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Coarse-Grained Lattice Monte Carlo Simulation of Continuous Systems

Abstract
In this thesis, a coarse-grained lattice Metropolis Monte Carlo (CG-MMC) framework is presented for
simulating atomic and molecular fluid systems described by standard molecular force-fields. The CG-MMC
technique is demonstrated to be highly thermodynamically consistent with the underlying full resolution
problem using a series of detailed comparisons, including vapor-liquid equilibrium phase envelopes and
spatial density distributions for the square well, Lennard-Jones argon, and simple point charge (SPC) water
models.

The principal computational bottleneck associated with computing a coarse-grained interaction function for
evolving particle positions on the discretized domain is addressed by the introduction of new closure
approximations. It is shown that the coarse-grained potential can be computed at multiple temperatures and
scales using a single set of free energy calculations. Theoretical underpinnings of CG-MMC are further
discussed by addressing additional potential sources of error as well as computational advantages.

Two important applications of CG-MMC model are presented. The first application explores the validity of
CG-MMC model in non-equilibrium simulations. A variant of the CG-MMC method is developed that
enables simulation of coarse-grained non-equilibrium trajectories. It is shown that the resulting NECG-MMC
method generates trajectories that are consistent with coarse-grained Langevin dynamics. The second
application explores the validity of CG-MMC model in large-scale simulation. Multi-particle move capability
is developed and the scaling properties of the CG-MMC approach are studied. A non-equilibrium simulation
at large scale is used as a demonstration.
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ABSTRACT 

 

COARSE-GRAINED LATTICE MONTE CARLO SIMULATION 

OF CONTINUOUS SYSTEMS 

 

Xiao Liu 

Dr. Talid Sinno 

Dr. Warren D. Seider 
 

In this thesis, a coarse-grained lattice Metropolis Monte Carlo (CG-MMC) 

framework is presented for simulating atomic and molecular fluid systems described by 

standard molecular force-fields.  The CG-MMC technique is demonstrated to be highly 

thermodynamically consistent with the underlying full resolution problem using a series 

of detailed comparisons, including vapor-liquid equilibrium phase envelopes and spatial 

density distributions for the square well, Lennard-Jones argon, and simple point charge 

(SPC) water models.   

The principal computational bottleneck associated with computing a coarse-

grained interaction function for evolving particle positions on the discretized domain is 

addressed by the introduction of new closure approximations.  It is shown that the coarse-

grained potential can be computed at multiple temperatures and scales using a single set 

of free energy calculations.  Theoretical underpinnings of CG-MMC are further discussed 

by addressing additional potential sources of error as well as computational advantages.  

Two important applications of CG-MMC model are presented. The first applica-

tion explores the validity of CG-MMC model in non-equilibrium simulations. A variant 
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of the CG-MMC method is developed that enables simulation of coarse-grained non-

equilibrium trajectories.  It is shown that the resulting NECG-MMC method generates 

trajectories that are consistent with coarse-grained Langevin dynamics. The second appli-

cation explores the validity of CG-MMC model in large-scale simulation. Multi-particle 

move capability is developed and the scaling properties of the CG-MMC approach are 

studied.  A non-equilibrium simulation at large scale is used as a demonstration.	   
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to Lcell = 6! , (d) after 1.5!104  CG-MMC sweeps ( Lcell = 6! ), (e) configura-

tion (d) downscaled to 3cellL σ= , (f) after 1.5!103  CG-MMC sweeps 
( 3cellL σ= ), (g) enlarged configuration (f), which exhibits the macroscopic 
equilibration. Cell color denotes reduced density *ρ  that ranges from zero 
(dark blue) to 0.9 (red).  Density change per move at all coarse-graining levels 
is !!* = 0.037 .  ...............................................................................................139 
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1.1 Introduction of the Coarse-Graining Concept 

 

 Coarse-graining (CG) has been applied in a wide variety of settings in order to 

extend the scope of full-resolution atomistic and molecular simulations such as Metropo-

lis Monte Carlo (MMC) and molecular dynamics (MD), which are usually otherwise lim-

ited to nanoscale lengths and times even with the use of empirical interatomic potentials.  

In general, coarse-graining refers to a transformation in which some of the degrees-of-

freedom describing the system are eliminated, increasing computational efficiency at the 

expense of detail, and depending on the assumptions made, accuracy.  While it is difficult 

to neatly classify the many types of coarse-graining schemes that have been described in 

the literature, they broadly fall under two coarse-graining strategies: topological coarse-

graining and spatial coarse-graining. 

 

1.2 Coarse-Graining Strategy I: Topological Coarse-Graining 

 

 One very popular class of methods is topological coarse-graining, in which sever-

al atoms are grouped into effective entities that obey a new interaction function which 

implicitly contains all the atomic-level interaction information, e.g. the MARTINI force 

field for biomolecular systems [1, 2] and potentials for DNA-coated colloids [3-5].  A 

coarse-grained representation of the lipopeptide C16-KGGK obtained from MARTINI 

model is shown in Figure 1.1 to demonstrate the general idea of topological coarse-

graining. 
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Figure. 1.1: A representative example of topological coarse-graining by grouping several 

atoms into effective entities: Coarse-grained representation of the lipopeptide C16-

KGGK (MARTINI model) overlaying a ball-and-stick all-atom representation. The non-

polar saturated fatty acid tail is represented by gray spheres. Individual peptide backbone 

segments are represented by yellow spheres, apolar lysine chains by turquoise, and each 

lysine's charged sidechain amino group by blue. Figure and coarse-graining description is 

taken from ref. [1].  

 

The central challenge in topological coarse-graining is to then find the appropriate 

coarse-grained interaction potential to ensure thermodynamic and dynamical consistency 

with the full-resolution system. Accuracy in coarse-grained modeling depends on how 

well the coarse-grained partition function (determined by the coarse-grained potential) 

reproduces the full-resolution partition function (determined by the full-resolution poten-

tial). 
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Without loss of generality, consider the canonical (NVT) ensemble system. For 

the full-resolution system with N full  all-particle representation, the canonical partition 

function shows 

 Qfull (N full ,V ,T ) =
1

!3N full N full !
drN full exp "

U full (r
N full )

kBT

#

$
%
%

&

'
(
() ,     (1.1) 

where U full (r
N full )   is a specified interaction potential function for the full-resolution sys-

tem. Upon coarse-graining, the number of coarse-grained entities reduced to NCG by 

grouping several atoms into one effective entity. The coarse-grained canonical partition 

function now is defined as 

 QCG (NCG ,V ,T ) =
1

!3NCG NCG !
drNCG exp "

UCG (r
NCG )

kBT
#

$
%
%

&

'
(
(

) ,     (1.2) 

where UCG (r
NCG )

 
is the coarse-grained interaction potential. When an appropriate coarse-

grained interaction potential is defined such that the coarse-grained partition function can 

reproduce the full-resolution partition function after topological coarse-graining, thermo-

dynamic and dynamical consistency is achieved between the coarse-grained representa-

tion and the full-resolution system. 

Examples of successful approaches for accomplishing this task include force 

matching [6-8], Boltzmann inversion [9, 10], and relative entropy minimization [11-13].  

The resulting coarse-grained models have been used to study a broad range of materials 

and systems including polymers [14-16], biomolecules [17, 18], nanoparticle [19], and 

nanoparticle-polymer assemblies [20], and ionic liquids [21], to name a few.   
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Another paradigm for topological coarse-graining is based on combining particle 

and field-based descriptions into a single multiresolution simulation [22-26].  Although 

solid-state simulations are not a focus of the present paper, much progress has been made 

in this type of coarse-graining for crystalline materials [27].  The quasicontinuum (QC) 

framework, in particular, has emerged as a very powerful tool in the simulation of micro-

structure evolution [28, 29].  QC method significantly reduces the total number of de-

grees of freedom that must be considered by introducing representative atoms (see Figure 

1.2).  The Hamiltonian is reduced to a coarse-grained version as a function of momenta, 

effective mass and position of the representative atoms; therefore, this approach is also 

properly categorized as topological coarse-graining.  

 

atoms fqrg is equal to the ensemble average that would be
found for this observable in a full atomistic and canonical
system at equilibrium. That is,

hA!fqrg"iCG # hA!fqrg"iNr;V;T $ hA!fqrg"iN;V;T: (2)

Equation (2) provides a clear and reasonable objective for
the CG methodology.

The Hamiltonian of the CG system is constructed as
follows

HCG!fqrg; fprg;!" $
X
Nr

i$1

!pr
i "2

2mr
i
% VCG!fqrg;!"; (3)

where pr
i $ mr

i _q
r
i are the momenta of the representative

atoms and mr
i are their effective masses. In most dynamical

CG approaches the effective masses are computed using
either a weighted mass matrix approach [5] or a lumped-
mass approach [7]. Here we propose a more rigorous
approach whereby the effective masses are obtained from
two conditions: (1) that the total mass of the CG system
equals that of the full-atom system,

P

imr
i $ Nm; and

(2) that both systems have the same momentum free energy
Fp,

Fp $ & 1
!

ln
Y
Nr

i$1

!
2"mr

i

!h2p

"
3=2

$ & 1
!

ln
!
2"m
!h2p

"
3N=2

; (4)

where hp is an arbitrary constant with dimensions of
momentum [8]. These requirements are satisfied identi-
cally if hp $

####################

2"m=#!
p

and the effective masses are
taken to be mr

i $ #ni&1m, where ni is the number of atoms
represented by representative atom i (this is obtained from
a Voronoi tesselation of the CG system [2]) and # is
obtained from the solution of the equation !Nr

i$1#
ni&1 $

N. For the case of uniform coarse graining, where each
representative atom represents n $ N=Nr atoms, the so-
lution is # $ !N=Nr"1=!n&1" and the effective masses
are mr

i $ !N=Nr"m $ nm. This corresponds to a simple

lumped-mass approach. However, a lumped-mass ap-
proach is inappropriate for nonuniform coarse graining.
For example, for a CG system comprised of 4 representa-
tive atoms representing, respectively, ni $ 1, 2, 3, and 4
atoms, the effective masses are mr

i $ f1; 1:661; 2:758;
4:581gm. These are clearly different from the lumped-
mass approach which simply gives mr

i $ nim.
In order to construct a dynamics for the representative

atoms which allows for the simulation of systems in con-
tact with a thermal reservoir, we adopt the Nosé-Poincaré
thermostat [9,10], though now applied to the set of repre-
sentative atoms rather than all of the atoms. This approach
defines a virtual CG microcanonical system, which ensures
that ensemble averages of this system are exactly equal to
averages of the original canonical system, thus preserving
Eq. (2). Equations of motions can now be derived from the
Hamiltonian of the microcanonical system. These equa-
tions can be integrated in turn using a time-reversible
symplectic algorithm [11]. It should be noted that the
resulting equations of motion for atoms in fully refined
regions are identical to those of a full atomistic simulation.

The description given above is formally complete; how-
ever, we must still address the questions of how to effi-
ciently implement these ideas, and how to expedite the
calculation of the PMF VCG!fqrg;!". Here we appeal to the
QC formalism [2] to describe the configuration of the
system. We first lay down a mesh between the representa-
tive atoms and decompose them into two sets as shown in
Fig. 1. The nonlocal atoms (NL) are the atoms located in
fully refined regions which do not interact with any con-
strained atoms. Their individual contribution Ei!fqrg" to
the CG potential can be calculated exactly based on the
positions of the surrounding representative atoms as one
would do in regular MD. On the other hand, local atoms
interact with the constrained atoms in their vicinity. Taking
advantage of the smoothness of the strain field in the CG
regions, we use finite-element interpolation to express the
thermally averaged positions of the constrained atoms as a
function of the position of the representative atoms as
hqc

ji $ !Nr
i$1Sijq

r
i , where Sij are finite-element shape func-

tions. In our implementation we use three-noded triangular
elements with linear interpolation functions [12]. For com-
putational efficiency, we also appeal to the local harmonic
approximation suggested by LeSar [13,14], which has
proven to be accurate for moderately strained crystals up
to half the melting temperature. Using this approximation,
the CG potential energy simplifies to

VCG!fqrg;!" $
XN

i$1

Ei!fqrg" %
X

N&Nr

i$1

1
2!

ln
kDi!fqrg"k
!2"=!"3 ;

(5)

where Ei!fqrg" and kD!fqrg"k are, respectively, the energy
and the determinant of the dynamical matrix of atom i.
Finally we can take further advantage of the smoothness of
the strain field in the CG regions and invoke the Cauchy-

FIG. 1. We split the atom population between representative
atoms (large circles on the figure) and constrained atoms (small
gray circles). The average positions of the latter are estimated
from the position of the former using finite-element interpola-
tion. Among the representative atoms, we make a distinction
between nonlocal atoms (black circles) whose energy only
depends on representative atoms (as shown by the dashed circle
whose radius equals the cutoff distance of the interatomic
potential), and the local atoms (white circles) which interact
with constrained atoms.

PRL 95, 060202 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
5 AUGUST 2005

060202-2

 

Figure. 1.2: A representative example of a coarse-grained alternative to molecular dy-

namics without all-atom representation using a quasicontinuum framework. Atom popu-

lations are split between representative atoms (large circles) and constrained atoms (small 

gray circles). The average positions of the latter are estimated from the position of the 
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former using finite-element interpolation. Among the representative atoms, a distinction 

is made between nonlocal atoms (black circles), whose energy only depends on repre-

sentative atoms (as shown by the dashed circle whose radius equals the cutoff distance of 

the interatomic potential), and local atoms (white circles), that interact with constrained 

atoms. Figure and coarse-graining description is taken from ref. [29]. 

 

1.3 Coarse-Graining Strategy II: Spatial Coarse-Graining 

 

 A different approach for degree-of-freedom reduction is to map the problem onto 

a fixed lattice, starting with block-spin renormalization group theory [30]; here, we refer 

to this type of transformation as spatial coarse-graining.  In spatial coarse-graining of 

polymeric systems, for example, chains are placed on fixed grids and allowed to evolve 

subject to discretized moves; one example is the bond fluctuation method [31].   

Recently, spatial coarse-graining has been applied extensively to Metropolis and 

kinetic Monte Carlo simulations of Ising-type systems in which the aim is to transform 

one (high-resolution) lattice problem onto a lower-resolution lattice by grouping together 

lattice sites into coarse “cells”.  Notable examples include the work of Katsoulakis, Vla-

chos and coworkers [32-37] and Ismail et al. [38, 39].  A key element of these methods is 

the closure rule, which dictates how processes on the fine-grid lattice are averaged to 

generate consistent processes on the coarse-cell grid.  This may be accomplished using 

analytical approximations [32, 40] or numerical averaging [38, 39, 41-43].  The spatial 

coarse-graining approach is particularly useful when there is no obvious topological sim-

plification (or grouping) to be made, e.g. in atomic or simple molecular systems.  Lattice-
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based simulations are also extremely computationally efficient if the missing degrees-of-

freedom are properly accounted for [44-47]. Vlachos and coworkers have developed a 

mathematical formulation to coarse-grain the events from a fine-grid lattice to a coarse-

grid one [34]. In their work, several closure rules are developed such as Local Mean-

Field approximation [33, 35], quasichemical approximation [48] and approximation 

based on numerical methods [48]. 

The coarse-graining approach essentially begins with the full atomic scale lattice 

and groups several adjacent lattice sites together into “cells” that then effectively repre-

sent the new unit element of the coarse-grained lattice as shown in Figure 1.3. The reduc-

tion in the spatial degrees of freedom is accounted for by increasing the number of states 

that each coarse-grained cell can exist in. For example, if each coarse-grained cell con-

tains four lattice sites, it is now characterized by a four-level state variable, or “occupan-

cy”. The key task of the coarse-graining process is to define consistent new rates for the 

evolution of the particle population from one coarse-grained cell to the next. The essence 

of all coarse-grained simulations under this framework is to effectively compute the in-

teraction energy on a coarse-grid lattice based on the characteristics of the fine-grid inter-

actions so that the coarse-grained model performance matches the fine-grid model.	  In the 

work of Vlachos and coworkers, this is achieved by averaging over all the interactions 

within a cell and also over interactions between interacting cells, i.e. the coarse-grained 

interaction between two coarse-grained cells l and k is given by [32, 34]: 

              

 

U(k,l) =
1
A

U(r − s)drds
Dl ×Dk

∫∫                (1.3) 

where 

 

U(r − s)  is the interaction between lattice sites 

 

r  and 

 

s, 

 

A  is the area of the origin 
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cell plus that of cells within interaction range.  

 

(a)                                         (b)                                             (c) 

Figure. 1.3: Schematic representation of spatial coarse-graining. (a) Fine grid lattice with 

occupancy 0 or 1 in each fine-grid site; (b) Coarse-graining process by grouping every 

 

3× 3 adjacent fine-grid sites into one coarse-grid site; (c) Corresponding coarse grid lat-

tice with maximum occupancy 9 in each coarse-grid site. 

 

Ismail and coworkers also successfully developed a wavelet transform based 

coarse-graining approach, and successfully applied it in Monte Carlo simulation of Ising 

model [38, 39].  The basic idea of wavelet transform is to separate data sets into sets rep-

resenting local averages and local differences.  For example, by rewriting the Hamiltoni-

an in terms of wavelet-transformed averages and differences, the number of variables is 

reduced from 2N to N.  More importantly, the wavelet transform can be iterated if applied 

to successive sets of averages; thus it becomes a hierarchical technique that can map data 

from one scale to the next coarser scale.  As in the demonstration of wavelet-accelerated 

Monte Carlo (WAMC) model, a lattice model is hierarchically coarse-grained by compu-

ting the probability distribution for successively larger block spins.  
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While previous approaches for spatial coarse-graining have focused on weakly in-

teracting systems, Dai and coworkers developed numerical closure rules that account for 

strong interactions between particles, which are generally present in aggregating systems 

[42, 44, 45]. Although previous closure rules in the literature provide a good approxima-

tion for weak or short-ranged interactions, they fail for strong interactions: clusters of 

particles form during simulations and cause inhomogeneities, which presents a great chal-

lenge for coarse-graining. A new spatial coarse-graining approach was introduced aiming 

at greatly extending the scope of the Lattice Kinetic Monte Carlo (LKMC) simulations 

and proper closure methods for systems with strong interactions.  

Two important contributions were presented in their coarse-graining framework 

as critical elements for successful coarse-graining in strongly interacting systems. The 

first is the use of exponentially weighted average binding energies, rather than simple av-

erages. Physically, the former is an average over the transition rates, which effectively 

biases the average binding energy in a given coarse cell towards less strongly bound con-

figurations that are more likely to generate particle hops. In the limit of weak interactions, 

both averaging schemes were shown to converge to the same estimate for the average 

binding energy of a coarse cell. The second is the consideration of intra- and inter-cell 

coupling by an appropriate choice of closure rule, which has been largely ignored in pre-

vious literature.  

Two limitations were also pointed out about this approach. The first was that the 

computational cost for the Wang-Landau simulations [49] used to compute the coarse-

grained interaction potential as input in the CG-LKMC model was significant, especially 

for high levels of coarse-graining and small LKMC systems. The second was that the 
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LKMC approach is not highly transferable, in particular to variable temperature systems.  

 

1.4 Motivations of a New Coarse-Graining Framework 

 

 The primary reason that coarse-grained models are able to simulate larger length 

and time scales is due to the reduction in configuration space.  With reduced configura-

tional complexity, the states of a system can be sampled more rapidly, resulting in signif-

icant computational speed gains.  Previous spatial coarse-graining methods [33-35, 38, 

39, 42] effectively focus on computing the interaction energy on a coarse-grid lattice 

based on the characteristics of the fine-grid interactions so that the coarse-grained model 

performance matches the fine-grid model as shown in Figure 1.4. 

 

 

 

Figure 1.4: Schematic representation of reduction in configuration space by spatial 

coarse-graining. High-resolution lattice-based description is converted to a lower-

resolution description. Cell shading represents local particle density within each coarse 

cell. 
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However, compared to a full-resolution continuous model, its lattice representa-

tion is usually limited by the missing off-lattice entropic contribution [50, 51].  In other 

words, a lattice-based representation of a continuous model is already a “coarse-grained” 

version with configuration space reduced.  Since any information lost from the low-

resolution of the starting model cannot be captured in further coarse-grained model, a full 

resolution continuous model (with highest resolution) is generally a better starting point, 

although may not be necessary in all cases, than its lattice representation.  This thesis fo-

cuses on developing a coarse-graining framework that extends the spatial coarse-graining 

concept to a far more general situation in which particles subjected to an arbitrary, con-

tinuous interaction potential are mapped directly onto a rigid lattice of variable scale as 

shown in Figure 1.5.	   

 

 

 
Figure. 1.5: Schematic representation of reduction in configuration space by spatial 

coarse-graining. A continuous-space particle-based representation is directly coarse-

grained into a low-resolution lattice-based description.  Cell shading represents local par-

ticle density within each coarse cell. 
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Our approach is to bypass the already “coarse-grained” lattice model and start 

from a full-resolution continuous model with information coarse-grained in a way such 

that the off-lattice entropic contribution will be intrinsically included.  A coarse-grained 

interaction potential, pre-computed directly from the continuous potential using a numer-

ical averaging procedure, is then used to evolve coarse-grained Metropolis Monte Carlo 

(CG-MMC) simulations.  The first goal is to establish that the rules governing coarse-

grained models are equivalent to the rules followed by full-resolution models. In this der-

ivation, the Metropolis Monte Carlo (MMC) becomes the direct frame of reference for 

CG-MMC. 

Inspired by previous spatial coarse-graining framework [33-35, 38, 39, 42], we al-

so pay special attention to the appropriate choice of closure rule as well as the intra- and 

inter-cell coupling when developing the continuous coarse-graining framework. The in-

tra- and inter-cell coupling is replaced by an averaged environmental contribution. In ad-

dition, the principal computational bottleneck associated with computing a coarse-grained 

interaction function for evolving particle positions on the discretized domain is addressed 

by the introduction of new closure approximations.  In particular, we show that the 

coarse-grained potential, like all coarse-grained interaction functions, is generally a func-

tion of temperature and coarse-graining level and can be computed at multiple tempera-

tures and scales using a single set of free energy calculations.  

 

1.5 Theoretical Foundations of General Monte Carlo Simulation 

 

Molecular simulation of many-body systems can occur on discrete or coarse-



	   13 

graining levels. Discrete models treat individual atoms, molecules, or particles individu-

ally while the coarse-grain approach groups discrete elements into more abstract entities. 

In both models, simulation of the system can occur through deterministic or stochastic 

algorithms. Examples of the former mainly comprise of Molecular Dynamics (MD), 

while examples of the latter include various Monte Carlo (MC) methods, Brownian Dy-

namics (BD), etc.  

Monte Carlo methods are derived from the statistical mechanics notion of averag-

ing over ensembles where the intention is to map the system description onto a stochastic 

Markov-based framework. That is, we first choose an appropriate statistical mechanics 

ensemble, along with a distribution function describing the probability of occurrence of 

various states, and then evaluate physical quantities in this ensemble.  

A general Monte Carlo simulation is now described following ref. [52] as a guide-

line for both the coarse-grained Metropolis Monte Carlo model (CG-MMC), and its di-

rect frame of reference, the full-resolution Metropolis Monte Carlo model (MMC).  

In more detail, the goal in general Monte Carlo simulation is to construct a set of 

states in the phase space 

 

Q , in which various states occur with the probability 

 

P(Q) . 

Thus, we devise a Markov chain such that, starting from an initial state 

 

Q0, other states 

are generated by transitions 

 

Q→Q' and, ultimately in the steady state, they are distribut-

ed according to 

 

P(Q) . The transitions 

 

Q→Q' occurs in this process with a probabil-

ity

 

p(Q,Q') that defines the nature of this process and must be chosen to attain the distri-

bution 

 

P(Q)  in the steady state. 

This probability must satisfy the following conditions: 

(i)  

 

p(Q,Q') ≥ 0, such that the transition probability cannot be negative; 
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(ii) 

 

p(Q,Q') =1
Q'
∑ , where the summation extends over all available states 

 

Q'. The mean-

ing of this condition is that every state 

 

Q  is eventually attained in this random walk pro-

cess; and 

(iii) 

 

p(Q',Q)P(Q') =
Q'
∑ P(Q), this condition defines the probability 

 

p(Q,Q'), and it is 

the requirement of self-consistency, which assures that in equilibrium, the states in the 

phase space are distributed in accordance with the prescribed distribution function 

 

P(Q) .  

The trick, which leads to an elegant algorithm, used in MC is to replace the last 

condition by a stronger condition of microscopic reversibility 

   

 

p(Q',Q)P(Q') = p(Q,Q')P(Q)          (1.4) 

Clearly, equation (iii) follows from equation (1.4). By summation over 

 

Q'  we obtain 

           

 

p(Q',Q)P(Q') =
Q'
∑ P(Q) p(Q,Q')

Q'
∑                 (1.5) 

according to (ii), equation (iii) is automatically satisfied. However, it can also be satisfied 

in some different way, and thus equation (1.4) does not follow from (iii). 

A possible choice for the transition probabilities satisfying equation (1.4) is 

 

p(Q,Q') =
P(Q')
P(Q)

, when 

 

P(Q') < P(Q); 

 

p(Q,Q') =1, when 

 

P(Q') > P(Q); 

 

p(Q,Q) =1− p(Q,Q')
Q'≠Q
∑ .    (1.6) 

The last equation, which follows from (ii), determines the probability with which the sys-

tem remains in the state 

 

Q  when it is already in this state. 
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If 

 

P(Q') < P(Q), then 

 

p(Q',Q) =1 and 

 

p(Q,Q') =
P(Q')
P(Q)

, and thus 

     

 

p(Q,Q')P(Q) = P(Q') = p(Q',Q)P(Q')       (1.7) 

and Eq. (1.4) is satisfied. 

If 

 

P(Q') > P(Q), then 

 

p(Q,Q') =1 and 

 

p(Q',Q) =
P(Q)
P(Q')

, and thus 

      

 

p(Q',Q)P(Q') = P(Q) = p(Q,Q')P(Q)       (1.8) 

and Eq. (1.4) is satisfied. 

A general Monte Carlo simulation algorithm following ref. [52] can now be de-

scribed step by step as a guideline for both the CG-MMC model, and its direct frame of 

reference, the MMC model for analysis in future chapters: 

1) Specify an initial state 

 

Q0 in the phase space of the system studied, which is usual-

ly represented by a starting configuration defined by positions and velocities of 

the particles in the full-resolution system.  

2) Starting from a state 

 

Q , which is 

 

Q0 for the first step, generate randomly a new 

state 

 

Q'.  

3) Evaluate the transition probability 

 

p(Q,Q') defined by eq. (1.6). 

4) Generate a random number 

 

ζ such that 

 

0 ≤ζ ≤1. 

5) If 

 

p(Q,Q') < ζ  then remain in the old state 

 

Q  and go to 2). 

6) If 

 

p(Q,Q') ≥ζ  accept the new state, i.e. 

 

Q→Q', and go to 2). 

The steps 5) and 6) correspond to making the transition 

 

Q→Q' with the probability 

 

p(Q,Q') since the probability that 

 

p(Q,Q') ≥ζ  is equal to 

 

p(Q,Q'). 
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1.6 Thesis Outline 

 

Chapter 2 begins by introducing the coarse-grained lattice Metropolis Monte Car-

lo model (CG-MMC), including an introduction to the whole coarse-graining framework 

and the base case CG-MMC algorithm that will be applied in later chapters. Chapter 3 

introduces additional closure approximations that may substantially enhance the utility of 

the CG-MMC approach by reducing the overall computational effort associated with cal-

culation of the coarse-grained interaction potential. It also describes the theoretical un-

derpinnings of CG-MMC by addressing additional potential sources of error as well as 

computational advantages. In Chapter 4, a variant of the CG-MMC method is developed 

that enables simulation of (coarse-grained) non-equilibrium trajectories.  It is shown that 

the resulting method generates trajectories that are consistent with coarse-grained Lange-

vin dynamics.  In Chapter 5, multi-particle move capability is developed and the scaling 

properties of the CG-MMC approach are studied.  A large simulation of a non-

equilibrium process is used to demonstrate possible applications of CG-MMC.  Conclu-

sions and suggestions for further study are presented in Chapter 6. 
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2.1 Introduction 

 

In this Chapter, we aim at developing a general coarse-grained Monte Carlo (CG-

MMC) framework that extends spatial coarse-graining to a more general situation in 

which a continuous system of particles, subject to an arbitrary interaction potential, is 

mapped onto a rigid lattice of variable scale that can then be evolved with Metropolis 

Monte Carlo method using an appropriate coarse-grained potential.  We require that the 

coarse-grained potential be thermodynamically consistent with the microscopic potential, 

i.e., that the entropy associated with the missing degrees-of-freedom is transparently em-

bedded into the coarse-grained potential.  This latter issue has not been addressed in pre-

vious spatial coarse-graining approaches [1-6] as discussed in Chapter 1. 

The remainder of this chapter is organized as follows. In section 2.2, we start 

from developing the general CG-MMC framework by deriving equivalent coarse-grained 

partition function from the full-resolution partition function in Metropolis Monte Carlo 

model (MMC).  Instead of applying a “matched” coarse-grained potential in previous 

coarse-graining approaches so that the coarse-grained partition function could reproduce 

the full-resolution partition function as well as possible, the CG-MMC framework devel-

oped in this thesis provides a clear demonstration on what the correct format of the 

coarse-grained potential should be.  The significance is that the directly derived coarse-

grained potential at a given temperature and coarse-graining level does not require any 

specific physical insight and theoretically can be applicable to any potential.  In section 

2.3, approaches to treat inter-particle interactions using basic numerical closure approxi-

mations are discussed as basic closure rule.  How to calculate the coarse-grained interac-
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tion potentials using numerical averaging procedure is also fully discussed.  The CG-

MMC algorithm is summarized in detail in section 2.4, and the detailed discussion on de-

tailed balance requirement in the CG-MMC model is presented in section 2.5.  Applica-

tions of the CG-MMC model to atomic systems (represented by Lennard-Jones and 

square-well potentials) and molecular systems (represented by SPC-water potential) are 

demonstrated in section 2.6.  Finally, conclusions are presented in sections 2.7. 

 

2.2 General Concepts of CG-MMC Model 

 

Consider a three-dimensional system of N particles within a cubic simulation box 

of length L subject to periodic boundary conditions and evolving within the canonical 

ensemble (constant NVT).  Spatial coarse-graining proceeds by discretizing the overall 

domain into 3M m=  cubic coarse cells, each with length 

 

Lcell = L /m  and volume 

3
cell cellV L= .  Figure 2.1(a) shows a two-dimensional example of the discretization.   

Upon coarse-graining, each coarse cell is characterized by a single particle occu-

pancy number, nk , with 0 ! nk ! nmax  and N = nk
k=1

M

! , as shown in Figure 2.1(b).  The 

state of the coarse-grained system is now uniquely defined by an M-dimensional vector 

n ! n1,n2 ,...,nM( ) , which is generally much smaller than the full-resolution system state-

space, which is of dimension 3N (in three-dimensional space). 
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                                 (a)                                                                     (b) 

Figure 2.1: (a) Discretization of a two-dimensional simulation domain into a square grid 

of coarse cells.  Arrows denote neighbor cells to which particles can be moved. (b) N par-

ticles in the system are distributed over the M coarse cells. 	  Each coarse cell is character-

ized by a single particle occupancy number nk , 0 ! nk ! nmax , satisfying N = nkk=1

M! .  

 

The degree-of-freedom reduction implied by the spatial coarse-graining transfor-

mation is represented schematically in Figure 2.2. 
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n = 4

n = 3

n = 2

n =1

n = 0

!(n = 4)

!(n = 3)

!(n = 2)

!(n =1)

!(n = 0)
	  

	  

Figure 2.2: Multiple microstates associated with n particles in a coarse-cell are mapped 

onto a single coarse state within the coarse-grained representation, denoted by density, 

! = n /Vcell  or the particle occupancy number, n. 

 

 After defining the general nature of the spatial coarse-graining operation, the next 

step is to define the rules that govern particle moves between cells in the coarse-grained 

system, which are consistent with Metropolis Monte Carlo (MMC) moves in the continu-

ous, fully-resolved system.  In the following, we consider exclusively the canonical 

(NVT) ensemble.  The coarse-graining transformation is derived by first considering the 

system-wide canonical partition function  

 Q(N ,V ,T ) = 1
!3N N !

drN exp "U (rN )
kBT

#

$
%

&

'
() ,     (2.1) 
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where ( )NU r  is a specified interaction potential function.  Rewriting the partition func-

tion in terms of sub-integrals over coarse cells, whereby the 
1

M
ii

N n
=

=∑  particles in the 

system are distributed over the M  coarse cells, gives  

 Q(N ,V ,T ) = 1
!3N N !

drn1 exp "U (rN )
kBT

#

$
%

&

'
() ... drnM exp "U (rN )

kBT
#

$
%

&

'
()

k
* ,     (2.2) 

where the sum index k runs over all possible ways of distributing the N particles over the 

M coarse cells, i.e., all of the microstates of the coarse-grained system.  Each of the sub-

integrals in eq. (2.2) can be interpreted as a local Helmholtz free energy, i.e., 

 Q(N ,V ,T ) = 1
!3N N !

exp "
A1

kBT
#

$%
&

'(
...exp "

AM

kBT
#

$%
&

'(k
) ,     (2.3) 

where Ak ! "kBT ln drnk! exp("U (rN ) / kBT ) .  There is no approximation implicit in the 

statement of eq. (2.3) beyond the central spatial coarse-graining assumption that the par-

ticles within each cell are in equilibrium.  However, note that the local free energy of a 

given cell is, in general, a function of particle positions both inside (intra-cell interac-

tions) and outside the cell (inter-cell interactions).  How the inter-cell interactions are re-

solved depends on the specification of a closure rule, which does generally entail making 

an approximation; this will be addressed in Chapter 3.   

 Defining a coarse-grained overall system free energy, ACG (n) = Ak
k=1

M

! , leads to a 

restatement of the system partition function: 

 QCG (N ,V ,T ) = 1
!3N N !

exp "
ACG (n)
kBT

#

$%
&

'(k
) ,     (2.4) 
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where n ! (n1,n2 ,...,nM )  is an M-dimensional vector that defines a micro-configuration or 

state in the coarse-grained system (see Figure 2.1(b)).  The “CG” subscript on the left-

hand side simply denotes that the partition function is defined in terms of coarse varia-

bles.  A schematic representing the action of the coarse-graining transformation on the 

potential energy landscape of the original system is shown in Figure 2.3.  Both the di-

mensionality and the roughness (density of local minima per energy interval) are ex-

pected to be reduced in the coarse-grained system.  Based on these considerations, it is 

reasonable to expect that the coarse-grained system would exhibit improved ergodicity 

and faster equilibration. 

	  

U(r )

A(!,T )

 

Figure 2.3: One-dimensional projection of energy landscape, ( )U r , in fully-resolved 

system and corresponding CG (free energy) landscape, ( , )A Tρ , in coarse-grained system 

with micro-configurational degrees-of-freedom implicitly captured. 
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 Direct comparison of eqs. (2.1) and (2.4) suggests that a valid coarse-grained Me-

tropolis Monte Carlo (CG-MMC) simulation proceeds identically to one on the original 

continuous system, except that the move acceptance criterion should be based on 

( )CGAΔ n  rather than ( )NEΔ r , i.e., 

 ! ij = min exp !
"ACG (n)

kBT
#

$%
&

'(
, 1

)

*
+
+

,

-
.
.
,     (2.5) 

where ijα  is the acceptance probability for moving from state i to state j.  Throughout the 

remainder of this Chapter, a CG-MMC “move” is restricted to the transfer of a single par-

ticle from one cell to a neighboring cell (see Figure 2.1(a)).  More generalized moves 

(e.g., involving multiple particles) also will be discussed Chapter 5. 

It is also worth noting that the spatial coarse-graining is generally applicable to 

systems of any geometry, as long as a unit coarse cell of an appropriate geometry exists 

such that the simulation domain can be discretized into an integer number of coarse cells 

that are space filling.  In the remainder of this work, cubic cells are used to discretize rec-

tangular simulation domains.  

 

2.3. Coarse-Grained Potentials and Basic Closure Rules 

 

 The primary input needed to execute a CG-MMC simulation is ( )CGAΔ n  in eq. 

(2.5), which represents the free energy change in the system upon moving from one mi-

crostate to another.  In this sense, the function ( )CGAΔ n  is a coarse-grained interaction 

potential that must be computed before a CG-MMC simulation can be performed.  Ideal-
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ly, the coarse-grained potential is obtained directly from a given full-resolution interac-

tion potential (e.g., Lennard-Jones) with a minimum number of approximations and in a 

manner that is generalizable to any interaction model.   

 Consider first the Helmholtz free energy in a system containing N particles at vol-

ume V and temperature T: 

 
( )

3

( , , ) ln

ln ln exp
!

( , , ) ( , , )

B

NN
N

B BN
B

id ex

A N V T k T Q

U rVk T k T dr
N k T

A N V T A N V T

= −

⎛ ⎞⎡ ⎤⎛ ⎞ ⎜ ⎟⎢ ⎥= − − −⎜ ⎟ ⎜ ⎟Λ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠
≡ +

∫ , (2.6) 

where “id” and “ex” refer to ideal and excess contributions to the free energy, respective-

ly.  Similarly, the Helmholtz free energy change upon the addition of a particle to the sys-

tem is given by 

 
( )
( )

1

1 13

( 1) ln /

exp //ln ln
1 exp /

( 1) ( 1)

B N N

N N
B

B B N N
B

id ex

A N N k T Q Q

dr U r k TVk T k T
N dr U r k T

A N N A N N

+

+ +

Δ → + = −

⎛ ⎞⎡ ⎤−⎛ ⎞Λ ⎣ ⎦⎜ ⎟= − −⎜ ⎟ ⎜ ⎟+ ⎡ ⎤−⎝ ⎠ ⎣ ⎦⎝ ⎠
≡ Δ → + +Δ → +

∫
∫

.(2.7) 

The ideal contribution can be further decomposed so that 

 0 lnid id BA A k T ρΔ = Δ +  (2.8) 

where ρ  is defined as the density of the (N+1)-particle system and 0 3lnid BA k TΔ ≡ Λ  is a 

reference term that only depends on temperature; the latter is not discussed further in the 

following considerations, since it is cancelled out when one particle is moved out of a cell 

and inserted to one of the neighboring cells, with the total number of particles unchanged. 

Note that one CG-MMC step always consists of one particle deletion (from an origination 

cell) and one particle insertion (in the destination cell).  
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 While the ideal contribution to the particle insertion free energy change is imme-

diately available for any microstate, the excess portion must be computed numerically 

(see eq. (2.8).  However, it is generally the case that some assumptions must be imposed, 

in the form of a closure rule, to render this calculation computationally efficient; we ad-

dress the central issue of closure approximation next.  

 Consider again the (Helmholtz) free energy change within a particular coarse cell 

due to the addition of one particle.  The ideal contribution to the free energy change de-

pends only on the intra-cell number density, ρ , and temperature, T.  On the other hand, 

the excess contribution will depend on the densities of particles both inside and outside 

the cell, and possibly their spatial distributions.  These functional dependencies are repre-

sented schematically by  

 ( ) ( ), ( ), ( ),id ex envA A T A r r Tρ ρ ρΔ = Δ +Δ , (2.9) 

where ( )env rρ  is the (spatially varying) number density in the environment surrounding 

the cell under consideration, and ( )rρ  explicitly accounts for any non-uniformity in the 

intra-cell density distribution.  In eq. (2.9) and in the rest of the thesis, the “CG” subscript 

and the descriptor ( N ! N +1) are dropped for clarity.  Note that the free energy change 

associated with the addition of a single particle to a cell corresponds to the chemical po-

tential in the limit of large particle number.   

 A full evaluation of the functional dependencies implied within eq. (2.9) would 

make computation of a coarse-grained interaction potential extremely cumbersome and 

negate any computational advantage of CG-MMC.  The following closure approxima-

tions are therefore employed; these are subject to a posteriori verification once the results 
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of the coarse-grained simulations are compared to reference, full-resolution predictions.  

First, the extent of the “environment” is assumed to be localized around the coarse cell in 

question and the density distribution within the environment is assumed to be coupled 

only to that in the central coarse cell.  Second, the density distributions within the coarse 

cell and the environment are assumed to be fully characterized by their respective overall 

densities.  In other words, any spatial variations in the density distributions are averaged 

and only captured implicitly.  With these closure rule simplifications, eq. (2.9) simplifies 

to 

 ( ) ( ), , ,id ex envA A T A Tρ ρ ρΔ = Δ +Δ , (2.10) 

Equation (2.10) suggests that a full pre-computation of the coarse-grained interac-

tion function would require a three-dimensional scan over all relevant combinations of 

ρ , envρ , and T, even if the closure approximations noted above are assumed.  The 

coarse-grained potential also is likely to be a function of coarse-graining level, i.e., the 

coarse cell size, necessitating additional calculations for multiresolution simulations.  

These considerations highlight the potentially significant overhead associated with 

coarse-grained potential evaluation.  Additional closure approximations are introduced in 

Chapter 3, beyond the base case ones described above, in order to greatly reduce the ex-

pense associated with coarse-grained potential calculations, while retaining the accuracy 

of the overall CG-MMC method. 

 To compute the excess free energy change for particle insertion (or deletion) as a 

function of number density and temperature, a test simulation cell is constructed as a cu-

bic central coarse cell with width cellL  embedded in a surrounding environment shell with 
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width envL , as shown in Figure 3(a).  The outer boundaries of the environment shell are 

subject to standard periodic boundary conditions.  The boundary between the coarse cell 

and the environment shell is reflective in order to constrain the particle number densities 

in both regions to desired values; note, however, that particles are allowed to interact 

normally across this boundary.  In this manner, it is possible to compute the free energy 

change for particle insertion for all combinations of ( ρ , envρ ). 

 Special care must be taken in the case of molecular species.  Constraining entire 

molecules to either side of the partition would lead to configurational exclusion effects 

because the molecular center-of-mass would only able to reach the boundary for certain 

molecular configurations.  Hence, for molecular entities, only the molecular center-of-

mass is constrained to lie within a given region while portions of the molecules are al-

lowed to cross.  This restricted reflective boundary condition is denoted schematically in 

Figure 2.4(b) for the case of small molecules such as water.  It should be noted that re-

striction of the center-of-mass, rather than the entire molecule, relaxes the imposed densi-

ty constraint somewhat, particularly when there is a large density difference between the 

reference coarse cell and its surroundings.  The impact of this issue is probed in more de-

tail in Chapter 3. 
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                                (a)                                                                      (b)  

Figure 2.4: Cell setup for computing coarse-grained interaction potential for (a) atomic 

systems, and (b) molecular systems.  In both cases, an inner cell (solid line) is surrounded 

by an “environment” shell subject to periodic boundary conditions (dashed line).  In (a), 

particles are not allowed to move between the two regions during free energy sampling 

but do interact across the partition, while in (b) only the centers-of-mass are restricted. 

 

 In this thesis, the excess free energy change due to particle insertion in Eq. (2.10) 

is directly computed using the Widom particle insertion method [7], although any other 

method for free energy estimation also can be employed.  We note here that the basic 

Widom method is problematic under a variety of common conditions, such as high densi-

ties, low temperatures and for large molecular entities.  Many studies have demonstrated 

that the Widom approach can be improved substantially in most of these situations, but 

these are not considered here because it was possible to obtain convergence for all condi-

tions of interest.  Of course, the computational expense associated with the pre-

e n vL

ce llL
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computation of the coarse-grained potential would be reduced with more advanced tech-

niques.   

 In the basic Widom particle insertion method, the excess free energy change due 

to particle insertion is given by 

 1

,

( 1) ln d expN
ex B

B N T

UA N N k T
k T

+ ⎛ ⎞ΔΔ → + = − −⎜ ⎟
⎝ ⎠

∫ r , (2.11) 

where 1( ) ( )N NU U r U r+Δ = −  is the internal energy change due to the insertion of the 

(N+1)th particle, and the averaging is carried out in the trajectory generated by the N-

particle system at the temperature of interest.  Note that test particle insertions are per-

formed only within the center cell although the corresponding potential energy change is 

computed over all particles.  Unless otherwise stated, a Widom insertion simulation for a 

given ( ρ , envρ ,T) combination consisted of a pre-equilibration phase (~106 MC sweeps 

over all particles in the simulation cell) followed by about 106 MC sweeps to collect the 

average in eq. (2.11).  In detail, during the pre-equilibration phase, 5x107 MC steps for LJ 

and SW cases, and 2.5x108  MC steps for SPC case are performed over all particles in the 

simulation cell. During the collection phase, 5x107 steps for LJ and SW cases and 

7.5x107 MC steps for SPC case are performed to collect the average in eq. (2.11). Con-

figurations taken every 2500 MC steps were used to perform 100 test insertions for LJ 

and SW cases, and 250 test insertions for SPC case. The procedure is repeated across a 

range of center cell and environment particle densities and temperatures; the final result 

is a multidimensional surface of excess free energy differences that, along with the ideal 

contribution (eq. 2.8), defines the coarse-grained potential.	   In many cases, the Widom 
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simulation was repeated multiple times in order to reduce the statistical uncertainty asso-

ciated with the estimated free energy at that ( ρ , envρ ,T) combination.  

 

2.4 The CG-MMC Algorithm 

 

Based on the theoretical derivation of CG-MMC model discussed in section 2.2, 

the CG-MMC simulation algorithm proceeds as follows: 

1) Start from an initial state i0  represented by the M-dimensional vector 

n i0( ) ! n1,n2 ,...,nM( )  in the phase space of the coarse-grained system.  

2) Given an initial coarse state i  generate randomly a new state j  with probability 

aij .  This is done by randomly selecting a coarse cell k  and one of its six adjacent 

cells l , both with equal probability. If cell k  is not empty, i.e. nk > 0  and cell l  is 

not at the maximum occupancy, i.e. nl < nmax , move one particle from cell k  to l . 

Otherwise re-select cell k  or l  until both meet the occupancy requirements. The 

state of the system then changes from
	  

n i( ) ! n1,n2 ,...nk ,...nl ,...,nM( )  
to 

n j( ) ! n1,n2 ,...(nk !1),...(nl +1),...,nM( ) .  

3) Evaluate the change of free energy due to the particle move. This is accomplished 

by decomposing the move into a particle removal and particle insertion sub-

process. The particle deletion process is defined in terms of a particle insertion 

process, as shown in the following equations for both the ideal and excess free en-

ergy changes.  
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 !Aid nl " nl +1( ) = !Aid
0 # kBT ln V $3

nl +1
%

&'
(

)*
,     (2.12) 

 !Aex nl ! nl +1( ) = !Ainput nl ,nenv ,l( ) ,     (2.13) 

 !Aid nk " nk #1( ) = #!Aid nk #1" nk( ) = #!Aid
0 + kBT ln V $3

nk

%

&'
(

)*
,     (2.14) 

 !Aex nk ! nk !1( ) = !"Aex nk !1! nk( ) = !"Ainput nk !1,nenv ,k( ) ,     (2.15) 

Summing up the four free energy change contributions in eqs. (2.12-2.15) gives 

the free energy change associated with the transition from state i  to j : 

 !A i ! j( ) = kBT ln
nl +1

nk

+ !Ainput nl ,nenv ,l( )! "Ainput nk !1,nenv ,k( ) ,     (2.16) 

where the free energy is decomposed into ideal contribution and excess contribu-

tion as discussed before. The excess contribution is provided by the input CG po-

tential denoted as !Ainput !k ,!env ,k( )  representing the change of free energy by in-

serting one particle to a coarse cell with density !k  and environment density !env ,k  

as shown in eq. (2.11), where the density and the number of particles as occupancy 

are used interchangeably. Here we use !Ainput  (as a function of !k  and !env ,k ) to 

represent the excess change of free energy with the subscript ‘input’ instead of 

specifying it is due to one particle insertion for simplicity, also to highlight the fact 

that the numerically averaged CG potential is the only input in the CG-MMC 

model.   

4) Accept this move with probability ! ij , where 
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 ! ij = min exp !!"A(i # j)( ), 1$% &' .     (2.17) 

This is realized by generating a random number !  such that 0 !! !1 . If ! ij <" , 

then remain in old state i ; If ! ij !" , then accept the new state j ;  

5) The CG-MMC iterations continue by repeating steps 2-4. 

 

2.5 Detailed Balance in the Coarse-Grained Representation 

 

 Detailed balance simply means at equilibrium, each elementary process should 

have an equivalent reverse process, i.e. 

 ! iaij" ij = ! ja ji" ji ,     (2.18) 

where ! i  is the probability of staying in state i and ! j  is the probability of staying in 

state j. However, detailed balance is an overly strict condition to ensure a valid Monte 

Carlo simulation. A substantially weaker condition called “the balance condition” is actu-

ally the necessary and sufficient fundamental requirement [8]. Nonetheless, it is usually 

more convenient to set up the algorithm by maintaining the stronger than necessary re-

quirement (i.e. detailed balance) [9].  

Now, eq. (2.4) indicates that the equilibrium probability for being in state i is giv-

en by  

 exp( / ) / ( , , )i i B CGA k T Q N V Tπ = − . (2.19) 
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It is straightforward to show that detailed balance is readily satisfied in a CG-

MMC simulation by the application of eq. (2.5), provided that particle moves are selected 

appropriately.   

Given that ! ij = min ! j ! i , 1!" #$ , there are two conditions to consider: 

 If ! i < ! j , ! ij =1  and ! ji = " i " j , then eq. (2.18) becomes 

 aij = a ji .     (2.20) 

 Otherwise if ! i ! ! j , ! ij = " j " i  and ! ji =1, eq. (2.18) also becomes eq. (2.20), 

i.e. aij = a ji . 

Detailed balance implies that the probability of changing from state i  to state j , 

denoted aij , follows uniform distribution.  Therefore to satisfy the detailed balance crite-

rion, we follow uniform distribution to select beginning and ending states i  and j  in 

each CG-MMC move. In practice, each origination coarse cell k and each one of its six 

destination adjacent cells l is selected with equal probability, which is exactly how our 

CG-MMC algorithm is implemented. 

 In other words, for detailed balance to be satisfied in a CG-MMC simulation, 

coarse cells from which particles are selected to be moved should be picked at random.  

Consequently, selecting origination coarse cells in a way that is biased by the number of 

particles they contain would be inconsistent with detailed balance and lead to the incor-

rect equilibrium condition.  The implications of random versus biased cell selection on 

system evolution under non-equilibrium conditions (i.e., dynamics) will be discussed in 

Chapter 4.   
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2.6 Results and Discussion 

 

 In this section we present and discuss results obtained using the base-case closure 

model (see Section 2.3), which will serve as a reference for results obtained with the ad-

ditional closure rule approximations we introduce later in the next chapter.  We consider 

three interatomic potentials: (1) the Lennard-Jones (LJ) potential for argon (2) the square-

well (SW) potential with two different parameterizations, and (3) the spherical point 

charge (SPC) potential for water [10, 11] which demonstrates the applicability of CG-

MMC to molecular systems.  These potentials are given by: 

 

1 – LJ ( 2.5cr σ= , 3.405σ =  Å, / 119.8Bkε =  K): 
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2 – SW ( 1.5λ =  or 1.25 ): 
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     (2.22) 

3 – Water ( 7.75cr =  Å, 3.1655σ =  Å, 0.15542ε =  kcal/mol, 0.41Hq = , 0.82Oq = −  

electrons): 
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where the LJ portion in eq. (2.21) applies only between oxygen atoms.  Note that the 

electrostatic interaction term in the SPC potential used here was spherically truncated 

without correction at 7.75 Å.  Although this truncation leads to various errors, the result-

ing VLE phase diagram has been shown to be only slightly affected [11].  CG-MMC 

compatible approaches for correcting the effects of truncation include the reaction field 

[12] and Wolf summation [13] methods but these are not implemented in this work. The 

latter, in particular, has recently been shown to offer advantages over other methods be-

cause of its computational efficiency and applicability to inhomogeneous and finite sys-

tems. 

 Base case results are presented using coarse-grained potentials computed with 

coarse cells of size 3cellL σ=  and 1.5envL σ= .  These dimensions ensure that each coarse 

cell is larger than the potential cutoff, and therefore that particles only interact with other 

particles in neighboring coarse cells.  The results are only weakly influenced by the exact 

thickness of the environment shell as long as the shell thickness is sufficiently large to 

capture important multi-particle configurations. The value of Lenv was chosen based on a 

compromise between convergence with respect to the environment shell thickness and 

computational expediency. At the 3cellL σ=  coarse-graining level, a coarse-cell typically 

contains up to about 25 LJ or SW atoms and 30 water molecules. 

 Figures 2.5, 2.6 and 2.7 show the excess free energy change for single particle 

insertion as a function of ( ρ , envρ ) at two different temperatures for each of the three po-

tential models, LJ-argon, SW, and SPC-water, respectively.  In the following sections, 

reduced units are employed for the LJ-argon (see Figure 2.5) and SW (see Figure 2.6) 
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cases ( 3* / , *BT k T ε ρ ρσ≡ ≡ ), while dimensional quantities are used for SPC-water (see 

Figure 2.7).  It is again emphasized that the excess free energy change for particle inser-

tion corresponds to the excess chemical potential in the limit of large N.  Each of the 

spherical symbols in Figures 2.5, 2.6 and 2.7 corresponds to the results of one or more 

Widom insertion simulations at a given density combination, while the color-field surfac-

es are 3rd-order (per dimension) polynomial fits to the simulation data.  The number of 

Widom insertion simulations at each density combination was determined by requiring 

that the uncertainty (as defined by one standard deviation divided by the average) at each 

point was no larger than 0.15 (except for data points with very small average approaching 

0). While the overall computational effort associated with the pre-calculation of the 

coarse-grained potential can be significant, it is trivially distributable over an arbitrary 

number of processing units. More detailed analysis of computational effort and related 

closure approximations will be discussed in the next Chapter. 
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Figure 2.5: Excess free energy change for particle insertion computed for LJ potential for 

argon at * 0.8, 1.3T = , as a function of cell and environment densities. Reduced units are 

used for LJ-argon. Coarse cell length ( cellL ) is 

 

3σ, environment shell thickness ( envL ) is 

 

1.5σ.  Symbols – Widom insertion simulations (black spheres represent the higher tem-

perature); color field contours – polynomial interpolation.  
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Figure 2.6: Excess free energy change for particle insertion computed for square-well 

potential with ! =1.5  at T* = 0.9, 1.4 , as a function of cell and environment densities. 

Reduced units are used for SW potential. Coarse cell length ( cellL ) is 

 

3σ, environment 

shell thickness ( envL ) is 

 

1.5σ.  Symbols – Widom insertion simulations (black spheres 

represent the higher temperature); color field contours – polynomial interpolation.  
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Figure 2.7: Excess free energy change for particle insertion computed for SPC potential 

for water at 298 , 600T K K= , as a function of cell and environment densities. Dimen-

sional quantities are reported for SPC-water.  Coarse cell length ( cellL ) is 

 

3σ, environ-

ment shell thickness ( envL ) is 

 

1.5σ.  Symbols – Widom insertion simulations (black 

spheres represent the higher temperature); color field contours – polynomial interpola-

tion.  

 

 The excess chemical potential fields shown in Figures 2.5 for LJ-argon, 2.6 for 

SW and 2.7 for SPC-water were then used to generate VLE phase diagrams for the three 

systems.  At each temperature, a CG-MMC simulation cell consisting of 103 coarse cells 
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was first initialized with a uniform density, ( * 0.3ρ =  for LJ, !* = 0.3  and !* = 0.4 	  for 

SW ! =1.5  and 1.25 respectively, and ! = 0.3 g/ml for SPC) and then allowed to evolve 

at a specified temperature.  Particle moves were executed by picking a random origin and 

neighboring destination cell pair and computing the free energy change due to moving a 

particle across the cell pair according to eq. (2.20). Note again that a single CG-MMC 

step consists of one particle deletion and one particle insertion. The total free energy 

change was computed using a combination of the excess data in Figures 2.5 for LJ-argon, 

2.6 for SW and 2.7 for SPC-water and the ideal contribution in eq. (2.8).  The move ac-

ceptance was determined on the basis of eq. (2.5).  Equilibration of the CG-MMC simula-

tion was assessed by monitoring the total coarse-grained free energy.  

Snapshots of example near-equilibrium configurations at three different overall 

system densities of the LJ system are shown for CG-MMC and full-resolution MMC 

simulations in Figure 2.8.  The coarse-grained simulations (a system of size 

3180 180 180 σ× × ) show very clearly the liquid-vapor phase boundaries, and also explic-

itly highlight the density fluctuations within each phase.  Note that the full-resolution sys-

tems are represented by much smaller simulation cells (a system of size 336 36 36 σ× × ) 

because of the computational expense required to reach equilibrium (lower row in Figure 

2.8).  As a result, the liquid-vapor phase boundaries are much less clearly delineated than 

in the CG-MMC snapshots and cannot be accurately located by direct visual inspection.  

OVITO [14] is used for snapshots in all cases through this thesis.   

Detailed discussion of the computational advantages of CG-MMC is provided in 

Chapter 3.  Here, we briefly note that the CG-MMC simulations reach equilibrium in far 

fewer Monte Carlo move attempts per particle than the full resolution simulations, pri-
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marily because the (successful) moves in the coarse-grained system are much larger.  

Moreover, the computational cost associated with each move, on a per-particle basis, is 

lower in the CG-MMC case due to the simplicity of the numerically tabulated potential. 

Overall, for 3cellL σ= , and for the cases considered here, the CG-MMC simulation 

reaches equilibrium about 106 times faster than a similarly-sized full-resolution system. 

 

	  

	  	  	  	  	  	  	  

	  

	  

	  

	  

	  

	  

	  

 

 

Figure 2.8: Top row: Equilibrium snapshots of LJ CG-MMC simulation configurations at 

(a) 

 

ρ* = 0.15 , (b) 

 

ρ* = 0.3, and (c) 

 

ρ* = 0.45 .  System size is 3180 180 180 σ× × with 

3cellL σ= .  Cell color denotes particle number that ranges from zero (dark blue) to 24 

(red). Bottom row (d-f): Corresponding full resolution MMC simulation snapshots for a 

system size of 336 36 36 σ× × . 

(d) (e) (f)

(a) (b) (c)
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Example near-equilibrium configurations for the SPC-water systems are shown in 

Figure 2.9 for both coarse-grained and full-resolution systems.  

 

	  

	  

Figure 2.9: (a) Equilibrium snapshots of SPC-water CG-MMC simulation configurations 

at 400T K=  and 0.3ρ =  g/ml.  System size is 

 

90 × 90 × 90σ 3 with 3cellL σ= .  Cell color 

denotes atom or molecule number that ranges from zero (dark blue) to about 30 (red). (b) 

Corresponding full resolution MMC simulation snapshots for a system size of 

(a) (b) 

(c) 
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15 ×15 ×15σ3. (c) A zooming in configuration of water molecules from a corner in full 

resolution MMC simulation.  

 

 At each temperature, the location of the VLE phase boundaries was determined 

using histograms of the equilibrium distribution of cell densities.  Examples of equilibrat-

ed cell density distributions for LJ-argon and SPC-water potentials are shown in Figures 

2.10 and 2.11 respectively for 3cellL σ= .  In both cases, peaks corresponding to the liquid 

and vapor phases are clearly visible; intermediate densities correspond to interfacial re-

gions.  For the LJ case (Figure 2.10), corresponding density histograms obtained from 

full-resolution simulations also are shown for comparison; these were computed by sub-

dividing the full-resolution simulation cell into coarse cells and histogramming the densi-

ty distribution. About 250 equilibrated (phase separated) configurations were captured 

and gridded into coarse cell lattices, which were then used to collect density distribution 

data.  Each configuration was gridded 100 times using a randomly selected origin to im-

prove the density distribution statistics.	  	  

For * 0.6, * 1.1Tρ = = , which lies outside the two-phase envelope, a single broad 

peak is observed and the agreement between the CG-MMC and full-resolution MMC is 

essentially perfect. At * 0.3, * 0.8Tρ = = , which lies inside the envelope, the distributions 

are bimodal corresponding to distinct vapor and liquid phases.  Here, the agreement is 

excellent across the peaks corresponding to the two phases, but an apparent discrepancy 

is present in the intermediate region ( 0.1 * 0.5ρ< < ).  In particular, the full-resolution 

MMC simulation exhibits a higher number of cells with densities inside the phase enve-

lope, while the CG-MMC shows the expected overlap between two parabolic distribu-
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tions.  Note that the probability of cells with intermediate particle density 

( 0.15< ! < 0.55) is artificially enhanced by the logarithmic axes used in Figure 2.10.  

The source of the discrepancy is the fact that in CG-MMC, interfacial regions between 

the liquid and vapor naturally align with the underlying cell discretization, whereas this 

effect is not present in the a posteriori coarse-graining performed on the full-resolution 

particle coordinates.  There is no obvious method to account for this effect just at the 

phase boundary locations in the a posteriori coarse-graining operation.   
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Figure 2.10: Area-normalized cell density histogram for LJ-argon from equilibrated CG-

MMC simulations with 3cellL σ= . Circles – CGMMC, squares – full-resolution MMC; 

solid lines – * 0.3, * 0.8Tρ = = , dashed lines – * 0.6, * 1.1Tρ = = .  

 

This discretization discrepancy notwithstanding, the density histograms show that 

(1) the CG-MMC captures accurately the details of the density distribution in both single 

and multiphase cases, and (2) the average densities corresponding to each phase can be 

unambiguously extracted from CG-MMC simulations.  Note, however, that as the peaks 

become broader and closer to each other at higher temperatures (Figure 2.11), the precise 

location of each peak becomes more difficult to define. 
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Figure 2.11: Area-normalized cell density histogram for SPC-water obtained from equil-

ibrated CG-MMC simulations with 3cellL σ= . Circles – ! = 0.3  g/ml, T = 400  K; 

squares – ! = 0.3 g/ml, T = 580 	  K. 

 

 For atomic systems, shown in Figures 2.12 and 2.13 are T ρ−  VLE envelopes 

obtained for the LJ and SW potentials using CG-MMC with cells of size 3cellL σ= .  Also 

shown in Figure 2.12 are LJ results using larger cells ( 4cellL σ=  and 6σ ).  For molecular 

systems, the T ρ−  VLE envelopes SPC-water are shown in Figure 2.13 at a coarse-
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graining level of 3cellL σ= . Also shown for each case (with gray-filled circles) are the 

corresponding VLE envelopes predicted by full-resolution simulation based on the 

Gibbs-ensemble Monte Carlo (GEMC) method [11, 15, 16].  The agreement is generally 

very good for all three potentials, with the primary deviation observed near the critical 

points.  The potential source of the deviation is probed by considering additional LJ cal-

culations in which the coarse-graining level is increased to 4cellL σ=  (open diamonds) 

and 6σ  (open circles).  While the prediction of the critical point is not significantly 

changed at 4cellL σ= , the results are notably improved for 6cellL σ= , with almost perfect 

agreement across the entire VLE envelope.    
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Figure 2.12: VLE phase envelopes for LJ-argon. Open squares – CG-MMC with 

3cellL σ= , open diamonds – CG-MMC with 4cellL σ= , open circles – CG-MMC with 

6cellL σ= , gray filled circles – full resolution GEMC [11].  
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Figure 2.13: VLE phase envelopes for SW (top: 1.5λ = , bottom: 1.25λ = ).  Open 

squares – CG-MMC with 3cellL σ= , gray filled circles – full resolution GEMC [15].  

 

 



	   55 

ρ (g/mL)

T
(K

)

0 0.2 0.4 0.6 0.8 1
300

400

500

600

 
 

Figure 2.14: VLE phase envelopes for SPC-water.  Open squares – CG-MMC with 

3cellL σ= , gray filled circles – full resolution GEMC [16].  

 

 Example equilibrium configurations using the LJ potential at all three coarse-

graining scales ( 3cellL σ= , 4σ  and 6σ )_are shown in Figure 2.15.  While the overall 

liquid-vapor distributions are qualitatively similar, the reduced intra-phase fluctuations in 

the simulations with larger cells are clearly visible.  This effect was quantified by consid-

ering the density distributions at a simpler, single-phase state point using all three coarse 

cell sizes.  Shown in Figure 2.16 are the cell density histograms obtained from CG-MMC 

simulations (open symbols) at each of the three coarse graining levels for the state point 
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( * 0.6, * 1.1Tρ = = ), along with the corresponding histograms obtained from full resolu-

tion MMC simulations (filled symbols).  As the cell size increases, the distributions be-

come more sharply peaked around the overall density; for single-phase conditions such as 

the case considered in Figure 2.16, the distributions are Gaussian with standard devia-

tions that scale as ( ) 1/2
cellV − .  At all three coarse-graining levels, the agreement with the 

corresponding full-resolution histograms is essentially perfect.  Further discussion of the 

role of cell size and associated errors in CG-MMC simulations is presented in Chapter 3.   

 

(a) (b) (c)
 

Figure 2.15: Equilibrium snapshots of LJ CG-MMC simulation configurations at 

 

T* = 0.8  and 

 

ρ* = 0.3 . Coarse cell sizes are (a) 3cellL σ= , (b) 4cellL σ= , and (c) 

6cellL σ= . Cell color denotes reduced density that ranges from zero (dark blue) to 0.9 

(red). There are 30 coarse cells in each direction; the effective number of particles in each 

CG-MMC simulation is approximately 2.2!105 , 5.1!105 , and 1.7!106 , respectively. 
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Figure 2.16: CG-MMC area-normalized cell density histogram for equilibrated LJ-argon 

at * 0.6, * 1.1Tρ = =  obtained using coarse-grained potential computed at 3cellL σ=  and 

applied to CG-MMC simulations at 3σ  (circles), 4σ  (squares) and 6σ  (diamonds).  

Open symbols are CG-MMC results, filled symbols are corresponding full resolution re-

sults. 

 

2.7 Conclusions 

 

In this Chapter, the basic CG-MMC simulation approach was derived and validat-

ed using three common interaction potentials.  It was demonstrated that the method is 
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able to capture the full VLE characteristics of both atomic (LJ and SW) and molecular 

(SPC-water) systems.  The approach was also shown to be successful in describing the 

(equilibrium) microscopic density distributions within each phase using direct compari-

son to full-resolution Monte Carlo simulations.  

The key advantages of the CG-MMC approach are explicitly evident.  First, the 

each move within a simulation corresponds to a “larger” step within phase space that en-

ables a faster approach to equilibrium.  The ability to make larger moves, while still 

maintaining a high acceptance probability arises from the fact that the coarse-grained 

free-energy landscape is correspondingly smoother than the full-resolution one.  For all 

the simulation examples presented in this Chapter, the move acceptance probability 

ranged from 70-80%.  In other words, a single particle move between nearest-neighbor 

coarse cells always represents a small distance relative to the features of the landscape, 

irrespective of the coarse-graining level.  In addition, the efficient representation of the 

numerically derived potential, along with the small number of neighboring cells that must 

be considered in its evaluation, makes each move computationally efficient.   

Equally importantly, the numerical averaging procedure used to pre-evaluate the 

coarse-grained potential at a given temperature and coarse-graining level does not require 

any specific physical insight and appears to be applicable to any (short-ranged) potential.  

Although only pair potentials were considered here, there does not seem to be any appar-

ent limitation for applying CG-MMC to many body interaction models.  This is in con-

trast to many existing coarse-graining approaches that generally require some measure of 

physical insight to be established before the transformation can be applied.   
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Although the CG potential pre-computation can be expensive, it can be trivially 

farmed out to an arbitrary number of compute nodes, limiting the bottleneck associated 

with this calculation.  In one sense, the CG-MMC transformation introduced in this 

Chapter can be regarded as one that transforms a Monte Carlo problem from one that is 

difficult to parallelize into one that is much easier (and more efficient).  In the following 

Chapter, we describe two additional strategies for further reducing the computational 

overhead associated with coarse-grained potential pre-calculation and thereby show that 

the approach is well suited to challenging situations in which the temperature and the rel-

evant length and time scales are evolving during a simulation.  These examples are not 

intended to be comprehensive, but rather to motivate further work aimed at increasing the 

scope of the CG-MMC technique. 
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3.1 Introduction 

 

 The purpose of this chapter is two-fold.  First, we seek to further describe the the-

oretical underpinnings of CG-MMC by more fully exploring potential sources of error.  

Second, we introduce additional closure approximations that substantially enhance the 

utility of the CG-MMC approach introduced in Chapter 2 by reducing the overall compu-

tational effort associated with pre-calculation of the coarse-grained interaction potential.  

While we unequivocally demonstrated that CG-MMC simulations are substantially more 

efficient than the corresponding full-resolution Metropolis Monte Carlo simulations, the 

pre-calculation of the coarse-grained interaction potential generally is computationally 

expensive and can be a bottleneck in the practical application of the CG-MMC method.  

This is expected to become increasingly the case as more complex systems, such as mul-

ticomponent mixtures and larger molecular entities, are considered. 

In this Chapter we first demonstrate that it is possible to obtain coarse-grained in-

teraction potentials at several temperatures simultaneously with a single sequence of cal-

culations.  This is an important advance because the vapor-liquid equilibrium phase enve-

lopes computed in Chapter 2 for the three different potential models (LJ-Argon, square-

well, and SPC-water) required that a coarse-grained interaction potential be obtained at 

each temperature of interest, greatly increasing the overhead associated with coarse-

grained potential evaluation.  As discussed previously, this requirement stems from the 

fact that coarse-grained potentials include entropic contributions from the missing de-

grees-of-freedom, and therefore are temperature dependent.   
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In the latter part of this Chapter, we also establish that the coarse-grained poten-

tials used in CG-MMC are scalable, so that a potential computed at one coarse-graining 

scale can be employed at a variety of other coarse-graining levels.  This finding provides 

an attractive solution for addressing multiresolution phenomena in which different 

coarse-graining scales are needed in a single simulation.  Finally, we address in more de-

tail the computational advantages of CG-MMC relative to standard full resolution Monte 

Carlo simulations.   

 

3.2 The Supercritical Fluid Closure Approximation 

 

 We consider again the “base case” closure approximation that was used to per-

form the simulations in Chapter 2, in which the free energy change associated with the 

addition of one particle into a particular cell was simplified from 

 ( ) ( ), ( ), ( ),id ex envA A T A r r Tρ ρ ρΔ = Δ +Δ ,     (3.1) 

to 

 ( ) ( ), , ,id ex envA A T A Tρ ρ ρΔ = Δ +Δ .     (3.2) 

The assumptions implicit in transforming eq. (3.1) to eq. (3.2) include that (1) the “envi-

ronment” is localized around the coarse cell in question, (2) the density distribution with-

in the environment is coupled only to that in the central coarse cell, (3) the density distri-

butions within the coarse cell and the environment are fully characterized by their respec-

tive overall average densities.   
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Equation (3.2) indicates that there exist three coarse state variables for defining 

the coarse-grained interaction potential, which are ! , !env , and T, necessitating a three-

dimensional parameterization to fully evaluate the coarse-grained potential function.    

Here, we consider a simple but useful additional closure approximation that enables the 

calculation of a coarse-grained potential at all temperatures of interest with a single set of 

simulations, which effectively reduces potential evaluation to a two-dimensional scan 

over the densities. 

 In essence, the approximation entails the assumption that the fluids in both the 

reference coarse cell and its environment are homogeneously-distributed single phases at 

all densities.  In other words, micro-configurations that correspond to phase separation at 

the sub-cell scale are neglected, while the basic structure of the fluid phase is retained.  In 

order to enforce such a closure approximation, we assume that the fluid particles sample 

trajectories that correspond to a weakly supercritical state, irrespective of the temperature 

at which the excess chemical potential is being computed.  In this view, we refer to this 

closure approximation as the supercritical fluid approximation, or SCFA.   

 It is instructive to consider the SCFA within the context of commonly employed 

closure approximations of this type.  Shown in Figure 3.1 are different scenarios for par-

ticle trajectory sampling.  In the leftmost panel, the actual particle trajectories at a given 

temperature are used – this represents the “no-approximation” situation that was used to 

compute the results in Chapter 2.  At the other end of the spectrum, the two rightmost 

panels suggest very simplistic approximations.  In the first (Local Mean Field, or LMF), 

it is assumed that particles are uniformly “smeared” across the domain and that the sys-

tem exists at steady state.  While this approach has been used successfully for certain in-
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teracting systems (e.g., Ising-type models [3, 4]), it is clearly not appropriate for describ-

ing discrete particles that evolve in continuous space –  the LMF closure approximation is 

only applicable when the full resolution problem is itself defined on a lattice.  The Ran-

dom Positions (or Ideal Gas) model in the rightmost panel can be considered to be the 

closest analogue of the LMF for particles in continuous space.  However, this approxima-

tion neglects any fluid structure that might be predicted by the interaction potential and 

also leads to sampling of potentially very high energy configurations that would be 

hihgly unlikely in the actual system.  Finally, the Homogeneous (or Supercritical) Fluid 

model represents a compromise between the exact particle trajectories and the LMF or 

RP/IG.  Here, the fluid structure that is predicted by a particular interaction potential is 

retained but phase separation is neglected.  In one sense, this approximation retains small 

length scale features, while neglecting larger features.  

 

 

 

 

 

 

 

Figure 3.1: Schematic representations of different scenarios for particle trajectory sam-

pling. From left to right are actual trajectories; homogenized (supercritical) liquid; local 

mean field; and random positions. 
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 The modification of the Widom method used to compute the particle insertion 

free energy required in order to implement the SCFA is in principle straightforward: 

evolve the particle positions using Metropolis Monte Carlo moves based on a (reduced) 

homogenization temperature above the critical value, TH
* , while accumulating the aver-

age(s) in eq. (2.11) using the temperature(s) of interest.  Because the latter temperature(s) 

is(are) decoupled from the homogenization temperature, multiple averages can be accu-

mulated simultaneously thereby enabling the calculation of excess chemical potentials at 

multiple temperatures within a single Widom simulation.  In the following analysis, we 

seek to evaluate the impact of TH
*
	  within the SCFA, and to determine whether bounds 

exist on the allowable extent of homogenization, that is, the maximum temperature for 

evolving the supercritical fluid. 

 The VLE envelope for the LJ-argon case is used to evaluate the effects of apply-

ing the SCFA.  In Figure 3.2 we show VLE envelopes for LJ-argon predicted using the 

base-case closure rule (i.e., using the actual particle trajectories at each temperature) and 

several different homogenization temperatures, all corresponding to supercritical fluids.  

First, as expected, the VLE is largely unaffected by the SCFA in the vicinity of the criti-

cal point, even when the homogenization temperature is as high as * 3.0HT = .  On the oth-

er hand, at lower temperatures, the error in equilibrium liquid density increases with ho-

mogenization temperature.  When * 1.2HT = , the error at the lowest VLE temperature con-

sidered (T* = 0.6 ) is less than 5% but quickly saturates to the maximum density allowed 

in the simulation ( !* = 0.85 ) at T* =1.5 .  At * 3.0HT = , large errors are apparent at high-

er VLE temperatures.  The vertical dashed lines in Figure 3.2 represent the VLE results 
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obtained when infinite homogenization temperature is applied, which corresponds to the 

Random Positions or Ideal Gas approximation in Figure 3.1.  In this case, all CG-MMC 

simulations temperatures lead to complete phase separation into a zero density vapor 

phase a maximum density liquid phase.  Recall that the maximum density is defined by 

the density range over which the coarse-grained potential was evaluated, and moves that 

lead to cell densities higher than this limit are automatically rejected. 
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Figure 3.2: VLE phase envelopes for LJ-argon as a function of homogenization tempera-

ture within the SCFA closure approximation.  Small filled circles and solid line – base 
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case (no SCFA), open circles – * 1.2HT = , open triangles – * 1.5HT = , open squares – 

* 3.0HT = , dashed line – ideal gas ( *
HT →∞ ). 

 

 The results in Figure 3.2 suggest that the SCFA is a good approximation as long 

as the homogenization temperature is not too high.  Moreover, the quality of the SCFA 

closure approximation is non-uniform as it becomes worse at lower temperatures.  In or-

der to better define the upper bound on TH
* , radial distribution functions were computed 

for several LJ systems at !* = 0.3  and different temperatures, see Figure 3.3.  There is no 

obvious transition in the radial distributions that denotes a limiting homogenization tem-

perature beyond which the SCFA suddenly breaks down.  Rather, there is a gradual deg-

radation as the radial distribution profiles diverge from the reference temperature consid-

ered here (T* = 0.6 ).  The precise source of the error associated with the SCFA is there-

fore difficult to pinpoint from the radial distribution functions, but it is most likely related 

to the deviations at the first density peak.   

 With the preceding observations in mind, the prescription for applying the SCFA 

is that the homogenization temperature be set to a value at or near the critical tempera-

ture.  Finally, we note that the rather narrow homogenization temperature constraint that 

is apparent for the LJ case is not a general result.  For systems of particles in which the 

interactions include a hard-core (e.g., colloidal particles), the radial distribution functions 

around the first density peak are expected to be much less sensitive to temperature and as 

a result, would accommodate a wider range of homogenization temperatures with ac-

ceptable errors.  Future studies with a broader range of interaction functions should help 
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better define the applicability limits of the SCFA and establish more concrete prescrip-

tions for its use. 
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Figure 3.3: Radial distribution function for LJ-argon at !* = 0.6  and several different 

temperatures.  From highest peak down: Black – T* = 0.6  (reference), Blue – T* =1.2 , 

Red – T* =1.5 , Orange – T* = 3.0 .  All state points aside from the reference correspond 

to single-phase fluids. 

 

 

 



	   71 

3.3 Coarse-Grained Potential Scaling and Error Analysis 

 

 The implicitly contained entropic factors that make coarse-grained potentials 

functions of temperature may also introduce dependence on the coarse-graining scale.  As 

a result, a different coarse-grained potential function may be required for CG-MMC sim-

ulations with different coarse cell sizes.  At the same time, many non-equilibrium phe-

nomena of interest take place over a large range of length and timescales.  An example is 

the coarsening that occurs following spinodal decomposition in a fluid system – at early 

times, rapidly changing density gradients are present over atomic length scales, but as the 

system evolves, gradients become defined by much larger scales [5].  Another important 

potential bottleneck in CG-MMC simulations, therefore, is the need to compute multiple 

CG potentials at several different coarse-graining scales for use in a multiresolution simu-

lation.  In addition to the overall number of chemical potential evaluations required for a 

multiresolution simulation, one must also consider the fact that as the coarse-graining 

level increases, each individual chemical potential calculation itself becomes increasingly 

expensive due to the increasing number of particles within a coarse cell at a given densi-

ty.  The combination of these two factors makes multiresolution simulation with CG-

MMC rather limited in scope. 

 In this section, we investigate the possibility of scaling an excess chemical poten-

tial surface obtained at one coarse graining level to another.  Such scaling can be consid-

ered to be another example of closure approximation, in which finite cell size effects are 

ignored.  A broader treatment of multiresolution simulations in which very large cell siz-

es are considered is deferred to Chapter 5.  In fact, coarse-grained potential “scaling” is 
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realized trivially by considering that the chemical potential surfaces shown in Figures 2.5 

for LJ-argon, 2.6 for SW and 2.7 for SPC-water in previous chapter are expressed as a 

function of cell densities and therefore only implicitly refer to the number of particles.  In 

other words, assuming that finite size effects are non-existent, at different cell sizes a giv-

en density simply corresponds to different numbers of particles.  Thus, at least in princi-

ple, the chemical potential surfaces shown in Figures 2.5, 2.6 and 2.7, which were evalu-

ated for cells of size 3σ , could be used directly in CG-MMC simulations at any larger 

scale (we refer to this as “upscaling”).  Similarly, chemical potential surfaces computed 

at larger cell sizes could be used in a CG-MMC simulation at the 3σ  resolution (or 

“downscaling”); both of these possibilities are demonstrated in Figures 3.4 and 3.5 for the 

LJ-argon case.   

 In Figure 3.4, LJ-argon VLE diagrams obtained from CG-MMC simulations with 

coarse cells of size 3σ  (squares), 4σ  (diamonds), and 6σ  (circles) are shown, each of 

which was based on the excess chemical potential surface computed with 3σ  cells.  The 

predicted VLE curves are essentially invariant with respect to the coarse cell size used in 

the CG-MMC potential.  Thus, when the 3σ  potential is upscaled to a larger cell size in a 

CG-MMC simulation, the VLE curve is unchanged and reflects any finite cell size errors 

(and any other uncertainties such as statistical uncertainty in the free energy calculations) 

at the original coarse-graining level.  These results suggest that finite cell size errors at 

the original coarse-graining level continue to have similar impact at larger scales.   

We can better understand this behavior by conceptually defining two types of fi-

nite size errors: (1) those that are incurred during the calculation of the coarse-grained 

potential, and (2) those that are incurred within the CG-MMC simulation itself.  We will 
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refer to these hypothetical finite size errors as Type 1 and Type 2 errors, respectively.  

Type 1 errors could arise because certain configurations (e.g. those associated with large-

scale fluctuations) are omitted during free energy sampling, or because cell size depend-

ent boundary layers in the particle density distribution near the interface between the cell 

and the environment distort the averaging procedure.  Type 2 errors, on the other hand, 

could arise from the discretized nature of the allowable densities during CG-MMC simu-

lation.  For example, at the 3σ  coarse-graining level a total of only 25 different density 

values are possible (corresponding to single particle steps), which could lead to artifacts 

particularly when small density differences become important, e.g., near the critical point.  

By comparison, there are about 200 allowable density levels at the 6σ  coarse-graining 

scale, enabling a much finer density resolution than at the 3σ  scale.  

Within this idealized framework, the results in Figure 3.4 suggest that Type 1 er-

rors are dominant when the 3σ  coarse-grained potential is upscaled.  In other words, the 

lack of improvement upon upscaling indicates that Type 2 errors, which are expected to 

decrease with upscaling, are small compared to the Type 1 errors that are fixed by the 

coarse-grained potential pre-calculation. 

 In Figure 3.5, VLE diagrams are shown for CG-MMC simulations with cells of 

size 3σ  and 6σ , using the potential computed at 6σ .  Interestingly, downscaling of the 

6σ  potential to 3σ  cells does not enable a more accurate simulation at the 3σ  scale 

(circles), i.e., the increased accuracy obtained with the larger cells is not retained when 

downscaling is applied.  Instead, the downscaled VLE curve is similar in quality to the 

one obtained using the unscaled 3σ  potential (which is shown again in Figure 3.5 by the 

square symbols).  Within the qualitative error framework defined above, these findings 
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suggest that at the 6σ  coarse-graining level, Type 1 and Type 2 errors are both small (re-

sulting in a globally good VLE envelope as shown previously in Figure 2.12), but Type 2 

errors become significant upon downscaling the potential to smaller cells. 
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Figure 3.4: VLE phase envelopes for LJ-argon based on coarse-grained potential com-

puted at 3cellL σ=  and applied to CG-MMC at 3σ  (squares), 4σ  (diamonds) and 6σ  

(circles).  
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Figure 3.5: VLE phase envelopes for LJ-argon based on coarse-grained potential com-

puted at 6cellL σ=  and applied to CG-MMC at 6σ  (diamonds) and 3σ  (circles); also 

shown for reference is 3cellL σ=  applied to CG-MMC at 3σ  (squares).  

 

 Next, we attempt to better define the specific sources of error, particularly those 

of Type 1.  The most obvious of these is the statistical uncertainty associated with com-

puting the chemical potential at a given density combination.  As shown in Figure 2.5, 

there is visible scatter in the individual data points particularly at the higher densities, 

where convergence of the Widom insertion method is slow.  While the actual input to a 

CG-MMC simulation is an interpolated surface through the aggregate of the data points, 
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the scatter in the individual points does lead to errors in the interpolated surface.  The 

choice of interpolating function itself also is a source of error; if the order is too high, the 

resulting surface will reflect noise in the data, while too few degrees-of-freedom will re-

sult in a surface that cannot adequately capture the curvature across the range of the data.  

The examples shown in Figure 2.5 reflect a compromise between these two factors (3rd 

order polynomial fit in each of two dimensions).  It is noteworthy that the chemical po-

tential data obtained for the 6cellL σ=  case exhibited significantly less scatter than both 

the 3cellL σ=  and 4cellL σ=  cases across the entire density range considered – this may be 

one factor in the improved VLE diagram obtained at 6cellL σ= , although there is no fun-

damental reason that the statistical scatter should be correlated with the cell size in gen-

eral.  A better method for chemical potential estimation that allows for better conver-

gence would be required to unambiguously assess the role of this source of Type 1 error 

in the resulting VLE phase diagrams. 

 The second potential source of Type 1 error is a cell finite size effect that limits 

the accessible configurations and/or fluctuation length scale during the Widom sampling; 

if present, this error would be expected to diminish as the cell size was increased, con-

sistent with the improved results at 6cellL σ= .  To probe the presence of finite cell size 

effects, averaged intra-cell density profiles at T* =1.1 were generated (using the simula-

tion cell setup in Figure 2.4(a) in Chapter 2) for several combinations of inner cell and 

environment densities using three different cell sizes; see Figures 3.6 and 3.7.  In Figure 

3.6, the densities in the inner cell and environment are equal, resulting in a spatially in-

variant distribution across the inner cell; no significant cell size effect is expected for the-
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se cases.  This is further confirmed by the results in Figure 2.16 in Chapter 2 that show 

that the coarse-grained potential computed at 3σ  is fully able to capture the microscopic 

details in a single-phase system, where cell-to-cell density variations tend to be small.  

Moreover, the scalability of the potential across coarse-graining scales is expected to be 

excellent under these conditions because the profiles would not be distorted by the scal-

ing operation. 

 In Figure 3.7, however, it is seen that large density differences across the bounda-

ry between the inner cell and the environment leads to the formation of an inner region 

and a boundary layer within the inner cell.  When the inner cell density is high compared 

to the environment density (upper curves), the inner region density is equal to the overall 

cell density and the boundary layer exhibits oscillations about this value with a period 

corresponding to about one ! .  The boundary layer structure itself appears to be unaf-

fected by the cell size, although at 3cellL σ= , the boundary layer effectively extends 

across the entire cell.  In the opposite situation (low inner cell density relative to envi-

ronment – lower curves) the inner region is strongly depleted relative to the overall set-

point density, with most of the particles present near the cell boundary.  Again, the 

boundary layer profile itself is apparently unaffected by the cell size.   
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Figure 3.6: Intra-cell reduced density spatial distribution as a function of distance from 

the cell center for LJ-argon with equal density in inner cell and environment; lower 

curves – * * 0.15cell envρ ρ= = , upper curves – * * 0.75cell envρ ρ= = . Circles – 3cellL σ= , squares – 

6cellL σ= , diamonds – 9cellL σ= .  
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Figure 3.7: Intra-cell reduced density spatial distribution as a function of distance from 

the cell center for LJ-argon with different density in center cell and environment; lower 

curves – * *0.15, 0.75cell envρ ρ= = , upper curves – * *0.75, 0.15cell envρ ρ= = . Circles – 

3cellL σ= , squares – 6cellL σ= , diamonds – 9cellL σ= .  

 

 The results in Figures 3.6 and 3.7 suggest that cells with dimension 3cellL σ=  (and 

4σ ) may indeed be too small to fully accommodate intra-cell density variations under 

certain conditions (e.g. a two-phase system) and thus lead to finite size errors.  In fact, a 

comparison of the excess chemical potential for the LJ-argon system at T* = 0.8  for 
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3cellL σ=  and 6!  shows maximum systematic deviations at the edges, where the inner 

cell and environment densities are most different; see Figure 3.8.  Conversely, along the 

diagonal where the two densities are similar, the chemical potential values are almost 

identical and the two surfaces intersect.  The preceding observations notwithstanding, the 

observed finite cell size error due to the density boundary layer does not necessarily ex-

plain the fact that the discrepancies in the VLE envelopes at 3cellL σ=  and 4!  are appar-

ent mainly near the critical point, where cell-to-cell density variations are generally small 

and the situation in Figure 3.6 is expected to be more representative of the overall simula-

tion conditions.  Instead, it would be expected that finite size errors would be most no-

ticeable when large cell-to-cell density variations exist, a condition which prevails under 

two-phase equilibrium at lower temperatures away from the critical point.  Further inves-

tigations, using other potentials and better statistical quality for the chemical potential 

surfaces, should help clarify remaining uncertainties associated with potential sources of 

error. 

 The density boundary layers observed in Figure 3.7 do, however, cast some doubt 

on the scalability of the potentials across coarse-graining scales under conditions where 

strong density differences exist from cell to cell.  Clearly, compressing or stretching the 

profiles in Figure 3.7 at one scale does not produce the same profile at another scale and 

would distort the boundary layer region.  Empirically, the results in Figures 3.4 and 3.5 

suggest that this distortion does not strongly influence the VLE prediction and based on 

this observation here we make the claim that the potentials are scalable by simple stretch-

ing and compression.  Further work will be needed to fully quantify the impact of the in-

tra-cell non-uniformity on the scalability of the coarse-grained potentials. 
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Figure 3.8: Polynomial interpolations of excess chemical potential fields computed for 

LJ potential for argon at T* = 0.8  as a function of cell and environment densities.  Coarse 

cell size is 3!  (blue surface) and 6!  (red surface). 

 

 In the context of error analysis we also consider here the impact of the center-of-

mass constraint (see Figure 2.4(b) in Chapter 2) on the intra-cell density distribution of 

water molecules.  Recall that point constraints on the molecule positions are required to 

avoid the formation of artificial boundary layers at the cell-environment interface, which 

necessarily implies that some part of the molecular entity will be allowed to cross the in-

terface.  Shown in Figure 3.9 are the hydrogen and oxygen number density profiles for 
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two situations.  The dashed lines show the oxygen (squares) and hydrogen (circles) num-

ber densities for the case when both the cell and environment are maintained at equal 

(low) density.  Both oxygen and hydrogen profiles are flat at the overall density value 

(with the number of hydrogen atoms being double that of the molecule number).  The sol-

id lines represent the case when the inner cell density is increased to a high value while 

maintaining the environment at the low density.   

As seen in the LJ case, the oxygen profile develops a boundary layer with a slight 

increase near the inner cell surface as the oxygen atoms find free volume near the inner 

cell boundaries.  The hydrogen density, however, exhibits the opposite behavior because 

hydrogen atoms are able to cross the boundary and are therefore not counted within the 

inner cell.  The net number of hydrogen atoms that lie across the boundary in this case is 

only about 12% of the total; the resulting implications with respect to the applied density 

constraint are quite modest, particularly given the small molecular weight of the hydro-

gen, and can be neglected in CG-MMC simulations of water.  Of course, this issue may 

be more significant for larger or homoatomic molecules in which a significant fraction of 

the molecular mass is allowed to cross the boundary; these considerations are deferred to 

future work in applying the CG-MMC method to larger molecular entities.  
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Figure 3.9: Intra-cell reduced (molecular) number density spatial distribution as a func-

tion of distance from the cell center for SPC-water ( 3cellL σ= ); squares – oxygen, circles 

– hydrogen. Solid lines – !cell = 0.8 g/ml, !env = 0.2 g/ml, dashed lines –  !cell = !env = 0.2  

g/ml.  

 

3.4 Computational Performance Analysis 

 

 We conclude this Chapter by outlining the several factors that make CG-MMC 

highly computationally attractive relative to full resolution MMC.  In the following dis-

cussion performance comparisons are made on the basis of the same single compute core.  
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Bulk liquid LJ-argon is employed throughout as the basis for comparison between CG-

MMC and full resolution MMC.  In CG-MMC, the CPU time required for single particle 

move attempt is approximately 1!10"11 s, while it is about 1!10"9 s for our implementa-

tion of standard MMC.  The difference arises mainly from the fact that the CG-MMC po-

tential is tabulated/interpolated (although the analytical form of the LJ potential also is 

simple) and also because of the small cost associated with evaluation of the density in the 

neighboring cells, which does not require that any inter-particle distances be evaluated.  

Note that the standard MMC cost per move is a function of fluid density and potential 

cutoff via the average number of neighbors that each particle interacts with.  Moreover, 

the complexity of the potential function (e.g., many-body potentials such as the SW po-

tential for covalently-bonded silicon [6]) will play a significant role in the comparison. 

 Another significant computational advantage of CG-MMC over standard MMC is 

the move distance.  First, it is important to distinguish between two classes of Monte Car-

lo simulation before a meaningful discussion of move size can be established.  For cases 

in which only equilibrium properties are required, there is no restriction on move type.  

Indeed, many strategies for increasing efficiency of MMC simulation are based on mak-

ing biased, large-displacement, and multi-particle moves that cover a lot of “distance” in 

phase space, and then removing any bias.  On the other hand, it is well established that 

Metropolis Monte Carlo trajectories are equivalent, at least in a coarse-grained sense, to 

inertia-less Langevin trajectories when the moves are restricted to small displacements 

[7-9]. The criterion for defining “small” is related to, among other variables, the spatial 

gradient of the interaction potential; for potentials such as LJ, the typical maximum move 

distance is less than 0.2Å, which makes it 0.1Å on average.  By contrast, the minimum 
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move distance in CG-MMC is cellL , which is about 10Å for cells of size 3!  (LJ poten-

tial).  Note that the coarse-grained potential in CG-MMC is automatically scaled to a pre-

scribed coarse-graining level.  In other words, gradients in the potential naturally become 

smaller as the coarse-graining level increases.  As such, a move over a single cell auto-

matically satisfies the small move criterion in a CG-MMC simulation. 

 The effect of the move size difference between CG-MMC and full resolution sim-

ulations can be interpreted via a particle diffusivity, 2 /P dD R τ= , where Rd is the maxi-

mum move distance and τ  represents “time” via the number of Monte Carlo moves.  In 

other words, the overall diffusivity in a CG-MMC simulation is expected to be 

~ ( )2/ 0.1cellL  or 104 times higher for 3cellL σ= .  Thus, a CG-MMC simulation of spinodal 

decomposition and coarsening runs approximately 106 times faster than an equivalent 

full-resolution simulation (for 3cellL σ= ).  

 Finally, we discuss briefly the issue of coarse-grained potential precomputation, 

which of course represents a significant overhead cost for CG-MMC simulations.  It is 

difficult to meaningfully quantify these costs because they depend on various factors, in-

cluding the method used to compute excess chemical potentials, the necessary number of 

sampling points in density-space, and the coarse-graining scale to name a few.  Most im-

portant, however, is the fact that the coarse-grained potential pre-computation is trivially 

distributable over an arbitrary number of compute nodes.  In this sense, CG-MMC can be 

considered as a method to transform a Monte Carlo problem into one that is much easier 

to parallelize – much of the work is shifted from the MC simulation itself, which is diffi-

cult to parallelize efficiently, to potential pre-calculation, which can be easily distributed. 
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3.5 Conclusions 

 

In this Chapter, the basic CG-MMC method was extended by the introduction of 

two closure approximations beyond the base case description in Chapter 2.  First, a ho-

mogenization approximation in which a weakly supercritical fluid is substituted for the 

actual system was shown to enable the estimation of coarse-grained potentials at multiple 

temperatures with a single series of free energy calculations.  When compared to refer-

ence calculations of the VLE envelope, the homogenization approximation was shown to 

exhibit excellent consistency across a range of temperatures.  The nature of the super-

critical fluid approximation, or SCFA, is such that it can be applied flexibly, thereby 

providing a measure of error control.  Specifically, it is possible to employ more than one 

homogenization temperatures in the free energy calculations such that the homogeniza-

tion temperature is never too far away from the temperature at which the coarse-grained 

potential is being evaluated.  In fact, one could even imagine removing the restriction that 

that the “homogenization” temperature be above the critical point and instead employ 

sub-critical temperatures to evolve the particle trajectories.  The trade-off between com-

putational expense and error in such a hybrid approach will require further study. 

  It was also shown that the calculated coarse-grained potentials, when parameter-

ized in terms of density (as opposed to the absolute number of particles), are highly scal-

able across different coarse-graining scales.  Thus, a coarse-grained potential computed at 

one coarse-graining scale can be used at multiple other scales, making feasible the possi-

bility of multiresolution or adaptive simulations.  While finite cell size effects are appar-

ent in the non-uniform density distributions across a cell during pre-calculation of the 



	   87 

coarse-grained potential, these do not appear to limit the scalability of the coarse-grained 

potentials.  In addition to the successful demonstration of potential scalability, upscaling 

and downscaling examples were shown to provide useful information regarding the vari-

ous possible sources of error.  Although additional studies will be required to fully assess 

the various error sources, there is evidence that finite size errors are present due to both 

potential evaluation and the CG-MMC simulation itself. 

The ability to scale potentials should greatly enhance the application scope of the 

CG-MMC technique to situations in which spatially and/or temporally adaptive simula-

tions are useful.  In Chapter 5 of this thesis we consider a situation in which a coarse-

grained potential is scaled to enable an adaptive simulation which becomes coarser as the 

features become larger.  There it is shown that the primary challenge of extending CG-

MMC to very large coarse-graining levels is to extend the single particle moves into mul-

ti-particle moves so that each move corresponds to a non-negligible transition in phase 

space. 
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4.1 Introduction 

 

In Chapters 2 and 3, a spatial coarse-graining method for Metropolis Monte Carlo 

(MMC) simulations was presented in which an arbitrary inter-particle potential is 

numerically coarse-grained to enable coarse-grained MMC (CG-MMC) simulations of 

fluid systems on a rigid lattice.  The CG-MMC approach was demonstrated to provide an 

excellent representation of various equilibrium properties such as vapor-liquid phase 

diagrams and intra-phase spatial density distributions for three different interaction 

potentials including Lennard-Jones argon, two square-well fluids, and SPC water.  It was 

demonstrated that the CG-MMC method formally satisfies detailed balance at the coarse 

level (1) if particle moves are selected by choosing origination cells randomly and (2) if 

moves are accepted/rejected according to the standard Metropolis criterion in which the 

coarse-grained (free) energy is substituted for the usual potential energy.  The resulting 

CG-MMC simulations were shown to be orders-of-magnitude faster than full-resolution 

simulations in attaining equilibrium configurations in a two-phase vapor-liquid system; 

the precise degree of speed-up is a function of the coarse-graining level. 

 In this Chapter, we investigate the applicability of CG-MMC to simulate non-

equilibrium phenomena.  The use of Metropolis Monte Carlo to study non-equilibrium 

phenomena is well established in the literature [1-3].  In essence, it can be shown that 

particle trajectories in MMC simulations are consistent with those generated by the 

overdamped (inertialess) Langevin equation, subject to the constraint that the maximum 

move attempts in MMC are sufficiently small; details of this equivalence are discussed in 
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Section 4.2.  Our principal aim in this Chapter is to determine whether this equivalence 

can be retained once the coarse-graining transformation is applied. 

Three variants of a simple system, namely a one-dimensional Gaussian pulse 

spreading in time, are used to develop, analyze and validate the non-equilibrium CG-

MMC (NECG-MMC) method.  In the first variant, we consider the diffusive evolution of 

the pulse assuming that the particles are ideal and that no external potential energy field 

exists.  In the second variant, we consider the drift-diffusion behavior of the same pulse 

by applying an external potential energy field to the system.  Finally, we consider the 

drift-diffusion behavior of a Gaussian pulse comprised of LJ-Ar particles governed by the 

same potential defined in Chapter 2.  The remainder of the Chapter is organized as 

follows.  In Section 4.2, a brief summary is provided of the connection between MMC 

and overdamped Langevin trajectories.  In Section 4.3, the NECG-MMC method is 

motivated and introduced; the three computational experiments validating the approach 

described in Section 4.4.  

 

4.2 Metropolis Monte Carlo as a Generator for Overdamped Langevin Dynamics 

 

As mentioned in Section 4.1, the relationship between MMC and overdamped 

Langevin (or Brownian) dynamics has been well established by previous work applied to 

magnetic dynamics [4, 5], proteins [6], and vacancy cluster diffusion [7].  Here, we 

provide a brief summary of the pertinent points and follow closely the development in 

refs. [8, 9].   
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Consider the temporal evolution of P(X,t), the probability of a one-dimensional 

Markovian system residing at coordinate X at time t, which is most generally given by the 

Master equation    

 ( ) ( ) ( ) ( ) ( ),
; , ( ) ; , ( )

P X t
X X P X t d X X X P X t d X

t
ψ ψ

∂
′ ′= Δ Δ − Δ Δ

∂ ∫ ∫ ,     (4.1) 

where ( );X Xψ Δ  is the transition rate over a small but finite time interval, !t , and 

!X ! X ! X ' .  For small transitions,	  !X , the Master equation can be approximated by a 

Fokker-Planck equation (FPE) of the form [10, 11] 

 ( ) [ ] [ ]
2

2

, 1( ) ( , ) ( ) ( , )
2

P X t
A X P X t B X P X t

t X X
∂ ∂ ∂≈ − +

∂ ∂ ∂
.     (4.2) 

where 

 ( ) ( )( ) ; ( )
X

A X X X X d X
t

ψ
∞

−∞

Δ
≡ Δ Δ Δ =

Δ∫ ,     (4.3) 

and 

 ( ) ( )
2

2
( )

( ) ; ( )
X

B X X X X d X
t

ψ
∞

−∞

Δ
≡ Δ Δ Δ =

Δ∫ ,     (4.4) 

are drift and diffusion coefficients, respectively.  In other words, the drift and diffusion 

coefficients, which may generally be functions of position and time, are the mean 

displacement and mean-square displacement over some arbitrary (small) time interval,	  

!t .  

 We now consider the mean displacement and mean-square displacement that arise 

from executing a series of Metropolis Monte Carlo moves for which maxrd  is the 

maximum MMC (attempted) displacement and ξ  is a uniform random number in the 
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interval [-1,1].  The corresponding change in potential energy is 

( )max
U UU X rd
X X

ξ∂ ∂Δ = Δ =
∂ ∂

.  It can then be shown [8, 9] that the mean displacement, 

X< Δ > , and mean-square displacement, 2( )X< Δ > , corresponding to MMC moves can 

then be expressed in terms of a series expansion, i.e.,  

 ( ) ( ) ( )
22 3

4max max
max

1 1
6 16B B

rd rdU UX O rd
k T X k T X

⎛ ⎞∂ ∂Δ ≈ − + +⎜ ⎟∂ ∂⎝ ⎠
     (4.5) 

and 

 ( ) ( ) ( ) ( )
2 3

2 4max max
max

1
3 8B

rd rdUX O rd
k T X

∂Δ ≈ − +
∂

.     (4.6) 

Considering the first term only in each of the preceding two equations and considering 

the form of the FPE in eq. (4.2) gives  

 ( )2
max( ) 2

3
rd

B X D
t

= =
Δ

,     (4.7) 

 and therefore that 

 1( )
B

D U UA X
k T X Xγ

∂ ∂⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
,     (4.8) 

where / 1 /BD k T γ=  is the Einstein relationship and γ  is the damping, or friction 

coefficient.  In other words, A(X) and B(X) correspond to the standard definition of drift 

and diffusion coefficients in overdamped Langevin dynamics (LD), if the assumed 

truncation in eqs. (4.7) and (4.8) is valid.  Of course, this does not imply that MMC 

particle trajectories are equivalent to LD trajectories on a per-move basis, but rather that 

the equivalence is valid over a sufficient number of moves to properly define the 
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averages of the mean displacement and mean-square displacement in eqs. (4.5) and (4.6), 

respectively.   

For larger maxrd , the MMC-LD equivalence is no longer valid because the 

additional terms in the expansions in eqs. (4.3) and (4.4) become important, and the 

trajectories implied by MMC are no longer consistent with Langevin trajectories [12].  

However, dividing the leading order term in eq. (4.5) (or eq. (4.6)) by the next term in the 

expansion provides a criterion that sets a limit on the MMC move size that ensures the 

MMC-LD equivalency: 

 max3 1
8 B

rdUK
X k T

∂≡ <<
∂

.     (4.9) 

 A principal implication of eq. (4.9) is that the maximum allowable move size in 

an MMC simulation is limited by the magnitude of the gradients in the potential energy 

landscape, i.e., /E X∂ ∂ .  Thus, for interaction potentials in which inter-particle 

attractions are short-ranged and steep, only very small moves can be accommodated if 

non-equilibrium trajectories are to be meaningful.  What are the implications for NECG-

MMC, where the minimum particle displacement is equal to the length of a coarse cell?  

Obviously, for the cell sizes considered in Chapters 2 and 3, the criterion in (4.9) is not 

satisfied when considering the LJ-Ar and SPC-water potentials.  However, we 

hypothesize here that this criterion must be modified to reflect the fact that the potential 

energy landscape is no longer relevant once a system is spatially coarse-grained, and that 

the relevant criterion is now 

 max( )3 1
8

CG cell

B

A L rdK
X k T

∂≡ <<
∂

,     (4.10) 
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where ( )CG cellA L   is the free energy landscape at a given coarse-graining level defined by 

the coarse cell size, cellL .  We further speculate that the gradients in ( )CG cellA L  are much 

smaller than the original potential energy landscape and that they scale with cellL  so that 

the criterion in eq. (4.10) is satisfied at all coarse-graining levels, at least for nearest-

neighbor moves.  These hypotheses will be tested empirically in the remainder of the 

Chapter. 

 We conclude this Section by making explicit the fact that the equivalence between 

MMC and LD trajectories (over a large enough time interval) implies a linear relationship 

between the number of MMC moves and “time”.  While the particular value of this 

scaling factor is not important for the ensuing analysis we note that a Monte Carlo 

diffusion coefficient, D, can be defined as   

 ! =
Lcell

2

D
     (4.11) 

where !
	  
represents the time step corresponding to one CG-MMC move. 

 

4.3 The Non-Equilibrium CG-MMC (NECG-MMC) Method 

 

In Section 4.2, it was demonstrated that if the Metropolis criterion was applied 

using the coarse-grained free energy, ( )CGA n , detailed balance was satisfied in a CG-

MMC simulation if transtions between coarse states were selected by moving particles 

between randomly chosen cells.  Recall that a coarse state is represented by an M-

dimensional vector ( )1 2, ,..., Mn n n=n  that defines the cell occupancies, nk , within the 
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simulation domain. As noted earlier in this Chapter, the satisfaction of detailed balance 

does not generally have bearing on the nature of the trajectories in phase space on the 

way to equilibrium. 

A qualitative analysis shows that some measure of inconsistency between MMC 

and CG-MMC is expected along non-equilibirum trajectories.  Figure 4.1 shows a 

schematic representation of a simple, one-dimensional, non-equilibrium system in which 

a concentration gradient is present across the simulation domain.  The top row represents 

a standard full-resolution simulation on which coarse cell boundaries are superposed for 

reference, while the lower row represents a CG-MMC simulation with an equivalent 

density distribution (at the coarse level).  In the MMC simulation, random particle 

selection naturally leads to a bias towards cells that contain more particles.  In CG-MMC, 

however, random cell selection leads to a bias in which particles in less occupied cells are 

more likely to be picked.   
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Figure 4.1: Schematic representation of a one-dimensional non-equilibrium system 

containing a concentration gradient. (a) Full-resolution MMC representation, and (b) CG-

MMC representation, where the grey shade denotes the occupancy in each cell. 

 

Attempting to correct this bias by simply choosing origination cells according to 

their particle occupancy violates detailed balance.  This can be trivially demonstrated by 

considering the probability of selecting a transition from coarse state i to j, ija , which we 

arbitrarily assign to a particle moving from cell k to cell l, i.e., ( ) ( )1,..., , ,...,k l Mi n n n n≡n  

and ( ) ( )1,..., ( 1), ( 1),...,k l Mj n n n n≡ − +n .  Biasing the choice of cell by its occupancy 

implies /ij ka n N= , where is the total number of particles in the system.  The probability 

of selecting the reverse process becomes ( 1) /ji la n N= + , i.e., ij jia a≠  and detailed 

balance is no longer satisfied.  
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We therefore seek a way to choose origination cells in a manner that is biased by 

their occupancy and then either (1) remove the bias using the acceptance criterion, or (2) 

remove the bias by ensuring that the reverse process is equally biased.  While approach 

(1) is certainly possible in concept, here we propose a simple solution based on approach 

(2).  In essence for each transition between two coarse states i and j (forward or 

backward), the transition selection probability is biased by the maximum of the cell 

occupancies either before or after the transition.  In other words, the transition 

probabilities now become   

 aij = a ji =
max nk , nl +1( )

max nk , nl +1( )
hop=1

6

!
k=1

M

!
,     (4.12) 

where the denominator P = max nk , nl +1( )
hop=1

6

!
k=1

M

!

 

is a normalization factor.  Note that the 

equal bias applied to both forward and backward transitions between the two coarse 

states automatically guarantees that detailed balance is satisfied.  Moreover, the bias 

ensures that move attempts are more likely from (and to) cells with high particle 

occupancy.   

The validity of eq. (4.12) for performing non-equilibrium CG-MMC (NECG-

MMC) simulations is confirmed empirically using a suite of tests that are described in 

Section 4.3.  However, the implementation of eq. (4.12) requires additional algorithmic 

considerations that are described next. 
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4.3.1 Implementation of the NECG-MMC Algorithm 

 

 Equation (4.12) requires that every allowable transition between all pairs of cells 

be assigned a bias based on the maximum particle density in each each pair of cells.  The 

particular transition to be attempted at each move must then be chosen from a list of all 

possible transitions in a biased stochastic manner.  In fact, this task is essentially identical 

to the event selection component within a kinetic Monte Carlo simulation in which all 

possiblre events and their rates are first defined and then selected in a biased random 

approach.  Various methods have been developed to increase the efficiency of event 

selection, including binary search.  

 The NECG-MMC algorithm as implemented in this thesis proceeds as follows: 

1) Start from an initial coarse state i0  represented by the M-dimensional vector 

n i0( ) ! n1,n2 ,...,nM( ) .  

2) Generate a list of all possible events (i.e., transitions) and populate an initial 

database of attempt probabilities for each event according to eq. (4.12). 

3) Calculate the current sum of all attempt probabilities, P = max nk , nl +1( )
hop=1

6

!
k=1

M

! . 

4) Choose an event based on its attempt probability. The origination and destination 

coarse cell are determined accordingly by generating a uniformly distributed 

random number U[0,1] .  Select an event r, which represents a particle move 

between cells (k, l) according to the distribution of attempt probabilities, which is 
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given by max nk , nl +1( )
k=1

r!1

" <U[0,1]P < max nk , nl +1( )
k=1

r

" .  

5) If origination cell k  is not empty, i.e. nk > 0 , and destination cell l  doesn’t 

exceed the maximum occupancy, i.e. nl < nmax , execute the event attempt by 

moving one particle from cell k  to l . Otherwise go back to step 4) and re-select 

cell k  or l  until both meet the requirements.  

6) Evaluate the free energy change associated with this event using eq. (2.15), i.e., 

 
!A i ! j( ) = kBT ln

nl +1
nk

+ !Ainput nl ,nenv ,l( )! "Ainput nk !1,nenv ,k( ) ,     (4.13) 

where !Ainput nk ,nenv ,k( )  represents the excess free energy change due to one 

particle insertion into a cell with nk 	  particles and environment with nenv ,k  

particles (see Figure 2.4 for system setup and Figures 2.5, 2.6 and 2.7 for excess 

free energy change surfaces), i.e. !Ainput nk ,nenv ,k( ) = !Aex nk ! nk +1: nenv ,k( ) . It 

also highlights the fact that the numerically averaged CG potential is the only 

input in the CG-MMC model. 

7)  Accept this move with probability ! ij , following eq. (2.17). This is realized by 

generating another uniformly distributed random number !  in U[0,1] .  If ! ij <" , 

then remain in old state i  otherwise if ! ij !" , accept the new state j : 

 ! ij = min exp !!"A(i # j)( ), 1$% &'      (4.14) 

8) Update the occupancy of origination and destination cells, the database of attempt 

probabilities for coarse cells within interaction range, and the renormalization 
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factor P. 

9) The NECG-MMC iterations continue by repeating steps 4 – 8. 

 

The NECG-MMC algorithm described above is shown schematically in Figure 

4.2.  

Set initial database of all!
attempt probabilities based!

 on initial configuration. !

Pick an attempt, the 
origination and destination 

coarse cells are determined. !

Execute attempt and accept 
this move with probability    .    !

P ! max(nk,nl +1)
hop=1

6

"
i=1

M

"

Update occupancy and 
database for coarse cells 

within interaction. !

PU !]1,0[

P

END OF !
NECG-MMC!

 

! ij

not accepted!

accepted!

not end!  end!

 

Figure 4.2: Schematic representation of NECG-MMC with biased coarse cell selection 

algorithm. 

 

4.4 Validation of the NECG-MMC Method 

 

 Consider again the Fokker-Planck equation in Section 4.2 (eq. (4.2)) into which 

the results from eqs. (4.7) and (4.8) are substituted:  
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 ( ) [ ]
2

2

, 1 ( , ) ( ) ( , )
P X t U P X t D X P X t

t X X Xγ
∂ ⎡ ⎤∂ ∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

.     (4.15) 

Assuming further that that the diffusion coefficient is not a function of position (or time) 

and removing the explicit dependence of the distribution on position and time gives the 

following convection-diffusion equation: 

 
2

2

P F PP D
t X Xγ

⎡ ⎤∂ ∂ ∂= − +⎢ ⎥∂ ∂ ∂⎣ ⎦
,     (4.16) 

where ( / )F U X= − ∂ ∂   is the force acting on the system due to an external potential.  

Recall again that the diffusion coefficient also is related to the friction coefficient, γ  , by 

the Einstein relationship, / 1/BD k T γ= .     

 For the special case of zero external potential, eq. (4.16) reduces to  

 
2

2

P PD
t X

∂ ∂=
∂ ∂

,     (4.17) 

which describes a transient diffusion process in one dimension.  We consider here a 

situation in which the initial condition at time t0 corresponds to a Gaussian pulse 

 
2

0
0

( , ) exp
4
XP X t
Dt

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
,     (4.18) 

with boundary conditions 

 
2

0 0
0( , ) exp

4
t XP X t
t Dt

⎛ ⎞
± = −⎜ ⎟

⎝ ⎠
.     (4.19) 

The solution of eq. (4.17) with initial and boundary conditions (4.18) and (4.19) 

possesses an analytical solution  

 
2

0( , ) exp
4

t XP X t
t Dt

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.     (4.20) 
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In the following sections we execute and analyze CG-MMC and NECG-MMC 

simulations of the spreading of a one-dimensional Gaussian pulse both with and without 

the application of an external potential. 

 

4.4.1 Ideal Gas – Pure Diffusion (No External Potential) 

 

Our base system consists of a rectangular domain comprised of 5 coarse cells in 

the Y and Z directions, which are perpendicular to the concentration gradient, and subject 

to periodic boundary conditions.  The length of the domain in the X direction, along 

which the primary diffusion is occurring, is 1000 coarse cells.  For the case of an ideal 

gas, which we consider here, the coarse cells are defined to be of unit length and the 

temperature is (arbitrarily) specified to be 1.2 in consistent units.  The intial Gaussian 

particle distribution function is given by 

 N (X ,t0 ) = 250exp ! (X !500)2

800
"
#$

%
&'

,     (4.21) 

where N is the number of particles in a cell with center-of-mass located at X; a side-view 

of the central part of the simulation domain is shown in Figure 4.3. 

 

 

	   	   	   	  	  
	  	  0     1     2     3     4     5     6     7     8     9     10 

Figure 4.3: Simulation domain with initial Gaussian density distribution. Only the 

middle 200 planes of the rectangular 5!5!1000  cell system is shown for clarity.  The 

cell color denotes particle number that ranges from zero (dark blue) to 10 (red). The color 
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scale is provided on the side. 

 

 Results for the evolution of the Gaussian initial condition are shown for both CG-

MMC and NECG-MMC in Figures 4.4 and 4.5, respectively.  In both figures, the (red) 

symbols represent the simulation configuration after 2x108 moves, while the solid line 

shows a Gaussian fit to the simulation data.  The distribution height value denoted by 

“count” in the figures is computed by area-normalizing the distribution so that the area is 

equal to the total number of particles in the coarse-grained system.  In all ideal gas 

simulations, the total number of particles is given by the integral of the function in eq. 

(4.21), NT =12400 . 

While the CG-MMC distribution exhibits clear deviations from the Gaussian fit, 

the NECG-MMC distribution is essentially perfectly Gaussian as expected from the 

analytical solution in eq. (4.20).  The CG-MMC deviations are particularly pronounced at 

the tails of the distribution, where anomalously rapid diffusion is evident.  This 

observation is consistent with the fact that in CG-MMC all cells are equally likely to be 

chosen to originate particle moves, which effectively increases the diffusivity of particles 

in low-occupancy cells.  Thus, for an ideal gas evolving without an external potential, the 

NECG-MMC algorithm appears to provide an excellent representation of non-

equilibrium “dynamics”. 
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Figure 4.4: Area-normalized particle density distribution after 2!108  CG-MMC steps 

(see text for initial condition).  Red circles – CG-MMC simulation; black line – Gaussian 

fit.  
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Figure 4.5: Area-normalized particle density distribution after 2!108  NECG-MMC 

steps (see text for initial condition).  Red circles – NECG-MMC simulation; black line – 

Gaussian fit.  

 

4.4.2 Ideal Gas – Drift and Diffusion (with External Potential) 

 

Next, we consider the same situation as described in the previous section but with 

the additional application of an external potential field of the form 

 ( ) 0.1 ( )U X n X X= × × ,     (4.22) 
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where n is the number of particles in cells located at position X.  The Gaussian initial 

distribution is now subjected to a constant drift velocity in addition to the background 

diffusion encountered in the first example. 

The results for CG-MMC and NECG-MMC simulations of this system are shown 

in Figure 4.6.  Here, the circle symbols show the CG-MMC (blue) and NECG-MMC 

(red) distributions after 2!108  steps. The solid black line denotes the initial 

configuration.  While both distributions are affected strongly by the presence of the 

external potential field, the NECG-MMC shows that the profile remains Gaussian as it 

translates along the potential gradient.  On the other hand, the CG-MMC distribution 

becomes strongly skewed with a long leading tail, while the peak moves much more 

slowly.  It is easy to show that the NECG-MMC prediction is in fact correct by 

considering the analytical solution of eq. (4.20), which is a Gaussian spreading at the 

same rate as that shown in eq. (4.20) but with a translation velocity that corresponds to 

[13]: 

 v = F !D
kBT

,     (4.23) 

where as mentioned earlier, the force, F, is the gradient of the potential, i.e., 

( / )F U X= − ∂ ∂ . With the same initial condition as eq. (4.18), a similar analytical 

solution can be obtained for the drift-diffusion case in eq. (4.16): 

 P(X ,t) =
t0

t
exp !

X ! v(t ! t0 )( )2

4Dt

"

#
$
$

%

&
'
'

.     (4.24) 
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Figure 4.6: Area-normalized particle density distribution after 2!108  CG-MMC (blue 

circles) and NECG-MMC (red circles) steps for an ideal gas diffusive system with an 

applied external potential field (see text for definitions). Black line – Gaussian fit of the 

initial condition.  

 

The analytical solutions in eqs. (4.20) and (4.24) show that 4Dt = 2! t
2 , where ! t  

is the standard deviation of Gaussian distribution at time t. Figure 4.7 shows the 

simulation time as a function of corresponding NECG-MMC steps. There exists a linear 

relationship between the simulation time and NECG-MMC steps. The linear fit function 

is 4Dt = 4.55+ 7.24S , where S is the number of NECG-MMC steps. 
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Figure 4.7: Simulation time as a function of NECG-MMC steps. All data collected from 

ideal gas pure diffusion process using NECG-MMC model. Black line – Linear fit.  

   

By comparing to the initial condition in the analytical solution at time t0  in eq. 

(4.18), the initial condition in eq. (4.21) gives 4Dt0 = 800 , which sets the value of the 

initial time t0 . After 2!108
 NECG-MMC steps, the linear fit between simulation time 

and NECG-MMC steps gives 4Dt = 2! t
2 = 9828 . Therefore, the time change can be 

determined from the diffusion process: D(t ! t0 ) = 2257 . 
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To see whether the drift process is correctly captured, we need to see whether the 

shift of the peak in the simulation matches the analytical result calculated at the “time” 

determined by NECG-MMC steps. The shift of the peak from its original location 

Xt0
= 500  can be calculated as !Xt = v(t ! t0 )  by following the analytical solution (4.24). 

As F = 0.1 , kBT =1.2 , and D(t ! t0 ) = 2257 , the shift of the peak can be calculated as 
 

!Xt = v(t ! t0 ) = F
kBT

D(t ! t0 ) =188 . In Figure 4.6, the location of the peak from the 

simulation reads as Xt = 685 , which is consistent with the analytical result 

Xt = Xt0
+ !Xt = 688  at time corresponding to 2!108

 NECG-MMC steps derived from 

diffusion. 

 

4.4.3 Lennard-Jones-Argon – Drift and Diffusion with Inter-Particle Potential 

 

In this section, we again consider the evolution of the Gaussian distribution 

function under an externally applied potential field but now include an inter-particle 

potential.  Note that the Master equation that would describe the evolution in this system 

does not possess an analytical solution, and our primary aim will be to qualitatively 

compare the predictions between CG-MMC and NECG-MMC simulations to 

demonstrate that our findings from the previous examples still hold when inter-particle 

interactions are present.  Specifically, we apply the LJ-Ar potential described in Chapter 

2 (eq. (2.21).  For this example, the coarse cell size is chosen to be Lcell = 3! .  The 
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simulation temperature is set at T* =1.2 , corresponding to supercritical conditions, in 

order to simplify the analysis. 

The predicted position of the initial Gaussian distribution function after 1!108  

steps is shown in Figure 4.8 for both CG-MMC (blue) and NECG-MMC (red).   
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Figure 4.8: Area-normalized particle density distribution after 1!108  CG-MMC (blue 

circles) and NECG-MMC (red circles) steps for an LJ-Ar diffusive system with an 

applied external potential field (see text for definitions). Black line – Gaussian fit of the 

initial condition.  
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The NECG-MMC profile in this case is longer Gaussian because of the inter-

particle attraction, but it still retains symmetry about the peak.  Moreover, for the drift 

process, a translation velocity for the peak of the distribution can be clearly defined as eq. 

(4.23) and the location of the peak reads as Xt = 592 , which is again consistent with the 

analytical result Xt = Xt0
+ !Xt = 594 	  at time corresponding to 1!108

	  NECG-MMC 

steps derived from diffusion.  Once again, the CG-MMC result exhibits strong deviation 

from this behavior, and the peak of the distribution barely moves over the length of the 

simulation. 

 

4.5 Diffusion at Different Coarse-Graining Levels 

 

 We conclude this Chapter by further analyzing the use of the NECG-MMC 

method for non-equilibrium simulations with a sequence of ideal-gas, pure diffusion 

simulations at different coarse-graining levels.  We consider again the system described 

in Section 4.4.1, but now compare diffusion of a Gaussian distribution at several different 

coarse-graining levels.  Recall that in Section 4.4.1 the cell size was set at 1cellL =  and the 

overall domain was comprised of 5!5!1000  coarse cells in the Y, Z, and X directions, 

respectively.  We now consider the same domain at the following different coarse-

graining levels: 1.25cellL =  ( 4! 4!800  coarse cells), 1.67cellL =  ( 3! 3! 600  coarse 

cells), and 2.5cellL =  ( 2! 2! 400  coarse cells).	   

 In Figure 4.9 the initial Gaussian distribution is shown at some later time, t, which 

was chosen for each coarse-graining level such that all profiles were identical.  For a 
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diffusive system, the time change !t = t " t0  can be related to the number of NECG-

MMC steps according to the relationship   

 !t = !S =
Lcell

2

D
S ,     (4.25) 

where S is the number of NECG-MMC steps, !
	  
is the time interval corresponding to one 

CG-MMC step, D is the diffusion coefficient, and Lcell 	  is length of the coarse cell.  In 

Table 4.1, the number of NECG-MMC steps required to reach the profile shown in 

Figure 4.9 is shown for each coarse-graining level.  As expected for a properly coarse-

grained system in which the diffusivity is independent of coarse-graining scale, the 

number of NECG-MMC steps multiplied by the square of the cell size corresponds to a 

fixed “time” across all coarse-graining levels.  

 

Lcell  S  !t " Lcell
2 S 	  

1.0  5!107  5!107
	  

1.25  3.2!107  5!107
	  

1.67  1.8!107  5!107
	  

2.5  0.8!107  5!107
	  

 

Table 4.1: Equivalence of simulation time at different CG-MMC steps corresponding to 

different coarse-graining levels.	   
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Figure 4.9: Distribution profiles obtained by NECG-MMC simulation after varying 

numbers of steps at several different coarse-graining levels.  The number of steps were 

chosen to map all curves onto each other. The number of steps required at each coarse-

graining level was: 75 10×  at 1cellL =  (black circles), 73.2 10×  at 1.25cellL =  (red 

diamonds), 71.8 10×  at 1.67cellL =  (blue squares), and 70.8 10×  at 2.5cellL =  (green 

deltas). 

 

Snapshots of configurations at different coarse-graining levels corresponding to 

the same simulation time as in Figure 4.9 are shown in Figure 4.10.  While the density 
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distribution remains the same for simulations at different coarse-graining levels, the 

statistical fluctuations are clearly reduced at larger coarse-graining levels.  

 

 

 

 

 
 

Figure 4.10: Configurations corresponding to the distributions in Figure 4.9 at different 

coarse-graining scales.  Coarse-graining scale increases from top to bottom – see Figure 

4.9 caption for details. Cell color denotes number density that ranges from low (dark 

blue) to high (red). 

 

4.6 Conclusions 

 

 In this chapter, we presented a detailed discussion of the development and 

validation of a non-equilibrium version of coarse-grained Metropolis Monte Carlo 

method (NECG-MMC).  The approach taken was to start with the original CG-MMC 

method that was shown to satisfy detailed balance, and then modify the cell selection 

process in such a way so as to not disturb the detailed balance condition for each possible 

move.  The result is a method in which particle move attempts from each origination cell 

to destination cell are biased by the maximum density across the pair of cells.  Thus, not 

only are particles moves from high density cells increased, but moves to high density 



	   116 

cells are also increased.  The latter result, while seemingly unintuitive, is the feature that 

enforces detailed balance for every possible move in the system.   

 We also reiterate that, at least from an algorithmic perspective, the NECG-MMC 

method is a hybrid between lattice kinetic Monte Carlo and Metropolis Monte Carlo.  

The biasing of every possible transition according to the maximum of the cell-pair 

density requires that all possible transitions be listed before a move can be selected.  The 

transition attempt selection process can then be performed with established methods such 

as a binary search. 

 We certainly do not claim that the solution presented in this chapter for creating 

correct non-equilibrium trajectories at the coarse-grained level is unique, but we show 

using several examples that the approach does provide correct trajectories (at least at a 

given coarse-grained length scale).  Using an ideal gas model, we show that the NECG-

MMC trajectories in pure diffusion and drift-diffusion settings are completely consistent 

with analytical solutions to the corresponding Fokker-Planck equations.  Equally 

significantly, we demonstrate that the CG-MMC method presented in Chapters 2 and 3 

does not achieve this consistency.  We then further validate the NECG-MMC method by 

simulating the drift-diffusion process of a supercritical Lennard-Jones Argon fluid.  Once 

again, the NECG-MMC evolution exhibits a qualitatively reasonable trajectory, while the 

CG-MMC method leads to artifacts that are easily identified even though an analytical 

solution is not available. 
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5.1 Introduction 

 

In Chapters 2 and 3, a spatial coarse-graining method for Metropolis Monte Carlo 

(MMC) simulations was presented in which an arbitrary inter-particle potential is 

numerically coarse-grained to enable Monte Carlo simulations of fluid systems on a rigid 

lattice (CG-MMC).  It was shown that the CG-MMC method was generally applicable to 

any type of interatomic potential, subject to the constraint that the potential range was 

smaller than the length of a single coarse cell.  The CG-MMC method was then modified 

slightly in Chapter 4 to render it consistent with non-equilibrium trajectories.  To 

accomplish this, we used and extended theoretical arguments that demonstrate the 

equivalence between standard, full-resolution MMC and Langevin trajectories.  The 

resulting method, which was referred to as non-equilibrium coarse-grained Metropolis 

Monte Carlo, or NECG-MMC, was shown to provide excellent quantitative agreement 

between simulations and analytical solutions for a simple diffusion and drift-diffusion 

systems. 

One key result of Chapter 3 was that the coarse-grained potentials generated at 

one coarse-graining scale could be upscaled (or downscaled) to another coarse-graining 

scale, thereby enabling the possibility of executing CG-MMC or NECG-MMC 

simulations at multiple coarse-graining scales without the need to pre-compute several 

different potentials.  Upscaling is particularly useful at larger coarse-graining scales 

where the potential pre-computation becomes prohibitively expensive.  CG-MMC 

simulations in Chapters 3 and 4 were executed for coarse cell sizes up to about 2 nm (or 

6σ  in the Lennard-Jones argon (LJ-Ar) length scale).  At this scale, a liquid-state coarse 
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cell contains about 200 particles.  While this is a significant amount of coarse-graining, in 

the present chapter we investigate the properties of CG-MMC (or NECG-MMC) for 

much larger length scales.   

While there is no conceptual difficulty in upscaling a coarse-grained potential to 

arbitrarily large coarse-graining levels, it is immediately obvious that the single-particle 

moves that have been used up to this point become highly inefficient for propagating the 

system as the number of particles per coarse cell increases.  Our main focus in this 

chapter, therefore, is to extend the capability of spatial coarse-graining to multi-particle 

moves while retaining (1) the computational efficiency of a move, and (2) the accuracy of 

the method.  In the demonstrations presented here, we consider LJ-Ar simulations in 

which the coarse cells are scaled up to a size of almost 10 nm, and contain over 10,000 

particles each in the liquid state.  In particular, we use a simulation of three-dimensional 

spinodal decomposition of a homogeneous (LJ-Ar) fluid to highlight how CG-MMC can 

be used in an adaptively multiscale setting 

 

5.2 Multi-Particle Moves  

 

 Recall that in Chapter 2, the coarse-grained potential was computed in terms of a 

chemical potential, or a free energy difference that results upon the insertion of one 

particle into a coarse-grained cell with particle density, ρ , surrounded by an environment 

density, envρ , and at temperature T.  Here, we seek to derive an expression for the free 

energy change due to a multiple particle insertion in terms of the coarse-grained 

potentials that were already computed.  	  
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We begin by restating the canonical partition function in the coarse-grained state 

space 	  

 QCG (N ,V ,T ) = 1
!3N N !

exp "
ACG (n)
kBT

#

$%
&

'(k
) ,     (5.1) 

where the coarse-grained system free energy is defined as ACG (n) = Ak
k=1

M

! , and kA  is the 

free energy in coarse cell k.  Now consider the Helmholtz free energy in a system 

containing N particles at volume V and temperature T: 

 

A(N ,V ,T ) = !kBT lnQ

= !kBT ln V N

!3N N !
!
"#

$
%&
' kBT ln drN exp !U (rN )

kBT
!

"
#

$

%
&'

(

)
*

+

,
-

. Aid (N ,V ,T ) + Aex (N ,V ,T )

,     (5.2) 

where “id” and “ex” refer to ideal and excess contributions, respectively.  The Helmholtz 

free energy change upon the addition of n particles to the system is therefore given by 

 

!A(N " N + n) = #kBT lnQN+n / QN

= #kBT ln V n / $3n

(N +1)...(N + n)
%
&'

(
)*
# kBT ln

drN+n exp[#U (rN+n ) / kBT ]+
drN+n exp[#U (rN ) / kBT ]+

%

&
'
'

(

)
*
*

= !A(N + i #1" N + i)
i=1

n

,

.    (5.3) 

In other words, an n-particle insertion into a coarse cell can be regarded simply as a sum 

of n single particle insertions.  Similar considerations hold for particle deletion – recall 

that a particle move represents the sum of a particle insertion in one cell and a particle 

deletion in another.  Note that each subsequent insertion (or deletion) occurs at a slightly 

different cell occupancy and possibly a slightly different environment density.  The 
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corresponding move acceptance criterion for a multi-particle move is simply based on the 

sum of the single-particle free energy changes across the entire move and now becomes 

                                               ! ij
(n) = min exp !! "Ai

i=1

n

#$
%&

'
()

, 1
*

+
,
,

-

.
/
/

.                                     (5.4) 

CG-MMC simulations with multi-particle moves were tested using the LJ-Ar 

potential at the state point !* = 0.3  (homogeneously distributed across the domain) and 

T* = 0.9 .  Recall that the dimensionless density and temperature are defined as 

3* / , *BT k T ε ρ ρσ≡ ≡ . 

A cubic simulation domain consisting of 10 coarse cells in each direction was 

employed; the coarse-graining level was chosen to be Lcell = 6! .  The multi-particle 

moves were implemented by first defining a maximum number of particles that could be 

moved, nmax, and then choosing the move size with a uniformly distributed random 

number in the interval [1,	  nmax].  This move distribution was applied for all subsequent 

multi-particle move studies in this chapter.  The CG-MMC simulations were allowed to 

evolve until equilibrium was reached and the cell density distribution was collected. 

As shown in Figure 5.1, two different values for the maximum move size were 

used: nmax = 4  (red squares) and nmax = 8
 
(blue diamonds).  The cell density distribution 

was obtained with a single-particle CG-MMC simulation is also shown in Figure 5.1 for 

comparison (black circles). As expected, the density distributions from all three 

simulations are essentially identical – note that there are no approximations implied in 

eqs. (5.3) and (5.4).   

However, in the present formulation the multi-particle move simulations do not 
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provide any computational benefit, even though the number of multi-particle moves 

required to reach equilibrium is lower than the corresponding number of single-particle 

moves.  The reason for this is due to the sequential way in which the free energy change 

for the multi-particle moves was evaluated.  In effect, each multi-particle move costs n 

times as much as a single particle move because the free energy change is accrued one 

particle move at a time.  We develop improvements to this approach in the following 

section. 
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Figure 5.1: Unit area-normalized cell density histogram for LJ-argon obtained from 

equilibrated CG-MMC simulations with Lcell = 6!  and !* = 0.3  at T* = 0.9 . Black 
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circles – CG-MMC with single-particle move, red squares – CG-MMC with multi-

particle move, nmax = 4 , blue diamonds – CG-MMC with multi-particle move, nmax = 8 . 

 

5.3 Scalable Multi-Particle Moves in CG-MMC 

 

 Consider again the coarse-state dependence of the free change due to a single 

particle insertion 

 ( ) ( )( , , ) , , ,env id ex envA T A T A Tρ ρ ρ ρ ρΔ = Δ +Δ ,     (5.5) 

which makes explicit the fact that the free energy per particle insertion (deletion) changes 

as more particles are inserted (deleted).  The total free energy change upon a multi-

particle move can therefore be expressed as 

 ( )
1

( ), ( ),
n

tot i i env i
i

A A n n Tρ ρ
=

Δ = Δ∑ ,     (5.6) 

where ni represents the number of particles in the cell for the ith particle insertion.  Eq. 

(5.6) can be expressed more generally in continuous form as 

 ( ( ), ( ), )
final

init

n

tot env
n

A A n n T dnρ ρΔ = Δ∫ ,     (5.7) 

where ninit  and nfinal  represent the number of particles in the cell at the beginning and end 

of the multi-particle move, respectively. 

 We can now apply any of the standard numerical integration approximations to 

evaluate the integral in eq. (5.7).  The cost of the evaluation is directly proportional to the 

number of integrand samples.  In the following demonstrations we apply the single-

interval trapezoid rule to evaluate eq. (5.7) for a multi-particle move, i.e.,   
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 f (x)dx
a

b

! " b# a
2

f (a) + f (b)$% &' .     (5.8) 

The accuracy of the evaluation can be systematically increased by either using composite 

formulas such as   

 f (x)dx
a

b

! " b# a
n

f (a)
2

+ f a + i(b# a)
n

$
%&

'
()i=1

n#1

* + f (b)
2

+

,
-

.

/
0 ,     (5.9) 

or increasing the order of the numerical integration formula, e.g., Simpson’s rule.  Note 

that the single-interval trapezoid rule requires two integrand evaluations and therefore 

costs about twice as much as a single-particle move, irrespective of the number of 

particles being moved.   

 Rewriting eq. (5.7) in terms of the appropriate coarse-grained free energies gives  

 ( )1
1 2

n

i n
i

nA A A A
=

Δ = Δ ≈ Δ +Δ∑ ,     (5.10) 

where !A1  is the change of free energy due to the first particle moved, and !An  is the 

change of free energy due to the last particle moved.  The corresponding move 

acceptance criterion now becomes 

 ! ij
(n) = min exp !!

n "A1 + "An( )
2

#

$
%

&

'
( , 1

)

*
+
+

,

-
.
.

     (5.11) 

The trapezoid approximation is tested using our standard base case simulation: a cubic 

domain comprised of 10 coarse cells on a side, with coarse-graining level Lcell = 6! .  The 

coarse-grained potential is derived from the LJ-Ar potential and the state point is given 

by  !* = 0.3  (initially uniform distribution) and T* = 0.9 .  The equilibrium cell density 

distribution is shown in Figures 5.2 and 5.3 for multi-particle moves with nmax = 8  (red 
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squares), nmax =16
 
(blue diamonds), max 80n =  (green deltas), and single-particle moves 

(black circles).   

 The linear scales in Figure 5.2 show essentially perfect agreement between all 

cases, while the logarithmic scaling in Figure 5.3 highlights a small deviation between 

the multi-particle move and single-particle move cases in the intermediate part of the 

distribution, which corresponds to partially-filled cells at the boundary between liquid 

and vapor regions.  Note that the bulk of the deviation occurs at very low values of the 

distribution.  In addition, there is some additional deviation evident for the largest moves 

max 80n = ; increasing the accuracy of the numerical integration scheme should resolve 

these errors.  Finally, it is instructive to also consider the multi-particle moves in terms of 

the density change, *ρΔ  (see Figure 5.2 and Figure captions).  Here, the density change 

is defined as the average change in (dimensionless) cell density due to the multi-particle 

move, i.e., max* (1 ) / 2 celln VρΔ = + .  For the largest ( max 80n = ) moves, the average move 

size corresponds to !!* = 0.1875 .  The density change representation allows move sizes 

at different coarse-graining levels to be compared on a normalized basis.  Overall our 

results show that the trapezoid rule estimation of the integral in eq. (5.10) is likely to be 

sufficient for the general case. 
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Figure 5.2: Unit area-normalized cell density histogram on linear scales for LJ-argon 

obtained from equilibrated CG-MMC simulations with Lcell = 6!  and !* = 0.3  at 

T* = 0.9 . Black circles – single-particle moves (reference case), red squares – multi-

particle move: nmax = 8  (!!* = 0.0208 ), blue diamonds – multi-particle move: nmax =16  

(!!* = 0.0394 ), green deltas – multi-particle moves: max 80n =  ( * 0.1875ρΔ = ). 
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Figure 5.3: Unit area-normalized cell density histogram on logarithmic scales for LJ-

argon obtained from equilibrated CG-MMC simulations with Lcell = 6!  and !* = 0.3  at 

T* = 0.9 . Black circles – single-particle moves (reference case), red squares – multi-

paarticle move: nmax = 8  (!!* = 0.0208 ), blue diamonds – multi-particle move: nmax =16  

(!!* = 0.0394 ), green deltas – multi-particle moves: max 80n =   ( * 0.1875ρΔ = ). 

 

5.3.1 Analysis of Multi-Particle Move Efficiency 

 

 The efficiency gains associated with increasing the move size are partially 

tempered by a reduction in the move acceptance rate.  Shown in Figure 5.4 is the 
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acceptance ratio as a function of density change for two different coarse-graining levels.  

The plots were contructed using near-equilibrium configurations based on the LJ-argon 

potential at !* = 0.3  and T* = 0.9 , although the results are not sensitive to these 

parameters.  For both cell sizes, the average move acceptance probability, ijα< > , 

decreases with increasing move size.  In both cases, the move acceptance rate appears to 

reach a limiting value of about 0.2 for the smaller cells and about 0.07 for the larger ones.  

Note that the acceptance probability is always lower in the larger cells for a given density 

change. 

 Although the relationship between the move acceptance probability and the move 

size is not analytically determined, it can be qualitatively observed that for both cell sizes, 

increasing the move size provides a net benefit in terms of efficiency, i.e., that across the 

entire range of move sizes considered here the move size grows faster than the 

acceptance probability decreases.  For example, in the smaller cells, increasing the 

maximum number of particles per move in CG-MMC from 1 to 80, which corresponds to 

an average density change from !!* = 0.0046  to !!* = 0.1875 , the acceptance ratio 

only decreases from around 90% to 20%.  Optimal move size determination will require 

further study, particularly because the optimum move size is likely to be configuration 

and system specific. 
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Figure 5.4: Acceptance probability as a function of move density change.  Two cell sizes 

are considered: (a) Lcell = 6!  (circles) and Lcell = 6!  (squares).  All data collected using 

LJ-Ar potential with near-equilibrium configurations at !* = 0.3  and T* = 0.9 .  

 

 The influence of cell size on the acceptance probability deserves further analysis 

because the results in Figure 5.4 suggest a strong dependence between acceptance 

probability and cell size for a fixed move size (in terms of density change).  In Figure 5.5 

we show the acceptance probability as a function of cell size at a fixed density change, 

!!* = 0.037 .  Plotted on power-law scales, the acceptance rate first decreases slowly and 
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then achieves an apparent constant power-law decrease with exponent ( ) 3/2
~ij cellLα

−
.  

The practical implication of this result is important.  Qualitatively speaking, for moves at 

fixed density change, the “time” that each move would correspond to in a CG-MMC 

simulation would scale as the diffusive time step times the acceptance probability times 

the number of particles that are moved with each successful attempt: 

 
2

1.16
max~ ~cell

ij
L n n
D

τ α⋅ ⋅ .     (5.12) 

Note that in the above analysis it is assumed that the “time” equivalent of a single CG-

MMC step is proportional to the number of particles moved in that step.   

 The principal implication of eq. (5.12) is that the CG-MMC method becomes 

increasingly efficient as the coarse cell size is increased even though the move 

acceptance rate becomes progressively smaller.  In other words, not only does the method 

allow for larger length scale access, but it also appears to provide longer timescale access 

as the coarse-graining level is increased.  This is a critical property of any coarse-graining 

approach because features that exist at larger length scales almost always evolve at longer 

timescales.  It is not clear whether the present conclusions hold for coarse-graining levels 

beyond the range investigated here – future studies will be required to probe the behavior 

of the CG-MMC (or NECG-MMC) method in the limit of very large cell sizes. 
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Figure 5.5: Acceptance probability as a function of coarse cell size at fixed density 

change, !!* = 0.037 .  Line shows power-law fit over the interval shown.  All data 

collected using LJ-Ar potential with near-equilibrium configurations at !* = 0.3  and 

T* = 0.9 .  

 

5.4 Adaptive Scaling Using CG-MMC Models 

 

 In the remainder of this chapter we use a simple example of a non-equilibrium 

system to demonstrate the advantages and possible applications of the CG-MMC (or 

NECG-MMC) method.  We consider the spinodal decomposition of a homogeneously-
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distributed LJ-Ar fluid at !* = 0.3 and T* = 0.8  into equilibrium liquid and vapor phases.  

We use a large system comprised of 80 coarse cells on a side at a coarse-graining level of 

Lcell = 3!  so that the total simulation domain volume is 240! 240! 240! 3 , which at the 

given density, corresponds to more than 4,000,000 atoms; see Figure 5.6(a).  At this 

coarse-graining level, single particle moves are performed, which corresponds to a 

density change of !!* = 0.037 . 

 The Lcell = 3!  simulation first is executed for 6!104
 CG-MMC sweeps 

(corresponding to 103.1 10×  moves).  As shown in Figure 5.6(b), the extent of evolution is 

still quite limited and the length scale associated with the homogeneous spinoldal 

decomposition is only a few cells.  Moreover, further evolution will take place at an ever-

slowing rate making the approach to equilibrium (or anything near it) difficult, even with 

coarse-graining.  We now continue the simulation by (1) upscaling the coarse-grained 

potential to Lcell = 6!  and (2) upscaling the configuration in Figure 5.6(b) to the same 

level, as shown in Figure 5.6(c).  Note that at the new coarse-graining level the 

simulation domain is now comprised of 40 coarse cells on a side.  Also note that much of 

the detail that was discernible at the finer scale is now lost.  The simulation is now 

continued using multi-particle moves with the same density change, i.e., !!* = 0.037 ; 

these correspond to moving about 8 particles on average.  The configuration following 

1.5!104  sweeps ( 89.6 10×  moves) is shown in Figure 5.6(d).  The system has clearly 

evolved at a much faster rate per move at the new coarse-graining level 
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Figure 5.6: CG-MMC simulation configurations at T* = 0.8  and !* = 0.3 . (a) Initial 

condition ( Lcell = 3! ), (b) after 6!104  CG-MMC sweeps ( Lcell = 3! ), (c) configuration 

(b) upscaled to Lcell = 6!  (d) after 1.5!104  CG-MMC sweeps ( Lcell = 6! ). Cell color 

denotes reduced density *ρ  that ranges from zero (dark blue) to 0.9 (red).  Density 

change per move at all coarse-graining levels is !!* = 0.037 . 

 

(b )(a )

(c ) (d )
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 The adaptive coarse-graining procedure is continued by taking the configuration 

from Figure 5.6(d) and upscaling it to the Lcell =12!  coarse-graining level as shown in 

Figure 5.6(e).  At the Lcell =12!  level, the simulation domain consists of 20 coarse cells 

on a side and although the move size is unchanged in terms of the density change, the 

maximum number of particles per move is now 64.   A total of 1.0!104  sweeps ( 78 10×  

moves) leads to the configuration shown in Figure 5.6(f).  One final upscaling step is 

applied to map the configuration onto the Lcell = 24!  coarse-graining level (Figure 

5.6(g)) and the system is then evolved for another 1.0!104  sweeps ( 71 10×  moves). 

 The final configuration shown in Figure 5.6 is at equilibrium.  However, we claim 

that this configuration is not just an example configuration of the equilibrium state, but 

rather the equilibrium configuration.  In other words, at the Lcell = 24!  coarse-graining 

scale we claim that we are able to reach a macroscopically meaningful equilibrium, rather 

than just statistical equilibrium.  While the latter is only meaningful when averaged over 

time or a number of instances, the former is defined at any instant of time.  Note that the 

particular configuration shown in Figure 5.6(h) is of bicontinuous form due to the nature 

of the periodic boundary condition – the system simply cannot further reduce the vapor-

liquid surface area unless these boundary conditions are relaxed.  We again emphasize 

that it would be extremely computationally expensive to run the CG-MMC simulation at 

lower coarse-graining levels to this point – not only because the system has more coarse 

cells but because the implied time interval corresponding to each move is much smaller.   
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Figure 5.6: CG-MMC simulation configurations at T* = 0.8  and !* = 0.3 . (e) 

configuration (d) upscaled to 12cellL σ= , (f) after 1.0!104  CG-MMC sweeps 

( 12cellL σ= ), (g) configuration (f) upscaled to 24cellL σ= , (h) after 1.0!104  CG-MMC 

sweeps ( 24cellL σ= ). Cell color denotes reduced density *ρ  that ranges from zero (dark 

blue) to 0.9 (red).  Density change per move at all coarse-graining levels is !!* = 0.037 . 

 

(f )(e )

(g ) (h )
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 We next perform a “control” simulation in which the coarse-graining level is 

fixed Lcell = 24!  from the initial configuration shown in Figure 5.6(a).  The same overall 

domain size, move size, and coarse state point are used for this run.. The equilibrium 

configuration obtained from this simulation (following a total of 1!106  sweeps or 91 10×  

moves) is shown in Figure 5.7, along with Figure 5.6(h) for comparison.  The 

bicontinuous configurations are essentially identical further demonstrating the uniqueness 

of the final equilibrium configuration.  The demonstration in Figure 5.7 also highlights 

the fact that unless the early-time configurations are required, one could always run the 

entire simulation at the final required coarse-graining level.  Note that only a total of 

91 10×  CG-MMC moves were required in the second simulation.  In the adaptively scaled 

simulation, the number of moves was about 30 times larger, with the vast majority being 

applied at the lowest coarse-graining scale. 

 

  

 

 

 

 

 

 

 

Figure 5.7: Equilibrium CG-MMC simulation configurations at T* = 0.8  and !* = 0.3  

for LJ-Ar.  (a) Adaptive coarse-grained simulation (see Figure 5.6 for details), (b) 

(b )(a )
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constant coarse-graining at Lcell = 24! .  Cell color denotes reduced density *ρ  that 

ranges from zero (dark blue) to 0.9 (red). 

 

 Finally, we ask the question: what if we require a high-resolution image of the 

equilibrium configuration?  Taking the Lcell = 24!  configuration in Figure 5.7(a), we 

performed a gradual downscaling in which the configuration was mapped onto a higher 

resolution level ( 12cellL σ= ), evolved for 2.5!104  sweeps ( 2!108  moves), and then 

remapped onto the next higher level, all the way until the 3cellL σ=  coarse-graining level 

was reached.  The results are shown in Figure 5.8.  The final configuration (Figure 

5.8(g)) exhibits the macroscopic equilibration that would have been impossible to reach 

at the 3cellL σ=  level, while also showing the details of the intra-phase structure and 

giving a clean view of the structure at the interface.  In principle, this configuration could 

be used to initialize a full-resolution standard MMC run to obtain an explicitly atomic 

view. 
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Figure 5.8: CG-MMC simulation configurations at T* = 0.8  and !* = 0.3  for LJ-Ar. (a) 

Equivalent configuration of Figure 5.7(a) downscaled to 12cellL σ= , (b) after 2.5!104  

CG-MMC sweeps ( 12cellL σ= ), (c) configuration (b) downscaled to Lcell = 6! , (d) after 

1.5!104  CG-MMC sweeps ( Lcell = 6! ), (e) configuration (d) downscaled to 3cellL σ= , 

(f) after 1.5!103  CG-MMC sweeps ( 3cellL σ= ), (g) enlarged configuration (f), which 

exhibits the macroscopic equilibration. Cell color denotes reduced density *ρ  that ranges 

from zero (dark blue) to 0.9 (red).  Density change per move at all coarse-graining levels 

is !!* = 0.037 .  

(a )

(c )

( f)

(d )

(b )

(g )

(e )
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 More generally, one could envision applying the “coarse timestepper” idea within 

the equation-free strategy espoused by Kevrekidis and coworkers in a large number of 

studies [1-8].  In the present embodiment, a system is propagated along a trajectory at a 

coarse level, which provides long-time access.  Periodically, the system is downscaled (or 

“lifted” in the terminology of refs. [2-5]) to a lower coarse-graining representation and 

locally equilibrated to provide a detailed local picture for computing highly-resolved 

quantities.  Following this, the configuration can be again upscaled (or “restricted”) to a 

higher coarse-graining level and evolved further.  While superficially similar to the ideas 

proposed by Kevrekidis and coworkers, here the downscaling steps serve only to refine 

the solution at various points along the way and do not provide any refinement of the 

coarse timestepper characteristics.  In other words, no new information is computed from 

the high-resolution configurations because all the required information was computed 

once at the beginning in the form of a scalable coarse-grained potential.  In contrast, in 

refs. [2-5] the lifting steps serve to repeatedly compute new properties for use at the 

coarse level. 

 

5.5 Conclusions 

 

In this chapter a strategy for perfoming multi-particle moves was introduced and 

shown to provide substantial increase in CG-MMC efficiency.  The salient features of 

multi-particle moves are as follows.  Using simple numerical integration approximations 

we showed that a multi-particle move can be executed with about the same amount of 

work as two single-particle moves and is independent of the number of particles being 
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moved.  The acceptance probability of multi-particle moves was shown to decrease as the 

number of particles being moved increased and also as the coarse-graining level 

increased.  However, it was also shown that this decrease was more than compensated for 

by the gains associated with larger coarse-graining levels and therefore that the CG-

MMC method, at least over the scales investigated here, continues to improve in terms of 

efficiency as the coarse-graining level is increased. 

The multi-particle move CG-MMC method was demonstrated using a spinodal 

decomposition simulation example for the LJ-Ar system.  In this demonstration, the 

simulation resolution was reduced gradually to provide adequate information at each 

stage of the coarsening process but still enable access to long timescales.  The final 

structure was shown to be a macroscopically equilibrium configuration.  Moreover, it was 

shown that this configuration could be subsequently remapped to the highest resolution 

level using short re-equilibration runs after each refinement step.  The final structure 

offers a high resolution view of a configuration that is otherwise inaccessible by 

simulation at a single coarse-graining level. 

It is worth considering here briefly the limit of very large (i.e., continuum) coarse-

graining.  At such scales, it is obvious that the density fluctuations which are prevalent at 

small scales are no longer viable.  On the other hand, it is obvious that density 

fluctuations are a necessary consequence of MMC moves.  This apparent paradox 

suggests that the usual type of MMC moves will eventually become a bottleneck as the 

coarse-graining scale becomes very large, i.e., that it will deviate from the analysis in 

Section 5.4.  Whether this is in fact the case should be the subject of further study.  
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In conclusion, the ability to perform multi-particle moves enables CG-MMC 

simulation at very high coarse-graining levels, not only provides access to large length 

scales, but also to long time scales.  In fact, it is the latter that is generally the principal 

bottleneck in many applications.  Moreover, the flexible coarse-graining in CG-MMC 

enables one to refine the system state at any point to a higher-resolution configuration.  

The resulting toolkit now offers the capability of studying long-timescale non-

equilibrium phenomena, which we believe are the primary targets of the CG-MMC 

technique.   
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6.1 Conclusions 

 

In this thesis, a new framework for coarse-graining Metropolis Monte Carlo 

simulations of fluids is developed and validated.  The CG-MMC model is apparently 

potential independent and can be applied to simulate atomic and molecular fluid systems 

described by standard molecular potential field. The basic approach is that a 

thermodynamically consistent coarse-grained interaction potential is first obtained 

numerically and automatically from a continuous potential field such as Lennard-Jones. 

The coarse-grained potential then is used to drive CG-MMC simulations.  The CG-MMC 

technique is demonstrated to be highly thermodynamically consistent with the underlying 

full resolution simulations using a series of detailed comparisons, including vapor-liquid 

equilibrium phase envelopes and spatial density distributions for the square well, 

Lennard-Jones argon and simple point charge (SPC) water models.   

The CG-MMC model is further analyzed and extended.  The principal 

computational bottleneck associated with computing a coarse-grained interaction function 

for evolving particle positions on the discretized domain is addressed by the introduction 

of new closure approximations.   In particular it is shown that the coarse-grained 

potential, which, like all coarse-grained interaction functions, is generally a function of 

temperature and coarse-graining level, can be computed at multiple temperatures and 

scales using a single set of free energy calculations.  The utility of the method is 

demonstrated using a non-equilibrium simulation of phase coarsening in a fluid system.  

The computational performance of the method relative to standard Monte Carlo 

simulation also is discussed.  
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The CG-MMC model is shown to satisfy detailed balance, but requires additional 

adjustment in order to reproduce non-equilibrium dynamic process.  Subsequent non-

equilibrium CG-MMC model (NECG-MMC) is built based on biased coarse cell 

selection adjustment with detailed balance requirement satisfied.  Both diffusion and 

drift-diffusion processes are tested for ideal gas case and Lennard-Jones potential case 

starting from Gaussian distribution.  NECG-MMC model is proved to be able to capture 

the correct non-equilibrium dynamic evolution by comparing to analytical solutions, 

while the CG-MMC model fails. Moreover, the NECG-MMC model is also proved to 

maintain a direct mapping between NECG-MMC steps and simulation time at different 

coarse-graining levels. 

Coarse-grained potentials can be scaled from one coarse-graining scale to another, 

potentially allowing for extremely large length scales to be accessed with the atomistic 

potential as the only input.  A strategy for performing multi-particle moves was 

introduced and shown to provide substantial increase in CG-MMC efficiency.  The multi-

particle move CG-MMC model is successfully applied in adaptive scaling and large-scale 

simulations using a spinodal decomposition example for the LJ-Ar system. 

 

6.2 Future Work 

 

6.2.1 Coarse-Grained Kinetic Monte Carlo Model 

 

	   An important limitation of CG-MMC is the lack of an explicit measure of time in 

non-equilibrium simulations.  Although it is possible to make formal connections 
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between non-equilibrium Metropolis Monte Carlo and Langevin dynamics under certain 

conditions (e.g., sufficiently small move distances) [1], the use of Metropolis Monte 

Carlo for studying dynamical evolution in non-equilibrium settings is not ideal. The CG-

MMC model developed in this thesis provides a framework to follow when developing 

coarse-grained lattice kinetic Monte Carlo (CG-LKMC) simulations, whose only input is 

the same coarse-grained potential used in CG-MMC simulations.  In any lattice kinetic 

Monte Carlo simulation, the primary input is a database of rates for all allowable events 

at a given configuration.  Once the rates are established, move events are selected in a 

biased random manner with faster events being chosen more often – the resulting 

evolution dynamics are explicit in time.  Using the general theory of drift-diffusion, as 

represented by the Smoluchowski equation, it is possible to express rates for any given 

event such as a particle move, in terms of an underlying potential function (coarse-

grained or otherwise).  We will use these ideas to translate CG-MMC into CG-LKMC 

simulations to allow for explicit-time non-equilibrium calculations; the technical details 

are presented as follows. 

In this section, we will show the derivation of the equivalent stochastic processes 

between Lattice Kinetic Monte Carlo model (LKMC) and Brownian dynamics model 

(BD). 

 

6.2.1.1 Overdamped Langevin Dynamics 

 

 Consider again the one-dimensional Fokker-Planck equation eq. (4.2) in Chapter 

4 [2, 3] into which the results from eqs. (4.7) and (4.8) are substituted:  
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Assuming further that that the diffusion coefficient is not a function of position 

(or time) and removing the explicit dependence of the distribution on position and time 

gives the following convection-diffusion equation: 

 !P
!t

= " !
!X

F
!
P

#

$
%

&

'
( + D

!2P
!X 2 ,     (6.2) 

where F = !("U / !X )  is the force acting on the system due to an external potential.  

Recall again that the diffusion coefficient also is related to the friction coefficient, ! , by 

the Einstein relationship [4], D / kBT =1/ ! .  Let’s assume the force field is constant, eq. 

(6.2) becomes   

 !P
!t

= "! !P
!X

+ D !2P
!X 2 ,     (6.3) 

where ! = F
!

= F D
kBT

 is the constant drift coefficient.   

A physical model of the drift-diffusion problem in eq. (6.3) is an overdamped 

particle subjected to a constant force field, which adds a constant drift velocity 

superimposed on the Brownian motion. There are two equivalent ways of describing this 

overdamped Brownian dynamics. One is to describe the time evolution of the probability 

distribution P(X ,t) , the other is to describe the position evolution X (t) 	  using Langevin 

equation [4]: 

 dX
dt

=! + D1/2!G ,     (6.4) 
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where Gξ  is a Gaussian white noise. 

 

If the particle starts from the origin moves between two absorbing boundaries -L 

and L, the splitting probability, i.e. the probability that the particle is absorbed finally by 

the left- or the right-hand boundary [4] gives  

 exp( / )Pr
1 exp( / )

Lv D
Lv D<−

−=
+ −

,     (6.5) 

and 

 1Pr
1 exp( / )Lv D−> = + −

,     (6.6) 

with Pr Pr 1−> <−+ = . Only the right-hand splitting probability will be considered for 

simplicity. 

The mean first-passage time, i.e. the average time it takes for the particle to be 

absorbed by any of the boundaries is  

 ! = L
v
1! exp(!Lv / D)
1+ exp(!Lv / D)

.     (6.7) 

 

6.2.1.2 Equivalent Lattice Kinetic Monte Carlo Description 

 

When mapping the continuous motion onto lattice model with lattice spacing LΔ , 

where LL
N

Δ = , we suppose the particle moves distance LΔ  in either x+  or x−  direction, 

with rate R+  and R−  respectively.   
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Suppose the velocity is in x+  direction, the random walk is biased with higher 

probability moving in x+  than in x−  direction. The probability to move in x+  is  

 Rp
R R

+
+

+ −

=
+

,     (6.8) 

and the probability to move in x−  is  

 Rp
R R

−
−

+ −

=
+

.     (6.9) 

with p p+ −>  and 1p p+ −+ = .                       

Following the KMC algorithm, average updated time for each hop is  

 1
R R

τ
+ −

Δ =
+

.     (6.10) 

Separate the transport process into diffusion and convection with rates: 

 
2d
DR
L

= ,     (6.11) 

and 

 c
vR
L

= .     (6.12) 

In a real physical system, there are two apparent constraints that should be 

satisfied: (i) the detailed balance, and (ii) the equality between the difference of the two 

rates and the convection rate.  It follows  

 exp( )R U
R

β+

−

= − Δ ,     (6.13) 

as well as 

 cR R R+ −− = .     (6.14) 
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In a lattice model, v L U
D

βΔ = − Δ , therefore eq. (6.13) becomes    

 exp( )R v L
R D
+

−

Δ= .     (6.15) 

Base on Eq. (6.8, 6.9, 6.10, 6.14, 6.15), probability for each hop has following relation: 

 exp( )p v L
p D
+

−

Δ= .     (6.16) 

 p p v
Lτ

+ −− =
Δ Δ

.     (6.17) 

The splitting probability for biased random walk is exactly expressed as: 

 1Pr
1 ( / )Np p−>

+ −

=
+

.     (6.18) 

The mean first-passage time is  

 2(Pr 1) N
p p

τ τ−>

+ −

−= Δ
−

.     (6.19) 

Comparing Eq.(6.16, 6.17, 6.18, 6.19) with Eq.(6.6, 6.7), we get the same splitting 

probability and first-passage time, which proves the equivalence of LKMC model and 

BD model. 

Even though the derivation is based on the constant-force assumption, the 

equivalence holds as long as the lattice spacing is small enough so that the force is 

constant between before and after each hop. In this sense, lattice spacing determines the 

accuracy in LKMC as time step in BD. There is no analytical solution in a variable force 

field, we have shown both BD and LKMC are equivalent numerical models to simulate 

the dynamical process. 

Base on Eq. (6.14, 6.15), the rates in LKMC model for each hop are: 
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 1 1
exp( / ) 1 exp( ) 1c

vR R
L v L D ω− = =

Δ Δ − −
.     (6.20) 

 exp( / ) exp( )
exp( / ) 1 exp( ) 1c

v v L DR R
L v L D

ω
ω+

Δ= =
Δ Δ − −

.     (6.21) 

where c

d

R v L
R D

ω Δ= = . 

Additionally, as 1ω << , Taylor expansion of exponential to the first order is 

2exp( ) 1 ( )Oω ω ω= + + . Therefore, the first-order truncation rates are (named as KMC 

( )O ω ): 

 1
(1 ) 1d cR R R

ω− = =
+ −

.     (6.22) 

 1
(1 ) 1d c cR R R R ω

ω+
+= + =

+ −
.     (6.23) 

 

6.2.2 Extension to Complex Systems 

  

 The CG-MMC and NECG-MMC models developed in Chapter 2 and Chapter 4 

respectively are potential independent and can be applied to simulate atomic and 

molecular fluid systems described by standard molecular potential field. These models 

can be expanded to further explore other more complex systems that active research has 

been focused on. 
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6.2.2.1 Extension to the Solid State 

 

The first case for possible future work is the extension of spatial coarse-graining 

to solid phases, thereby enabling simulations of solidification and melting.  The primary 

challenge here is again the poor ergodicity of solid phases, which essentially renders 

particle insertion useless.  While free energy estimation for a single solid configuration, 

e.g., a perfect crystal, is straightforward because only vibrational entropy is significant, 

sampling over a collection of solid configurations that include disorder such as defects is 

much more challenging.  It may not be necessary to seamlessly sample the entire energy 

landscape across the solid and liquid macrostates in order to compute an adequate coarse-

grained potential for use in CG-MMC simulations because in the coarse-grained state-

space it is not possible to identify features such as the onset of nucleation.  The quality of 

coarse-grained potential “patching” across the liquid and solid macrostates required for 

meaningful simulations of melting and solidification will be the focus of our 

investigations. 

 

6.2.2.2 Extension to Charged Systems 

 

The second case for possible future work is the consideration of charged systems 

in which long-ranged Coulombic interactions must be accounted for; this issue was 

circumvented in our preliminary work by using a spherically truncated model for water.  

Approaches such as the Ewald summation method [5] are not compatible with SCG 

because of the heterogeneous cell structure used in the coarse-grained potential 
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evaluations.  However, other methods for approximating Coulombic interactions using 

modified short-ranged interaction functions appear to be promising; examples include the 

reaction-field method [6] and the Wolf summation [7]. It will be applicable extension to 

incorporate these methods into CG-MMC simulations with the aim of enabling coarse-

grained simulations of charged systems.  

 

6.2.2.3 Extension to Multiple-component Systems 

 

 The third case for possible future work is the application in multi-component 

systems. The number of independent variables over which coarse-grained potentials are 

defined, e.g., density, composition, temperature, represents the dimensionality of the 

coarse-grained space and is the single most important factor in establishing the 

computational overhead associated with coarse-grained potential evaluation.  The ability 

to consider multicomponent systems is critical for extending the horizon of spatial 

coarse-grained methods. Consider, for example, the case in which the independent 

variables for a single-component system at a given temperature are the cell particle 

density and the average local environment density. Extending the system to two 

components would require that the cell and environment fields be now described by two 

density variables each. Effectively, the coarse-grained potential is transformed from a 

two-dimensional field in the single-component case to a four-dimensional one in the 

binary case.  Similar considerations apply for additional species. If strategies to enable 

optimal (and sparse) sampling of high-dimensional fields can be implemented, then 
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interpolated coarse-grained potential functions for multicomponent systems and be 

construct, the CG-MMC framework will be applied to multicomponent systems. 
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