcome. To examine this relationship between confidence
and learning rate and test how well it could explain the slowly decaying learning
rates shown in Fig. 3, we trained subjects on a task that required specification of an
85% confidence window. This task probed not only the central tendency of the
subject’s belief about the generative distribution, but also uncertainty that subjects
had in their own estimates. The example session in Fig. 4A shows estimates (solid
blue) and the 85% confidence windows (dashdot blue) specified by a subject over

the course of a full session.

There was a systematic relationship between the size of the confidence window and
the standard deviation of the generative distribution, with greater uncertainty
corresponding to higher noise (Fig. 4B). Moreover, subjects tended to make trial-by-
trial adjustments to the confidence window to reflect changes in uncertainty,
particularly after a change-point. On average, confidence windows were largest after
a change-point and gradually became smaller as subjects collected more data from
the new distribution (Fig. 4C). This effect was largest when there was less noise and
change-points were most easily detectable. The time course of this decay is similar

to the error-independent decay in learning rate (compare 4C and 3B).

In addition to these general trends across subjects, there was considerable
individual variability in the choice of confidence-window size (e.g., whiskers in Fig.

4B) that was related to learning rate. This relationship is typified by the behavior of
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two example subjects, shown in Fig. 5A & B. Subject SG (Fig. 5A) used small learning
rates and tended to specify large confidence windows, indicating high uncertainty
(Fig. 5A). In contrast, subject LY tended to use large learning rates and small
confidence windows (Fig. 5B). In addition to these differences in mean learning rate
and uncertainty between these two subjects, there was also a difference in the
relationship between the two variables. Subject SG, who tended to use small
learning rates overall, also tended to use relatively larger learning rates on trials in
which she was most uncertain about her previous estimate. In contrast, subject LY,
who tended to use large learning rates overall, also tended to use smaller learning

rates on trials in which she was most uncertain about her previous estimate.

Across subjects, mean confidence-window size was negatively correlated with mean
learning rate (Fig. 5C). This relationship implies that subjects who tended to use
large learning rates and thus be highly influenced by new information (like subject
LY) also tended to be more confident in their estimates. Moreover, the mean
learning rate used by a given subject across all conditions was predictive of how
that subject’s learning rate related to the confidence-window size from the previous
trial (Fig. 5D). Subjects who tended to use small learning rates (like subject SG)
chose larger learning rates following trials in which they specified a large
confidence window, suggesting that these subjects were most influenced by
outcomes when they were most uncertain. In contrast, subjects who tended to use

large learning rates (like subject LY) chose larger learning rates following trials in
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which they specified a small confidence window, suggesting that these subjects

were most influenced by outcomes when they were most certain.

The overall negative relationship between confidence window size and learning rate
might seem at first to contradict ideal-observer theory. As noted above, an ideal
observer should make extensive use of new information and therefore use high
learning rates when uncertainty is high. However, as we show in the next section
there are at least two sources of uncertainty, which for this task have potentially
different effects on an ideal observer. Taking into account these multiple sources of
uncertainty can help to clarify the relationship between actual and optimal

behavior.

A reduced Bayesian delta-rule model. Optimal prediction in a discontinuously
changing environment is a computationally demanding problem (Yu and Dayan,
2005;Wilson et al., 2010). A solution to this problem requires maintaining a set of
nodes, each of which maintains the predictive distribution for a possible duration of
stability, or run length (r; Adams and MacKay, 2007;Fearnhead and Liu, 2007).
Optimal predictions are made on each trial by taking a weighted average of these
nodes. However, in this approach the number of nodes scales linearly with the
number of observations if the rate at which change-points occur, or hazard rate, is
known (Fig. 6A) or with the number of observations cubed if the hazard rate is

unknown (Wilson et al., 2010). Thus, the optimal solution to our task must maintain
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and update likelihood estimates for thousands of predictions based on different

possible generative scenarios.

Our goal was to test models that could at least approximate optimal performance
while using more plausible mechanisms. We therefore considered a particular
reduction of the full Bayesian ideal-observer model (Fig. 6B). Instead of maintaining
information about each possible value of r, this model maintains only a single
"expected run length" ( 7) node. On each trial, the model considers two possible
generative scenarios: that the newly generated number came from the same
distribution as the previous one, or that the new number came from a new
distribution. Probabilities of these possible scenarios are computed according to
Bayes’ rule, and 7 is updated accordingly. A compelling feature of this complexity
reduction is that the new model implements a form of delta rule (Eq. 7). The
learning rate depends on both 7 and the probability that a change-point occurred
(Eqg. 7e). In the limit as the probability of a change-point goes to zero, the model
prescribes a learning rate equal to 1/( 7+1) (Fig. 6C). However, as the probability of
a change-point goes to one, the learning rate increases linearly toward one,
consistent with a discarding of historical information that is unlikely to pertain to
the new environment. The reduced Bayesian model achieves similar performance to
that of the full model, and both models performed better than a delta rule that used

a fixed learning rate that minimized absolute errors over a session (Fig. 6D).
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The reduced Bayesian model exhibited many of the same characteristics as human
subjects on the estimation task (Fig. 7). Like for the psychophysical data, the model’s
choice of learning rate tended to increase as a function of error magnitude, with
larger increases when the standard deviation of the prior, stable distribution was
small (Fig. 7A-C). Moreover, the model tended to have higher learning rates on the
trial after a change-point, which then decayed gradually over many trials (Fig. 7D &
E). In the model, this gradual decay is caused by the decay in uncertainty occurring
over the same period (Fig. 7F). Despite these overall trends that matched the
subjects’ behavior, the model tended to perform much better and in fact closely

matched the performance of the full Bayesian model (Fig. 6D).

A straightforward manipulation of the model could also reproduce much of the
across-subject variability. A key parameter of the model is the hazard rate (H),
which describes the expected rate of change-points. This parameter has been shown
to differ across subjects in change-point detection tasks (Steyvers and Brown,
2006). We fit the model to data from each subject separately for each different
standard deviation of the generative process with the hazard rate as a single free
parameter. This procedure allowed us to test whether the reduced model could
explain not only the trends in subject learning rates, but also whether differences
across subjects could be explained by varying expectations about the instability of

the generative environment.
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Subjects that tended to use higher learning rates were best fit by higher hazard rates
(Fig. 8A). This effect is due largely to the fact that higher hazard-rate models tend to
use higher learning rates (Fig. 8B) because they infer change-points more
frequently. The fit hazard rates tended to be much larger than the actual hazard rate
of change-points in our task, which, averaged across all conditions, was equal to
0.04 (vertical dashed line in Fig. 8A). Thus, the model suggests that subjects tended
to overestimate the frequency with which changes occur, to a degree that varied
considerably across subjects. Moreover, the different fit values of the hazard rate
affected model performance in a manner that at least qualitatively matched across-
subject differences, including the dependence of learning rate on z-scored error

(compare Figs. 2D and 7C).

Models with inferred noise better matched behavior. We extended the reduced
Bayesian model to account for our finding that subjects who tended to be most
confident in their estimates were also the quickest to update those estimates given
new information (Fig. 5C). This finding seems counterintuitive to the notion that
learning rate should be largest when confidence is lowest (and thus new
information should be highly informative). However, two main types of uncertainty
exist within the task that have opposite effects on the learning rate (Eq. 6). One type
of uncertainty is related to run length: when the run length is small, few samples
contribute to the estimate of the mean of the generative distribution, making that

estimate uncertain and therefore imposing higher learning rates (Fig. 6C). The
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second type of uncertainty is related to the expected standard deviation of the
generative distribution, or noise: when the estimate of noise is high, the model tends
to underestimate the probability of a change-point, leading to a decrease in learning
rate. We propose that this second form of uncertainty has a strong effect on the

choice of learning rates.

To examine this idea, we extended the model to include different forms of noise
estimation (Fig. 9) and compared performance of each form of the model to the
behavioral data presented in Fig. 5. The simplest form used estimates of noise that
were fixed within a block (Fig. 9A). In this case, overall uncertainty, like learning
rate, declined with run length (Eq. 6). Higher hazard-rate models inferred lower run
lengths, on average, leading to a strong, positive relationship between mean
uncertainty and learning rate across simulated sessions (Fig. 9D). There was also a
strong, positive relationship between uncertainty and learning rate across
simulated trials that tended to decline as a function of the mean learning rate, but

never to below zero (Fig. 9G). Thus, this model did not match the behavioral data.

The second model used a sequentially updated estimate of noise (Eq. 9). When
applied to the same task conditions that the subjects experienced, this model
generated estimates of noise that were highly unstable early in each session but
then stabilized as more information was collected (Fig. 9B). However, even these

stabilized estimates tended not to match the value of the true generative noise (the
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ratio of estimated to actual noise ranged from 0.5 to 1.2 after 200 simulated trials,
where hazard rate was set to the value that best fit performance of each individual
subject). The model’s dependence on hazard rate (in particular via biased values of
# in the prediction-error term in Eq. 9) gave rise to a negative relationship between
hazard rate and noise estimates, because with high hazard rates, errors tended to be
interpreted as change-points rather than noise. Because high hazard rates
correspond to larger learning rates, on average, these effects resulted in a negative
relationship between overall uncertainty and learning rate, like in the behavioral
data (Fig. 9E). There was also a strong, positive relationship between uncertainty
and learning rate across simulated trials that tended to decline as a function of the
mean learning rate, but never to below zero (Fig. 9H). Thus, this model also did not

match the behavioral data.

The third model used a more realistic, sub-optimal strategy for inferring noise (Eq.
11). This model assumed that beliefs about the noise of the generative distribution,
like beliefs about its mean, were updated using learning rates that varied
substantially across subjects. In particular, this model assumed that beliefs about
noise were updated using learning rates proportional to those used to update beliefs
about the mean of the distribution. This procedure led to more variable estimates of
noise than the other two models (Fig. 9C) and, like the second model, a strong,
negative relationship between overall uncertainy and learning rate across simulated

sessions (Fig. 9F). Moreover, unlike the second model and like the behavioral data,
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this model showed both positive and negative correlations between trial-by-trial
uncertainty and learning rate that depended on hazard rate (Fig. 91). Specifically,
high hazard rates corresponded to a negative correlation between learning rate and
total uncertainty, whereas low hazard rates corresponded to a positive correlation
between learning rate and uncertainty. These results imply that subjects use an
imperfect noise-inference algorithm that updates beliefs about noise rapidly and in
proportion to the rate at which they update beliefs about the mean, u. This
algorithm leads subjects who expect more changes to see less noise and can account
for inter-subject variability in the relationship between uncertainty and learning

rate.

Thus, the hazard rate is central to an account of the across-subject variability in
learning rates, uncertainty, and the relationship between the two. This account
suggests a strategic tradeoff that was navigated in different ways by different
subjects (Fig. 10). Subjects who were fit by high hazard rates tended to perform
relatively well in the first few trials after a change-point but relatively poorly during
periods of stability. Conversely, low-hazard subjects tended to perform relatively
poorly after change-points but well during periods of stability. Thus, the choice of
hazard rate reflected a tradeoff between successful prediction amid noise and

successful adaptation after change-points.
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Models that under-weigh errors better matched behavior. Above we used a model
with only a single free parameter, the hazard rate, to describe the main trends in
updating behavior for individual subjects and the population. However, this model
was quantitatively inconsistent with subject performance. In particular, subjects did
not react to change-points as effectively as the model. Subjects tended to use higher
learning rates after change-points than on other trials, but to a lesser extent than the
model (Fig. 11A). This sub-optimal behavior of human subjects reflected a

relationship between learning rate and z-scored error that was too flat (Fig. 11B).

One explanation for this difference might be that subjects underuse likelihood
information when assessing whether a change-point occurred on a given trial.
Adding a parameter (A in Eq. 12) to the reduced model that allows for such sub-
optimal computation lets the model range from a fixed learning rate delta-rule
model (A=0) to the reduced-Bayesian model (A=1). Fits of this parameter indicate
that all subjects fall between the two extremes, and that most of the subjects seemed
to adjust learning rates only modestly when compared to the reduced-Bayesian

model (Fig. 11C).

A second possible explanation for the shallowness of the relationship between
learning rate and z-scored error is that subjects maintain inaccurate beliefs about
environmental statistics other than hazard rate. For example, subjects might expect

the mean of the generative distribution to drift from trial to trial. This possibility can
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be modeled by adding drift variance (D in Eq. 13) to the variance on the predictive
distribution after each timestep. This model can be applied to subject data with drift
(D), hazard rate (H), and expected noise (N) all fit as free parameters (Eqgs. 13 and
14), producing predictions that have a more shallow relationship between learning
rate and z-scored error (Fig. 11B). This model described subject behavior better
than either the reduced-Bayesian model with only the hazard rate as a free
parameter (for 30 out of 30 subjects) or a delta-rule model with a fixed learning rate
(for 28 of 30 subjects). The reduced-likelihood model was similarly effective at
describing subject behavior relative to the reduced-Bayesian model with only the
hazard rate as a free parameter (for 30 out of 30 subjects) or a delta-rule model

with a fixed learning rate (for 29 of 30 subjects; Fig. 11D).

Discussion

The goal of this work was to examine quantitatively the influence of sequential
outcomes on the beliefs of human subjects in a dynamic environment with both
noise and abrupt, unsignaled change-points. Unlike previous studies (e.g., (Behrens
et al.,, 2007;Krugel et al., 2009;Corrado et al., 2005)), we used a task that allowed for
a trial-by-trial measurement of the learning rate (Fig. 1), which reflects the degree
to which a new outcome influences an existing belief. This approach allowed us to
identify two primary relationships between learning rates and the outcomes that

gave rise to them. The first was that the learning rate tended to increase as a
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function of the absolute magnitude of the most recent prediction error, scaled by the
expectation of noise. The second was that the learning rate, along with uncertainty,

also tended to rise immediately then decay slowly following a change-point.

To account for these results, we developed a simplified version of a Bayesian ideal-
observer model. The model’s learning rates are analytically tractable and depend on
only two variables: change-point probability and run length. For a given run length,
change-point probability is monotonically related to the magnitude of the absolute
error, scaled by the noise of the generative distribution. By relating learning rate to
change-point probability, the model simulates the positive relationship between
learning rate and absolute error in our behavioral data (compare Figs. 2C and 7B).
Thus, the model, like the subjects, resets beliefs when they are no longer applicable

to the current environment.

In contrast to change-point probability, run length is inversely related to both
learning rate (Fig. 6C) and uncertainty (Eq. 6). When the model recognizes a change-
point, run length is reset to one, leading to increased uncertainty and driving any
subsequent outcome to carry more influence (Fig. 7E). Run length increases as a
function of trials after a change-point, leading to a narrower predictive distribution
and smaller learning rates, consistent with our behavioral data (compare Fig. 3B
with 7E, and 4C with 7F). Thus, the model, like the subjects, relies more heavily on

historical outcomes when more pertinent outcomes have been observed.
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Our reduced model shares commonalities with a number of relatively simple models
developed previously to describe animal and human learning behavior. Several
models of classical conditioning, including Rescorla-Wagner, a straightforward form
of delta rule, and Pearce-Hall, which describes changes in associability between
stimuli, learn from surprising outcomes (Pearce and Bouton, 2001). However,
unlike our approach, these models do not distinguish between noisy and volatile
errors. Such a mechanism has been incorporated into a recently proposed extension
to the delta rule, in which recent errors are compared to older ones (Krugel et al.,
2009). This comparison allows the model to react to change-points with increased
learning rates, but not in a manner that scales with noise and without a notion of

uncertainty.

Bayesian approaches to belief updating, although often computationally demanding,
can provide such a notion of uncertainty by assessing the probabilities of many
possible generative scenarios. Such models can effectively describe human behavior
on armed-bandit tasks in which the reward structure either drifts (Daw et al., 2006)
or changes discontinuously (Behrens etal., 2007). We showed that a reduced
version of the optimal belief-updating algorithm, formulated as a delta rule, can
effectively model behavior when it includes elements of both the true generative
environment (discontinuous change) and a non-existent element (drift). This result

suggests that subjects adjust learning according to perceived generative processes
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that do not necessarily match the actual generative processes, an idea that likely
extends to armed-bandit tasks in which subjects are uncertain about the exact

reward structure.

Such differences between actual and perceived generative models might also
explain the substantial variability across subjects in the extent to which individuals
updated existing beliefs based on new information. Some subjects tended to
maintain existing beliefs under nearly all conditions (i.e., had learning rates near
zero). In contrast, other subjects tended to adjust their beliefs dramatically in
response to each new outcome (i.e., had learning rates near one). This variability
was related to subjective certainty, in that subjects who used higher learning rates
were also more confident in their predictions and tended to show more negative

relationships between uncertainty and learning rate.

The reduced Bayesian model can account for this individual variability by adjusting the
prior probability of change-points, or hazard rate. Increasing the hazard rate leads to
higher estimates of change-point probability and thus higher learning rates, on average.
Under these conditions, a larger proportion of errors are attributed to change-points,
rather than noise. This attribution leads to a chronic underestimation of noise and
accounts for the otherwise counterintuitive, negative relationship between average
uncertainty and learning rate. Thus, the model suggests that individual variability reflects

a form of perceptual bias about how errors are interpreted.
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Such a perceptual bias might be useful if it reflects the true probability of change-points
in the current environment, particularly if new information is scarce. However, we found
that most subjects behaved as if they substantially overestimated the true hazard rate (Fig.
8). Thus, individuals appear to have preconceived strategies for coping with probabilistic
environments. Given the computational complexity of existing models for online
inference of hazard rate (Wilson et al., 2010), it seems plausible for such higher-order
policies to develop over a longer time, either through experience on the developmental
timescale or perhaps even evolutionary selection. However, this still leaves open the

question of why such diverse policies exist across our subject pool.

The answer to this question might involve a fundamental trade-off inherent in selecting a
hazard rate. Using a high hazard rate implies high sensitivity to change-points, but over-
sensitivity to noisy outcomes during periods of stability. In contrast, lower hazard rates
provide less sensitivity to noisy outcomes but also less sensitivity to change-points.
Sensitivity to either change-points or noise might have different consequences under
different conditions or for different individuals, giving rise to the diversity of
predispositions about hazard rate that we observed. One potential genetic substrate of this
predisposition is a polymorphism in monamine catabolism enzyme COMT that leads to
lower learning rates in reversal tasks but improved performance in working-memory
tasks (Krugel et al., 2009;Bruder et al., 2005). Our task is, to our knowledge, the first to
demonstrate both the advantages and disadvantages of hazard-rate policy and thus may
serve as a valuable tool for determining whether COMT or other polymorphisms play a
role in navigating this trade-off.
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A strong motivation for the form of reduced Bayesian model that we used was its
relationship to delta-rule models of learning, whose biological underpinnings have been
studied extensively (Niv, 2009). Among the strongest biological evidence is the
discovery of signals in the brainstem dopaminergic system that encode a form of reward-
prediction error (6 in Eq. 1; (Schultz, 1998)). More recent work has begun to link these
prediction-error signals to activity in anterior cingulate cortex (ACC), a brain area
thought to encode information related to subjective beliefs used for decision-making.
ACC neurons encode subjective beliefs about outcome probability and value and action
cost (Kennerley et al., 2009). Single neurons in monkey ACC also encode prediction
errors, a finding that is corroborated by human fMRI and EEG data (Matsumoto et al.,
2007;Hayden et al., 2009;Debener et al., 2005). Ablation of ACC in macaques leads to
impaired use of outcome history in the guidance of action selection, further suggesting a

role in belief updating (Kennerley et al., 2006).

Despite these advances in understanding neural substrates for delta-rule learning in
terms of prediction errors (8§ in Eq. 1), less is known about the learning rate (a in Eq.
1). The learning rate regulates the relative contributions of stored information
about previous outcome history and the new sensory information about the current
outcome. One possible implementation involves interactions between top-down
cognitive control and bottom-up sensory processing and thus might be related to

similar mechanisms of attention (Dayan et al., 2000;Posner, 2008). However,
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nothing is known about how those mechanisms relate to the learning rate we

examined in this study.

Our model provides several insights that might help identify some of the underlying
mechansims. The first is that learning rate depends critically on the estimated
change-point probability. Change-point probability is related to absolute prediction-
error magnitude, scaled by expected uncertainty. Absolute prediction-error signals
are encoded by neurons in monkey ACC, the same area thought to encode decision-
relevant beliefs and prediction errors related to those beliefs (Matsumoto et al,,
2007). Thus, the ACC might also contain at least one of the necessary variables to
compute learning rate. Consistent with this idea, fMRI measurements of the ACC in
human subjects engaged in a dynamic probabilistic task correlated with a model
parameter (volatility) that reflected an optimal assessment of the rate at which
reward contingencies were likely to be changing and learning rates fit to subjects
(Behrens et al., 2007;Krugel et al., 2009). This signal might also include subjective
hazard-rate biases, because subjects who were best fit by high learning-rate models
tended to show larger ACC BOLD responses to new outcomes than subjects fit by

low learning-rate models.

Another prediction of the model is that learning rates are computed according to
run length. It is unknown whether the ACC encodes run length, however it would

provide a parsimonious solution to the compartmentalization of belief updating
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machinery within the brain. Theoretical work has also suggested that an uncertainty
signal inversely related to run length might be encoded by a more global
neuromodulatory system, such as the locus coeruleus-norepinephrine system (Yu
and Dayan, 2005). Our task and model provide a framework for testing this

possibility.
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Figure 1. Estimation task and its relationship to prediction errors and learning rate.
A, Schematized trial of the estimation task. The subject makes a prediction (blue)
and is then shown the outcome (red) and the error made in predicting the outcome
(teal). After the subject updates his prediction as a fraction of the error, a new
outcome is generated. B, An example session. Numbers (red line) are generated
from a normal distribution with a variance that is constant within blocks of 200
trials (vertical, dotted lines) and a mean (dashed black line) that changes at random
times. The subject’s trial-by-trial predictions are shown in blue. C, Trial-by-trial
prediction errors from the session in B (actual in red minus prediction in blue).
Histogram (right) shows the distribution of prediction errors made over the course
of the entire session. D, Trial-by-trial learning rates from the session in B, computed
as the fraction of the prediction error used to update the next prediction using a
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delta rule, as shown. Histogram (right) shows the distribution of learning rates
across the entire session.
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Nassar et al.
Figure 2
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Figure 2. Learning rates increased after unexpected errors. A, Mean+SEM learning
rates on trials in which the mean of the generative distribution changed (ordinate)
versus on other trials (abscissa; error bars are obscured by the points). Points are
data from individual subjects. Filled symbols indicate Wilcoxon test for Hp: equal
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median learning rates on change-point and non-change-point trials, p<0.05. B,
Learning rate plotted as a function of median absolute error magnitude, averaged
using running bins of 150 trials, for four different standard deviations of the
generative distribution, as indicated. Data averaged across all subjects. Solid and
dashed lines indicate mean and SEM, respectively. C, Learning rate plotted as a
function of median relative error magnitude, plotted as in B. Relative error
magnitude was computed by dividing the absolute error magnitude by the standard
deviation of the generative distribution. D, Individual subject learning rates plotted
as a function of relative absolute error magnitude (gray lines). Black line indicates a
cumulative Weibull function fit to data from all subjects.
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Figure 3. Learning rates decayed slowly after change-points. A, Prediction errors
(gray, left ordinate) and learning rates (black, right ordinate) plotted as a function of
trials after a change-point. Solid lines indicate mean across all subjects and all
conditions, dotted lines indicate SEM. B, Learning rate residuals plotted as a
function of trials after a change-point. Residuals were computed by subtracting the
learning rates predicted by the cumulative Weibull fit shown in Fig. 2D from the
actual learning rates, and thus reflect the portion of learning rate that was not
explained by relative error magnitude. Points and errorbars are mean+SEM across
all subjects.
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Figure 4. Subjective confidence measurements. A, An example session of the
confidence task. Subjects specified a symmetric window (dashed blue lines) around
their estimate (solid blue line) that they were 85% certain would contain the next
number (red) generated using the current mean (dashed black line) and standard
deviation (stable in blocks, indicated by the vertical, dotted lines). B, Box-and-
whisker plot (central line is median, box is interquartile range, and whiskers are the
data range) of the distribution of the mean width of the 85% confidence window
computed per subject for each standard-deviation condition. C, Relative uncertainty
as a function of trials after a change-point. Relative uncertainty was computed by
dividing the specified confidence window size by the size of the smallest window
capable of including 85% of the probability density in the actual generative
distribution (x-axis markers in B). Solid and dotted lines indicate mean and SEM,
respectively.
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Figure 5. Relationship between confidence and learning rate. A, B, Trial-by-trial
learning rates plotted as a function of uncertainty (confidence-window width) for an
example task block (std=20) for two different subjects. Solid lines are linear fits.
Arrows indicate the mean values of the confidence-window width and learning rate.
C, Mean relative uncertainty (computed as the z-scored confidence-window width
across all conditions per subject) plotted as a function of mean learning rate.
Symbols and error bars are mean+SEM per subject. Solid line is a linear fit (r=-0.38,
Hop: r=0, p=0.04). The negative correlation implies that subjects who used higher
learning rates tended to be more certain about their predictions. D, Trial-by-trial
relationship between relative uncertainty and learning rate per subject (ordinate,
computed as Spearman’s p as in A and B, with filled symbols indicating Ho: p=0,
p<0.05; a positive/negative value indicates that the subject tended to use
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higher/lower learning rates on trials in which they were more uncertain about their
previous prediction) plotted as a function of the average learning rate used by that
subject. Symbols and errorbars are mean+SEM per subject. Solid line is a linear fit
(r=-0.44, Hp: r=0, p=0.02). The negative correlation implies that subjects who used
lower learning rates tended, on average, to have more positive trial-by-trial
relationships between uncertainty and learning rate.
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Figure 6. Bayesian model. A, Message-passing algorithm for the full model. Run
length (r) refers to the number of data points obtained previously from the current
generative distribution. On each trial, the distribution either changes, and r is set to
zero, or the generative distribution does not change, and r is increased by one. After
t trials, the algorithm must maintain and update t+1 predictive distributions (one
for each possible r) and the probability distribution across these possible values of r.
B, Message-passing algorithm for the reduced model. Instead of considering all
possible values of r, the model considers only the possibility that a change-point did
occur (represented by solid lines from r=0 to r=1) or did not occur (represented by
all other solid lines). Posterior probabilities of these alternatives are computed
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according to Bayes’ rule, then combined by taking the expected value of the run-
length distribution, 7 (small gray filled circles). Only a single, approximate
predictive distribution is maintained and updated on a trial-by trial basis. This

approach massively reduces complexity and leads the algorithm to take the form of

a delta rule (see Methods). C, Learning rates used by the reduced Bayesian model
can be described analytically in terms of 7 and change-point probability. Lines
indicate relationships between learning rate and change-point probability for a
given 7 (increasing for darker lines). The dotted black line reflects the theoretical
limit of the function as 7 goes to infinity. D, Performance of subjects and models.
Mean absolute errors made by the full Bayesian model (FB), the reduced Bayesian
model (RB), a delta-rule model using the best fixed learning rate possible for each
session (FA), subjects (S), and a delta-rule model using subject learning rates in
random order (rS).
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Figure 7. The reduced Bayesian model qualitatively reproduces belief-updating
behavior. All plots in this figure depict simulated data using the reduced Bayesian
model. One model parameter, the hazard rate, was fit for each block to minimize the
difference between model and subject predictions. A, Learning rate as a function of
absolute error magnitude for different standard deviations of the generative
distributions, as shown. Compare to Fig. 2B. B, Learning rate as a function of z-
scored error, plotted as in A. Compare to Fig. 2C. C, Across-subject variability in the
relationship between learning rate and z-scored error, simulated by fitting data
from different subjects with different hazard rates (gray lines). Black line is
cumulative Weibull fit. Compare to Fig. 2D. D, Z-scored error (gray, left ordinate)
and learning rate (black, right ordinate) plotted as a function of trials after a change-
point. Solid and dashed lines are mean+SEM. Compare to Fig. 3A. E, Learning rate
residuals plotted as a function of trials after a change-point. Residuals were
computed by subtracting the learning rates predicted by the cumulative Weibull fit
shown in C from the actual learning rates, and thus reflect the portion of learning
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rate that was not explained by relative error magnitude. Points and errorbars are
mean+SEM across all simulated data. Compare to Fig. 3B. F, Relative model
uncertainty (computed as the minimal window containing at least 85% of the
probability density in the predictive distribution specified by the model divided by
the 85% width of the true generative distribution) plotted as a function of trials
after a change-point. Grayscale reflects the standard deviation of the given task
block, as indicated. Compare to Fig. 4C.
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Figure 8. Relationship betwen learning rate and hazard rate. A, Variability in
subject learning rates can be described by the hazard rate in the model. Subjects
that are fit best by high hazard rate versions of the reduced Bayesian model use
higher learning rates, on average. The dashed line indicates the actual average
hazard rate for the task. Points and errorbars represent the mean and standard
error or the mean, respectively. The solid line is a linear fit (r=0.84, p<0.001). B,
Higher hazard rate models tend to use higher learning rates. Points and errorbars
represent the mean and standard error of the mean for all fits to a given subject
(across all task blocks). The solid line is a linear fit (r=0.98, p<0.001).
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Figure 9. On-line noise inference. Individual variability was simulated by using models
that employed the hazard rates fit to individual subject data (see text; in all

panels, grayscale represents the different hazard rates, with lighter shades for higher
rates). Three models that differed only in their method for computing noise were used to
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simulate performance. The first, simplest model (left column) used the actual standard
deviation of the generative distribution. The second model (middle) inferred noise using
an on-line algorithm with learning rates that assumed noise was constant over each block
of 200 trials (Egs. 9, 10). The third model (right) inferred noise using the same algorithm
as the second model, but with a minimum learning rate that depended on hazard rate
(Egs. 9, 11). A, B, C, Noise estimates from each model over the course of each 200-trial
block in which the standard deviation of the generative distribution was equal to

10. D,E,F, The mean uncertainty estimate for each simulated block of trials plotted as a
function of the mean learning rates used in that simulation. Lines are linear fits. Negative
relationships in E and F reflect the fact that individuals modeled with higher hazard rates
tended to use higher learning rates and thus infer less noise. G,H,I, Correlations between
uncertainty and learning rate within single simulated task blocks plotted as a function of
the mean learning rate simulated for that subject. Lines are linear fits. All models show a
negative relationship, but only the third model matches the behavioral data, with low
mean learning rates typically corresponding to positive relationships between learning
rate and uncertainty and high mean learning rates typically corresponding to negative
relationships between learning rate and uncertainty.
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Figure 10. Hazard rate trade-off. A, Average absolute errors made by subjects 1-5
trials after a change-point plotted as a function of the fit hazard rate from the
reduced Bayesian model for each subject (points). Line is a linear regression (r=-
0.43, p = 0.02). The negative relationship implies that subjects who used higher
hazard rates made better predictions after change-points. B, Average absolute
errors made by subjects 6+ trials after a change-point plotted as a function of the fit
hazard rate for each subject (points). Line is a linear regression (r=0.51, p < 0.01).
The positive relationship implies that subjects who used lower hazard rates made
better predictions during periods of stability.
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Figure 11. Better descriptive models to capture sub-optimal performance. A,
Although subjects (filled symbols; data plotted as in Fig. 2A) and the reduced
Bayesian model (open symbols) both used higher learning rates after change-points
than during a stable period, the model tends to show a larger effect. B, Relationship
between learning rate and relative error magnitude for subjects (dotted line, the fit
from Fig. 2D) and several models fit to subject behavior, as indicated. C, Histogram
of the average likelihood weight fit to each subject (A in Eq. 12). When A =0, the
model updates beliefs according to a fixed learning rate delta rule. When A=1, the
model is the reduced Bayesian model. All subjects fell between these two extremes.
D, Bayesian information criterion (BIC) for all models in B fit to subject data. Lower
values imply better fits, including penalties for additional parameters. Points and
errorbars are mean+SEM across subjects. Grayscale and model numbers are as in
panel B.
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CHAPTER 3

Rational regulation of learning dynamics by pupil-linked arousal systems

Matthew R. Nassar, Katherine M. Rumsey, Robert C. Wilson, Kinjan Parikh, Benjamin
Heasly and Joshua I. Gold. Nature Neuroscience, 2012, 15:1040-6

Abstract

The ability to make inferences about the current state of a dynamic process requires
ongoing assessments of the stability and reliability of data generated by that
process. We found that these assessments, as defined by a normative model, were
reflected in non-luminance-mediated changes in pupil diameter of human subjects
performing a predictive-inference task. Brief changes in pupil diameter reflected
assessed instabilities in a process that generated noisy data. Baseline pupil diameter
reflected the reliability with which recent data indicated the current state of the
data-generating process and individual differences in expectations about the rate of
instabilities. Together these pupil metrics predicted the influence of new data on
subsequent inferences. Moreover, a task- and luminance-independent manipulation
of pupil diameter predictably altered the influence of new data. Thus, pupil-linked
arousal systems can help regulate the influence of incoming data on existing beliefs

in a dynamic environment.
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Introduction

Many decisions, from foraging to financial, depend on the ability to infer a state of
the world from both historical and newly arriving information. Such inferences are
particularly challenging when they must account for multiple sources of
uncertainty. When the uncertainty results from noise, reflecting random
fluctuations in the information generated by an otherwise stable state, the
average over all historical information is most predictive of future observations. In
contrast, when the uncertainty results from a change in the state itself, only the
most recent information pertains to the new state. Thus, historical information
should be discounted and beliefs should be updated rapidly to maximize their
predictive power. Under certain conditions, human subjects appear to encode
and respond appropriately to these different forms of uncertainty when making
inferences in a dynamic environment (Behrens et al., 2007;Nassar et al.,
2010;Yu and Dayan, 2005). Here we examined whether this ability is governed,
at least in part, by arousal systems that affect pupil diameter, which are thought
to include the noradrenergic brainstem nucleus locus coeruleus (Nieuwenhuis et
al., 2010;Aston-dones and Cohen, 2005;Jepma and Nieuwenhuis, 2010;Gilzenrat

et al., 2010).

Non-luminance—mediated changes in pupil diameter have long been used as
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indicators of clinical, cognitive, and arousal states (Krugman, 1964;Granholm
and Steinhauer, 2004;Schmidt and Fortin, 1982;Kahneman and Beatty, 1966).
One interpretation of these pupil changes is that they reflect the amount of
cognitive effort exerted at a given time, which can be related to task uncertainty
(Kahneman and Beatty, 1966). Accordingly, changes in pupil diameter can be
elicited via manipulations of the uncertainty associated with possible actions in
certain choice tasks (Jepma and Nieuwenhuis, 2010;Richer and Beatty, 1987) .
Changes in pupil diameter can also reflect perceived changes in the world,
including perceptual switches during perceptual rivalry, detection of targets in
oddball or near—threshold tasks, responses to low—probability go signals in a
go/no—go task, and perceived changes in task utility that can affect task
engagement (Gilzenrat et al., 2010;Richer and Beatty, 1987;Hakerem et al.,

1964;Einhauser et al., 2008;van Olst et al., 1979) .

These kinds of uncertainty— and change—related signals are thought to contribute
to rational inference in a dynamic environment, including helping to regulate the
relative influence of historical and newly arriving information on existing beliefs
(Nassar et al., 2010;Yu and Dayan, 2005). Such regulation is a key feature of
cognitive flexibility and can be equivalent to adjusting the learning rate in a
reinforcement—learning framework (Behrens et al., 2007;Sutton and Barto,
1998). Our goal was to determine how such learning—rate adjustments relate to
pupil-linked arousal systems. We show that the arousal system and possibly the
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locus coeruleus can play important and computationally complex roles in
rationally regulating the influence of incoming information on beliefs about a

dynamic world.

Results

We measured pupil diameter in thirty human subjects while they performed an

Nassar et al., 2010) Below we

isoluminant version of a predictive—inference task
describe task performance, summarize a nearly optimal model that captures key
features of performance, demonstrate that certain aspects of pupil diameter

encode key variables in the model that can be used to predict performance, and

finally show that a task—independent manipulation of arousal and pupil diameter

can lead to predictable changes in task performance.

Behavior

The predictive—inference task required subjects to minimize errors in predicting
the next number (outcome) in a series. The outcomes were picked from a
Gaussian distribution with a mean that changed at random intervals (change
points) and a standard deviation (set to either 5 or 10) that was stable over each
block of 200 trials (Fig 1). After each prediction was recorded, the new outcome
was shown using an iso—luminant display for 2 s, during which time the subject
maintained fixation and pupil diameter was measured (Fig. 1). After this interval,
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the outcome disappeared and the previous prediction reappeared, to be updated
for the subsequent trial. Payment scaled inversely with the subject’s mean

absolute error during the session (Nassaretal. 2010)

We quantified the extent to which each new outcome influenced the subsequent
prediction as the learning rate in a simple delta—rule model (Eq. 3) (Nassaretal. 2010)
The learning rate was equal to the magnitude of change in the prediction
expressed as a fraction of the error made on the previous prediction. Thus, a
learning rate of one indicated abandonment of the previous prediction in favor of
the most recent outcome. A learning rate of zero indicated maintenance of the

previous prediction despite a non—zero prediction error.

Subjects tended to use variable learning rates that spanned the entire allowed
range, from zero to one. Within this range, learning rates tended to be higher for
larger errors, scaled by the noise of the generative distribution (Fig. 2A). Learning
rates also tended to be highest on the trial after a change point and then decay
for several trials thereafter (Fig. 2B). These basic trends were similar across
subjects, although individual subjects used dramatically different distributions of

learning rates (Fig. 2C).

Reduced Bayesian model
The learning rates used by subjects were consistent with both a full and a
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simplified version of the optimal (Bayesian) model (Nassar et al., 2010;Adams
and MacKay, 2007;Fearnhead and Liu, 2007;Wilson et al., 2010). One
advantage of the reduced Bayesian model is that it updates beliefs according to a
delta rule in which the learning rate is computed according to only two
parameters computed per trial: change—point probability and relative uncertainty

(Fig. 3A).

Change—point probability approximates the posterior probability that the mean of
the generative distribution changed since the previous trial, given all previous
data. If the mean did change, then previous outcomes should be unrelated to
future ones and not contribute to an updated prediction. Accordingly, the model
uses learning rates that scale linearly towards one (thus discarding historical
information) as change—point probability approaches one (Fig. 3A). Change—
point probability is computed by comparing the probability of each new outcome
given either the current predictive distribution or the occurrence of a change point
(Eq. 5). lts value increases monotonically as a function of the absolute difference
between predicted and actual outcome, scaled according to the standard

deviation of the generative distribution (Eq. 6, Fig. 3B).

Relative uncertainty is a function of total uncertainty, which in our task arises
from two sources. The first source, noise, reflects the unreliability with which a
single sample can be predicted from a distribution with a known mean. The
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second source reflects the unreliability of the current estimate of the mean, which
decreases as more data are observed from a distribution. Relative uncertainty is
the magnitude of this second form of uncertainty as a fraction of total uncertainty,
analogous to the gain in a Kalman filter. Relative uncertainty determines the
learning rate when change—point probability is zero and sets the y—intercept of
the relationship between change—point probability and learning rate otherwise
(Fig. 3A). The effects of relative uncertainty on model learning rates are greatest
on the trials following a change point, when its value peaks at 0.5 and then

decays over several trials (Eq. 7; Fig 3C).

Like the human subjects, the model tended to compute learning rates that were
highest just following a change point in the mean of the generative distribution
and then decayed for several trials independently of noise. When applied to the
exact same outcome sequences as the subjects, the model also tended to

produce similar learning rates (Fig. 3D).

We related change—point probability and relative uncertainty computed in the
model to the mean pupil diameter (“pupil average”) and change in pupil diameter
(“pupil change”) measured during the 2—s outcome—viewing period (Fig. 1 inset),
using two linear regression models. The first, simpler model had four parameters:
change—point probability and relative uncertainty computed from the reduced
Bayesian model, the standard deviation of generative distribution, and a binary
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variable describing whether or not the prediction error was exactly zero. The
second model included all of these parameters, as well as several potential
confounding factors such as eye position and velocity (see Methods). The
models are complementary: the first avoids potential interactions between large
numbers of parameters and thus has coefficients that are more readily
interpretable, whereas the second avoids missing out on the many factors that in
principle could affect our pupil measurements. Both models captured a significant
amount of variability in the pupil data (For pupil average/pupil change data, an F—
test rejected the null model relative to the small model for 27/15 of the 30
subjects, and a nested F-test rejected the small model relative to the large model

for 29/19 of the 30 subjects, p<0.05).

Below we first report the most prominent effects from these regression analyses,
which were similar for the two models and include roughly monotonic
relationships between pupil change and change—point probability and between
pupil average and relative uncertainty. We later show that these relationships
were in fact slightly more complicated and included a dependence on baseline
pupil diameter that helps us to interpret the results in terms of known properties

of the arousal system.

Pupil change reflected change—point probability
The change in pupil diameter during the outcome—viewing period, like change—
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point probability in our model, tended to increase as a function of error
magnitude, scaled as a function of noise (Fig. 4A; compare to Figs. 3B).
Accordingly, when computed by the model using the same sequence of
outcomes experienced by each subject, change—point probability tended to be
positively predictive of z—scored pupil change (Fig. 4B ordinate). The
complement was also true: change—point probability varied systematically as a
function of pupil change for data pooled across the population (Fig. 4C). In
contrast, there was no consistent relationship between change—point probability

and pupil average (Fig. 4B abscissa).

One notable exception to the positive relationship between pupil change and
error magnitude occurred for trials in which the error was exactly zero, which
corresponded to relatively large pupil changes (left—-most data in Fig. 4A).
Accordingly, a binary variable added to the linear model that described whether
or not the subject correctly predicted the outcome was related to pupil change
(the mean value of the regression coefficient was 0.180 zp¢ for the four—
parameter regression model and 0.156 zp¢ for the larger model; p<0.05 for Hp:
mean=0 for each model) but not pupil average (mean regression coefficient=—
0.076 and —0.092 zp,4 for the smaller and larger regression models, respectively,
p>0.05). Thus, pupil change reflected not only change—point probability, but also

whether or not the subject correctly predicted the observed outcome.
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Average pupil diameter reflected belief uncertainty

The average pupil diameter during the outcome—viewing period, like relative
uncertainty in our model, tended to peak on the trial after a change point and
then diminish in magnitude as more relevant information reinforced the existing
belief (Fig 5A; compare to Figs. 2B and 3C). Accordingly, when computed by the
model using the same sequence of outcomes experienced by each subject,
relative uncertainty tended to be positively predictive of pupil average (Fig. 5B
abscissa). This result did not simply reflect differences in motor output following
change points (e.g., longer button presses to choose a learning rate near one),
because similar results were obtained in a control experiment in which subject
predictions were reset using a learning rate of 0.5 on each trial, thus requiring the
same motor act to choose a learning rate of either zero or one (mean regression
coefficient=0.30 and 0.35 zpa/RU for the smaller and larger regression models,
respectively, p<0.05). The complement was also true: relative uncertainty varied
systematically as a function of pupil average for data pooled across the
population (Fig. 5C). In contrast, there was no consistent relationship between

relative uncertainty and pupil change (Fig. 5B ordinate).

Overall uncertainty in our task depends on not only relative uncertainty but also
noise, which we manipulated by varying the standard deviation of the generative
distribution in blocks (STD=5 or 10). Consistent with our model, in which noise is
only used to compute change—point probability (Egs. 5 and 6), these

85



manipulations of noise were reflected in pupil change but only insofar as pupil
change represented change—point probability (Fig. 4A). These manipulations of
noise did not have any other systematic effects on either pupil change or pupil
average (p>0.1 for Hp: a mean value of zero for the regression coefficient
describing the influence of noise on the given pupil measurement for both
regression models). Thus, for this task pupil average did not appear to reflect
overall uncertainty about a future outcome but rather a specific form of
uncertainty that arises after change points and signals the need for rapid

learning.

Pupil metrics reflected individual learning differences

As noted above (Fig. 2C), there was a great deal of variability in the average
learning rates used by individual subjects. These individual differences are
thought to reflect biases that govern the extent to which subjects tend to interpret
the cause of prediction errors in terms of either noise or change points (Nassar
et al., 2010). One advantage of our reduced model is that it can simulate these
individual differences in terms of the subjective hazard rate, which is the
expected rate at which change points will occur. Accordingly, fitting the model to
behavioral data from individual subjects with subjective hazard rate as a single
free parameter yielded fit values that varied systematically with average learning

rates (r=0.93, Hy: r=0, p<0.001; Fig 6A).
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These individual differences in the inferred (fit) subjective hazard rates
corresponded to individual differences in both the temporal dynamics and
magnitude of outcome—locked pupil responses. We quantified the temporal
dynamics using an index that related the pupil response on a given trial to a
mean-—subtracted version of the template shown in Fig. 6B. This template
describes the strength of the across—subject, linear relationship between pupil
diameter and hazard rate in a sliding time window. This relationship was
strongest soon after outcome onset, thus likely reflecting prior expectations about
the newly arriving outcome. There was a positive relationship between the mean
value of this index and fit hazard rate for individual subjects (r=0.51, p<0.01). In
addition, there was a positive relationship between pupil average and fit hazard

rate for individual subjects (r=0.40, p<0.05).

Based on these relationships, we constructed a linear regression model using the
temporal-dynamics index and pupil average to explain individual differences in
task performance. The model yielded strong, pupil-based predictions of per—
subject values of both fit hazard rate (r=0.59, p<0.001) and average learning rate
(r=0.59, p<0.001; Fig 6C). Thus, individual differences in average learning rate,
which can be described computationally as differing expectations about the rate
of change—points, could be predicted from the temporal dynamics and average

magnitude of pupil diameter measured during outcome viewing.
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Pupil metrics predicted trial-by—trial learning rates

The relationships between pupil metrics and parameters of the reduced Bayesian
model suggest that measurements of pupil diameter during the outcome—viewing
period can be used to predict the subsequent learning rate. For example, we
found positive relationships between pupil change and change—point probability
(Fig. 4) and between pupil average and relative uncertainty (Fig. 5). Thus,
observing relatively high values of either pupil metric on a given trial should
indicate that the subject will use a larger—than—average learning rate when
adjusting beliefs according to the outcome observed on that trial. We tested this

idea directly, as follows.

First, we examined the relationship between pupil change, pupil average, and
learning rate for individual subjects. We used a regression model to describe
learning rate (z—scored per subject) in terms of pupil change and pupil average.
On average, this linear regression computed per subject yielded a positive
coefficient for pupil change (mean=0.108 z,g/zpc, p<0.05 for Hp: mean=0) and a
smaller, not statistically significant, positive coefficient for pupil average

(mean=0.085 ZLR/ZPA, ,D=0.13; Flg 7A).

Second, we used a simple, weighted sum of pupil change and pupil average to
assess their combined predictive power across subjects. Using weights equal to
the mean value of the per—subject regression coefficients from the previous
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analysis (Fig. 7A), the weighted sum was moderately predictive of learning rate
across all subjects (r=0.067, p<0.001). However, this analysis did not take into
account a systematic, negative dependence of the sum of these per—subject
coefficients (which is related to the overall ability of the weighted sum to account
for learning rate) on subjective hazard rate predicted by pupil dynamics (Fig. 7B).
Subjects with low pupil—-predicted hazard rates had pupil responses that were
good predictors of learning rate. Subjects with increasingly high pupil-predicted
hazard rates had pupil responses that were increasingly less predictive, and in

some cases negatively predictive, of learning rate.

Third, we used a more complicated linear model that also included across—
subject differences in pupil dynamics that related to subjective hazard rates,
which markedly improved our overall ability to use pupil metrics to predict
learning rates. This model had three terms: 1) the sum of pupil change and pupil
average computed per trial, weighted according to average regression
coefficients in Fig. 7A; 2) the pupil-predicted hazard rate, computed per subject
(see Fig 6C); and 3) the multiplicative interaction between these two variables.
Using this model, pupil measurements could effectively predict learning rates for
all data from all subjects (r=0.38, p<0.001). These predictions accounted for

variations in learning rates both across (Fig. 6B) and within (Fig. 7C) subjects.

Task—independent pupil manipulation altered behavior
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To examine whether the correlations between pupil measures and learning
behavior might reflect an underlying causal process, we used an arousal
manipulation that affected pupil diameter and measured its effects on learning
behavior. In particular, we occasionally and without warning switched the auditory
cue that preceded fixation. Subjects were told that these auditory—cue switches
were unrelated to the task and they therefore should ignore the specific sounds.
Nevertheless, this manipulation led to increases in both pupil average and pupil
change on trials in which the fixation cue was switched (Fig 8A; t-test for Hp:
mean effect size=0, p<0.001 for both pupil average and pupil change). Thus, we
caused consistent changes in the pupil measures that were correlated with the

computational variables needed to solve the task.

This manipulation caused systematic changes in task performance that
depended on baseline pupil diameter (Fig. 8B). For trials with relatively small
baseline diameter (i.e., less than its per—subject median value), individual
subjects tended to use larger learning rates on auditory—switch trials than
otherwise (Fig 8B abscissa; mean across subjects=0.113, t-test for Hy: mean=0,
p<0.01). For trials with relatively large baseline diameter, subjects used slightly
smaller learning rates on auditory—switch trials than otherwise, although this
trend was not statistically significant (Fig 8B ordinate; mean=—0.037, p=0.35).
The average difference in the size of these effects from small— versus large—
diameter trials was >0, implying that the effects of this manipulation depended on
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baseline pupil diameter (Fig 8B diagonal; paired t—test, p<0.001). These effects
did not result from systematic differences in task conditions for switch versus
non—switch trials, because the same three analyses yielded no effects when

applied to learning rates computed by our reduced Bayesian model (p>0.5).

This dependence on baseline pupil diameter is suggestive of the Yerkes—Dodson
“‘inverted U” relationship between arousal and learning. According to that idea,
learning is highest for moderate levels of arousal and lowest for either overly high
or overly low levels of arousal (Yerkes and Dodson, 2004). Our subjects
appeared to be consistently engaged during task performance, implying that we
were probably not sampling overly low or high arousal states. Nevertheless, in a
narrower range and assuming a correspondence between arousal state and
baseline pupil diameter, we found that the relationships between learning
behavior and our arousal manipulation were qualitatively consistent with an
“‘inverted U.” In particular, auditory—switch trials tended to correspond to the
largest increases in learning rate when baseline pupil diameter was relatively low
(steepest ascent in the “inverted U”) and the largest decreases in learning rate
when baseline pupil diameter was relatively high (steepest descent in the

“‘inverted U”; Fig. 8C, open circles).

This “inverted U” relationship was also apparent in our previous pupil
measurements, in two ways. First, across subjects, those with larger average
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pupil diameters during outcome viewing tended to use learning rates that were
less, or even negatively, predicted by fluctuations in pupil metrics relative to other
subjects (Fig 7B). Second, subjects that had lower pupil—predicted hazard rates
used learning rates that were positively correlated with pupil metrics when their
baseline pupil diameter was low but negatively correlated when their baseline
pupil diameter was high (Fig 8C, filled circles). Thus, results from both our pupil-
manipulation and pupil-measurement experiments were consistent with an

important role for the arousal system in the rational regulation of learning.

Discussion

We examined the relationship between pupil diameter, which is related to arousal
and autonomic state, and learning rate, which describes the extent to which new
information is used to adjust existing cognitive beliefs. Consistent with previous
work (Nassar et al., 2010;Behrens et al., 2007;Krugel et al., 2009), we found that
human subjects performing a predictive—inference task were most heavily
influenced by outcomes that occurred shortly after a change point in the
outcome—generating process. One possible mechanism for this effect is a
dynamic regulation of the relative influence of incoming information on cortical
processing (Yu and Dayan, 2005). Insights into the computations required for
such a regulator are provided by a reduced model that approximates the ideal
observer for the task, describes subject behavior, and bases learning rates on
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two parameters that we found to be represented in pupil measurements: change—

point probability and relative uncertainty.

In our model, change—point probability depends on the absolute value of the
most recent prediction error and drives increased learning after surprisingly large
errors. We found that change—point probability was positively correlated with
changes in pupil diameter. This relationship is consistent with early pupillometry
studies that showed an inverse relationship between stimulus—evoked pupil
responses and stimulus probability, as well as more recent work interpreting
outcome—locked pupil responses in terms of the surprise associated with errors
in judging uncertainty, called the risk prediction error (Raisig et al.,
2010;Friedman et al., 1973;Preuschoff et al., 2011). We also found that pupil
change was not always directly related to change—point probability, with
particularly large pupil changes on trials with exactly zero error that might have
been surprisingly rewarding and/or reflected an association with an atypical

consequence (i.e., no possibility of updating the next prediction).

Relative uncertainty, the second parameter in our model, represents uncertainty
about the true underlying mean and drives learning from outcomes that occur
after a change point. We found that relative uncertainty was correlated with
average pupil diameter. We also found that changes in another form of
uncertainty that should not drive learning (i.e., changes in the standard deviation
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of the generative process in our task) did not lead to similar effects on pupil
diameter. These results are complementary to a recent finding that pupil diameter
tends to increase during exploratory decisions that occur during periods of
uncertainty about the best available option (Jepma and Nieuwenhuis, 2010).
These findings suggest that pupil-linked arousal systems encode an uncertainty

signal that facilitates both learning and information—seeking behaviors.

We also found strong individual differences in task behavior that could be
captured by fitting a prior expectation about the rate of change points (hazard
rate) to behavioral data. We found that subjects who were fit by higher hazard—
rate models tended to have larger pupil dilations during the outcome—viewing
period. This physiological difference arose early in the viewing period, consistent
with the idea that these individual differences reflected a prior expectation about

the source of the upcoming error.

We used these relationships between pupil metrics and change—point probability,
relative uncertainty, and the hazard—rate prior to predict the extent to which
subjects were influenced by each new outcome. We also manipulated pupil
diameter using a task—irrelevant auditory manipulation that resulted in changes in
task performance that were consistent with our measured relationships between
pupil metrics and key task variables. These results provide new insights into the
specific computations that are reflected in pupil diameter and establish their
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causal role in belief updating.

These computations likely involve, at least in part, neural activity in the locus
coeruleus. One intriguing possibility is that the two key variables from our model
are encoded by two distinct modes of locus coeruleus activation (Aston-Jones
and Cohen, 2005): change—point probability, reflected in pupil change, is
encoded by phasic activation of the locus coeruleus, whereas relative
uncertainty, reflected in pupil average, is encoded by tonic activation of the locus
coeruleus. Although direct confirmation is still needed, this idea is supported by
several lines of evidence, including: 1) a compelling example of simultaneous
measurements of locus coeruleus activity and pupil diameter in a monkey that
are closely correlated (Aston-Jones and Cohen, 2005); 2) similar modulations of
pupil diameter and locus coeruleus activity under certain task conditions, such as
changes in utility in that affect behavioral engagement (Jepma and Nieuwenhuis,
2010;Gilzenrat et al., 2010); and 3) a proposed anatomical substrate involving
common activation from the nucleus paragigantocellularis, which contributes to
both locus coeruleus and sympathetic nervous system function (Nieuwenhuis et
al., 2010;Aston-Jones et al., 1986). The consequence of locus coeruleus
involvement would be the task—related release of norepinephrine throughout the
nervous system. Consistent with our results, norepinephrine release is thought to
permit or facilitate changes in behavior that follow unexpected changes in the
environment and learning in general, possibly by modulating experience—
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dependent neural plasticity (Yu and Dayan, 2005;Sara et al., 1994;Aston-Jones
et al., 1997;Tully and Bolshakov, 2010;Harley, 1987;Corbetta et al., 2008;Bouret

and Sara, 2005).

More generally, our results are consistent with the idea that brain areas that
regulate the influence of newly arriving information on existing beliefs are also
strongly linked to arousal and autonomic function (Behrens et al., 2007;Yu and
Dayan, 2005;Jepma et al., 2010;Gilzenrat et al., 2010;Preuschoff et al.,
2011;Critchley et al., 2001;Critchley, 2005). These areas likely include not just
the locus coeruleus but also the anterior cingulate cortex (ACC), which has
strong reciprocal connections with the locus coeruleus and whose activity
encodes several signals closely related to change—point probability, including
unsigned prediction errors and learning rates (Behrens et al., 2007;Aston-Jones
and Cohen, 2005;Krugel et al., 2009;Matsumoto et al., 2007). This arousal
system appears to govern not simply overall alertness or other non—specific
factors that might affect overall task performance, but rather a computationally
sophisticated process that rationally regulates the influence of new sensory
information in a dynamic environment. These computations take into account
both ongoing processing of task—relevant variables like change—point probability
and relative uncertainty and state variables including prior expectations about the
rate of change. These factors are combined in a manner that is consistent with
the Yerkes—Dodson “inverted U” relationship between arousal level and learning
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rate (Fig. 8C) (Yerkes and Dodson, 2004).

In summary, our work suggests a relationship between arousal state and learning
rate that is likely a result of a coordinated learning—arousal network including the
locus coeruleus and ACC. The representation of normative learning variables in
this network suggests that subtle changes in arousal might reflect rational
regulation of the influence of new information on ongoing inferences about a

dynamic world.

Methods

Predictive—inference task. Human subject protocols were approved by the
University of Pennsylvania Internal Review Board. Thirty subjects (19 female, 11
male; age range = 19-29 years) participated in the primary study and an
independent sample of 29 subjects (17 female, 12 male; age range = 19-25
years) participated in the arousal manipulation study after providing informed
consent. Both studies used a predictive—inference task that required subjects to
predict each subsequent number to be presented in a series (Nassar et al.,
2010). For each trial t, a single integer (X;) was presented that was a rounded
pick sampled independently and identically from a Gaussian distribution whose
mean (u;) changed at unsignaled change points and whose standard deviation
(o) was fixed to either 5 or 10 within each block of 200 trials. Change points
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occurred with a probability of zero for the first three trials following a change point

and 0.1 for all trials thereafter.

To facilitate measurements of non—luminance—mediated effects on pupil
diameter, we used a different visual display and task timing than in our previous
study?. Subjects were shown a numeric representation of their current prediction
at a central location on a CRT monitor. Background screen pixels were a
checkerboard of light and dark pixels (mean+STD luminance in a circle with
radius 6.5 cm= 0.457+0.010 cd/m?). Numbers were drawn in an intermediate
gray color (0.445+0.005 cd/m?). When viewed passively by a control group of
four subjects outside of the context of the predictive—inference task, no individual
stimulus (number) had a significant effect on average pupil diameter or evoked
changes in pupil diameter (ttest for Hy: equal means between each stimulus and
all others, p>0.3 for all stimuli after correcting for multiple comparisons), nor did

the number of digits contained within the stimulus affect either pupil variable

(p>0.4).

For each trial, the subject indicated his or her updated prediction using a video
gamepad. Each prediction was constrained to be between the previous prediction
and the most recent outcome, thus limiting learning rates to between zero and
one. After the new prediction was chosen, the numeric representation of this
prediction disappeared, an auditory cue was played, and a numeric
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representation of the new outcome was shown. Subjects were instructed to fixate
centrally for 2 s at this point; failure to do so (within a square window, 9° per side)
resulted in a tone indicating a fixation error. After 2 s the new outcome
disappeared, the prediction re—appeared, and an auditory cue was played to
indicate that the prediction should be updated. Fourteen subjects also
participated in a control version of the task in which the prediction was reset after
viewing the new outcome to reflect an update equivalent to a learning rate of 0.5.
For this task, the same motor output (in terms of number or duration of button

presses) was required to use a learning rate of either zero or one on each trial.

Subjects were told that the numbers were generated from a noisy process and
that several discreet change points would occur over the course of the task. They
were instructed to make a prediction on each trial (B;) such that the average error

made on all predictions, <|Bt - X,|>, would be minimized. Payout depended on

how well they achieved this goal, as described previously Nassaretal. 2010)

The pupil-manipulation task was identical to primary version of the task, except
that the auditory cue played at the beginning of fixation was occasionally
switched to another sound from a library of 31 sound effects downloaded from an
online library. Sounds were 0.09—1.4 s in duration (mean+STD = 0.72+0.42 s)
and played at 56—70 dB (A—weighted; mean+STD = 62.5+3.9 dB). Switch trials

occurred at random, with a probability of 0.1 on the 9 trials following a switch, 0.8
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thereafter. On switch trials, the given sound was played, on average, 7 dB louder
than otherwise. Seven of 29 subjects completing the pupil-manipulation task
were excluded from further analyses because of an excessive number of fixation

errors (blinks or lost fixation on >40 percent of trials).

Pupil-diameter measurements. Pupil diameter was sampled at 120 Hz and
recorded throughout the task using an infrared video eye—tracker (ASL, Inc.).
Blinks were identified using a custom blink filter based on pupil diameter and
vertical and horizontal eye position, then removed by linear interpolation of
values measured just before and after each identified blink. Blink—filtered
diameter was low—pass filtered using a Butterworth filter with a cutoff frequency
of 3.75 Hz. These filtered measurements were then z—scored within each

session.

All analyses excluded trials in which blinks or fixation errors during outcome
viewing were detected online (these events were followed by a beep to remind
the subject to minimize their occurrence). The first 20 trials from each block were
also excluded to avoid possible changes in average luminance at block
boundaries. Pupil average was computed for each trial by taking the mean of all
240 z—scored pupil measurements from the 2 s—long outcome—-viewing period of
the trial. Pupil change was computed for each trial by subtracting the average
pupil measurement from early in the outcome—viewing period (0—1 s after
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outcome presentation) from the average pupil measurement from late in the
outcome—viewing period (1-2 s after outcome presentation). Trials that included
blinks that were detected offline (but not online) were used to compute pupil
average by interpolating values from just before and just after the blink. These
trials were not used to compute pupil change, which was much more sensitive to

the timing of blinks.

Reduced Bayesian model. Optimal performance on the predictive—inference
requires inferring the probability distribution over possible outcomes on the next

timestep, given all previous data and the process by which those data were

generated: p(X,,|X,,). Because the relationship between the data on the next

t+1

timestep is independent of all previous data conditioned on the mean of the

current distribution (u), the solution can be formulated in terms of u:

P(Xer1|X1) =D p(Xepa|pe)p(pe X1:¢) [1]

1233

and the probability distribution over possible means given previous data can be

inverted according to Bayes’ rule:

P(Xa.e|pe)p(pee) (2]
p(Xl:t)

p(,ut’Xl:t) =
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Although computationally tractable solutions to this problem exist, these solutions
specify learning rates that are complicated functions of either the probability
distribution over all possible means' or over all possible "runs" of non—change—
point trials '°. To simplify the algorithm, the reduced model computes the
posterior probability distribution over possible means as described above but
maintains only the first two moments of this distribution. This assumption
massively reduces the number of required computations but has minimal effects
on performance ®. An added advantage of this model is that it can be formulated

as a delta rule:

3
Biy1 = By + oy X 6y 3]

5t:xt—Bt

where B is the belief about the mean of the underlying distribution; a is the
learning rate; and § is the prediction error, which is the difference between the
actual and predicted outcome. The learning rate depends on two variables that

are updated on each trial:
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ap =1+ (1 —71)Q [4]

where change—point probability () reflects the probability that u; is not equal to
w1, and relative uncertainty (7)) reflects the variance on the predictive distribution
in u (i.e., uncertainty about the location of the mean) divided by the variance on
the predictive distribution in X (i.e., total uncertainty about the location of the next

outcome).

Performance of the reduced Bayesian model also depends on an expectation
about the prior probability on change points, or the hazard rate. Specifically,
hazard rate directly influences the computation of change—point probability on
each trial:

U(X,|0,300)H

e = U(X:]0,300)H + N (X;|By,02)(1 — H) [5]

Where U and N represent uniform and normal distributions, respectively; His the
hazard rate; B; is the model’s prediction on trial f, and 67 is the total variance on
the predictive distribution, which is discussed below. We incorporated hazard rate
into the model in two ways: 1) using the true generative hazard rate for trials in
which a change point did not recently occur (0.1) or 2) by fitting the model to

behavior by minimizing the total squared difference between subject and model
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predictions using a constrained search algorithm (fmincon in MATLAB) with

hazard rate as a free parameter.

The total variance on the predictive distribution in the model comes from two

sources:

T NQ [6]

2 2
=N
ot + 1-— Tt
The first source is the standard deviation on the outcome—generating distribution

(N). The second source is uncertainty about the mean of that distribution and

depends on both N and relative uncertainty (7). Here we set N to be the actual
experimental standard deviation, but we update t after each outcome according

to the variance on the predictive distribution over possible means:

. NQQt + (1 - Qt)(TtN2> + Qt(l - Qt)(Tt + Bt(l - Tt) - Xt)
TS N2, + (1= Q) (N2 + (1l — )+ Bi(l—7) — X;) + N2 L]

such that if a change point occurs, relative uncertainty is reset to 0.5 (first term in
numerator); if a change point does not occur, relative uncertainty is reduced
(second term in numerator); and if the model is uncertain about whether a

change point occurred, relative uncertainty is increased to reflect this uncertainty
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(third term in numerator).

Statistical analyses. Trial-by—trial values of pupil average and pupil change were
each z—scored for the full session (zp4 and zpc, respectively) and then fit with a
linear regression model using four parameters: 1) change—point probability,
computed by the reduced Bayesian model for each trial; 2) relative uncertainty,
computed by the reduced Bayesian model for each trial; 3) noise, the standard
deviation of the outcome—generating distribution; and 4) a binary vector
specifying whether or not the subject correctly predicted the outcome on that trial.
We also used a larger model that, in addition to the above four parameters,
included: the average horizontal and vertical eye position and the change in
horizontal and vertical eye position measured during the outcome—viewing
period; the subject’s prediction and the computer—generated outcome from the
current trial; the pupil change measured on the previous trial; and the trial

number within the block and within the session.

Pupil-predicted hazard rates were derived from pupil measurements and the
reduced Bayesian model as follows. First, we inferred the subjective hazard rate
used by each subiject by fitting his or her behavioral data to the reduced Bayesian
model with hazard rate (H) as the only free parameter. Next, we fit a linear
regression model explaining H in terms of pupil measurements. That model had
two terms, computed per subject: 1) the mean value of pupil average, and 2) an
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index of pupil dynamics. The index was computed as the mean value of the dot
product of trial-by—trial pupil measurements and the mean—subtracted curve
shown in Fig. 6B. Finally, we used the coefficients from a linear fit that excluded
the data from an individual subject to combine the mean pupil average and pupil—
dynamics index (from the excluded subject) into a pupil-predicted hazard rate for

that subject.

Pupil-predicted learning rates were computed according to the relationships
between pupil metrics and model parameters. Linear fits to the relationship
between pupil average and relative uncertainty were computed for each subject,
and these fits were used estimate relative uncertainty for each trial-by—trial
measurement of pupil diameter. Linear fits to the relationship between pupil
change and change—point probability were computed for each subject, and these
fits were used to estimate change—point probability for each trial-by—trial
measurement of pupil change. To compute predicted learning rates, the two
predicted model quantities were combined according to Eq. 4. We also used a
more complex linear model that took into account pupil-predicted hazard rates;

see text for details.

Arousal-induced learning effects for the inverted—U analyses were computed
separately for sound—manipulation and non—manipulation sessions. For sound—
manipulation sessions, learning rates were fit to a cumulative Weibull as a
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function of error magnitude for each subject and noise condition, to account for
the relationship shown in Fig. 4A. Residuals from this fit, which reflected error-
independent variability in learning rate, were z—scored per subject. Initial pupil
diameter, as measured by the average diameter during the first 100 ms of the
outcome phase, was also z—scored per subject. Data were binned across
subjects according to the initial diameter z—score. The effect of the sound
manipulation was computed as a signed d’describing the difference in the z—
scored residual learning rates used on auditory shift versus non—auditory shift
trials. For non—manipulation sessions, the relationship between pupil metrics and
learning rate was characterized only for subjects with low pupil-predicted hazard
rates (<0.6). Subjects with high pupil-predicted hazard rates tended to have
small or negative relationships between pupil metrics and learning rate and thus
were omitted from this analysis. Arousal effect size was computed as the
correlation coefficient between the weighted sum of pupil metrics and learning
rate, each z—scored per subject (positive/negative values indicate that learning
rates tended to increase/decrease as pupil effects increased) for equally sized

bins of baseline pupil diameter (z—scored per subject).
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Figure 1. Predictive—inference task sequence and pupillometry. Learning rate
was computed by dividing the difference in the prediction from one trial to the
next by the difference between the current outcome and the current prediction.
Inset: mean+SEM pupil diameter, averaged across z—scores computed per
subject, aligned to outcome presentation (time=0). Pupil average was computed
for each trial as the mean pupil diameter, z—scored by subject, across the entire
2—s fixation window (vertical dashed lines). Pupil change was computed for each
trial as the difference in mean diameter, z—scored by subject, measured late
(time=1-2s) versus early (time=0-1s) during fixation.
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Figure 2. Task performance. A, Learning rates were highest after subjects made
larger errors, scaled by noise (as indicated). Points and errorbars are mean+SEM
from all subjects. B, Learning rates were highest on change—point trials and
decayed thereafter, similarly for both noise conditions. Points and errorbars are
mean+SEM from all subjects. C, Learning—rate distributions across all trials from
each of the 30 subjects (abscissa), sorted by median learning rate. Horizontal
line, box, and whiskers indicate median, 25"/75" percentiles, and 5"/95™
percentiles, respectively.
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Figure 3. Reduced Bayesian model. A, Learning rate as a function of change—
point probability (abscissa) and relative uncertainty (line shading), as computed
by the model. B, Change—point probability computed by the model as a function
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of error magnitude (abscissa) for the two different noise conditions, as indicated,
computed for a given relative uncertainty (equal to 0.02 for this figure). C,
Mean+SEM relative uncertainty computed by the model aligned to change points
from all sequences experienced by the subjects for the two different noise
conditions. D, Trial-by—trial comparison of subject and model learning rates.
Model learning rates were computed using the same sequence of outcomes
experienced by each subject. Points and error bars are mean+SEM data from all
subjects grouped into 20 five—percentile bins according to the corresponding
model learning rate. The solid line is a linear fit to the unbinned data (r=0.33,
p<0.001).
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Figure 4. Relationship between pupil change and change—point probability. A,
Mean+SEM pupil change from all trials and all subjects for running bins of 150
trials, binned according to the absolute prediction error and sorted by noise, as
indicated. B, Regression coefficients describing the linear relationship between
change point—probability (pcH) and z—scored pupil change (zp., ordinate) versus
the regression coefficients describing the linear relationship between pcy and z—
scored pupil average (zpa, abscissa). Points are regression coefficients computed
for each subject individually, using the four—parameter regression model. Arrows
indicate mean values from this model (dark, equal to 0.174 zpc/pch, t-test for Hp:
mean=0, p<0.001 for the ordinate, —0.022 zpa/pcH, p=0.58 for the abscissa) or
from the full model (light, equal to 0.148 zpc/pch, p<0.001 for the ordinate, —0.014
zpalpcH, P=0.70 for the abscissa). Dark arrows are partially occluded by light
ones. C, Change—point probability from the reduced Bayesian model versus pupil
change. Points and error bars are mean+SEM data from all subjects grouped into
20 five—percentile bins. The solid line is a linear fit to the unbinned data (slope =
0.012 pcH/zpc, p<0.001 for Hy: slope=0).
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Figure 5. Relationship between pupil diameter and relative uncertainty. A,
Mean+SEM pupil average from all subjects as a function of trials relative to task
change points. Asterisk indicates trials differing significantly from all other trials
(permutation test for Hy: equal means after correction for multiple comparisons,
p<0.05). B, Regression coefficients describing the relationship between relative
uncertainty (RU) and z—scored pupil change (z,, ordinate) versus the regression
coefficients describing the relationship between RU and z—scored pupil average
(zpa, abscissa). Points are regression coefficients computed for each subject
individually, using the four—parameter regression model. Arrows indicate mean
values from this model (dark, equal to 0.135 zpc/RU, t-test for Hy: mean=0,
p=0.28 for the ordinate, 0.35 zpa/RU, p<0.05 for the abscissa) or from the full
model (light, equal to 0.127 zpc/RU, p=0.24 for the ordinate, 0.40 zpa/RU, p<0.01
for the abscissa). Dark arrows are partially occluded by light ones. C, Relative
uncertainty from the reduced Bayesian model versus pupil average. Points and
error bars are mean+SEM data from all subjects grouped into 20 five—percentile
bins. The solid line is a linear regression to unbinned data (slope = 0.0055
RU/zpa, p<0.001 for Hp: slope=0).
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Figure 6. Individual differences in learning rate, hazard rate, and pupil diameter.
A, Mean learning rate per subject versus the hazard rate of the reduced Bayesian
model that best fit that subject’s performance (points). The solid line is a linear fit
(r=0.93, p<0.001). B, Regression coefficients describing the relationship between
fit hazard rates and bin—by—bin pupil measurements across subjects, computed
in sliding 8.3—ms bins and aligned to outcome presentation (time=0). Dotted lines
indicate 95% confidence intervals. C, Relationship between pupil-predicted
hazard rate and average learning rate for each subject (points). Pupil-predicted
hazard rates were computed using a linear regression model that included both
shape and magnitude of the average pupil response for each subject (see
Methods). The solid line is a linear fit (r=0.59, p<0.001).
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Figure 7. Pupil metrics predict learning rate. A, Regression coefficients describing
the linear, trial-by—trial relationships between pupil change and the subsequent
learning rate (ordinate) and between pupil average and the subsequent learning
rate (abscissa). Points are regression coefficients computed for each subject
individually, using a four—parameter regression model that also included trial
number and block number as covariates. B, The relationship between learning
rate and pupil parameters depended on the subject’s baseline pupil response.
For each subject, the sum of the regression coefficients from panel A are plotted
as a function of the pupil-predicted hazard rate from Figure 6C. The line is a
linear fit (r=-0.059, p<0.001). C, Predicted versus actual learning rate. Both
values are z—scored per subject. Data from all subjects are grouped into 20
equally sized bins of predicted learning rate. The line is a linear fit to the
unbinned data (Slope = 0.052 zActual/zPredicted, p<0.001 for Hy: slope=0).
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Figure 8. Effects of the pupil manipulation. A, Evoked changes in pupil diameter.
For each subject, pupil average (ordinate) and pupil change (abscissa) were z—
scored across all trials. Each point represents the difference in the mean z—
scores for auditory switch versus non—switch trials for an individual subject.
Positive values indicate larger values on switch trials. B, Evoked changes in
learning behavior. For each subject, learning rate was z—scored across all trials
and fit to a cumulative Weibull as a function of error magnitude for each noise
condition, to account for the relationship shown in Fig. 4A. Each point represents
the difference in the mean value of the residuals from these fits for auditory
switch versus non—switch trials for an individual subject, separated by trials in
which the initial pupil diameter was smaller (ordinate) or larger (abscissa) than its
median value. Positive values indicate larger learning rates on auditory switch
trials. C, A possible relationship between learning and arousal based on an
“‘inverted U” (light gray, modeled as Gaussian). A given change in learning for a
given a change in pupil metrics (ordinate), plotted as a function of baseline pupil
diameter (abscissa), is shown for: 1) the hypothesized Gaussian (its derivative is
shown in dark gray), 2) the measured effects of the auditory manipulation (open
points), and 3) the measured relationship between pupil metrics and learning rate
during non-manipulation sessions. See Methods for details.
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CHAPTER 4

A healthy fear of the unknown: perspectives on the interpretation of
parameter fits from computational models in neuroscience

Matthew R. Nassar and Joshua I. Gold

Abstract

Computational models are commonly used to infer the latent factors
responsible for generating behavior. However, the complexity of many
behaviors can handicap the interpretation of such models. Here we provide
perspectives on problems that can arise when interpreting parameter fits
from models that provide incomplete descriptions of behavior. We illustrate
these problems using commonly used and neurophysiologically motivated
reinforcement-learning models fit to simulated behavioral data sets from
learning tasks. These models can pass a host of standard goodness-of-fit tests
and other model-selection diagnostics even when they do not include a
complete description of behavior. We show that such incomplete models can
be misleading by yielding biased estimates of the parameters explicitly
included in the model. This problem is particularly pernicious when the
neglected factors are unknown and therefore not easily identified by model

comparisons and similar methods. An obvious conclusion is that a
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parsimonious description of behavioral data does not necessarily imply an
accurate description of the underlying computational mechanisms. Moreover,
general goodness-of-fit measures are not a strong basis to support claims that
a particular model can provide a generalized understanding of the
computational factors that govern behavior. To help overcome these
challenges, we advocate the design of tasks that provide direct reports of the
computational variables of interest. Such direct reports complement
computational modeling approaches by providing a more complete, albeit
possibly more task-specific, representation of the factors that drive behavior.
Computational models then provide a means to connect such task-specific

results to a more general algorithmic understanding of the brain.

The use of models to infer the neural computations that underlie behavior is
becoming increasingly common in neuroscience research, especially for cognitive
and perceptual tasks involving decision-making and learning. As their sophistication
and usefulness expand, these models become increasingly central to the design,
analysis, and interpretation of experiments. We consider this to be generally a
positive development but provide here some perspectives on the challenges
inherent to this approach, particularly when behavior might be driven by

unexpected factors that can complicate the interpretation of model fits. Our goal is
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to raise awareness of these issues and present complementary approaches that can
help ensure that that our understanding of the brain does not become overly

conditioned on the quality of existing models fit to particular data sets.

We illustrate these challenges using a set of models that describe the ongoing
process of learning values to guide actions and are used extensively in the field of
cognitive neuroscience (Beeler etal., 2010;Doll etal.,, 2011;Frank et al., 2009;Jepma
and Nieuwenhuis, 2010;Walton et al.,, 2010;Sul et al,, 2011;Seo and Lee,
2008;Strauss et al., 2011;Nassar et al,, 2010;Luksys et al., 2009;Daw et al.,
2006;Behrens et al.,, 2007;Krugel et al., 2009). These models adjust expectations
about future outcomes according to the difference between actual and predicted
outcomes, known as the prediction error. Originally developed in parallel in both
animal- and machine-learning fields (Rescorla and Wagner, 1972;Bertsekas and
Tsitsiklis, 1996;Sutton and Barto, 1998), this relatively simple form of
reinforcement-learning algorithm, often referred to as a “delta rule” because the
prediction error is typically represented as a the Greek symbol delta (9) in the
equations, has: 1) provided efficient solutions to a broad array of biologically
relevant problems (Sutton and Barto, 1998); 2) accounted for many, but not all,
learning phenomena exhibited by both human and non-human subjects (Sutton and
Barto, 1998); 3) provided a generative architecture that has been used to predict
behavior across tasks, compare brain activity to learning variables within a single

task, and explore the range of possible behaviors that one might expect to find in a
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variable population (Miller et al.,, 1995;Dayan and Daw, 2008); and 4) guided an
understanding of the neural computations expressed by the brainstem
dopaminergic system (Schultz et al., 1997). These successes have led to the
proposal that the interpretation of delta-rule model parameters fit to behavioral
data from human subjects performing simple learning tasks might serve as a more
precise diagnostic tool for certain mental disorders than existing methods (Huys et
al, 2011;Huys et al., 2009;Maia and Frank, 2011). Thus reinforcement-learning
models are becoming highly influential in guiding and filtering our understanding of

normal and pathological brain function.

Here we focus on the interpretation of a term in most delta-rule models called the
learning rate. The learning rate, o, determines the amount of influence that the
prediction error, 9, associated with a given outcome has on the new expectation of
future outcomes, E:

Ei1 = Ey+a X 0441
EQ 1

As its name implies, the learning rate determines how slowly or quickly the model
adapts to errors. A fixed value near zero implies that expectations are updated
slowly, essentially averaging over a long history of past outcomes. In contrast, a

fixed value near one implies that expectations are updated quickly to match the
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most recent outcomes. Thus, the learning rate can be interpreted as the amount of

influence each unpredicted outcome exerts on the subsequent expectation.

Recent work has highlighted the advantages of using learning rates that, instead of
remaining fixed, are adjusted adaptively according to environmental dynamics
(Nassar et al., 2010;Behrens et al,, 2007;Krugel et al.,, 2009;Yu and Dayan,
2005;Preuschoff and Bossaerts, 2007;Mathys et al., 2011). For example, adaptive
learning rates can help ensure that expectations remain stable during periods of
stability but change rapidly in response to abrupt environmental changes.
Consistent with this idea, human behavior on tasks containing abrupt changes
conforms to models in which the influence of each outcome depends on the
statistics of other recent outcomes (Nassar et al., 2010;Behrens et al., 2007;Krugel
et al., 2009). Such rational adjustments of learning rate are most prominent after
changes in action-outcome contingencies that lead to surprisingly large prediction

errors (Nassar et al., 2010;Krugel et al., 2009).

Here we consider in detail two of these change-point tasks. The first, an estimation
task, requires subjects to predict the next in a series of outcomes (randomly
generated numbers) (Nassar et al.,, 2010). Each outcome is drawn from a normal
distribution with a fixed mean and variance. However, the mean of this distribution
is occasionally re-sampled, producing abrupt change-points in the series of

outcomes. Learning rates can be measured directly on a trial-by-trial basis, using
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predictions and outcomes plugged into Eq. 1. Previous work showed that subjects
performing this task tended to choose learning rates that were consistent with
predictions from a reduced form of a Bayesian ideal-observer algorithm, including a
positive relationship between error magnitude and learning rate. However, the
details of this relationship varied considerably across individual subjects. Some
subjects tended to use highly adaptive learning rates, including values near zero
following small errors and values near one following surprisingly large prediction
errors. In contrast, other subjects used a much narrower range of learning rates,
choosing similar values over most conditions. This across-subject variability was
described by a flexible model that could generate behaviors ranging from that of a
fixed learning-rate delta rule to that of the reduced Bayesian algorithm, depending

on the value of a learning rate “adaptiveness” parameter.

The second task is a four-alternative forced-choice task that includes occasional,
unsignaled change-points in the probabilistic associations of monetary rewards for
each choice target (Krugel et al,, 2009). Learning rates are not measured directly, as
they can be for the estimation task, but rather inferred from model fits. Like for the
estimation task, previous studies suggested that learning rates adapted to recent
outcomes, particularly following large, unexpected errors. These learning-rate
dynamics also varied across individual subjects in a manner that, interestingly, was
related to allelic variants of the COMT enzyme, which is involved in synaptic

clearance of dopamine in the prefrontal cortex.

122



The existence of this kind of across-subject variability can have dramatic effects on
the interpretation of behavioral data fit by models with simpler, fixed learning-rate
delta rules. To demonstrate these effects, we simulated performance for both the
estimation task and the four-choice task using a broad range of learning-rate
adaptiveness levels and fit the simulated data to fixed learning-rate models. In all
cases, the simpler, fixed learning-rate model was preferred over a null model
constituting random choice behavior even after penalizing for additional complexity
(e.g., using BIC or AIC; see Supplemental Materials for details). Despite passing these
model-selection criteria, we highlight two misleading conclusions that might be
drawn from these fits: biased estimates of learning rates and of exploratory

behavior.

The problem of mis-estimating learning rates is depicted in Fig. 1 A&B. Panel A
shows simulations based on the estimation task, for which we measured the
learning rate directly from the simulated behavioral response on each trial (black
circles and error bars reflect median and interquartile range, respectively, across
800 simulated trials). Panel B shows simulations based on the four-choice task, for
which we determined the learning rate on each trial based on its value in the
internal, generative process used in the simulations. In both cases, increasing the
adaptive nature of the learning rate led to learning rates that were increasingly

variable, as expected. However, these learning rates also tended to become smaller
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in magnitude. This reduction in average magnitude reflected the design of the
simulated tasks, which included relatively few change-points that, in the adaptive

model, are associated with higher learning rates.

However, the best-fitting values of the learning-rate parameter in a fixed learning-
rate model tell a different story (Fig. 1 A &B, gray points). When behavior was
simulated using a fixed learning rate (learning-rate adaptiveness = 0), the best-
fitting models naturally captured the appropriate value. However, when behavior
was simulated using increasingly adaptive learning rates, the fixed learning-rate
models returned systematically larger estimates of learning rate than were actually
used by the simulated subjects. Thus, learning rate fits from a fixed-learning rate
model were not a good measure of the true influence of outcomes on subsequent

predictions for a subject that used adaptive learning rates.

The problem of mis-estimating exploratory behavior is depicted in Fig. 1 C&D. In
machine learning, the inverse-temperature parameter of a soft-max function is often
used to optimize the tradeoff between exploiting actions known to be valuable in
the present (emphasized at higher inverse temperatures) and exploring actions that
might be valuable in the future (emphasized at lower inverse temperatures)

(Sutton and Barto, 1998;Ishii et al., 2002). Similarly, reinforcement-learning models
often include an inverse-temperature parameter that is used to characterize the

extent to which subjects explore alternative actions, rather than exploiting the one
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thought to be most valuable (Daw et al., 2006;Luksys et al., 2009). Accordingly,
when we simulated behavior on either the estimation task or the four-choice task
using a fixed learning rate and an action-selection process governed by an inverse-
temperature parameter, fits from a model with a fixed learning rate and an inverse-
temperature process returned appropriate estimates of the inverse temperature
used in the generative process (left-most circles in Fig. 1C&D, corresponding to

learning-rate adaptiveness=0).

However, when the simulated subjects used increasingly adaptive learning rates,
inverse-temperature fits from a fixed learning-rate model substantially
overestimated the true variability in action selection (circles in Fig 1 C&D: inferred
inverse temperature decreases as learning-rate adaptiveness increases). These
biased parameter estimates were not simply a problem with the fixed learning-rate
model. Fitting an alternative model that used optimal (maximally adaptive) learning
rates (Nassar etal., 2010;Wilson et al., 2010) to the behavior of the same simulated
subjects yielded the opposite pattern of results: the model accurately inferred the
level of exploratory action selection for simulated subjects that choose learning
rates adaptively but overestimated this quantity for subjects that used simpler
strategies of less-adaptive, or even fixed, learning rates (squares in Fig 1C: inferred
inverse temperature decreases as learning-rate adaptiveness decreases). For both
models, these problems were not apparent from standard analyses of best-fitting

parameter values, which had similar confidence intervals and covariance estimates
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for biased and unbiased fit conditions (see Supplemental Materials for details).
These problems also did not simply reflect difficulties in estimating model
parameters when the inverse temperature was low and behavior was more random,
because the problem was also apparent when the inverse temperature was high.
Thus, subtle differences in learning that were not accounted for by the inference
model caused underestimation of the inverse-temperature parameter, which might

be misinterpreted as increases in exploratory action selection.

Diagnosis of these kinds of problems is difficult, especially when the subtle aspect of
behavior that is missing from the model is unknown. Model-selection practices that
compare likelihoods of various models (after either cross validation or penalization
of parameter numbers) are useful for identifying the better of two or more models.
However, these practices require a priori knowledge of the models to be tested, and
they cannot provide any insight into whether the best of the tested models provides
a complete description of behavior. One might be tempted to interpret likelihoods
directly and set a criterion for what might be considered to be a “good” model.
However, these metrics cannot say whether or not a model is correct. For example,
consider a test of the suitability of a fixed learning-rate model for simulated subjects
that can vary in terms of learning-rate adaptiveness and exploratory behavior.
Similar values of AIC, BIC, and other likelihood-based quantities are obtained for
fixed delta-rule models fit to two very different subjects: one who uses a fixed

learning rate, which is consistent with the model, and relatively high exploration;
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and another who uses a highly adaptive learning rate, which is inconsistent with the
model, and relatively low exploration. Interpretation of parameter fits from the
latter case would be misleading, whereas parameter fits from the former would be

unbiased and informative.

To overcome these limitations, it is sometimes effective to look for indications that a
model is failing under specific sets of conditions for which behavior is heavily
influenced by the assumptions of the model. For the case of adaptive learning, fixed
learning-rate models fail to address adaptive responses to inferred change-points in
the action-outcome contingency. Thus, it can be instructive to examine the
likelihoods of these models computed for choice data collected shortly after change-
points. For the case of the estimation task, a fixed learning-rate model shows an
obvious inability to account for data from trials just after a change-point for all but
the least adaptive simulated subjects (Fig 2A; dip in log-likelihood at trial 1).

However, this approach is not effective for the four-choice task (Fig 2B).

Another potentially useful approach for diagnosing misinterpreted learning-rate
adaptiveness is to compute parameter fits using subsets of data according to their
timing relative to change-points. For the estimation task, eliminating data from
trials immediately following change-points has dramatic effects on fits for both
learning rate (Fig 2C) and inverse temperature (Fig 2E). However, this diagnostic

approach is far less effective for the four-choice task (Fig. 2 D&F). Thus, for tasks
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like the estimation task that provide explicit information about the subject’s
underlying expectations, the insufficiency of the fixed learning-rate model can be
fairly simple to diagnose. However, for tasks like the four-choice task in which
information about the subject’s expectations is limited to inferences based on less
informative choice behavior, parameter biases are still large (Fig. 1B, D) but model

insufficiency is far less apparent.

A sobering conclusion that can be drawn from these examples is that even when the
parameter fits from a computational model are reasonably likely to produce a
dataset, and even when this likelihood is robust to perturbations in the specific
trials that are fit or the settings of other parameters in the model, the model might
still be missing specific features of the data. Missing even a fairly nuanced feature of
the data (such as adaptive learning) can lead the parameters in the model to account
for the feature in surprising ways. These unexpected influences can lead to
parameter fits that, if interpreted naively, might suggest computational
relationships that are unrelated to, or even opposite to, the true underlying
relationships. Here we use an example from reinforcement learning, but the lessons
apply to any model fitting procedure that requires the interpretation of best-fitting
parameter values. Certain parameters, like the inverse-temperature parameter in
many reinforcement-learning models, seem particularly susceptible to this problem,
because they are sensitive to many forms of behavioral variability that might or

might not have alternative explanations.
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These challenges highlight the narrow wire on which the computational
neuroscientist walks. On one hand, we seek to generalize a wide array of
physiological and behavioral data from different tasks onto a tractable set of
computational principles. On the other hand, the results that we obtain from each
experiment are conditioned on assumptions from the particular model through
which they are obtained. We believe that the goals of computational neuroscience
are possible even in the face of this contradiction. Obtaining generalizable results
depends on not only good modeling practices (Daw, 2009) but also the extensive
use of model-free analysis to dissect and interpret data from both experiments and
simulated model data. For example, the estimation task described above was
designed to allow learning rates from individual trials to be computed directly and
not inferred via model fits to resulting choice behaviors. This approach revealed
clear task-dependent effects on adaptive learning (Nassar et al., 2010). In principle,
congruence between such model-free analyses and fit model parameters can help
support interpretations of those parameters and has the advantage of testing
modeling assumptions and predictions directly rather than via comparisons of
different model sets (Ding and Gold, 2012;Walton et al,, 2010;Frank et al., 2004). In
contrast, inconsistencies between model-free analyses and fit model parameters can
help guide how the model can be modified or expanded - keeping in mind, of course,

that adding to a model’s complexity can improve its overall fit to the data but often
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by overfitting to specious features of the data and making it more difficult to

interpret the contributions of individual parameters (Ding and Gold, 2012).
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Figure 1. Learning-rate adaptiveness can be misinterpreted as elevated
learning rates and decreased inverse temperatures for the estimation (A,C) or
four-alternative (B,D) tasks (see text). In all panels, the abscissa represents
learning-rate adaptiveness (0 is equivalent to using a fixed learning rate; higher
numbers indicate higher adaptiveness to unexpected errors). A & B. Actual (black)
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and model-inferred (gray) learning rates used by agents with different levels of
learning-rate adaptiveness. Points and error bars represent the median and
interquartile range, respectively, of data from six simulated sessions. C & D. Best-
fitting values of the inverse-temperature parameter, intended to describe
exploratory behavior, inferred using a fixed delta-rule (circles) or approximately
Bayesian (squares) model. Shades of gray indicate the level of exploratory behavior
of the simulated agent, as indicated. Arrows indicate the actual value of the inverse
temperature parameter used in the generative process. Points and error bars
(obscured) represent the mean and standard error of the mean, respectively, of data
from six simulated sessions.
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Figure 2. Poor fits from models that ignore learning-rate adaptiveness are
easily identified in the estimation, but not the four-choice, task. A & B. Mean log
likelihood associated with a fixed learning-rate model, per simulated trial from the
estimation (A) or four-choice (B) task, aligned to change-points in the generative
process. Lighter shades of gray represent data from simulated agents with higher
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levels of learning rate adaptiveness. C-F. Learning rates (C and D) or inverse
temperatures (E and F) inferred from model fits that exclude log-likelihood
information from trials occurring 0-10 trials after change-points (abscissa) for
estimation (C and E) and four choice (D and F) tasks. The transient changes in A, C,
and E evident for all but the least adaptive simulated agents reflect the fixed
learning-rate model’s inability to account for behavior just following change-points
on the estimation task; no comparable effects are evident for the four-choice task.
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Chapter 4: Supplemental material

Predictive-inference task simulations.

Task design. The subject’s task was to predict the value of each subsequent outcome
presented in a sequence. Qutcomes were generated by rounding picks from a
normal distribution with a standard deviation equal to 35 (values between 5 and 40
gave similar results) and a mean that was initiated as a random value picked from a
uniform distribution ranging from zero to 300. For each trial, a weighted coin flip
determined whether the mean of the distribution would remain the same as on the
previous trial (p=0.7, non-change-point trials) or whether the mean would be re-
picked from a uniform distribution ranging from zero to 300 (p=0.3, change-point

trial). Each sequence consisted of 800 outcomes.

Simulated behavior. Task performance was simulated using the computational
model that was best able to describe the range of behaviors of human subjects
described previously (Nassar etal., 2010). The model updates beliefs about the
mean of the generative distribution after observing each new outcome according to

the error made in predicting that outcome:

S.Eq. 1: Ei 1 = FEy+a X o441

where E is the expected value of the distribution and 9 is the difference between the

actual outcome and the predicted one (E). The learning rate, o, is adjusted from

135



trial-to-trial in accordance with estimates of uncertainty and change-point
probability with a set of equations derived from the Bayesian ideal observer for the
task. These inference equations for this model (see Nassar et al., 2010, for details)
include two meta-parameters: hazard rate and LR adaptiveness (previously termed
likelihood weight). Hazard rate controls the subjective expectation on the prior
probability of a change-point, which in human subjects tends to overshoot the actual
value and in our simulations was, accordingly, set to 0.5. LR adaptiveness
determines the extent to which unlikely outcomes are used to recognize change-
points and in turn adjust learning rates. A LR adaptiveness value of zero is
equivalent to a fixed learning rate, whereas a LR adaptiveness value of one is
consistent with optimal belief updating. To model the heterogeneity of human
subjects in this regard to this parameter, we simulated ten subjects evenly spaced

across the allowable range from zero to one.

We simulated behavior using the inference model, described above, in tandem with
a probabilistic action-selection process using an inverse-temperature parameter.
This process was implemented by computing the probability of choosing each

option, p(x), according to a softmax function:

S. Eq. 2: p(x) = 555
n=0

where Vx is inversely proportional to the distance between the potential prediction

(x) and the estimate derived from the inference model described above (Et), and { is
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the inverse temperature, which determines the variability in action selection and
has previously been used as an indicator of exploratory behavior. Here we used
inverse temperatures ranging from 0.2 to 1. For each set of parameters, the

simulated subjects completed five task sessions.

Model fitting. We fit simulated behavior from the predictive-inference task using a
fixed learning-rate model. This model updated beliefs according to S. Eq. 1, albeit
with a fixed learning rate (o) for all trials from a given session. This model also used
the same action-selection mechanism described above (S. Eq. 2). This model was fit
to simulated behavior with learning rate and inverse temperature as free
parameters, using a constrained search algorithm (fmincon implemented in Matlab)
to minimize the negative log likelihood of the model relative to the simulated

behavioral data.

Four-alternative forced-choice simulations.

Task design. The four-alternative forced-choice task simulated here was previously
developed and used by Krugel and colleagues (Krugel et al., 2009). Subjects were
asked to choose between four possible alternatives according to perceived value.
After choosing an alternative, the subject was shown the value of the outcome
associated with that choice. There were two possible outcome values: a high value
(250 pts) and a low value (50 pts). For each trial, one (best) alternative is the most
likely to yield a large reward. To maximize our ability to achieve reliable model fits,
we simulated sessions with 10,000 trials in which outcomes were assigned to each
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possible choice by the following process:

1) A weighted coin flip determined whether the best target would remain in the

same location as on the previous trial (the probability of a change = 0.1).
If Change: a new best target is sampled at random from all targets.
Otherwise: the best target remains in the same position as previously.

2) Outcome values were chosen at random (from the two possible values) for each
alternative with p(high value) = 0.8 for the best alternative and 0.2 for all other

alternatives.

Simulated subject behavior. Behavior was simulated according to the adaptive
learning-rate model used by Krugel and colleagues that was best capable of
describing the behavior of human subjects (2). In brief, choices were selected
according to a softmax action-selection rule that depended on a value function (q)

and an inverse temperature term (3):

S.Eq.3 3 el Bit

=1

After each trial, the value of the chosen option for the current timestep (ELt) was

updated according to the reward prediction error on that trial:

S.Eq.4
Eii+1 = FE; + o0,
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where d reflects the difference between the actual outcome value, and « is the

learning rate. The learning rate was adjusted on each trial according to the slope of

the recent, unsigned prediction errors (m):

if m>0 oy = oy + f(my) - (1)
S.Eq.5

if m<O0 ar=oy_1+ f(my) - (1 —a_q)

Thus, learning rate increased if the absolute value of the most recent prediction
errors was large but decreased if the absolute value of recent prediction errors was

small. The form of f(m) was a double-sigmoid transfer function:
S. Eq 6 Szgn(m) . (]_ — e*(m)\)2)

where the learning rate adaptiveness parameter, A, determines the extent to which
learning rates are altered according to recent absolute errors. When A is equal to
zero, learning rates become stable and thus maintain their initial value (which in
our simulations was set to zero). When A takes larger values, the learning rate

becomes increasingly dependent on the slope of recent absolute prediction errors.

Model fitting. We fit simulated behavior with a model that included the same action-
selection (S. Eq. 3) and learning mechanisms (S. Eq. 4) described above but used a
fixed learning rate for all trials (instead of S. Egs. 5 and 6). Thus, the model had two

free parameters (learning rate and inverse temperature), which were fit
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simultaneously to simulated behavioral data by minimizing negative log likelihood

using the Matlab function fmincon.

Standard model selection tests.

All model fits described in the main text were better descriptors of behavior than
null models that reflected random choice behavior for the respective tasks, as
measured by BIC or AIC (BIC values are shown in S. Figs. 1 and 2). That is, even the
most ill-suited models (e.g., fixed learning-rate models fit to adaptive learning

behavior) would not be rejected on the basis of appropriate likelihood-based tests.
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S. Fig 1: BIC values for all models fit to simulated predictive inference data. BIC
values are represented in color (see legend to the right: hotter colors reflect higher
BIC values; that is, worse fits) for each simulated value of inverse temperature and
LR adaptiveness when fit by a fixed learning-rate model. For comparison, the BIC of
a null model that reflects random choice activity is included (column on far right).
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S. Fig 2: BIC values for all models fit to simulated four-choice task data. BIC values
are represented in color (see legend to the right: hotter colors reflect higher BIC
values; that is, worse fits) for each simulated value of inverse temperature and LR
adaptiveness when fit by a fixed learning-rate rate model. For comparison, the BIC
of a null model that reflects random choice activity is included (column on far right).
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CHAPTER §

Ongoing work and future directions

In chapters 2-4 [ show that human subjects conform to the basic tenants of a
normative model for making predictions in a dynamic environment, that this
behavior can be simulated using a slight extension to a biologically inspired delta-
rule model, and that the key variables of this model seem to be represented in the
pupil-linked arousal system and driving belief-updating behavior, and that the
subtle extensions of this model have substantial impact on standard model fitting
procedures. In this final chapter [ will discuss the significance of specific results
from these chapters, identify some important open questions, and describe some

additional experiments that [ have embarked on to answer these questions.

Mechanism of adaptive learning rate. The pupillometric studies described in
chapter 3 revealed that pupil-linked arousal systems reflected the two variables
necessary for computing learning rate according to a modified delta rule capable of
near-optimal inference in dynamic environments. The sound manipulation
experiment highlighted the behavioral importance of this signal by demonstrating
that an unexpected auditory stimulus capable of causing a change in pupil diameter
also led to systematic changes in learning rate. This relationship was explained in

terms of known and theorized effects of noradrenaline released from the locus
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coeruleus (LC), the levels of which are thought to covary with baseline arousal

measures including pupil diameter (Aston-Jones and Cohen, 2005).

One intriguing question stemming from this work is how, exactly, a global
neuromodulatory signal such as the one that LC might affect the extent to which
new observations are incorporated into an updated prediction about the world. One
interesting possibility is that the change in learning rate reflects a boost in the
extent to which sensory information propagates through cortico-thalamic circuitry
toward association cortex where abstract beliefs are represented. This possibility is
supported by several neurophysiological studies that show enhanced throughput of
sensory information relative to noise during noradrenergic modulation
(Waterhouse et al.,, 1998;Hurley et al., 2004;Devilbiss and Waterhouse,
2000;Devilbiss and Waterhouse, 2004). One possible mechanism through which
signal amplification might be achieved is a change in the gain of the non-linear

activation function of sensory neurons (Servan-Schreiber et al., 1990).

This type of radical change to the input-output function controlling activity of
neurons in sensory cortex should lead to a drastic shift in the flow of information
through the brain. One strong prediction made by this model is that fMRI BOLD
signals in sensory cortex should covary more with those in prefrontal regions when
NE levels are high. As a collaborative project related to my thesis work, I have

worked with Dr. Joe McGuire and Dr. Joe Kable to conduct an experiment in which
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16 subjects completed the a variant of the predictive inference task described in
chapters 2-4 in an fMRI scanner. Our initial analyses have focused on identifying
specific regions that have enhanced BOLD responses to various conditions that tend
to drive learning and have identified an area of interest in the dorsal cingulate
cortex. However, our future plans include examining whether correlations between
BOLD responses in the occipital and prefrontal cortices depend on subject learning

rate (and by extension LC activity).

Another potential mechanism for the arousal-induced changes in learning is
amplification of feedback signals mediating behavioral updating. This behavioral
updating signal is thought to take the form of a reward prediction error. Several
areas of the brain including anterior cingulate cortex (ACC), the habenula, and most
famously the ascending dopaminergic system have been shown to contain cells the
fire in proportion to reward prediction errors (Matsumoto and Hikosaka,
2007;Matsumoto et al., 2007;Schultz et al., 1997). Since fMRI work from our
collaboration as well as others indicated a relationship between fMRI BOLD activity
in ACC and learning rate (Behrens et al., 2007;Krugel et al., 2009), | designed an
experiment to look directly at feedback signals in ACC of rhesus macaques in a task

where optimal behavior requires adaptive learning.

The task prompts the monkey to choose one of ten possible targets. The correct

target is then revealed to the subject, and after a delay before either receiving a juice
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reward (if he chose the rewarded target) or beginning the next trial (otherwise).
The process by which rewarded targets is determined contains both noise (in the
form of a spatial probability distribution across all targets) and change-points (as

the best target is re-picked on a small proportion of trials).

Adaptive learning can be measured by analyzing switch behavior as a function of
change-point probability, which can be inferred through the spatial distance
between chosen and rewarded targets, and uncertainty, which is related to the
number of trials since the last change-point. Like human subjects, both of the
monkeys trained on this task display adaptive learning that is greatest after
surprising outcomes or shortly after a change in outcome contingency. Our
preliminary recordings do not demonstrate an increase in overall firing of ACC
neurons during high learning trials, which could be one simple interpretation of the
BOLD response. Rather, there seems to be a trend toward enhanced signaling of
outcome (ie error or correct) in single units in ACC on trials where learning rate was
high. In principle such a signal enhancement could give rise to enhanced updating
on these trials, however this dataset is still preliminary and confirmation of this idea
will require more neural recordings, which will be completed by Yin Li, a

neuroscience graduate student in the Gold Lab over the coming year.

Origins of individual differences. A striking feature of the behavioral and

pupillometric data reported in chapters 2 and 3 is the incredible physiologic and
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behavioral diversity across subjects. The finding that individual differences in
learning were related to individual differences in pupil response suggests the
possibility that these differences might depend on baseline neuromodulatory state.
One strategy for testing this possibility is to identify groups differing in underlying
neuromodulatory state and determine whether these groups differ in behavior on

the predictive inference task.

[ have taken this approach in two collaborative projects that relate directly to my
thesis work. The first such project relies on the differences in dopamine signaling in
old and young adults (Lietal, 2001). Although I postulate that noradrenergic
signaling is mediating the enhanced learning after change-points, dopamine and
noradrenaline share many antecedent conditions and can serve redundant roles in
some forms of learning (Ouyang et al., 2012). To examine whether age-related
differences in learning behavior I have embarked on a collaborative project with Dr.
Ben Eppinger and Dr. Shu-Chen Li at the Max Planck Institute for human
development in Berlin. The study will include 60 young and 60 old subjects that will
be genotyped with respect to the DAT1 and DRP32 polymorphisms, which affect
functional dopamine signaling. Although genotyping is not yet complete, the
behavioral data from an initial cohort of 30 young and old subjects show a modest
group difference with older subjects using significantly reduced learning rates (see

figure 5.1).
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A second collaborative project is underway examining whether schizophrenic
patients, who have increased D2 dopamine signaling but diminished D1 dopamine
signaling, differ from 1.Q. matched controls in behavior on a variant of the predictive
inference task. Data is being collected Dr. David Leitman and Dr. Bruce Turetzky in
the department of Psychiatry at the University of Pennsylvania. Although initial
data from schizophrenic subjects also suggest a decrease in learning rate in this
group, in principle differences in more subtle aspects of predictive inference
behavior (ie. relative uncertainty and hazard rate best describing subject behavior)
between the schizophrenic and aged groups might provide insight into distinct roles

that different receptor subtypes might have in setting baseline learning behavior.
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Figure 5.1 Age differences in learning rate. Average learning rate for younger (age 20-30
years, blue) and older (age 60-70 years, green) adults as a function of trials after a change-
point in a variant of the predictive inference task described in chapter 2.
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Change-points in perception. Predictions about future outcomes are not only
useful for guiding behavior, but also for interpreting ambiguous sensory stimuli.
Previous work suggests that humans and animals combine sensory information
with expectations about the probability of potential stimuli in a roughly Bayesian
fashion (Knill and Pouget, 2004). This combination process allows smaller
perceptual errors on average in a stable regime, but also biases all perceptual
estimates toward the expected stimuli. One potential issue with biasing perceptions
according to expectations is that under many circumstances contexts can change
leading to expectations that are violated. The use of such violated expectations
would decrease perceptual accuracy and thus a system designed to minimize
perceptual errors in a dynamic environment should immediately reject prior

expectations that are inconsistent with incoming sensory information.

In order to test this idea directly I designed an auditory localization task that built
on the main features of the predictive inference task described in chapter 2. The
task was instantiated by Shilpa Sarode and Kamesh Krishnamurthy and used to
collect preliminary data that was recently presented at the Society for Neuroscience
conference. Human subjects were instructed to predict (stimulus expectation) and
then indicate (stimulus perception) on each trial the virtual source location of a
binaurally presented noise burst, filtered using a standard head-related transfer
function associated with different frontal, azimuthal source locations. The locations

were drawn independently for each trial from a normal distribution (the “source
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context”), but the mean of this distribution was re-picked on a random subset of
trials according to a change-point process. After each trial, the subject was shown a

visual representation of the true stimulus location.

We characterized the influence of prior expectations on perception in terms of the
relationship between prediction errors (stimulus expectation) and perceptual
errors (stimulus perception) measured on each trial. Consistent with optimal
inference in a dynamic environment, the influence of prior expectations on
perception was smallest just after a change-point, even on the first stimulus from
the new distribution. The influence of prior expectations increased gradually as
subjects encountered more stimuli from the new distribution and the expectations
became more reliable. The results suggest that the brain can rapidly calibrate the
relative influence of prior expectations and incoming sensory information according
to ongoing assessments of their reliability to guide perception. Thus it appears that
the dynamic re-weighting of prior information occurs on a perceptual timescale

much faster then that necessary for the behavior described in chapters 2 and 3.
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CHAPTER 6

Conclusions: generality of findings

Previous chapters developed the notion of influence in learning, demonstrated the
computational factors determining influence, and mapped these factors onto
measurements of a pupil-linked arousal network. Although the notion of influence is
quite general, our examinations of computational and physiological mechanisms of
influence were made specifically in a predictive inference task developed explicitly
for that purpose. In this section I will bridge the findings from previous chapters to a

broader understanding of mechanisms of learning in the brain.

Although there are many distinct forms of learning that can be measured with
specific tasks there is some evidence that these disparate types of learning might
engage a few separate but interacting learning systems. One such system is a
network including the ascending dopaminergic system (ventral tagmental area and
substantia nigra pars compacta) as well as dorsal and ventral striatum. This
network is thought to implement an actor/critic form of reinforcement learning that
uses state representations supplied by prefrontal cortices to inform expectations of
action values in striatum. Action values in dorsal striatum are used to select actions,
whereas value representations in ventral striatum serve to supply expectations that
are combined with sensory feedback in the ascending dopaminergic system in order

to provide a reward prediction error signal used to train the state-action mappings
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stored in connection weights in striatum. When positive prediction errors are
signaled (through enhanced dopamine release in the striatum) synaptic weights of
neurons mapping recently encountered states onto recently chosen actions are
enhanced (Takahashi et al., 2008). This allows the network to learn to choose
actions when they are valuable without having an explicit model of the how an
action in one state might map onto the next, and thus is often called “model-free”

(Daw et al, 2011).

This model free learning network shares features with the delta rule model
employed in chapters 2-4 for updating inference based on outcomes. Both models
employ the use of prediction errors to instruct learning. Both models contain a
learning rate term that essentially controls the influence of new prediction errors on
expectations maintained either as an abstract belief (in the reduced-Bayesian
model) or as a striatal connectivity matrix determining state-action mapping.
Amplification of the learning rate in the physiological model-free learning network
could be accomplished by amplifying phasic dopamine signals that encode reward
prediction errors. Although it is currently unknown whether these signals are
modulated by the computational factors that govern learning rate, projections of
locus coeruleus to dopaminergic nuclei and the existence of a sub-population of
dopaminergic neurons that encodes salience rather than reward prediction error

may provide a means for incorporating arousal encoded learning computations into
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the reinforcement signal (Mejias-Aponte et al., 2009;Matsumoto and Hikosaka,

2009).

An obvious difference between the two systems is that the reduced Bayesian model
represents beliefs and prediction errors on an abstract space, whereas the
striatal/dopaminergic system seems to explicitly represent values and reward
prediction errors in a valence space where positive values and reward prediction
errors are represented by higher firing rates of striatal and dopaminergic neurons
respectively. This allows the output of the network, in terms of the firing rates of
striatal neurons, to provide a signal proportional to the probability with which a
particular action should be chosen (Takahashi et al., 2008). Although such a
network can efficiently incorporate reward information to reinforce chosen actions,
it is not clear how such a network would represent the type of outcome information
provided in our predictive inference task. The outcomes in the predictive inference
task specify the action that would have provided the most reward, so it is possible
that the same network could incorporate this information by simulating the action
that would have provided the most reward and then reinforcing the connectivity

matrix through a fictive reward prediction error signal.

While it is unknown whether the striatum has access to such fictive learning signals,
such signals have been shown to exist in anterior cingulate cortex (ACC) an area of

prefrontal cortex that is heavily innervated by dopaminergic nuclei (Briand et al.,
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2007;Kennerley et al., 2011) . It could be that these signals measured in ACC are
reflecting a more global neuromodulatory signal broadcast by DA neurons, in which
case the striatum might have access to the same signal, allowing it to effectively
learn about both chosen and un-chosen options. However, it is also possible that
anterior cingulate cortex, which is known to support a number of the necessary
computations for predictive inference in our task (prediction errors, learning rates)
and be highly involved in many forms of behavioral updating might perform model-

free inference directly (Kennerley etal., 2011;Behrens et al., 2007).

Regardless of where these algorithms are implemented, one general concern raised
by the sound manipulation experiment (chapter 3) is to the specificity with which
learning rates can be selectively modified. For example, the brain might be
simultaneously maintaining and updating beliefs about several variables, say the
quality of a certain restaurant and the safety of a certain neighborhood. When the
brain obtains surprising data in one of these domains (say a terrible meal at the
restaurant) it seems at first glance that the brain should reset its beliefs in that
domain (amplify learning about the restaurant) while maintaining beliefs in the
other (stable beliefs about neighborhood). However, finding that a surprising sound
could alter the influence of numerical outcomes on updated beliefs suggests that the
brain does not completely compartmentalize adjustments in learning to a particular
stimulus-relevant domain. One possible explanation for this effect relies on the

underlying structure of change-points encountered in the world. If change-points

154



tend to be correlated over dimensions, then observing a surprising stimulus in one
dimension should, in fact, prescribe rapid learning in the other dimensions. For
example, sudden economic hardship might lead a neighborhood to become unsafe
and a restaurant owner to tend toward lower quality ingredients. Thus observation
of a bad hamburger indicates the possibility of economic decline, which in turn leads
to uncertainty about he safety of the neighborhood and in turn rapid learning about
that variable. It is unknown to what extent real-world change-points might have this
sort of correlation structure or to what extent correlations in learning rate across
dimensions match real-world statistics, however work addressing these questions
will be critical to understanding the true optimality of arousal induced modulation

of learning rate.

Hard-wired assumptions about latent structure of change-points incorporated in the
arousal driven learning system might account for some implicit expectations about
the latent structure of the world, however it is clear that the brain also learns such
latent structures explicitly through experience and incorporates this knowledge into
inferences about the world (Daw et al,, 2011). This type of learning is referred to as
model-based, as it requires building an explicit probabilistic model of how various
states map onto one another. In contrast to model-free learning, which is thought to
take place in the striatum, model-based learning is thought to occur largely in
prefrontal regions including dorsal lateral prefrontal cortex (Glascher etal., 2010).

Although some aspects of the reduced Bayesian model rely on model free

155



(prediction error) signals, other aspects require an understanding of how states
evolve over time, or the probabilistic structure of the generative environment. In
particular, change-point probability calculations are based on the probabilistic
mapping of a latent variable (mean of distribution) to an observable one (actual
outcome). This mapping is likely learned over time; subjects used more adaptive
learning rates, as well as hazard rates better matching the experimental conditions,
under conditions where they had more training (compare performance in chapter 3
to that in chapter 2). One mechanistic explanation for this might be that model-
based learning is used to develop finely tuned probabilistic expectations, which are
in turn used to calculate learning rates that are broadcast through the noradrenergic
system and then used to amplify learning signals in a model-free learning network.
Although interactions between model-free and model-based learning systems have
been observed in the striatum, it is unclear to what extent these interactions depend
on arousal systems or reflect the optimization process described above (Daw et al,,

2011).

Concluding remarks

The brain is exquisitely evolved to collect sensory information and use it to inform
future actions. However, in a dynamic and stochastic world, a single sensory
snapshot does not provide perfect information regarding the best possible future

action, and a strategy for combining snapshots over time is required. The best
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strategy for incorporating new sensory information in a changing world requires
dynamically adjusting the influence of new snapshots according to the predictive
quality of older ones. Here [ have shown that human subjects conform to this
strategy when assigning influence to abstract information in a predictive inference
task and that such behavior could be achieved with a simple model-free
reinforcement-learning rule, albeit with some model-based assessments of stimulus
probabilities. Interestingly, under stable conditions this near-optimal model
prescribes becoming relatively insensitive to new sensory information. At first
glance this prediction seems surprising; why would the brain spend so much energy
maximizing the informational content in each sensory snapshot only to ignore

them?

The answer is that even perfect sensors are only as informative as the external
environment. The informational content of an observation can be defined as the
negative log probability of that observation, such that improbable events are highly
informative and completely predictable ones are uninformative. Since outcomes
become predictable during a stable contingency they also become less informative.
The extent to which the information content drops off during a stable period
depends critically on exactly what type of information is measured: while
information about the present is always provided by observations, information
about the future approaches zero after several observations in a stable regime (see

figure 6.1). Through this lens optimal inference can be seen as appropriately gating
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sensory experience according to its relevant informational content, where relevance

explicitly requires pertaining to future events.

Arousal has long been thought to play a role in controlling the flow of sensory
information and arousal systems including locus coeruleus are most responsive to
improbable (ie. highly informative) stimuli (Pfaff, 2006;Aston-Jones et al., 1994).
Through diffuse projections locus coeruleus has the capability of influencing
stimulus representations across modalities and at different levels of abstraction.
This dissertation demonstrates that arousal systems play a role in controlling the
influence of abstract sensory observations on higher order beliefs according to the
relevant information provided by those observations. This work not only bolsters a
burgeoning view of generalized brain arousal as physical implementation of
information based sensory gating (Pfaff, 2006), but also addresses the larger
question as to why low arousal states exist in the first place. Where previous work
has discounted decrements in arousal as lapses in a fallible attention system, the
findings developed here suggest a normative explanation: stable variability in our
environment can allow unexpected stimuli to contain no information relevant to
future decisions. By reducing sensory flow under such conditions, we minimize the
extent to which we are misled by distracting and uninformative stimuli. Thus
decrements in arousal provide a means for the brain to resist learning from

unpredicted but uninformative stimuli.
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Figure 6.1 Decay in information from data generated by a noisy process. A) Entropy
(expected information, in bits) computed as the expectation of negative log
probability for each outcome where probabilities are computed by discretizing the
predictive distribution from the optimal inference algorithm at each time-step. B)
Mutual information (in bits) contained in subsequent observations from the same
noisy process. Mutual information is computed as the entropy over a given
observation (as above) minus the entropy over the next observation. Mutual
information between two subsequent observations can be thought of the amount of
information in an observation that pertains to the next (future) observation.
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