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Integration and Segregation in Audition and Vision

Abstract
Perceptual systems can improve their performance by integrating relevant perceptual information and
segregating away irrelevant information. Three studies exploring perceptual integration and segregation in
audition and vision are reported in this thesis. In Chapter 1, we explore the role of similarity in informational
masking. In informational masking tasks, listeners detect the presence of a signal tone presented
simultaneously with a random-frequency multitone masker. Detection thresholds are high in the presence of
an informational masker, even though listeners should be able to ignore the masker frequencies. The
informational masker's effect may be due to the similarity between signal and masker components. We used a
behavioral measure to demonstrate that the amount of frequency change over time could be the stimulus
dimension underlying the similarity effect.

In Chapter 2, we report a set of experiments on the visual system's ability to discriminate distributions of
luminances. The distribution of luminances can serve as a cue to the presence of multiple illuminants in a
scene. We presented observers with simple achromatic scenes with patches drawn from one or two luminance
distributions. Performance depended on the number of patches from the second luminance distribution, as
well as knowledge of the location of these patches. Irrelevant geometric cues, which we expected to negatively
affect performance, did not have an effect. An ideal observer model and a classification analysis showed that
observers successfully integrated information provided by the image photometric cues.

In Chapter 3, we investigated the role of photometric and geometric cues in lightness perception. We rendered
achromatic scenes that were consistent with two oriented background context surfaces illuminated by a light
source with a directional component. Observers made lightness matches to tabs rendered at different
orientations in the scene. We manipulated the photometric cues by changing the intensity of the illumination,
and the geometric cues by changing the orientation of the context surfaces. Observers' matches varied with
both manipulations, demonstrating that observers used both types of cues to account for the illumination in
the scene. The two types of cues were found to have independent effects on the lightness matches.
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ABSTRACT 

INTEGRATION AND SEGREGATION IN AUDITION AND VISION 

Thomas Y. Lee 

David H. Brainard 

Perceptual systems can improve their performance by integrating relevant 

perceptual information and segregating away irrelevant information.  Three studies 

exploring perceptual integration and segregation in audition and vision are reported in 

this thesis.  In Chapter 1, we explore the role of similarity in informational masking.  In 

informational masking tasks, listeners detect the presence of a signal tone presented 

simultaneously with a random-frequency multitone masker.  Detection thresholds are 

high in the presence of an informational masker, even though listeners should be able to 

ignore the masker frequencies.  The informational masker’s effect may be due to the 

similarity between signal and masker components.  We used a behavioral measure to 

demonstrate that the amount of frequency change over time could be the stimulus 

dimension underlying the similarity effect.   

In Chapter 2, we report a set of experiments on the visual system’s ability to 

discriminate distributions of luminances. The distribution of luminances can serve as a 

cue to the presence of multiple illuminants in a scene.  We presented observers with 

simple achromatic scenes with patches drawn from one or two luminance distributions.  
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Performance depended on the number of patches from the second luminance distribution, 

as well as knowledge of the location of these patches.  Irrelevant geometric cues, which 

we expected to negatively affect performance, did not have an effect.  An ideal observer 

model and a classification analysis showed that observers successfully integrated 

information provided by the image photometric cues. 

In Chapter 3, we investigated the role of photometric and geometric cues in 

lightness perception.  We rendered achromatic scenes that were consistent with two 

oriented background context surfaces illuminated by a light source with a directional 

component.  Observers made lightness matches to tabs rendered at different orientations 

in the scene.  We manipulated the photometric cues by changing the intensity of the 

illumination, and the geometric cues by changing the orientation of the context surfaces.  

Observers’ matches varied with both manipulations, demonstrating that observers used 

both types of cues to account for the illumination in the scene.  The two types of cues 

were found to have independent effects on the lightness matches. 
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INTRODUCTION 

Sensory systems are information-processing systems.  Their task is to make sense 

of the world through stochastic and noisy sensory information.  Two important and 

complementary functions that sensory systems can implement aid this task are 

integration and segregation.  For example, imagine standing in a crowded room full of 

talking people.  Many sounds from all over the room will reach the ears of a listener 

trying to understand a particular speaker.  The auditory system of this listener can 

facilitate performance by grouping together the sounds belonging to the speaker’s voice 

and ignoring all of the other sounds in the room. More generally, if a sensory system is 

trying to extract stable properties from a noisy process, it can improve the quality of its 

estimates by combining and averaging the available data.  Conversely, if data from 

multiple processes were available, the sensory system would do well to separate data 

from each source and handle each case independently.  The papers in this dissertation 

explore this theme of integration and segregation in audition and vision.  

Paper 1 describes an experiment on the auditory phenomenon known as 

informational masking (Neff & Green, 1987).  In traditional masking paradigms, the 

detection of a signal tone can be affected by the presence of a masker tone.  The amount 

of interference from the masker tone depends on its frequency relative to that of the 

signal tone.  The larger the frequency difference, the smaller the interference.  This 

relationship appears to be a function of the architecture of the peripheral auditory system 
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(see Moore, 2003 for a review of auditory frequency filters).  On the other hand, in 

informational masking paradigms this relationship seems to break down.  In 

informational masking experiment, a number of masker tones are played simultaneously 

with a signal tone.  On each presentation of the stimulus the masker frequencies are 

randomized, but always presented at frequencies far from the signal.  Based on the 

architecture of the early stages of the auditory system, these compound masker tones 

should also have little effect on the detectability of the signal. However, many listeners 

find it very difficult to detect the signal in the presence of this informational masker.  

They behave as though they are unable to segregate the masker tones from the signal.   

Instead, it appears that they are integrating the masker with the signal where it is 

disadvantageous to do so.  This interferes with their ability to detect the signal.  

One aspect of the stimuli in informational masking paradigms that may explain 

the interference effects is the similarity between the masker tones and the signal tones.  

Grouping by similarity is often advantageous, and is implemented in various perceptual 

systems (e.g., Treisman, 1991).  As both the masker and signal are pure tones, the 

auditory system may implement a similar automatic grouping process and integrate all 

the tones together.  The failure to segregate the signal from the masker may come about 

because after similar sounds are grouped together, it becomes difficult to differentiate 

sounds within the group.  An experiment by Durlach et al. (2003b) demonstrated that 

manipulating signal-masker similarity can improve listeners’ ability to segregate the 

signal from the masker.  For example, upward gliding masker tones interfered with the 
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detection of an upward gliding signal, but downward gliding tones did not.  However, the 

exact stimulus dimensions of signal-masker “similarity” are not known.  Across different 

studies, the choice of masker and signal was almost arbitrary, making it difficult to 

understand when such effects occur and why they occur.   

To better understand how similarity might affect segregation of the masker from 

the signal, in Paper 1 we explored a behavioral method for discovering the underlying 

dimensions of the signal-masker similarity.  A number of masker types from relevant 

experiments in the literature (Neff, 1995; Durlach et al., 2003b) were used in this 

experiment.  The discriminability of these maskers from the signal was used as an index 

of similarity.  This index was then correlated with the detectability of the same type of 

signal in a detection task with a random-frequency informational masker.   

The discriminability measure correlated well with the amount of informational 

masking in the detection task — masker types that were easy to discriminate from the 

signal corresponded the maskers causing the least amount of informational masking.  In 

particular, conditions with maskers comprised of frequency glides had the highest 

discriminability scores and the lowest detection thresholds.  In a second experiment, we 

manipulated the similarity of the frequency glide to the tone by changing its frequency 

span.  Glides that were more similar to the tone, both in terms of a smaller frequency 

span as well as poorer discriminability from the tone, caused more informational masking 

in the detection task.  These results, along with other findings in the literature (e.g., Kidd 

Jr., Mason, Deliwala, Woods, & Colburn, 1994) suggested that the amount of frequency 
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modulation over time could be one underlying dimension behind the observed similarity 

effects.  More separation along this dimension between the signal and masker seems to 

allow the auditory system to segregate the signal away from the masker more easily.   

Papers 2 and 3 studied the response of the visual system to grayscale scenes with 

multiple illuminants.  The information available to the visual system about achromatic 

surfaces in the world is confounded with information about the illumination falling on 

those surfaces.  For the system to recover the reflectance properties of achromatic 

surfaces, it must somehow discount the illuminant information from the luminance 

signal.  Integrating information from multiple surfaces seems to improve the visual 

system’s ability to solve this problem (Arend & Goldstein, 1987). However, the problem 

is complicated in many real-world scenes because multiple illuminants of different 

intensities can be present within the same scene.  Simply integrating information from 

more surfaces alone is not an appropriate solution for handling multiple illuminants.  If 

the visual system assumes that surfaces under different illuminants all fall under the same 

illuminant, its resulting reflectance estimates will be erroneous.   

Some researchers (e.g., Gilchrist, 1977; Adelson, 1993) have theorized that in 

order to process these more complex scenes, the visual system must identify the regions 

of different illumination before applying surface-recovery algorithms.  That is, the visual 

system should first determine whether surfaces in the visual scene fall under the same 

illuminant or different illuminant.  Then, it should process surfaces falling under one 

illuminant separately from those under a different illuminant.  
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For achromatic surfaces, there are at least two kinds of cues available in the visual 

scene that can indicate the presence of multiple illuminants.  Surfaces have an estimated 

30:1 reflectance range (Wyszecki & Stiles, 1982).  If such a range of surfaces were 

present in a scene, the presence of multiple illuminants of substantially different 

intensities would lead to luminances larger than this range.  Thus this photometric cue 

can signal the presence of different illuminant intensities 

Previous studies (Hochberg & Beck, 1954; Gilchrist, 1977; Gilchrist, 1980; Knill 

& Kersten, 1991; Adelson, 1993; Boyaci, Maloney, & Hersh, 2003; Bloj et al., 2004; 

Kitazaki, Kobiki, & Maloney, 2008) have also demonstrated that scene geometry is used 

as a cue in the perception of surface lightness.  Surfaces that directly face a light source, 

for example, receive more intense illumination than surfaces facing away from that light 

source.  Changes in surface orientation that correlate with differences in surface 

luminance can be informative about the spatial layout of the illumination.  Accounting for 

the illumination’s layout can, in turn, affect the perception of lightness. 

In Paper 2 we explicitly measured the visual system’s ability to identify simple 

scenes with multiple illuminants.  We first measured performance with scenes where 

photometric cues indicated the presence of multiple illuminants.  Then we measured 

changes in this performance as a consequence of introducing geometric information.  

Observers were presented with checkerboard patterns consisting of computer-rendered 

matte grayscale squares with random reflectances.  On every trial, observers were asked 

to pick which of two checkerboards contained simulated surfaces lit by two illuminants.  
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The difference between the intensity of the two illuminants needed to produce a threshold 

level of performance was measured and compared across conditions.   

The more surfaces illuminated by the second illuminant, the better observers 

performed on the task.  This improvement in performance with increasing numbers of 

surfaces suggests that observers integrated information across surfaces.  Performance was 

modulated by uncertainty about the locations of the illuminated surfaces.   

An ideal observer analysis was able to account for the data well.  This kind of 

analysis describes how a perfect observer with the optimum strategy would use the 

information available in a task (Geisler, 2003).  Observers’ performance was similar to 

the ideal observer’s performance, but less efficient.  Further analyses also demonstrated 

that the trial-by-trial variability of the ideal observer was more similar to the human 

observers than models implementing a number of non-ideal heuristics. 

The measurements in that experiment provided a baseline for additional 

measurements with more complex stimuli.  The critical test was the introduction of 

geometric cues to segregation.  We introduced geometric cues that suggested particular 

locations for the second illuminant.  These locations were incongruent with the actual 

second illuminant locations.  The irrelevant geometric cues were expected to interfere 

with observers’ ability to perform the task.  However, the data showed that the two 

geometric cue manipulations we employed had no effect.  Performance was the same, 

regardless of whether geometric cues were present or not. 
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In Paper 3, we explored a different approach to understand the role of scene 

geometry in illuminant segregation and how geometric cues interact with photometric 

cues.  The experiments used an indirect measure of observers’ sensitivity to these cues.  

Observers viewed computer-rendered scenes of two contextual background surfaces 

(“contexts”) at different orientations in three-dimensional space.  The scene was 

consistent with two contexts lying in different orientations, one lit by a directional 

illuminant, the other lying in shadow.  To gauge whether observers perceived different 

illumination regions in the scene, we presented probe tabs rendered at various 

orientations.   

Observers were asked to match the tabs to a fixed set of grayscale chips.  

Differences in matches to the same physical tab in different locations would be a 

signature of various effects of cues in the scene to illuminant segregation.  The 

photometric cues to the presence of two illuminant intensities were implemented via 

differences in the mean luminance across the two context surfaces.  Observers’ matches 

to a probe tab of fixed luminance changed depending on whether it was in front of the top 

or the bottom context surface.   The magnitude of the match differences depended on the 

magnitude of the mean context luminance difference.  Thus, observers were sensitive to 

the photometric cues and interpreted these cues as indicating two illumination regions. 

Observers’ matches to a fixed tab luminance also changed with the tab’s 

orientation.    This pattern of behavior suggested that the geometric cues in the scene 

were also interpreted as cues to different illumination regions, and that the illumination 
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was interpreted as at least partly directional.  Moreover, the data suggested that the 

geometric cues affected observers’ matches independently of the photometric cues.  

Varying the photometric cues for a fixed orientation of the contextual backgrounds 

affected performance as described above.  Varying the orientation of the backgrounds 

while holding the photometric cues fixed, however, affected the pattern of matches across 

different tab orientations in a completely different manner that seemed to be independent 

of the effect of the photometric cues.    

Taken together, the three papers establish conditions under which the auditory and 

visual systems demonstrate information integration and segregation, as well as some of 

the stimulus cues that affect these processes.  The experiments provide interesting data 

that further our understanding of how our sensory systems function in complicated, 

information-rich environments. 
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CHAPTER 1: Evaluation of similarity effects in informational masking  

This paper was published as: Lee, T.Y. and Richards, V.M. (2011). Evaluation of 

similarity effects in informational masking.  Journal of the Acoustical Society of America, 

129, EL280-EL285. 

The paper has been reproduced in its entirety and reformatted.  The figures have been 

removed from the body of the text and reformatted for the appropriate sections of the 

thesis. 
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Abstract 

The degree of similarity between signal and masker in informational masking 

paradigms has been hypothesized to contribute to informational masking.  The present 

study attempted to quantify “similarity” using a discrimination task.  Listeners 

discriminated various signal stimuli from a multitone complex and then detected the 

presence of those signals embedded in a multitone informational masker.  

Discriminability negatively correlated with detection threshold in an informational 

masking experiment, indicating that similarity between signal and the masker quality 

contributed to informational masking. These results suggest a method for specifying 

relevant signal attributes in informational masking paradigms involving similarity 

manipulations. 

© 2011 Acoustical Society of America 

PACS Numbers 43.66.Dc, 43.66.Ba 
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1. Introduction 

The phenomenon of informational masking is characterized by difficulty in 

detecting a signal that cannot be accounted for by interfering energy patterns at relatively 

peripheral points in the auditory system (for a more complete discussion, see Durlach et 

al., 2003a).  Investigations into the causes of informational masking have largely focused 

on the effects of uncertainty about the masker (e.g., Neff & Green, 1987), but an 

additional potential contributor to these masking effects is the perceptual similarity 

between the signal and the masker.  In many informational masking experiments (e.g., 

Neff & Green, 1987; Oh & Lutfi, 1998), the signal is a tone, and the masker components 

are also tones with frequencies drawn at random prior to each presentation.  For small 

numbers of masker components where the components are expected to be independently 

resolved, detection thresholds increase as the number of tones comprising the masker 

increase.  The increase in thresholds may be attributed to the increase in number of 

masker elements sharing characteristics with the signal.  For example, listeners may have 

difficulty segregating the signal from the masker due to their shared characteristics, 

confusing the signal tone with masker component tones. 

Neff (1995) studied a variety of different stimuli as signals embedded in a random 

multitone masker to examine the effects of perceptual similarity on thresholds.  Of the 

signals tested (tone, narrow band of noise, amplitude-modulated tone, quasi-frequency 

modulated tone), only the amplitude-modulated tone and narrow band of noise provided a 

consistent release from masking relative to tonal signals.  Durlach et al. (2003b) also ran 
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a series of experiments where signals were constructed to be similar or dissimilar from 

the informational masker (e.g., a masker of upward frequency glides with signal 

frequency glides that swept upwards or downwards).  These studies suggest that listeners 

can take advantage of differences in characteristics between the signal and masker in 

order to reduce the effects of informational masking.  The most immediate problem in 

previous studies exploring the role of similarity, however, is that the conditions tested in 

different studies are not directly comparable.  For example, in the Durlach et al. (2003b) 

study, as the authors acknowledged, stimuli tested in the various similarity-dissimilarity 

pairs were not held constant across pairs.  Thus, conclusions about the mechanisms by 

which similarity affects informational masking are difficult to draw.  

The present experiments aimed to establish an independent measure of similarity 

that could be used across different stimulus manipulations to predict the release from 

informational masking due to dissimilarity between signal and masker.  A discrimination 

task was used to measure similarity.  The logic behind the task is that similar stimuli 

should be harder to discriminate.  Because random multitone complexes have been 

widely used as maskers in the informational masking literature, they were used in these 

experiments.  For the discrimination task, targets that are more similar to the multitone 

complex should be more difficult to discriminate from the multitone complex.  For a 

detection task, detection thresholds should be higher when the signal and masker are 

similar.  Therefore, by a similarity argument, a negative correlation between 
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discriminability (target vs. multitone complex) and detection threshold (target masked by 

the multitone complex) is expected.   

Two sets of target stimuli were tested using the proposed measure.  Several 

targets were first discriminated from a random-frequency multitone complex, and then 

used as signals-to-be-detected in an informational masking experiment.  The results show 

discriminability negatively correlates with thresholds in an informational masking task, 

provided informational masking is observed.  These results support the hypothesis that 

similarity effects contribute to informational masking. 

2. Experiment 1 

The stimuli tested were selected from previous experiments examining the role of 

signal-masker similarity in informational masking (Neff, 1995; Durlach et al., 2003b).  

Four targets were tested: a tone, an amplitude-modulated (AM) tone, a rising frequency 

glide, and a sequence of tone pips (a tone gated on and off).

2.1 Discrimination Methods 

For each target the center frequency was randomly selected from a range of 800 – 

5000 Hz on a logarithmic scale except for the frequency glide target (the lowest and 

highest frequencies of which fell within this range — see following text).  Frequencies 

were randomized to discourage listeners from learning unique frequencies for each target.  

The discriminability between each target and a random multitone stimulus was estimated.  

The multitone stimulus was composed of six tones with frequencies drawn randomly 
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from a logarithmic scale ranging from 800 – 5000 Hz on each presentation.  The stimuli 

were turned on and off with 5-ms raised-cosine ramps, and had durations of 280 ms.   To 

prevent perfect discrimination, the targets and multitone stimuli were presented 

concurrently with 50 dB SPL pink noise low-pass filtered at 7000 Hz.   

The AM tone was 100% modulated by a raised 25 Hz sinusoid, resulting in seven 

modulation cycles per stimulus presentation.  The frequency glide linearly spanned 50% 

of its lowest frequency (similar to Durlach et al., 2003b).  The range for selecting the 

frequency glides' lowest frequency was from 800 to 3334 Hz so that the lowest and 

highest frequencies fell within the range of 800 – 5000 Hz occupied by the other stimuli.  

The tone pips consisted of seven short 40 ms tones played sequentially, each being turned 

on and off with 5-ms raised-cosine ramps (e.g., similar to the multiple-burst-same or 

MBS condition of Durlach et al., 2003b).  For each listener the levels of all stimuli were 

adjusted to yield 90% detectability in the pink noise.   

The stimuli were generated digitally with a two-channel, 16-bit DAC (TDT DA1) 

using a sampling rate of 20 kHz, and low-pass filtered at 7000 Hz (Stewart VBF 10 M 

Dual Variable Filter), individually attenuated, added, and presented diotically via 

Sennheiser HD410SL headphones.  Listeners were tested individually in a double-walled 

sound-attenuated booth.   

In a two-interval forced-choice (2IFC) procedure, listeners discriminated between 

a target and the multitone complex by indicating which of the two intervals contained the 
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multitone stimulus.  The intervals were separated by 500 ms. Feedback was provided 

after every trial, as well as summary statistics after each block of 60 trials. Listeners first 

ran a set of five 60-trial blocks for each target in turn, and then repeated the process in the 

reverse order.  The order in which the different targets were tested was chosen using a 

pseudo-Latin-squares design.  If practice effects were apparent (one-tailed t-test), an 

additional set of five 60-trial blocks was collected and the first set discarded; however, 

practice effects were not observed for any of the listeners. Discriminability was measured 

as d’. 

Three listeners (2 males, 1 female; age range 18 to 23) participated in this 

experiment.  All listeners except L3 had thresholds in quiet under 20 dB HL at 

audiometric frequencies between 250 Hz and 8 kHz.  Listener 3’s threshold in quiet for 

250 Hz was 20 dB HL at the right ear. 

2.2 Discrimination Results 

A repeated measures ANOVA indicates a significant main effect of target class 

(F(3,6) = 139.44, p < 0.001) on discriminability measured as d’.  Averaging across all 

listeners, the frequency glide is most easily discriminated from the multitone complex 

(mean d' ≈ 2.1, SEM ≈ 0.2); the discrimination between the other three targets and the 

multitone complex is much poorer (on average, d' ≈ 0.4, SEM ≈ 0.1).  This pattern was 

consistent for all three listeners.  One listener’s (L3) d’ for the tone pips was a negative 

value.  Because this value was close to zero, we assumed this to reflect variations 

associated with small sample size. 
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2.3 Detection Methods 

The four targets in the discrimination task were next used as signals in a detection 

task with an informational masker.  The target signal frequencies were fixed at 1000 Hz 

(the frequency glide started at 800 Hz and ended at 1200 Hz).  To maintain consistency 

with prior informational masking experiments and to maximize the amount of 

informational masking, pink noise was not presented.   

The masker was composed of six random-frequency equal-amplitude sinusoid 

tones with frequencies chosen at random from a logarithmically-spaced uniform 

distribution with a range of 200 – 5000 Hz.  A “protected region” from 800 to 1200 Hz, 

in which none of the masking components could fall, reduced the impact of energetic 

masking.  The overall level of the multitone masker was 70 dB SPL. 

A three-down, 1-up algorithm was used to adjust the signal level (Levitt, 1971) in 

60-trial sets. The signal level was initially 50 dB SPL, with a 4 dB step change for the 

first three reversals and a 2 dB step change thereafter.  An even number of reversals 

(excluding the first three or four as required) was averaged to obtain an estimate of the 

79% detection threshold level.  In all other respects data collection followed the 

procedure described for the discrimination task, except listeners completed two sets of 

ten blocks of 60 trials rather than five blocks.  Practice effects were not found across the 

two sets.    
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2.4 Detection Results and Comparison with Discrimination 

For the tonal signal the average threshold (mean = 30.8 dB SPL; range = 22.5 – 

35.8 dB SPL) falls in the lower range of those reported elsewhere in the literature, a range 

of 20 – 65 dB SPL (Neff & Dethlefs, 1995), but is well within the wide range of reported 

data.  A repeated measures ANOVA indicates a significant effect of target type (F(3,6) = 

30.27, p < 0.001) on threshold.  For all listeners, the frequency glide had the lowest 

threshold (mean threshold = 25.0 dB SPL, SEM = 1.3).  Relative to the tonal signal, 

thresholds decreased by ~9 dB for the frequency glide.   

[---FIGURE 1 ABOUT HERE---] 

The left panel of Figure 1 shows individual detection thresholds plotted as a 

function of discriminability. The most notable feature of this comparison is that there are 

two clusters of points: the points representing the results for frequency glide target are in 

the lower right hand corner, and the points representing the results for the other targets 

are in the upper left hand corner.  The correlation coefficient was r = -0.9 for all data 

points, and the individual coefficients ranged from r = -0.9 to r = -1 across the three 

listeners, all of which were statistically significant or marginally significant (p = 0.07 for 

L2, p < 0.05 for L1 and L3).  The stimulus that was the easiest to discriminate from the 

multitone complex had the lowest detection threshold.   
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2.5 Discussion of Exp.1 

The large negative correlation between discriminability and detection thresholds 

suggests that discriminability may be a good measure of similarity effects in 

informational masking.  However, because the correlation depends predominantly on the 

discriminability and detectability of the frequency glide target relative to the other 

targets, the data set more or less collapses into a categorical data set.  Without systematic 

changes in d’, stronger conclusions regarding similarity and informational masking are 

difficult to draw.  In a second experiment a new set of targets with a larger number of 

discrimination scores was used to provide a stronger test of the similarity hypothesis. 

3. Experiment 2 

3.1 Stimuli 

The large negative correlation between discriminability and detection thresholds 

suggests that discriminability may be a good measure of similarity effects in 

informational masking.  However, because the correlation depends predominantly on the 

discriminability and detectability of the frequency glide target relative to the other 

targets, the data set more or less collapses into a categorical data set.  Without systematic 

changes in d’, stronger conclusions regarding similarity and informational masking are 

difficult to draw.  In a second experiment a new set of targets with a larger number of 

discrimination scores was used to provide a stronger test of the similarity hypothesis. 
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3.2 Participants 

Four listeners (2 males, 2 females, ages 19 to 24) participated in this experiment.  

All had thresholds in quiet less than 20 dB HL at audiometric frequencies between 250 

Hz and 8 kHz.  Listener 7 was the first author.  None of the listeners in this experiment 

had participated in the previous one.   

3.3 Results 

The results for Experiment 2 are plotted in the right panel of Figure 1.  Because 

the individual differences in detection thresholds are large, results are shown separately 

for each listener.  The correlation between threshold (as dB SPL) and discrimination (as 

d’) is shown in the upper left hand corner of each panel.  For the discrimination task, a 

repeated measures ANOVA shows a significant main effect of stimulus condition, 

F(5,15) = 10.91, p < 0.0005.  Listeners’ ability to discriminate a frequency glide from a 

random multitone complex improves with increases in the span of the frequency glide. 

The results from the detection experiment indicate substantial individual 

differences.  Thresholds for L4 are the lowest (mean threshold = 25.7 dB SPL), L5's 

thresholds are the highest (mean = 37.1 dB SPL), and L6 and L7's are intermediate (mean 

= 35.0 and 30.3 dB SPL, respectively).  Even though there are large individual 

differences in thresholds, a repeated-measures ANOVA indicates a significant main 

effect of condition, F(5,15) = 4.36, p < 0.05.  
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Listener 4 exhibits little masking, and little release from masking with changes in 

the span of the target’s frequency glide.  As a result, the correlation for L4 is not 

significantly different from zero (r = -0.1, n.s.).  Others have reported instances of 

observers who show little or no informational masking effects (e.g., Neff & Dethlefs, 

1995; Oh & Lutfi, 1998).     

Listeners 5-7 present larger amounts of informational masking than L4, as 

evidenced by the higher detection thresholds for the tone signal (thresholds of 49.4, 47.3, 

and 32.2 dB SPL, respectively).  The correlations between discriminability and 

detectability for L5 and L6 are statistically significant in the expected direction (r = -0.8, 

p < 0.05 and r = -0.9, p < 0.01, respectively), and the correlation for L7 approaches 

statistical significance (r = -0.7, p ≈ 0.1).  For these three listeners, the amount of 

informational masking decreases when discriminability increases.   

3.4 Discussion of Experiment 2 

The results of these experiments indicate that the discrimination task measures 

similarity effects in informational masking.  Targets that are more discriminable from a 

random-frequency multitone complex provide larger releases from informational 

masking.  Therefore, the discrimination task can predict the amount of informational 

masking due to some change in similarity characteristics between signal and masker, at 

least to a rank-order approximation.  There is one caveat, however: for listeners who are 

not susceptible to informational masking, the discrimination task is not a useful predictor 

of thresholds because there is little/no informational masking to measure.   
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4. General Discussion 

The results from these experiments demonstrate the use of a method for predicting 

what sorts of similarity manipulations may lead to differences in detection in 

informational masking tasks.  Considering the current study along with the narrow-band 

noise stimuli in Neff (1995), multiple-burst-different (MBD) stimuli in Kidd et al. 

(2002), and the glide stimuli in Durlach et al. (2003b), one possible stimulus quantity 

responsible for similarity-based effects in informational masking may be spectral 

differences across time.  The “similar” stimuli in these experiments all have constant 

frequency differences between individual components and the signal as a function of 

time, whereas the “dissimilar” stimuli have components whose frequency differences 

change over time.   

Alternatively, the frequency glide signals in Experiments 1 and 2 may have led to 

lower thresholds because they stimulated more auditory filters than tone signals and 

reduced the total entropy (Oh & Lutfi, 1998).  Glides with greater frequency spans might 

then be more detectable because greater numbers of filters are stimulated, in contrast to 

the dynamic changes in spectral differences suggested above.  While the data in these 

experiments do not offer evidence to test these alternatives, the glide stimuli from the 

Durlach et al. (2003b) study showed an improvement in threshold across conditions 

where the number of stimulated filters was comparable.  Thus, a greater number of 

stimulated filters is at least not a necessary condition for the observed similarity-based 

effects. 



 

 

14 

While the discrimination measure described here has the advantage of providing 

estimates of similarity for the same stimuli tested in a detection task, there are limitations 

to the use of this method.  The primary issue is the degree to which discrimination is a 

plausible measurement of similarity for the particular stimuli of interest.  For example, 

onset differences have been shown to reduce informational masking (e.g., Neff, 1995; 

Durlach et al., 2003b).  However, the discrimination measure requires masker and signal 

to be in different temporal intervals, negating any assessment of similarity for onset 

differences.  Nonetheless, the proposed method provides an initial tool for evaluating 

similarity, and can form a starting point for efforts to understand the role of similarity for 

the perception of sounds in complex environments.  
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Figures 

 

Figure 1: Left panel—for three listeners, detection thresholds for various signals are 

plotted as a function of discriminability for the corresponding stimuli.  Different signal 

types are plotted using different symbols.  Error bars are one standard error of the mean.  

Right panel—detection thresholds for frequency glides of different spans are plotted as a 

function of discriminability for the corresponding stimuli.  Each panel shows data for one 

listener as well as the Pearson product correlation coefficient.  Error bars are one standard 

error of the mean. 
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CHAPTER 2: Detection of changes in luminance distributions 

This paper was published as: Lee, T.Y. and Brainard, D.H. (2011). Detection of changes 

in luminance distributions.  Journal of Vision, 11, 1-16. 

The paper has been reproduced in its entirety and reformatted.  The figures and tables 

have been removed from the body of the text and reformatted for the appropriate sections 

of the thesis.  
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Abstract 

How well can observers detect the presence of a change in luminance 

distributions?  Performance was measured in three experiments.  Observers viewed pairs 

of grayscale images on a calibrated CRT display.  Each image was a checkerboard.  All 

luminances in one image of each pair consisted of random draws from a single 

probability distribution.  For the other image, some patch luminances consisted of 

random draws from that same distribution while the rest of the patch luminances (test 

patches) consisted of random draws from a second distribution.  The observers' task was 

to pick the image with luminances drawn from two distributions.  The parameters of the 

second distribution that led to 75% correct performance were determined across 

manipulations of 1) the number of test patches, 2) the observers' certainty about test patch 

location, and 3) the geometric structure of the images.  Performance improved with 

number of test patches and location certainty.  The geometric manipulations did not affect 

performance.  An ideal observer model with high efficiency fit the data well and a 

classification image analysis showed a similar use of information by the ideal and human 

observers, indicating that observers can make effective use of photometric information in 

our distribution discrimination task. 
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1. Introduction 

The visual system's representation of objects includes percepts that correlate with 

object surface reflectance.  In general, these include color as well as perceptual correlates 

of object material properties, such as glossiness (Maloney & Brainard, 2010).  The retinal 

image, however, does not provide an explicit representation of object reflectance.  Rather, 

image intensities depend both on object reflectance and the properties of the illumination.  

To produce stable perceptual representations of object surface reflectance, the visual 

system must process the retinal image to minimize effects of variation in the illumination.  

Figure 1 shows an achromatic image where there is large spatial variation in the 

illumination. 

A number of theorists have postulated that the stabilization of object appearance 

occurs in two stages (Kardos, 1934; Koffka, 1935; Gilchrist, 1977; Gilchrist et al., 1999; 

Adelson, 2000).  The first stage segments the image into regions that each have roughly 

constant illumination.  The second stage then, in effect, estimates the illuminant within 

each region and uses the estimate in its conversion between luminance and lightness for 

that region. 

[---FIGURE 1 ABOUT HERE---] 

What information could the visual system use to segment the image according to 

illumination? Photometric cues provide one source of information that can indicate 

illumination changes.  Surface albedo is typically thought to vary over about a 30 to 1 
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range in natural scenes (see, for example, reflectance data summarized in Wyszecki & 

Stiles, 1982).  Thus if two grayscale image regions vary in luminance by a factor much 

larger than 30, they are unlikely to share a common illuminant.  In the image shown in 

Figure 1, it is easy to imagine that such a difference in image intensity helps mediate the 

impression that the floor is lit by two distinct illuminants.  

On the other hand, a number of geometric factors may also correlate with 

illumination changes.  One, for example is distance: the further apart two surface patches 

are in a scene, the less likely it seems that they will share a common illuminant. 

Accordingly, experiments have found a decreasing influence of contextual surfaces on 

target surface appearance with increasing distance (Reid & Shapley, 1988; Spehar, 

Debonet, & Zaidi, 1996; Shimozaki, Eckstein, & Abbey, 2005; Kurki, Peromaa, 

Hyvärinen, & Saarinen, 2009).  Closely related is the idea that co-planar surfaces are 

more likely to share a common illuminant than surfaces oriented differently within a 

scene (Gilchrist, 1980).  Various cues are available to indicate surface orientation in a 

scene (e.g. binocular disparity), as well as changes in orientation of groups of surfaces 

(e.g., Ψ-junctions, Sinha & Adelson, 1993).  Finally, the luminance relations across 

certain geometric configurations may signal illumination boundaries (e.g., X- and T-

junctions, Todorović, 1997). 

Despite the centrality of segmentation in theories of lightness, little is known 

about how well observers can use the type of photometric information induced by 

changes of illumination to segregate scenes.  For achromatic images, changing the 
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illumination changes the statistical distribution of the luminances reaching the observer, 

because the luminance distribution arises as the product of the illuminant intensity and 

the underlying distribution of surface albedos.  In the present paper, then, we step back 

from the specifics of illuminant-based segmentation and ask the more basic question of 

how well observers can detect within-image changes in the distribution of image 

luminances.  That is, we sought to study fundamental aspects of this ability, using simple 

stimuli that did not evoke percepts of illuminated surfaces.  We used checkerboard 

stimuli and asked observers to judge which of two images contained a region where the 

luminance statistics differed from those in the rest of the scene.  We also compared the 

data to predictions from an ideal observer model.  Finally we asked whether manipulating 

the geometric structure of the images affected performance on our segregation task.  The 

measurements provide baseline information that can be exploited in future experiments 

that study illumination segmentation in more complex scenes to determine the role of 

additional information sources. 

Overview 

Observers viewed displays consisting of two side-by-side grayscale 

checkerboards (e.g. Figure 2).  The luminances of the patches in one of the checkerboards 

were drawn from a single probability distribution (a truncated Gaussian); for the other 

checkerboard two distributions were used.  Observers indicated which of the two 

checkerboards contained patches with luminances drawn from two distributions.  The 
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experiment embodies an abstracted version of the illuminant segmentation task that 

observers confront in natural viewing. 

Performance was measured in three experiments.  In Experiment 1 we varied the 

number of patches drawn from the second distribution, as well as observers' uncertainty 

about the spatial locations of these patches. Performance was compared to that of an ideal 

observer model, as well as a number of alternative simpler models. 

In Experiments 2 and 3, geometric manipulations were introduced.  In Experiment 

2, these consisted of a) varying the contiguity of the patches drawn from the second 

distribution and b) changing the spatial arrangement of the images to introduce Ψ-

junctions.  This was done to test the idea that the geometric cues would limit integration 

of photometric information to patches grouped together by those cues.  In Experiment 3, 

binocular depth cues were used to separate patches into two different depth planes, again 

with the idea that this might lead to processing grouped by depth. 

2. Experiment 1 Methods 

2.1 Observers 

Four observers (one male, three females, mean age = 23) participated in this 

experiment.  Each observer came to the lab for two sessions and was compensated for his 

or her time.  The observers all had Snellen acuity of at least 20/40 (corrected) and scored 

at least 36/38 correct on the Ishihara color plates (Ishihara, 1998). 



22 

 

2.2 Stimuli and Setup 

The stimuli on each trial consisted of two side-by-side grayscale checkerboards 

(Figure 2).  These were presented on a calibrated ViewSonic G220fb CRT monitor. 

Observers viewed the monitor from a distance of 560 mm, with viewing position 

stabilized by a headrest-chinrest assembly.  Each checkerboard consisted of five rows of 

five patches, with each patch 29x30 mm (2.97° x 3.07°).1  The overall size of the 5x5 

checkerboards was thus 145x150 mm (14.75° x 15.26°).  The two checkerboards were 

presented against a dark gray background (4.4 cd/m2) and were separated horizontally by 

48 mm (4.91°). The CIE 1931 xy chromaticity of the background and checkerboard 

patches was held fixed at [0.30, 0.30]. 

[---FIGURE 2 ABOUT HERE---] 

On each trial, one of the two checkerboards (left or right) was randomly 

designated the test checkerboard and the other the standard checkerboard.  The 

luminances for the 25 patches in the standard checkerboard and almost all of the patches 

in the test checkerboard were randomly drawn from a truncated Gaussian distribution 

with mean 15.0 cd/m2, standard deviation 5.0 cd/m2, and truncation range [5.0, 50.0] 

cd/m2. For the test checkerboard, the luminances of the remaining patches, which we 

refer to as the test patches, were drawn from a different distribution. The test patch 

distribution was a truncated Gaussian whose mean and standard deviation were larger 
                                                

1	  Computation	  of	  visual	  angle	  does	  not	  take	  off-‐axis	  effects	  into	  account.	  	  Order	  of	  all	  
dimensions	  specified	  is	  vertical	  first	  and	  then	  horizontal.	  
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than the standard distribution by a multiplicative constant.  Across trials, this constant 

varied between 1 (minimum) and 2.5 (maximum).  These corresponded to test patch 

distributions with mean 15.0 cd/m2, standard deviation 5.0 cd/m2, and truncation range of 

[5.0, 50.0] cd/m2  (minimum) and with mean 37.5 cd/m2, standard deviation of 12.5 

cd/m2, and truncation range of [12.5, 125.0] cd/m2 (maximum). 

2.3 Procedure 

The observer’s task on each trial was to indicate via a button press which of the 

two checkerboards was the test checkerboard.  We found during pilot experiments that 

the most effective instructions were to ask observers to identify the checkerboard that 

contained some patches drawn 'from a larger range of luminances than the rest of the 

patches'.  These instructions were used.  The full instructions are provided in the 

supplemental material available at 

http://color.psych.upenn.edu/supplements/distribdiscrim/.  Feedback was provided by a 

tone whenever the observer made an error. 

 The multiplicative constant for the test distribution parameters was adjusted trial-

by-trial based on whether the observer’s response was correct, using a 2-down 1-up 

staircase procedure (Levitt, 1971): the test distribution parameters decreased after every 

two correct responses and increased after every incorrect response.  The threshold test 

distribution, parameterized by its mean, at which observers were correct on 75% of the 

trials was estimated by fitting a Weibull psychometric function to all of the data, using 

the psignifit toolbox version 2.5.6 (Wichmann & Hill, 2001; see http://bootstrap-
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software.org/psignifit).  The psignifit software implements a maximum-likelihood fit of 

the Weibull parameters along with a lapse rate parameter. 

Two variables were manipulated across conditions: the number of test patches in 

the signal checkerboard and the observers' certainty about the location of these patches.  

The number of test patches varied between 1 and 5.  The test patches were either at fixed 

locations known to the observer (in the center row of the signal checkerboard; location-

known condition; top panel of Figure 2) or were randomly selected on each trial from the 

25 checkerboard patches (location-unknown condition; bottom panel of Figure 2). This 

resulted in a total of 10 conditions (5 patch numbers x 2 levels of certainty).  Conditions 

were blocked and observers were informed beforehand which condition was being tested.  

The order of conditions was randomized for each observer. For each condition, observers 

ran five blocks of 100 trials before moving onto the next condition. 

3. Experiment 1 Results 

Figure 3 plots average thresholds as a function of number of test patches.  Two 

broad effects are apparent.  First, in both the location-known and location-unknown 

conditions, thresholds fall with increasing number of test patches, with the largest drop 

occurring between one and two test patches. Second, knowledge of test patch location 

decreased thresholds for all test patch numbers.  On average, the location-known 

condition thresholds were 4.9 cd/m2 lower than the location-unknown thresholds. 
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Ideal observer thresholds are also plotted in Figure 3.  The ideal observer 

calculations are described in the appendix.  The broad patterns visible in the experimental 

data are also apparent for the ideal observer: thresholds decrease with increasing numbers 

of test patches and thresholds are greater for the location-unknown case.  In addition, the 

ideal observer thresholds are slightly lower than the human observer thresholds.  We 

scaled the ideal observer data to fit the experimental data (red lines in Figure 3, separate 

scaling for location-known and location-unknown conditions).  In each case, the ideal 

observer predicts the dependence of threshold on number of test patches.  The scale 

factor required was slightly larger for the location-unknown case (1.03 for location 

known; 1.09 for location unknown.)  Thus human performance is close to ideal in the 

location-known case, but uncertainty in test patch location adds an additional cost, 

beyond what would be experienced by an ideal observer faced with the same uncertainty. 

[---FIGURE 3 ABOUT HERE---] 

4. Intermediate Discussion 1 

Although the data are consistent with an ideal observer model that efficiently 

integrates information from the test patch locations to judge which image contained the 

distributional change, it is possible that similar performance could be obtained for our 

stimuli using simpler strategies.  We thus considered models based on three such 

strategies: a) a mean luminance model that chooses the checkerboard with the larger 

mean luminance on each trial, b) a highest luminance model that chooses the 

checkerboard containing the highest luminance patch on each trial, and c) a highest range 
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model that chooses the checkerboard with the highest luminance range on each trial.  We 

constructed variants of these models for the location-known and location-unknown 

conditions.  For the location-known condition, the mean luminance and highest 

luminance were evaluated only over the known test patch locations in each checkerboard, 

while the range was obtained by subtracting the lowest non-test patch location luminance 

from the highest test patch location luminance.  For the location unknown condition, the 

mean, highest luminance, and luminance range were computed over all the locations in 

each checkerboard. 

[---FIGURE 4 ABOUT HERE---] 

Figure 4 replots the data from Experiment 1 along with the predictions from each 

of these models.  The data from the location-unknown condition clearly falsify the mean 

luminance model, as that model's dependence on test patch number has a very different 

form from the measurements. Both the highest luminance model and luminance range 

models, however, make predictions quite similar to those of the ideal observer model and 

are not ruled out by the data.  Of note is that these models require only the most primitive 

form of integrating information across test patch locations: identifying which patches in 

each checkerboard images have the highest (and lowest) luminances.  

To investigate further, we conducted a classification image analysis of the 

relationship between the trial-by-trial variation in the stimulus and the trial-by-trial 

responses, both for our human observers and simulations of performance based on the 
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models.  Such analyses can reveal the relative weighting of various sources of stimulus 

information that lead to the same level of overall performance (Ahumada & Lovell, 1971; 

Gold, Murray, Bennett, & Sekuler, 2000; Murray, Bennett, & Sekuler, 2002; Abbey & 

Eckstein, 2006). The intuition behind this kind of analysis is that the correlations between 

aspects of the stimulus that contribute to the decision and the response will be high, while 

the corresponding correlations for aspects of the stimulus that are irrelevant will be low. 

To implement the analysis, we fit the coefficients of a logistic regression model 

(Alexander & Lutfi, 2004) to estimate the weights placed on patch luminance differences 

from trial-by-trial responses: 

� 

r =
1

1+ e−P⋅w  (1) 

In equation (1), r is a binary column vector coding responses (left/right) as 1s and 

0s, w is a row vector with the weights found by the regression, and P is a matrix whose 

rows were per-trial vectors of luminances obtained from the stimulus. The values in the 

rows of P were obtained as follows: on each trial, for each checkerboard (left and right), 

we took the luminances from the test patch locations, the two most luminous non-test 

patches, and the two least luminous non-test patches.  We sorted the luminances for the 

test and non-test patches in descending order separately, for each checkerboard.  Then, 

we took the differences between the corresponding luminance-ranked patches (i.e. the 

most intense test patch on the left minus the most intense test patch on the right, the 

second most intense test patch on the left minus the second most intense test patch on the 
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right, etc.). The regression thus tells us how much weight is assigned to the luminance 

differences between corresponding rank-ordered test patches across the two 

checkerboards, and to the luminance differences of corresponding rank-ordered non-test 

patches at the high and low luminance end of the non-test patch range.  We analyzed only 

the data from the location-known conditions in this way, as we found that our dataset did 

not have sufficient power to provide reliable estimates of the weights when all 

checkerboard squares were considered. 

[---FIGURE 5 ABOUT HERE---] 

The estimated weights are plotted in Figure 5 for the human observers, the ideal 

observer model simulation, and the highest luminance model simulation.  Because our 

interest is in the relative importance of the luminance-ordered test patch differences, we 

normalized the weights within model/condition by the weight assigned to the most 

luminous test patch. 

For both model simulations, the weights for the non-test patches cluster around 

zero, indicating minimal influence on the decision, consistent with the fact that these test 

patches have no influence on the model's decision.  The scatter of the weights around 

zero provides a visual sense of how precisely the weights are determined, given the 

number of simulated trials.  For the highest luminance model, only the most luminous test 

patch receives a high weight; the weights for the remaining test patches resemble those of 

the non-test patches.  For the ideal observer, which integrates information from all test 
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patches, the weights fall as a function of number of test patches.  We also estimated 

weights for the other two models (plots provided in the supplemental materials available 

at http://color.psych.upenn.edu/supplements/distribdiscrim/). The test patches weights for 

the mean luminance model are equally high, as all test patches contribute equally to the 

average.  The test patch weights for the highest range model resemble those of the highest 

luminance model, but with an equally large negative weight on the least luminous non-

test patch, as both these patches are necessary in the calculation of the luminance range. 

If the human observers were using one of the strategies implemented in the 

models, then the pattern of their estimated weights should resemble the pattern from that 

model.  The human observers’ average weights more closely resemble those of the ideal 

observer than the other models.  In particular, the human observers assign positive weight 

to multiple test patches.  As with the weights from the ideal observer model, the human 

weights for the test patches decrease with test patch luminance.  This analysis suggests 

that humans integrate photometric information over multiple test patches.  The fact that 

overall the weights obtained for the human observer decrease more rapidly with ordinal 

test patch luminance than for the ideal observer is consistent the fact that human 

efficiency with respect to the ideal observer is less than 1.  

5. Experiment 2 Methods 

5.1 Purpose 

Experiment 1 established that observers can perform the luminance distribution 

discrimination task and the classification image analysis showed they are able to integrate 
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information across patch locations.  In Experiment 2, we explored the effect of other 

display manipulations on performance.  Geometric cues were introduced in an attempt to 

negatively affect performance, by inducing segregation of the checkerboards into regions 

that were spatially incongruent with the different luminance distribution regions.  The 

hypothesis we sought to test was that such geometric cues impose a mandatory 

segregation on the scene and prevent the use of photometric information from both sides 

of the geometrically-cued boundary. 

Suppose, for example, that a geometric cue grouped one of two test patch 

locations separately from the other test patch location.  If the observer were unable to use 

information from the two regions, performance for the two test patch case with the 

geometric cue would then resemble performance for one test patch without the geometric 

cue.  To put it another way, thresholds would be predicted to increase across the 

geometric manipulation. 

Two types of geometric cues were tested: separation and the presence of Ψ-

junctions. For the separation manipulation, the test patches were located non-

contiguously with each other.  For the Ψ-junctions, the shapes of the checkerboards were 

manipulated in a way consistent with folding part of the checkerboard in depth. 
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5.2 Observers 

Three observers participated in this experiment.  Each observer came to the lab 

for one session and was compensated for his or her time.  All three had participated in 

Experiment 1. 

5.3 Stimuli and Procedure 

[---FIGURE 6 ABOUT HERE---] 

The stimuli were presented using the same apparatus as for Experiment 1, and the 

luminance statistics were also the same.   

Observers were tested in three main conditions, all using two test patches.  The 

first was a replication of the location-known condition of Experiment 1 using two test 

patches (“center”).  The test patches were the center patch and the patch to its right 

within each checkerboard. 

The second condition presented two test patches in a spatially-separated 

configuration (“sep”).   In this condition the two test patches were the center patch and 

the lower-right hand corner patch of each checkerboard (top panel of Figure 6). 

The third condition (“psi”) presented two test patches on a square + parallelogram 

checkerboard (bottom panel of Figure 6).  To generate this checkerboard, the rightmost 

vertices of the square checkerboard were shifted down a distance equal to two side 

lengths of each square (5.94°) and the next rightmost vertices down by one side length 

(2.97°).  This manipulation introduced Ψ-junctions between the third and fourth columns 
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of each checkerboard.  Interpreted as a three-dimensional object, this checkerboard would 

appear to have its rightmost two columns folded in depth.  Note, however, that this was a 

purely monocular manipulation: no binocular depth cues were used.  The test patches 

were again the center patch and the patch immediately to its right. 

Three control conditions were also run, all with one test patch.  The first was also 

a replication of the location-known condition of Experiment 1, but with only one test 

patch (“center”).  The other two used the Ψ-junction checkerboard, with the test patch in 

the center (“psiC”) or immediately to the right of center (“psiR”).  These control 

conditions tested the effect of introducing parallelograms on thresholds for a single 

square patch and for a single parallelogram patch. 

In all conditions of Experiment 2, observers knew the locations where the test 

patch or patches could appear (location-known).  The observer’s task was the same as in 

Experiment 1—to pick the test checkerboard containing the test patches.  Here, however, 

observers ran one block of trials from each of the conditions in random order, then 

repeated all the conditions in a different order, until five blocks of each condition were 

obtained. As in Experiment 1, observers were informed before each block of trials as to 

what condition was being run for that block.  Psychometric functions were again fit to the 

data, and the threshold value estimated as a measure of performance. 
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6. Experiment 2 Results 

Mean thresholds are plotted in Figure 7 for the various conditions tested.  A 

repeated measures ANOVA with observer as a random factor indicated a significant 

effect of condition, F(5,10) = 10.4, p ≤ 0.001.  Examination of the plot suggests that this 

result was driven by the effect of test patch number: conditions with two test patches led 

to lower thresholds than conditions with one test patch.  This difference is comparable to 

the difference between the 1- and 2-test patch location-known conditions in Experiment 

1, replotted in Figure 7 with X symbols. 

[---FIGURE 7 ABOUT HERE---] 

According to the ideal observer model, only the number of test patches and 

knowledge of their locations should affect performance.  If thresholds for the psi/sep two-

patch conditions are greater than those for the center two-patch condition, then those 

manipulations have a detrimental effect on human performance not accounted for in the 

model.  However, the data in the left panel of Figure 7 show a minimal effect on 

threshold for those manipulations: a repeated measures ANOVA with observer as a 

random factor was not significant, F(2,4) = 1.27, p = 0.37.  In addition, note that the non-

significant trend towards an elevated threshold for the sep condition is small relative to 

the effect of test patch number. 

[---TABLE 1 ABOUT HERE---] 
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The thresholds from the control conditions using one test patch were also not 

different from each other, F(2,4) = 4.08, p = 0.68.  Simply introducing parallelograms 

into the image does not appear to affect performance for a single test patch, regardless of 

its shape. 

The weights for the second test patch in the three 2-patch conditions were also 

estimated, and the means across observers are listed in Table 1.  The weights were all 

positive, and not different from each other, F(2,6) = 0.80, p = 0.49.  This pattern suggests 

that similar strategies were used regardless of scene geometry, and that both test patch 

luminances affected the decision. 

7. Intermediate Discussion 2 

We did not find evidence for an effect of the geometric manipulations in 

Experiment 2.  Interestingly, this suggests that for the location-unknown condition of 

Experiment 1, the performance decrease may have been driven primarily by uncertainty 

and not by the non-contiguity of the target patches. That is, the fact that a random draw of 

patches within a checkerboard in the location-unknown condition of Experiment 1 often 

resulted a noncontiguous configuration of test patches may not have affected 

performance directly, at least if the results from the single separation manipulation of 

Experiment 2 generalize to more test patches. 

One possibility for our failure to find an effect of geometry in Experiment 2 is 

that the geometric manipulations we used were either ineffective at introducing 
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segmentation, or at least not effective enough to overcome a larger effect of the provided 

photometric cues.  In Experiment 3 we introduced binocular disparity as a different cue to 

geometric segregation.  The logic was the same as in Experiment 2—would performance 

for a 2 test patch condition resemble performance for a 1 test patch condition in the 

presence of disparity cues that segregated the test patches into separate depth planes? 

8. Experiment 3 Methods 

8.1 Observers 

Three observers (1 male, 2 female, mean age = 20) participated in this 

experiment.  None had participated in Experiments 1 or 2.  Each was screened using the 

same screening procedure and criteria as in Experiment 1.  An additional screening test 

for stereopsis was also used.  This test was performed using the same apparatus as for the 

experiment (see below).  A 2.62° square patch appeared either in front or in back of a 

fixed background plane due to binocular disparity, and observers were asked to indicate 

where the patch appeared (“front” or “back”).  The background plane was rendered to be 

764 mm away from the observer.  The simulated depth (i.e. amount of disparity) was 

adjusted via a 2-down 1-up staircase procedure (Levitt, 1971) to estimate 71% accuracy 

on this task.  All observers had thresholds below a simulated depth change of 10 mm. 

8.2 Setup and Stimuli 

The stimuli were presented on a different apparatus from the previous two 

experiments.  This stereo apparatus, illustrated in Figure 8, consisted of two calibrated hp 

p1230 CRTs controlled by a single computer.  Observers sat with their heads stabilized 
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via a chinrest in front of a black felt-covered face plate.  They viewed the stimuli through 

two 30 mm x 30 mm square openings in the plate. The distance between the centers of 

the two openings was 40 mm.  A black cardboard divider sat perpendicular to the face 

plate, preventing overlap between the visual input to the two eyes. 

Each eye received input from a CRT whose light was reflected off an angled 

mirror before reaching the eye.  The optical distance of the CRTs to the eyes was 

approximately 764 mm.  The apparatus was aligned by replacing the mirrors with 

beamsplitters and aligning a grid image on each monitor to a physical grid located 764 

mm from the eyes. 

The stimuli closely resembled the square checkerboards from the location-known 

condition in Experiment 1, with the following changes. The checkerboards were rendered 

to be 764 mm away from the observer (11.21° x 11.21°), and the space between 

checkerboards was 28 mm (2.10°). Owing to a smaller monitor gamut, the standard 

distribution had a mean of 6.0 cd/m2 and a standard deviation of 3.0 cd/m2, truncated on 

the interval [1.5, 15] cd/m2.  The test distribution had minimum parameters equal to the 

standard distribution parameters.  Its maximum parameters were a mean of 17.7 cd/m2, 

standard deviation of 8.8 cd/m2, and truncation range [4.4, 44.2] cd/m2. 

[---FIGURE 8 ABOUT HERE---] 

The number of test patches was always one or two, in different conditions.  For 

the 1-test patch conditions, the test patch was the center patch of the checkerboard; for 
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the 2-test patch conditions, the test patches were the center patch and the patch 

immediately to its right.  

The experimental condition was a 2-test patch condition (“Mixed”).  However, the 

center patch was rendered with a binocular disparity, so that it appeared to float 100 mm 

in front of the rest of the checkerboard.  The size of the floating patch was increased to 

34.5 mm x 34.5 mm (2.59° x 2.59°) so that with the disparity it appeared to be 

approximately the same size as it was while coplanar with the checkerboard, 30 mm x 30 

mm (1.12° x 1.12°).  The test patch to the right remained in the same plane as the 

checkerboard.   

A series of control conditions were also tested.  The 1- and 2-test patch cases from 

the location-known condition of Experiment 1 were replicated on this stereo apparatus 

(“BackPlane”, for 1 and 2 test patches). Additionally, two control conditions using 1 and 

2 test patches brought forward in depth using binocular disparity were also run 

(“FrontPlane”, for 1 and 2 test patches).  These conditions were used to check for 

changes in performance due to the presence of binocular disparity in the stimulus, 

without the segregation of test patches into two depth planes.  Finally, a random depth 

plane condition (“RandomPlanes”) was tested.  This was a 2-test patch condition where 

the potential test patches on both checkerboards could each randomly appear at either 

depth plane.  The depth arrangement of the two checkerboards on every trial was yoked, 

e.g. if both potential test patches on one were closer in depth, so were the corresponding 

test patches on the other. 
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8.3 Procedure 

The procedure was similar to the one used in Experiment 2.  Observers completed 

five blocks of all six conditions in random order, and knew in advance of each block 

which condition was being run. Each block consisted of 100 trials.   

9. Experiment 3 Results 

The mean data for three observers are plotted in Figure 9 as a function of 

condition. A repeated-measures ANOVA with observer as a random factor indicated a 

significant main effect of condition, F(5,10) = 4.4, p ≤ 0.02.  As with Experiments 1 and 

2, thresholds for the one-test patch conditions are higher than those for the two test patch 

conditions. 

[---FIGURE 9 ABOUT HERE---] 

The critical comparisons are for the two-patch conditions.  Here thresholds did 

not differ across the conditions we ran.  A repeated-measures ANOVA with observer as a 

random factor revealed no effect of condition, F(3,6) = 0.6, p = 0.66.  That is, separating 

the two test patches in depth did not affect threshold, nor was threshold different in the 

condition where the depth of the two test patches was randomized on every trial.  

As in Experiment 2, the weights for the second test patch in the four 2-patch 

conditions were also estimated and listed in Table 1.  Again, the weights were not found 

to be different across condition, F(3,8) = 1.08, p = 0.41. 

10. General Discussion 
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10.1 Summary 

In Experiment 1, we investigated how well observers use photometric information 

to detect changes in luminance distributions.  We found that observers perform this task 

with high-efficiency, relative to an ideal observer.  This was true both when the test patch 

locations were known and when there was uncertainty about these locations.  Efficiency 

was somewhat higher, however, in the location-known case.  In both cases, the 

dependence of threshold on the number of test patches was also well-modeled by the 

ideal observer.  Our classification image analysis of the trial-by-trial responses showed 

that although high-efficiency for our stimuli could be achieved with a simple strategy that 

only relied on the highest luminance in the two checkerboard images, observers appeared 

to follow the ideal observer in that they integrated photometric information from multiple 

locations. In Experiments 2 and 3, we showed that simple geometric manipulations did 

not affect performance on our task. 

Taken together, our findings suggest that the visual system is quite sensitive to the 

sorts of changes in luminance distributions that might indicate changes of illumination 

within a scene in the presence of uncertainty about surface albedo.  That is, the visual 

system is fairly efficient at using such photometric cues to perform a task that models 

illuminant segregation.  Although for low-level perceptual tasks human efficiency is 

generally low compared to that of ideal observers (~5%, Banks, Geisler, & Bennett, 

1987), higher efficiencies have been reported previously for tasks such as symmetry 

detection (Barlow, 1980). 
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Overall, thresholds in our experiments changed only with test patch number and 

uncertainty about test patch location, but not as a result of manipulations of test patch 

separation or geometric cues that might segment the image. Our data did not reveal a 

significant effect of introducing geometric segregation cues on performance.  A caveat, of 

course, is that conclusions in this regard hold only up to the power of our data.  Our data 

did, however, contain sufficient power to reveal changes in performance between 

presentation of one and two test patches. 

The lack of geometric effects in our experiments is perhaps not surprising, given 

that our task was structured so that photometric cues provided the only information 

available to perform the task.  What our results do show is that when photometric 

information is available, the visual system can integrate this information across spatial 

boundaries created by geometric factors.  An interesting question, but one different from 

that we studied, is how geometric and photometric information interact when both types 

of information are task-relevant. 

10.2 Relation to Other Studies 

Our work makes contact with a number of related threads in the literature.  We 

touch on these below. 

Illuminant perception 

The literature on illumination perception is much smaller than that on surface 

perception, but there are a number of studies that relate to our current work.  Koenderink 
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et al. (2007) asked observers to adjust the illuminant impinging on one object in a scene 

so that it matched the illumination field of the scene as a whole.  The fact that observers 

could do this with reasonable precision indicates that they could discriminate local 

changes in illumination within a single image, broadly consistent with our results.  Earlier 

studies (e.g., Beck, 1959; Beck, 1961; Oyama, 1968; Noguchi & Masuda, 1971; Kozaki 

& Noguchi, 1976; Noguchi & Kozaki, 1985; Rutherford & Brainard, 2002) also 

employed illuminant matching or explicit judgments of the illuminant, but considered 

between rather than within scene variation. 

Gerhard & Maloney (2010a) showed that observers can differentiate between 

illumination changes common to all surfaces in a scene and illumination changes that 

vary from one scene location to another.  In a second paper, they found that observer 

performance in a task that required estimating the motion of a collimated light source was 

well predicted by an ideal observer model that interpreted photometric changes in the 

context of noisy knowledge about surface geometry (Gerhard & Maloney, 2010b).  In 

their case, however, the focus was on geometric changes in the three-dimensional 

location of an illumination source, rather than on the efficacy of photometric cues for 

illumination discrimination.  Similarly, Khang et al. (2006) found that observers could 

match illuminant source directions across scenes.  In the color domain Craven & Foster's 

(1992) work has a similar flavor, although they cast their measurements in terms of 

discriminations between a spatially global illumination change and changes in the surface 

reflectances of the objects within a scene (see also Nascimento & Foster, 2000). 
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Role of geometric cues 

A number of studies show that changes in perceived geometry affect perceived 

surface lightness (Hochberg & Beck, 1954; Gilchrist, 1977; Gilchrist, 1980; Knill & 

Kersten, 1991; Boyaci, Maloney, & Hersh, 2003; Ripamonti et al., 2004; Radonjić, 

Todorović, & Gilchrist, 2010).  These effects are often interpreted as resulting from an 

effect of geometry on the (perhaps implicitly) perceived illumination (see e.g., Brainard 

& Maloney, 2011).  A recent result in this tradition, however, suggests that when strong 

photometric cues are available, they can dominate geometric information (Gilchrist & 

Radonjić, 2010). 

In related work, a number of lightness illusions (Adelson, 1993; Todorović, 1997; 

Adelson, 2000; Anderson & Winawer, 2005) also implicate a key role for geometric cues 

in the perception of surface lightness.  In much of this work, the emphasis has been on 

understanding how the luminance relationships across junctions support particular scene 

interpretations.  Similar themes are found in the literature on transparency (Beck, 

Prazdny, & Ivry, 1984; Metelli, 1985; Anderson, 1997; Singh & Anderson, 2002; 

Anderson & Winawer, 2005). 

Our results do not contradict the conclusion that geometric factors play a role in 

the perception of scene illumination.  They do, however, emphasize the need to 

understand in detail how information carried by photometric and geometric cues interact. 
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Formal connections 

The formal structure of our task is that the observers had to identify which of two 

images contained patches drawn from a mixture of two luminance probability 

distributions, and which contained luminance patches drawn from a single distribution.  

At this formal level, our task is thus closely related to work on the perception of texture 

(for a review, see Landy & Graham, 2004), where textures are defined in terms of the 

statistical properties of their luminance distributions.  Despite the formal similarity, 

however, there are important content differences between most texture experiments and 

ours.  For example, texture work often holds the mean luminance and variance (contrast) 

constant across distributional manipulations, so as to allow investigation of the structure 

carried by higher-order statistical regularities.  In addition, these textures are typically 

generated using small, spatially-contiguous micro patterns, rather than the more 

macroscopic spatial structure of interest when one considers illumination discrimination. 

Our task also shares formal features with a contour integration task introduced by 

Field et al. (1993), where observers were asked to detect the presence of a coherently 

oriented contour of Gabor patches embedded in a field of randomly-oriented Gabor 

patches. 

Future directions 

Our work represents an initial foray towards understanding how photometric 

information enables illuminant segregation.  To make progress, we employed simple 

stimuli and studied performance using a simple psychophysical task.  These 
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simplifications allowed us to observe a number of clear regularities within the laboratory 

model we studied.  Nonetheless, it is worth keeping in mind some of the limitations of 

this model. First, the test checkerboards did not produce a strong perceptual sense of a 

collection of surfaces seen under two illuminants, and thus may not have engaged all of 

the mechanisms that normally subserve illuminant segregation.  Second, our use of a two-

alternative forced-choice procedure simplified the task demands, relative to the case of 

viewing a single image that might contain multiple regions of illumination.  Third, the 

only task relevant information in our stimuli was photometric and this may have 

weakened any potential geometric effects.  Expanding the research to richer stimuli and 

tasks, so as to overcome these limitations is a clear direction for future research.  

Appendix 

Ideal Observer Calculations 

An ideal observer was developed for each condition in Experiment 1 and its 

performance characterized through simulation.  For each condition, 100 trials each of 38 

multiples of the test distribution parameters were simulated, and for each simulated trial 

the ideal observer calculation indicated which checkerboard contained the test patches, 

based on the luminance of all 50 checkerboard patches.  Each condition was repeated 

three times in a run of the simulation; the results were analyzed in the same way as the 

human data.  For each simulation, the mean threshold from the three repetitions was 

taken as the measure of performance.   
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In the location-known conditions, means from ten simulations were averaged 

together for each value of test patch number.  This was also done for the 1-, 2-, and 3-test 

patch conditions for the location-unknown conditions.  The computations for the 4- and 

5-test patch location-unknown conditions were lengthy, and for these only a single 

simulation mean (of three repetitions) was obtained. 

The ideal observer's choice was based on the log likelihood ratio 

 
(x) = log( p(x |TestOnLeft)

p(x |TestOnRight)
)
 (A1) 

where the vector  represents the luminances of the 50 checkerboard patches 

presented on a particular trial.  If  was greater than 0, the ideal observer indicated 

that the test was on the left; if  was less than or equal to 0, the ideal observer 

indicated that the test was on the right.  For a given trial, the vector  can be thought of 

as the concatenation of the vectors , representing the luminances of the 25 

checkerboard patches on the left checkerboard, and , the luminances of the 25 

checkerboard patches on the right checkerboard.  

Location-known condition 

For the location known conditions, the log likelihood of the data given that the 

test was on the left is: 
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log(p(x |TestOnLeft)) = log(pt (xi
Left )) + log(ps (xi

Left )) + log(ps (xi
Right ))

i=1

25

∑
i∈{s}
∑

i∈{t}
∑

. (A2) 

In this expression, i indexes patch location within a single checkerboard (left or right), 

represents the indices of the test patches within the test checkerboard, and

represents the remaining indices within the test checkerboard.  The probability  is 

the probability of observing luminance  at a single patch under the test distribution, and 

 is the probability of observing luminance  at a single patch under the standard 

distribution.  The corresponding expression when the test is on the right is 

log(p(x |TestOnRight)) = log(pt (xi
Right )) + log(ps (xi

Right )) + log(ps (xi
Left ))

i=1

25

∑
i∈{s}
∑

i∈{t}
∑

. (A3) 

The probability  was evaluated using the probability density function of a 

truncated Gaussian distribution with mean µ = 15 cd/m2 and standard deviation σ = 5 

cd/m2 (the parameters of the luminance distribution for stimulus patches under the 

standard illuminant).  The Gaussian density function was truncated between the range [5, 

50] and renormalized so that the total probability was 1, to match how the stimuli were 

generated for the experiments.  

For the case where the parameters of the test distribution are known to the 

observer, the probability  would be evaluated using the same basic method as 

described for the standard distribution, but with the truncated Gaussian having a mean, 

variance, and truncation range computed for the test distribution. 
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Because the experiments were run using a staircase method, there was uncertainty 

about the parameters of the test distribution.  To model this uncertainty, in a separate 

simulation  was evaluated as a weighted sum of the likelihood for a given set of test 

distribution parameters, with the weights given by the probability of those parameters.  

The distribution of the parameters, p(TestLevel) , was estimated by creating a histogram 

of the parameters used in the observers’ experimental runs corresponding to the condition 

being simulated.  With this, 

pt (x) = pt (x |TestDistParam)p(TestDistParam)
TestDistParamµ=15,σ =5

TestDistParamµ=37.5,σ =12.5

∫
.  (A4) 

We found that adding this uncertainty had little effect on the predictions, and in interest 

of computational efficiency ran our main simulations with the test distribution parameters 

known. 

Location-unknown condition 

Before providing the general equations for the location-unknown conditions, we 

first develop the ideas for a simplified example.  Suppose that there are only four patches 

in each checkerboard, and that there are two signal patches to be detected.  Let be the 

vector of eight luminances concatenated from the vectors , the luminances of patches 

x1
Left, … x4

Left belonging to the left checkerboard, and , the luminances of the four 

patches x1
Right, … x4

Right belonging to the right checkerboard. 
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Suppose that the test is on the left.  In this case, there are  possible 

combinations of the standard illuminant and test illuminant patch locations in the left 

checkerboard, each equally likely.  The log likelihood of the observed luminance vector 

can be written as: 

log(p(x |TestOnLeft)) = log(p(xLeft |TestOnLeft)) + log(p(xRight |TestOnLeft)) . (A5) 

Here 

p(xLeft |TestOnLeft) = (1 / 6)pt (x1
Left )pt (x2

Left )ps (x3
Left )ps (x4

Left ) + (1 / 6)pt (x1
Left )ps (x2

Left )pt (x3
Left )ps (x4

Left ) +
(1 / 6)pt (x1

Left )ps (x2
Left )ps (x3

Left )pt (x4
Left ) + (1 / 6)ps (x1

Left )pt (x2
Left )pt (x3

Left )ps (x4
Left ) +

(1 / 6)ps (x1
Left )pt (x2

Left )ps (x3
Left )pt (x4

Left ) + (1 / 6)ps (x1
Left )ps (x2

Left )pt (x3
Left )pt (x4

Left )  (A6) 

is the weighted sum of the likelihoods for all six equally-likely possible combinations of 

standard and test distribution locations.  The expression 

p(xRight |TestOnLeft) = ps (x1
Right )ps (x2

Right )ps (x3
Right )ps (x4

Right )  (A7) 

provides the likelihood of the observed luminances under the standard distribution. 

For notational simplicity, the combinations of locations in each term on the right-

hand-side of Equation (A6) can be represented as a set of combinations of two t and two s 

characters, where t in the ith location indicates that the ith patch on the left is drawn from 

the test distribution, 

� 

pt (xi
Left ), and s indicates that that the ith patch on the left is drawn 

from the standard distribution,

� 

ps(xi
Left ) .  Let C be a matrix of the set of combinations of t 
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and s in (A6) whose rows are Ca for the six combinations a = 1, 2, … 6.   Within a given 

row Ca the columns are indexed by i = 1, 2, 3, 4.  We write 

  (A8) 

where the individual entries may be denoted by Cai.  Equation (A6) can then be 

represented as 

p(xLeft |TestOnLeft) = (1 / 6) pCai (xi
Left )

i=1

4

∏
Ca ∈C
∑

. (A9) 

Combining (A7) and (A9) into (A5), we obtain 

log(p(x |TestOnLeft) = log(1 / 6) + log( pCai (xi
Left )) + log(ps (xi

Right ))
i=1

4

∑
i=1

4

∏
Ca ∈C
∑

. (A10) 

We can generalize Equation (A10) to the case of k test distribution patches 

displayed at n possible patch locations.  In this case, there are  possible test 

patch arrangements and we obtain 

log(p(x |TestOnLeft)) = log(1 / N )+ log( pCai (xi
Left )) + log(ps (xi

Right ))
i=1

n

∑
i=1

n

∏
Ca ∈C
∑

 (A11) 
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A similar equation can be written for log(p(x |TestOnRight)) .  The log likelihoods are 

then compared as in Equation (A1). 

In a separate simulation, Equation (A11) was modified by using Equation (A4) 

for every instance of to model observer uncertainty in the parameters of the test 

distribution.  The weights for signal level were again taken from observers’ empirical test 

distribution parameter probability histograms from the corresponding experimental 

condition.  Because of computational limitations, this simulation was done only for the 1-

, 2- and 3-test patch cases.  As with the corresponding simulations for the location-known 

case, we found little effect of test level uncertainty and we report results for the case 

where there was no uncertainty about test illuminant level. 
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Figures 

 

Figure 1: Image containing regions with different illumination.  The parts of the garden 

seen through the windowpanes in direct sunlight are adjacent to shadowed walls inside 

the room.  However, the two lighting environments are very different.  Image taken from 

http://www.flickr.com/photos/molinarius/3585205048/, and used with permission of the 

photographer. 
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Figure 2: Examples of Experiment 1 stimuli.   Top panel, location-known condition; 

bottom panel, location-unknown condition.  In both examples, there are 5 test patches in 

one of the two checkerboards.  For the top panel, they are in the center row on the right; 

for the bottom panel, they are scattered in the left checkerboard.
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Figure 3:  Average (across observers, n=4) threshold plotted as a function of number of 

test patches, for the location-known (solid circles) and location-unknown (solid triangles) 

conditions.  Error bars show +/- 1 SEM.  Ideal observer simulation data (dots connected 

by solid black lines) are also shown (solid line, location-known, dashed line location-

unknown).  Error bars show +/- 1 SEM over multiple simulation runs, except for the 4 

and 5 test patch points for the location-unknown condition where only a single run was 

done.  Red lines/red solid dots show the ideal observer data scaled by a multiplicative 

constant to best fit the experimental data.  Individual observer data for this experiment, as 
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well as for Experiments 2 and 3, are provided in the supplemental material available at 

http://color.psych.upenn.edu/supplements/distribdiscrim. 
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Figure 4:  Data from Experiment 1, plotted with simulated thresholds from ideal 

observer model (black), mean luminance model (blue), highest luminance model (red), 

and highest range model (green).  Circles and triangles are replotted from Figure 3.  Solid 

lines connect points from location-known conditions; dashed lines connect points from 

location-unknown conditions.  Error bars show +/- 1 SEM. 
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Figure 5: Estimated relative weights from classification analysis for human observers 

(top row), ideal observer model (middle row), and highest luminance model (bottom 

row).  The leftmost column graphs show the weights for the luminance rank-ordered test 

patches, the middle column plots graphs show the weights for the two most luminous 

non-test patches, and the rightmost column plots show the weights for the two least 

luminous non-test patches.  Only the weights for the location-known conditions are 

plotted.  For 1 to 5 test patches, the color code is: red, blue, green, purple, black.  The 

weights for human observers are the mean of four observers, and error bars are one 

standard error of the mean. For the model simulations, we matched the number of trials to 



 

 

57 

that used in the human experiments, and ran the simulations four times to match the 

number of observers.  The weights shown for the simulations are the mean of these four 

runs. 
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Figure 6:  Examples of noncontiguous and Ψ-junction stimuli in Experiment 2.   Top 

panel, the target patches lie in the right checkerboard, center patch and lower right hand 

corner.  Bottom panel, the target patches lie in the right checkerboard, center patch and 

parallelogram contiguous with it to the right.
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Figure 7: Mean thresholds from three observers in Experiment 2.  Left panel, 2 test patch 

conditions: center row, Ψ-junction checkerboard, separated.  Right panel, 1 test patch 

conditions: center row, and two control conditions with Ψ-junction checkerboards.  The 1  

and 2 test patch means from the location-known condition in Experiment 1 are plotted 

with the X-symbols for comparison.  Error bars are one standard error of the mean. 
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Figure 8:  Bird’s-eye-view schematic of stereo apparatus.  Two CRTs and two mirrors 

were separated by a black cardboard divider.  Each mirror reflected the light from one 

CRT to one eye of the observer, who was seated in front of the face plate.  Curtains hid 

the CRTs from the observer’s view. 
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Figure 9:  Mean thresholds for three observers in Experiment 3.  Left panel, two test 

patch conditions; right panel, one test patch conditions.  Error bars are one standard error 

of the mean.  “BackPlane” (bp) refers to the test patches being in the same plane as the 

checkerboard; “FrontPlane” (fp) refers to the test patches in a different plane from the 

checkerboard.  The “Mixed” (m) condition has one test patch in the same plane and one 

in a different plane from the checkerboard.  The depth planes for “RandomPlanes” (rp) 

were randomized across trials as described in the text. 
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Tables 

Experiment 2    

Test patch 2 weights    

 center psi sep  

Mean weight 0.57 0.46 0.17  

SEM 0.32 0.21 0.13  

     

Experiment 3    

Test patch 2 weights    

 bp fp m rp 

Mean weight 0.61 0.30 0.43 0.27 

SEM 0.20 0.14 0.16 0.06 

 

Table 1: Mean estimated weights (n = 3) for second test patch in 2-patch conditions, 

Experiments 2 and 3.  Conditions are labeled as described in the text. 
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CHAPTER 3: The Role of Photometric and Geometric Cues in 

Lightness Perception
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Abstract 

How does the visual system account for illumination in a scene containing both 

photometric and geometric cues to variation in the illuminant? To answer this question, 

we measured observers’ responses to rendered achromatic stimuli that were consistent 

with two contextual planes (“contexts”) illuminated by a directional light source.  In 

Experiment 1, we presented the contexts oriented at 90° relative to each other.  Their 

luminances were consistent with one of the contexts’ being illuminated by lighting with a 

directional component, and the other receiving only indirect lighting.  Observers made 

lightness matches to a probe tab rendered at a number of orientations in the scene.  

Photometric cues were manipulated by changing the difference in illuminant intensity 

across the contexts.  Observers’ matches depended on both the illuminant manipulation 

and the tab orientation.  In Experiment 2, we varied both photometric and geometric cues, 

by manipulating the mean context luminance as well as the angle between the contextual 

planes.  Observers’ matches to the probe tabs depended on both the photometric and 

geometric cues independently.  Overall, the data suggest that photometric cues and 

geometric cues affect different aspects of how the visual system represents scene 

illumination.
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1. Introduction 

The visual system extracts information about the properties of surfaces in the 

visual scene.  From the light at the eye, the visual system determines quantities such as 

surface color, texture, and glossiness.  To do so, it must disentangle the properties of the 

surface from the properties of the illumination.  This is because the visual signal at the 

eye confounds both of these properties.   

The relevant surface property for a matte achromatic surface is its reflectance, a 

single number that represents the proportion of incident light that the surface reflects.  

The amount of light reaching the eye is the reflected luminance, and is the product of the 

illuminant intensity and surface reflectance.  The visual system represents surface 

reflectance through a perceptual quantity called lightness.  For lightness to be a reliable 

indicator of surface identity, the visual system must account for the effect of the 

illuminant intensity on the reflected luminance.  This computational problem is 

underdetermined, however, because many combinations of illuminant and reflectance can 

produce the same luminance.  The ability of the visual system to stabilize lightness is 

known as lightness constancy. 

Typical real-world scenes contain an additional source of complexity—the 

illuminant is rarely constant across a scene. Figure 1 (of Chapter 2) shows a scene 

containing multiple illumination regions: areas in shadow and areas receiving direct 

illumination.  Some theories of lightness constancy (Kardos, 1934; Koffka, 1935; 

Gilchrist et al., 1999; Adelson, 2000) posit that the visual system handles this complexity 
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by first identifying these regions before accounting for the illumination intensity within 

each region. 

One source of information available to the visual system for segregating 

illuminant regions is photometric and depends on the distribution of luminances in the 

scene.  Surfaces in the world have a reflectance range of about 30:1 (Wyszecki & Stiles, 

1982).  Consequently, under a single illuminant, images with that distribution of 

reflectances would be expected to refelct about a 30:1 luminance range.  Images with 

luminances that exceed this range probably result from scenes with substantial variation 

in illuminant intensity.  In a related paper, we showed that the visual system is able to 

detect differences in the distribution of luminances in simple scenes (Lee & Brainard, 

2011).   

A different type of information for parsing the visual scene into separate 

illumination regions is geometric in nature (e.g., Hochberg & Beck, 1954; Beck, 1965; 

Mershon, 1972; Gilchrist, 1977; Schirillo, Reeves, & Arend, 1990; Adelson, 1993; 

Boyaci, Maloney, & Hersh, 2003; Ripamonti et al., 2004; Snyder, Doerschner, & 

Maloney, 2005; Kitazaki, Kobiki, & Maloney, 2008).  We limit our discussion to the 

effect of surface orientations: surfaces that face a directional light source receive stronger 

illumination than surfaces facing away.  Knowledge about the orientation of surfaces, in 

addition to their luminances, can modulate how the visual system accounts for the 

illumination and thus affect lightness.   
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In a series of studies using illuminated paper displays, Gilchrist (1977; 1980) 

demonstrated the effect of perceived surface coplanarity on lightness perception (see also 

Radonjić, Todorović, & Gilchrist, 2010).  A schematic of a particular set of Gilchrist’s 

stimuli is shown in Figure 1.  Two background context surfaces were oriented at a 90° 

angle, forming a roof-like ridge.  One context surface was white and one was black.  The 

white context was directly illuminated by a light bulb.  The black context received only 

weak ambient illumination and appeared to be in shadow.  Two equiluminant tabs 

extended in orthogonal directions from the ridge of the stimulus.  When the stimulus was 

viewed binocularly, the perceived orientation of the tabs was veridical.  When the 

stimulus was viewed monocularly, however, the tabs appeared to lie flat on the two 

contexts.  Gilchrist (1977; 1980) found that the coplanar relationship between the tabs 

and the contexts was the primary factor affecting lightness.  When the equiluminant tabs 

were viewed monocularly, they appeared to lie flat in the planes of the two contexts.  The 

tab lying flat on the black context appeared lighter.  When the tabs were viewed 

binocularly, they appeared to be rotated to lie in the plane of the other context.  In this 

case the tab that was coplanar with the black context appeared lighter.   

[---FIGURE 1 ABOUT HERE---] 

One can interpret Gilchrist’s results in terms of the visual system’s representation 

of the lighting environment (see also Howe, 2006).  For two surfaces under two different 

illuminants to be equiluminant, their reflectances must be different.  In this situation, 

given photometric or geometric cues indicating two different illuminant intensities, a 
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lightness constant system should represent the equiluminant surfaces with different 

lightnesses.  The photometric cues (the luminances of the background context surfaces) 

and geometric cues (the orientation of the contexts and the tabs) cues in Gilchrist’s 

(1980) experiment are consistent with a directional light source directly illuminating the 

white context (and indirectly illuminating the black context), so that observers’ lightness 

reports could have resulted from a lightness constancy process that was using these cues.  

Indeed, the change in lightness with tab orientation could be a signature of a lightness 

constant system that used both types of cues in accounting for the illumination.   

The goal of the present study was to better understand the interaction between the 

effects of photometric and geometric cues, using a stimulus similar to that in Gilchrist’s 

studies (1977; 1980). By independently manipulating the luminance statistics and the 

scene geometry, we could study how the two types of cues interacted in eliciting a 

lightness percept.

Overview 

In Experiment 1, observers viewed stimuli rendered on a stereoscopic display.  

The stimuli, shown in Figure 2, consisted of two articulated background context surfaces 

(“contexts”) oriented at 90° from each other.  The ridge where the two contexts meet was 

pointed towards the observer.  The luminances of the contexts were consistent with a 

light source (with a directional component) illuminating the top context, and a shadow 

falling on the bottom context.  A probe tab extended out from the center of the ridge and 
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was rendered at each of four orientations.  We measured the perceived lightness of the 

tab, and used the results to understand observers’ use of image cues to the illumination.   

[---FIGURE 2 ABOUT HERE---] 

We first varied the mean luminance across the two contexts, to study the effect of 

the photometric cues.  By obtaining matches to probe tabs of fixed luminance at different 

orientations, we could determine whether effects of the geometric cues could be 

measured using this stimulus.  We theorized that if observers interpret the changes in 

these cues as a change in the illumination, their lightness matches to the probe tabs 

should vary with the cues.  We expected that the overall pattern of matches made to tabs 

in front of one context and tabs in front of the other context should depend on each 

context’s mean luminance.  We also expected that matches to the same tab luminance at 

different orientations should change with the orientation of the tab.   

In Experiment 2 we also varied geometric cues, allowing us to study the 

interaction between the two types of cues.  We varied both the difference in mean 

luminance across background contexts and the angle between the contexts.   In addition, 

we rendered the probe tab at a larger number of orientations for a more sensitive measure 

of the effects of the scene geometry.  By analyzing the pattern of matches as a function of 

the photometric cues and the geometric cues, we could determine whether each type of 

cue had an independent effect on observers’ lightness perception.  

2. Experiment 1 Methods 
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2.1 Observers 

Five observers (1 male, 4 female, mean age = 23.4; labeled Observers 1-5) 

participated in this experiment.  Each observer came to the lab for 3-5 sessions and was 

compensated for his or her time.  The observers all had Snellen acuity of at least 20/40 

(corrected) and scored at least 36/38 correct on the Ishihara color plates (Ishihara, 1998).  

In addition, the observers were all screened for stereopsis.  This test was performed using 

the same apparatus used in the experiment (described below).  By means of binocular 

disparity, a 2.62	  DVA	  square patch appeared either in front or in back of a fixed 

background plane	  2.  Observers were asked to indicate whether the patch appeared in 

“front” or in “back” of this plane.  The background plane was rendered to be 764 mm 

away from the observer.  The distance of the patch from the background plane was 

adjusted via a 2-down 1-up staircase procedure (Levitt, 1971) to estimate 71% 

performance accuracy.  All observers’ depth discrimination thresholds were below 20 

mm of rendered depth. 

 2.2 Setup 

The stimuli were presented on a stereo apparatus, illustrated in Figure 3.  Two 

calibrated NEC PA241W LCD monitors were controlled by a single computer.  

Observers sat with their heads stabilized via a chinrest in front of a black anodized metal 

                                                

2	  Degrees of Visual Angle are calculated with regard to the central cyclopean eye, for all 
shapes as if rendered fronto-parallel to the observer in the fixation plane. 
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faceplate.  They viewed the stimuli through two 25 mm x 27 mm openings3 in the plate.  

The distance between the centers of these openings was 64 mm.  A black cardboard 

divider sat perpendicular to the faceplate, preventing visual input to one eye from 

reaching the other.   

[---FIGURE 3 ABOUT HERE---] 

Each eye received input from an LCD monitor whose light was reflected off an 

angled mirror before reaching the eye.  The optical distance from the LCD to the eye was 

approximately 764 mm.  The apparatus was aligned by replacing the mirrors with 

beamsplitters and aligning a grid image on each monitor to a physical grid located 764 

mm from the eyes.   

For the matching experiments, observers viewed a palette of Munsell papers that 

sat inside a plywood chamber (400 mm long x 405 mm wide x 405 mm deep).  The 

chamber was painted matte gray and was illuminated by a fluorescent bulb.  Inside the 

chamber, an additional LCD screen was placed on the back wall.  The Munsell palette 

had values between 0.5 and 9.5 at 0.5 value intervals.  These values corresponded to 

reflectance values ranging between 0.9% and 91% (details of the reflectance 

measurement procedure can be found in Allred, Radonjić, Gilchrist, & Brainard, 2012).  

The LCD screen in the chamber was used during experimental trials to display a number 

corresponding to one of the palette chip values. 

                                                

3 Convention for physical dimensions is vertical, then horizontal dimension. 
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2.3 Stimuli 

The stimuli were modeled after the stimuli in Gilchrist’s (1980) earlier study.  

They consisted of two 200 mm x 200 mm (14.91 DVA x 14.91 DVA) square background 

context planes, rendered at a 90° angle to each other (Figure 2 top panel, front view of 

stimuli as seen by observer; bottom panel, schematic of stimuli viewed from the side).  

The contexts each contained 100 individual polygons—a selection of squares, rectangles, 

and L-shapes.  The arrangement of these polygons was the same in both contexts.  A 

background 350 cm x 550 cm (25.80 x 39.59 DVA) dark gray rectangle was rendered 

behind the contexts at a simulated distance of 984 mm from the observer.  At this 

distance, its size on the screen was 272 mm x 427 mm (20.19 x 31.23 DVA).  Its 

luminance was 0.78 cd/m2. 

The 100 polygons in each context were simulations of reflectance values between 

.07 and 1.00 in equal log relative steps.  Within each block of trials, 100 reflectances 

were randomly assigned to the 100 polygons in each context.  This randomization 

occurred independently in each experimental block. The luminances of each context were 

then calculated by multiplying all the reflectances by a simulated illuminant. 

The simulated illuminants for the two contexts were different in most conditions.  

This manipulation changed the mean luminance of each of the two contexts.  The 

following top context-bottom context pairs of illuminants were used in different 

conditions: [45.44, 45.44], [78.96 26.15], [137.20 15.05], [238.39 8.66] cd/m2.  The 

stimuli resulting from two of these pairs are shown in Figure 2.  The illuminant values 
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were chosen so that each increment/decrement in illuminant intensity between adjacent 

pairs was an equal log step. 

The surfaces bordering the ridge joining the two contexts were adjusted to appear 

to be continuous surfaces across the ridge.  This was achieved by two additional 

manipulations.  First, the polygons along the top and bottom sides of the ridge were 

arranged such that their edges along the ridge aligned with each other.  For example, in 

the right panel of Figure 2, the L-shape in the lower right hand corner of the top context 

is aligned with a rectangle in the upper right hand corner of the bottom context.  The edge 

they share along the ridge is the same for both polygons.  This alignment was made for 

all the polygons across the ridge.  Second, after the initial random assignment of 

reflectances, the reflectances for these polygons were adjusted so that corresponding 

polygons across the ridge had the same reflectances.  This was done by swapping 

reflectances with polygons within a context. 

A trapezoidal probe tab was rendered near the center of the stimulus.  The base of 

the tab lay along the border connecting the two contexts.  The tab could be rendered in 

each of four orientations.  In the two in-plane orientations, the tab lay flat in the plane of 

each context.  In the two out-plane orientations, the tab was rotated 90° from each in-

plane position.  Rotating each in-plane tab 90° preserved the local surround information 

of the tab, but changed its orientation to be coplanar with the opposite context. 

[---TABLE 1 ABOUT HERE---] 
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The shape of the tab was adjusted so that the two pairs of in-plane and out-plane 

tabs had the same retinal size and shape for the right eye, using the following procedure.   

First, we rendered two square checkerboard contexts.  When the tab was rendered at the 

in-plane orientation, it overlaid one of the squares on the checkerboard exactly.  We then 

rendered the tab at the out-plane orientation.  While viewing this out-plane tab with the 

right eye alone, we adjusted the vertices of the tab until the tab projection overlaid the 

same square on the checkerboard.  Given these new vertices in the scene space, the 

OpenGL routines (“glFrustum”) used to create the left and right eye projections then 

adjusted the left eye image.  As a consequence of this procedure, in the left eye image the 

tabs were two different trapezoids at the two orientations.  The vertices of the probe tabs 

in rendered 3D scene space are listed in Table 1.  The probe tab could take on any of nine 

luminance values between 0.58 and 238.39 cd/m2, with equal log spacing. 

2.4 Procedure 

Observers indicated on each trial which palette chip most closely matched the 

probe tab, using a slider that changed the number appearing on the LCD screen in the 

matching chamber.  Observers were given instructions to match the lightness of the tab; 

specifically, they were told to match “what color paint the tab is coated with”.  There 

were three special values that could appear on the LCD screen for judgments of values 

outside the range of the palette.  The first was a value for surfaces “darker than 0.5”.  

Observers chose this value if the target patch appeared to be a surface darker than the 

darkest palette chip.  The second was a value for surfaces “lighter than 9.5”, but still 
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appeared to be surfaces.  Observers choose this value if the target patch appeared to be 

lighter than the lightest palette chip, but still appeared to be an illuminated surface.  

Finally, the third was a value for surfaces that appeared to be “glowing”. If the target 

patch no longer resembled an illuminated surface, but rather appeared to be generating 

light, observers chose this value.   

In each experimental block, observers viewed the stimuli either binocularly or 

monocularly.  In the monocular conditions, the stimuli were rendered exactly the same as 

in the binocular conditions, but a piece of felt was placed over the left or the right eye 

openings in the faceplate.  This prevented light from one of the monitors from reaching 

the eye.  In these conditions, the absence of binocular disparity cues was expected to 

reduce or eliminate the percept that the probe tab was oriented differently from the 

background context immediately surrounding it.   

The pair of simulated illuminants was held constant within each block and varied 

across blocks.  Within each block, observers saw each target luminance at each of the 

four orientations three times in a random order, resulting in a total of 108 trials.  For each 

observer, the 12 blocks (3 viewing conditions x 4 illuminant pair conditions) were 

presented in random order. 
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3. Experiment 1 Results 

3.1 Binocular Conditions 

The group mean matches are plotted in Figure 4.4 Data from different pairs of 

context illuminants are plotted in each panel.  The different symbols represent the mean 

matches for the four orientations.  Out-of-range responses were excluded from the 

calculation of these means.  Across observers, the number of trials excluded ranged from 

0 to 20, with 9 trials excluded on average.  The excluded trials always corresponded to 

the highest and lowest target luminances. 

[---FIGURE 4 ABOUT HERE---] 

The effect of the photometric cues can be seen by taking the difference between 

the means of the two in-plane curves (circle symbols) in each panel.  As the difference 

between context illuminants grows, so does the difference between the two in-plane 

curves.  The magnitudes of the mean differences are plotted with red symbols in Figure 5 

as a function of the context illuminant difference.  These data are in agreement with 

previous studies investigating the role of local contrast effects (Heinemann, 1955).  We 

take this effect as a consequence of the visual system’s taking the photometric cues to the 

illuminant into account. 

[---FIGURE 5 ABOUT HERE---] 

                                                

4 Individual observer data for Experiments 1 and 2 can be found in the supplemental 
material online at http://color.psych.upenn.edu/supplements/lightness_photo_geo/. 
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The presence of an additional geometric effect can be seen by taking the 

difference between the means of the in-plane (circle symbols) and out-plane curves 

(triangle symbols) in Figure 4.  If there were no effect of changing the tab orientation, the 

in-plane curves should lie on the out-plane curves.  As the illuminant difference grows, 

the effect of the tab orientation grows, increasing the deviation between the in- and out-

plane curves.  The magnitudes of the mean differences between in- and out-plane curves 

are plotted with black and white symbols in Figure 5 as a function of the context 

illuminant difference.  The geometric effects are smaller than the local contrast effects, 

but both grow with increasing differences between the mean context luminances. 

We fit lines through the origin for each effect in the group data.  This model 

choice was validated via the following cross-validation algorithm. The models under 

consideration were a horizontal line, a line through the origin, a quadratic function, and a 

cubic function.  The parameters of each model were fit to the group data with one 

observer’s data removed, for all observers.  The predictions of the model using the fitted 

parameters were then compared to the removed observer’s data, and the prediction error 

summed across observers.  

The summed prediction error was lowest for both the linear and quadratic 

functions.  Summing across the local contrast effect and both geometric effects, the 

summed prediction error across observers was 5.99 for the horizontal line, 4.01 for the 

line through the origin, 3.97 for the quadratic function, and 4.71 for the cubic function.  

We fit the simpler model to each effect separately using the mean data across observers.  
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The resulting slopes were .007 for the local contrast effect and .003 and .002 for the 

geometric effects.  To estimate the variability of these slopes, we bootstrapped the match 

data across observers 200 times.  For each bootstrap replication, we redrew the observers’ 

data five times with replacement to obtain the mean matching curves.  We took the 

differences between the means of the curves as before and fit lines to each effect.  For the 

local contrast effect, the range of slopes was [.006, .008].  For the dark context geometric 

effect, the range was [.002, .004], and for the light context geometric effect, [.001, .002].  

In all three cases, the range of slopes does not include zero, and so all three fitted lines 

are unlikely to be flat, horizontal lines.  Because lines fit the data well, the data suggest 

that the two effects covary—as the effect of local contrast on tab lightness increases, so 

does the effect of the tab orientation. 

3.2 Monocular Conditions 

[---FIGURE 6 ABOUT HERE---] 

The corresponding matching functions for the monocular conditions are plotted in 

Figures 6 and 7, and the effect sizes are plotted in Figure 8.  As in the binocular 

condition, the local contrast effect increases with the increase in mean context luminance.  

Unlike the binocular data, however, the geometric effect is essentially zero in all 

conditions.  There are no binocular cues to the tab orientation in the monocular images, 

so any differences in tab orientation can only be perceived through linear perspective 

cues.  But because the tabs were adjusted to have the same retinal projection at both in-

plane and out-plane orientations when viewed with the right eye, there are no differences 



 

 

79 

in the linear perspective cues to the tab’s orientation for the right eye images.  This lack 

of geometric information explains the lack of a geometric effect in the right eye 

conditions.  However, the corresponding lack of a geometric effect in the left eye 

conditions suggests that any linear perspective cues available were not effective as 

geometric cues. 

[---FIGURE 7 ABOUT HERE---] 

The linear fits to the monocular data support these observations.  The fitted slopes 

for the local contrast effects were .006 and .007 for the left and right eye data, 

respectively.5  These values are close to the slope for the local contrast effect data in the 

binocular condition.  The slopes for all the geometric effects were essentially zero,6 

ranging between -2x10-4 and 5x10-4.  The local contrast effect slopes are comparable in 

both the binocular and monocular conditions, but the geometric effect slopes differed. 

[---FIGURE 8 ABOUT HERE---] 

4. Intermediate Discussion 

The results in Experiment 1 establish that the effect of the photometric cues on 

lightness perception could be reliably measured using our stereoscopic display, and that 

                                                

5	  For the local contrast effect, the range of slopes from the bootstrap replications was 
[.005, .007] for the left eye and [.005, .008] for the right eye.  Thus the slope of the lines 
fit to the local contrast effects are unlikely to be zero.	  
6 The range of slopes from the bootstrap replications for the geometric effects always 
included zero, and ranged between -.001 to .002. 
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there is a geometric aspect to the effects for our stimulus configuration.  Lightness 

matches to a given tab luminance depended on both the mean luminance surrounding the 

tab as well as on the tab’s orientation.   

The effects of the photometric cues were independent of viewing condition—the 

local contrast effects were comparable across binocular and monocular conditions.  On 

the other hand, the geometric effects could be attributed to the manipulations of binocular 

disparity, rather than other monocular cues to orientation.  This finding is in agreement 

with the conclusions from Gilchrist’s studies (1977; 1980). 

Interestingly, the magnitudes of the effects of local contrast and geometry 

covaried, as revealed by the linear fits.  A parsimonious way to interpret the data would 

be that the photometric cues are informative about the intensities of the illumination in 

the scene, and the geometric cues are informative about the spatial layout of the 

illumination.  In the conditions where there are differences in the photometric cues across 

contexts, the visual system accounts for two illuminant regions.  When geometric cues 

are present, the visual system’s representation adds some kind of directional lighting, as 

demonstrated by the fact that lightness changes with differences in the orientation of the 

tab. The visual system’s representation of the intensity of this directional lighting, 

however, depends on the photometric cues.  This can be seen by the effect of the mean 

context luminances on the magnitude of the geometric effect.  
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To test this hypothesis, in Experiment 2 we varied both the intensity of the 

illumination as well as the geometry of the scene.  Across different conditions we 

independently manipulated both the mean context luminances and the angle between the 

two context planes.  We also rendered the probe tab at a larger number of orientations.  If 

the photometric and geometric cues affect different aspects of the visual system’s 

representation of the illumination in the scene, then the pattern of matches should depend 

on both kinds of cues in different ways. 

5. Experiment 2 

5.1 Observers 

Five new observers (1 male, 4 female, mean age = 22.6; labeled Observers 6-10) 

participated in this experiment.  Each observer came to the lab for 5-6 sessions and was 

compensated for his or her time.  The observers were screened using the same procedures 

and criteria as in Experiment 1.  None of the observers had participated in Experiment 1. 

5.2 Setup and Stimuli 

The same apparatus from Experiment 1 was used to display stimuli and record 

responses in Experiment 2.  Observers viewed contextual planes like those presented in 

Experiment 1, but with a number of changes.  First, the angle between the context planes 

(“context angle”) could be 45°, 90°, or 180° in different conditions (Figure 9).  For the 

180° conditions, the two contexts lay in the same fronto-parallel plane relative to the 

observer. 
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[---FIGURE 9 ABOUT HERE---] 

Second, the probe tab was rendered at a larger number of orientations.  We define 

as 0° the horizontal plane perpendicular to the observer’s fronto-parallel plane, and 

represent orientation as an angle relative to this plane.  Angles above this horizontal plane 

are defined as negative, and angles below this plane are defined as positive (see Figure 10 

for a diagram of this convention).  Note that the context angle refers to the angle between 

the two context planes, and does not follow the naming convention for the tab angles.  

For the 45° contexts, the tab angles were: [±157.5°, ±135.0°, ±90.0°, ±45.0°, ±22.5°].  

The tab angles used in the 90° context condition were the same as those in the 45° 

context condition, excluding the ±157.5° angles.  Those tabs would have to have been 

rendered behind the contexts.  For the same reason, the tab angles used in the 180° 

context condition were those used in the 90° context condition, excluding the ±135.0° 

angles.  The shapes of the probe tabs were all adjusted so that in the right eye image, they 

were the same as tabs at the ±157.5° angles, using the same procedure as in Experiment 

1.  The vertices of the tabs in rendered 3D scene space are also listed in Table 1. 

[---FIGURE 10 ABOUT HERE---] 

The context surfaces were illuminated by three pairs of illuminants in different 

experimental blocks: [78.96 26.15], [137.20 15.05], [238.39 8.66] cd/m2.  The tab 

luminance could take on any of five values: [1.23, 3.79, 11.73, 36.30, 112.28] cd/m2.  

These changes were made to reduce the number of trials per experimental block.	  
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5.3 Procedure 

Observers were told to match the lightness of the tabs as in Experiment 1. In each 

experimental block, observers viewed one context angle illuminated by one set of 

illuminants.  Within each block, observers made three matches to each tab luminance at 

each tab angle.   

In a set of control conditions, observers viewed the 45° and 180° context angles 

monocularly as in Experiment 1.  For these monocular conditions, the same pairs of 

illuminants were used as in the binocular conditions, but with a reduced set of tab angles.  

For the 45° contexts, these were [±157.5°, ±22.5°].  For the 180° contexts, these were 

[±90°, ±22.5°].   

The order of the 9 binocular conditions (3 context angles x 3 illuminant pairs) and 

12 monocular conditions (2 context angles x 3 illuminant pairs x 2 monocular viewing 

conditions) was randomized for each observer.  The number of trials per condition varied 

between 60 and 150, depending on how many different tab angles were presented. 

6. Experiment 2 Results 

6.1 Binocular Conditions 

The data were first averaged together as in Experiment 1.  For each observer, the 

matches to each probe tab luminance at a particular angle were averaged together, for 

each experimental block.  Out-of-range values were excluded from these averages.  For 

the 85 blocks (across 5 observers x 17 conditions), the number of excluded trials ranged 



 

 

84 

from 0 to 21 (mean number of excluded trials per block = ~2), and corresponded to 

matches for the lowest and highest luminance values.  The data were then averaged 

across observers.  An example of these data is plotted in the top panel of Figure 11.   

[---FIGURE 11 ABOUT HERE---] 

A subset of the binocular conditions from Experiment 2 was a direct replication of 

the binocular conditions in Experiment 1.  Using the analysis from Experiment 1, we 

measured the effect sizes of the photometric and geometric effects for these data.  The 

effect sizes and the best fit lines through the origin are plotted in the bottom panel of 

Figure 11.  The slopes of these lines were .006 for the local contrast effect, and .002 for 

the two geometric effects.  These slopes are similar to those from Experiment 1, and are 

all unlikely to be flat.7 

As in Experiment 1, to visualize the data more clearly we took the mean of each 

matching curve.  Within each condition, the group mean data for each tab angle were 

averaged together.  These means are plotted in Figure 12 as a function of the tab angle.  

Each column shows data for one pair of illuminants.  Each row shows data for one 

context angle.  To estimate the variability of these means, the observer matching curves 

                                                

7	  The	  analysis	  was	  repeated	  for	  each	  bootstrapped	  replication	  of	  the	  data.	  	  The	  
range	  of	  the	  slopes	  for	  the	  local	  contrast	  effect	  was	  [.0053,	  .0077].	  	  The	  range	  of	  the	  
slopes	  for	  the	  dark	  geometric	  effect	  was	  [.0004,	  .0032],	  and	  the	  range	  for	  the	  light	  
geometric	  effect	  was	  [.0002,	  .0029].	  	  Because	  none	  of	  these	  ranges	  include	  zero,	  we	  
conclude	  that	  the	  fitted	  lines	  are	  unlikely	  to	  be	  flat.	  
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were bootstrapped 200 times with replacement, and the error bars are +/- 1 standard 

deviation of the means of the bootstrapped matching curves. 

[---FIGURE 12 ABOUT HERE---] 

The data in each panel of Figure 12 show systematic changes in the mean matches 

with tab angle.  For some of the panels, there appears to be a roughly linear relationship; 

for others, the pattern of matches is more complicated.  To a first approximation, 

however, a simple straight line fit to the data can account for the trend in each panel.  The 

best fits are plotted in blue in Figure 12.   

We wanted to test whether there was more structure in the parameters of the best 

fit lines across panels.  Specifically, we wanted to test whether the parameters could be 

expressed as the sum of two independent effects corresponding to the photometric and 

geometric cues.   

The best fit lines in Figure 12 are of the form: 

� 

aij × Angles+ bij  (1) 

where the ij subscripts refer to the panel in row i, column j.  We write the parameters  

and  as column vectors  and , such that 
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 (2) 

 (3) 

For the slope parameters (a corresponding equation can be written for the intercepts), we 

write 

� 

a =M* s (4) 

The * symbol denotes matrix multiplication.  In Equation 4,  is a 5x1 vector whose 

elements are 

 (5) 
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The center element of  is the slope of the line in the center panel.  The other elements 

are the change in slope from the center panel to each panel in the four cardinal directions.  

By constructing the matrix  so that 

 (6) 

we are expressing  as a sum of independent row and column effects.  The choice of the 

panels expressed in  is for conceptual ease, and any five panels from Figure 12 could 

have been chosen given the appropriate construction of .  We solve for  in Equation 

4.  Because  is overdetermined, we find the least squares solution.  Then we multiply  

by  to get the slopes of the best fit lines with the independence constraint.   

Repeating this procedure for the intercept parameter gives us a set of line 

parameters, which we plot in red in Figure 12.  To test whether the red lines are a 

reasonable fit for the data, we bootstrapped the data 200 times across observers.  For each 

bootstrap, we fit the best line to the bootstrapped data, and these lines are plotted as the 

light blue spread in Figure 12.  The red lines reasonably fall within this spread.  This 

suggests that a more complicated model including an interaction term between the row 
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and column effects is not necessary.  A model of independent effects can account for all 

the lines in the figure. 

6.2 Monocular Conditions 

The data from the monocular conditions were analyzed in the same manner as the 

monocular conditions from Experiment 1.  The graphs in Figure 13 plot the magnitudes 

of the local contrast effect and geometric effects for both eyes and both context angles.  

The best linear fits through the origin are also plotted.  The slopes of these lines for the 

local contrast effect are .004 for both 45° conditions, and .003 and .004 for the left and 

right eye 180° conditions, respectively.  These values are slightly smaller than the 

corresponding slopes from the binocular condition, but are unlikely to be zero.8  For the 

geometric effects, the slopes are all close to zero, ranging from -1x10-4 to .001.  The lines 

fitted to the geometric effects are unlikely to be different from a flat line.9 

[---FIGURE 13 ABOUT HERE---] 

 7. GENERAL DISCUSSION 

 The results from Experiment 2 build on those from Experiment 1.  In both 

experiments, the stimuli consisted of context planes that were consistent with surfaces lit 

by lighting with a directional component.  They elicited patterns of lightness matches that 

                                                

8 Across bootstrap replications, the slopes for the local contrast effects ranged from .002 
to .005, for all monocular viewing conditions. 
9 Across bootstrap replications, the range of slopes for the geometric effects always 
included 0, from a minimum of -.002 to a maximum of .002, for all monocular viewing 
conditions.	  
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indicated that observers accounted for the presence of such lighting.  Observers’ matches 

also depended on the mean luminance of the contexts, suggesting they were accounting 

for differences in the intensity of the illumination. 

 In Experiment 2, the geometric cues in the stimuli were varied by changing the 

angle between the contexts.  In each experimental condition, there was a systematic 

change in the mean lightness match with a change in the tab orientation, which we 

summarized with fitted straight-line models.  Our analysis showed that the parameters of 

these lines could be written as the sum of two independent effects.  This pattern of results 

is consistent with the hypothesis that geometric cues and photometric cues independently 

affect different aspects of the illumination representation.   

Equivalent illumination models 

An important issue to consider is the choice of model for the matching data in 

Experiment 2.  The data show systematic deviations from a line, suggesting that a linear 

fit is an approximation.  Moreover, the luminance of an achromatic surface does not 

linearly depend on the angle between the surface normal and a purely directional light 

source, but varies with the cosine of the angle.  A more accurate way to account for the 

data would be to fit the parameters of an equivalent illumination model (EIM) (Brainard, 

Brunt, & Speigle, 1997; Boyaci, Maloney, & Hersh, 2003; Bloj et al., 2004; Brainard & 

Maloney, 2011).  This class of models provides a compact way to describe the 

relationship between the illumination, surface properties, and perception of the surfaces.  

Typically, a limited set of surfaces is presented to observers who report the appearance of 
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these surfaces.  The EIM is developed, and the parameters of the model are fit to the data.  

These parameters describe aspects of the illumination.  Importantly, the illumination 

derived from these models may not reflect the actual illumination of the stimuli, but 

rather the visual system’s hypothetical representation.  This representation can then be 

validated with responses to different stimuli. 

 Boyaci et al. (2003) and Bloj et al. (2004) successfully developed EIMs to 

account for the perception of lightness of slanted surfaces.  In their models, the 

illumination consisted of a diffuse ambient illuminant and a directional illuminant.  This 

kind of a model could in principle account for the data in Experiment 2.  Preliminary 

analysis of fitting EIMs with this parameterization of the illumination suggests that for 

our data, two ambient illuminant terms are necessary to account for the effect of the mean 

context luminance.  Changing the angle of the directional light source relative to the 

contexts can account for some of the deviations of the data from the linear fit.  Fitting the 

parameters of this kind of model could be informative about the interaction between 

photometric and geometric cues.  For example, imagine if a single value of a parameter 

corresponding to the directional component of the illumination can be used to fit the data 

within a context angle.  Conversely, imagine if a single parameter value corresponding to 

the effects of the illumination intensity can be used to fit the data for a pair of illuminants.  

Such an analysis would support the independence of the two cues’ effects.  Specifically, 

it could demonstrate that the photometric cues affect the illumination intensity, while the 

geometric cues affect the spatial layout of the illumination. 



 

 

91 

Relation to other studies 

Because our experimental stimuli were closely related to those in Gilchrist’s 

(1980) experiment, some comparison between the two is warranted.  In that study, 

matches made to equiluminant tabs also depended on their orientation.  However, the 

magnitude of that geometric effect was on the order of 4 Munsell steps, compared to the 

~.5 Munsell step effect in our Experiment 1.  The stimuli in Gilchrist’s experiment 

consisted of illuminated grayscale papers, while our stimuli were rendered on a computer 

screen.  It is possible that some image cues available in the illuminated paper stimuli 

modulate the effect of the tab orientation, and these image cues were not present in our 

rendered stimuli.   

Our effect sizes are more comparable to those found in a study Beck (Beck, 

1965), which replicated and extended an earlier study by Hochberg and Beck (1954).  In 

this experiment, a directional light source was placed perpendicular to and above a table.  

There was also trapezoidal card standing perpendicular to the table.  When viewed 

monocularly, this card appeared to lie flat on the table.  By waving a rod behind the card, 

the card appeared to change orientation and was perceived veridically. The change in 

orientation produced a change in lightness of about .5 Munsell steps.  Beck also measured 

the effect of local contrast by changing the table cover from black to white.  The effect of 

this manipulation was on the order of about 1 Munsell step. 
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Future directions 

More work on explaining the mechanisms that process photometric and geometric 

cues is needed.  Developing and testing an EIM will help clarify the behavior of these 

mechanisms and how they function.  Collecting data using different context angles and 

illumination, perhaps with asymmetric pairs, would provide a dataset to test the validity 

of such a model.   

A closer comparison of the differences between cues available in the rendered 

stimuli and cues in the colored paper and light bulb stimuli is also needed.  Applying the 

EIM to data collected from the paper stimuli could help explain the difference by relating 

the difference in image cues to a difference in the representation of the illumination. 
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8. Appendix 1 

8.1 Overview 

In Experiments 1 and 2, we used a matching paradigm to elicit observers’ 

responses.  Observers viewed a particular stimulus and adjusted a slider to indicate which 

Munsell chip most closely resembled the probe tab.  This response method is intuitive 

and easy to understand, and observers can perform many trials in a session, allowing us 

to collect data across different conditions.   

In a separate control experiment, we tested a different group of observers using a 

two-alternative forced-choice (2AFC) version of the experiment.  As with Experiments 1 

and 2, we found that 1) under binocular viewing, the orientation of the tabs affected the 

perceived lightness of the tabs, and 2) under monocular viewing, the orientation of the 

tabs and the differences in their shapes did not produce a comparable effect on lightness.   

Both the 2AFC and matching versions of the experiment yielded similar results.  

We conclude that the effect of the geometric cues is robust across measurement 

paradigms.   

8.2 Methods 

8.2.1 Observers 

5 observers (1 male, 4 female, mean age = 24; labeled Observers A1-A5) 

participated in this experiment.  Each observer came to the lab for 3-5 sessions and was 

compensated for his or her time.  All observers were screened using the same methods 
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and criteria as those reported in Experiments 1 and 2.  None of the observers participated 

in either Experiment 1 or 2. 

8.2.2 Setup and Stimuli 

The stimuli were presented on the same stereo apparatus used in Experiments 1 

and 2.  Observers viewed the stimuli under both binocular and monocular viewing 

conditions.  For the monocular conditions, a piece of felt was taped over one of the 

openings in the faceplate, and the stimuli were rendered just as in the binocular 

conditions.  The stimuli were as in Experiments 1 and 2, except for the changes detailed 

below. 

The contexts were 210 mm x 200 mm (30.74 x 29.34 DVA) and rendered at a 90° 

angle.  They consisted of 116 individual polygons each.   The top context10 consisted of 

luminances in the range [15.89, 228.39] cd/m2.  The bottom context’s luminances were in 

the range [0.58, 8.66] cd/m2.  The 116 luminances per context were drawn with equal log 

spacing. 

[---FIGURE A1 ABOUT HERE---] 

Instead of a probe tab, two 35 mm x 35 mm (5.25 x 5.25 DVA) square patches 

were rendered near the center of the stimulus along the ridge between the two contexts 

(Figure A1).  One patch was always rendered to lie flat in the plane of a context, and the 
                                                

10 Due to a programming error, these values were not the same for Observer A4.  For that 
observer, the top context luminances were in the range [17.46, 261.86] cd/m2, and the 
bottom context luminances were in the range [0.63, 9.45] cd/m2. 
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other was rotated 90°	  out	  of	  the	  plane	  of	  the	  same	  context.	  	  The	  patches	  could	  take	  on	  

any	  value11	  between	  0.58	  and	  238.39	  cd/m2.	  	  The	  centers	  of	  the	  patches	  were	  82.6	  

mm	  apart	  from	  each	  other	  in	  the	  horizontal	  direction.	  

8.2.3 Procedure 

On each trial, one of the two patches was designated the reference patch.  Its 

luminance12 was fixed at one of four values: [1.23, 5.53, 24.91, 112.28] cd/m2.  The 

luminance of the other match patch was adjusted via a 1-up 1-down staircase procedure 

(Levitt, 1971) to estimate a luminance that was perceived to be equal to the reference 

patch luminance (point of subjective equality, or PSE).  This resulted in a total of 16 

interleaved staircases in each block (2 contexts x 2 reference patch orientations x 4 

reference luminances).  Whether the reference or the match was the patch on the left was 

randomly chosen on every trial. 

There were 800 trials per block (16 staircases x 50 trials per staircase).  Observers 

were tested in three blocks: one binocular block and two monocular blocks, in random 

order. 

8.3 Results 

The data from each staircase were fit with a logistic function using routines from 

the Palamedes MATLAB toolbox (Prins & Kingdom, 2009).  PSEs were estimated from 

                                                

11 These values were 0.63 and 261.86 cd/m2 for Observer A4. 
12 For Observer A4, these values were [1.34, 6.04, 27.29, 123.23] cd/m2. 
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the fitted function as the level of the match patch required for a 50% probability of 

responding “match lighter than reference”.   

PSEs for two observers are plotted in Figure A2, and all the data can be found in 

the supplemental materials online at 

http://color.psych.upenn.edu/supplements/lightness_photo_geo/.  Each point plots the 

reference patch luminance and corresponding PSE from each staircase.  The blue 

symbols represent data from the binocular condition.  The red and green symbols 

represent the data from the monocular conditions.  The different shapes within a group of 

colored symbols represent the orientation of the reference patch.  Points that fall along 

the diagonal line show conditions where there was no effect of the geometric cues.  For 

each observer, the data were combined across the top and bottom contexts and plotted so 

that points lying above the diagonal show an effect of the geometry cues on lightness in 

the expected direction.  

[---FIGURE A2 ABOUT HERE---] 

The differences between conditions were small, as can be seen by the tight 

clustering of the data.  We quantified the effect of the geometric cues by taking the 

median Euclidian distance of the data points from the diagonal line.  The median distance 

for the binocular data ranged from 0.07 to 0.18 across observers.  The median distance 

for the monocular data ranged from -.005 to 0.02.  A Wilcoxon signed-rank test showed 
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that the binocular data was significantly different from the mean monocular data, p < 0.05 

for all observers.  The monocular data was not different from the diagonal.
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9. Appendix 2 

9.1 Overview 

The magnitudes of the geometric cue effects on lightness were on the order of half 

a Munsell step.  This effect size is about 20% of those found in an previous experiment 

using similar stimuli by Gilchrist (1980; but see Beck, 1965).  The stimuli in the Gilchrist 

(1980) experiment were illuminated papers, whereas ours were rendered on a computer 

screen, and this difference in the stimuli might account for the difference in effect size.  

Differences in the perception of slanted surfaces have been reported in the literature, 

depending on whether the surfaces were made of paper/cardboard or rendered on a 

stereoscopic display (e.g., Van Ee, Banks, & Backus, 2001).  Typically, observers’ 

perceived surface slants deviate from their actual values and are rotated toward the plane 

spanned by the fronto-parallel surface of the monitor.   

If this misperception of surface slant affects our stimuli, then all the contexts and 

probe tabs are being “flattened” into the plane of the monitor.  This would result in 

smaller perceived angles between the contexts and the tabs.  For example, the angle 

between in-plane and out-plane tabs in Experiment 1 was rendered to be 90°.  If both the 

contexts and the tabs are pulled toward the monitor plane, this angle will be smaller than 

90°.  A smaller angle might be the cause of a smaller effect of the scene geometry on 

lightness.   



 

 

99 

To check whether the misperception of surface slant could account for the 

difference in effect size, we tested observers on a slant-matching task.   In this 

experiment, the observers from Experiment 2 indicated their perceived slants of the two 

contexts and various probe tab orientations.  In most cases, observers’ perception of slant 

was not veridical, and was pulled in the direction of the fronto-parallel plane.  However, 

the slants were perceived to be 70-80% of their actual values.  This small deviation from 

the rendered values is unlikely to account for the large difference in lightness.  In 

addition, flattening the stimuli into the monitor plane produces stimuli that are more 

similar to the 180° context stimuli.  The pattern of lightness matches for the other context 

angles does not closely resemble the matches in the 180° condition.  Thus we conclude 

that the misperception of slant due to the rendered stimuli’s presentation on a monitor 

cannot account for the difference in effect size. 

9.2 Methods 

9.2.1 Observers 

The five observers from Experiment 2 participated in this experiment.  The 

conditions of this experiment were randomly interleaved with the conditions in 

Experiment 2. 

9.2.2 Setup and Stimuli 

The stimuli were presented on the same stereo apparatus used in Experiments 1 

and 2.  The same context angles and probe tabs used in Experiment 2 were presented in 
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this experiment.  The luminance of the probe tab was always set to its maximum value, 

238.39 cd/m2.  The rendered illuminants for the top and bottom contexts were [238.39 

8.66] cd/m2, corresponding to the largest difference in mean context luminance. 

The monitor in the plywood chamber located to the right of the observer 

displayed a green circle, 50 mm in diameter.  This diameter was marked with a thin white 

line, which could be rotated around the center of the circle.  At the beginning of each 

trial, this line was reset to its horizontal position.  Instructional text appeared above the 

circle.	  

9.2.3 Procedure 

Observers were asked to view the stimuli and imagine what they would look like 

when viewed from the left side.  Their task was to match the slant of the various surfaces 

in the stimulus.  On each trial, the observer read the text at the top of the monitor in the 

plywood chamber.  The text indicated whether the observer should match the slant of the 

top context, bottom context, or probe tab.  Observers rotated the line in the green circle 

until it matched the slant of the relevant surface.  They used a Logitech gamepad to rotate 

the line and enter their response.  Lines rotated counterclockwise were recorded as 

positive angles, and lines rotated clockwise were recorded as negative angles. 

Observers were tested in three experimental blocks.  In each block, only one 

context angle was presented (45°, 90°, or 180°).  Each probe tab was presented three 
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times at each possible orientation.  The order of surfaces to be matched was randomized 

within a block.   

9.3 Results 

The naming convention for the orientations of the surfaces is shown in Figure A3.  

Angles are defined relative to the horizontal zero plane.  Unlike the naming convention in 

Experiment 2, the zero plane is not defined as a vector extending out from the center of 

the stimuli.  Rather, it is the entire horizontal plane through the center of the stimuli. 

[---FIGURE A3 ABOUT HERE---] 

Before further analysis, the data were first processed in the following manner to 

be consistent with the angle naming convention.  First, coplanar surfaces are defined as 

having the same angle.  As a result, rotations greater than +/- 90°	  were	  rotated	  180°.	  	  

Thus	  a	  recorded	  response	  of	  120°	  became	  -‐60°.	  	  Second,	  on	  trials	  where	  the	  tab	  or	  

context	  to-‐be-‐matched	  was	  rendered	  to	  lie	  in	  the	  fronto-‐parallel	  plane,	  the	  sign	  of	  

the	  responses	  were	  fixed.	  	  If	  the	  tab/context	  was	  below	  the	  zero	  plane,	  the	  sign	  of	  

the	  response	  was	  made	  to	  be	  positive,	  and	  if	  the	  tab/context	  was	  above	  the	  zero	  

plane,	  the	  sign	  of	  the	  response	  was	  made	  to	  be	  negative.	  

Matches for two observers from the 90° context angle condition are plotted in 

Figure A4, and all the data can be found in the online supplemental material at 

http://color.psych.upenn.edu/supplements/lightness_photo_geo/.  The black diagonal line 

is the unity line.  Points that fall on this line are veridical matches.  The blue line is the 
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best straight-line fit to the data through the origin.  The slope of the blue line was taken as 

a measure of the observer’s slant misperception.  Deviations of this slope from 1 indicate 

some misperception of the surfaces.  The closer the blue line is to a horizontal line, the 

more the surfaces are perceived to lie in the fronto-parallel plane.  

[---FIGURE A4 ABOUT HERE---] 

The slopes of the best fit lines ranged from 0.32 to 0.98.  Across observers, the 

mean slopes for the 45°, 90°, and 180° context angle conditions were 0.67, 0.77, and 

0.86.  The mean slopes for each observer across context angles ranged from 0.66 to 0.87.  

On average, observers perceived the slants of the surfaces in the stimuli at about 77% of 

the actual rendered slants. 
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FIGURES 

 

 

Figure 1: Figure reproduced from Gilchrist (1977).  The left panel shows the 

arrangement of the papers in perspective.  A black tab lies coplanar with a white sheet of 

paper, and a white tab lies coplanar with a black sheet of paper.  The right panel shows 

the arrangement of the papers when viewed monocularly from the front, as well as the 

relative luminance of each surface.  The tabs are illuminated to be equiluminant.
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Figure 2: Example stimuli from Experiment 1.  Top panel, front view of stimuli.  The 

white tab is the probe tab.  The left image shows the contexts illuminated by the [45.44 

45.44] cd/m2 illuminant pair.  The right image shows the contexts illuminated by the 

[238.39 8.66] cd/m2 illuminant pair.  Bottom panel, schematic side view of stimuli.  The 
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solid lines represent the context planes, and the dotted lines the possible orientations of 

the tab. Note that the colors in the figure have been adjusted to increase visible contrast 

and are not accurate replications of the stimuli. 
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Figure 3: Bird’s-eye-view schematic of stereoscopic setup.  Two LCDs independently 

project light via mirrors to the observer’s eyes.  The LCDs are hidden from the observer 

via baffles and a faceplate.  Observers turn to their right to make a response, using a 

Munsell scale inside the plywood chamber. 



 

 

107 
 

0

5

10
45.44 − 45.44

 

 

Upper context, in−plane
Upper context, out−plane
Lower context, in−plane
Lower context, out−plane

0

5

10
78.96 − 26.15

M
un

se
ll 

ch
ip

 re
sp

on
se

0

5

10
137.20 − 15.05

0 2 4 6
0

5

10
238.39 − 8.66

Log tab luminance (cd/m2)



 

 

108 

Figure 4: Group matching curves from the binocular viewing conditions of Experiment 

1.  Each panel shows data for one set of context illuminants, whose intensities in cd/m2 

are given by the numbers above each panel.  Matches to the probe tab are plotted as a 

function of the tab luminance.  Open symbols are for in- and out-plane tabs relative to the 

upper light context, closed symbols are for in- and out-plane tabs relative to the lower 

dark context.  Circles show the data for in-plane tabs, triangles show data for the out-

plane tabs.  Error bars are +/- 1 SEM. 
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Figure 5: The magnitudes of the photometric contrast effect and the geometric effects 

from both contexts are plotted as a function of the difference of illuminant across context 

planes.  The data come from the binocular viewing conditions of Experiment 1.  The 

different colors represent different effects.  The lines are the best linear fits through the 

origin for each effect.  Error bars are +/- 1 standard deviation from  the 200 bootstrap 

replications of the data. 
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Figure 6: Group matching curves from the left eye monocular viewing conditions of 

Experiment 1.  Plot conventions follow those from Figure 4. 
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Figure 7: Group matching curves from the right eye monocular viewing conditions of 

Experiment 1.  Plot conventions follow those from Figure 4. 
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Figure 8: The magnitudes of various effects from the monocular viewing conditions of 

Experiment 1 are plotted as a function of the difference of illuminant across context 

planes.  Left panel, left eye condition; right panel, right eye condition.  The plot 

conventions follow those in Figure 5. 
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Figure 9: Example of stimuli from Experiment 2.  Top row, front view of stimuli.  The 

probe tab is the white trapezoid in each stimulus.  Bottom row, side view of stimuli.  

Solid lines represent the contexts.  The angle between each set of contexts is noted next 

to each side view panel.  Note that the colors in the figure have been adjusted to increase 

visible contrast and are not accurate replications of the stimuli. 
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Figure 10: Diagram of the naming convention for tab angles, side view.  0° is defined as 

the horizontal plane pointing towards the observer.  Tabs (dashed lines) rotated above this 

plane have a negative angle.  Tabs rotated below this plane have a positive angle.  Note 

that this convention only applies to the tab angles.  The context angle refers to the angle 

between the two context planes and does not follow this convention. 
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Figure 11: Top panel, an example of group mean matching curves (N = 5) from 

Experiment 2.  Matches are plotted as a function of the tab luminance.  The data in this 

figure come from the 90° context angle, with illuminant intensities [238.39 8.66] cd/m2.  
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Each symbol represents a different tab angle.  Open symbols are for tabs that lie in front 

of the upper light context, and closed symbols are for tabs that lie in front of the lower 

dark context. Error bars are +/- 1 SEM.  Bottom panel, photometric and geometric effect 

sizes for the binocular conditions in Experiment 2 that are analogous to conditions in 

Experiment 1.  The lines are the best fit lines through the origin.  The match data were 

bootstrapped 200 times across observers with replacement.  For each set of bootstrapped 

data, the effect sizes were calculated, and the error bars are +/- 1 standard deviation of 

these bootstrapped effect sizes.
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Figure 12: Mean matches from Experiment 2 as a function of tab angle.  Each column 

shows data from one context angle.  Each row shows data from one pair of illuminants, 

and the numbers at the top of each row are the intensities of the illuminants.  The match 

data in were bootstrapped across observers with replacement, and the error bars are +/- 1 

standard deviation of the mean matches for each tab angle.  The dark blue lines are the 
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best fit lines for each panel.  The red lines are the best fit lines whose parameters are the 

sum of a row effect and a column effect.  The light blue lines are the best fit lines to the 

bootstrapped data of each panel, and provide a sense of the variability of the individual 

panel best fit lines.
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Figure 13: Photometric and geometric effect sizes for the 45° and 180° context angles in 

the monocular viewing conditions are plotted as a function of the difference of illuminant 

across the context planes.  The lines are the best fit lines through the origin. Error bars are 
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+/- 1 standard deviation across the computed effect size values from the 200 bootstrapped 

replications of the data. 
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Figure A1: Example of stimuli from 2AFC experiment.  The two tabs are the large white 

and black squares that lie in the upper half of the stimulus, near the ridge between the 

upper and lower contexts.  Note that the colors of the stimuli have been adjusted to 

increase visible contrast, and are not indicative of the actual luminances used. 
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Figure A2: Two observers’ data from the 2AFC experiment.  Points that lie on the 

diagonal line in each panel are veridical matches between the adjustable match patch and 

the reference patch.  Points that lie above the diagonal indicate an effect of the scene 

geometry in the expected direction.  For all observers, the blue symbols (for the binocular 

conditions) were above the diagonal, but the red and green symbols were not. 
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Figure A3: Angle convention for angle match experiment.  Observers rotated a line that, 

at the beginning of each trial, was lined up with the thick horizontal line in the figure 

(0°).  If they rotated the line counter clockwise, the response was recorded as a positive 

angle up to 90°.  For clockwise rotations, the response was negative.  Rotations past 90° 

were rotated 180° in the analysis. 
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Figure A4: Angle matching data from two observers in the 90° context angle condition.  

In each panel, points that fall on the black diagonal line are veridical matches to the angle 

of the tab or context.  The blue line is the best fit line through the origin, and its slope is 

displayed above each panel.  Error bars are +/- 1 SEM across trials. 
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Tab vertices in rendered 3D scene space 
 
Experiment 1 
 

 X Y Z 
Top context, in-plane -17.5 

-17.5 
17.5 
17.5 

24.7 
0.0 
0.0 
24.7 

-24.7 
0.0 
0.0 

-24.7 
Top context, out-plane -14.8 

-17.5 
17.5 
18.3 

24.7 
0.0 
0.0 
24.7 

24.7 
0.0 
0.0 
24.7 

Bottom context, out-plane -14.5 
-17.5 
17.5 
18.3 

-24.7 
0.0 
0.0 

-24.7 

24.7 
0.0 
0.0 
24.7 

Bottom context, in-plane -17.5 
-17.5 
17.5 
17.5 

-24.7 
0.0 
0.0 

-24.7 

-24.7 
0.0 
0.0 

-24.7 
 
Experiment 2 
 
-157.5° -17.5 

17.5 
17.5 
-17.5 

0.0 
0.0 
24.7 
24.7 

0.0 
0.0 

-59.6 
-59.6 

-135.0° -17.5 
17.5 
18.1 
-15.5 

0.0 
0.0 
23.7 
23.7 

0.0 
0.0 

-23.7 
-23.7 

-90.0° -17.5 
17.5 
18.5 
-14.0 

0.0 
0.0 
23.0 
23.0 

0.0 
0.0 
0.0 
0.0 

-45.0° -17.5 
17.5 
18.8 
-12.8 

0.0 
0.0 
22.3 
22.3 

0.0 
0.0 
22.9 
22.5 

-22.5° 
 

-17.5 
17.5 

0.0 
0.0 

0.0 
0.0 
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(-22.5°, continued) 19.2 
-11.0 

21.4 
21.4 

52.5 
52.5 

22.5° -11.0 
19.3 
17.5 
-17.5 

-21.5 
-2.5 
0.0 
0.0 

52.5 
52.0 
0.0 
0.0 

45.0° -12.9 
18.7 
17.5 
-17.5 

-22.3 
-22.4 
0.0 
0.0 

22.5 
22.5 
0.0 
0.0 

90.0° -14.1 
18.4 
17.5 
-17.5 

-23.0 
-23.1 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

135.0° -15.5 
-18.0 
17.5 
-17.5 

-23.7 
-23.8 
0.0 
0.0 

-23.7 
-23.7 
0.0 
0.0 

157.5° -17.5 
17.5 
17.5 
-17.5 

-24.7 
-24.7 
0.0 
0.0 

-59.6 
-59.6 
0.0 
0.0 

 

Table 1: XYZ coordinates of probe tabs in rendered 3D scene space, Experiments 1 and 

2.  The coordinates are in mm, with respect to the origin located in the center of the 

screen at the plane of fixation.
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General Discussion 

The three experiments in this thesis explored perceptual integration and 

segregation in audition and vision.  In Chapter 1, we investigated the effects of similarity 

between target tones and noise tones in an informational masking paradigm.  In a 

masking paradigm where listeners should be able to segregate the target from the masker, 

listeners seem to be unable to do so.  The role of perceptual similarity in this integration 

was clarified by two experiments that systematically measured and manipulated the 

stimulus dimensions of similarity.  Rather than a basic stimulus dimension like amplitude 

or frequency, similarity appeared to be related to a higher order stimulus dimension—the 

amount of frequency change over time.   

In Chapter 2, we explored the segregation of luminance distributions and their 

interaction with spatial cues.  Observers identified scenes consisting of patches drawn 

from one or two distributions.  Observers successfully integrated information from 

multiple patches, and randomization in the location of the patches affected performance, 

but irrelevant geometric cues did not.  We were interested in using these data to test 

theories about the use of photometric and geometric image cues in illuminant region 

segregation.  Evidently, the specific choice of task has a large effect on how observers 

process these cues. 

Finally in Chapter 3 we continued to examine the use of photometric and 

geometric cues in illuminant region segregation through an indirect task.  Observers 
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made lightness matches to patches in scenes rendered to be consistent with lighting that 

had a directional component, in a scene with two illumination regions.  Observers 

accounted for changes in the illumination, and their data suggested that the two types of 

cues affected different aspects of how the visual system accounts for the illumination in 

the scene. 

These experiments provide new insights into how perceptual systems handle 

complex stimuli.  Perceptual integration and segregation can depend on many aspects of 

the stimuli and task.  The experiments in this thesis also demonstrate some of the 

difficulties in designing experiments involving these complex functions.
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