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Synthesis and Self-Assembly of Polymeric Hybrid Nanomaterials

Abstract
The ability to construct functional polymeric hybrid nanomaterials is critically important for many
applications. In this thesis I present the synthesis of amphiphilic polymers of various compositions including
insulating coil-coil, semiconducting rod-coil, semiconducting brush-coil, and bioconjugated rod-coil
polymers. The self-assembly of these polymers is presented along with methodologies for controlling the
organization of nanomaterials and polymers towards the construction of functional hybrid materials with
controllable structures and properties.

In this thesis, an analysis of the conditions necessary to stabilize the cooperative self-assembly of nanoparticles
and amphiphilic block copolymers into a unique cavity-like structure is presented. This work reveals the
mechanism behind the formation of the structure and presents experimental and theoretical phase maps that
show the conditions required to stabilize this structure for a range of nanoparticle sizes. These self-assembly
guidelines provide an essential foundation for the generation of functional composites with predesigned
structures and properties.

A high-yield click chemistry synthesis of an amphiphilic conjugated block copolymer with systematic block
lengths that self-assembles into well-defined nanofibers whose length can be effectively controlled by varying
the relative block-lengths is also presented. Furthermore, superstructures of bundled and branched nanofibers
with tunable shapes, lengths, and densities were fabricated through hierarchical self-assembly. This work
demonstrates that complex superstructures of organic semiconductors can be fabricated via bottom-up self-
assembly approach using preformed nanofibers as building blocks.

The solution phase self-assembly of an amphiphilic conjugated brush copolymer into an elongated
nanoribbon structure is also reported. The subtle effects of hydrogen bonding and pi-pi stacking interactions
were investigated and found to be critical in the formation of this unusual structure which has not been
reported for amphiphilic conjugated block copolymers and is important because it could offer insight into
how internal packing structures affect the electronic properties of the polymer.

The synthesis and self-assembly of a bio-conjugated rod-coil block copolymer into distinct nanostructures is
also presented. These functional bio-conjugated polymers combine the optoelectronic properties of
semiconducting polymers with the bio-recognition properties of DNA and is important because it offers a
new approach to forming semiconducting nanostructures with controllable geometries by self-assembly and
to interface with biological molecules.
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ABSTRACT 

 

SYNTHESIS AND SELF-ASSEMBLY OF POLYMERIC HYBRID 

NANOMATERIALS 

 

Amanda C. Kamps 

So-Jung Park  

Mike Fryd 

 

The ability to construct functional polymeric hybrid nanomaterials is critically important for many 

applications.  In this thesis I present the synthesis of amphiphilic polymers of various compositions 

including insulating coil-coil, semiconducting rod-coil, semiconducting brush-coil, and bioconjugated rod-

coil polymers.  The self-assembly of these polymers is presented along with methodologies for controlling 

the organization of nanomaterials and polymers towards the construction of functional hybrid materials 

with controllable structures and properties.   

In this thesis, an analysis of the conditions necessary to stabilize the cooperative self-assembly of 

nanoparticles and amphiphilic block copolymers into a unique cavity-like structure is presented.  This work 

reveals the mechanism behind the formation of the structure and presents experimental and theoretical 

phase maps that show the conditions required to stabilize this structure for a range of nanoparticle sizes.  

These self-assembly guidelines provide an essential foundation for the generation of functional composites 

with predesigned structures and properties.    

A high-yield click chemistry synthesis of an amphiphilic conjugated block copolymer with systematic 

block lengths that self-assembles into well-defined nanofibers whose length can be effectively controlled 

by varying the relative block-lengths is also presented.   Furthermore, superstructures of bundled and 

branched nanofibers with tunable shapes, lengths, and densities were fabricated through hierarchical self-
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assembly.  This work demonstrates that complex superstructures of organic semiconductors can be 

fabricated via bottom-up self-assembly approach using preformed nanofibers as building blocks.   

The solution phase self-assembly of an amphiphilic conjugated brush copolymer into an elongated 

nanoribbon structure is also reported.  The subtle effects of hydrogen bonding and pi-pi stacking 

interactions were investigated and found to be critical in the formation of this unusual structure which has 

not been reported for amphiphilic conjugated block copolymers and is important because it could offer  

insight into how internal packing structures affect the electronic properties of the polymer.  

The synthesis and self-assembly of a bio-conjugated rod-coil block copolymer into distinct 

nanostructures is also presented.  These functional bio-conjugated polymers combine the  

optoelectronic properties of semiconducting polymers with the bio-recognition properties of DNA 

and is important because it offers a new approach to forming semiconducting nanostructures with 

controllable geometries by self-assembly and to interface  with biological molecules. 
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images of PHT20-b-PEG16 (black) PHT20-b-PEG48 (red), and PHT20-b-PEG108 

(green) in aqueous solutions at concentrations of ~0.1 mg/mL.  (B) DLS data 

showing the hydrodynamic diameter of PHT20-b-PEGn aggregates in water with 

varying fPHT; fPHT = 0.41 (green), fPHT = 0.61 (red), and fPHT = 0.82 (black).   

 

Figure 3.10.  TEM image of assemblies formed from a mixture of PHT20-b-

PEG16, PHT20-b-PEG48, and PHT20-b-PEG108 in a ratio of 1:1:1.  The self-

assembly was induced by the slow addition of water to a 0.1 mg/mL polymer 

solution (THF) and subsequent dialysis into water. 

 

Figure 3.11.  Absorption spectra of PHT20-b-PEGn directly dissolved in (A) 

chloroform, (C) water, (E) methanol at a concentration of 0.1 mg/mL.  PL spectra 

of PHT20-b-PEGn directly dissolved in (B) chloroform, (D) water, (F) methanol at 

a concentration of 0.1 mg/mL.  Photoluminescence spectra were collected using 

an excitation wavelength of 380 nm.   
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Figure 3.12.  (A)  Absorbance and (B) PL spectra of click-PHT20-b-PEG48 

(dashed lines) and click-POT15-b-PEG48 (solid lines) synthesized by click 

chemistry and dissolved in different solvents at a concentration of 0.1 mg/mL.  PL 

spectra were collected using an excitation wavelength of 380 nm.  Pictures of 

click-POT15-b-PEG48 (0.1 mg/mL) solutions under ambient light (top-left) and 

under UV light (top-right) are given above the spectra.  (C)  Absorbance and (D) 

PL spectra of anionic-POT15-b-PEG38 (solid lines) synthesized by anionic 

polymerization at a concentration of 0.35 mg/mL  and excited at their respective 

excitation maxima (THF (black, λexc= 419 nm), methanol (red, λexc= 364 nm), and 

water (blue, λexc= 396 nm).  Pictures of anionic-POT15-b-PEG38 under UV light 

(bottom right) is shown below the emission spectra. 

 

Figure 3.13.  PL spectra of PHT20-b-PEG108 in its pristine state (dashed lines) and 

after 4 hours of oxidation with m-CPBA (solid lines) when dissolved in methanol 

(red) and chloroform (black).  PL spectra were collected using an excitation 

wavelength of 380 nm. 

 

Figure 3.14.  (A) TEM image of PHT200 nanofibers in anisole.  (B) Pictorial 

depiction of PHT200 nanofibers.  (C) TEM image of PHT200 nanofiber bundles 

encapsulated in PHT20-b-PEG108 in methanol.  (D) Pictorial description of 

superstructure (fiber bundles) formed in methanol.  (E)  Pictures of PHT200 

nanofibers in 99% methanol:1% anisole with increasing amounts of PHT20-b-

PEG108.   

 

Figure 3.15.  (A)  Pictorial depiction of the branched superstructure composed of 

PHT200 nanofibers and PHT20-b-PEG108.  TEM images of (B) a branched structure 

composed of PHT200 nanofibers decorated with low density PHT20-b-PEG108 

nanofibers formed at a molar ratio of 60:1 (PHT20-b-PEG108:PHT200), (C) a high 

density branched structure composed of PHT200 nanofibers decorated with PHT20-

b-PEG108 nanofibers at a molar ratio of 480:1 (PHT20-b-PEG108:PHT200), and (D) 

a branched structure composed of PHT200 nanofibers decorated with longer 

PHT20-b-PEG48 nanofibers formed at a molar ratio of 250:1 (PHT20-b-

PEG48:PHT200).   

 

Figure 3.16.  TEM images of polymer aggregates formed by the self-assembly of 

(A) PHT200 homopolymers and PHT20-b-PEG108 block copolymers and (B) PHT20 

homopolymers and PHT20-b-PEG108 block copolymers.  The molar ratio between 

PHT20-b-PEG108 and PHT200 was 46:1 with a PHT200 concentration of 0.1 mg/mL.  

The molar ratio between PHT20-b-PEG108 and PHT20 was 10:1 with a PHT20-b-

PEG108 concentration of 0.1 mg/mL.   
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Figure 3.17.  Absorption spectra of PHT20-b-PEG108, PHT200, and their 

superstructures along with the corresponding TEM images.  (A) PHT200 

nanofibers in anisole (10 mg/mL).  (B)  PHT20-b-PEG108  in methanol (0.1 

mg/mL).  (C)  Low density branched nanofibers composed of PHT200 nanofibers 

decorated with PHT20-b-PEG108 nanofibers at a molar ratio of 60:1 (PHT20-b-

PEG108:PHT200) in water.  (D)  High density branched nanofibers composed of 

PHT200 nanofibers decorated with PHT20-b-PEG108 nanofibers at a molar ratio of 

360:1 (PHT20-b-PEG108:PHT200) in water.  (E)  PHT200 nanofiber bundles 

encapsulated in PHT20-b-PEG108 in methanol. 

 

Figure 3.18.  Absorption spectra of PHT350 J-aggregates, PHT200 H-aggregates 

and their encapsulated superstructures along with the corresponding TEM images.  

(A) PHT350 nanofibers in toluene (2 mg/mL). (B) PHT200 nanofibers in anisole (10 

mg/mL).  (C)  Branched nanofibers composed of PHT350 J-aggregate nanofibers 

decorated with PHT20-b-PEG108 nanofibers at a molar ratio of 120:1 (PHT20-b-

PEG108:PHT350) in water.  (D)  PHT350 J-aggregate nanofiber bundles 

encapsulated in PHT20-b-PEG108 at a molar ratio of 120:1 (PHT20-b-

PEG108:PHT350) in methanol. 

 

Figure 3.19.  Absorption spectra of PHT350 J-aggregates before and after 

sonication along with the corresponding TEM images.  (A)  Pristine PHT350 J-

aggregates.  (B)  PHT350 J-aggregates after 2 minutes of sonication. 
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Figure 4.1.  
1
H-NMR spectra of 3-bromomethylthiophene. 

 

Figure 4.2.  
1
H-NMR spectra of TOTT.  

 

Figure 4.3.  
1
H-NMR spectra of Br2-TOTT.  

 

Figure 4.4.  
1
H-NMR spectra of ethynyl-PTOTT40. 

 

Figure 4.5.  (A)  
1
H-NMR spectra of PTOTT40-b-PEG108.  (B)  GPC spectrum 

(RID trace) of (A) purified PTOTT40-b-PEG108 (Blue), (B) crude PTOTT40-b-

PEG108 (Black), (C) PTOTT40 homopolymer (Red), and (D) PEG108 homopolymer 

(Green). 
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Figure 4.6.  (A) Chemical structure of PTOTT40-b-PEG108 and schematic 

depiction of the self-assembly of PTOTT-b-PEG into nanoribbons from the 

common solvent methanol.  (B),(C) TEM images of 2 M PTOTT40-b-PEG108 in 

water self-assembled from methanol.  (D) and (E) AFM height images of  2 M 

PTOTT40-b-PEG108 in water self-assembled from methanol and deposited on a 

silicon wafer. 

 

Figure 4.7.  Schematic depiction of the two possible internal packing structures of 

PTOTT-b-PEG nanoribbons; (A) interdigitated packing of PTOTT and (B) 

parallel packing of PTOTT.  (C) TEM images of broken PTOTT-b-PEG 

nanoribbons showing the double layered nature of the nanoribbon.   

 

Figure 4.8.  Cryo-TEM images (A, B) and SEM images (C, D) of 2 M PTOTT-

b-PEG nanoribbon assemblies in water that were self-assembled from methanol. 

 

Figure 4.9.  (A)  Absorbance and (B) PL spectra of 2 M PTOTT40-b-PEG108 

dissolved in chloroform (red), methanol (black) and self-assembled into 

nanoribbons in water from methanol (blue).  Pictures of solutions under ambient 

light (top-left) and under UV light (top-right) are given above the spectra. 

 

Figure 4.10.  Absorbance spectra and corresponding TEM images of PTOTT40-b-

PEG108 assemblies in water that were self-assembled from methanol at different 

concentrations of PTOTT40-b-PEG108; (A) 0.5 M, (B) 2 M, (C) 5.4 M, and 

(D) 10 M. 

 

Figure 4.11.  Absorption spectra and corresponding TEM images of 2 M 

PTOTT-b-PEG block copolymer nanoribbon assemblies at a series of different 

water/methanol (v/v) contents: (A) 9 % water, (B) 23 % water after overnight 

incubation, (C) 56 % water, and (D) 100 % water.   

 

Figure 4.12.  Absorption spectra and corresponding TEM images of 2 M 

PTOTT40-b-PEG108 assemblies in water that were self-assembled from different 

common solvents; (A)  methanol, (B) 2-propanol, (C) ethanol,  (D) THF, (E) 

DMF,  and (F) acetonitrile. 

 

Figure 4.13.  TEM images of 2 M PTOTT40-b-PEG108 assemblies in water that 

were self-assembled from different common solvents; (A) 100 % DMF.  (B) 50% 

DMF/methanol (v/v), (C) 100 % methanol, (D) 100 % acetonitrile, (E) 50% 

acetonitrile/methanol (v/v), and (F) 100 % methanol. 
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Figure 4.14.  Absorption spectra and corresponding TEM images of 2 M 

PTOTT-b-PEG block copolymer nanoribbon assemblies (A) before, and (B) after 

heating at    45 C for 15 hours.   

 

Figure 4.15.  Absorption spectra and corresponding TEM images of PTOTT40-b-

PEG63 assemblies in water that were self-assembled from different common 

solvents; (A)  methanol, 429 nm  (B) THF, 470 nm (C) DMF, 484 nm  and (D) 

acetonitrile, 465 nm. 
 

Figure 4.16.  Absorption spectra and corresponding TEM images of 2 M 

PTOTT40 homopolymer assemblies in water that were self-assembled from 

different common solvents; (A)  methanol, 443 nm  (B) THF, 420 nm (C) DMF, 

494 nm  and (D) acetonitrile, 473 nm. 
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Figure 5.1.  15 % polyacrylamide gel stained with ethidium bromide; Lane 1: 

double stranded DNA-b-PTOTT block copolymer, Lane 2: double stranded DNA 

control. 

 

Figure 5.2.  (A) Chemical structure of PTOTT-b-DNA and schematic depiction 

of the self-assembly of PTOTT-b-DNA into vesicles.  (B,C) TEM images of 

PTOTT-b-DNA vesicles. 

 

Figure 5.3.   (A)  Absorbance and (B) PL spectra of 3.5  of PTOTT-b-DNA 

dissolved in DMF (black), and self-assembled into vesicles in water (blue).  PL 

spectra were collected using an excitation wavelength of 440 nm. Pictures of 

PTOTT-b-DNA solutions under ambient light (top-left) and under UV light (top-

right) are given above the spectra.  

 

Figure 5.4.  TEM images of PTOTT-b-DNA assemblies in water that were self-

assembled from DMF at different concentrations of PTOTT-b-DNA; (A) 1 M, 

(B) 4  M, (C) 7  , and (D) 18  . 

 

Figure 5.5.  TEM images of PTOTT-b-DNA assemblies in (A) water, (B) in 0.3 

M PBS, (C) self-assembled  into 0.1 M PBS, and (D,E) dialyzed back into water 

after being in 0.1 M PBS.   
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Figure 5.6.  Melting curve of a ds-DNA control (black) and ds-DNA-b-PTOTT in 

0.1 M PBS. 

 

Figure 5.7.  Tem images of PTOTT homopolymer assemblies in water that were 

self-assembled from DMF at different concentrations of PTOTT; (A) 1 , (B) 4 

,  (C) 7 , and (D) 18 . 

 

Figure 5.8.  TEM images of PTOTT-b-DNA with magnetic nanoparticles 

incorporated into the vesicle structure.   
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Chapter 1: Introduction 

1.1 Synthesis of Block Copolymers 

1.1.1   Living Radical Polymerization Techniques.  In general the control in living 

radical polymerizations is achieved via a fast initiation event which provides a constant 

concentration of growing polymer chains.  Another critical aspect of maintaining control 

in living radical polymerizations is the dynamic equilibrium between propagating radicals 

and dormant species.  Termination in controlled living radical polymerizations is 

suppressed because of the low concentration of active species and propagating radicals.  

The near instantaneous growth of all the polymer chains in controlled living 

polymerizations provides critical control over the polymer chain architecture and 

polydispersity (typically < 1.2).
1
   

The mechanism of living radical polymerization is very different from that of 

conventional radical polymerizations.  Conventional radical polymerizations are basically 

chain reactions with the sequential addition of monomer units to form propagating 

radicals.  Chains are initiated by radicals formed from an initiator adding to monomers.  

Chain termination occurs when the propagating radicals self-react via combination or 

disproportionation which results in polydispersities of >1.5 or >2.0 respectively. 

Both controlled living radical polymerizations and conventional radical 

polymerizations grow though initiation, propagation, and termination pathways.  

However, there are many key differences between the two techniques that aptly 

demonstrate the advantages of living radical polymerization techniques.  The first 

difference is that initiation is slow in conventional radical polymerizations whereas in 
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controlled living radical polymerizations the initiation is very fast.  Overall, the steady 

state of growing radicals is established by the activation-deactivation process in living 

radical polymerization techniques instead of the initiation-termination process used in 

conventional radical polymerizations.  Another key difference between the two 

techniques is that termination in conventional radical polymerization occurs between 

longer chains, whereas in controlled living radical polymerizations the chains all grow 

over time and termination rates decrease significantly with time due to the persistent 

radical effect.
1
   

 

 1.1.1.1 RAFT.  Reversible addition-fragmentation chain transfer (RAFT) 

polymerization was invented at CSIRO in the 1990s and gained popularity by 1998.
2
  The 

RAFT polymerization method is advantageous because it can be used with a majority of 

monomers (including (meth)acrylates, (meth)acrylamides, acrylonitrile, styrenes, dienes, 

and vinyl monomers)  and is tolerant of various functional groups and can therefore be 

run in aqueous or protic solvents.
3
  RAFT has also gained popularity because it is 

relatively simple to implement and is cost-effective relative to other technologies.  The 

success of a RAFT polymerization is dependent on the selection of a RAFT agent that is 

suitable for the monomer and the reaction conditions.  RAFT chain transfer agents are 

typically thiocarbonylthio compounds (Scheme 1) that are typically composed of a C=X 

double bond that is reactive toward radical addition.  The groups A and X are often either 

both CH2 or both S, and the Z group is chosen to give the chain transfer agent the 

appropriate reactivity to propagating radicals.  The R group is a homolytic leaving group 
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and the R-radical must also be capable of reinitiating polymerizations.
4
  The overall 

effectiveness of RAFT agents are determined by the R and Z substituents and have been 

extensively studied to provide guidelines for controlled RAFT polymerizations.
3, 5, 6

   The 

RAFT agent is chosen to ideally have all the living chains grow simultaneously because 

the equilibration of dormant and active chain ends is rapid with respect to propagation.   

The thiocarbonylthio groups present in the RAFT chain transfer agent are retained at 

the end of the polymers and allows for sequential synthesis of block copolymers and end-

functionalized polymers.
7, 8

  The thiocarbonylthio group can also be cleaved yielding 

thiol terminated polymers that can also be used as ligands for gold nanoparticles
9, 10

, for 

surface attachment
11

, or as building blocks for other syntheses
12

.   
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Scheme 1.  General mechanism of RAFT polymerization. 
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1.1.1.2  GRIM.  The Grignard metathesis method (GRIM) is a polymerization 

method first developed in 1999 by McCullough
13

 for the synthesis of highly regioregular 

poly(alkylthiophenes) with low polydispersities.  Compared to other earlier methods for 

synthesizing poly(thiophenes), such as Rieke
14

 and McCullough
13

, the GRIM method is 

advantageous because it is a facile method that does not require cryogenic temperatures 

or highly reactive  metals. GRIM is a transition metal catalyzed cross-coupling reaction.  

The polymerization proceeds through a catalytic cycle of transmetalation, reductive 

elimination, and oxidative addition (Scheme 2).  The polymer chain growth occurs by an 

insertion of one monomer at a time as shown in the reaction mechanism cycle and the 

Ni(dppp) moiety is incorporated into the polymer chain as an end group via the formation 

of a π-complex.
15

  The GRIM polymerization was originally thought of as proceeding by 

a step growth mechanism
16

, however more recent reports describe the GRIM method as 

proceeding by a chain-growth and living polymerization
15, 17

  Evidence for GRIM as a 

living polymerization is given by the fact that the monomer conversion is dependent on 

the molar ratio between the monomer and the nickel initiator,  and by the ability to grow 

different polymer blocks by sequential polymerization.
15

   

One of the main advantages of the GRIM method in regards to synthesis of 

amphiphilic block copolymers is the ease of end-group functionalization.  In-situ 

functionalization of poly(thiophenes) is achieved by adding a Grignard reagent to both 

terminate and end-group functionalize the reaction (Scheme 2).  A number of different 

Grignard reagenets (ethynyl, allyl, vinyl, phenyl) can be used to terminate the reaction.
18

  

Furthermore, the nature of the end capping reaction in which the end-group is formed 
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through a nickel- complex insures that the resultant polymer has only one functional 

end-group instead of two.  This in-situ end-capping capability of the GRIM 

polymerization method is very advantageous because it is critical for poly(thiophenes) 

use as building blocks for the synthesis of amphiphilic block copolymers.   
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Scheme 2.  General mechanism of GRIM polymerization and end-capping reaction. 
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1.1.1.3 ATRP.  Atom transfer radical polymerization (ATRP) is one of the most 

successful living radical polymerization methods especially in regards to the synthesis of 

styrenes, methacrylates, and a variety of other monomers.
19

  The ATRP process yields 

low polydispersity polymers whose molecular weight is determined by the relative ratio 

of monomer and inititiator concentrations.  ATRP is based on a copper halide/nitrogen 

ligand catalyst complex that establishes a reversible equilibrium between growing 

radicals and dormant species as shown in Scheme 3.  The persistent radical effect means 

that the majority of the growing polymer chains in ATRP are dormant species that grow 

due to the dynamic equilibrium between dormant species and growing radicals.
20

  The 

equilibrium is determined by the choice of the ligand and the ligand also provides 

increased solubility for the catalyst complex in the appropriate solvent.  The initiators 

used in ATRP must have a large initiation rate constant and are typically alkyl halides 

with resonance stabilizing substituents that can also be chosen for their end-group 

functionalization of the resultant polymer.   

One of the main advantages of ATRP is that the functionality and architecture of the 

polymer can be precisely controlled.  In particular, the initiator used in the ATRP process 

determines the end group of the polymer.  Thus functional initiators can be chosen to 

yield the appropriate end-group functionality on one end of the polymer.  The other end 

of the polymer consists of an alkyl halide group that can either be dehalogenated in a one-

pot process or transformed into other functionalities via a variety of nucleophilic 

substitution or electrophilic addition reactions.
21

  The halogen end-groups can also be re-

activated by an ATRP catalyst system and can be used as macroinitiators for further 
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polymerizations.  The precise control offered by ATRP polymerization method has been 

used to synthesize a multitude of polymers with various architectures,
22, 23

 such as block 

copolymers, star polymers, hyperbranched polymers, and also various functionalities that 

have been combined with other coupling methods such as click chemistry.
24-26

  Some of 

the many applications of these polymers include drug-delivery, electroactive materials, 

surfactants, coatings, adhesives, biomaterials, and other nanomaterials.
27
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Scheme 3.  General mechanism of ATRP. 
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1.1.2 Macroinitiation Methods.  One of the most widely used techniques for 

the synthesis of block copolymers is via the sequential addition of monomers.  This 

approach is typically called the macroinitiation method because the first polymer is used 

as a macroinitiator for the synthesis of the second polymer block.  In the macroinitiation 

approach, the second polymer length is controlled by adjusting reaction conditions such 

as time, temperature, and the monomer concentration.
28

  The macroinitiation approach 

can be used in conjunction with a number of the aforementioned radical polymerization 

methods (ie. ATRP, RAFT, and GRIM).
29

   The macroinitiation method cannot be used 

for all block copolymers and is limited to polymers with compatible polymerization 

mechanisms, reactivities, and solvent compatibilities.   

 

1.1.3 Coupling Methods.  Block copolymers can also be synthesized by 

coupling two functional homopolymers together via a covalent chemical reaction.  

Coupling methods are advantageous because the relative block-length of the block 

copolymer can be precisely controlled by the choice of parent homopolymers.  The 

choice of solvent is very important in coupling reactions because both homopolymers 

need to be well solvated, not aggregated, and accessible to each other for efficient 

coupling to occur.   

Some of the most commonly used coupling methods fall under the aptly named “click 

chemistry” category.  The term “click chemistry” was first introduced by Sharpless in 

2001 as a chemical philosophy referring to reactions that could quickly and reliably 

covalently bind two molecules together.
30

  Nowadays, click reactions have become 
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ubiquitous in the literature and more specifically refer to reactions with a high degree of 

selectivity, straightforward experimental set-ups, a tolerance to a variety of functional 

groups, quantitative yields, and minimal synthetic work-ups.
31

  Despite, the stringency of 

these requirements, there have actually been a number of examples of reactions that 

fulfill these requirements including the azide-nitrile cycloaddition reaction, thiolene 

reactions, diel-alder cyloaddition reactions, and the copper catalyzed azide-alkyne 

cycloaddition reaction.
12, 26, 32, 33

   

Although “click coupling” reactions are among the more widely used coupling 

reactions, there are other methods that don’t necessarily meet all the strict requirements 

for this classification, but have also been used for the synthesis of block copolymers.  The 

coupling reaction can be used to synthesize typical block copolymers, but are more often 

used for the coupling of less typical polymers such as peptide or DNA block copolymers.  

For example, phosphoramidite chemistry has been used to couple oligodeoxynucleotide 

strands to end-functionalized polymers.
34, 35

  The michael addition reaction has also been 

used to couple peptides and polymers via the reaction of thiols from cysteine side chains 

of peptides onto activated alkenes on polymers.
36, 37

   

 

1.2 Solution Phase Self-Assembly of Block Copolymers 

1.2.1 Non-Covalent Interactions as Driving Forces for Self-Assembly.  In 

general, self-assembly is the spontaneous and reversible organization of molecular 

components into ordered structures.  Non-covalent interactions are critical driving forces 

in self-assembly.  Some examples of non-covalent interactions in order of increasing 
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strength include; van der waals forces, - interactions, hydrogen bonding, hydrophobic 

interactions, ion-dipole, ion-ion, and metal-ligand interactions.  In a given self-assembled 

system, multiple interactions can contribute to a self-assembled structure.  Often, the 

tuning of these interactions can be used to yield specific functionalities and to yield 

predesigned composite structures.   

In nature, these non-covalent interactions are used to mediate biological interactions 

and fulfill critical functions.  For example, the DNA double helix structure is driven by 

hydrogen bonding between complementary base pairs and further stabilized by aromatic 

stacking interactions between bases.  The structure of proteins is critically important to 

their function and the main driving forces behind the folding process is hydrogen bonding 

between amino acids and the minimization of the number of hydrophobic side chains 

exposed to water.
38

   The assembly of the actin polymer which is responsible for muscle 

contraction and cell division is highly dependent on environmental factors such as ion 

and ATP concentration.
39

  Overall, it is clear that nature has yielded many elegant 

examples of non-covalent interactions as driving forces for the self-assembly of simple 

building blocks into complex and functional architectures.   

Inspired by nature, there are many examples in synthetic polymer science that take 

advantage of the toolbox of noncovalent interactions to program specific functionalities 

into polymer systems.   The ion-dipole and hydrogen bonding interactions were used to 

drive the self-assembly of a urea functionalized methacrylate amphiphilic block 

copolymer into a crosslinked nanostructure as shown in Figure 1.1A.
8
  Programmed self-

assembly of metal nanoparticles onto hybrid nanowires was achieved by the molecular 
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recognition between p-electron rich 1,5-dioxynaphthalene (DNP) as the guest molecule 

and p- electron deficient cyclobis(paraquat-p-phenylene) (CBPQT4+) as the host 

molecule (Figure 1.1B).
40

  The metal-ligand non-covalent interaction has been used to 

self-assemble metallo-supramolecular polymers which combine the functionality of the 

metal ion with the processablity of the polymer (Figure 1.1C).
41

  The aforementioned 

examples all incorporate a molecular recognition element that dominates the self-

assembly process.  This is a powerful tool that has found promise in the preparation of 

stimuli-responsive smart materials.
42

  However, even self-assembly without an 

addressable recognition element has high potential for many applications and will be 

described in more detail in the following sections.   
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Figure 1.1.  (A)  Schematic representation of urea bearing polymers binding, sulfonate 

3a, carboxylate 3b, and phosphonate 3c guest molecules. (B)  Schematic 

representation of hybrid nanowires formed from electron rich guest molecule and 

electron deficient host molecules.  (C)  Structure of a metallo-supramolecular polymer 

and the proposed AB multiblock-like phase segregation present in the solid state.  

Pictures highlighting the elastic nature of the metallosupramolecular polymer.  

Reproduced with permission from (A) Chemical Communications, (B) 

Macromolecules, and (C) Chemistry - A European Journal. 
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1.2.2 Self-Assembly of Coil-Coil and Rod-Coil Block Copolymers.  Coil-coil 

amphiphilic block copolymer systems are typically composed of a hydrophilic flexible 

polymer covalently attached to a hydrophobic flexible polymer.  The self-assembly of 

these systems is rather well understood and well-documented due to extensive studies 

from research groups such as Eisenberg.
43

  The factors that determine the self-assembly 

structure of these systems include the relative block lengths, the block copolymer 

concentration, the solvent content, and the interaction parameter.  The interaction 

parameter is known as the Flory Huggins interaction parameter and is a measure of the 

dissimilarity between the two polymer blocks.
44

  These factors have been varied 

extensively to form diverse morphologies of block copolymers with potential applications 

in fields such as biomedicine, catalysis, and microelectronics.
45, 46

   

Rod-coil block copolymers are an increasingly important class of molecules for the 

self-assembly of functional polymer systems.
47

  The self-assembly behavior of rod-coil 

block copolymer systems differs from that of the conventional coil-coil block copolymer 

systems.  The microphase separated supramolecular structures for coil-coil block 

copolymers can be predicted by factoring in the volume ratio of each block and the 

interaction parameter between the two blocks.  However, the self-assembly behavior of 

rod-coil block copolymers is more complex due to the added driving force towards liquid 

crystalline alignment and - stacking of the rigid block.
48

  The rod block also has a 

limited ability to stretch to accommodate packing arrangements within self-assembled 

structures.
49

  This effect along with the tradeoff between the microphase separation of the 

rod and coil blocks and the liquid crystalline alignment of the rigid rods can often result 
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in novel structures both in solution and in melts.
50

    

 

1.2.3 Incorporation of Nanomaterials into Block Copolymer Composites.  

Amphiphilic block copolymers and nanomaterials can be used as building blocks for the 

formation of nanocomposite structures.  Depending on the functional groups of the block 

copolymer, the polymer can associate with the nanomaterial through noncovalent 

interactions such as hydrogen bonding, electrostatic and hydrophobic interactions.  These 

interactions can lead to complex self-assembly behavior which has led to a number of 

interesting nanocomposite structures.
51, 52

  The block copolymer building blocks can 

induce ordering of the nanomaterials, increase the stability of the nanomaterials, and can 

act as an element for further functionalization of the nanocomposite.
53

  Nanocomposite 

structures have many advantages over the individual constituent components.  

Nanocomposite formation is often reversible and can also provide enhanced stability for 

the nanomaterials.  Furthermore, the structure of the nanocomposite can be very 

important for providing specific functions for certain applications.  The nanocomposite 

itself can also act as a building block for the formation of even more complex structures.  

In general, nanocomposite structures have also been found to have new properties that 

can act collectively and can be enhanced relative to that of individual building blocks.
54, 

55
  The properties and functions of the nanocomposite structure can be dependent on the 

location of the nanomaterial within the amphiphilic block copolymer matrix.  

Nanoparticles are one of the most powerful and widely used building blocks that have 

been incorporated into amphiphilic block copolymer nanomaterials.  Nanoparticles have 
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size dependent optical and conductive properties and have found potential applications in 

single electron devices, nanoelectronics, sensing, catalysis, and biodiagnostics.
56

  

Nanoparticles can be incorporated into amphiphilic block copolymer matrices, thus 

forming nanocomposite structures with properties that are often dependent on the 

location and ordering of the incorporated nanoparticle.  The location of the nanoparticle 

is dependent on the nanoparticle’s coordinating ligand, size, shape, volume fraction, and 

its interaction energy relative to both the solvent and the polymer.  Efforts in the 

development of nanoparticle synthesis techniques has afforded strict control over these 

parameters for many types of nanoparticles including: gold
57

, magnetic
58

, and 

semiconducting nanoparticles
59

.  One of the requirements for solution phase 

incorporation of nanoparticles into block copolymers is that the affinity of the 

nanoparticles must be greater than it’s affinity for the solvent.  This can be achieved by 

incorporating molecular recognition elements into the polymer and nanoparticle.  For 

example, Russell et al. built a nanoparticle-polymer composite through the hydrogen 

bonding interaction between triazine functionalized polystyrene polymer and thymine 

functionalized gold nanoparticles.
60

  Nanoparticles can also be incorporated into block 

copolymers without molecular recognition elements by instead taking advantage of 

hydrophobic interactions.  For example, the quantum dots selectively incorporated at the 

interface of the amphiphilic block copolymer presented in Chapter 2 relies on entropic 

and enthalpic interactions to dictate the position of the nanoparticle and the structure of 

the block copolymer assembly.
61, 62
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It is important to note that nanoparticles are not simply passively incorporated into 

block copolymer nanocomposites, but instead can play a very active role in the self-

assembly process and resultant structure.  For example, Taton et al. incorporated citrate-

stabilized gold nanoparticles into poly(methacrylate)-block-poly(acrylic acid) (PMMA-b-

PAA) block copolymer micelles.
63

  In this case, a small amount of 1-dodecanethiol was 

added in order to hydrophobically coat the surface of gold nanoparticles and to ensure 

their incorporation into the hydrophobic core of the block copolymer micelle.  In another 

example, Eisenberg et al. incorporated gold nanoparticles functionalized with 

poly(styrene)-b-PAA (PS-b-PAA) into the walls of PS-b-poly(ethylene oxide) (PS-b-

PEO) vesicles due to hydrophobic interactions.
64

   

Nanoparticles may be one of the more popular nanomaterials that have been 

incorporated into block copolymer nanocomposites, but they are certainly not the only 

possibility.  Other nanomaterials such as carbon nanotubes, graphene, and homopolymers 

are also potent building blocks that have been self-assembled with block copolymers.   

Homopolymers can be incorporated into hydrophobic cores of amphiphilic block 

copolymer assemblies which can induce changes to the size and the structure of the 

nanocomposite.  For example, addition of PS homopolymer to PS-b-PAA assemblies 

increases the diameter of the micelle because the homopolymer is solubilized in the core 

and addition of PS to vesicle forming PS-b-PAA reduces the core chain stretching of the 

system and drives the formation of micelles instead of vesicles or rods.
65

  Experimental 

and theoretical evidence shows that the maximum amount of homopolymer that can be 

incorporated in nanocomposites increases linearly with the concentration of diblock 
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copolymer chains.
66

  Not only does the homopolymer effect the conformation of the 

assembly, but it can also afford functionality to the nanocomposite.  For example, the 

incorporation of poly(thiophene) homopolymer into an amphiphilic glycopolymer 

afforded water solubility to the poly(thiophene) and yielded superior optical 

functionalities because the poly(thiophene) formed long conjugated  orbitals without 

self-quenching due to its encapsulation.
67

   

Single-walled carbon nanotubes (SWNT) composite materials have been investigated 

for such applications as electrostatic discharge, structural reinforcement, and electron 

emitters in field effect displays.
68, 69

  Block copolymers can be used to encapsulate 

SWNTs which affords a non-destructive method to stabilize and disperse carbon 

nanotubes.  In one example, PS-b-poly(4-vinylpyridine) (PS-b-P4VP) dispersed SWNTs 

and selectively synthesized metal nanoparticles within the nanocomposite which was then 

used in the fabrication of transparent, low-electric resistance devices.
70, 71

  In general 

SWNTs have been dispersed in a variety of block copolymers in which the block 

copolymer serves to both protect and solubilize the SWNTs.
72, 73

   

 

1.3  Thesis Overview. 

This dissertation will focus on the synthesis of amphiphilic block copolymers of 

varying functionalities and their subsequent controlled self-assembly with other 

nanomaterials into hybrid nanocomposites with controlled structures and functions.  The 

overall goal of this work has been to develop methods to control the structure and 

properties of these functional hybrid materials by controlling the organization of 
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polymers and nanomaterials.  Such control over the supramolecular self-assembly of a 

amphiphilic block-copolymer systems is a critical step towards the generation of 

materials with tunable electronic and optical properties.   Chapter 1 gives a brief 

overview of current methods in the synthesis of amphiphilic block copolymers and an 

overview of some of the most important considerations in the solution phase self-

assembly of amphiphilic block copolymers.  Each subsequent chapter will focus on both 

the synthesis and the self-assembly of a different functional amphiphilic block copolymer 

moiety.  Chapter 2 focuses on the self-assembly of a prototypical insulating coil-coil 

amphiphilic block copolymer (PS-b-PAA) with nanoparticles into a unique cavity-like 

structure.
61, 74

  An in-depth analysis of the conditions necessary to stabilize the 

cooperative self-assembly of the nanoparticles and amphiphilic block copolymer in a 

selective solvent is presented along with the enthalpic and entropic interactions that drive 

the self-assembly process.  In Chapter 3 the synthesis and self-assembly of a 

semiconducting rod-coil amphiphilic block copolymer (PHT-b-PEG) into isolated, 

bundled, and branched nanofibers is presented.
75

  In this work the shape, length, and 

density of hierarchical assembly structures is efficiently controlled by varying the solvent 

quality, polymer length, and relative polymer concentrations.  Chapter 4 also presents the 

synthesis and self-assembly of a semiconducting rod-coil amphiphilic block copolymer 

with a different composition, PTOTT-b-PEG.  The interaction of the polar substituents of 

the conjugated polymer with polar protic common solvents dominate the self-assembly 

process and provide a facile route to achieve stable conjugated polymer nanoribbons in 

aqueous solvents.  Investigations of how the concentration and solvent composition 
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affects the packing of the polymer provides insight into subtle effects of hydrogen 

bonding interactions and - stacking interactions on the self-assembly process.  The 

work presented in Chapter 5 focuses on the synthesis and self-assembly of a 

bioconjugated rod-coil amphiphilic block copolymer (PTOTT-b-DNA).   This conjugated 

DNA block copolymer system is interesting because it self-assembles into a distinct 

vesicle nanostructure and is capable of exploiting both the recognition properties of the 

DNA and the responsiveness of the polymer to tailor the structural and physiochemical 

properties of the system. 
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Chapter 2: Nanoparticle-Directed Self-Assembly of Amphiphilic Block 

Copolymers
1,2 

 

 

 

Nanoparticles can form cavity-like structures in core-shell type assemblies of poly(acrylic acid)-

b-polystyrene block copolymers through the cooperative self-assembly of nanoparticles and block 

copolymers.  We show that the unique self-assembly behavior is general for as-synthesized alkyl-

terminated nanoparticles for a range of nanoparticle sizes.  We examined various self-assembly 

conditions such as solvent compositions, nanoparticle coordinating ligands, volume fraction of 

nanoparticles, and nanoparticle sizes to elucidate the mechanism of the radial assembly 

formation.   

 

 
1
Reproduced in part with permission from Kamps, A. C., Sanchez-Gaytan, B. L., Hickey, R. J., 

Clarke, N., Fryd, M., and Park, S.-J. (2010) Nanoparticle-Directed Self-Assembly of Amphiphilic 

Block Copolymers, Langmuir 26, 14345-14350. Copyright 2010 American Chemical Society. 

2
Reproduced in part with permission from Sanchez-Gaytan, B. L., Li, S., Kamps, A. C., Hickey, 

R. J., Clarke, N., Fryd, M., Wayland, B. B., and Park, S.-J. (2011) Controlling the Radial Position 

of Nanoparticles in Amphiphilic Block copolymer Assemblies, The Journal of Physical 

Chemistry C 115, 7836-7842. Copyright 2011 American Chemical Society. 
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2.1 Introduction 

For the past decade, there has been a considerable effort towards combining 

nanoparticles and polymers in materials synthesis and device fabrication in order to take 

advantage of the unique physical properties of nanoparticles and the excellent 

processibility of polymers.
1-6

  An important issue in this area is to develop efficient ways 

to control the arrangement of nanoparticles in the polymer matrix because the dispersion 

of nanoparticles significantly impacts the electronic, transport, and mechanical properties 

of the composite materials.
7, 8

  Recently, it has been shown that the cooperative self-

assembly of nanoparticles and block copolymers can produce a range of well-ordered 

arrays of nanoparticles in polymer thin films.
9, 10

  In this approach, nanoparticles are 

segregated into a favorable polymer domain or to the interface between polymer 

domains, and the arrangement of nanoparticles can be directed by controlling the 

interaction between nanoparticles and polymers.
11, 12

   

The self-assembly of block copolymers in a selective solvent is a well-studied 

phenomena with a multitude of potential applications, such as cosmetics, emulsification, 

drug delivery, and environmental purification.
13

  Some of the factors that control the 

morphology and size of block copolymers in a selective solvent include the relative block 

lengths of the block copolymer, the nature of the common solvent, the copolymer 

concentration, and the water content.
14

  Utilizing the controlled morphology of 

amphiphilic block copolymers as templates for nanoparticle organization is an attractive 

method for the development of block copolymer/nanoparticle composites.  However, the 

presence of nanoparticles can significantly impact the assembly of block copolymers.  In 
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thin film studies, it has been found that the presence of nanoparticles can alter the 

morphology of the block copolymer.  For example, the incorporation of nanoparticles 

was found to lead to a morphological transition of block copolymer from cylindrical to 

lamellar phases.
15

  Theoretical reports on polymer-nanocomposites also predicted that the 

size, shape, and volume fraction of nanoparticles along with the interaction energies 

between the nanoparticles and polymer, will all be important factors for controlling the 

morphology and distribution of nanoparticles within nanoparticle-block copolymer 

composites.
16

  

The macroscopic electrical, optical, and mechanical properties of polymer-

nanocomposites are affected by the morphology of the polymer and the spatial 

distribution of the nanoparticles within the polymer-composite.
11

  Most reports of 

nanoparticle-polymer composites involve thin film structures,
7, 12, 17

 and less is known 

about the specific effects of nanoparticle incorporation within a block copolymer matrix 

in a selective solvent.  In the solution phase, the self-assembly of block copolymers and 

nanoparticles has been explored as a promising synthetic tool for generating 

multifunctional nanostructures.
18-25

  In particular, Taton and coworkers have developed a 

simple way to prepare well-defined, water-soluble multicomponent nanoparticles by the 

self-assembly of nanoparticles of varying compositions and amphiphilic block 

copolymers composed of polystyrene and polyacrylic acid (PAA-b-PS).
20, 21, 23

  In this 

body of work, the self-assembly process produced block copolymer micelles that 

encapsulated various types of nanoparticles in the hydrophobic core of the micelles, but 

the nanoparticles acted as simple solutes.  Indeed, most previous studies have relied on 
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the solubilization of nanoparticles into the core of block copolymer micelles, and the 

nanoparticles were often functionalized with one of the polymer blocks for 

encapsulation.
24, 25

   Thus, little is known about the impact of nanoparticle loading on the 

self-assembly formation and the organization of nanoparticles within the self-assembled 

structure. 

Recently, we have shown that the cooperative self-assembly of as-synthesized 

quantum dots and amphiphilic block copolymers can yield an unusual cavity-like 

assembly structure of quantum dots in spherical block copolymer assemblies.
26

  In this 

approach, nanoparticles are prepared by well-established synthetic procedures and used 

for the self-assembly without further surface functionalization.  This capability not only 

eliminates one synthetic step, but also reduces the chance of damaging the physical 

properties of nanoparticles that could be affected by the surface chemistry, such as 

photoluminescence quantum yields of quantum dots.  This work showed that ordered 

arrays of nanoparticles can be formed by the solution phase self-assembly of 

nanoparticles and amphiphilic block copolymers.  It also showed that nanoparticles can 

play an active role in the self-assembly process rather than being passively incorporated 

as a solute.  Moreover, this approach also offers a critical strategy to control the spatial 

arrangement of nanoparticles in block copolymer micelles.  Here, we demonstrate that the 

radial assembly is a general behavior for typical as-synthesized alkyl-terminated 

nanoparticles of varying sizes and reveal what drives the formation of the unique 

assembly structure.  Furthermore, we present experimental and theoretical phase maps 

constructed for a range of different sized CdSe nanoparticles.  These findings provide 
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important practical guidelines for reproducibly fabricating nanoparticle/block copolymer 

hybrid materials with desired structures and optical properties.   

 

2.2  Experimental Section 

2.2.1  Synthesis of PS-b-PAA Block Copolymers (BCP).  Poly(t-butyl acrylate)38-

block-poly(styrene)154 was synthesized using the reversible addition-fragmentation chain 

transfer (RAFT) polymerization method.
26, 27

  Typically, a 10 mL acetone solution of 

RAFT reagent, 4-cyano-4(dodecylsulfanythiocarbony)sulfanyl pentanoic acid (161.5 mg, 

0.4 mmol), 4,4’azobis(4-cyanovaleric acid) (22.4 mg, 0.08 mmol), and freshly distilled 

tert-butyl acrylate (2.3 mL, 15.8 mmol) was added to a 50 mL bulb with a vacuum 

adapter.  The solution was degassed using three freeze-pump-thaw cycles and then heated 

at 80 ºC for five hours.  The reaction product was collected by concentrating the solution 

to approximately 1 mL and precipitating the product with methanol.  The light, yellow 

precipitate of poly(t-butyl acrylate) was filtered and washed twice with 2 mL of 

methanol.  The precipitate was then dried under vacuum to a constant weight.  Gel 

permeation chromatography (GPC) was used to determine the number average molecular 

weight and molecular weight distribution of the poly(t-butyl acrylate) product.    

A 1.5 mL acetone solution of 4,4’azobis(4-cyanovaleric acid) (5.6 mg, 0.02 mmol) 

and styrene (6.9 mL, 60 mmol) was then added to the poly(t-butyl acrylate) product in a 

100 mL bulb with a vacuum adapter.  The mixture was then degassed by three freeze-

pump-thaw cycles and heated at 80 ºC for 3 hours.  After the reaction, the solution was 

concentrated to approximately 1 mL and slowly added into 20 mL of methanol, yielding 
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an off-yellow precipitate of poly(t-butyl acrylate)-block-poly(styrene).  This precipitate 

was washed with methanol and dried under vacuum to a constant weight.  GPC was used 

to determine the number average molecular weight and molecular weight distribution of 

the poly(t-butyl acrylate)-block-poly(styrene) product.   

The synthesized poly(t-butyl acrylate)-block-poly(styrene) was then hydrolyzed to 

yield poly(acrylic acid)-block-poly(styrene) following a literature method.
28

  Typically, a 

0.2 mL concentrated aqueous solution of hydrochloric acid (N HCl = 12.1) was added to a 

3 mL freshly distilled THF solution of 5 x 10
-3

 mmol of poly(t-butyl acrylate)-block-

poly(styrene).  This solution was heated to reflux for 2.5 hours and then concentrated by 

rotary evaporation.  The oily residue was slowly added to 10 mL of methanol, yielding an 

off-yellow precipitate.  This precipitate was then filtered, washed twice with 2 mL of 

methanol, and dried under vacuum to a constant weight. 

 

2.2.2  Synthesis of ZnS Coated CdSe Nanoparticles.  A modified literature 

procedure was used for the synthesis of ZnS-coated CdSe quantum dots.
29

  All chemicals 

used in the synthesis were purchased from Aldrich, except for tetradecylphosphonic acid 

(TDPA, Alfa Aesar) and tetramethyldisilathiane ((TMS)2S, Fluka). Typically, 1 g of 

trioctylphosphine oxide (TOPO), 0.5 g of hexadecylamine (HDA), 0.12 g of 

tetradecylphosphonic acid (TDPA), and 26 mg of CdO were added to a three-neck flask.  

The system was purged with nitrogen and then heated to 290 ºC.  When the solution 

became clear, a Se-TOP solution (1 mL, 1.0 M) was rapidly injected into the reaction 

mixture and then the temperature was set to 250 ºC.  The reaction was then quenched at 
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different times to yield different sized CdSe quantum dots.  The synthesized quantum 

dots were precipitated with methanol, washed with hexanes and acetone, and then 

redispersed in chloroform for characterization.   

For ZnS coating, 2 g TOPO, 0.5 g HDA, and 2 g TOP were added to dried CdSe 

nanoparticles (2 x 10
-7

 mol) in a 3-neck flask.  A ZnS precursor stock solution was 

prepared by dissolving 65 µL of Zn(Et)2 and 130 µL of (TMS)2S in 10 mL TOP.  The 

amount of ZnS precursor needed to grow a desired ZnS shell thickness was determined 

using a literature procedure.
30

  The solution containing CdSe nanoparticles and 

surfactants was heated to 160 ºC and the ZnS precursor solution was added in a drop-wise 

fashion over about 10 minutes.  After the ZnS precursor addition, the mixture was cooled 

to 90 ºC and stirred for 3 hours.  The synthesized ZnS-coated CdSe nanoparticles were 

purified by a series of precipitations with methanol and acetone, and then dispersed into 

chloroform.   

The CdSe@ZnS nanoparticles consist of a CdSe core, a ZnS shell and TOPO as the 

surrounding ligand.  The CdSe nanoparticles were synthesized by fast injection of metal 

organic precursors to a flask with the hot TOPO coordinating liquid.  The growth of 

nanoparticles requires a discrete nucleation event (fast injection) followed by a slower 

controlled growth onto the existing nuclei.  Therefore, different sized CdSe nanoparticles 

were synthesized by varying the reaction time.  The diameters of the nanoparticles used 

for most of the experiments presented herein were determined to be 3.0  0.4 nm, 4.1  

0.4 nm, and 6.9  0.7 nm by TEM and were synthesized at reaction times of 1.5, 6, and 

13 minutes, respectively).  The ZnS shell was grown onto the CdSe nanoparticles in order 
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to passivate the emission trap sites caused by defects in the surface and therefore enhance 

the stability and fluorescence quantum yield of the nanoparticles.
30

  The CdSe@Zns 

nanoparticles typically had a quantum yield that was approximately ten times larger than 

that of the CdSe nanoparticles and were very bright in solution (Figure 2.1 C).  The 

narrow absorption and emission spectra (Figure 2.1 A-B) of the CdSe@ZnS 

nanoparticles along with TEM analysis confirms that the nanoparticles are uniform in 

size and shape and have well-formed crystalline cores.    
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Figure 2.1.  Normalized (A) absorbance and (B) PL spectra of different sized 

CdSe@ZnS quantum dots.  PL spectra were collected using an excitation wavelength 

of 470 nm. (C)  Picture of different sized CdSe@ZnS quantum dots in chloroform 

solutions under UV illumination. 
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2.2.3  Preparation of Iron Oxide Nanoparticles.  Oleic acid functionalized iron 

oxide nanoparticles were synthesized using oleic acid and oleylamine as stabilizing 

agents following a modified literature method.
31

  First, the iron oleate complex was 

synthesized by reacting iron chloride and sodium oleate.  Typically, 1.5 g of iron chloride 

(FeCl3·6H2O, 5.5 mmol, Aldrich, 97%) and 5.2 g of sodium oleate (17 mmol, TCI, 95%) 

were added in a 100 mL flask. Then, a mixture of 20 mL of hexane, 11.5 mL of ethanol, 

and 8.8 mL of nanopure water were added to the flask.  The two phase mixture was 

placed under reflux (~70 C) for four hours.  The upper organic layer containing the iron-

oleate complex was washed three times with 30 mL of water and separated by 

centrifugation (8,000 rpm, 10 min).  Then, the hexane was evaporated from the mixture 

by rotary evaporation and kept under vacuum overnight (~ 12 hours).   

Typically, 5.6 nm iron oxide nanoparticles were synthesized by reacting 5.5 g of iron-

oleate and 1.5 g of oleic acid (5.3 mmol, Aldrich, 90%) in 31 g of 1-octadecene (Aldrich, 

90%) in a 100 mL round-bottom flack.  The mixture was heated to 320 C at a rate of 200 

C/hour, and then aged for 30 minutes.  The dark brown color characteristic of the iron-

oleate complex turns black upon the formation of nanoparticles.  Finally, the solution was 

cooled to room temperature and nanoparticles were purified by three rounds of 

precipitation with 35 mL of ethanol and acetone.  The precipitated nanoparticles were 

collected by centrifugation (8,000 rpm, 10 min) and then redispersed in hexane (10 mL).  

After the final washing step, the nanoparticles were dissolved in chloroform (10 mL) and 

centrifuged at low speed (3,000 rpm, 5min) to remove nanoparticle aggregates. 
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Polystyrene coated magnetic nanoparticles were prepared by the ligand exchange 

method.
32

  Typically, 0.5 mL of 4.1 nm oleic acid functionalized iron oxide nanoparticles 

(1 mg/mL) were mixed with 0.5 mL of carboxyl-terminated polystyrene (HOOC-(PS)190) 

in chloroform (20 mg/mL) for 15 hours.  The polymer contained approximately one 

anthracene molecule per chain.  The resulting PS-modified nanoparticles were 

precipitated with acetone, centrifuged at 5000 rpm for 10 minutes and then redispersed in 

chloroform. The procedure was repeated until there was no detectable anthracene in the 

supernatant. Finally, the nanoparticles were dried and finally redispersed in DMF.  

 

2.2.4  Synthesis of Nanoparticle/Block Copolymer Co-Assemblies.  Nanoparticles 

and block copolymers were self-assembled as described previously.
26

  In a typical 

experiment, 25 µL of a PAA38-b-PS154 solution (1.6 x 10
-4

 M) in DMF was mixed with 

25 µL of a ZnS coated CdSe nanoparticle solution (1.6 x 10
-6

 M) in chloroform.  While 

stirring, 1 mL of DMF is added to the solution followed by a slow addition of 300 µL of 

water (18 MΩ-cm) at a rate of 10 µL per 30 s.  The mixture was kept under stirring for 12 

h before additional water (1.5 mL) was added over 15 min. Then, the samples were 

dialyzed against water for 24 h and further purified by a series of centrifugations.  The 

nanoparticle/block copolymer assemblies were purified from larger block copolymer 

aggregates by centrifuging the solution at 7,000 rpm for 10 minutes and discarding 

precipitates.  Then, the supernatant was centrifuged again at 16,000 rpm for 1 hr, and 

precipitates were collected and redispersed in water (1 mL).  For further purification, the 

solution was centrifuged for 1 hr at 16,000 rpm after 24 hr stirring.  Finally, the 
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precipitates were collected and redispersed in water (100 µL) and used for TEM analysis.  

The volume fraction of nanoparticles is defined by the total volume of nanoparticles over 

the combined volume of the nanoparticles and block copolymer.  The volume fraction of 

nanoparticles was varied by changing the amount of nanoparticles while keeping the 

amount of block copolymer constant.   

 

2.2.5  Strong Segregation Theory Calculations.  The strong segregation model assumes 

a high degree of dissimilarity between the two blocks, therefore yielding a strongly 

segregated interface.  In the strong segregation limit the free energies of all microphases 

scale the same way with chain length and interfacial tension, so the phase boundaries 

become independent of the strength of the repulsion between A and B blocks and depend 

only on the composition.
33

   

 The free energy per chain, fchain, corresponding to the core-shell structure is given 

by, 
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where  is the volume of a single chain,  is the A/B (i.e., PAA/PS) interfacial 

tension, and b is a reference length scale, which we take to be equal to one nanometer.  

The volume of the core (Vc) and the shell (Vs) are related to the various radii defined in 

Figure 7 as       3 3 3 3

c c s c c s npV V V R R R R  and 

         3 3 3 3 3

s c s s c snp npV V V R R R R R .  The subscripts, A, B, c and s refer to blocks A 

and B, the core and the shell, respectively, and the superscripts, str and int refer to 
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stretching and interfacial energies.  There are four contributions to the overall free energy 

per chain from chain stretching given by, 
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The parameters, c and s, are defined by, 

            

1
1 33
3; 1 1c c c s s s np sz R z R R R  (0.6) 

Since we assume that the nanoparticle layer is filled with nanoparticles, we also have a 

further relation between Rs and Rc, 

   3 3 3

np s np cR R R  (0.7) 

There are four contributions to the interfacial energy, two from each of the A-B 

interfaces, with an interfacial energy per unit area of , and the other two from the B-
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nanoparticle interfaces.  In the calculations presented below, we ignore the contributions 

from the latter since they are significantly smaller than the A-B interfacial energy. 
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The dimensionless parameter, , in equations (0.2)-(0.5) is defined by,  
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where, lA and lB are monomer segment lengths. Assuming that the monomer lengths are 

approximately the same (lA  lB = l), and that the interfacial tension depends on the 

dimensionless polymer-polymer interaction parameter, , as shown in equation 1.11.
34
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Then,  can be written as 
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where N is the degree of polymerization of the entire copolymer.  The minimized total 

free energy was calculated for the self-assembled structure in order to determine whether 

the introduction of a nanoparticle layer lowers the free energy of the core-shell structure.  

The free energy for the core-shell structure without a nanoparticle layer is found by 

taking the limit of np cR R  in equations (0.2)-(0.9).   



44 

 

2.2.6 Instrumentation. The molecular weight of synthesized polymers were 

determined using a gel permeation chromatography (GPC) system from Shimadzu 

equipped with Polymer Laboratories columns (guard; 10
6
, 10

4
 and 5 x 10

2
 A), a UV 

detector (SPD-10AV) at 600 nm, and a refractive index detector (RID-10A) calibrated 

against linear polystyrene standards in THF.  Proton NMR spectra were obtained using a 

Bruker-DMX300 interfaced to an Aspect 3000 computer at ambient temperature.  The IR 

spectra were obtained on a Perkin-Elmer system 2000 FTIR spectrometer.  The UV-vis 

spectra were measured using a Hewlett Packard 8452A diode array spectrometer.  The 

synthesized nanoparticles and block copolymer/nanoparticle co-assemblies were 

characterized by TEM (Technai G
2
12TWIN) operating at an 80 kV accelerating voltage 

and JEOL TEM-2010F operating at a 200 kV accelerating voltage.  

 

2.3  Nanoparticle-Directed Self-Assembly of Amphiphilic Block Copolymers 

2.3.1  Interfacial Assembly Structure.  As described in Figure 2.2 A, nanoparticles 

were incorporated into amphiphilic block copolymer micelles by slowly adding water to a 

N,N-dimethylformamide (DMF) solution of nanoparticles and block copolymers.  The 

resulting co-assemblies were then dispersed in water by dialysis and centrifugation, and 

characterized by transmission electron microscopy (TEM).  Amphiphilic block 

copolymers of polyacrylic acid and polystyrene (PAA38-b-PS154) were synthesized by the 

reversible addition-fragmentation chain transfer (RAFT) polymerization method
26, 27

 and 

used throughout the study.  Zinc sulfide coated cadmium selenide quantum dots
29

 and 

iron oxide magnetic nanoparticles
31

 were synthesized by literature procedures using 
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trioctyl phosphine oxide (TOPO) and oleic acid respectively as main surface coordinating 

ligands and used without further surface functionalization.  Thus, all nanoparticles used 

in this study were terminated with hydrophobic alkyl molecules.  Note that most literature 

procedures for organic phase synthesis of  nanoparticles use surfactants terminated with a 

long alkyl chain as surface coordinating molecules.
35

   

We have previously shown that TOPO-stabilized CdSe@ZnS nanoparticles and PAA-

b-PS can self-assemble into well-defined spherical assemblies where nanoparticles form 

an unusual cavity-like structure as described in Figure 2.2 A.
26

  In this body of work, the 

phenomenon was generalized for a range of different sized CdSe@ZnS nanoparticles 

emitting green, yellow, and red light (Figure 2.2 B,C).  Fe3O4 nanoparticles also formed 

the cavity-like structure inside block copolymer assemblies as shown in Figure 2.2 D,E.
36

  

In all cases, block copolymers and nanoparticles self-assembled into a three layered 

structure that is composed of a polymer core, a polymer shell, and nanoparticles arranged 

at the interface between the polymer core and the polymer shell.  The polymer structure 

of the radial assemblies bear a strong resemblance to the large compound micelles 

reported by Eisenberg and coworkers, which consist of one or more inverse micelles 

surrounded by a layer of PAA-b-PS.
26, 37

   

 

2.3.2  Mechanism of Interfacial Assembly.  The radial co-assembly process was 

monitored by taking TEM images at a series of different water contents.  As shown in the 

TEM image presented in Figure 2.3 A, TOPO-stabilized CdSe@ZnS nanoparticles are 

associated with block copolymers even before adding water due to the poor solubility of 
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CdSe@ZnS nanoparticles in DMF.  In the absence of block copolymers, CdSe@ZnS 

nanoparticles in a DMF solution will precipitate out of solution and quickly lose their 

fluorescence.  However, when a certain amount of amphiphilic block copolymer is 

present in a DMF solution, the system initially lowers the free energy by incorporating 

CdSe@ZnS nanoparticles in the PS domain of block copolymer aggregates because the 

TOPO/PS interaction is less unfavorable than TOPO/DMF interactions.  The Flory-

Huggins parameter for TOPO/PS (octane/PS = 9.0 MPa) is significantly smaller than all 

other interaction pairs (e.g., octane/PAA = 81.0 MPa, octane/DMF = 84.6), which means 

that the TOPO/PS interaction is the least repulsive (most favorable) when compared with 

the other possible interactions.  At this stage, CdSe@ZnS nanoparticles are incorporated 

into the swollen polymer aggregates without any particular order.  As a small amount of 

water is added to the system, larger micellar structures start to form (Figure 2.3 B).  

These structures are composed of a core of multiple reverse micelles surrounded by a 

shell of block copolymer with hydrophilic PAA at the exterior.  At this small amount of 

water addition, the CdSe@ZnS nanoparticles begin to preferentially revert to the PS-PS 

interface between the core and the shell.   

With further addition of water, a selective solvent for the PAA block, the aggregation 

number of polymers becomes larger to avoid the contact between PS and water, the PS 

block becomes less swollen, and the mobility of the polymer chains decreases.
12

   As the 

polymer strands pack more densely, nanoparticles and polymers reorganize to adopt the 

radial assembly structure (Figure 2.3 C).  This observation supports our hypothesis that 
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the unusual radial co-assembly structure is the result of relatively unfavorable 

interactions between the nanoparticles and the polymer.  

The TOPO-stabilized CdSe@ZnS nanoparticles are located in their preferred domain 

(PS) because this leads to an enthalpic gain in free energy.  The CdSe@ZnS nanoparticles 

preferentially revert to the PS-PS interface because this minimizes the entropic cost 

associated with the polymers wrapping around the nanoparticles.  This result is consistent 

with theoretical calculations that predict that particles that are selective towards just one 

block copolymer component would localize at the center of their preferred phase in order 

to minimize the free energy of the system.
11

    After dialysis of the solutions into water, 

the mobility of the polymer chains is decreased to such a high extent that the micelles 

essentially become “frozen” and no further change in structure is evident (Figure 2.3 D).  

The final interfacial assembly structure is very stable and retains the optical properties of 

the incorporated CdSe@ZnS nanoparticles.     
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Figure 2.2.  (A)  Schematic depiction of the self-assembly of nanoparticles and block 

copolymers.  (B) A TEM image of CdSe@ZnS nanoparticles (4.1  0.4 nm) forming a 

cavity like structure in block copolymer assemblies.  (C) Aqueous solutions of block 

copolymer assemblies incorporated with CdSe@ZnS nanoparticles of different sizes 

under UV illumination.  (D) A TEM image of Fe3O4 (6.4 nm  0.5 nm) forming a 

cavity like structure in block copolymer assemblies.  (E) An aqueous solution of block 

copolymer assemblies containing Fe3O4 nanoparticles.  The picture on the right shows 

assemblies attracted to a magnet.  Scale bar is 100 nm.   
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Figure 2.3.  Co-assemblies of CdSe@ZnS nanoparticles (4.1  0.4 nm) and block 

copolymers formed at a series of different water content, 0 % (A), 6 % (B), 17 % (C), 

and 100 % (D).  Scale bar is 100 nm. 
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2.4 Contributing Factors for Radial Self-Assembly 

2.4.1  Effect of Nanoparticle-Surface Coordinating Molecule.  To examine the role 

of surface coordinating molecules on the formation of the radial assemblies, PS-modified 

Fe3O4 nanoparticles were prepared by ligand exchange and self-assembled with block 

copolymers by following the same procedure.  As shown in Figure 2.4 A, the PS-

modified nanoparticles were incorporated into block copolymer assemblies without any 

particular order.  This is in contrast to the radial assembly formed with alkyl-terminated 

nanoparticles presented in Figure 2.4 B.  This result confirms that the relatively 

unfavorable interaction between alkyl-terminated nanoparticles and PS is responsible for 

the formation of the unusual radial co-assemblies.  Although alkyl-terminated 

nanoparticles and PS are both hydrophobic, the nanoparticle/PS interaction is unfavorable 

enough to cause the segregation of nanoparticles to the spherical PS/PS interface instead 

of being randomly incorporated throughout the polymer matrix.  The incorporation of 

nanoparticles at the interface can also reduce the stretching penalty that would be 

incurred by incorporating them within the polymer core or in the shell.  The distinct self-

assembly behavior can be used to compartmentalize different types of nanoparticles 

within individual block copolymer assemblies.  When PS-modified Fe3O4 nanoparticles 

and alkyl-terminated CdSe@ZnS nanoparticles were simultaneously incorporated into 

block copolymer assemblies, alkyl-terminated CdSe@ZnS nanoparticles were localized 

at the spherical interface while PS-terminated Fe3O4 nanoparticles were found throughout 

the assembly (Figure 2.4 C) as confirmed by the energy dispersive x-ray spectroscopy 

(EDS) (Figure 2.5). 
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Figure 2.4.  TEM images of block copolymer assemblies containing (A) PS-

terminated Fe3O4 nanoparticles (4.1 nm  0.5 nm), (B) alkyl-terminated CdSe@ZnS 

nanoparticles (4.6 nm  0.4 nm), and (C) both PS-terminated Fe3O4 nanoparticles and 

alkyl-terminated CdSe@ZnS nanoparticles.  The drawings showing the location of 

nanoparticles in the polymer matrix are given below the TEM images.  Scale bar is 

100 nm.   
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Figure 2.5.  EDX of assembly containing PS-modified iron oxide nanoparticles and 

alkyl-terminated CdSe/ZnS nanoparticles which were simultaneously incorporated 

into block-copolymer micelles.  Alkyl-terminated CdSe/ZnS nanoparticles (Zn) were 

localized at the spherical interface while PS-terminated iron oxide nanoparticles (Fe) 

were found throughout the assembly. 
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2.4.2  Effect of Nanoparticle Volume Fraction.  The volume fraction of 

nanoparticles (np) was found to be a critical factor in stabilizing the co-assemblies,  

and the radial co-assembly structure was formed for only a limited range of nanoparticle 

volume fractions (Figure 2.6).  When the nanoparticle volume fraction is larger than a 

threshold volume fraction (np-max), nanoparticles and block copolymers macroscopically 

precipitate out of solution when dispersed in water.  Figure 2.6 C presents the assemblies 

formed at np slightly larger than np-max, which shows broken irregular assemblies.  

When np becomes even larger, massive aggregation and precipitation of nanoparticles 

and block copolymers occurs (Figure 2.6 C).  When np was too low, asymmetric 

assemblies with one or multiple nanoparticle cavities (Figure 2.6 A) were formed instead 

of the well-defined symmetric radial assemblies shown in Figure 2.6 B.  While the 

asymmetric assemblies have broad size distributions with different numbers of 

nanoparticle cavities, symmetric radial assemblies shown in Figure 2.6 B were quite 

uniform with an average diameter of 130 nm and a size distribution of 9 % by TEM, 

which suggest that the resulting assembly is a thermodynamic structure.  Consistent with 

this notion, a slower addition of water (10 µL per 900 s) did not change the assembly 

structure. 
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Figure 2.6.  (A) Co-assemblies of CdSe@ZnS nanoparticles (4.1 nm  0.4 nm) and 

block copolymers formed at different nanoparticle volume fractions, 0.012 (A), 0.035 

(B), and 0.068 (C), representing the asymmetric assembly range (A), radial assembly 

range (B), and phase separation range (C), respectively.  Scale bar is 100 nm.   Below 

the respective TEM images is a schematic depiction of co-assemblies with one or 

multiple reverse micelles in the core 
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2.4.3  Effect of Nanoparticle Size.  The np ranges that yields well-defined 

symmetric radial co-assemblies were identified for three different sized CdSe@ZnS 

nanoparticles which emit green, yellow, and red light, respectively (Figure 2.7).  The 

diameters of the inorganic part of the nanoparticles were determined to be 3.0  0.4 nm, 

4.1  0.4 nm, and 6.9  0.7 nm by TEM.  The nanoparticle diameters plotted in Figure 5 

include the TOPO layer and were estimated by adding the TOPO layer thickness (2 x 0.7 

nm)
38

 to the diameters determined by TEM.  As shown in Figure 2.7, the volume fraction 

range that yields well-defined symmetric radial co-assemblies (radial assembly range) 

varied with the size of nanoparticles.  Larger nanoparticles required a higher nanoparticle 

volume fraction to form stable co-assemblies, and have a wider range of volume fractions 

that yield well-defined radial assemblies.  In fact, it was difficult to form stable co-

assemblies with CdSe@ZnS nanoparticles smaller than 3.0 nm, as the radial assembly 

range becomes too narrow.  When the nanoparticle volume fraction is larger than the 

threshold value (QD-max), nanoparticles cannot effectively reduce the polymer stretching 

energy, which results in the phase separation of the two components with water addition 

(vide infra).  The phase separation volume fraction range is indicated in grey in the phase 

map (Figure 2.7).  Note that when the water content is low, co-assemblies with well-

defined layered structures are formed even at a nanoparticle volume fraction larger than 

np-max (Figure 2.8 B).  As the water content is increased, however, nanoparticles and 

block copolymers were eventually aggregated and precipitated out due to the 

destabilization of the core region (Figure 2.8 C).  These observations imply that the 

polymer stretching is important in stabilizing the layered structure, which is supported by 
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the theoretical study described below.  Note that for homogeneous encapsulations, 

smaller nanoparticles are more readily incorporated because they have a less negative 

impact on the polymer conformation.
39

 

Stable interfacial assemblies were formed for different sized CdSe@ZnS 

nanoparticles, but the QD-max increased with the size of nanoparticles.  Co-assemblies 

formed with different sized CdSe@ZnS nanoparticles at their QD-max are shown in 

Figure 2.9 A-C. The structural parameters of the co-assemblies formed at their 

corresponding QD-max are shown in Figure 2.9 D.  It is apparent from this data that the 

core radius increases with the radius of nanoparticles while the shell thickness remains 

constant.  This behavior is most likely caused by the stretching of shell polymers.  

Incorporated nanoparticles create valleys that needed to be filled by polymers.  Larger 

nanoparticles create deeper valleys in the shell and induce higher polymer stretching.  For 

a given nanoparticle size, the extra volume in the shell relative to the total shell volume 

becomes smaller with increasing core size.  Thus, the assemblies with bigger 

nanoparticles adopt a larger core in order to reduce the extra polymer stretching and keep 

the minimum shell thickness.   
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Figure 2.7.  Nanoparticle volume fraction ranges yielding stable interfacial assemblies 

for different sized CdSe@ZnS nanoparticles (blue section).  Experimentally 

determined data points are indicated with dots.  The white section represents the 

asymmetric assembly range shown in Figure 2.6 A, and the grey section represents the 

phase separation range.   
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Figure 2.8.  Co-assemblies of CdSe@ZnS nanoparticles (3.0 nm  0.4 nm) and block-

copolymers in DMF/water mixtures at np = 0.024, which is larger than np-max (0.01).  

The water contents are 12 % (A), 17 % (B), and 29 % (C).  The assemblies were 

macroscopically aggregated and precipitated out of solution when the water content 

was higher than 29 %.  Scale bar is 100 nm. 
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Figure  2.9.  TEM images of co-assemblies formed with different sized CdSe@ZnS 

nanoparticles at their QD-max,   (A) 3.0  0.4 nm, (B) 4.1  0.4 nm, and (C) 6.9  0.7 

nm.  (D) Plot of shell thicknesses (open circle) and radius (solid circle) of QD/BCP 

assemblies formed with different sized nanoparticles at their QD-max.  Scale bar is 100 

nm.  Inset scale bar is 50 nm. 
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2.5 Theoretical Modeling of Co-Assembly Structure 

2.5.1 Strong Segregation Theory Calculations.  To understand the formation of 

radial assemblies and the phase behavior further, we used a simple extension to the strong 

segregation theory of Olmsted and Milner
33

 and calculated a phase map identifying 

nanoparticle volume fraction ranges where the core-shell structure with an interfacial 

nanoparticle layer has a lower free energy than such a structure without a nanoparticle 

layer. In the model, the only contributions to the free energy arise from chain stretching 

and the interfacial energy.  Although a complete understanding of the physical processes 

may require calculations based on the self-consistent field theory, the strong segregation 

theory has the advantage of permitting further analytical progress, which enables a 

qualitative understanding of the dominant processes governing structure formation in the 

complex systems considered here.  In the calculation, it is assumed that the core is 

composed of a single spherical block copolymer reverse micelle, with the PAA on the 

inside of the sphere and PS on the outside (Figure 2.10).  We expect that the core 

structure can be actually more complex and comprised of more than one reverse micelle.  

We describe the nanoparticles as occupying a flat layer with thickness corresponding to 

that of the diameter of the nanoparticles, dnp; thus, we neglect the possibility of partial 

packing of the layer and the impact that the curvature of the nanoparticles might have on 

the chain configurations at the copolymer/nanoparticle interface.  Despite these 

simplifications, this model qualitatively reproduces the observed conditions required to 

stabilize the core-shell structure with a nanoparticle layer.   
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Figure 2.10.  Schematic illustration of the wedge used to approximate a segment of 

the spherical core-shell structure with a nanoparticle layer at the interface.  The 

dimensions used in the calculation are shown on the right.  The radii, Zc and Zs 

correspond to the distance from the centre to the interfaces between the A and B 

blocks in the core and the shell, respectively.  The Rc and Rs are the radii of the core 

and shell, and Rnp is the radius of the inner surface of the shell, such that Rnp = Rc + 

dnp, where dnp is the diameter of the nanoparticles. 

 

 



62 

 

 

2.5.2  Relating the Theoretical Phase Map to the Experimental Phase Map.  The 

calculated phase map is presented in Figure 2.11 where the blue shaded area represents 

the conditions where the radial co-assemblies are stable.  As mentioned above, the 

theoretical map reveals the same general trend observed in the experimental data in 

Figure 2.5.  Firstly, it indicates that radial co-assemblies are stable for a limited range of 

nanoparticle volume fractions.  When the nanoparticle volume fraction is too low, in the 

left side of the blue shaded region of the phase map, the inclusion of the nanoparticle 

layer destabilizes the assembly structure by increasing the stretching energy of the shell.  

Experimentally, the destabilization caused by the shell stretching is manifested by 

adopting the asymmetric structures shown in Figure 2.6 A.  When the nanoparticle 

volume fraction is larger than the radial co-assembly range, right side of the blue shaded 

region of the phase map, the inclusion of the nanoparticle layer destabilizes the assembly 

structure by increasing the stretching of the core.  Experimentally, the nanoparticle-

induced strain on the core stretching results in the phase separation of the nanoparticles 

and block copolymer with the addition of water (Figure 2.6 C).  In the blue shaded 

region, the nanoparticle layer has minimal impact on the dimensions of the polymer core 

and the shell.  Furthermore, nanoparticles even relieve chain stretching, particularly in the 

shell, by reducing the curvature of the inner surface of the shell, stabilizing the co-

assembly structure.  Secondly, the range of volume fractions over which the co-

assemblies are stable becomes broader as nanoparticle size increases because the 

stretching energy is relieved more significantly by incorporating larger nanoparticles.  
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The calculated phase map along with the experimental data provides an essential 

guideline for the cooperative self-assembly of nanoparticles and block copolymers, from 

which one can determine the self-assembly conditions for encapsulating nanoparticles 

into discrete block copolymer assemblies.   
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Figure 2.11. Calculated phase map in which the blue shaded region indicates the 

volume fraction ranges where the core-shell structure with a nanoparticle layer has a 

lower energy than the assemblies without the nanoparticle layer.  The kappa value of 




 was used for the calculation. 
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2.6  Conclusions 

Nanoparticles can self-assemble into unique cavity-like structures in core-shell type 

assemblies of PAA-b-PS amphiphilic block copolymers.  Initially, nanoparticles are 

randomly incorporated into the swollen aggregates of block copolymers in DMF.  As 

polymers pack more densely with the addition of water, nanoparticles phase segregate to 

the spherical interface between the polymer core and the shell, forming a submicrometer 

nanoparticle cavity inside the polymer matrix.  It was found that both the enthalpic 

interaction and the polymer stretching energy are important factors in the formation of 

radial co-assemblies.  The slightly unfavorable interaction between alkyl-terminated 

nanoparticles and the hydrophobic segment of polymers (i.e., PS) causes the segregation 

of nanoparticles to the interface between the polymer core and the shell.  PS-modified 

nanoparticles, on the contrary, were randomly incorporated into block copolymer 

micelles without a particular order because of the favorable interaction between 

nanoparticles and polymers.  Strong segregation theory calculations along with 

corresponding experimental data revealed that the polymer stretching is also important in 

forming the layered structure.  Due to the polymer stretching energy, co-assemblies were 

stabilized for limited nanoparticle volume fractions where the inclusion of nanoparticle 

layers reduces the polymer stretching and lowers the free energy of co-assemblies.  In 

addition, the range of volume fractions required for the co-assembly varied sensitively 

with nanoparticle size.  Because bigger nanoparticles can relieve stretching energy more 

effectively, the working volume fraction range became broader with increasing the 

nanoparticle size.  The experimentally determined phase map along with the theoretical 



66 

 

calculation provides the self-assembly conditions required to stabilize the co-assembly 

structure of as-synthesized alkyl-terminated nanoparticles and block copolymers. 
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Chapter 3: Hierarchical Self-Assembly of Amphiphilic Conjugated Polymers into 

Isolated, Bundled, and Branched Nanofibers
1.2 

 

Herein, we provide fundamental studies that provide a better understanding of the solution phase 

nanoscale organization of a series of amphiphilic conjugated rod-coil block copolymers (PHTm-

b-PEGn) with well-defined relative block lengths.  We also demonstrate that an amphiphilic 

conjugated block copolymer can act as an efficient encapsulation agent for semiconducting 

homopolymers with a unique solvent induced control over the supramolecular self-assembly 

structure and the formation of encapsulated nanofiber bundles and branched nanofiber 

structures.  The crystallization and encapsulation strategy towards controlled supramolecular 

structures that is presented herein provides a new toolbox towards the formation of novel 

conjugated nanostructures.    

 

 

1
Reproduced in part with permission from Kamps, A. C., Fryd, M., and Park, S.-J. (2012) 

Hierarchical Self-Assembly of Amphiphilic Conjugated Polymers into Isolated, Bundled, and 

Branched Nanofibers, ACS Nano 6, 2844-2852. Copyright 2012 American Chemical Society. 

2
Reproduced in part with permission from Gao, J.; Kamps, A.C.; Park; S.-J.; Grey, J.K. (2012) 

Encapsulation of Poly(3-hexylthiophene) J-Aggregate Nanofibers with an Amphiphilic Block 

Copolymer, Langmuir, submitted. Copyright 2012 American Chemical Society. 
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3.1 Introduction 

Conjugated polymers have received a great deal of attention in recent years as an 

alternative to inorganic single crystalline semiconductors due to their excellent 

optoelectronic properties and solution-processability.
1
  Among various conjugated 

polymers, poly(3-hexylthiophene) (PHT) has been one of the most widely studied 

semiconducting polymers in photovoltaic devices and field effect transistors owing to its 

high hole mobility.
2, 3

  Unlike single crystalline semiconductors, however, thin films of 

conjugated polymers possess many defects and impurities, and the device performance 

depends highly on the molecular packing of the polymers and on the nanometer scale 

film morphology.
4
  In fact, the high mobility of PHT originates partly from its tendency 

to form well-packed crystalline domains.
5
  However, typical thin films of conjugated 

polymers including PHT contain many grain boundaries and defects, which impede 

efficient charge transport.
6, 7

  Thus, the ability to control the polymer morphology is of 

paramount importance to fully exploit the potential of conjugated polymers in low-cost, 

flexible device fabrication.
8
 

Block copolymers have been actively studied as tools for nanoscale device fabrication 

and new materials syntheses based on their ability to form well-ordered nanostructures by 

microphase segregation.  For the past two decades, there have been numerous studies 

aimed at optimizing bulk block copolymer thin film morphologies by employing various 

thin film processing techniques such as thermal or solvent vapor annealing.
9-11

    In recent 

years, there has been an increased interest in introducing conjugated polymers into block 

copolymer designs, as it provides an efficient way to organize technologically important 
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semiconducting polymers into useful device architectures.
12-14

  Solution phase self-

assembly of conjugated amphiphilic polymers offers a powerful alternative to the thin 

film techniques.
15-18

  In this approach, conjugated polymers are organized into 

technologically relevant building blocks such as nanowires via the nature of amphiphilic 

polymers to self-assemble into various nanostructures.  However, solution phase self-

assembly of conjugated amphiphilic polymers is not yet well understood, and the 

supramolecular self-assembly of such preformed building blocks into extended arrays by 

the bottom-up approach remains largely unexplored. 

Among various conjugated polymers, poly(alkylthiophenes) are one of the most 

widely studied organic materials owing to their excellent optoelectronic properties, which 

make them suitable candidates for applications in optoelectronic devices including 

organic photovoltaic cells, light emitting diodes, and field effect transistors.
2
  Conjugated 

block copolymers have been synthesized by many research groups via the macroinitiation 

approach, where the second polymer block is grown off of the end-functionalized 

conjugated polymer.  McCullough and coworkers pioneered the synthesis of regioregular 

polythiophene (PHT) and PHT-containing block copolymers, and reported several 

different PHT-containing block copolymers including PHT-b-poly(styrene)
19

 and PHT-b-

poly(acrylates)
20, 21

.  Recently, it has been shown that PHT thin films with a long range 

order can be generated by the self-assembly of PHT-b-poly(2-vinyl pyridine) with 

relatively long coil blocks.
13

  Amphiphilic conjugated block copolymers have also been 

synthesized for solution phase assembly using the macroinitiation approach, including 

POT-b-poly(ethylene oxide)
22

 and PHT-b-poly(2-ethyl-2-oxazoline)
23

.  
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In order to create uniform nanostructures in a predictable fashion, it is critical to 

synthesize conjugated block copolymers with well-defined molecular weights and low 

polydispersity.  While the macroinitiation approach described above has been 

successfully used to yield conjugated block copolymers of various polymer 

combinations, a precise control of the length of a growing polymer block can be 

challenging.  Furthermore, it is often difficult to determine the molecular weight of 

synthesized polymers by conventional characterization techniques such as gel permeation 

chromatography (GPC) due to the rigid nature of conjugated polymers.
24

  

Here, we report the high yield synthesis and self-assembly of a conjugated 

amphiphilic polymer composed of PHT and poly(ethylene glycols) (PEG) with well-

controlled molecular weights.  A series of different length polymers were synthesized in 

high yields by the copper catalyzed Huisgen’s 1,3-dipolar cycloaddition between azido 

and alkynyl functionalized polymer end-groups.  This click chemistry reaction has 

become rather ubiquitous in recent literature in topics ranging from small molecules
25

 to 

polymeric nanomaterials
26,27, 28

 and bioconjugates
29

 due to its high yield, mild reaction 

conditions, and tolerance for various functional groups.  The click chemistry coupling 

reaction was recently applied to synthesize conjugated block copolymers of PHT-b-PS
30

, 

PHT-b-PAA
31

, and a donor-accepter system
32

.  However, these examples are mainly 

synthetic examples and do not give clear insights into how having a well-defined polymer 

coupling reaction can lead to well-defined self-assembly structures.   

Here, we report the high yield click-coupling synthesis and self-assembly of 

conjugated amphiphilic block copolymers composed of PHT and poly(ethylene glycol) 
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(PEG) and their superstructures with preformed PHT assemblies.  The PEG block was 

chosen for its solubility in various solvents ranging from polar organic solvents to water, 

which makes it an excellent system for studying solution phase self-assembly.  A series 

of different length PHT-b-PEG were synthesized with precisely controlled molecular 

weights via the copper-catalyzed click reaction,
33

 which enabled an accurate 

determination of the block-lengths and the systematic correlation of the block ratio and 

the self-assembly structure.  A recent work by Manners and coworkers has shown that 

cylindrical micelles of PHT-b-poly(dimethylsiloxane) with controlled lengths can be 

formed by crystallization-driven self-assembly.
34

  Here, we show that the length of PHT-

b-PEG self-assembled nanofibers can be controlled by varying the weight fraction of 

PHT (fPHT) from 0.41 to 0.82.  Furthermore, we demonstrate that the self-assembly of 

PHT-b-PEG and preformed PHT nanofibers can lead to interesting superstructures such 

as closely packed nanofiber bundles and branched structures.  The supramolecular self-

assembly of PHT nanofibers presented here provides a new toolbox for the formation of 

novel organic nanostructures.    

 

3.2  Experimental Section 

3.2.1  Synthesis and Characterization of Ethynyl-PHT.  Monoethynyl-terminated 

PHT (Ethynyl-PHT) was synthesized using the living Grignard metathesis (GRIM) 

polymerization and the end-functionalizaton method following a previously published 

procedure developed by McCullough.
35, 36

  The regioregularity (>95% HT) and the 

monoethynyl-end group functionality of ethynyl-PHT was confirmed by 
1
H-NMR 
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spectroscopy (Figure 3.1 C).  The molecular weight and polydispersity of the ethynyl-

PHT were determined to be 3428 g/mol and 1.16 respectively by MALDI (Figure 3.1 

A,B).   

  In a typical experiment, 2,5-dibromohexylthiophene (1.8 g, 5.6 mmol) and 10 mL of 

freshly distilled THF are added to a 100 mL round bottom flask and the system was 

purged with nitrogen.  A 1.0 M solution of tert-butylmagnesium chloride in THF (5.6 

mL, 5.6 mmol) was then added and the mixture was stirred for 3 hours at room 

temperature under nitrogen.  During this time the solution changed from a yellow color to 

a green color.  The mixture was then diluted with 30 mL of THF followed by addition of 

Ni(dppp)Cl2 (70 mg, 0.1 mmol).  The reaction proceeded under nitrogen flow for an 

additional 20 minutes and then a 0.5 M solution of ethynyl magnesium bromide in THF 

(2.8 mL, 1.4 mmol) was added and reacted for an additional 20 minutes.  At this time, the 

reaction was quenched by adding methanol and then the product was purified by 

subsequent soxhlet extractions with methanol and hexanes.  The final product was then 

collected by a final soxhlet extraction with chloroform.  The ethynyl-PHT solid product 

(purple solid) was dried to a constant weight under vacuum (372 mg, 0.12 mmol) and 

then stored under inert atmosphere.   

1
H NMR (500 MHz, CDCl3):  0.89 (t, 3H), 1.32-1.42 (m, 6H), 1.68 (t, 2H), 2.78 

(t, 2H), 3.51 (s), 6.98 (s, 1H)GPC: Mn = 6562, PDI = 1.17; MALDI-MS: m/z = 3428.87 

[M+] (calculated: 3428 , degree of polymerization (DP) of 20, ethynyl/Br end groups), 

PDI = 1.16.   
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Figure 3.1.  (A)  MALDI-TOF of ethynyl-PHT and (B) end-group analysis.   (C) 
1
H-

NMR spectra of PHT20-ethynyl.  
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3.2.2  Synthesis and Characterization of Azide-PEG.  Monoazide-terminated PEG 

(azide-PEG) was synthesized by the mesylation of the hydroxyl terminus of commercial 

methoxy PEG followed by sodium azide substitution.
37, 38

  The presence of the azide-end 

group was confirmed by FT-IR spectroscopy (appearance of azide peak at 2101 cm
-1

) 

(Figure 3.2 C) and by the end-group analysis of MALDI spectra (Figure 3.2 A,B).  A 

series of different length methoxy-PEG was purchased and used to synthesize PHT-b-

PEG with varying fPHT.   

Typically, a solution of methoxy-PEG (4.4 g, 0.92 mmol), triethylamine (0.51 mL, 

3.7 mmol), and 50 mL of freshly distilled THF were added to a 3-neck roundbottom flask 

and the system was purged with nitrogen.  Methanesulfonyl chloride (0.32 mL, 4.1 

mmol) was then added to the flask and the solution was stirred at room temperature for 

10 hours.  The reaction product was then dried down using rotary evaporation, 

redissolved into minimal amount of deionized water (~ 1-2 mL), and then extracted into 

DCM (150 mL x 2).  After drying the organic product layer with sodium sulfate, the 

product was filtered, concentrated and then precipitated from minimal DCM into cold 

diethyl ether.  The off-white/yellow precipitate was then filtered, washed with cold 

diethyl ether, and then dried under vacuum to a constant weight (3.9 g, 88 %).  The 

mesylated PEG (3.9 g, 0.81 mmol) was added to a roundbottom flask with 50 mL DMF 

and a reflux condenser.  Sodium azide (4.3 g, 65 mmol) was then added to the flask and 

the solution is heated at 60 C for 24 hours.  The reaction product was then dried down 

using rotary evaporation.  The product was then redissolved into DCM and the excess 

sodium azide was removed by filtration.  The product in DCM was further cleaned by 
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extraction with brine solution (100 mL x 4).  After drying the organic layer with sodium 

sulfate, the product was filtered, concentrated and then precipitated from minimal DCM 

into cold diethyl ether.  The azide-PEG product (white solid) was then filtered, washed 

with cold diethyl ether, and then dried under vacuum to a constant weight (2.2 g, 57 %).   

Characterization of azide-PEG108.  IR: (KBr, cm
-1

):  2101 (azide), 529, 842, 963, 

1108, 1237, 1282, 1343, 1468.  MALDI-MS: m/z = 4896.35 [M+] (calculated: 4896, DP 

of 108, N3/CH3 end groups), PDI = 1.21. 

Characterization of azide-PEG48.  IR: (KBr, cm
-1

):  2100 (azide), 529, 842, 963, 1108, 

1237, 1282, 1343, 1468.  MALDI-MS: m/z = 2167.1 [M+] (calculated: 2169.02, DP of 

48, N3/CH3 end groups), PDI = 1.18. 

Characterization of azide-PEG16.  IR: (KBr, cm
-1

):  2100 (azide), 529, 842, 963, 1108, 

1237, 1282, 1343, 1468.  MALDI-MS: m/z = 759.5 [M+] (calculated: 761.02, DP of 16, 

N3/CH3 end groups), PDI = 1.22. 
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Figure 3.2.  (A)  MALDI-TOF of azide-PEG and (B) end-group analysis. (C) 

Representative FT-IR of azide-PEG (red) and methoxy-PEG (black). 
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3.2.3  Synthesis of PHT-b-PEG).  PHT-b-PEG was synthesized by the copper(I)-

catalyzed click reaction between azide-PEG and ethynyl-PHT (Scheme 4).  Typically, 

ethynyl-PHT (100 mg, 0.0266 mmol), azide-terminated PEG (257 mg, 0.0532 mmol) and 

10 mL freshly distilled THF were added to a 25 mL Schlenk flask.  A solution of 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) (152.2 mg, 1.0 mmol) and copper(I) iodide (1.9 

mg, 0.010 mmol) was then degassed and then introduced into the schlenk flask.  The 

mixture was then degassed with three freeze pump thaw cycles and subsequently refilled 

with nitrogen.  The solution reacted at 40°C for 4 days.  The excess copper salt and 

excess PEG homopolymer was removed by passing the product through a neutral alumina 

column.  After the removal of THF by rotary evaporation, the product was precipitated 

into methanol and then filtered to remove any excess PHT homopolymer.  The final 

product was washed with hexanes and then dried under vacuum and collected as a purple 

solid (229 mg, 92% Yield).   

1
H NMR (500 MHz, CDCl3):  0.89 (t, 3H), 1.32-1.42 (m, 6H), 1.68 (t, 2H), 2.78 

(t, 2H), 3.61 (s), 6.95 (s)

 

3.2.4  Preparation of J and H Aggregate PHT Nanofibers 

3.2.4.1 Preparation of PHT200 H-Aggregate Nanofibers.  The commercial PHT 

(regioregular (> 95% HT) with a number average molecular weight of 33405 g mol
-1

) 

was purified by sequential soxhlet extractions with hexanes, DCM and THF to remove 

lower molecular weight fractions (< 22000 g/mol).  The purified higher molecular weight 

product (PHT200) was then collected by a final soxhlet extraction with chloroform and 
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used for subsequent experiments.  In order to prepare the PHT200 nanofibers, the purified 

PHT200 was dissolved in anisole at a concentration of 1 mg/mL.  This solution was heated 

to 70 C in a hot water bath for 1 hour yielding a clear orange solution.  The hot solution 

was then cooled to room temperature by placing in a drawer overnight to allow for 

complete crystallization as evidenced by the color change of the solution from orange to 

purple.  The aged solution was then centrifuged at 5000 rpm for 30 minutes (x2) to 

isolate PHT200 crystallized nanofibers.  

 

3.2.4.2 Preparation of PHT350 J-Aggregate Nanofibers.  Commercial PHT 

(regioregular (> 95% HT) with a number average molecular weight of 50,000 – 65,000 g 

mol
-1

) was obtained from Plextronics and used as received.  This higher molecular weight 

polymer (PHT350) was dissolved in toluene at a concentration of 2 mg/mL.  This solution 

was heated in a 2 mL glass vial to 85 C in a hot water bath for 1 hour yielding a clear 

orange solution.  The hot solution was then cooled to room temperature by placing in a 

drawer overnight to allow for complete crystallization as evidenced by the color change 

of the solution from orange to purple.  The aged solution was then centrifuged at 3500 

rpm for 30 minutes (x2) to isolate PHT350 crystallized nanofibers.  

    

3.2.5  Preparation of PHT Nanofibers Encapsulated in PHT20-b-PEG108.  In a 

typical encapsulation experiment with a molar ratio of PHT20-b-PEG108:PHT200 of 173:1, 

800 L of a 5.12 x 10
-5

 M stock solution of PHT20-b-PEG108 in chloroform (concentration 

determined from UV-vis with an extinction coefficient of 4.3 x 10
4 

M
-1

 cm
-1

) was first 
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dried down under nitrogen.  Then, a 10 L aliquot of a 2.37 x 10
-5

 M stock solution of 

PHT200 nanofibers in anisole (concentration determined from UV-Vis with an extinction 

coefficient of 1 x 10
6 

M
-1

 cm
-1

) was added to the dried block copolymer.  After 20 

minutes of mixing, either 1000 L of water or 1000 L of methanol were added to the 

solution.  The assemblies were mixed for 15 hours at 200 rpm on a shaker and then a low 

flow of nitrogen was used to dissipate anisole in the solution.  Harsher mixing procedures 

such as vortexing or sonication were avoided because they caused significant entangling 

of PHT superstructures. After dissipation of any residual anisole, either methanol or 

water was added to the solution until a final volume of 1 mL of solution was reached.  In 

some cases, the superstructures were purified and concentrated by the centrifugation at 

2000 rpm for 45 minutes.  

 

3.2.6  Materials and Instrumentation.  Methanol, hexane, and chloroform were 

purchased from Fisher Scientific.  Regioregular (> 95% HT) PHT with a number average 

molecular weight of 33405 g mol
-1

 was purchased from Sigma Aldrich.  All other 

reagents were also purchased from Sigma Aldrich. THF was freshly distilled prior to use 

from sodium/benzophenone under nitrogen and all other reagents were used without 

further purification.  All reactions were performed in oven-dried glassware under pre-

purified nitrogen. 

Electronic absorption spectra were acquired on an Agilent 8453 spectrophotometer.  

Emission spectra were acquired on a Spex Fluorolog 3 utilizing a R928 PMT detector.  

Proton NMR spectra were obtained on a Bruker-DMX500 interfaced to an Aspect 3000 
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computer in CDCl3 at ambient temperature.  IR spectra were obtained on a Perkin-Elmer 

system 2000 FTIR spectrometer.  TEM was performed on a JEOL 1400 electron 

microscope operating at 120 kV accelerating voltage.  GPC measurements were carried 

out at room temperature at a flow rate of 1.0 mL/min on a Shimadzu LC-10AT liquid 

chromatography system equipped with a series of two PLgel 10μm 10E6A columns, an 

SPD-10AVvp absorbance UV/VIS detector, and a refractive index detector (RID-10A) 

calibrated against linear polystyrene standards in THF.  DLS measurements were taken 

on a Malvern Zetasizer Nano Series.  Matrix assisted laser desorption ionization time-of-

flight mass spectrometry (MALDI-TOF/TOF MS) spectra were obtained on a Bruker 

Flex Series MALDI-TOF/TOF MS.  Spectra were recorded in the positive-ion reflectron 

mode with an accelerating voltage of 20 kV.  The MALDI samples were prepared by 

mixing a THF solution of PHT (10 mg/mL) and a THF solution of 2,2’:5,2”-terthiophene 

matrix solution (0.25 M).  For PEG samples, a THF solution of 4'hydroxyazobenzene-2-

carboxylic acid (HABA) (0.25 M) was used as a matrix and was mixed with a THF 

solution of PEG (10 mg/mL).  The MALDI sample was prepared by depositing 1 L of a 

(1 matrix:1 sample) solution on the stainless steel sample target and then letting the 

sample air dry.   

 

 

 

3.3  Synthesis and Characterization of PHT-b-PEG 

A series of different length PHT-b-PEG was synthesized via the copper(I)-catalyzed 

click-coupling reaction of azide-PEG and ethynyl-PHT (Scheme 4) to generate PHT20-b-
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PEGn (n = 16, 48, 108) (Table 1).  The chemical structure of the synthesized PHT-b-PEG 

was confirmed by 
1
H-NMR (Figure 3.3 B).  The GPC data shows a reduction of the 

retention time with the increasing of the molecular weight of PEG, which confirms that 

ethynyl-PHT and azide-PEG are indeed coupled to yield PHT-b-PEG (Figure 3.3 A).  

The reaction yields were calculated to be over 70 % for all synthesized polymers (Table 

1).  This result contradicts the previous observation that a spacer was needed to prevent 

steric hindrance from the bulky alkyl side chains for the click syntheses of PHT-b-PS.
30

  

However, a more recent report on the click synthesis of P3HT-b-PAA indicated that 

ethynyl homocoupling could be the main factor that led to the low yield observed in the 

previous synthesis of PHT-b-PS.
31

  Therefore, in our system, to avoid homocoupling and 

increase the reaction yield of our synthesis, end-functionalized homopolymers were kept 

under inert conditions and used shortly after the synthesis (< ~ 1 week).  In the synthesis 

of PHT-b-PEG presented herein, the length of PEG and alkyl side chains did not 

significantly affect the coupling efficiency, and all of the products were synthesized in 

high yields (>70%).   

Molecular weights of PHT-b-PEG were obtained by combining the predetermined 

molecular weights of PEG and PHT homopolymers (Table 1).  An important advantage 

of the click chemistry coupling reaction is that the relative block-length can be readily 

controlled by the choice of parent homopolymers.  In contrast, in the macroinitiation 

approach, the second polymer length and fPHT are controlled by adjusting reaction 

conditions such as time, temperature, and the monomer concentration,
39

 and it can be 

challenging to precisely and reproducibly control the polymer lengths.
40

  Furthermore, 
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due to the rigid nature of conjugated polymers, it is difficult to accurately determine the 

molecular weight of conjugated block copolymers by common techniques such as gel 

permeation chromatography (GPC).
24

  In our synthesis of PHT-b-PEG, both PHT and 

PEG parent homopolymers were fully characterized by GPC, FTIR, NMR, and MALDI 

prior to the coupling reaction, which allowed for an accurate determination of the 

molecular weights of the resultant block-copolymers and straightforward control of 

relative block lengths.  As presented in Table 1, fPHT was varied from 0.41 to 0.82 by 

changing the molecular weight of the PEG block while keeping the length of PHT 

constant.  For comparison, molecular weights estimated using GPC with polystyrene 

standards are also given in Table 1.  Note that many previous works on conjugated block 

copolymers reported the molecular weights determined by GPC despite the common 

knowledge that GPC overestimates the MW of rod-like polymers.  The two sets of 

molecular weights presented in Table 1 clearly show that GPC significantly 

overestimates the molecular weights of PHT-b-PEG even for the polymers with small 

fPHT, demonstrating an important advantage of click syntheses.      
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Scheme 4.  The synthetic scheme for the click chemistry of PHT-b-PEG. 
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Table 1.  Molecular weights and molecular weight distributions of synthesized PHT-

b-PEG and parent PHT and PEG homopolymers.  

 

Polymer Mn, MALDI, 

PEG
a 

(g 

mol
-1

) 

Mw/

Mn
a
 

Mn, MALDI, 

PHT-b-PEG
b 
(g 

mol
-1

) 

Mn, GPC 
c 

(g/mol
-1

) 

Mw/Mn

, GPC
c
 

fPHT 

PHT20 -- 1.16 -- 6562 1.17 1.00 

PHT20-b- PEG16 761 1.04 4189 8489 1.21 0.82 

PHT20-b- PEG48 2169 1.05 5597 11710 1.22 0.61 

PHT20-b- PEG108 4896 1.04 8324 18200 1.21 0.41 

a 
Mn and Mw/Mn were determined by MALDI-TOF analysis. 

b 
Mn was determined by taking the sum of the homopolymer molecular weights as 

determined by MALDI-TOF analysis. 

c 
Mn and Mw/Mn were determined by GPC and are reported as their polystyrene 

equivalents. 
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Figure 3.3.  (A)  GPC spectrum (RID trace) of PHT20-b-PEGn in THF.  (B) 

Representative 
1
H-NMR spectra of PHT20-b-PEGm. 
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3.4  Self-Assembly in Selective Solvents 

3.4.1  Morphology.  Due to its amphiphilic nature, PHT-b-PEG can be dispersed in a 

wide range of solvents.  The optical properties of the block copolymer in solution change 

depending on the selectivity of the solvent and can be correlated to the morphology of the 

self-assembled block copolymers in solution.  In polar organic solvents such as 

tetrahydrofuran (THF) and dichloromethane  (DCM) where both polymer blocks are 

soluble, PHT-b-PEG exists as isolated chains and shows UV-vis and photoluminescence 

(PL) spectra that are characteristic of PHT homopolymers in good solvents (Figure 3.4 A-

B); the -* absorption peak at ~450 nm and a high intensity PL at ~576 nm observed for 

PHT-b-PEG in DCM are characteristic of regioregular PHT in the same solvent.
41

  This 

result indicates that the attachment of PEG does not significantly affect the conformation 

of PHT in good solvents.  When PHT20-b-PEG108 is dispersed in a selective solvent for 

PEG such as water and methanol, the block copolymer organizes into supermolecular 

assemblies as evidenced by the red shift and the appearance of the vibronic structure in 

the UV-vis spectra (Figure 3.4 A). The red-shifted absorption is a result of the increased 

effective conjugation length due to the induced planarity of the closely packed PHT 

chains in polymer assemblies.  The vibronic structures with peak positions at 503 nm, 

541 nm, and 590 nm arise from a combination of -* electronic transition and the strong 

lattice vibrations in PHT crystalline domains.
42

  The efficient PL quenching of PHT20-b-

PEG108 in selective solvents is also indicative of tightly packed PHT and strong 

interchain coupling of the PHT block in the polymer assemblies (Figure 3.4 B).
15, 43

   



90 
 

The transmission electron microscopy (TEM) images in Figure 3.4 C-D show that 

PHT20-b-PEG108 self- assembles into one-dimensional fiber-like structures in selective 

solvents, with the darker contrast arising from the electron-dense PHT block.  The PEG 

block was selectively stained with a phosphotungstic acid solution in Figure 3.4 D, 

revealing the hydrophilic PEG block surrounding the PHT nanofiber core.  The width of 

the PHT domain was measured to be 8.1 nm, which corresponds to the length of 

one PHT20 chain calculated with the monomer length of 0.4 nm.
43

  This indicates that the 

nanofiber is composed of interdigitated PHT chains surrounded by hydrophilic PEG 

chains as depicted in Figure 3.4 E.  The height of the nanofibers was determined to be 5 

 nm by AFM, which is approximately 2-3 times the vertical lattice dimension of a 

P3HT unit cell which is reported to be 1.68 nm.
44-46

  This data indicates that the PHT-b-

PEG nanofibers are composed of 1-3 vertical stacks of PHT-b-PEG.  These one-

dimensional wire-like assemblies of semiconducting polymers are highly desirable for 

device applications as they can support high carrier mobility.
45

  While the insulating 

block of semiconducting-insulating block copolymers can reduce the overall device 

performance, this effect can be overcome with highly ordered self-assembled systems.
20, 

47, 48 
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Figure 3.4.  (A)  Absorbance and (B) PL spectra of PHT20-b-PEG108 dissolved in 

dichloromethane, methanol, and water at a concentration of 0.1 mg/mL.  Pictures of 

PHT20-b-PEG108 (0.1 mg/mL) solutions under ambient light (top-left) and under UV 

light (top-right) are given above the spectra.  PL spectra were collected using an 

excitation wavelength of 380 nm.  (C) TEM image of PHT20-b-PEG108 assemblies 

formed in water.  (D) TEM image of PHT20-b-PEG108 assemblies stained with 

phosphotungstic acid solution.  (E) Schematic depiction of the nanofiber morphology 

formed from the self-assembly of amphiphilic PHT20-b-PEG108 in a selective solvent.   
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3.4.2  Solvatochromism.  It is well known that thiophene homopolymers have a 

tendency towards crystallization and under certain conditions thiophene homopolymers 

have been found to crystallize into similar nanofiber structures.
49, 50

  In order to confirm 

that the nanofiber formation in polar solvents was a result of the self-assembly of block 

copolymers, the aggregation behavior of PHT-b-PEG was compared with that of PHT 

homopolymers in a methanol/DCM mixture and presented in Figure 3.5.  As the 

methanol content was increased from 0% to 90%, the absorption spectrum of PHT-b-

PEG was red-shifted, resulting in a visible color change of the solution from yellow to 

orange to red (Figure 3.5 B-C).  The isosbestic point at ~480 nm indicates the coexistence 

of two distinct conformations of the block copolymer: an isolated form and a coplanar 

aggregated form.  The PL intensity of the block copolymer also decreased with an 

increasing amount of methanol content as expected (Figure 3.5 D).  The mixture of PHT 

and PEG homopolymers showed similar absorption red-shift and PL quenching with the 

introduction of methanol.  However, when the percentage of methanol was increased to > 

50 % the PHT homopolymer began to quickly precipitate out of solution.  This 

observation confirms that the covalently attached PEG block of the conjugated block 

copolymer is necessary for making stable suspensions of PHT nanofibers in polar 

solvents.   

The reversibility of the block copolymer assembly process was also demonstrated by 

drying repeatedly drying down samples and redissolving them into different solvents 

(either selective or non-selective solvents).  Thus proving that the observed 

morphological and optical changes are not a result of heat induced crystallization or 
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oxidation.  The amphiphilic conjugated block copolymer, PHT-b-PEG, is soluble in a 

wide range of solvents with a wide range of polarity indexes (Figure 3.6) and can be used 

to critically tune the optical and morphological characteristics of the block copolymer.  
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Figure 3.5.  (A) Pictures of PHT20-b-PEG108 (0.1 mg/mL) with varying solvent 

compositions under ambient light (top) and under UV light (bottom).  From left to 

right: 0 %, 30 %, 50 %, 70 %, 90 % methanol in DCM. (B) Absorption and (C) PL 

spectra of PHT20-b-PEG108 (0.1 mg/mL) with varying solvent composition in terms of 

% methanol (v/v).  (D) Absorption spectra of mixtures of PHT20 and PEG108 

homopolymers (0.1 mg/mL) with varying solvent composition in terms of % methanol 

(v/v).  PL spectra were collected using an excitation wavelength of 380 nm.   
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Figure 3.6.  (A)  Absorption and (B) PL spectra of PHT20-b-PEG108 in different 

solvents at a concentration of 0.1 mg/mL.  PL spectra were collected using an 

excitation wavelength of 380 nm. 
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3.4.3  Thermochromism.  The PHT-b-PEG nanofibers are strongly held together by 

- interactions and they are not easily disrupted by external stimuli (i.e., ions, 

temperature) in highly selective solvents such as water and methanol (Figure 3.7).  

However, the unusual solubility of PEG in various solvents allows for fabricating 

responsive PHT-b-PEG nanofibers.  The thermochromic behavior of PHT-b-PEG in ethyl 

acetate was not found in any other solvents including methanol, water, THF, chloroform, 

and DCM.  When PHT-b-PEG is heated in DCM and methanol, no spectroscopic changes 

occur, thus indicating no changes in optical or morphological properties.  It is 

hypothesized that the unique thermochromic behavior of the block copolymer was found 

in ethyl acetate due to the intermediate polarity of the solvent index of ethyl acetate (4.4) 

relative to the more polar methanol (5.1) and less polar DCM (3.1).  The higher polarity 

index of methanol means it is a much more selective solvent for the hydrophilic PEG 

block and thus the aggregated nanofiber micelle assembly is the most stable conformation 

even upon heating the sample.  On the other hand, the less polar DCM is a non-selective 

solvent for both blocks and thus the non-aggregated single molecule of the block 

copolymer is the most stable conformation.  However, in ethyl acetate upon heating the 

sample, the solvent becomes less selective towards the PEG block and thus acts more as a 

non-selective solvent in which the non-aggregated single molecule conformation of the 

block copolymer is the most stable conformation.  UV-vis absorption and PL 

measurements indicate that PHT-b-PEG self-assembles when dispersed in ethyl acetate.  

However, with increasing temperature, PHT-b-PEG aggregates disassembled into 

isolated polymer chains which resulted in a red to yellow color change and recovery of 
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the PL intensity.  Poly(alkylthiophenes) are known to show thermochromic behavior due 

to the changes in polymer conformation with temperature, which occurs at a fairly high 

temperature (~150 C).
51, 52

  The temperature-dependent optical properties of PHT shown 

here are induced by a different origin (i.e., assembly-disassembly) and results in a greater 

spectral shift at a lower temperature range.  
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Figure 3.7.  (A)  Absorbance and (B) PL spectra of PHT20-b-PEG108 (0.1 mg/mL) in 

ethyl acetate plotted as a function of increasing temperature.  PL spectra were 

collected using an excitation wavelength of 380 nm.    
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3.5  Effect of Relative Block Lengths on the Self-Assembly Structure of PHT-b-PEG  

3.5.1  Assembly Structure.  In order to examine the effect of block lengths on the 

self-assembly of PHT-b-PEG, the molecular weight of the PEG block was varied from 

761 g/mol to 4896 g/mol while keeping the length of PHT constant, which yielded block 

copolymers with fPHT = 0.41, 0.61, and 0.82 (Table 1).  For all polymers examined in this 

study, PHT-b-PEG self-assembled into the same morphology of nanofibers in selective 

solvents (Figure 3.8).  In general, coil-coil block copolymers self-assemble into various 

assembly structures such as simple micelles, cylindrical micelles, and vesicles depending 

on the relative block lengths and the Flory-Huggins parameters of the two polymers.
53

  

Rod-coil block copolymers have additional factors contributing to the self-assembly 

structure such as the large dissimilarity of the conformationally distinct two blocks and 

the - interaction between rigid conjugated blocks.
54, 55

  The nanofiber morphology has 

been seen in other rod-coil block copolymer systems,
56, 57

 and is typically driven by the 

packing of the conjugated block.
58

  However, previous studies on amphiphilic molecules 

containing different types of conjugated oligomers (e.g., tetra-p-phenylene, isocyano-(l-

alanyl-amino-ethyl)-thiophene) have shown that various types of self-assembly structures 

such as spherical micelles and vesicles can be formed in addition to one-dimensional rods 

and wires by varying the relative rod to coil lengths.
59, 60

  On the contrary, the study 

presented herein on PHT-b-PEG shows that the nanofiber structure is prevalent for a 

broad range of fPHT (fPHT = 0.41, 0.61, and 0.82) due to the strong tendency of PHT to 

form well-packed quasi one-dimensional crystals.   
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A recent work by Manners and coworkers has shown that cylindrical micelles of 

PHT-b-poly(dimethylsiloxane) with controlled lengths can be formed by crystallization-

driven self-assembly.
34

  Here, we show that the length of PHT-b-PEG self-assembled 

nanofibers can be controlled by varying the weight fraction of PHT (fPHT) from 0.41 to 

0.82. The length of the nanofibers was found to gradually increase with decreasing PEG 

block lengths (Figure 3.8 A-C).  At fPHT of 0.41 and 0.60, the lengths of nanofibers were 

~40-100 nm (Figure 3.8A) and ~150 - 400 nm (Figure 3.8 B), respectively.  At the largest 

fPHT of 0.82, longer nanofibers with a length of >1000 nm were commonly observed 

(Figure 3.8 C).  The increase of the aggregation number with the increase of fPHT was also 

confirmed by dynamic light scattering (DLS) analysis (Figure 3.9 B).  The relative 

hydrodynamic diameters determined by DLS were 78.0 , 126.4 , and 172.2 

forfPHT = 0.40, 0.60, and 0.80 respectively.  Although the DLS data does not take 

into account the anisotropy of the nanofiber micelle structure, it does show increased 

aggregation numbers with shorter PEG chains, providing corroborative evidence that the 

TEM images reflect the solution phase assembly structures.   

The self-assembled structure of rod-coil amphiphilic species into distinct 

microdomains is dependent on the - stacking of the aromatic rod, the relative volume 

ratio of the two dissimilar blocks, the interaction parameter between the two blocks, and 

the molecular architecture or shape of the molecule.
61

  In our system, we kept all of the 

aforementioned parameters constant and focused solely on changing the length of the 

hydrophilic PEG block.  Interestingly, the smallest length of nanofiber micelles was 

found for the longest hydrophilic chain lengths.  We hypothesize that this conformation is 
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more stable because it acts to reduce the stretching energy of long PEG chains through 

adopting shorter fibers.  Similar behavior was found in studies of pyrene-b-tetra-p-

phenylene-b-PEG 
62

 and oligo-(p-phenylenevinylene)-b-PEG 
63

 where polymers with 

longer PEG chains were found to form shorter cylinders in solution.   

The schemes below the TEM images in Figure 3.8 show the likely packing 

arrangement of the nanofiber micelles.  Analysis of TEM images resulted in measured 

widths of 8.15 , 8.06 , and 7.80 for fPHT = 0.41, 0.61, and 0.82, 

respectively (Figure 3.9 A).  This indicates that the nanofiber morphology for each block 

length is most likely composed of interdigitated polythiophene chains as shown 

schematically under the TEM images in Figure 3.8.  This result indicates that the packing 

of PHT is the dominating factor for the solution phase morphology for a wide range of 

fPHT, and that the packing structure of PHT in the fiber, which is closely related to 

transport properties, does not significantly change with the length of the PEG block and 

the length of nanofibers.  Note that the formation of uniform assemblies of PHT-b-PEG 

in this study is in part a result of the low polydispersity of PHT-b-PEG synthesized by 

click chemistry.  When the assemblies were formed from polymer mixtures, resulting 

nanofibers had a broad range of lengths as expected (Figure 3.10). 

Fiber like micelles with nanometer sized cross-sections are currently under 

investigation for drug delivery applications, as templates for the deposition of metal 

nanoparticles and as nanoscopic etch resists.
64

  Recent publications have also 

demonstrated that PHT nanofibers exhibit higher organic photovoltaic devices 

performance  than amorphous PHT due to the higher carrier mobility and more efficient 
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charge separation of the confined nanofiber structure.
65

  The efficient formation of 

different length nanofibers via tuning the block length of our amphiphilic block 

copolymer may offer even more control and enhanced device characteristics.   
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Figure 3.8.  TEM images of PHT20-b-PEGn (n = 108, 48, 16) in water with varying 

fPHT; (A) fPHT = 0.41 (B) fPHT = 0.61, and (C) fPHT = 0.82.  Below the respective TEM 

images is a schematic depiction of the effect of relative block lengths on the self-

assembly structure. 
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Figure 3.9.  (A)  Histogram of cylindrical micelle widths measures from TEM images 

of PHT20-b-PEG16 (black) PHT20-b-PEG48 (red), and PHT20-b-PEG108 (green) in 

aqueous solutions at concentrations of ~0.1 mg/mL.  (B) DLS data showing the 

hydrodynamic diameter of PHT20-b-PEGn aggregates in water with varying fPHT; fPHT = 

0.41 (green), fPHT = 0.61 (red), and fPHT = 0.82 (black).   
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Figure 3.10.  TEM image of assemblies formed from a mixture of PHT20-b-PEG16, 

PHT20-b-PEG48, and PHT20-b-PEG108 in a ratio of 1:1:1.  The self-assembly was 

induced by the slow addition of water to a 0.1 mg/mL polymer solution (THF) and 

subsequent dialysis into water.   
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3.5.2  Optical Properties.  As was described earlier, the morphology of the block 

copolymer is very dependent on the block length, with longer nanofibers being formed 

from PHT-b-PEG with shorter PEG lengths.  However, the optical properties of the PHT-

b-PEG block copolymer were not nearly as sensitive to the PEG block length.  In “good” 

solvents such as THF and DCM, all synthesized amphiphilic polymers show UV-vis and 

PL spectra identical to that of homopolymers with the absorbance maxima at 450 nm and 

the emission maxima at 576 nm (Figure 3.11 A-B).  This again indicates that the 

attachment of PEG does not affect the conformation of PHT in good solvents.  The same 

behavior was observed for assemblies formed in selective solvents (Figures 3.11 C-F); 

the polymers dispersed in selective solvents showed essentially the same UV-vis and PL 

spectra regardless of the PEG chain length.  The optical properties of PHT-b-PEG arise 

solely from the conjugated PHT block.  Therefore, although the lengths of the nanofiber 

micelles are changing with changing fPHT, the conformation and packing of the 

conjugated PHT block remains the same and therefore there is no significant change in 

the optical properties.  As is shown schematically in Figure 3.8, the interdigitated packing 

arrangement of the polythiophene block remains the same for the different length 

nanofiber micelles, thus yielding similar red-shifted absorbance spectra and fluorescence 

quenching characteristics.  These results indicate that the conformation and packing of 

the conjugated PHT block remains the same in different length nanofibers.  Therefore, 

the lengths of nanofibers can be controlled by changing the relative block length of 

polymers without changing the packing structure and properties (optical, transport) of the 

PHT-b-PEG block copolymer nanofibers.   
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Figure 3.11.  Absorption spectra of PHT20-b-PEGn directly dissolved in (A) 

chloroform, (C) water, (E) methanol at a concentration of 0.1 mg/mL.  PL spectra of 

PHT20-b-PEGn directly dissolved in (B) chloroform, (D) water, (F) methanol at a 

concentration of 0.1 mg/mL.  Photoluminescence spectra were collected using an 

excitation wavelength of 380 nm.   
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3.5.3  Comparison with POT-b-PEG.  The optical and structural characteristics of 

the series of PHT-b-PEG block copolymer prepared by click chemistry (click-PHT-b-

PEG) were studies for a wide range of fPHT (0.41 to 0.82).  However, these optical and 

morphological characteristics are very different than those found from a very similar 

polymer, POT-b-PEG prepared by anionic polymerization (anionic-POT-b-PEG).
16

  

Compared to click-PHT-b-PEG, anionic-POT-b-PEG is not quenched in selective 

solvents, but instead emits a bright blue color in methanol and a red color in water.  

Furthermore, the absorption spectra in methanol and water are blue-shifted and do not 

show the characteristic vibration spectra found in click-PHT-b-PEG (Figure 3.12 C-D)   

It was hypothesized that the different optical and morphological structures could be a 

result of the different packing tendencies of PHT and POT.  In order to test this 

hypothesis, a series of POT-b-PEG polymers were prepared by click-chemistry (click-

POT-b-PEG) and the optical properties were compared with those of anionic-POT-b-PEG 

(Figure 3.12 A-D).   It is evident from Figure 3.12 A-B that the optical properties, and 

therefore the packing structure, of click-POT-b-PEG is very similar to those seen in click-

PHT-b-PEG.  This means that the length of the alkyl side chain (ie. POT vs. PHT) does 

not account for the different morphologies and packing properties of the polymers.   

The structures of click-POT-b-PEG and anionic-POT-b-PEG are almost identical 

except for the triazole linkage that connects the click product.  One possibility is that the 

triazole linkage causes a critical role in the self-assembly of the click product and drives 

the dominant tightly interdigitated packing structure that results in the distinctive 

vibrational spectra and quenched emission spectra found in all the click products.  
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However, other reports such as the ATRP synthesis of PHT-b-PAA that do not have a 

triazole linker, also report similar red-shifted vibrational spectra and quenched emission 

in selective solvents.
66

  Therefore, this is also an unlikely explanation for the observed 

differences presented in Figure 3.12.   

Another possibility is that the synthetic conditions for anionic polymerization of 

POT-b-PEG
16

 are harsher then the click reaction conditions and may have led to 

oxidizing of the anionic-POT-b-PEG and therefore resulted in defects that caused 

different self-assembled morphologies and different optical characteristics.   In its pristine 

state click-PHT20-b-PEG108 shows a high fluorescence emission when dissolved in a good 

solvent such as chloroform, but the fluorescence is highly quenched when dissolved in 

methanol.  However, after oxidation with m-CPBA the fluorescence of the block 

copolymer decreases when dissolved in chloroform, but increases when dissolved in 

methanol as shown if Figure 3.13.  The significant decrease in the extinction coefficient 

(100-fold) of the anionic polymerization POT-b-PEG product suggests that oxidation is 

the most likely cause of the unique fluorescence qualities reported for the anionic 

polymerization product.
16

  The naphthalene radical present in solution after the anionic 

synthesis may have caused oxidation defects that resulted in a decreased extinction 

coefficient and a twisted morphology of anionic POT-b-PEG in solution.
67
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Figure 3.12.  (A)  Absorbance and (B) PL spectra of click-PHT20-b-PEG48 (dashed lines) and 

click-POT15-b-PEG48 (solid lines) synthesized by click chemistry and dissolved in different 

solvents at a concentration of 0.1 mg/mL.  PL spectra were collected using an excitation 

wavelength of 380 nm.  Pictures of click-POT15-b-PEG48 (0.1 mg/mL) solutions under 

ambient light (top-left) and under UV light (top-right) are given above the spectra.  (C)  

Absorbance and (D) PL spectra of anionic-POT15-b-PEG38 (solid lines) synthesized by anionic 

polymerization at a concentration of 0.35 mg/mL  and excited at their respective excitation 

maxima (THF (black, λ
exc

= 419 nm), methanol (red, λ
exc

= 364 nm), and water (blue, λ
exc

= 396 

nm).  Pictures of anionic-POT15-b-PEG38 under UV light (bottom right) is shown below the 

emission spectra. 
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Figure 3.13.  PL spectra of PHT20-b-PEG108 in its pristine state (dashed lines) and 

after 4 hours of oxidation with m-CPBA (solid lines) when dissolved in methanol 

(red) and chloroform (black).  PL spectra were collected using an excitation 

wavelength of 380 nm. 
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3.6  Controlled Encapsulation of PHT Homopolymer within an Amphiphilic Block 

Copolymer Matrix.   

Over the years, a rather thorough understanding of PHT homopolymer crystallization 

in marginal solvents has been reported.
68-70

    The quasi-one dimensional crystallization 

of poly(alkylthiophene) is induced by an attractive - interaction between the polymer 

backbones and by the concurrent crystallization of the alkyl side chains.
50

  The 

crystallization driven self-assembly of PHT has been used to form inorganic 

semiconducting nanowire-polymer hybrids for photovoltaic applications and has also 

been used to form hybrid nanowires through the co-crystallization of semiconducting 

nanorods and PHT.
71

  In another recent example, 2D functional conductive 

supramolecular structures were assembled using a carbon nanotube induced PHT 

crystallization strategy.
72, 73

  In the work presented herein, we utilize the PHT 

homopolymer crystallization strategy and further demonstrate that an amphiphilic 

conjugated block copolymer can act as an efficient encapsulation agent for 

semiconducting homopolymers.  Furthermore, unique solvent induced control over the 

supramolecular self-assembly structure is demonstrated with the formation of 

encapsulated nanofiber bundles and branched nanofiber structures.  It is well-known that 

the morphology and crystalline structure of poly(thiophenes) have a critical effect on thin 

film charge transport and are therefore critical to the enhancement of device 

performances.  The crystallization and encapsulation strategy towards controlled 

supramolecular structures that is presented herein provides a new toolbox towards the 

formation of novel conjugated structures.   
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3.6.1 Self-Assembly of PHT Nanofibers into Bundled and Branched 

Superstructures.  The self-assembly of PHT-b-PEG was utilized to organize, solubilize, 

and stabilize preformed nanofibers of PHT homopolymer.  It is well known that high 

molecular weight homopolymers of PHT tend to crystallize into long fibers in marginal 

solvents.
69, 74, 75

  Typically, high aspect ratio nanofibers of PHT were prepared by slowly 

cooling a hot (70 C) anisole solution of commercial PHT200 (1 mg/mL), following a 

modified literature procedure
43

 (Figure 3.14 A-B).  The dimensions of the PHT200 

nanofibers was similar to those reported in the literature;
76

 the PHT200 nanofibers had an 

average width of 15.2  1.7 nm (which corresponds to a folded backbone structure 

calculated with a monomer length of 0.4 nm)
50

 and a very high aspect ratio with a length 

of 1-10 m measured by TEM and an average height of 5.0  1.2 nm measured by AFM.  

The high aspect ratio anisole nanofibers are relatively stable in the marginal anisole 

solvent, but are not soluble in, or transferrable to, more polar solvents such as methanol 

and water.  Towards this end, the mutual interaction between the PHT20-b-PEG108 

amphiphilic block copolymer and its homopolymer analogue was used to solubilize the 

high aspect ratio homopolymer structures and to form unique supramolecular structures 

in more selective polar solvents.  The preformed PHT200 nanofibers were organized into 

fiber bundles or branched fibers by the self-assembly with PHT-b-PEG.  The controlled 

encapsulation of PHT200 homopolymer was achieved by adding dry PHT20-b-PEG108 to 

the PHT200 high aspect ratio nanofibers in anisole followed by addition of either excess 

water or excess methanol to the solution.  After mixing overnight, the residual anisole 

was dissipated under a low nitrogen flow. 
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When methanol was used to drive the self-assembly, PHT nanofibers were 

encapsulated in PHT20-b-PEG108 as fiber bundles (Figure 3.14 C-D).  The width of the 

bundles were about 26-80 nm, corresponding to 2-6 fibers, and the length of the bundles 

was typically 1-10 m, as determined by TEM.  A critical amount of PHT20-b-PEG108 

was necessary to encapsulate the preformed homopolymer structure and form the 

hierarchical bundled structure.  At low PHT20-b-PEG108 concentrations, PHT200 

nanofibers precipitated out of solution upon the addition of methanol (Figure 3.14 E).  

However, as shown in Figure 3.14 E, when a critical molar ratio of block copolymer is 

present in the anisole homopolymer solution, the solution turns a red color when 

methanol is added to the system, thus indicating that a stable encapsulated assembly has 

been formed.  Adding an excess amount of PHT20-b-PEG108 did not notably change the 

structure of the encapsulated PHT200 nanofibers, but instead resulted in isolated PHT20-b-

PEG108 nanofibers (Figure 3.4 C) coexisting with bundled PHT200 nanofibers.  These 

isolated nanofibers could be removed via a series of centrifugations, thereby leaving just 

the bundled PHT200 nanofibers in solution.   

A distinct type of superstructure of branched fibers was formed when water was used 

to induce the self-assembly process instead of methanol (Figure 3.15A).  The resulting 

superstructure was composed of PHT20-b-PEG108 fibers perpendicularly grown off of 

PHT200 nanofibers.   This branched structure is reminiscent of the crystallization of PHT 

homopolymers on PHT nanofibers
77, 78

 and carbon nanotubes.
79

  The width of the PHT20-

b-PEG108 nanofiber branches was 7.9  1.2 nm which is similar to the dimension of 

isolated PHT20-b-PEG108 nanofibers shown in Figure 3.4 C.  The origin of the lateral 
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growth of PHT20-b-PEG108 nanofibers is believed to be associated with the immiscibility 

of water and anisole.  Upon the addition of water, PHT20-b-PEG108 nanofibers are likely 

to be formed in water while PHT200 nanofibers remain in anisole.  When the anisole is 

dissipated under nitrogen flow, the highest energy tip of the preformed PHT20-b-PEG108 

fibers stack onto PHT200 nanofibers, thereby forming the distinctive supramolecular 

structure and bringing PHT200 nanofibers into water.  As in the methanol case, a critical 

amount of PHT20-b-PEG108 was needed to disperse the PHT200 nanofibers in water.   

Further control over the dimensions of the branched assembly structure was obtained 

by varying the composition and concentration of the block copolymer.  Increasing the 

concentration of PHT20-b-PEG108 relative to the PHT200 nanofibers resulted in a higher 

density of lateral PHT20-b-PEG108 as shown in Figure 3.15 B.  When PHT20-b-PEG48 is 

used to encapsulate PHT200 nanofibers in water, a similar branched structure is obtained, 

but longer branches are formed.  Overall, the shape, length and density of the hierarchical 

assembly structures were efficiently controlled by varying the solvent quality, polymer 

lengths, and block-copolymer/homopolymer ratio.  The pre-formed homopolymer 

structure is only transiently stable in anisole solution and starts degrading after about a 

week.  In direct contrast, the encapsulated structures are very stable and retain the 

bundled or branched structures for at least four months which offers a significant 

advantage for use in device applications.   

Interestingly, it was found that the preformed high aspect ratio PHT200 nanofibers are 

necessary to obtain distinct encapsulated supramolecular structures.  When self-assembly 

of PHT200 and block copolymers is induced by slow addition of water to a non-selective 
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solvent such as THF, a non-specific block copolymer encapsulation occurs (Figure 3.16 

A).  In contrast, when a shorter PHT20 block is encapsulated in PHT-b-PEG block 

copolymers utilizing the same methodology, a different ribbon-like encapsulated 

structure is formed in solution (Figure 3.16 B).  This data demonstrates that the 

preformed PHT200 nanofibers are necessary to obtain distinct encapsulated 

superstructures.   
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Figure 3.14.  (A) TEM image of PHT200 nanofibers in anisole.  (B) Pictorial depiction 

of PHT200 nanofibers.  (C) TEM image of PHT200 nanofiber bundles encapsulated in 

PHT20-b-PEG108 in methanol.  (D) Pictorial description of superstructure (fiber 

bundles) formed in methanol.  (E)  Pictures of PHT200 nanofibers in 99% methanol:1% 

anisole with increasing amounts of PHT20-b-PEG108.   
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Figure 3.15.  (A)  Pictorial depiction of the branched superstructure composed of 

PHT200 nanofibers and PHT20-b-PEG108.  TEM images of (B) a branched structure 

composed of PHT200 nanofibers decorated with low density PHT20-b-PEG108 

nanofibers formed at a molar ratio of 60:1 (PHT20-b-PEG108:PHT200), (C) a high 

density branched structure composed of PHT200 nanofibers decorated with PHT20-b-

PEG108 nanofibers at a molar ratio of 480:1 (PHT20-b-PEG108:PHT200), and (D) a 

branched structure composed of PHT200 nanofibers decorated with longer PHT20-b-

PEG48 nanofibers formed at a molar ratio of 250:1 (PHT20-b-PEG48:PHT200).   

 

 



119 
 

 

 

Figure 3.16.  TEM images of polymer aggregates formed by the self-assembly of (A) 

PHT200 homopolymers and PHT20-b-PEG108 block copolymers and (B) PHT20 

homopolymers and PHT20-b-PEG108 block copolymers.  The molar ratio between 

PHT20-b-PEG108 and PHT200 was 46:1 with a PHT200 concentration of 0.1 mg/mL.  

The molar ratio between PHT20-b-PEG108 and PHT20 was 10:1 with a PHT20-b-PEG108 

concentration of 0.1 mg/mL.   
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3.6.2 Optical Properties of Encapsulated Structures.  A variety of different 

nanostructures were formed from the hierarchical self-assembly of PHT homopolymers 

and PHT-b-PEG block copolymers.  Interestingly, the dominant packing structures of all 

these very different self-assembled structures are very similar as is evident by the optical 

absorption characteristics in Figure 3.17.  The line shapes of the respective self-

assembled morphologies and the relative ratios of the 0-2 transition (510 nm), 0-1 

transition (540 nm) and 0-0 transition (610 nm) are very similar for all the self-assembled 

structures and are all characteristic of H-aggregate behavior with weak interchain 

coupling.   



121 
 

 

Figure 3.17.  Absorption spectra of PHT20-b-PEG108, PHT200, and their 

superstructures along with the corresponding TEM images.  (A) PHT200 nanofibers in 

anisole (10 mg/mL).  (B)  PHT20-b-PEG108  in methanol (0.1 mg/mL).  (C)  Low 

density branched nanofibers composed of PHT200 nanofibers decorated with PHT20-b-

PEG108 nanofibers at a molar ratio of 60:1 (PHT20-b-PEG108:PHT200) in water.  (D)  

High density branched nanofibers composed of PHT200 nanofibers decorated with 

PHT20-b-PEG108 nanofibers at a molar ratio of 360:1 (PHT20-b-PEG108:PHT200) in 

water.  (E)  PHT200 nanofiber bundles encapsulated in PHT20-b-PEG108 in methanol. 
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3.7  Encapsulation of J-Aggregate Nanofibers with a Conjugated Block Copolymer 

3.7.1  Properties of J-Aggregates.  It is well known that the intrachain and 

interchain order and defect density have a large effect on the optical and transport 

properties of PHT films.  The absorbance spectrum of PHT thin films has been used as a 

measure to probe exciton coupling, intrachain order and the fraction of crystalline regions 

within thin films.
80

  The interplay between processing, order, and device performance are 

dependent on the interchain and intrachain effects in PHT thin films and can be correlated 

to the absorption and emission spectra of PHT thin films.
81, 82

 

The emission from PHT thin films arises from weakly coupled H-aggregates with 

face-to-face oriented chains that exhibit weak exciton coupling, but have no significant 

contributions from intrachain excitons.  A recent theoretical model based on weakly 

interacting H-aggregate states was proposed and was further found to comprehensively 

describe the photophysics of PHT thin films. 
83

    Within this model, the magnitude of the 

interchain coupling is estimated via the ratio (A0-0/ A 0-1) of the lowest energy peak (A0-0) 

and the next vibrational peak (A0-1) absorbance peaks.  An increase in the A0-0/ A 0-1 ratio 

represents an increase in conjugation length and intrachain order, and a decrease in 

excitonic coupling.   

The self-assembled structures of PHT-b-PEG, the crystallized PHT200 homopolymer 

nanofibers and the block copolymer encapsulated structures that are described in more 

detail in section 3.6.2 all have similar absorption spectra line shapes and the relative 

ratios of the 0-2 transition (510 nm), 0-1 transition (540 nm) and 0-0 transition (610 nm) 

are very similar to each other and to that of typical PHT thin films
82, 84-86

.  The emission 
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of these structures are all quenched and the photophysical properties are characteristic of 

typical H-aggregate behavior with predominant interchain interactions.  The electronic 0-

0 transition in these structures is attenuated because of its forbidden nature 
87

 and the 

overall interchain interactions dominate because of the presence of amorphous chains that 

reduce the overall intrachain order and planarity of the aggregate.
83

   

Recently, Dr. John Grey’s group reported the formation of PHT nanofibers that 

exhibit single-chain J-aggregate character.  The absorption, emission, and raman 

spectroscopy of these crystallized homopolymer nanofibers suggested that these J-

aggregates nanofibers possess long-range intrachain ordering that suppresses the 

interchain exciton coupling found in other systems of PHT.
88

  Furthermore, Niles et al. 

performed pressure dependent photoluminescent studies that showed a distinct shift from 

J to H aggregates over the pressure range studied.
88

  This pressure dependent effect was 

attributed to minor deformations of PHT chain planarity which led to an increased 

interchain exciton coupling.  It was also hypothesized that dangling segments of the PHT 

nanofiber structure acted as levers that transmitted small perturbations to chain segments 

within the PHT nanofiber.  The encapsulation of J-aggregates in PHT-b-PEG block 

copolymer offers another approach to develop a better understanding of how intrachain 

order and interchain exciton coupling will be affected by mechanical perturbations of the 

nanofiber structure.  Encapsulation induces formation of hierarchal superstructures and 

represents a mild chemical pressure on the periphery of the NF structure, which can be 

used to further study the delicate interplay between intra-chain order and inter-chain 

exciton coupling that exists in these structures.  The encapsulation approach presented 
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herein also offers a potential means to disperse these exciting new nanomaterials into 

non-organic media making them attractive for biological applications. 

 

3.7.2  Block Copolymer Encapsulation of J-Aggregates.  The self-assembly of 

PHT-b-PEG was utilized to organize, solubilize, and stabilize preformed J-aggregate 

nanofibers of PHT350 homopolymer.  The J-aggregate nanofibers were prepared by 

slowly cooling a hot (80 C) toluene solution of commercial PHT350 (2 mg/mL), 

following a modified literature procedure.
43

  In comparison, the H-aggregate nanofibers 

were prepared by the slow cooling of a hot anisole solution of commercial PHT200 as 

described in more detail in Section 3.6.1.  The J-aggregates are formed because of the 

fractionation of polymer chains, solvent interactions that cause chain conformational 

differences, and because of the kinetics of the crystallization process.
89

  In other words, 

the fractionation of the higher molecular weight PHT350 in a good solvent (toluene) 

results in J-aggregate nanofibers that have less defect sites and a more linear and planar 

conformation.  A representative TEM image of the J-aggregate nanofibers is shown in 

Figure 3.18 A.  When compared to the TEM image of a typical H-aggregate structure 

(15.2  nm)  shown in Figure 3.18 B, it is clear that the J-aggregates are less electron 

dense and have a larger nanofiber width (38.2  nm).  Interestingly the J-aggregates 

character of the J-aggregate nanofibers can be altered to more closely resemble that of H-

aggregate nanofibers by simply sonicating the J-aggregates.  After sonication, the J-

aggregates break apart and become shorter in length as shown in Figure 3.19 B, but also 

become more electron dense and have a more compact width of 21.2  nm compared 
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with pristine J-aggregates which have a width of (38.2  nm).  The decrease in the 0-0 

peak shown in Figure 3.19 after sonication indicates that the sonicated J-aggregates 

became more H-like after sonication. These results support the previously proposition 

that the increase in the intrachain order for J-aggregates arises from their elongation.   

The J-aggregate nanofibers are highly unstable and tend to gel and precipitate out of 

solution after a few days.  Towards this end, the mutual interaction between the PHT20-b-

PEG108 amphiphilic block copolymer and the J-aggregate nanofibers was used to 

solubilize and stabilize the J-aggregate nanofibers and to form unique supramolecular 

structures in more selective polar solvents.  J-aggregate nanofiber bundles or branched 

nanofibers were formed when methanol or water, respectively, were used to drive the 

self-assembly.  The TEM images of J-aggregate bundled and branched encapsulated 

structures are shown in Figure 3.18 C-D.  The corresponding absorption spectra of the 

bundled and branched encapsulated J-aggregate samples presented in Figure 3.18 reveals 

a large decrease in the relative intensity of the 0-0/0-1 bands which indicates an increase 

in the H-aggregates character and a decrease in the intrachain ordering of the 

encapsulated samples.  The increase in H-aggregates character of the encapsulated J-

aggregates could be due to encapsulation induced deformations of the PHT planarity.  

However, it is difficult to quantify the excitonic coupling based solely on the absorption 

characteristics because the block copolymer spectra also overlaps with the PHT nanofiber 

spectra.   

Although, the TEM images, sonication studies, and optical absorptions do give a 

basic understanding of basic arrangements, structure, and packing characteristics of 
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encapsulated J-aggregates, further resolution of vibronic transitions and the nature of 

electronic coupling in the encapsulated J-aggregate samples was achieved using PL and 

raman spectroscopy.  The combined PL and Raman studies can be used to separately 

evaluate vibronic and excitonic coupling contributions to optical lineshapes.  This work 

was done in collaboration with J.K. Grey and further details on this aspect of the work 

will be presented elsewhere.   
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Figure 3.18.  Absorption spectra of PHT350 J-aggregates, PHT200 H-aggregates and 

their encapsulated superstructures along with the corresponding TEM images.  (A) 

PHT350 nanofibers in toluene (2 mg/mL). (B) PHT200 nanofibers in anisole (10 

mg/mL).  (C)  Branched nanofibers composed of PHT350 J-aggregate nanofibers 

decorated with PHT20-b-PEG108 nanofibers at a molar ratio of 120:1 (PHT20-b-

PEG108:PHT350) in water.  (D)  PHT350 J-aggregate nanofiber bundles encapsulated in 

PHT20-b-PEG108 at a molar ratio of 120:1 (PHT20-b-PEG108:PHT350) in methanol. 
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Figure 3.19.  Absorption spectra of PHT350 J-aggregates before and after sonication 

along with the corresponding TEM images.  (A)  Pristine PHT350 J-aggregates.  (B)  

PHT350 J-aggregates after 2 minutes of sonication. 
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3.8  Conclusions   

A series of different length PHTm-b-PEGn (m = 20, n = 16, 48, 108) was synthesized 

in high yields (> 70%) by copper-catalyzed click chemistry.  The molecular weight and 

relative block lengths of the synthesized polymers were determined by thoroughly 

characterizing each block prior to coupling, which allowed for a systematic study of the 

block length effect on the self-assembly structure.  In selective solvents such as water and 

methanol, PHTm-b-PEGn self-assembled into interdigitated one-dimensional assemblies 

(nanofibers).  The self-assembly of PHTm-b-PEGn accompanied an efficient PL 

quenching and red-shift of absorption spectra, indicating a tight packing of PHT in the 

assembly structure.  The length of nanofibers was increased with decreasing PEG lengths 

due to the reduced stretching energy, and a large fPHT of 0.82 led to the formation of 

micrometer-long nanofibers.  The wire-like morphology was maintained for a wide range 

of relative polymer lengths with weight factions of PHT (fPHT) varying from 0.41 to 0.82, 

indicating that the packing of PHT is the main factor that controls the self-assembly 

structure.  In addition, the width and optical properties of PHTm-b-PEGn nanofibers did 

not change significantly with the relative PEG block length, which shows that the lengths 

of nanofibers can be controlled without changing the packing structure and properties 

(optical, transport) of PHT in the nanofibers.  The PHTm-b-PEGn nanofibers were further 

used as building blocks to form hierarchical assemblies of nanofibers.  The self-assembly 

of PHTm-b-PEGn and preformed nanofibers of high molecular weight PHT (PHT200) in 

methanol led to the formation of bundled nanofibers encapsulated in PHTm-b-PEGn.  In 

addition, unique superstructures of branched nanofibers were formed when water was 
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used for the self-assembly instead of methanol.  The density and the length of nanofiber 

branches in the superstructure could be controlled by varying the concentration and the 

length of PEG, respectively.  The controlled self-assembly and encapsulation strategy 

presented here provides a new toolbox towards the fabrication of novel organic 

semiconducting nanostructures.    
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Chapter 4: Hydrogen Bonding Assisted Self-Assembly of Conjugated Brush 

Copolymers into Nanoribbons
 

 

 

 

We report the hierarchical solution phase self-assembly of an amphiphilic conjugated brush 

copolymer, poly(tetra-oxo-tridecanyl-thiophene)-block-poly(ethylene glycol),  into an elongated 

nanoribbon structure.  The interaction of the polar substituents of the conjugated polymer with 

polar protic common solvents dominate the self-assembly process and provide a facile route to 

achieve stable conjugated polymer nanoribbons in aqueous solvents.  The self-assembly structure 

of PTOTT-b-PEG varies sensitively with the solvent composition and polymer concentration, and 

the nanoribbon structure was formed only when polar protic solvents were used as an initial co-

solvent.  These results indicate that the nanoribbon structure is formed due to a delicate interplay 

between conjugated pi-pi stacking and hydrogen bonding interactions. This type of elongated 

nanoribbon structure has not been reported for amphiphilic conjugated block copolymers and 

could offer further insight into how internal packing structure affects the electronic properties of 

the conjugated block copolymer.      

 

 

 



141 

 

4.1 Introduction 

The hierarchical assembly of conjugated polymers is important for organic 

optoelectronic device applications because intermolecular interactions and long-range 

ordering are critical in determining electronic properties.
1
  This bottom-up self-assembly 

approach to device applications has been explored for conjugated small molecules
2-4

 and 

conjugated polymers such as poly(alkylthiophenes) (PAT).
5, 6

  Typically, the 

crystallization of the alkyl side chains into well-packed structures dominates the self-

assembly process of PAT.
7, 8

  Elongated nanowires have been synthesized via 

crystallization driven self-assembly of PAT block copolymers
5
  and branched or bundled 

superstructures were formed through hierarchical self-assembly.
8
  By introducing a 

tetraethylene glycol side chain into the conjugated polymer this affords new opportunities 

for achieving conjugated block copolymer assemblies with diverse morphologies and 

internal packing structures.   

Herein, we present the solution phase self-assembly of an amphiphilic conjugated 

brush copolymer, poly(tetra-oxo-tridecanyl-thiophene)-block-poly(ethylene glycol) 

(PTOTT-b-PEG) into an extended nanoribbon structure. Derivations of the elongated 

nanoribbon structure have been reported by a number of research groups and are typically 

achieved via the self-assembly of small conjugated molecules
9-12

, linear dendritic diblock 

copolymers
13-15

, and metal metal phthalocyanines
16

.  A recent report by Wudl et al. 

characterized the charge transport properties of a nanoribbon structure and showed that 

the supramolecular organization of the small molecule determined the inherent electronic 

properties.
11

  The nanoribbon structure has not been reported for amphiphilic conjugated 
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block copolymers and is achieved herein due to a delicate interplay between conjugated 

- stacking and hydrogen bonding interactions.  The central driving forces for the 

supramolecular self-assembly of the block copolymer into this unique structure were 

identified by varying the solvent composition and polymer concentration.   

 

4.2  Experimental Section 

4.2.1  Synthesis of PTOTT-b-PEG.  PTOTT40-b-PEG108 diblock copolymers were 

synthesized via the triazole cycloaddition click coupling reaction between ethynyl-

PTOTT and azide-PEG (Scheme 5).  The di-brominated TOTT monomer was 

synthesized using modified literature procedures
17, 18,19

 and was polymerized into 

PTOTT-ethynyl block using the end-functionalization Grignard metathesis 

polymerization method.
20, 21
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Scheme 5.  The synthetic scheme for the click chemistry of PTOTT-b-PEG. 
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4.2.1.1  Synthesis of 3-Bromomethylthiophene (1).  Synthesis of 3-

bromomethylthiophene was based on a previously reported method.
17, 18

  Typically, 3-

methylthiophene (12 g, 122 mmol) was added to a dry three-neck round bottom flask 

equipped with two reflux condensers and a glass stopper.  Benzene (200 mL) and 75 wt 

% benzoyl peroxide (184 mg, 0.61 mmol) were then added to the reaction flask and 

subsequently refluxed under air.  While the reaction was refluxing a mixture of 

recrystallized N-bromosuccinimide (NBS) (10.9 g, 61 mmol) and 75 wt % benzoyl 

peroxide was slowly added to the reaction flask from a plastic addition funnel at the top 

of the reflux condenser and washed down with another 100 mL of benzene (Caution: 

reaction is highly exothermic and reacts violently).  The solution was then refluxed for 

another four hours and then cooled to room temperature.  The reaction was then cooled in 

an ice water bath and the solid succinimide by-product was removed by filtration.  After 

the product was filtered, the solvent was removed by rotary evaporation.  The crude 

product (10 g, 46% yield, 98% conversion) obtained from 3-methylthiophene was 

immediately used in the next synthesis without further purification.  

1
H NMR (500 MHz, CDCl3): H 4.52 (s, 2H), 7.12 (dd, JAX = 1.32 Hz, JAM = 4.91 

Hz, 1H), 7.28-7.33 (m, 2H) 
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Figure 4.1.  
1
H-NMR spectra of 3-bromomethylthiophene. 



146 

 

 

4.2.1.2  Synthesis of (tetra-oxo-tridecanyl-thiophene) (TOTT) (2).  Sodium 

hydride (NaH) (3.2 g, 60% in mineral oil, 0.133 mol) was weighed into a dry 500-mL 

two-neck round bottom flask equipped with a condenser and was suspended in DMF (150 

mL).  The reaction set-up was flushed with N2 and was cooled down to 0°C, after which 

TGEE (48 mL, 0.271 mol) was added dropwise over 30 minutes.  To ensure complete 

consumption of NaH, the reaction was allowed to stir for an additional hour at 0°C.  

Crude 3-bromomethylthiophene (1) (10 g, 0.0565 mol) was then added into the reaction 

mixture and the solution was heated to reflux overnight (110°C).  The reaction mixture 

was then allowed to cool to room temperature and was poured into 1M NH4Cl (150 mL) 

and stirred for ten minutes.  The organic phase was extracted with hexanes and dried over 

anhydrous MgSO4.  After the product was filtered, the solvent was removed by rotary 

evaporation.  The crude product was purified using column chromatography on silica gel 

using 7:3 hexanes/ethyl acetate as the eluent to yield 6.99 g (37%) of a yellow oil of 

TOTT. 

1
H NMR (500 MHz, CDCl3): H 1.19 (t, J = 7 Hz, 3H), 3.48-3.53 (m, 2H), 3.56 

(m, 2H), 3.58-3.67 (m, 10H), 4.55 (s, 2H), 7.05 (m, 1H), 7.19 (m, 1H), 7.26 (dd, JMX = 3 

Hz, JAM = 4.9 Hz, 1H) 
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Figure 4.2.  
1
H-NMR spectra of TOTT.  
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4.2.1.3  Synthesis of 2,5-dibromo-(tetra-oxo-tridecanyl-thiophene) (Br2-

TOTT) (3).  TOTT (2) (12.9 g, 0.05 mol) was weighed into a dry 250-mL three-neck 

round bottom flask and was dissolved in THF (50-60 mL).  The reaction set-up was 

flushed with N2 and was cooled down to -78°C, after which dibromantin (8.03 g, 0.0281 

mol) was added.  The reaction mixture was stirred for 30 minutes at -78°C and was then 

allowed to slowly warm up to ambient temperature.  The reaction was stirred for another 

two hours at room temperature and the color of the solution changes from yellow to 

brown.  The solvent was then removed by rotary evaporation.  The resulting residue was 

washed with hexanes, filtered to remove succinimide, dried over anhydrous MgSO4 and 

purified using column chromatography on silica gel with 8:2 hexanes/ethyl acetate as the 

eluent to yield 6.5 g (59%) of an orange oil of 2,5-dibromo-3-TOTT. 

1
H NMR (500 MHz, CDCl3): H 1.20 (t, J = 7 Hz, 3H), 3.49-3.53 (m, 2H), 3.57-

3.61 (m, 4H), 3.63-3.67 (m, 8H), 4.42 (s, 2H), 7.00 (s, 1H) 
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Figure 4.3.  
1
H-NMR spectra of Br2-TOTT.  
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4.2.1.4  Synthesis of ethynyl-terminated poly(tetra-oxo-tridecanyl-thiophene) 

(ethynyl-PTOTT) (4).  2,5-dibromo-TOTT (3) (1.93 g, 4.47 mmol) was weighed into a 

250 mL 3-neck round bottom flask and was dissolved in freshly distilled THF (100 mL).  

The reaction set-up was flushed with argon.  Cyclohexylmagnesium chloride (2.0 M / 

diethyl ether, 4.79 mL, 9.58 mmol) was added into the flask and the reaction was allowed 

to proceed for 30 minutes.  Solid Ni(dppp)Cl2 was then added under high argon flow, and 

the mixture was allowed to stir for another ten minutes.  End-group termination was then 

achieved by adding ethynyl magnesium bromide (1.0 M/ THF, 2.40 mL, 2.40 mmol).  

The termination reaction was allowed to proceed for an additional 30 minutes before it 

was quenched with hexanes (20 mL).  The reaction mixture was then concentrated using 

rotary evaporation and then the product was precipitated into hexanes, filtered, and 

purified by soxhlet extraction with hexanes and chloroform.  The solvent was removed by 

rotary evaporation and the blood-red product was dried under vacuum overnight to yield 

1.02 g (83%) of ethynyl-PTOTT. 

1
H NMR (500 MHz, CDCl3): H 1.17 (t, J = 6.97 Hz, 3H), 3.49 (q, J = 6.92 Hz, 

2H), 3.55 (t, J = 4.61 Hz, 2H), 3.61-3.68 (m, 8H), 3.72 (s, 2H), 4.65 (s, 2H), 7.24 (s, 1H); 

GPC: Mn = 22000, Mn(corrected
22

) = 11000, PDI = 1.17. 
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Figure 4.4.  
1
H-NMR spectra of ethynyl-PTOTT40.  
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4.2.1.5  Synthesis of azide-terminated poly(ethylene glycol) (Azide-PEG) (5).  

The monoazide-terminated poly(ethylene glycol) (azide-PEG) was synthesized following 

a modified literature procedure.
23, 24

  Azide-PEG was synthesized by mesylation of the 

hydroxyl terminus of commercial methoxy-PEG followed by sodium azide substitution.  

Typically, a solution of methoxy-PEG (4.4 g, 0.92 mmol), triethylamine (0.51 mL, 3.7 

mmol), and 50 mL of freshly distilled THF were added to a 3-neck roundbottom flask 

and the system was purged with nitrogen.  Methanesulfonyl chloride (0.32 mL, 4.1 

mmol) was then added to the flask and the solution was stirred at room temperature for 

10 hours.  The reaction product was then dried down using rotary evaporation, 

redissolved into minimal amount of deionized water (~ 1-2 mL), and then extracted into 

DCM (150 mL x 2).  After drying the organic product layer with sodium sulfate, the 

product was filtered, concentrated and then precipitated from minimal DCM into cold 

diethyl ether.  The off-white/yellow precipitate was then filtered, washed with cold 

diethyl ether, and then dried under vacuum to a constant weight (3.9 g, 88 %).  The 

mesylated PEG (3.9 g, 0.81 mmol) was added to a roundbottom flask with 50 mL DMF 

and a reflux condenser.  Sodium azide (4.3 g, 65 mmol) was then added to the flask and 

the solution is heated at 60 C for 24 hours.  The reaction product was then dried down 

using rotary evaporation.  The product was then redissolved into DCM and the excess 

sodium azide was removed by filtration.  The product in DCM was further cleaned by 

extraction with brine solution (100 mL x 4).  After drying the organic layer with sodium 

sulfate, the product was filtered, concentrated and then precipitated from minimal DCM 
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into cold diethyl ether.  The azide-PEG product (white solid) was then filtered, washed 

with cold diethyl ether, and then dried under vacuum to a constant weight (2.2 g, 57 %).   

Characterization of azide-PEG108.  IR: (KBr, cm
-1

):  2101 (azide), 529, 842, 963, 1108, 

1237, 1282, 1343, 1468.  MALDI-MS: m/z = 4896.35 [M+] (calculated: 4896, DP of 

108, N3/CH3 end groups), PDI = 1.21. 

 

4.2.1.6  Synthesis of poly(tetra-oxo-tridecanyl-thiophene)-block-poly(ethylene 

glycol) (PTOTT-b-PEG) (6).  PTOTT-b-PEG was synthesized by the copper(I)-

catalyzed click reaction between azide-PEG (5) and ethynyl-PTOTT (4) (Scheme 1).  

Typically, ethynyl-PTOTT (150 mg, 0.014 mmol), azide- PEG (67 mg, 0.014 mmol), 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) (1.0M/ THF, 0.56 mL, 0.56 mmol) and copper(I) 

iodide (1.9 mg, 0.010 mmol), and 10 mL freshly distilled THF were added to a 25 mL 

round bottom flask.  Copper(I) iodide (1.9 mg, 0.010 mmol) was then added to a 50 mL 

schlenk flask in the glove box.  The polymer solution was then added to the schlenk flask 

via a cannula transfer.  The reactants in the schlenk flask were then degassed with three 

freeze pump thaw cycles and subsequently refilled with nitrogen.  The solution reacted at 

40°C for 2 days.  The copper salt was then removed by passing the product through a 

neutral alumina column.  After the removal of THF by rotary evaporation the product 

was dissolved into a minimal amount of chloroform and precipitated into ethyl ether to 

remove any excess PTOTT homopolymer which will come off in the filtrate.  The ethyl 

ether precipitate was collected using gravity filtration and then dried to a constant weight 

under vacuum.  The dry product was then washed with water (20 mL x 3) followed by 
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centrifugation at 14K rpm to remove the aqueous supernatant which will contain any 

excess PEG homopolymer.  The final orange-solid product was then dried to a constant 

weight under vacuum yielding 190 mg (86%) of PTOTT40-b-PEG108.  The purity of the 

PTOTT-b-PEG block copolymer was confirmed by GPC and NMR analysis.       

1
H NMR (500 MHz, CDCl3): H 1.17 (t, J = 6.97 Hz, 3H), 1.94 (m), 3.49 (q, J = 

6.92 Hz, 2H), 3.55 (t, J = 4.61 Hz, 2H), 3.61-3.68 (m, 8H), 3.65 (s), 3.72 (s, 2H), 3.95 (t), 

4.65 (s, 2H), 7.24 (s, 1H). 

 

4.2.2  Preparation of PTOTT-b-PEG Assemblies.  In a typical experiment, 50 µL 

of a PTOTT40-b-PEG108 solution (6.3 x 10
-5

 M) in chloroform was dried down under 

nitrogen and then redissolved in 1 mL of methanol (DMF,  THF, acetonitrile were other 

common solvents that were used).  A slow addition of 300 µL of water (18 MΩ-cm) was 

added to the block copolymer solution at a rate of 10 µL per 30 s while stirring.  The 

mixture was kept under stirring for 12 h before adding an additional 1mL of water at a 

rate of 50 µL per 30 s. Then, the samples were dialyzed against water for 24 h and further 

concentrated by a series of centrifugations. 

 

4.2.3  Materials, Measurements, and Instrumentation.  All reactions were carried 

out using standard Schlenk techniques under an inert atmosphere of pre-purified nitrogen 

or argon, using oven-dried glassware.  Commercial chemicals 3-methylthiophene, sodium 

hydride, 1,3-dibromo-5,5'-dimethylhydantoin(dibromantin), [1,3-

bis(diphenylphosphino)propane] dichloronickel(II) (Ni(dppp)Cl2), cyclohexylmagnesium 



155 

 

chloride, vinylmagnesium bromide, benzene, and anhydrous N,N-dimethylformamide 

(DMF)  were purchased from Aldrich and used without further purification.  N-

Bromosuccinimide (Aldrich, 99%) was recrystallized from water, dried under vacuum, 

and stored over Drierite.  Triethylene glycol monoethyl ether (TGEE) (Aldrich, tech.) 

was dried and vacuum-distilled over phosphorus pentoxide.  Tetrahydrofuran was freshly 

distilled from sodium/benzophenone to ensure anhydrous conditions, and all other 

reagents were used without further purification. 

IR spectra were obtained on a Perkin-Elmer system 2000 FTIR spectrometer.  

Electronic absorption spectra were acquired on an Agilent 8453 spectrophotometer.  

Photoluminescence spectra were acquired on a Spex Fluorolog 3 utilizing a R928 PMT 

detector.  TEM was performed on a JEOL 1400 electron microscope operating at 120 kV 

accelerating voltage.  GPC measurements were carried out at room temperature at a flow 

rate of 1.0 mL/min on a Shimadzu LC-10AT liquid chromatography system equipped 

with a series of two PLgel 10μm 10E6A columns, an SPD-10AVvp absorbance UV/VIS 

detector, and a refractive index detector (RID-10A) calibrated against linear polystyrene 

standards in THF.  Dynamic light scattering (DLS) measurements were taken on a 

Malvern Zetasizer Nano Series.  Matrix assisted laser desorption ionization time-of-flight 

mass spectrometry (MALDI-TOF/TOF MS) spectra were obtained on a Bruker Flex 

Series MALDI-TOF/TOF MS.  Spectra were recorded in the positive-ion reflectron mode 

with an accelerating voltage of 20 kV.  The MALDI samples were prepared via the 

sandwich method by first depositing 1 L of a 40 mg/mL DCTB matrix chloroform 

solution, followed by the deposition of 1 L of a 1 mg/mL PTOTT chloroform solution 
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on top of the matrix, and finally depositing another 1 L of a 40 mg/mL trans-2-[3-(4-

tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) matrix chloroform 

solution on top of the sample.  After each of the solutions (1 L) were deposited on the 

stainless steel sample target they were then air dried prior to the addition of the next 

solution. 

 

4.3  Synthesis and Characterization of PTOTT-b-PEG.  PTOTT40-b-PEG108 diblock 

copolymers were synthesized via the triazole cycloaddition click coupling reaction 

between ethynyl-PTOTT and azide-PEG (Scheme 5).  The di-brominated TOTT 

monomer was synthesized using modified literature procedures
18,19, 25

 and was 

polymerized into PTOTT-ethynyl block using the end-functionalization Grignard 

metathesis polymerization method.
20, 21

  Azide-PEG was synthesized by the mesylation of 

the hydroxyl terminus of commercial methoxy PEG followed by sodium azide 

substitution.
23, 24

  The click coupling product was purified by precipitation into diethyl 

ether and aqueous washing to remove excess ethynyl-PTOTT homopolymer and azide-

PEG, respectively.  The purity of the block copolymer was confirmed by 
1
H NMR 

spectroscopy (Figure 4.5 A) and gel permeation chromatography (Figure 4.5 B).   
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Figure 4.5.  (A)  
1
H-NMR spectra of PTOTT40-b-PEG108.  (B)  GPC spectrum (RID 

trace) of (A) purified PTOTT40-b-PEG108 (Blue), (B) crude PTOTT40-b-PEG108 

(Black), (C) PTOTT40 homopolymer (Red), and (D) PEG108 homopolymer (Green). 
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4.4  Self-Assembly into Nanoribbon Structure 

PTOTT-b-PEG is an interesting moiety that can be described as an amphiphilic 

conjugated brush copolymer because it possesses a conjugated thiophene backbone with 

hydrophilic oligomeric polar ethylene glycol side chains and is covalently attached to a 

hydrophilic poly(ethylene glycol) block.  Despite the hydrophilic nature of the PEG block 

and the oligomeric tetraethylene glycol side-chains, the block copolymer will not directly 

dissolve or self-assemble into aqueous solutions.  In order to induce self-assembly, the 

polymer is first dissolved in a common solvent followed by a slow addition of water and 

subsequent dialysis into water.  When the common solvent used in this process is 

methanol, the block copolymer self-assembles into a unique nanoribbon structure in the 

final aqueous solution (Figure 4.6 A).  The TEM images in Figure 4.6 B-C show the 

elongated structure of the nanoribbon.  Dimensional analysis of the TEM images yields a 

width distribution of 250  139 nm and a length distribution of 18.3  5.8 m.  AFM 

images shown in Figure 4.6 D-E yield an average height of  38  5 nm, which closely 

matches with the expected height (40.2 nm) of the interdigitated PTOTT-b-PEG bilayers 

depicted in Figure 4.6 A.   

The two possible packing structures of PTOTT-b-PEG nanoribbons, interdigitated 

and parallel, are shown in Figure 4.7.   It is hypothesized that the PTOTT chains are most 

likely packed in an interdigitated arrangement as shown schematically in Figure 4.7 A 

and not in an end to end or parallel arrangement as depicted in Figure 4.7 B.  The 

theoretical heights shown next to the corresponding structures in Figure 4.7 are calculated 

based on the radius of gyration of PEG108 of 1.23 nm
26

 and the length of one PTOTT40 



159 

 

chain (15.2 nm)
27

.  Overall, the theoretical height of the interdigitated packed structure 

(40.2 nm) correlates more closely with the experimentally determined height of 38  5 

nm and is therefore the more likely candidate.  Furthermore, the experimental height 

might be a slight underestimation due to the possible deformation of the soft PEG block 

via the use of a hard tapping mode during AFM measurements.  Although, the 

interdigitation model seems likely, it can be difficult to precisely determine the precise 

internal packing arrangement of rod-like polymers.  Another group
28

 analyzed the 

emission spectroscopy of a pyrenyl group attached to the polymer as a molecular probe to 

obtain insight into the precise internal packing arrangement of a rod-coil block copolymer 

while other groups
29

 have assumed interdigitation models based on spectroscopic height 

measurements.  The TEM images of broken PTOTT-b-PEG nanoribbons shown in Figure 

4.7 C show the double layered nature of the nanoribbon, but does not necessarily 

discriminate between the two possible packing models.    

 Further confirmation that the self-assembled structure in solution is in fact 

anisotropically flattened and not just collapsed due to capillary forces
30

 was confirmed 

via cryo-TEM images (Figure 4.8 A,B).  The semiconducting nature along with the 

flatness of the nanoribbon structure could also be visualized using SEM as is shown in 

Figure 4.8 C,D.  Overall, the term “nanoribbon” is aptly used to describe this self-

assembled structure because the width of the ribbon is approximately 10 times its height 

and typically has extended lengths of > 10 m.   

The optical characteristics of conjugated polymers can be used to provide more 

information on their packing structure, conjugation length, and environment.  The 
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absorbance spectra of the nanoribbons are blue-shifted (428 nm) relative to both well-

dissolved PTOTT-b-PEG in chloroform (440 nm) and to PTOTT-b-PEG self-assembled 

into quasi-spherical micelle-like aggregates (455-485 nm).  The emission of the PTOTT-

b-PEG nanoribbons is also efficiently quenched compared to the relative optical 

properties of PTOTT-b-PEG in methanol and chloroform (Figure 4.9 A-B).  Overall, the 

emission of PTOTT-b-PEG in methanol is about 4 times less and its absorbance is red-

shifted when compared to its optical properties in a better solvent for PTOTT-b-PEG 

such as chloroform (Figure 4.9 A-B).  This indicates that the PTOTT chains in the 

nanoribbon structure are twisted and are tightly packed enough to cause quenching due to 

intermolecular interactions.
31
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Figure 4.6.  (A) Chemical structure of PTOTT40-b-PEG108 and schematic depiction of 

the self-assembly of PTOTT-b-PEG into nanoribbons from the common solvent 

methanol.  (B), (C) TEM images of 2 M PTOTT40-b-PEG108 in water self-assembled 

from methanol.  (D), (E) AFM height images of 2 M PTOTT40-b-PEG108 in water 

self-assembled from methanol and deposited on a silicon wafer. 

 



162 

 

 

Figure 4.7.  Schematic depiction of the two possible internal packing structures of 

PTOTT-b-PEG nanoribbons; (A) interdigitated packing of PTOTT and (B) parallel 

packing of PTOTT.  (C) TEM images of broken PTOTT-b-PEG nanoribbons showing 

the double layered nature of the nanoribbon structure.   
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Figure 4.8.  Cryo-TEM images (A, B) and SEM images (C, D) of 2 M PTOTT-b-

PEG nanoribbon assemblies in water that were self-assembled from methanol. 
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Figure 4.9.  (A)  Absorbance and (B) PL spectra of 2 M PTOTT40-b-PEG108 

dissolved in chloroform (red), methanol (black) and self-assembled into nanoribbons 

in water from methanol (blue).  Pictures of solutions under ambient light (top-left) and 

under UV light (top-right) are given above the spectra. 
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4.5  Factors Controlling Self-Assembly and Optical Properties of PTOTT-b-PEG in 

Selective Solvents 

4.5.1  Effect of Concentration.  The initial concentration of PTOTT-b-PEG in 

methanol had a rather dramatic effect on its resultant self-assembled structure in water.  

With increasing concentration, the block copolymer morphology evolved from a lamellae 

structure, to a nanoribbon structure, to budding micelles on the nanoribbon, and finally to 

a mixture of quasi-spherical micelle-like aggregates and budded micelle nanoribbons 

(Figure 4.10).    The lamellae structure found at lower concentrations of 0.5 M (Figure 

4.10 A) has a smaller height (7.5  0.8 nm) relative to the nanoribbons (36  5 nm) in 

Figure 4.10 B  formed at larger concentration of 2 M indicating that a parallel packing 

structure might be the more likely packing orientation for the lamellae.        

The effect of block copolymer concentration on morphology is typically explained by 

an increase in the aggregation number of the polymer which is accommodated by a 

reduction of the stretching energy of the core via the adoption of lower curvature 

morphologies such as the bilayer structure.
32

  Other block copolymer systems such as PS-

b-PAA are known to change from spheres, to rods, to vesicles, and finally to bilayers 

with increasing concentration in order to relieve the stretching energy of the core.
33

  In 

the case of PTOTT-b-PEG, the lamellae structure is most likely formed at lower polymer 

concentration because there is not enough material for the nanoribbon structure to be 

formed.  As the aggregation number of the polymer increases, the nanoribbon structures 

starts forming because the larger core size of the nanoribbon lowers the total free energy 



166 

 

of the system by reducing the interfacial energy between the core and the solvent.  As the 

concentration increases further, the quasi-spherical micelle-like aggregates start forming 

on the nanoribbon structure because increasing the block copolymer concentration most 

likely interferes with the hydrogen bonding interaction that causes the nanoribbon 

structure formation.  The fraction of hydrogen bonding between PEG and water decreases 

with increasing PEG concentration.
34

  Therefore as the concentration of PTOTT-b-PEG 

increases, the hydrogen bonding interaction decreases and the quasi-spherical micelle-

like aggregates found in polar aprotic solvents starts manifesting itself.   

A similar morphological trend was identified via imaging aliquots of the block 

copolymer in methanol/water mixtures monitored at intermediate water addition stages 

(Figure 4.11).  At 9 % water content, PTOTT-b-PEG self-assembles into vesicles (Figure 

4.11 A).  As the water % increases, the morphology evolves from vesicles to sheet-like 

structures (Figure 4.11 B), to finally nanoribbons (Figure 4.11 C,D).  The layers 

composing the vesicles and sheets are significantly less electron dense than nanoribbons 

in TEM images, indicating that the assemblies formed at the intermediate water contents 

might adopt side-by-side parallel packing of PTOTT, which has been observed in other 

brush copolymers.
35-37

  As the solvent quality for PTOTT becomes worse with further 

water addition, nanoribbons with face to face PTOTT packing emerge to minimize the 

interaction between polythiophene and water and reduce the interfacial energy.  The 

effect of water content on the morphology can also be correlated with the change in 

aggregation number with lower water contents having smaller aggregation numbers, 

similarly to the effect of concentration.
38

  It important to note that direct dialysis or slow 
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addition of water without overnight incubation results in broken nanoribbons.  Therefore, 

the slow addition of water allows for the self-assembly structure to reach its equilibrium 

morphology.    
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Figure 4.10.  Absorbance spectra and corresponding TEM images of PTOTT40-b-

PEG108 assemblies in water that were self-assembled from methanol at different 

concentrations of PTOTT40-b-PEG108; (A) 0.5 M, (B) 2 M, (C) 5.4 M, and (D) 10 

M. 
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Figure 4.11.  Absorption spectra and corresponding TEM images of 2 M PTOTT-b-

PEG block copolymer nanoribbon assemblies at a series of different water/methanol 

(v/v) contents: (A) 9 % water, (B) 23 % water after overnight incubation, (C) 56 % 

water, and (D) 100 % water.   
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4.5.2  Effect of Common Solvent.  The initial common solvent plays a crucial role in 

determining the final structure of block copolymers in water.  This phenomena has been 

demonstrated in other block copolymer systems such as PS-b-PAA
39

 and PS-b-PEO
40

 and 

is attributed to the difference in the relative solubility parameters of the interacting 

solvent and the block copolymer.  The tetraethylene glycol side chain on the conjugated 

polymer imparts enhanced solubility on the block copolymer and allows for its 

dissolution in a number of different polar protic and polar aprotic solvents.    

Interestingly, hydrogen bonding interactions along with the solubility parameters of the 

common solvents both play a critical role in dictating the resultant self-assembly structure 

of the polymer.  The solubility parameters, hydrogen bonding strengths, and resultant 

morphologies are summarized in Table 2.  TEM images and absorption characteristics of 

the resultant morphologies are further summarized in Figure 4.12.  When polar aprotic 

solvents such as THF, DMF, dixoane, and acetonitrile are used as common solvents, 

PTOTT-b-PEG self-assembles into quasi-spherical micelle-like aggregates.  In contrast, 

when PTOTT-b-PEG is self-assembled from polar protic solvents such as methanol, 

isopropanol, and ethanol the polymer self-assembles into the unique nanoribbon 

morphology.  Despite the similarity of solubility parameters between low hydrogen 

bonding strength acetonitrile (24.3) and high hydrogen bonding strength isopropanol 

(23.5), the self-assembled morphologies for these solvents are quasi-spherical micelle-

like aggregates and nanoribbons, respectively.   This clearly demonstrates the dominant 

effect of the hydrogen bonding interactions in determining the self-assembled structure. 
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The nanoribbon structure that is formed in polar protic solvents is most likely a direct 

result of the competition between PEG-methanol, PEG-water, and water-methanol 

hydrogen bonding.  In binary solvent mixtures of PEG homopolymer, the addition of 

water to methanol results in competition for hydrogen bonding sites along the PEG 

backbone resulting in the adoption of a pearl necklace conformation of PEG.
41

  The 

competitive hydrogen bonding effect typically occurs in solvents that are co-nonsolvents.  

Co-nonsolvents are two good solvents that become poor for a polymer when mixed 

together.  In one example, the co-nonsolvency effect between methanol and water 

resulted in a sharp depression of lower critical solution temperature (LCST) and the 

formation of a pearl necklace conformation of the poly(N-isopropylacrylamide) 

polymers.
42

  In another example, poly(2-(methacryloyloxy) ethyl phosphorylcholine) 

polymer brushes were highly swollen in ethanol and in water, but became deswollen in 

mixtures of ethanol and water due to the co-nonsolvency effect.
43

  The effect of 

competitive hydrogen bonding has also been demonstrated with the peptide (AAKLVFF) 

which forms twisted fibrils in water, nanotubes in methanol, and filamentous tapes in 

water/methanol mixtures.
44

  The competitive hydrogen bonding effect is a key driving 

force in the complex amphiphilic brush copolymer self-assembly of PTOTT-b-PEG that 

manifests itself in the formation of supramolecular nanoribbons. 
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Table 2.  Solubility parameters and hydrogen bonding strength of common solvents. 

 

Common 

Solvent 

Solubility 

Parameter 

(Mpa
0.5

) 

Hydrogen 

Bonding 

Strength 

Initial  

(nm) 
a
 

Final  

(nm) 
b 

Morphology 

in Water 

Dh 

(nm) 
c
 

THF 18.6 Medium 450 433 Micelles
d
 142 ± 

52 

Acetone 20.3 Medium 475 417 Micelles
d
 --- 

Dioxane 20.5 Medium 450 487 Micelles
d
  

2-Propanol 23.5 Strong 475 426 Nanoribbons --- 

Acetonitrile 24.3 Poor 476 455 Micelles
d
 96 ± 

31 

DMF 24.8 Medium 460 485 Micelles
d
 110 ± 

43 

Ethanol 26.0 Strong 475 420 Nanoribbons --- 

Methanol 29.7 Strong 465 428 Nanoribbons --- 

Water 47.9 Strong --- --- --- --- 

a 
Absorbance of PTOTT-b-PEG in common solvent.   

b 
Absorbance of PTOTT-b-PEG water after self-assembly from common solvent. 

c
 Hydrodynamic diameter determined by DLS analysis. 

d 
Micelles denotes quasi-spherical micelle-like aggregates. 
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Figure 4.12.  Absorption spectra and corresponding TEM images of 2 M PTOTT40-

b-PEG108 assemblies in water that were self-assembled from different common 

solvents; (A)  methanol, (B) 2-propanol, (C) ethanol,  (D) THF, (E) DMF,  and (F) 

acetonitrile. 
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4.5.3 Effect of Mixed Solvent.  Further evidence of the prevailing effect of 

hydrogen bonding in achieving the unique nanoribbon morphology was attained by 

studying the morphology of PTOTT-b-PEG in mixed solvent systems.  A mixture of 

nanoribbons and micelles was formed when PTOTT-b-PEG was self-assembled from a 

50 % (v/v) mixture of acetonitrile and methanol (Figure 4.13).  In contrast, a nanofiber 

morphology with a width of 14.2  1.6 nm (the length of one PTOTT40 chain calculated 

with the monomer length of 0.4 nm
45

 is 15.2 nm) was obtained when the block 

copolymer was assembled from a  50 % (v/v) mixture of DMF and methanol (Figure 

4.13).  Studies on binary mixtures of methanol and DMF have revealed that hydrogen 

bonding interactions and dipole association results in the formation of intermolecular 

complexes between the two solvents.
46-48

  This new nanofiber morphology most likely 

consists of interdigitated fully stretched thiophene chains and occurs because the 

intermolecular complex between methanol and DMF interferes with the hydrogen 

bonding effect that typically yields the nanoribbon morphology. 
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Figure 4.13.  TEM images of 2 M PTOTT40-b-PEG108 assemblies in water that were 

self-assembled from different common solvents; (A) 100 % DMF.  (B) 50% 

DMF/methanol (v/v), (C) 100 % methanol, (D) 100 % acetonitrile, (E) 50% 

acetonitrile/methanol (v/v), and  (F) 100 % methanol. 
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4.5.4 Effect of Temperature.  The effect of temperature on the external 

structure of the PTOTT-b-PEG nanoribbons was investigated by heating the PTOTT-b-

PEG nanoribbons in water for 15 hours in a 45 C water bath.  Interestingly, the TEM 

images of the nanoribbon structure after heating reveal a much more curved and 

snakelike nanoribbon structure when compared to the very straight nanoribbon structure 

found prior to heating the sample (Figure 4.14 B-C).  The height of the nanoribbon does 

not change after heating, but the structure does become less flat and more curved.  The 

optical properties of the nanoribbon structure did change after heating with a 52 nm red-

shifted absorbance of the heated sample compared to the original sample (Figure 4.14 A), 

but the emission of the heated sample was similar to the spectra obtained prior to heating.   

The width of heated curved nanoribbon was 156  28 nm compared with the 

statistical width distribution prior to heating of 250  139 nm.  The smaller and more 

monodisperse widths of the nanoribbons after heating could be due to a compilation of 

factors.  Heating the nanoribbons may have caused excess methanol or water entrapped in 

the nanoribbon structure to be expelled, thus resulting in a more compact structure and 

accounting for the change in width and optical properties.  It is also possible that the 

rather large red-shift in the absorption after heating would indicate that the internal 

packing of the curved nanoribbons might have changed to a more compact planar 

structure after heating.  The curved structure of the heated curved nanoribbons was 

retained after incubation for 30 days, thus indicating that the structure is retained once the 

sample is cooled to below room temperature.  Furthermore, the rate of cooling was not 

found to have any effect on the structure, with slow cooling over the course of 5 hours 
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yielding the same optical and morphological results as a sample that was quenched 

quickly in an ice water bath.  This indicates that the curved nanoribbon morphology is 

stable and is not just a result of crystallization processes.    
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Figure 4.14.  Absorption spectra and corresponding TEM images of 2 M PTOTT-b-

PEG block copolymer nanoribbon assemblies (A) before, and (B) after heating at    

45 C for 15 hours.   
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4.5.5  Effect of Hydrophilic Block Length.  The self-assembly characteristics of a 

block copolymer with a shorter hydrophilic block length PTOTT40-b-PEG63 was studied 

and compared to the self-assembly characteristics of the polymer with a slightly longer 

hydrophilic block, PTOTT40-b-PEG108.  The TEM images and absorption characteristics 

of PTOTT40-b-PEG63 self-assembled from different common solvents are summarized in 

Figure 4.15.  In general, the self-assembly behavior of PTOTT40-b-PEG63 behaves very 

similar to PTOTT40-b-PEG108 with polar aprotic solvents resulting in quasi-spherical 

micelle-like aggregates, and polar protic solvents such as methanol resulting in the 

nanoribbon formation.  In Chapter 3, it was shown that rather slight changes in the 

hydrophilic length of PHT-b-PEG had a rather large effect on the length of the nanofibers 

that were formed.  In this case, the PTOTT length is long enough that the hydrophobic 

interaction and hydrogen bonding interaction most likely dominates over the effect of 

hydrophilic block length. 
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Figure 4.15.  Absorption spectra and corresponding TEM images of PTOTT40-b-

PEG63 assemblies in water that were self-assembled from different common solvents; 

(A)  methanol  (B) THF (C) DMF  and (D) acetonitrile. 
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4.5.6  Comparison with PTOTT Homopolymer.  The structure of PTOTT is such 

that the hydrophobic thiophene backbone and polar tetraethylene glycol side chains 

resembles an amphiphilic brush copolymer.  Although the PTOTT homopolymer will not 

directly dissolve in an aqueous solvent, it can be self-assembled into aqueous solvents via 

slow-addition of water and dialysis into water from a common solvent.   The absorbance 

characteristics and TEM images of the self-assembled morphologies of PTOTT 

homopolymers self-assembled from different common solvents are presented in Figure 

4.16.  The dominant morphology for self-assembled PTOTT homopolymer from both 

polar protic and polar aprotic solvents is micellar aggregates with rather red-shifted 

absorbances of ranging from 440 nm to 470 nm.  The micellar morphology is most likely 

the dominant morphology irregardless of the common solvent because it allows for the 

hydrophobic thiophene to bury itself in the hydrophobic core of the micelle and avoid the 

unfavorable interaction with the polar aqueous solvent.  Although quasi-spherical 

micelle-like aggregates are the dominant morphology, the structure formed from the 

common solvent THF shown in Figure 4.16 B does more closely resemble that of a 

vesicle structure and also has a blue-shifted absorbance peak at 420 nm which more 

closely matches that which is expected for a looser packing of polymer chains like those 

found in the nanoribbon and vesicle morphologies.  Previous reports have shown that 

homopolymers can undergo self-assembly into stable aggregates such as vesicles if they 

possess sufficient amphiphilic character.
49

  It is important to note that self-assembly of 

PTOTT homopolymers in polar protic solvents does not result in nanoribbon formation.  
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This means that the covalent attachment of PEG and its interaction with polar protic 

solvents is critical for the formation of nanoribbons.     
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Figure 4.16.  Absorption spectra and corresponding TEM images of 2 M PTOTT40 

homopolymer assemblies in water that were self-assembled from different common 

solvents; (A)  methanol, 443 nm  (B) THF, 420 nm (C) DMF, 494 nm  and (D) 

acetonitrile, 473 nm. 

 

 



184 

 

4.6  Conclusions.   

As described above, the ability to control the molecular packing structure and the size 

of ordered domains is critical for fabricating high performance devices based on 

conjugated polymers.  The self-assembly of PTOTT-b-PEG reported here generated 

various assembly structures including nanoribbons with elongated lateral dimensions 

reaching tens of micrometers.  The formation of the distinctive nanoribbon structure was 

specifically formed due to combined energetic contributions from the conjugated pi-pi 

stacking interactions and the hydrogen bonding interaction between the polymers and the 

polar protic solvents.  The nanoscale orientation of the nanoribbons was also tuned from 

a straight nanoribbon to a curved nanoribbon along with concurrent changes in the 

internal packing structure as evidence by optical measurements.  This type of elongated 

nanoribbon structure has not been reported for amphiphilic conjugated block copolymers 

and could offer further insight into how internal packing structure affects the electronic 

properties of the conjugated block copolymer.      
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Chapter 5: Bioconjugated Nanostructures of Semiconducting Block Copolymer
 

 

 

 

Herein, we describe the synthesis and self-assembly of amphiphilic semiconducting polymers 

composed of a poly(alkoxythiophene) derivative (i.e., poly(tetra-oxo-tridecanyl-thiophene)) and 

oligonucleotides.  These functional bioconjugated polymers combine the excellent optoelectronic 

properties of semiconducting polymers with the bio-recognition properties and sequence 

programmability of DNA.  This method offers a new approach to forming semiconducting 

nanostructures with controllable geometries by self-assembly and to interface nanomaterials with 

biological molecules.  Due to the amphiphilicity of the molecule and the stacking of the rigid 

polythiophene, they self-assembled in aqueous solutions into distinct nanostructures which 

resulted in photoluminescence quenching of the semiconducting polymers.   
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5.1 Introduction 

Polymer bioconjugates are composed of synthetic macromolecules that are covalently 

linked to biological moieties.  The biological components can range in size from smaller 

monomers such as  amino acids and sugars to larger oligomers such as 

oligodeoxynucleotides (ODN) and oligopeptides and to even more complex systems such 

as proteins, DNA, and enzymes.  The systems composed of higher complexity proteins 

and enzymes are mainly looked at for their biological properties such as cell regulation, 

signal transduction, and immune responses; rather than for a structural purpose.  On the 

other hand, the biological building blocks such as ODNs and oligopeptides are 

particularly interesting because they have the specific ability to self-organize and can be 

used in conjunction with synthetic polymers to create highly ordered synthetic 

nanomaterials.
1
 

The development in the research of new polymerization methods (ATRP, RAFT, 

GRIM) and optimization of these synthetic techniques has led to a plethora of synthetic 

polymers that actually far exceeds the biological moiety toolbox.
2
  The choice of the 

synthetic polymer for bioconjugate systems also yields numerous complementary 

properties that can yield a highly responsive biohybrid structure.  Some of the functional 

properties of polymers include: biodegradability, stimuli sensitivity (pH, temperature, 

light irradiation, chemical environment), biocompatibility, conductivity and mechanical 

strength.
3, 4

  

DNA-based polymer hybrids are a new emerging class of advanced functional 

polymers materials that are expected to exhibit a high level of structural control and 
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specific biorecognition.
5, 6

  Some of the DNA block copolymers synthesized by other 

research groups have been examined for possible applications such as gene therapy
7, 8

, 

nanoreactors for DNA template organic reactions
9
, and drug delivery

10
.  On the other 

hand, conjugated polymers have unique optoelectronic properties and high extinction 

coefficients and are one of the most promising materials for a multitude of applications 

such as electrochromic devices, energy storage, chemical sensors, and biomedical 

applications.
11

  Therefore, utilizing these distinct functions of conjugated polymers 

should delve into a new realm of applications that combine the optoelectronic properties 

of the conjugated polymer with the self-recognition and sequence programmability of the 

DNA strand.     In addition there is a need for more fundamental studies on the role of 

hydrophobic blocks of DNA amphiphiles on determining the morphology of aggregates, 

their size, stability and hybridization into micelles.
12

   

Previous work in the Park lab has demonstrated a DNA-b-PS/nanoparticle hybrid 

structure with enhanced DNA binding properties.
13

  Other groups have built higher 

ordered structures of DNA block copolymer amphiphiles with enhanced melting 

properties through sequence specific hybridization with other nanomaterials.
14

  Hermann 

et al.  synthesized DNA-b-PPO which is a low Tg block copolymer that has been shown 

to change from spherical to rodlike aggregates upon hybridization with a longer repetitive 

complementary DNA strand.
15

  Remarkably, these rodlike aggregates showed a 

significantly higher cellular uptake, thus demonstrating that control over the morphology 

of the DNA-block copolymer aggregate will be crucial towards gene delivery 

applications.
16

  Towards this end, using a DNA conjugated block copolymer should result 
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in very distinct morphologies compared to those of the typical coil DNA-block 

copolymer systems due to the added energetic contributions from the tendency towards 

liquid crystalline ordering of the rigid conjugated polymer.
17

  The DNA conjugated block 

copolymer also affords a new opportunity to build higher ordered supramolecular 

structures by utilization of the - packing interaction of the conjugated backbone.   

A number of groups have reported on the synthesis of conjugated rod-coil block 

copolymers.
18-20

  However, very few groups have looked at the covalent attachment of 

conjugated polymer to DNA.  Leclerc et al. utilized positively charged poly(thiophene) 

based DNA detection systems (noncovalent systems)  centered on the conformational 

perturbations of the polymer chains and the resultant color change.
21, 22

  Also, Kim et al. 

reported the synthesis of a DNA conjugated polymer hybrid that contains charged side 

chains to give it water solubility and used the signal amplifying property of the 

conjugated polymer to detect trace amounts of target DNA.
23

  The first published 

example of a conjugated DNA block copolymer, poly(9,9-di-n-octylfluorenyl-2,7-diyl) 

(PFO-b-DNA), was very recently published.
24

  In this work the PFO-b-DNA was used to 

functionalize SWNTs and subsequently facilitate sequence specific assembly in 

nanoelectronic devices.   Although this work provides a very interesting approach 

towards sequence specific directing of carbon nanotubes, it does not allude to the self-

assembly properties of the DNA conjugated block copolymer in it of itself.  In fact, there 

are very little fundamental studies on the role of hydrophobic blocks in DNA amphiphiles 

on determining the structure, size, or stability of aggregates.   

The DNA conjugated block copolymer system presented herein, PTOTT-b-DNA, is 
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therefore one of the first reported amphiphilic conjugated polymer hybrids.  This 

conjugated DNA block copolymer system is interesting because it is capable of exploiting 

both the recognition properties of the DNA and the responsiveness of the polymer to 

tailor the structural and physiochemical properties of the system.  Most reports of DNA 

block copolymer hybrids self-assembly into micellar structures.
1, 14, 25

  Herein, we present 

the self-assembly of a DNA conjugated block copolymer into more complex vesicle 

nanostructures which retain the binding capabilities of the DNA block and the structural 

function of the conjugated block.  The tunability and adaptability of the system is also 

demonstrated via encapsulation of nanoparticles and salt dependent morphological 

transitions.   

 

5.2  Experimental Section 

5.2.1  Synthesis and Characterization of PTOTT-Phosphoramidite.  The di-

brominated tetra-oxo-tridecanyl-thiophene monomer was synthesized using modified 

literature procedures
26, 27,28

 as was described in detail in Chapter 4.2.1 – 4.2.3 of this 

dissertation.  Allyl-terminated PTOTT was synthesized following a modified GRIM 

synthesis method of the corresponding monomers followed by hydroboration/oxidation to 

convert the allyl end-groups to hydroxyl groups.
29

  The PTOTT homopolymers and the 

end-functionalities were confirmed by NMR and the molecular weight of the polymers 

determined by GPC.  The hydroxyl-terminated PTOTT was then reacted with 

chlorophosphoramidite in the presence of an amine to yield the corresponding 

phosphoramidite-PTOTT derivatives (Scheme 6). 
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Scheme 6.  Synthesis of PTOTT-Phosphoramidite. 
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5.2.1.1  Synthesis of allyl-terminated poly(tetra-oxo-tridecanyl-thiophene) 

(PTOTT-allyl) (4).  2,5-dibromo-TOTT (1.93 g, 4.47 mmol) was weighed into a 250 mL 

3-neck round bottom flask and was dissolved in freshly distilled THF (100 mL).  The 

reaction set-up was flushed with argon.  Cyclohexylmagnesium chloride (2.0 M / diethyl 

ether, 4.79 mL, 9.58 mmol) was added into the flask and the reaction was allowed to 

proceed for 30 minutes.  Solid Ni(dppp)Cl2 was then added under high argon flow, and 

the mixture was allowed to stir for another ten minutes.  End-group termination was then 

achieved by adding allylmagnesium bromide (1.0 M/ diethyl ether, 2.40 mL, 2.40 mmol).  

The termination reaction was allowed to proceed for an additional 30 minutes before it 

was quenched with hexanes (20 mL).  The reaction mixture was then concentrated using 

rotary evaporation and then the product was precipitated into hexanes, filtered, and 

purified by soxhlet extraction with hexanes and chloroform.  The solvent was removed by 

rotary evaporation and the blood-red product was dried under vacuum overnight to yield 

1.02 g (83%) of PTOTT-allyl. 

1H NMR (500 MHz, CDCl3): H 1.17 (t, J = 6.97 Hz, 3H), 3.49 (q, J = 6.92 Hz, 

2H), 3.55 (t, J = 4.61 Hz, 2H), 3.61-3.68 (m, 8H), 3.72 (s, 2H), 4.65 (s, 2H), 5.21 (m), 

5.95 (m), 7.24 (s, 1H); GPC: Mn = 22000, Mn(corrected
30

) = 11000, PDI = 1.17. 

 

5.2.1.2  Synthesis of hydroxyl-terminated poly(tetra-oxo-tridecanyl-

thiophene) (PTOTT-hydroxyl) (5).  Conversion of the allyl end-group to the hydroxyl 

end-group was achieved following a modified literature procedure.
19

  In a typical 

experiment, PTOTT-allyl (1.02 g, 0.09 mmol) was added to a 250 mL 3-neck round 
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bottom flask and was dissolved in freshly distilled THF (70 mL).  The reaction set-up 

was flushed with argon.  9-Borabicyclo(3.3.1)nonane (9-BBN) (1.8 mL, 0.9 mmol) was 

added into the flask and the reaction was allowed to proceed for 24 hours at 40°C.  6 M 

NaOH (0.9 mL) was then added to the reaction flask and the reaction solution was mixed 

for another 15 minutes.  The solution was then cooled to room temperature, upon which 

33 % hydrogen peroxide (0.9 mL) was added to the reaction flask.  The reaction then 

proceeded for another 24 hours at 40°C.  The reaction solution was then dried down 

using rotary evaporation.  The solid product was redissolved into a minimal amount of 

chloroform (1 – 2 mL), precipitated into hexanes, filtered and then dried.  The dried 

product was then washed with DI water and then the blood-red product was dried under 

vacuum overnight to yield 0.95 g  (93%) of PTOTT-hydroxyl. 

1H NMR (500 MHz, CDCl3): H 1.17 (t, J = 6.97 Hz, 3H), 1.94 (m), 3.49 (q, J = 

6.92 Hz, 2H), 3.55 (t, J = 4.61 Hz, 2H), 3.61-3.68 (m, 8H), 3.72 (s, 2H), 3.95 (t), 4.65 (s, 

2H), 7.24 (s, 1H); GPC: Mn = 22000, Mn(corrected
30

) = 11000, PDI = 1.17. 

 

 

5.2.1.3  Synthesis of phosphoramidite-terminated poly(tetra-oxo-tridecanyl-

thiophene) (PTOTT-phosphoramidite) (6).  The synthesis of PTOTT-phosphoramidite 

was synthesized following a modified literature procedure.
14, 31

  In a typical experiment, 

PTOTT-hydroxyl (150 mg, 0.015 mmol) was added to a 25 mL 3-neck round-bottom 

flask.  The reaction flask was vacuumed and purged with argon (x 3).  10 mL of freshly 

distilled THF was added to the reaction flask followed by anhydrous 
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diisopropylethylamine (0.1 mmol, 0.045 mL) and then 2-cyanoethyl N,N-

diisopropylchlorophosphoramidite (0.1 mmol, 0.058 mL).  The reaction proceeded for 2 

hours under argon.  The product was then dried under vacuum on the schlenk line and 

then redissolved into 10 mL of anhydrous DMF.  The crude PTOTT-phosphoramidite 

product (119 mg, 80% yield) was used in the DNA-coupling synthesis (within 2 hours of 

being synthesized) without further purification.    

 

5.2.2  Synthesis and Characterization of PTOTT-b-DNA.  PTOTT-b-DNA was 

synthesized by coupling the activated PTOTT-phosphoramidite to the 5’ end of the DNA 

which was synthesized on a solid support using a DNA synthesizer.  After a series of 

washing steps to remove unreacted homopolymer, the protecting groups on the DNA 

were deprotected and the PTOTT-b-DNA product was cleaved from the solid support 

(Scheme 7).  At this step, failure DNA strands and unreacted DNA were washed away by 

direct dissolution into water followed by centrifugation to isolate PTOTT-b-DNA 

aggregates. 
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Scheme 7.  Synthesis of PTOTT-b-DNA. 
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5.2.2.1  Solid State DNA Synthesis (7).  A 10 μmol scale synthesis of 

oligonucleotide strand 5 ′ - A10 ATCCTTATCAATATT-3 ′ was carried out using a 

standard solid state DNA synthesis on an ABI instrument. 

 

5.2.2.2  Synthesis of PTOTT-b-DNA (9).  Block copolymers composed of an 

oligonucleotide block (DNA) and a PTOTT block were synthesized by coupling PTOTT-

phosphoramidite to oligonucleotide grown on 1000 Å controlled pore glass (CPG) beads 

following modified literature procedures.
14, 31

  PTOTT-phosphoramidite was activated 

with a 0.5 M tetrazole activator solution and was then immediately added via the cannula 

transfer technique under argon flow to a 50 mL 3-neck round bottom flask containing 

CPG-DNA in 2 mL of anhydrous acetonitrile.  The coupling reaction proceeded under 

argon for 10 hours.  The CPG beads were then washed with anhydrous DMF and 

acetonitrile to remove the uncoupled PTOTT.  The phosphate group on the DNA was 

then oxidized with a 0.02 M solution of I2/THF followed by a series of washes with 

acetonitrile.  The PTOTT-b-DNA product and failure DNA strands were then deprotected 

and cleaved from the CPG beads via incubation in concentrated ammonium hydroxide at 

55°C for 6 hours.  Excess DMF was then added to the filtered ammonium hydroxide 

solution followed by an extraction with chloroform and water to isolate the DNA-b-

PTOTT product in the organic phase (DNA failure strands localize to the aqueous phase).  

The organic phase was dried over anhydrous MgSO4 and then dried under argon flow to 

yield the PTOTT-b-DNA product as an orange solid (25 % yield). 
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5.2.3    Materials, Measurements and Instrumentation.  All reactions were carried 

out using standard Schlenk techniques under an inert atmosphere of pre-purified nitrogen 

or argon, using oven-dried glassware.  Commercial chemicals 3-methylthiophene, sodium 

hydride, 1,3-dibromo-5,5'-dimethylhydantoin (dibromantin), [1,3-

bis(diphenylphosphino)propane]dichloronickel(II) (Ni(dppp)Cl2), cyclohexylmagnesium 

chloride, vinylmagnesium bromide, benzene, and anhydrous N,N-dimethylformamide 

(DMF)  were purchased from Aldrich and used without further purification.  N-

Bromosuccinimide (Aldrich, 99%) was recrystallized from water, dried under vacuum, 

and stored over Drierite.  Triethylene glycol monoethyl ether (TGEE) (Aldrich, tech.) 

was dried and vacuum-distilled over phosphorus pentoxide.  Tetrahydrofuran was freshly 

distilled from sodium/benzophenone to ensure anhydrous conditions, and all other 

reagents were used without further purification.  

IR spectra were obtained on a Perkin-Elmer system 2000 FTIR spectrometer.  

Electronic absorption spectra were acquired on an Agilent 8453 spectrophotometer.  

Photoluminescence spectra were acquired on a Spex Fluorolog 3 utilizing a R928 PMT 

detector.  Proton NMR spectra were obtained on a Bruker-DMX500 interfaced to an 

Aspect 3000 computer in CDCl3 solvent at ambient temperature.  TEM was performed on 

a JEOL 1400 electron microscope operating at 120 kV accelerating voltage.  GPC 

measurements were carried out at room temperature at a flow rate of 1.0 mL/min on a 

Shimadzu LC-10AT liquid chromatography system equipped with a series of two PLgel 

10μm 10E6A columns, an SPD-10AVvp absorbance UV/VIS detector, and a refractive 

index detector (RID-10A) calibrated against linear polystyrene standards in THF.  
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Dynamic light scattering (DLS) measurements were taken on a Malvern Zetasizer Nano 

Series.  Matrix assisted laser desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF/TOF MS) spectra were obtained on a Bruker Flex Series MALDI-

TOF/TOF MS.  Spectra were recorded in the positive-ion reflectron mode with an 

accelerating voltage of 20 kV.  The MALDI samples were prepared via the sandwich 

method by first depositing 1 L of a 40 mg/mL DCTB matrix chloroform solution, 

followed by the deposition of 1 L of a 1 mg/mL PTOTT chloroform solution on top of 

the matrix, and finally depositing another 1 L of a 40 mg/mL trans-2-[3-(4-tert-

Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) matrix chloroform 

solution on top of the sample.  After each of the solutions (1 L) were deposited on the 

stainless steel sample target they were then air dried prior to the addition of the next 

solution.  Oligonucleotides were synthesized in a 10.0 mol scale on an automated DNA 

synthesizer (ABI, Applied Biosystems, Inc.).  The purity of PTOTT-b-DNA was 

analyzed by polyacrylamide gel electrophoresis (PAGE) using a 15 % polyacrylamide gel 

at 100 V for 60 min.  The gels were stained with ethidium bromide and imaged using an 

Amersham Biosciences Storm 860 phosphorimager. 

 
 

5.3  Synthesis and Characterization of PTOTT-b-DNA 

One of the greatest challenges in the preparation of biopolymer hybrids is that 

efficient coupling yields using phosphoramidite chemistry requires hydrophobic 

polymers to be soluble in more polar solvents such as acetonitrile.
32

  Fulfilling the polar 

solubility requirement for conjugated polymer can be rather difficult because most 
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conjugated polymers tend to be rather hydrophobic and are not typically soluble in such 

polar solvents.  Towards this end, a modified synthetic procedure
26, 29, 33

  was used to 

synthesize an acetonitrile soluble poly(alkoxythiophenes) derivative; poly(tetra-oxo-

tridecanyl-thiophene)  (PTOTT).  The tetraethylene glycol side chains impart enough 

polarity to the conjugated polymer and allows for sufficient solubility in typical polar 

solvents such as acetonitrile and methanol, thus allowing for efficient coupling yielding.   

A conjugated DNA block copolymer, PTOTT-b-DNA was synthesized by coupling a 

short 25 base pair DNA chain (5′-A10ATCCTTATCAATATT-3′) to a hydroxyl-

functionalized PTOTT using standard phosphoramidite chemistry.  Allyl-terminated 

PTOTT was synthesized following a modified GRIM synthesis method of the 

corresponding monomers followed by hydroboration/oxidation to convert the vinyl end-

groups to hydroxyl groups.
29

  The PTOTT homopolymers and the end-functionalities 

were confirmed by NMR and the molecular weight of the polymers determined by GPC.  

The hydroxyl-terminated PTOTT was then reacted with chlorophosphoramidite to yield 

the corresponding phosphoramidite-PTOTT derivatives (Scheme 6).  The activated 

PTOTT-phosphoramidite was then coupled to the 5′ end of the ODN which was 

synthesized on a solid support using a DNA synthesizer.  After a series of washing steps 

to remove unreacted PTOTT homopolymer, the phosphate groups on the DNA were 

oxidized and the PTOTT-b-DNA product was cleaved from the solid support (Scheme 7).  

At this step, failure DNA strands were washed away by direct dissolution into water 

followed by centrifugation to isolate PTOTT-b-DNA aggregates.  The DNA conjugated 
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block copolymer PTOTT25-b-DNA was successfully synthesized in a relatively high yield 

of 20 %.   

The successful synthesis of PTOTT25-b-DNA was confirmed by DNA gel 

electrophoresis as shown in Figure 5.1.  Gel electrophoresis is an experimental technique 

that uses an electric potential to cause migration of charged samples through the gel 

based on their charge density and molecular weight.  The ds-DNA-b-PTOTT sample in 

Lane 1 has a lower gel shift then the ds-DNA control in Lane 2 of the gel.  Therefore, the 

higher MW of the ds-DNA-b-PTOTT along with the aggregated nature and increased 

charge of the ds-DNA-b-PTOTT results in smaller migration through the gel and 

confirms that all of the failure DNA strands were removed in the purification procedure 

described above.  Further confirmation that the DNA was covalently attached to the 

polymer was also verified by self-assembly and hybridization studies as will be described 

in the next section. 
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Figure 5.1.  15 % polyacrylamide gel stained with ethidium bromide; Lane 1: double 

stranded DNA-b-PTOTT block copolymer, Lane 2: double stranded DNA control. 
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5.4.  Self-Assembly of PTOTT-b-DNA 

5.4.1.  Morphology and Optical Properties.  The chemical structure of PTOTT-b-

DNA has many unusual features that distinguish it from more typical coil-type DNA 

block copolymers.  In particular, the PTOTT moiety is not only a conjugated polymer, 

but it is also a conjugated polymer with structural characteristics reminiscent of an 

amphiphilic conjugated brush copolymer due to the hydrophilic oligomeric polar ethylene 

glycol side chains attached to the conjugated thiophene backbone of the polymer.      

Importantly, the PTOTT polymer still retains the desirable optoelectronic properties 

found in more structurally typical poly(alkylthiophenes) that have found applications in 

organic light electroluminescent diodes, solar cells, and photovoltaic cells.
34

  

The PTOTT-b-DNA polymer was self-assembled into a distinct vesicle structure by 

the slow addition of water to a solution of the polymer in DMF followed by subsequent 

dialysis into water (Figure 5.2 A).  The TEM images in Figure 5.2 B-C shows the well-

defined vesicle structure with a width of 218 ± 80 nm by TEM and a hydrodynamic 

diameter of 208 ± 44 by DLS.  The internal composition of the vesicle walls is most 

likely composed of the rigid interdigitated thiophene segments packed in an oriented 

radial arrangement in order to maximize the contact of the charged hydrophilic DNA 

segments with water.   

The distinct vesicle structure of PTOTT-b-DNA is notable because it has not been 

widely reported for other DNA block copolymers and is most likely a direct result of the 

pi-pi stacking interaction of the rigid thiophene backbone of the PTOTT block.  

Amphiphilic block copolymers are known to form various structures such as micelles, 
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vesicles, bilayers, or rod-like micelles.
35

  However, previous reports of DNA block 

copolymers are typically composed of coil-like hydrophobic blocks that tend to self-

assemble into micelles in aqueous solutions.
14, 36

  The vesicle morphology has only been 

reported for one other DNA block copolymer system, polybutadiene-b-DNA, which is 

also considered a rigid rod.
37, 38

  In general, other biocompatible vesicles, such as PEG-b-

Poly(caprolactone) and PEG-b-poly(lactide), are being looked at for applications such as 

the in-vivo delivery of drugs, gene’s and other active agents.
39

   

The DMF solution of well-dissolved PTOTT-b-DNA absorbs at 450 nm and is highly 

fluorescent as shown pictorially in Figure 5.3 A and in the photoluminescence (PL) 

spectra in Figure 5.3 B.  However, upon self-assembly into vesicles in water, via the slow 

addition/dialysis method, the fluorescence of the conjugated PTOTT chains becomes 

efficiently quenched.  The absorbance of PTOTT-b-DNA vesicles shows a peak at 260 

nm arising from the DNA
40

 and a peak at 480 nm arising from the PTOTT (Figure 5.3 A) 

The absorbance of the PTOTT-b-DNA vesicles shown in Figure 5.3 A is red-shifted 

compared to the relative optical properties of PTOTT-b-PEG in DMF.  This indicates that 

the PTOTT chains in the vesicle structure are tightly packed in a planar arrangement that 

causes efficient PL quenching due to intermolecular interactions.
41
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Figure 5.2.  (A) Chemical structure of PTOTT-b-DNA and schematic depiction of the 

self-assembly of PTOTT-b-DNA into vesicles.  (B,C) TEM images of PTOTT-b-DNA 

vesicles. 
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Figure 5.3.   (A)  Absorbance and (B) PL spectra of 3.5  of PTOTT-b-DNA 

dissolved in DMF (black), and self-assembled into vesicles in water (blue).  PL spectra 

were collected using an excitation wavelength of 440 nm. Pictures of PTOTT-b-DNA 

solutions under ambient light (top-left) and under UV light (top-right) are given above 

the spectra.  
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5.4.2  Effect of Concentration.  The initial concentration of PTOTT-b-DNA in DMF 

had a rather dramatic effect on its subsequent self-assembled structure in water.  With 

increasing concentration, the block copolymer morphology evolved from a rod-like 

layered structure to a vesicle structures with a vesicle size that further increased with 

increasing polymer concentrations (Figure 5.4).  The average diameter of vesicles as 

measured by TEM analysis increased from 218  ± 80 nm at 4  concentration, to 468 ± 

159 nm at 7  concentration, and finally to a dual distribution of 1087 ± 230 nm and 

2490 ± 940 nm at a 20  concentration of PTOTT-b-DNA.  The vesicle structure seems 

to be the most stable morphology over a rather large concentration range spanning 4-20  

.  At lower polymer concentrations of 1 , the PTOTT-b-DNA has a much lower 

aggregation number and adopts a rod-like lamellae structure.  As the aggregation number 

of the polymer increases, the vesicle structure is the most favorable morphology as it 

serves to lowers the total free energy of the system by reducing the interfacial energy 

between the core and the solvent.   

The effect of block copolymer concentration on morphology is typically associated 

with an increased aggregation number of the polymer which is accommodated by a 

reduction of the stretching energy of the core via the adoption of lower curvature 

morphologies such as bilayer structures.
42

  Other block copolymer systems such as PS-b-

PAA are known to change from spheres, to rods, to vesicles, and finally to bilayers with 

increasing concentration in order to relieve the stretching energy of the core.
43

  In this 

case, the effect of concentration on the self-assembly process is complicated by the 

rigidity and pi-pi stacking interaction along with the amphilicity of the PTOTT segment 
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of the PTOTT-b-DNA polymer; therefore yielding morphological trends that are not 

typically observed for coil-coil polymers.   
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Figure 5.4.  TEM images of PTOTT-b-DNA assemblies in water that were self-

assembled from DMF at different concentrations of PTOTT-b-DNA; (A) 1 M, (B) 4  

M, (C) 7  , and (D) 18  . 
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5.4.3  Effect of Salt on Assembly Structure.  The PTOTT-b-DNA vesicles undergo 

a unique phase transitions from vesicles to collapsed vesicle membranes upon addition of 

salts as shown in the TEM images in Figure 5.5.  When dried 0.3 M PBS is added to 

PTOTT-b-DNA vesicles in water the vesicle structure (Figure 5.5 A) collapses into a 

vesicle membrane structure as shown in Figure 5.5 B.  The same collapsed vesicle 

membrane structure is obtained (Figure 5.5 C) when salt is added in a less harsh 

condition; via slow water addition with 0.1 M PBS and then complete dialysis into 0.1 M 

PBS.  The salt induced morphology change was also found to be somewhat reversible.  

When the collapsed vesicle membrane in 0.3 M PBS was dialyzed back into water, the 

morphology returned to a mixture of vesicles and lamellae as shown in Figure 5.5 D,E.  

Although the vesicle structure found after dialysis looked more broken then the original 

structure, this is still a good indication that tuning salt conditions could be a useful 

technique to reversibly tune the morphology of PTOTT-b-DNA.   

The salt induced morphological transition occurs in PTOTT-b-DNA because the 

added salts effectively screen the negative charges on the phosphate backbone of the 

DNA thus causing a transition to a lower curvature morphology.  It is known that the 

morphologies of charged diblock copolymer amphiphiles in solution are determined by a 

delicate balance of non-covalent forces that are further complicated by the steric and 

electrostatic interactions of the charged coronal blocks.
44

  Early work from Eisenberg et 

al. demonstrated that with increasing salt contents, the morphology of PS-b-PAA can be 

tuned from spheres to rods, to vesicles, to large compound vesicles.
45

  Later work by 

Discher et al. showed that the morphologies such as tethered vesicles, encapsulated 
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vesicles, or large compound vesicles formed from a charged diblock copolymers of PAA-

b-PBD in water could be controlled by tuning the ionic strength and pH of the solution.
46

  

This is the first example of a DNA block copolymer assembly that exhibited a 

morphological change dependent on the salt concentration. 
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Figure 5.5.  TEM images of PTOTT-b-DNA assemblies in (A) water, (B) in 0.3 M 

PBS, (C) self-assembled  into 0.1 M PBS, and (D,E) dialyzed back into water after 

being in 0.1 M PBS.   
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5.4.4  Hybridization with Complementary DNA.  The accessibility of the DNA for 

duplex hybridization events on the surface of the PTOTT-b-DNA vesicles were 

investigated in this system.  The PTOTT-b-DNA vesicles were hybridized with a 

complementary DNA strand in 0.3 M PBS.  The sequence specific hybridization event 

was monitored by UV and compared with the melting curve of a ds-DNA control as 

shown in Figure 5.6.  Preliminary binding studies do show evidence of DNA 

hybridization, but enhanced binding is not observed (Figure 5.6).  In fact the melting 

temperature (Tm) of ds-DNA-b-PTOTT is very similar to that of ds-DNA with respective 

Tm of 56.4 C and 56.9 C.  The absorbance change for ds-DNA-b-PTOTT was smaller 

(32 %) when compared to the ds-DNA control sample (43 %).  This smaller change in 

absorbance could occur because the DNA strands in the core of the ds-DNA-b-PTOTT 

vesicle membrane structure are not available to bind with the complementary DNA 

strand.  It was originally hypothesized that hybridization with complementary DNA 

might additionally change the conformation of PTOTT and subsequently effect the 

optical properties of the system.  However, no changes in absorption and emission were 

observed after hybridization with a complementary DNA strand.   Continuing efforts are 

being made to tune the morphology of the PTOTT-b-DNA in an effort to adjust the DNA 

density on the surface and study the binding efficiency of the resultant morphologies. 
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Figure 5.6.  Melting curve of 2.5 M ds-DNA control (black) and 2.5 M ds-DNA-b-

PTOTT in 0.1 M PBS. 
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5.4.5  Comparison with PTOTT Homopolymer.  The structure of PTOTT is such 

that the hydrophobic thiophene backbone and polar tetraethylene glycol side chains 

resembles an amphiphilic brush copolymer.  Although the PTOTT homopolymer will not 

directly dissolve in an aqueous solvent, it can be self-assembled into aqueous solvents via 

slow-addition of water and dialysis into water from a common solvent.   The absorbance 

characteristics and TEM images of the self-assembled morphologies of PTOTT 

homopolymers self-assembled from DMF at different concentrations are presented in 

Figure 5.7.  The average diameter of the PTOTT homopolymer micelles as measured by 

TEM analysis increased from 89 ± 13 nm at 1  concentration, to 210 ± 40 nm at 4  

concentration, to 279 ± 53 nm at 7  concentration, and 338 ± 43 nm at a 20  

concentration of PTOTT.  In comparison to PTOTT-b-DNA vesicles, the size of the 

homopolymer micelles did not depend as closely on the polymer concentration.  This 

suggests that the vesicle morphology is much more dependent on the aggregation number 

than the closely packed homopolymer assemblies.  The PTOTT homopolymer micelle-

like aggregates are stable in water and do not undergo any sort of morphology transition 

when salts are added to the system.  This confirms that the charged DNA block is 

necessary to form vesicles and that the salt induced morphology transitions are a direct 

result of salt induced screening of the charged DNA block. 
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Figure 5.7.  TEM images of PTOTT homopolymer assemblies in water that were self-

assembled from DMF at different concentrations of PTOTT; (A)  1 , (B)  4 ,  

(C) 7 , and (D) 18 . 
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5.4.6  Encapsulation of Nanoparticles.  A hybrid nanomaterial structure of PTOTT-

b-DNA and hydrophobic iron oxide nanoparticles was formed via self-assembly of the 

conjugated DNA polymer with the magnetic nanoparticles.  The magnetic nanoparticles 

were incorporated into the PTOTT-b-DNA structure as evidenced by the TEM images in 

Figure 5.8 which clearly show nanoparticles located only in PTOTT-b-DNA assemblies.  

It is unclear from the TEM images where the nanoparticles are located within the 

PTOTT-b-DNA vesicle, but it is likely that the hydrophobic particles would 

preferentially locate within the hydrophobic PTOTT membrane of the vesicle structure.  

Another member of the Park group was the first to demonstrate encapsulation of 

nanoparticles into a DNA block copolymer micelle of DNA-b-PS.
13

  Other groups such as 

Eisenberg et al. have incorporated gold nanoparticles functionalized with poly(styrene)-

b-PAA (PS-b-PAA) into the walls of PS-b-poly(ethylene oxide) (PS-b-PEO) vesicles due 

to hydrophobic interactions.
47

  The exact location of the nanoparticles in this case was 

easier to distinguish due to the electron density of the polymers and the collapsed nature 

of the vesicles.  However, the incorporation of nanoparticle within DNA block copolymer 

vesicles present herein is important because it demonstrates the functionality of the 

system which should prove useful in the pursuit of many applications.   
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Figure 5.8.  TEM images of PTOTT-b-DNA with magnetic nanoparticles 

incorporated into the vesicle structure.   
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5.5  Conclusions 

The DNA conjugated block copolymer system presented herein, is one of the first 

reported amphiphilic conjugated polymer hybrids.  The self-assembly of this amphiphilic 

conjugated DNA block copolymer into a distinct vesicle structure reveals the structural 

importance of the conjugated block in determining the morphology of the bioconjugated 

nanostructure.  The work presented herein also reveals a unique salt-dependent 

morphology transition due to the salt screening the negative charges on the phosphate 

backbone of the DNA therefore causing a destabilization of the vesicle structure.  DNA 

hybridization studies revealed that the recognition properties of the DNA block are 

retained in the vesicle structure.  Furthermore, the functionality of the system is also 

demonstrated by the incorporation of hydrophobic particles into the bioconjugated 

PTOTT-b-DNA vesicle structure.  It is expected that having the conjugated hydrophobic 

thiophene covalently attached to the DNA strand could lead to more complex self-

assembled structures that could prove useful in drug delivery or nanoelectronic 

applications.     
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