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The Role of TIPE2 in the Regulation of Inflammation and Tumorigenesis

Abstract
TIPE2 is a recently discovered regulator of immunity and inflammation. Here we describe a new function of
TIPE2 in the regulation of Ras signaling and Tumorigenesis. By using various stimuli and inhibitors in T Cells
and macrophages we discovered that TIPE2 is regulated at both the message and protein level by
inflammatory stimuli. TIPE2 mRNA is regulated in the short to intermediate term by an NF-Kappa B induced
micro RNA, and TIPE2 is also ubiquitylated and degraded, possibly by SCF-Beta TRCP. Mechanistically
TIPE2 interacts with and inhibits the Ras-interacting domain of the RalGDS family of Ras effectors, leading
to a loss of downstream Ral and AKT activity. TIPE2 deficiency led to increased activation of Ral and AKT,
resulting in resistance to cell death, increased migration, and dysregulated exocyst complex formation.
Overexpression of TIPE2 conversely induced cell death, affected actin polymerization, and reduced exocyst
complex assembly. TIPE2 was able to dramatically slow the growth of Ras-induced tumors in mice, and the
tumors were required to silence TIPE2 before they were licensed to grow. TIPE2 additionally negatively
regulates effectors of the mTOR pathway, including S6K and 4EBP1, possibly via an interaction with, and
destabilization of the mTORC2 complex. Crucially TIPE2 expression is either completely lost or heavily
down-regulated by human hepatocellular carcinoma. Thus, via its simultaneous role as a regulator of
inflammation and cancer, TIPE2 provides a mechanistic link between these two disease states, and may be a
potential drug target for both inflammatory and neoplastic disease.
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ABSTRACT 
THE ROLE OF TIPE2 IN THE REGULATION OF INFLAMMATION AND 

TUMORIGENESIS 
 

Derek Johnson 
Youhai Chen 

 
 
 TIPE2 is a recently discovered regulator of immunity and inflammation.  

Here we describe a new function of TIPE2 in the regulation of Ras signaling and 

Tumorigenesis. By using various stimuli and inhibitors in T Cells and 

macrophages we discovered that TIPE2 is regulated at both the message and 

protein level by inflammatory stimuli.  TIPE2 mRNA is regulated in the short to 

intermediate term by an NF-B induced micro RNA, and TIPE2 is also 

ubiquitylated and degraded, possibly by SCF-TRCP.  Mechanistically TIPE2 

interacts with and inhibits the Ras-interacting domain of the  RalGDS family of 

Ras effectors, leading to a loss of downstream Ral and AKT activity.  TIPE2 

deficiency led to increased activation of Ral and AKT, resulting in resistance to 

cell death, increased migration, and dysregulated exocyst complex formation.  

Overexpression of TIPE2 conversely induced cell death, affected actin 

polymerization, and reduced exocyst complex assembly.   TIPE2 was able to 

dramatically slow the growth of Ras-induced tumors in mice, and the tumors 

were required to silence TIPE2 before they were licensed to grow.    TIPE2 

additionally negatively regulates effectors of the mTOR pathway, including S6K 

and 4EBP1, possibly via an interaction with, and destabilization of the mTORC2 

complex.  Crucially TIPE2 expression is either completely lost or heavily down-

regulated by human hepatocellular carcinoma.  Thus, via its simultaneous role as 
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a regulator of inflammation and cancer, TIPE2 provides a mechanistic link 

between these two disease states, and may be a potential drug target for both 

inflammatory and neoplastic disease. 
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  “Inflammation” is a diverse and nuanced process composed of 

thousands of different reactions and molecules.   This process is tightly controlled 

in order to ensure that the body responds appropriately to a nearly infinite 

number of infectious agents and dangerous conditions while still maintaining 

proper bodily homeostasis.  If this response is too weak, the body is overtaken by 

infection and dies, if the response too potent, the weapons employed by the 

immune system can permanently damage, or, in some cases, destroy the 

host.  The immune system has many tools and methods that it uses to modulate 

and tweak its response in order to create an outcome with just enough duration 

and intensity to end the external threat while dealing minimal damage to the 

host.  These tools range from soluble molecules that enter into the peripheral 

circulation (cytokines, chemokines, etc.) to pro- and anti- inflammatory molecules 

expressed on the surface of both immune and non-immune cells (TNFR, 

TGFR, CTLA4 etc.) to various intracellular signaling molecules that can control 

every process from secretion to metabolism to survival.  With a careful balance 

maintained between these myriad inputs, we arrive at a condition that we refer to 

as “health”.  Loss of proper regulation of inflammation results in inflammatory 

disease. Inflammatory diseases afflict tens of millions of people every year 

(CDC).  While crude treatments such as glucocorticoids and non-steroid-anti-

inflammatory-drugs (NSAIDs) and more sophisticated treatments (soluble TNF 

receptor, anti TNF monoclonal antibody) exist to treat such diseases, the 

etiology of many such diseases is unknown (Hanauer, Lakatos).  Central to 

discovering treatments to these debilitating diseases is developing a better 
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understanding of immuno-modulatory mechanisms that become dysregulated 

during these disorders.  While many of these regulatory mechanisms (PD-1, 

CTLA4, SOCS-1) have been identified, the failure to control so many diseases of 

excess inflammation indicates that there is much more to learn. 

One family of molecules that has remained fairly thinly recognized for their 

role as regulators of inflammation are small G proteins, specifically those of the 

Ras family.    

  

What Are Small GTPases? 

Small GTPases are molecular switches that are capable of being in an “on” state 

in which they are bound to Guanosine-Triphosphate (GTP), or an “off” state in 

which they are bound to Guanosine-Diphosphate (GDP) (Figure 1.1).  Their 

binding to either of these nucleotides causes changes in the conformation of the 

GTPase, which enables them to interact with and activate/deactivate different 

effector molecules.  Small GTPases have an intrinsic (albeit very weak) ability to 

hydrolyze GTP to GDP, hence their possession of an internal “timer” which will 

set off eventually.  More typically these switches are activated by Guanine-

Nucleotide-Exchange-Factors (GEFs) which “exchange” GTP into a binding 

pocket previously occupied by GDP, hence turning “on” the GTPase.  GTPase-

Activating-Proteins (GAPs) activate the intrinsic GTPase activity of these proteins 

(speeding up the timer), and convert bound GTP into GDP and turn “off” the 

switch.  It is the interplay between the GTPases, their GEFs and GAPs that 

coordinate the functioning and modulation of many diverse biological processes. 



4 |  P a g e
 

  

The Ras Superfamily 

Ras is a GTPase that was initially found to be mutated in a wide variety of 

cancers.  Over time many similar GTPases were discovered to have a related 3D 

structure to Ras, and the family now stands at over 150 total members.  This 

large superfamily can be further divided into at least six subfamilies; Ras, Rho, 

Ran, Rab, Rheb, and ARF.  While each of these families of small GTPases has 

been extensively studied in the context of carcinogenesis, we are only beginning 

to scratch the surface of how these related families of proteins are able to control 

non-oncogenic processes such as immunity and inflammation.  There is 

tremendous overlap in the functions performed by each of these groups of 

GTPases, but the primary functions for each subfamily are summarized in Figure 

1.2.  The Ras subfamily, the first and most diverse of the subfamilies, can play a 

vital role in the regulation of immunity and inflammation. 

  

Ras 

Ras is the founding and prototypical member of the small GTPase superfamily.  It 

regulates multiple cellular processes including cell survival, growth, and 

differentiation.  Upon stimulation by a growth factor or other extracellular stimuli, 

a receptor tyrosine kinase (RTK) activates a Ras GEF such as Son of Sevenless 

(SOS), which activates Ras by loading it with GTP allowing it to bind its 

downstream effectors (Figure 1.3).  Following activation, Ras triggers three 

primary effector arms, the Raf/Mek/Erk pathway, the PI3K pathway, and the 
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RalGDS signaling pathway.  The RalGDS pathway activates Ral A and Ral B, 

also members of the Ras GTPase family (to be discussed below).  

ERK 

When bound to Raf, Ras initiates the Raf/Mek/ERK MAPK signaling 

cascade.    In this signaling cascade, each upstream molecule acts as a kinase 

to phosphorylate and activate a subsequent downstream molecule, with an 

eventual result being the modulation of transcription via the phosphorylation of a 

variety of transcription factors.  ERK plays a crucial role in cell proliferation and 

survival.  It is activated in lymphocytes downstream of TCR and BCR stimulation 

(Donahue 2007).  ERK activation can inhibit Fas-mediated apoptosis in T cells 

(Holmstro 2000).  The production of the vital cytokine IL-2 by T cells is dependent 

upon ERK activation (Tsukamoto 1999, Koike 2003), as is the regulation of 

glucose metabolism following TCR stimulation (Marko 2010).  Diacylglycerol, an 

important second messenger in the activation of Ras and ERK signaling, plays 

crucial roles in T cell responses and Fc receptor-mediated phagocytosis ( Riese 

2011, Shin 2012, Botelho 2009).  Finally, ERK signaling is also important in TLR-

mediated chemokine production in dendritic cells (Mitchell 2010). 

PI3K 

Class I PI3K enzymes are composed of a regulatory (p85) and catalyitc (p110) 

subunit.  The catalytic subunit has a Ras binding domain and can be activated by 

GTP-bound Ras.  Upon activation, PI3K converts PIP2 to PIP3, which can serve 

as a docking motif for proteins containing PH domains.  Within the immune 

system, PI3K plays crucial roles in the activation and functioning of all immune 
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cells.  PI3K regulates cytokine responsiveness and functions both in effector and 

regulatory T cells, and mice with PI3K deficient T cells have several immune 

defects (Sasaki 2000).  The downstream PI3K target mTOR determines whether 

T cells become activated or undergo anergy (Zheng 2007). PI3K is also crucial 

for proper functioning of B cells (Shin 2012, Heidt 2008), NK cells (Ackerman 

2011), dendritic cells, mast cells ( Wai 2008), macrophages, and neutrophils 

(Sasaki 2000). 

  

Rap 

The Rap proteins share approximately 50% sequence homology to Ras, and 

have an identical amino acid sequence in their effector loops.  While there are 

multiple Rap proteins, Rap1a and Rap1b are the best understood.  It was initially 

hypothesized that Rap1 functioned as a direct inhibitor of Ras by competition for 

substrate binding.  This idea has since been revised as it has become clear that 

Rap1 has its own set of effector proteins and exists in completely different 

signaling pathways than does Ras.  Rap1 has been implicated in the activation of 

integrin-mediated adhesion (Cirillo 1991, Tsukamoto 2004), establishment of 

polarity (Shimonaka 2003, Schwamborn 2004), cell proliferation, and the control 

of cell-cell interactions (Gerard 2007).  The innate immune system has a 

requirement for Rap1 in both macrophages (Katagiri 2000) and dendritic cells 

(Caron 2000).  In T cells, Rap1 is crucial for chemokine-induced polarization 

(Gerard 2007, Katagiri 2004), and in B cells it regulates cell spreading and 

adhesion (Mcleod 2004).   Rap1 is a potent activator of LFA1 (Katagiri 2000), 
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and at least 3 different second messengers can activate Rap: i.e., cAMP, 

calcium, and diacylglycerol. 

Rap1a 

Due to having 90% sequence homology, Rap1a and Rap1b were originally 

assumed to serve redundant roles in the body. However experiments with 

knockout and transgenic mice have increased our understanding of Rap1 

function, as well as the specific and separate functions carried out by Rap1a and 

1b.   As mentioned above Rap1a was initially thought to exist to antagonize Ras 

signaling.  This initial hypothesis was supported by the observation that large 

quantities of activated Rap1a are found in anergic T cells, and that activation of 

CD28 by antibody binding inhibits the induction of Rap1a by TCR 

stimulation.  Additionally in Jurkat T cells, active Rap1a expression inhibits 

activation of ERK and induction of IL-2 gene expression (Boussiotis 1997).  The 

assumption from these results was that suppression of Rap1 expression is 

required for a maximal T cell response.  Nevertheless the theory that Rap1a 

inhibits lymphocyte activation has been called into question by the generation of 

transgenic mice expressing constitutively active Rap1a.  Rap1a transgenic mice 

expressing active Rap1a do not have deficiencies with either Ras signaling or T 

cell activation (Sebzda 2002).  Rap1a deficient T Cells were not anergic, but 

surprisingly had an enhanced TCR response.  Additionally, activation of Rap1a 

caused T cells to bind more strongly to firbronectin, and induced strong activation 

of 1 and 2 integrins, a process that generally requires antigen receptor binding 

to induce.  In contrast to the transgenic mice, Rap1a null mice had lymphocytes 
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that were defective in adhesion to fibronectin and ICAM coated plates.  T Cells 

from Rap 1a null mice had impaired polarization following CD3 stimulation, but 

these mice had otherwise healthy lymphocyte function (Duchniewicz 

2006).  Macrophages from Rap1a knockouts had increased haptotaxis but 

reduced chemotaxis, and had an increase in FcR-mediated phagocytosis. 

Neutrophils from these mice produce reduced amounts of superoxide in 

response to fMLP stimulation, which is likely due to the fact that Rap1a interacts 

with the p22 subunit of NADPH oxidase in neutrophils (Li 2007).  

Rap1b 

Since Rap1b is highly expressed in B cells, Rap1b null mice were created to 

understand the role of Rap1b in B cells (Chu 2008).  Rap1b knockout mice have 

reduced T-dependent, but normal T-independent humoral responses.  B cells 

from these mice have a reduction in migration in response to chemokines, and 

have reduced homing to lymph nodes (Chrzanowska-Wodnicka 2008)  Lung 

endothelial cells from these mice show delayed healing in a wound-healing assay 

(Chrzanowska-Wodnicka 2008).  These mice had fewer pre-B cells in the bone 

marrow, although splenic B cell proliferation was not affected.  Additionally, mice 

have been generated that lack the Rap1 Gap SPA1 and loss of this enzyme 

(resulting in increased Rap1 activity) in hematopoietic and peripheral T cells 

resulted in antigen-induced T cell anergy.  Rap1b is also the primary isoform 

expressed in NK cells, and may play a role in cytokine and chemokine production 

in these cells (Awasthi 2010).  Thus, in vivo, Rap1 is crucial for proper 

functioning and development of T and B lymphocytes. 
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Ral 

The Ral (Ras-like) family of small GTPases is composed of two isoforms, Ral A 

and Ral B, which share 85% protein sequence identity between them and 

approximately 50% homology with Ras.  Ral proteins have six known GEFs, four 

of which are of the RalGDS family (RalGDS, RGL1, RGL2, RGL3) and are 

primarily activated by upstream Ras signaling.  Ral A and Ral B are highly 

pleiotropic and impact many diverse signaling pathways within the cell.  The Ral 

proteins have many downstream binding partners that they interact with in order 

to modulate cellular conditions and respond to extracellular signals.  The primary 

effectors are Ralbp1, the exocyst complex, and phospholipase D.  In addition the 

RalGDS family itself has the capacity to act as a scaffold to activate the Ser/Thr 

Kinase AKT and promote cell survival and proliferation (Hao 2008).  

  

RalBP1 

        Also known as RLIP76 and RIP (Ral interacting protein), RalBP1 is a non-

ABC multi-functional membrane transport protein that is responsible for the 

majority of glutathione electrophile conjugate export in mammalian cells.  This 

transporter is responsible for a large amount of chemotherapeutic drug removal 

from cancerous cells, and provides protection from a variety of forms of oxidative 

damage or radiation-induced stress.  RalBP1 has been linked to migration, 

endocytosis of multiple receptor ligand pairs including TGF, and has GAP 

activity towards some RHO family GTPases.  Inhibition of RalBP1 with an 
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antibody directed towards an extracellular region of the molecule induced 

apoptosis in target cells.  Also autoantibodies to the C terminal region of RalBP1 

are associated with several immune mediated diseases such as Behçet disease, 

SLE, and carotid atherosclerosis (Margutti 2008).  Ralbp1 is crucial for the proper 

expression of the transcription factor hsf-1, which is necessary for the expression 

of many heat shock proteins, which are essential for cell survival under many 

infectious conditions. 

Exocyst 

 The exocyst complex is a tethering complex that exists to tether intracellular 

vesicles to the plasma membrane prior to vesicular fusion during polarized 

exocytosis.  It is an octameric complex that exists in two parts, a three-member 

complex, which exists on the vesicle being trafficked, and a five-member 

complex that exists on the plasma membrane.  Ral binds to and induces fusion 

between members of each of these complexes, Exo84 on the vesicular complex, 

and sec5 on the membrane complex.  The exocyst complex plays a central role 

in polarized exocytosis.  Additionally the exocyst has been shown to play a role in 

ciliogenesis, cytokinesis, wound healing, and cell migration (Rosse 

2006).   Moreover one study has shown that the exocyst complex is needed for 

appropriate NK cell degranulation and proper NK cell cytotoxicity (Sanchez 

2011).  Recently it has been reported that RalB and Exo84 can assemble to 

autophagosomes and initiate autophagy (Bodemann 2011).  RalB is also capable 

of inducing an interaction between sec5 and the non-canonical IKK TBK1, 

resulting in the activation of TBK1 and the downstream viral defense and survival 
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pathways it controls (Chien 2006).  A systems biology approach to assessing 

pieces of the drosophila phagosome identified components of the exocyst 

complex (Stuart 2007) as being involved in phagosome function.   Being crucial 

for a variety of key processes involving cell polarization, the exocyst complex and 

its multiple components will likely be recognized to play an even more vital role 

within the immune system in the future.  

PLD 

Phospholipase D (PLD) is an enzyme that hydrolyses phosphatidylcholine into 

phosphatidic acid.  PLD plays an important role in the internalization and 

recycling of receptors.  Both RalA and RalB can interact with PLD, though it is 

the RalA interaction with phospholipase D positively regulates FcR mediated 

phagocytosis (Corrotte 2010).  PLD, via phosphatidic acid production, can 

activate the central kinase mTOR, and this activation can be modulated by RalA 

(Xu 2011). 

TIPE2 

         A correlation between inflammation and cancer has been known to exist for 

some time, but the mechanistic basis for this has not been clear.  With strong 

connections to neoplastic disease, as well as the regulation of inflammation and 

the immune system, it is logical to consider that the Ras family and its effectors 

and regulators could compose part of the mechanistic connection between these 

two disease states.  Work presented here will demonstrate that TIPE2 provides 

one such mechanistic connection.  TIPE2 is a member of the TNFAIP8 family of 

proteins. 
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TNFAIP8 Family 

The Tumor Necrosis Factor Alpha Induced Protein Eight (TNFAIP8) family 

of proteins, is a group of four proteins (TNFAIP8, TIPE1, TIPE2, and TIPE3) that 

have to date been very thinly studied.  TNFAIP8 is a roughly 20KD cytosolic 

protein that sensitizes cells to glucocorticoid induced cell death (Woodward 

2010) but suppresses TNF- mediated apoptosis (Laliberte 2010).  TNFAIP8 has 

been correlated with cancer progression and poor cancer prognosis in certain 

types of cancer (Romanuik 2009).  Very little is currently known about TIPE1 and 

TIPE3. 

  

TIPE2 

Tumor necrosis factor alpha induced protein 8 like-2 or TNFAIP8L2 or 

TIPE2 is a recently discovered member of the TNFAIP8 family of proteins.  It was 

discovered by comparing the gene expression profiles of spinal cord tissue from 

healthy mice with that of mice with induced experimental autoimmune 

encephalomyelitis or EAE, a mouse model for multiple sclerosis.  The inflamed 

EAE spinal cord tissue expressed large amounts of TIPE2, piquing interest in the 

gene and further study which eventually resulted in the creation of a TIPE2 

knockout mouse via germ line gene targeting (Sun 2008).  The loss of TIPE2 

proved to be an extremely debilitating mutation for these mice.  TIPE2 deficient 

mice develop normally but are prone to many inflammatory diseases which are 

characterized by heightened inflammatory cytokine production, sensitivity to 
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septic shock, and premature death.   These mice had extraordinarily high levels 

of circulating cytokines, and had a larger number of both lymphocytes and 

monocytes, resulting in splenomegaly (despite the mice themselves being 

significantly smaller than their wild type counterparts).  TIPE2 is down-regulated 

in peripheral blood mononuclear cells in patients suffering from lupus (Li, 2009) 

and hepatitis (Xi, 2011), and is upregulated in kidneys of diabetic rats (Zhang 

2010).  Additionally a recent paper has indicated that TIPE2 may provide a 

protective function against ischemia/reperfusion injury following a stroke (Zhang 

2012). 

TIPE2 is expressed constitutively and at high levels in all immune cells 

and shows inducible expression in fibroblast cell lines (Sun 2008).  The loss of 

TIPE2 correlates with increased levels of IkB degradation and increased nuclear 

localization of NF-B family members.    Likewise overexpression of TIPE2 

reduces the level of NF-B activity in response to TNF treatment.  Knockdown 

of TIPE2 resulted in increased phospho- JNK, phospho- p38, and c-Fos 

signaling.  TIPE2 can be endogenously pulled down with caspase 8 in 

macrophage cell lines.  Caspase 8 has been previously shown to activate NF-kB 

through a BCL10 / MALT1 complex (Su 2005).  Knockdown of TIPE2 in EL4 T 

Cells results in resistance to FasL induced cell death, while TIPE2 knockout T 

Cells are resistant to activation induced cell death.  TIPE2 knockout T cells 

develop normally but produce more tetramer positive CD8+ T cells in response to 

LCMV infection and produce more cytokines following CD3/CD28 

stimulation.  TIPE2 knockout macrophages produce more cytokines when 
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exposed to TLR ligands.  TIPE2 has recently been shown to bind to and inhibit 

the small GTPase Rac1.   By inhibiting Rac1 TIPE2 inhibits phagocytosis in 

macrophages (Wang 2012).  Due to its regulation of such central and important 

immunological pathways, TIPE2 plays a role in regulating both the innate and the 

adaptive arms of the immune system 

The TIPE2 protein has a very unique conformation, with no significant 

homology to anything previously crystalized and catalogued.  It is composed 

solely of six alpha helices, which are arranged into a bowl-like shape, with the 

inside faces of the alpha helices (inside of the bowl) possessing very 

hydrophobic residues, while the outer faces of the alpha helices (outside of the 

bowl) possess highly charged residues (Zhang 2009).  While TIPE2 was thought 

to have a DED domain due to interacting with Caspase 8 as well as due to high 

homology with DED domains, the crystallization of TIPE2 has shown that it does 

not in fact possess a DED domain, but instead has an odd DED “mirror image” 

domain.  Due to its potent effects on the immune system and inflammatory state, 

its preferential expression in lymphoid and myeloid cell types, and its unique and 

never before seen 3D structure, further knowledge  of TIPE2 function and 

regulation could be crucial towards creating future treatments for a wide variety 

of diseases. 
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Hypothesis and Specific Aims 

Understanding the mechanisms involved in generating an immune 

response is a crucial component of creating new treatments for nearly every 

disease known to man, as well as understanding how environmental factors can 

affect health, and even how to make better and more efficacious vaccines.  

TIPE2 appears to be a crucial piece of this puzzle, and will be of importance in 

unraveling the mysteries of the immune system, and how it communicates and 

orchestrates cellular actions in conjunction with the rest of the body.  TIPE2 itself, 

a modified TIPE2, or an ability to choose when and where TIPE2 is expressed 

may all become viable treatments for any number of diseases at some point in 

the future.  Thus the specific aims were to understand both the regulation of 

TIPE2, as well as the molecular mechanism(s) of its action in regulating cellular 

processes. 

The work described in Chapter 2 begins to narrow down the way in which 

TIPE2 is regulated within the immune system.  Both T Cells and macrophages 

respond to stimulation by heavily reducing TIPE2 message levels.  This reduction 

in TIPE2 expression was both dependent upon NF-KB activity as well as 

transcription not being blocked, drawing the conclusion that TIPE2 is regulated 

by an NF-KB induced micro RNA in response to inflammatory signal reception by 

both T lymphocytes as well as macrophages.  This work has been further 

investigated and preliminary evidence indicates that mir21 is the crucial 

microRNA regulating TIPE2.  In addition we provide evidence that TIPE2 is 

ubiquitylated and degraded in response to these same TLR signals, and provide 
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indications that SCF-TRCP may be the E3 ligase responsible for TIPE2 

ubiquitylation and degradation.   

In Chapter 3 the mechanistic underpinnings of TIPE2 began to be 

investigated.  TIPE2 interacts with and inhibits the activity of RGL1 and RalGDS, 

both GEFS for the Ral family of small GTPase.  These GEFs are activated by the 

binding of Ras, which TIPE2 interrupts, and we went on to exhaustively 

demonstrate that a multitude of downstream Ral effector pathways were impaired 

by the presence of TIPE2.  RGL1 and RalGDS also possess certain non GEF 

functions, such as providing scaffolding activity for PDK1 and AKT, allowing 

PDK1 to phosphorylate and activate AKT.  This function was also inhibited by 

TIPE2.  We then went on to test the role of TIPE2 in tumor formation, and found 

that TIPE2 delayed the appearance of tumors, and had to be silenced (via an 

unknown mechanism) by the tumors in order for them to grow.  We also went on 

to demonstrate that TIPE2 is heavily downregulated in the hepatocytes of human 

hepatocellular carcinoma patients.  This data indicates that TIPE2 may play a 

role in tumor suppression as well as in control of the immune system, or, possibly 

play a role in anti-tumor immunity. 

The data presented in Chapter 4 continues to investigate the molecular 

mechanism of TIPE2s multitude of diverse yet potent phenotypes.  The data 

demonstrates that TIPE2 is capable of heavily interfering with, and reducing, 

signaling through the mTOR pathway.  This is likely occurring through a specific 

and highly acute reduction of Rictor by TIPE2.  It is possible that this is occurring 

through a binding and sequestration of GBL, an interaction which is 
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demonstrated in this chapter.  This data indicates that TIPE2 is affecting the 

nutrient sensing pathway within the immune system, and is therefore likely 

affecting a plethora of functions in both monocytes and lymphocytes via 

metabolic regulation.  This data additionally raises the question of whether or not 

TIPE2 could be one of the key linkages between diabetes/obesity and 

inflammation, since it provides a direct connection between inflammation and the 

mTOR nutrient sensing pathway.   

In Chapter 5 the effect of TIPE2 on negatively regulating both the RGL1 

and mTOR is investigated by looking into the role TIPE2 plays in inducing cell 

death.  Here we see that overexpression of TIPE2 induces cell death, while 

coexpressing RGL, mTOR, or parts of the mTOR pathway rescue from death.  

We also discovered that TIPE2 is likely activated by p70S6K, since the presence 

of S6K increases TIPE2 induced cell death.  Finally we see that TIPE2 alongside 

GBL and RGL creates a maximal amount of cell death, likely hinting at the role of 

TIPE2 in providing a linkage between these two pathways. 

Overall, the findings presented in this doctoral work will help to better 

understand the functioning of TIPE2, and how it intersects with various signaling 

pathways within the cell.  This knowledge may serve to provide valuable 

treatments and therapeutics for an extraordinarily wide array of diseases, from 

chronic inflammatory disease to diabetes to obesity to cancer.  Each of these 

diseases carries the common thread of being associated with a dysregulation of 

inflammation.  Likewise, TIPE2 has now been established to not only have 

connections to inflammation, but to each of these diseases.  With hope this 
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information will be able to help solve the problems currently posed by each of 

these diseases… and more.  
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Figure 1.1  Overview of GTPase signaling.  Small GTPase is “off” when bound to 

GDP; a GEF then removes GDP and allows GTP to bind to the GTPase, turning it “on”.   

All GTPases can eventually hydrolyze GTP to GDP and turn themselves off, though 

GAPs rapidly accelerate this process. 
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Figure 1.2:  The Ras Superfamily.  The Ras superfamily is broken down into 6 families, 

each listed with their primary functions. 

 

  



21 |  P a g e
 

 

 

Figure  1.3.  Overview of Ras Signaling.  Ras signaling pathway is highlighted in Red.  

The Ral signaling segment of the Ras pathway is additionally marked in Green. 
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Figure 1.4 Outline of Research Goals 

  



23 |  P a g e
 

 

Chapter 2 

TIPE2 Regulation 

by NF-KB 

Work from this chapter is from:  

Gus-Brautbar, Y., Johnson, D., Zhang, L., Sun,H., Wang, P., Zhang, S., Zhang, 
L., and Chen, Y.H. (2012). The anti-inflammatory TIPE2 is an inhibitor of 
the oncogenic Ras. Molecular Cell 45, 610–618.  

Wang, Z., Fayngerts, S., Wang, P., Sun, H., Johnson, D.S., Ruan, Q., Guo, W., 
and Chen, Y.H. (2012). TIPE2 protein serves as a negative regulator of 
phagocytosis and oxidative burst during infection. Proceedings of the 
National Academy of Sciences of the United States of America 109, 
15413–15418. 
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Abstract 

TIPE2 is a known regulator of inflammation, yet little is known about how 

TIPE2 responds to inflammatory signals.  Here we investigated the effect of 

stimulating macrophages with various TLR ligands on TIPE2 expression.  TIPE2 

is rapidly and specifically downregulated by all TLR ligands tested.  The same 

downregulation occurred in T cells stimulated with PMA and Ionomycin.  This 

downregulation was further assessed with an inhibitor analysis and was found to 

be dependent upon both active transcription, and upon active NF-KB activity.  

Neither translation nor JNK activity appear to play a role in the downregulation of 

TIPE2.  These data suggest that an NF-KB induced miRNA may be responsible 

for downregulating TIPE2 upon the presence of inflammatory signals.  We 

additionally show that TIPE2 is ubiquitylated for its degradation, and that TIPE2 

interacts with the BTRCP E3 Ligase, which may be the ligase that regulates the 

TIPE2 protein levels. 
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Introduction 

The first step towards understanding a new molecule is to deduce how it is 

regulated.  By understanding the “how” and “why” of a new molecule’s regulation, 

we can begin to gain insight into both its function, and understand the magnitude 

of its importance.  While it has been established that TIPE2 is a regulator of 

inflammation via work with TIPE2 -/- knockout mice and tissues as well as in vitro 

work, how TIPE2 was connected to inflammation had remained a mystery.   

In the cell there are generally two primary forms of regulation; nucleic acid 

regulation and protein regulation.  Nucleic acid regulation occurs when the 

transcription of DNA into mRNA, or the mRNA itself is altered (Figure 2.1).  This 

form of regulation typically occurs via one of two mechanisms; direct action of 

transcription factors on genomic DNA, or action of microRNAs towards target 

mRNA sequences.  Transcription factors are proteins which enter into the 

nucleus of a cell and bind to a specific DNA sequence.  The transcription factor 

then either recruits cellular machinery to begin transcription of the target gene 

into mRNA, or it recruits cellular machinery to shut down transcription of the 

target gene into mRNA.  Which effect occurs depends upon the particular 

transcription factor(s), DNA sequences, and cellular conditions involved.  Micro 

RNAs (abbreviated miRNA) are small regulatory RNAs that are encoded in the 

genomes of eukaryotic cells.  miRNAs will bind to one or more specific target 

mRNAs, typically on the 3‘ UTR, and are able to affect mRNA function via 

marking them for destruction or in negatively regulating the translation of the 

target mRNA.     
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Protein regulation occurs when cellular conditions or signaling events 

dictate a change be made to an already existing protein (Figure 2.2).  Certain 

changes, such as lipid modifications like palmitoylation, farnesylation, or 

geranylgeranylation usually assist a protein in anchoring to the plasma 

membrane or another vesicular structure; this anchoring both alters localization 

of the modified protein and drastically extends its half-life.  Other modifications 

such as poly ubiquitylation on certain lysine residues, marks the protein for 

destruction by the proteasome – the protein garbage disposal unit of the cell.  

While ubiquitylation occurs at a steady state rate to destroy old proteins within 

the cell, anything that increases the rate of ubiquitylation will decrease the half-

life of the target substantially.  Phosphorylation is another common method of 

regulating proteins.  Phosphorylation typically activates whichever protein is 

phosphorylated by altering its conformation, or by altering which other proteins it 

interacts with.  However, depending upon the cellular conditions, and the specific 

phosphorylation target, phosphorylation can have many other diverse effects. 

Nuclear Factor Kappa B (NF-B) is a term for a well-known family of 

transcription factors (for review see Pasparakis 2009 and Perkins 2012).  These 

transcription factors exist as dimers of five possible subunits; p65, cREL, p50, 

p52, RelB.  NF-KB has been heavily studied in the field of immunology, and most 

inflammatory signals activate NF-KB activity.  Thus, NF-KB provides one 

possible method by which inflammatory signals are capable of signaling to the 

cell that inflammatory regulators, such as TIPE2, need to be turned on or turned 

off.   
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Materials & Methods 

Cell Lines and Animals 

Raw 264.7 and EL4 cells were purchased from ATCC and grown in DMEM 

supplemented with 10% FBS, penicillin and streptomycin.  C57BL/6J (B6) mice 

that carry a Tipe2 gene null mutation were generated by backcrossing Tipe2-/- 

129 mice (Sun et al., 2008) to B6 mice for 12 generations.   

Bone marrow deried macrophages were isolated from mouse femurs and were 

cultured for seven days in DMEM supplemented with 10% FCS, 1% 

Penicillin/streptomycin, 1% glutamine, and 30% L-929 cell culture supernatant.  

Following culturing cells were washed with cold PBS and rested overnight in 

complete DMEM before being lysed for testing.  Bone marrow derived 

macrophages were >95% cd11b+ and F4/80+ as determined by flow cytometry. 

Inhibitors: 

Bay-11-7082 in solution was purchased from emdmillipore (part# 196870-10MG). 

and was used at a concentration of 100 uM. 

Actinomycin D was purchased from Sigma (part# A1410) and was used at a 

concentration of 1 ug/mL. 

Cycloheximide was purchased from Sigma (part# 01810-5g) and was used at a 

concentration of 5 ug/ml. 

Treatment: 
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TLR agonists were purchased from invivogen part# tlrl-kit1mw and were used per 

manufacturer’s instructions for maximum stimulation. 

Quantitative RT-PCR 

Total RNA was extracted with RNEasy (Qiagen, Valencia, CA) according 

to the manufacturer's instructions. Reverse transcription was performed with 

oligo dT primers. Real-time PCR was carried out in an Applied Biosystems 7500 

system with Power SYBR Green PCR Master Mix (Applied Biosystems) and with 

specific quantitect primers (Qiagen, Valencia CA) for mouse GAPDH and TIPE2.  

Relative levels of gene expression were determined by normalizing TIPE2 levels 

to the endogenous control gene GAPDH.    Relative TIPE2 levels were set to a 

value of 1 at time point zero, subsequent time points compare relative TIPE2 

levels to this initial level.  
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Results 

TLR Treatment 

In order to assess how TIPE2 was affected by inflammatory signals, RAW 

264.7 macrophages were treated with LPS over an eight hour time course 

(Figure 2.4A), and the level of TIPE2 mRNA was measured at various time points 

throughout the time course via real time PCR.  TIPE2 expression was reduced to 

approximately 35% of initial levels by 2.5 – 3 hours.  Signal levels returned to 

normal levels within 8 hours.  To test whether other TLRs were involved in this 

signaling process TLR3, TLR7, and TLR9 were tested by stimulating cells with 

polyI:C, flagellin, and cpg respectively.  Each of these TLR ligands showed a 

similar effect to that of LPS.  To ensure that this phenomenon was not limited 

only to RAW cells, bone marrow derived macrophages were subjected to similar 

treatments, and EL4 T Cells were subjected to treatment with PMA and 

Ionomycin (Figure 2.4B).  PMA/Ionomycin of EL4 T cells showed a similar pattern 

of TIPE2 reduction by 2.5-3 hours, and a slow return to normal levels by 8 hours 

(Figure 2.4B).  Bone marrow derived macrophages showed a similar pattern of 

reduced expression, but expression stayed reduced out to at least 24 hours.  

Protein levels of bone marrow derived macrophages were also checked, to 

ensure that changes in message levels correlated with changes in protein levels 

(Figure 2.5). 

Inhibitor Analysis 
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To test whether TLR signaling was inducing production of a protein that 

was destroying TIPE2 mRNA or preventing its transcription, cells were pretreated 

with cycloheximide to inhibit translation before TLR agonist treatment (Figure 

2.6).  Pre-treatment with cylclohexamide had no effect on the TLR mediated 

reduction of TIPE2 message levels. Since preventing protein production did not 

stop the reduction in TIPE2 message levels, we next pre-treated cells with 

actinomycin D in order to prevent transcription (Figure 2.6).  This treatment 

prevented the TLR mediated reduction in TIPE2 message levels, implying that 

fresh transcription was required for the reduction in TIPE2 expression.  Finally in 

order to identify the transcription factors responsible for inducing the 

transcriptional event that was reducing TIPE2 expression, both Sp100125 and 

Bay 11-7082 were used to pretreat cells (Figure 2.7).  These compounds inhibit 

JNK and NF-KB respectively.  While JNK inhibition had no effect on TIPE2 

expression, inhibition of NF-KB by Bay 11-7082 prevented the TLR driven 

reduction in TIPE2 expression.   

Protein Regulation 

In order to assess the effect of regulation on the TIPE2 protein, we 

performed a pulse chase assay in which Raw 264.7 cells were treated with 

cycloheximide in order to stop fresh translation, followed by either LPS or vehicle 

administration.  LPS treated Raw cells showed a significantly reduced TIPE2 

protein half-life compared to vehicle treated controls (Figure 2.8B).  In order to 

identify the likely method of regulation a ubiquitin ligase assay was performed 

(Figure 2.8A), which shows that TIPE2 is able to be ubiquitylated and thus may 
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be marked for degradation by the proteasome.  Data discussed in Chapter 3 

(figure 3.11c) indicates that inhibition of the proteasome can restore repressed 

TIPE2 protein expression, further lending support to the idea that TIPE2 is able 

to be regulated by the proteasome.   
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Discussion 

Understanding the cellular events that regulate TIPE2 expression is 

important to gain insight into its function as a modulator of 

inflammation.  Expression of TIPE2 is heavily downregulated by treatment with 

poly I:C, LPS, Flagellin, and imidazoquinoline; agonists for tlrs 3,4,5, and 7 

respectively.  This group of TLR ligands signal via both MyD88 and TRAM/TRIF 

signaling, indicating that that multiple intracellular signaling complexes have been 

activated, leading to downstream activation of the NF-KB, AP-1, and IRF 

transcription factor complexes (for review see O’Neill 2007).  This effect is 

phenocopied by treatment of T Cells with PMA/Ionomcyin, which activates many 

of the same downstream transcription factors, therefore activation of one or more 

of these pathways is responsible for the loss of TIPE2 message and therefore 

the loss of TIPE2 protein. 

In order to narrow down the molecule(s) responsible for this regulation, 

RAW 264.7 macrophages and EL4 T Cells were pre-treated with either 

SP600125, an inhibitor of JNKs 1,2, and 3, or Bay 11-7082, an inhibitor of IKBa, 

which effectively inhibits NF-KB activation.   Following pre-treatment with inhibitor 

cells were either activated with TLR ligands (RAW 264.7 cells) or PMA/Ionomycin 

(EL4 T Cells) in order to assess the importance of the targeted pathways on 

TIPE2 message destruction.  While SP600125 pre-treatment had no effect on 

TIPE2 message levels, pre-treatment with Bay 11-7082 completely prevented the 

TLR and PMA/Ionomycin mediated reduction in TIPE2 levels, indicating that NF-

KB activity was required for the cellular activation ligands to transmit the signal 

that negatively regulate TIPE2 mRNA levels. 
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Having identified NF-KB as the relevant transcription factor involved, it 

was now necessary to identify how NF-KB was regulating TIPE2 message levels. 

In order to identify the method of TIPE2 down-regulation, both RAW 264.7 

macrophages and EL4 T Cells were pre-treated with inhibitors of translation 

(cycloheximide), or transcription (actinomycin D) before stimulating them with 

either TLR ligands or PMA and Ionomycin.  Cycloheximide had no effect on the 

TLR or PMA/Ionomycin mediated reduction in TIPE2 mRNA levels, indicating 

that fresh translation of some RNA editing enzyme or transcriptional repressor 

was not responsible for the loss of TIPE2 message.  Actinomycin D however 

completely ablated the activation induced reduction in TIPE2 message levels, 

oddly indicating that fresh transcription was required to reduce TIPE2 mRNA 

levels. 

Since the down-regulation of TIPE2 has a dependence upon fresh 

transcription, but not fresh translation, and a dependence upon NF-KB activity, 

we conclude that during periods of acute inflammation TIPE2 is down-regulated 

by an NF-KB targeted miRNA.  Preliminary evidence (Chen Lab unpublished 

data) indicates that the miRNA of interest is mir21.   

Interestingly when primary cells were used instead of cell lines, the loss of 

TIPE2 was not reversed even after 48 hours (Chen Lab unpublished data).  This 

implies that in vivo TIPE2 expression likely remains reduced for a fairly significant 

amount of time following an infectious challenge, in order to allow the immune 

system to have time to mount a full and complete defense.  We have additionally 

identified that TIPE2 is degraded at the protein level in response to LPS 

stimulation, and that this degradation is likely due to ubiquitylation and 

subsequent degradation by the proteasome.  Additional work will be required in 

order to deduce which E3 ligase is involved in this process. 
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Figure 2.1 Mechanism of Nucleic Acid Regulation.  Nucleic acids are regulated via two 

key mechanisms.  The first involves a transcription factor entering the nucleus and 

binding directly to genomic DNA.  The transcription factor then acts as a platform which 
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either recruits other molecules which either activate or inhibit transcription.  The second 

mode of regulation is via microRNAs (miRNAs).  miRNAs are small strands of RNA, 

averaging about 22 nucleotides in length.  They bind to complementary messenger RNAs 

(mRNA) and typically either cause the mRNA to be destroyed, or interfere with its ability 

to be translated. 
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Figure 2.2 Mechanism of Protein Regulation.  Some of the common modifications which 

regulate protein function and stability:  Ubiquitylation typically marks proteins for 

destruction by the proteasome.  Phosphorylation typically switches proteins into an active 

conformation.  Lipid modifications typically contribute to protein stability by allowing 

them to associate with membranes or vesicular structures.  
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Figure 2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Overview of TLRs on Macrophages.  TLRs (toll like receptors) are pattern 

recognition receptors which bind to various microbial products and alert the cell to the 

presence of a microbe in or around the cell.  
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Figure 2.4 Reduction in TIPE2 expression Following Activation with LPS or 

PMA/Ionomycin.  A.) Raw 264.7 macrophages were treated with 100 ng/ml LPS for 8 

hours and Cells were lysed and RNA extracted at various timepoints along the time 

course, and levels of TIPE2 mRNA were measured via qPCR.  B.)  EL4 T Cells were 

treated with PMA/Ionomycin for 8 hours and cells were lysed and RNA extracted at 

various timepoints along the time course, and levels of TIPE2 mRNA were measured via 

qPCR.  
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Figure 2.5 TIPE2 Protein level in primary cells following LPS Stimulation.  Bone 

marrow derived macrophages were treated with 100 ng/ml of LPS and were analyzed by 

Western Blot.   
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Figure 2.6 Cell Process Inhibitor Treatments of Stimulated Cells.  Raw 264.7 

macrophages were treated with 100 ng/ml LPS for 3 hours, and were treated with 

cycloheximide to inhibit fresh protein translation, or were treated with Actinomycin D in 

order to inhibit fresh transcription.   
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 Figure 2.7 Cell pathway inhibitor treatments of stimulated cells.  Raw 264.7 

macrophages were treated with sp600125 in order to inhibit JNK Signaling, or were 

treated with Bay 11-7082 to inhibit NF-KB signaling.   
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Figure 2.8 TIPE2 is Ubiquitylated and Regulated at the Protein Level.  A.) Ubiquitination 

of TIPE2.  293T cells were transfected with either TIPE2-Flag or p50-Flag as a positive 

control.  These cells were treated with MG132 (10 um), the lysates were 

immunoprecipitated with an anti flag antibody, and ubiquitination status was examined as 

described in Carmody et al., 2007).  B.) TIPE2 protein half-life is reduced by LPS 

treatment.  Raw 264.7 cells were treated with LPS (100 ng/ml) and cycloheximide (100 

um) for the indicated times.  Cells were lysed and endogenous TIPE2 protein levels were 

examined using anti-TIPE2 antibody.  
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Chapter 3 

TIPE2 Binds to and 

Inhibits RGL1 

Work from this chapter is from: *Gus-Brautbar, Y., *Johnson, D., Zhang, L., Sun, 

H., Wang, P., Zhang, S., Zhang, L., and Chen, Y.H. (2012). The anti-

inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Molecular Cell 45, 610–

618. 

*These Authors Contributed Equally To This Work  
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Abstract 

TIPE2 has been established as a regulator of immunity and inflammation, 

yet the mechanism(s) by which this occurs have remained elusive.  Here we 

report that TIPE2 interacts with the RalGDS family of GEFs, and by doing so 

inhibits their activity.  This inhibition affects both their scaffolding activity for AKT 

and PDK1, as well as their GEF activity towards the Ral small GTPases.  

Inhibition of the Ral proteins leads to a plethora of cellular effects, including 

inhibition of the exocyst complex, inhibition of NF-KB, as well as impacts cell 

survival, wound healing, migration, and anchorage independent growth.  

Expression of TIPE2 in tumor cells delays tumor onset, and tumor onset can only 

proceed following the silencing of the TIPE2 protein expressed in these cells.  

Finally TIPE2 is highly downregulated in human hepatocellular carcinoma, 

indicating that TIPE2 may be a future therapeutic target or provide a diagnostic 

indicator for human cancer.   
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Introduction 

Ras is a major regulator of cell survival, proliferation, migration, and 

transformation. Alongside phosphatidylinositol (PI) 3 kinase and Raf1, Ral 

guanine nucleotide dissociation stimulator (RalGDS) family makes up the third 

arm of Ras effectors.  The RalGDS family members are Guanine nucleotide 

Exchange Factors (GEFs) for the small GTPases RalA and RalB, switching 

GDP-bound inactive to GTP-bound active form of Ral (Ferro and Trabalzini, 

2010; Spaargaren and Bischoff, 1994). A subset of the RalGEFs, including 

RalGDS, RGL and RGL2/Rlf, are direct effectors for activated Ras, which binds 

their C-termini and enhances their GEF activity towards Ral (White et al., 1996; 

Wolthuis et al., 1996). The RalGEF pathway plays a prominent role in mediating 

Ras-induced oncogenic transformation in humans. RalGDS deficiency 

suppresses Ras-mediated tumor formation (Gonzalez-Garcia et al., 2005). In 

rodent fibroblasts, the RalGEF effector pathway cooperates with the MAPK 

pathway to promote transformation and metastasis (Ward et al., 2001; White et 

al., 1996). In humans, the activation of this pathway is essential for 

transformation in a variety of cell types (Hamad et al., 2002; Rangarajan et al., 

2004).  

The RalGDS transforming ability is mediated by the active RalA and RalB. 

Active Rals regulate various biological processes including cell proliferation, 

motility, endo- and exocytosis, and cellular architecture (Feig, 2003). RalA and 

RalB have distinct and sometimes conflicting roles, during oncogenic 

transformation despite their high sequence identity (over 80%). RalA, but not 
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RalB, is critical for RalGDS-mediated transformation, and RalA is more potent 

than RalB in promoting anchorage-independent growth and targeted delivery of 

proteins to basolateral membrane in epithelial cells. On the other hand, RalB is 

more effective than RalA in promoting cell migration and activation of TBK1, and 

in suppressing apoptosis and promoting metastasis (Chien et al., 2006; Chien 

and White, 2003; Lim et al., 2005; Lim et al., 2006). Constitutively active forms of 

RalA and RalB can transform human cell lines (Lim et al., 2005). Both RalA and 

RalB are activated in human malignancies such as bladder, pancreas and colon 

cancers, and they collaborate to promote and maintain oncogenic transformation 

(Lim et al., 2006; Martin et al., 2011; Smith et al., 2007).  

Recent studies suggest that the Ral effects on motility, secretion and cell 

proliferation are largely mediated through the regulation of the exocyst complex. 

This octameric complex regulates targeting and tethering of secretory vesicles to 

specific plasma membrane domains, such as the leading edge of migrating cells 

(Rosse et al., 2006; Spiczka and Yeaman, 2008). Two exocyst subunits, Sec5 

and Exo84, are bona fide Ral effectors (Moskalenko et al., 2002), each of which 

belongs to a different sub-complex. One sub-complex contains Exo84 and 

Sec10, and is localized on the plasma membrane, whereas the other contains 

Sec 5, 6, 8 subunits, and is located on secretory vesicles (He and Guo, 2009). 

Active Ral promotes assembly of these two sub-complexes through dual subunit 

interaction, leading to vesicle tethering to the plasma membrane (Jin et al., 2005; 

Moskalenko et al., 2003). As the exocyst complex is being better understood, its 

involvement in carcinogenesis has been brought to the forefront. Exocyst subunit 
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interaction with active Ral is required for tumorigenesis of colorectal carcinoma, 

progression of skin cancer, motility, anchorage-dependence, and survival of 

transformed cells (Chien et al., 2006; Martin et al., 2011; Sowalsky et al., 2011).  

An important function of the RalGDS family is to promote cell survival. 

This may be mediated through both Ral GTPases (Chien and White, 2003) and 

non-canonical activation of AKT (Hao et al., 2008). Canonical AKT activation 

requires the generation of PIP3 by PI3K at the membrane. The PH domain-

containing proteins AKT and PDK1 bind these phoshoinositides, allowing AKT to 

be phosphorylated by PDK1 (T308) and mTOR (S473). By contrast, in the non-

canonical AKT activation pathway, RalGDS acts as a scaffold for PDK1 and 

enhances its kinase activity, resulting in increased phosphorylation of AKT. 

Active AKT phosphorylates a large number of substrates thereby protecting cells 

from death (Sale and Sale, 2008). RalGDS-mediated AKT activation is 

responsible for the proliferative effect of RalGDS in NIH3T3 cells (Hao et al., 

2008). In vivo, RalGDS regulates tumor growth by providing survival signals to 

tumor cells, and consequently, in RalGDS-/- mice, apoptosis of carcinogen-

induced papillomas is enhanced (Gonzalez-Garcia et al., 2005). Thus, the 

regulation of the RalGEF effector pathway is key to Ras-mediated 

transformation.  Here, we describe an unexpected and previously unknown 

connection between TIPE2 and the RalGDS family, and demonstrate its 

relevance to cell survival, motility, and Ras-induced oncogenesis. 
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Materials and Methods 

Animals and human subjects 

C57BL/6J (B6) mice that carry a Tipe2 gene null mutation were generated 

by backcrossing Tipe2-/- 129 mice (Sun et al., 2008) to B6 mice for 12 

generations. Male nude mice (nu/nu) were purchased from Jackson 

Laboratories. Mice were housed in the University of Pennsylvania Animal Care 

Facilities under pathogen-free conditions. All animal procedures used were pre-

approved by the Institutional Animal Care and Use Committee of the University of 

Pennsylvania. 

A total of 116 hepatocellular carcinoma specimens and 111 normal 

adjacent hepatic tissue specimens were obtained from 116 patients aged 

between 30 and 82 years who underwent operations at the Qilu Hospital of 

Shandong University from January 2005 to October 2006. The pathological 

diagnosis was made according to the current World Health Organization (WHO) 

criteria for hepatocellular carcinoma. None of the patients studied had received 

radiotherapy, chemotherapy, or adjuvant immunotherapy prior to surgery in order 

to eliminate their effects on gene expression. All human procedures used were 

pre-approved by the Institutional Review Board of the Shandong University. 

Immunohistochemistry  

Paraffin sections (4μm) were stained with rabbit anti-TIPE2 antibody (IgG) 

overnight at 4°C. Secondary staining was performed with HRP-conjugated anti-

rabbit IgG using a MaxVisionTM Kit and a DAB Peroxidase Substrate kit (Maixin 
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Co., Fuzhou, China). The sections were counterstained with hematoxylin. 

Unrelated rabbit IgG was used as a control for the primary antibody. All slides 

were independently analyzed by two pathologists in a blinded manner, and 

scored based on both staining intensity and the percentage of positive cells as 

follows. Staining intensity: 0, no staining; 1, weak staining; 2, moderate staining; 

3, strong staining. The percentage of positive cells: 0, <1%; 1, 1-33%; 2, 34-66%; 

3, 67-100%. The two scores for each slide were then combined to produce a final 

grade of TIPE2 expression: 0, total score = 0; 1+, total score = 1 to 2; 2+, total 

score = 3 to 4; 3+, total score = 5 to 6. When there were discrepancies between 

the two pathologists, the average score was used. 

Cell lines and plasmids 

The 293T, Raw 264.7, NIH 3T3, and Ras V12 NIH 3T3 cells were grown 

in DMEM supplemented with 10% FBS, penicillin and streptomycin. To generate 

stable cell lines, NIH 3T3 or Ras NIH3T3 cell lines (gift from Dr. Rotem Karni, 

Hebrew University of Jerusalem) were infected with pBABE-puro retroviral vector 

expressing TIPE2-Flag. Culture medium was replaced 24 hrs. after infection, and 

after an additional 24 hrs., infected cells were selected with puromycin (1-1.5 

g/ml) for 3 days. Expression of TIPE2-Flag was verified by Western blotting. 

pRK5 and TIPE2-Flag-pRK5 were described previously (Sun et al., 2008). TIPE2 

105-132 was generated from TIPE2 cDNA by PCR and cloned in-frame with a 

C-terminal Flag tag into vector pRK5. pcDNA3-HA-AKT AAA was a gift from Dr. 

Morris Birnbaum (University of Pennsylvania). Active AKT (pCDNA3-AKT T308D, 

S473D), myr-PDK1 (pWZL Myr Flag PDK1), Active RalA (pBABE-RalAV23), 
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Active RalB (pBABE-RalBQ72L) were purchased from Addgene. GFP-WT-RalA 

and GFP-WT-RalB plasmids were a gift from Dr. Wei Guo (University of 

Pennsylvania). Murine RGL cDNA (cDNA clone MGC:18430, IMAGE:4241244, 

RGL-1 complete CDS) was obtained from ATCC. Full length RGL (amino acids 

1-768) was generated from the cDNA clone by PCR, and cloned in-frame with a 

C-terminal myc tag into vector pRK5 using BamHI-XhoI sites. N RGL (amino 

acids 300-768),  RID RGL (amino acids 86-496), and RID RGL (amino acids 

599-768) were generated from the cDNA clone by PCR, and cloned in-frame with 

a C-terminal myc tag into vector pRK5 using BamHI-XhoI sites. TIPE2-Flag-

pBABE was generated by cloning PCR-amplified TIPE2-Flag fragment into 

vector pBABE using BamHI/EcoRI sites.  

Ral activity assay 

The 293T cells, 2 x106 per 10-cm plate, were cultured for 24 hrs.,  and 

then transfected with 10 g/plate pRK5 or TIPE2-Flag-pRK5 plasmid. Cells were 

lysed at different time points after transfection with RAB buffer (Millipore) 

supplemented with protease inhibitor cocktail tablet (Complete, Roche) and 1mM 

PMSF. Protein concentration was determined by Bradford assay. 0.5 or 1 mg of 

lysate was mixed with GST-RalBP1 agarose beads (Millipore) for 30 minutes at 4 

0C. After washing, protein on beads and in total cell lysates was subjected to 

Western blot to determine the level of active RalA. The levels of active RalA in 

Tipe2-/- or wild type macrophages were determined in the same manner.  

Yeast-two-hybrid screen 
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Yeast-two-hybrid screen for TIPE2-interacting proteins was carried out by 

ProteinLinks Inc. (Pacadena, California, USA). A mouse splenic cDNA library 

(1.7x107 cDNA clones) was used. 38 positive clones were initially found, and 24 

of them were verified in a second screen. Of these, two clones encoded a murine 

RGL (ref NM_016846.3, Mus Musculus Ral guanine nucleotide dissociation 

stimulator-like 1) fragment, corresponding to amino acids 484-768.  

Mass spectrometry 

The 293 cells were transiently transfected with TIPE2-Flag or pRK5, and 

in the mean time, Raw264.7 macrophages were plated in 15-cm plates. 24 hrs. 

later, cells were lysed in CellLyticM buffer (Sigma) supplemented with protease 

inhibitor cocktail. Lysates were cleared by centrifugation and protein 

concentration was determined by Bradford assay. TIPE2-Flag or control lyastes 

were immunoprecipitated using the anti-Flag-M2 affinity gel (Sigma), overnight at 

4 0C. After three washes with CellLyticM buffer, pre-cleared Raw264.7 lysate was 

added and incubated overnight, at 4 0C. Both TIPE2-Flag and pRK5 control were 

then eluted using 3X Flag peptide (Sigma) and the eluates were separated on 

10% SDS-PAGE gel.  The gel was either stained with coomassie or silver, and 

bands specific to the TIPE2-Flag lane were excised and sequenced. 

F-actin determination 

The total F-actin content in Raw 264.7 cells transiently transfected with 

TIPE2 or pRK5, or in Tipe2-/- and wild type splenocytes, was measured as 

follows.  After cells were treated with LPS (200 ng/ml, Sigma), the reaction was 
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stopped by addition of formaldehyde (to a final concentration of 3.7%) for 15 min 

at room temperature. The fixed cells were permeabilized with ice-cold solubilizing 

buffer (10 mM imidazole (pH 7.2), 40 mM KCl, 10 mM EGTA, 1% Triton X-100, 1 

mM PMSF, 1 mM MgCl2, and protease inhibitor mixture tablet).  F-actin was then 

stained with NBD-phallacidin (Molecular Probes) for 2 hrs. at room temperature. 

After two washes with PBS, F-actin-bound NBD-phallacidin was extracted with 

methanol. Extracts were centrifuged and relative fluorescence was measured 

using a fluorescent plate reader (Synergy 2, Biotek, USA) with excitation and 

emission wavelengths set at 465 nm and 535 nm, respectively.  

Wound healing assay 

Tipe2-/- and wild type macrophages were grown to confluence in 10-cm 

plates. Monolayers were wounded using a micropipette tip, and visualized using 

a phase-contrast microscope. Images were acquired at various time points, and 

the number of cells in the wounded area was counted using the ImageJ software. 

Immunoprecipitation 

Cells were lysed with CellLyticM buffer (Sigma) supplemented with 

protease inhibitor (complete, Roche) and phosphatase inhibitor (PhosStop, 

Roche) cocktail tablets. The lysates were cleared by centrifugation for 15 min, 

and protein concentration was determined by Bradford assay. 40 l of 50% 

protein G-sepharose beads was incubated for 1 hour at 4 0C, with one of the 

following antibodies: myc (1:1000, cell signaling), Flag (2 g, Sigma), TIPE2 

(1:500, Novus biological), and Sec5 (2 g, ProteinTech) antibodies, or IgG 
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isotype controls (BD biosciences).  The beads were incubated with 1 mg of total 

protein from each lysate overnight at 4 0C, washed four times with CellLyticM 

buffer, and boiled for 5 minutes in 40 l 2X SDS sample buffer. After SDS-PAGE 

and transfer, the membranes were probed with antibodies against Flag (Flag-M2-

HRP, 1:1000, Sigma), Myc-HRP (1:1000, Cell signaling), Exo84 (Lifespan 

Biosciences), Sec6 (1:1000 Assay Designs), TBK1 (1:1000, Cell Signaling), 

PDK1 (1:1000, Cell Signaling), and RGL (1:500, abnova).  

Immunoblotting 

Cells were lysed in SDS and total protein concentration determined. 30 g 

protein was loaded to each lane, and separated by SDS-PAGE. After transferring 

to a nitrocellulose membrane, it was blocked with 5% milk in TBST and probed 

with the following primary antibodies, overnight at 4 0C: Phospho–AKT (Serine 

473, 1:1000, Cell signaling), total AKT (1:1000, Cell Signaling), Actin (1:1000, 

Sigma), RalA (1:5000, BD Transduction Laboratories), Ras (1:500, abcam), 

Phospho-IRF3 (1:1000, Cell Signaling), total IRF3 (1:1000, Cell Signaling) 

antibodies. Detection was done using enhanced chemiluminescence of HRP-

conjugated secondary antibodies (anti-mouse or anti-rabbit IgG, 1:1000, GE 

healthcare). 

Quantitative RT-PCR 

Total RNA was extracted with TRIzol (Invitrogen, Carlsbad, CA) according 

to the manufacturer's instructions. Reverse transcription was performed with 

oligo dT primers. Real-time PCR was carried out in an Applied Biosystems 7500 
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system with Power SYBR Green PCR Master Mix (Applied Biosystems). Relative 

levels of gene expression were determined with GAPDH as the control. 

Anchorage-independent growth 

Cells were cultured in duplicates in soft agar plates at 37 0C and 5% CO2. 

After 10–14 days, colonies from ten different fields in each plate were counted, 

and the average number of colonies per field was calculated. The colonies were 

photographed using a GelDock camera. 

 

Statistical analyses 

Student’s t-test was used to evaluate the statistical significance of 

differences in cell death, migration, and F-actin content. Mann-Whitney U test 

was used to evaluate tumor onset, and  Wilcoxon signed-rank test was used to 

evaluate TIPE2 protein expression in human hepatic tissues. 
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Results 

TIPE2 prevents Ras from binding the Ras-interacting domain of RGL 

The mechanisms of TIPE2 function are not clear. To address this issue, 

we searched for binding partners of TIPE2 using a two-pronged approach. 

Firstly, we conducted a yeast two-hybrid screen of a mouse splenic cDNA library 

using TIPE2 as the bait, and secondly, we performed a large-scale 

coimmunoprecipitation of TIPE2-binding proteins followed by mass spectrometry. 

Among several clones isolated in the yeast-two hybrid screen, two were found to 

encode the C-terminus region of the RGL. Consistent with this finding, mass 

spectrometry results showed that TIPE2 pulled down with proteins of the RGL-

Ral pathway. Together, these results suggested a role for TIPE2 in Ras-

mediated signaling. While other clones from the yeast-two hybrid screen 

encoded proteins for Cytip, ORC1, and BRD2, these interactions were not 

supported by co IP / tandem mass spectrometry data, and also were not able to 

be endogenously immunocprecipated with TIPE2. 

To establish whether endogenous TIPE2 interacts with RGL in 

mammalian cells, we immunoprecipitated TIPE2 from the murine macrophage 

cell line, Raw 264.7. We found that endogenous RGL co-precipitated with 

endogenous TIPE2 (Figure 3.1), as did two other RalGEF family members, 

RalGDS and RGL2.  To map the region within RGL that is responsible for TIPE2 

interaction, we cloned the murine full-length RGL (amino acids 1-768) or 

truncated RGL (Figure 3.2B), in frame with a myc tag and co-transfected the full-

length or truncated RGL constructs into cells together with the TIPE2-Flag 
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plasmid. TIPE2 pulled down with full-length RGL and the C-terminus of RGL. 

However, TIPE2 did not pull down with a truncated RGL that lacked the C-

terminal region (Figure 3.2A). These data indicate that TIPE2 binds to the C-

terminus of RGL, which contains the Ras Interacting Domain (RID) (Murai et al., 

1997).  

Active Ras binds the RID of RalGEFs and activates their GEF activity 

(Murai et al., 1997; Urano et al., 1996). Our finding that TIPE2 binds the RID of 

RGL (Figure 3.2A) suggests that in the presence of TIPE2, Ras would be unable 

to bind RGL. We examined the presence of Ras in complex with RGL in 293T 

cells transiently expressing full-length RGL and increasing amounts of TIPE2. 

TIPE2 inhibited endogenous Ras from forming a complex with RGL, in a dose-

dependent manner (Figure 3.3). This indicates that TIPE2 can exclude active 

Ras from binding to RGL. 

TIPE2 inhibits RGL-induced activation of Ral 

We then asked whether the outcome of TIPE2 binding to RGL could be 

inhibition of RGL GEF activity towards its substrate Ral. In 293T cells transiently 

overexpressing TIPE2, we detected more than 60 percent decrease in Ral GTP 

level compared to the control (Figure 3.4A). Similar results were obtained in Raw 

264.7 macrophages (data not shown). Active Ras levels were not affected by 

overexpression of TIPE2.  TIPE2 protein and mRNA levels were downregulated 

in Raw 264.7 cells treated with LPS (Figure 2.4), and  Ral activity was elevated 

as a result of the treatment (Figure 3.4C) Moreover, TIPE2-deficient bone 

marrow-derived macrophages showed a three-fold increase in active Ral level 
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over wild type control cells (Figure 3.4B). These results indicate that TIPE2 

serves as an inhibitor of RGL activity by blocking active Ras binding to RGL.  

The RGL-PDK1 complex is induced by growth stimuli, and activated Ras 

plays an important role in its formation. PDK1 relieves the intra-molecular 

inhibition of the catalytic domain of RalGEFs by binding to its N-terminus, and 

RalGEFs enhance PDK1 kinase activity preferentially towards AKT (Hao et al., 

2008)(Tian et al., 2002). Ras binding to RGL seems to be a necessary but 

insufficient step in promoting RGL-PDK1 interaction, since a Ras mutant that 

preferentially binds RalGEFs could not activate AKT under serum starvation 

conditions (data not shown)(Tian et al., 2002). Expression of TIPE2 significantly 

reduced PDK1 binding to RGL (Figure 3.5), implying that the disruption of Ras 

binding to RGL may prevent RGL-PDK1 complex formation. 

TIPE2 inhibits cell motility and exocyst complex assembly. 

A hallmark of Ral function is its regulation of cell motility. Ral activation 

promotes cellular protrusions and is essential for directional movement of cells 

(Rosse et al., 2006; Sugihara et al., 2002). Active Ral mediates chemotaxis in 

lymphocytes, plays a critical role in tumor metastasis, and contributes to 

cytokinesis progression (Oxford et al., 2005). Ral mediates these effects by 

regulating both actin dynamics and exocyst complex assembly. Actin 

polymerization is essential for maintaining cell shape, internalization processes 

(endocytosis and phagocytosis), and cell motility. We therefore examined the 

effects of TIPE2 expression on actin polymerization. Polymerization of F-actin 

can be induced by LPS stimulation in monocytes (Kong and Ge, 2008). 
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Expression of TIPE2 in Raw 264.7 cells resulted in a significant decrease in the 

total level of F-actin (Figure 3.6A). The F-actin polymerization rate in TIPE2-

transfected cells was also reduced. Conversely, in Tipe2-/- splenocytes, the rate 

of F-actin polymerization was significantly enhanced compared to wild type cells 

(Figure 3.6B). These results suggest that TIPE2 can impact both the rate of actin 

polymerization and the total levels of F-actin in immune cells.  

We next examined the exocyst subunit levels in Tipe2-/- splenocytes and 

bone marrow-derived macrophages, and detected a significant increase in 

exocyst subunits Sec 5, 6, 8 and 84 (Figure 3.7A). These results are consistent 

with previous reports showing decreased absolute amounts of Sec5 and Sec6 in 

RalA- or RalB-depleted rat kidney cells (Rosse et al., 2006). Next, we examined 

whether TIPE2 impacts the formation of the exocyst complex, by measuring its 

assembly from its two sub-complexes in wild type (WT) and Tipe2-/- cells. While 

there was no difference in Sec5/Sec6 sub-complex assembly between Tipe2-/- 

and WT cells, the association between Sec5 and Exo84 increased by about 3-

fold in Tipe2-/- cells (Figure 3.7A). Therefore, the Ral-regulated step of exocyst 

assembly is defective in Tipe2-/- cells. Consistent with this observation, TIPE2 

overexpression resulted in destabilization of the exocyst complex. In 293T cells 

expressing TIPE2, the assembly of the sub-complex Sec5/Sec6 was unchanged, 

while the assembly of Exo84 and Sec5 was markedly decreased (Figure 3.7B).  

Ral depletion blocks exocyst complex formation at the leading edge of 

migrating cells, and inhibits cell migration (Rosse et al., 2006; Spiczka and 

Yeaman, 2008). We tested directional cell migration of Tipe2-/- macrophages in a 
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wound-healing assay (Figure 3.8A). The “wound” was created in confluent Tipe2-

/- and wild type cultures (time zero), and migration of cells into the gap was 

monitored after 3 and 6 hrs. Wild type macrophages started moving into the 

wound after 3 hrs., and by 6 hrs. the wound was still visible. However, Tipe2-/- 

macrophages moved into the wound faster, and completely closed the gap by 6 

hrs.  Quantification of the number of cells that moved into the gap showed that 

the rate of Tipe2-/- cell migration was 3-fold higher than that of the wild type 

(Figure 3.8B). Moreover, Tipe2-/- macrophages that had moved into the wound 

were elongated, and had increased number of cellular extensions, generally 

assuming a “migratory” form. In contrast, wild type cells looked round, with 

smaller number of extensions.  Consistent with this finding, in vivo migration of 

TIPE2 knockout leukocytes into skin air-pouches injected with the chemokine KC 

(keratinocyte chemoattractant) was significantly enhanced as compared to wild 

type controls (Sun 2012).  The enhanced migratory phenotype of Tipe2-/- cells 

could be mediated by irregularities of both actin dynamics and exocyst complex 

assembly. These abnormalities may partly explain the increased inflammation in 

Tipe2-/- mice. 

 Recently, it has been established that active RalB induces Sec5 

dimerization and subsequent activation of TBK1 (Chien et al., 2006). This 

pathway results in AKT activation, protects cancer cells from apoptosis, and is 

required for mounting host defense responses. However, as described above, 

the inhibition of Sec5-TBK1 interaction by TIPE2 does not appear to be a main 

contributor to TIPE2-induced cell death. RalB and Sec5 are required for TLR3-

http://copewithcytokines.org/cope.cgi?key=keratinocyte%20chemoattractant
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induced IRF3-dependent interferon-b production. We observed reduced 

interaction between Sec5 and TBK1 in TIPE2-overexpressing cells (Figure 3.7C), 

and a reduction in phosphorylated IRF3. These results suggest that the 

Ral/Sec5/TBK1 pathway is inhibited by TIPE2. It was shown previously that 

TIPE2-deficient cells exhibit increased NF-kB activity. Therefore, TIPE2 may 

regulate the NF-kB pathway through the Ral/Sec5/TBK1 axis.  

TIPE2 inhibits tumorigenesis in vivo. 

Activating mutations of Ras are found in ~30% of all malignant tumors. 

The best-characterized Ras effector pathways are the Raf-MAPK and PI3K 

pathways, and their importance in Ras-mediated oncogenesis has been 

extensively studied. However, a growing body of evidence supports an important 

role for the RalGDS family in Ras-induced growth and transformation of human 

cells. To determine the potential roles of TIPE2 in tumorigenesis, the Ras-

transformed NIH 3T3 fibroblasts (Ras G12V) were used to stably express Flag-

tagged TIPE2. Expression of TIPE2 significantly reduced the growth of Ras 3T3 

cells (Figure 3.9A). The effect was the most dramatic under low serum 

conditions, where cells were more dependent on Ras for survival. Consistent with 

these results, overexpression of TIPE2 in Ras 3T3 cells reduced colony 

formation in soft agar (Figure 3.9B). Expression of TIPE2 in NIH 3T3 alone did 

not result in colony formation. To test the effect of TIPE2 on tumor formation in 

vivo, Ras 3T3 cell line stably expressing TIPE2 was injected into nude mice. 

TIPE2 significantly delayed tumor onset in two independent experiments, in 

comparison to control injections (Figure 3.10). NIH 3T3 or NIH 3T3 stably 
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expressing TIPE2 did not give rise to tumors. TIPE2 tumors, once formed, could 

grow to the same weight as control, suggesting that TIPE2 tumors did not have a 

growth disadvantage as compared to Ras 3T3 tumors. In addition, while Ral 

activity was inhibited in the pre-injected cell lines, it was restored in isolated 

tumor cells. This paradox could be explained if somehow the tumors in mice had 

lost expression of TIPE2. Indeed, upon examining the tumors 14 and 22 days 

after tumor cell inoculation, we could not detect any TIPE2 protein by 

immunoblotting (Figure 3.11A). However, by quantitative RT-PCR, we could 

clearly show that TIPE2 tumors expressed similar amounts of TIPE2 transcript 

compared to TIPE2-expressing Ras 3T3 cells before injection (Figure 3.11B). 

Therefore, it appears that TIPE2 downregulation in the tumor occurred at the 

protein level. The half-life of TIPE2 protein is rather short, around 4 hrs. (Figure 

2.8B), and the TIPE2 protein is heavily ubiquitylated in cells (Figure 2.8A). These 

findings indicate that TIPE2 protein is likely regulated by ubiquitylation and 

proteasomal degradation. Indeed, the reduced TIPE2 level in tumor cells could 

be restored to that of pre-injected cells after treatment with the proteasome 

inhibitor MG132 (Figure 3.11C). This indicates that TIPE2 degradation is 

enhanced in the tumor cells. Therefore, cells that formed tumors were those that 

had TIPE2 protein actively suppressed. These cells were likely present in the 

pre-injected pool but were outnumbered by those that did express TIPE2. 

However, once injected into the animal, cells that suppressed TIPE2 protein had 

a significant survival advantage and were therefore positively selected. Although 

TIPE2 tumors might have originated from fewer cells, as the delay in tumor onset 
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suggests, they eventually reached the same size as the control tumors.  Since 

TIPE2 -/- mice do not develop spontaneous tumors, it is likely that loss of TIPE2 

is a necessary, though not sufficient mutation for cancer progression.  Treatment 

of TIPE2 -/- mice with various carcinogens will help to better understand the 

relationship between TIPE2 and cancer in the future. This unexpected result 

suggests that mechanisms responsible for TIPE2 elimination may also result in 

acquisition of a growth advantage over Ras3T3 control cells. These results point 

to a role for TIPE2 as a novel tumor suppressor involved in carcinogenesis. 

TIPE2 is markedly down-regulated in human hepatocellular carcinoma. 

It was recently published that TIPE2 plays an important role in HBV-

induced hepatitis (Xi et al., 2011). Chronic HBV infection is a major cause of 

HCC and is prevalent among a large world population. Interestingly, RalGEF 

plays a more prominent role in transforming human cells than murine cells 

(Hamad et al., 2002). To test the possibility that TIPE2 regulates carcinogenesis 

in humans, we examined the level of TIPE2 expression in the livers of 116 

patients suffering from hepatocellular carcinoma. We found that TIPE2 was 

expressed in normal hepatocytes adjacent to carcinoma cells. Remarkably, 

~20% of carcinoma expressed little or no TIPE2 and the rest expressed 

significantly lower levels as compared to adjacent hepatocytes (Figure 3.12 A-B). 

TIPE2 re-expression in three cultured human HCC cell lines (HepG2, BEL7402, 

and SMMC-7721) significantly reduced their growth and viability as measured by 

flow cytometry and MTT [(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide] assay (unpublished data).  Consistent with the murine tumor data, 
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down-regulation of TIPE2 occurred at the protein but not at mRNA level, because 

RT-PCR revealed no significant difference in TIPE2 mRNA between 

hepatocellular carcinoma and its adjacent tissues (unpublished data). Thus, 

development of human hepatocellular carcinoma is associated with the down-

regulation of TIPE2 protein. 

 In summary, we have discovered a novel mode of Ras regulation that is 

carried out by TIPE2, a recently described anti-inflammatory protein containing a 

novel fold. This mode of regulation is essential for maintaining an organism’s 

immune homeostasis, because its defect leads to severe inflammation and 

cancer progression. This finding provides a novel molecular bridge between 

inflammation and cancer, a connection widely recognized, but poorly understood 

(Karin and Greten, 2005). Thus, inflammation may cause cancer by inhibiting the 

expression of the tumor suppressor TIPE2 (Figure 3.13), in addition to activating 

the oncogenic NF-kB (Karin and Greten, 2005). Due to its diverse effects on cell 

survival and motility, the Ras inhibitor TIPE2 represents an attractive new drug 

target for neoplastic and inflammatory diseases.  
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Figure 3.1 TIPE2 and RGL1 Co Immunoprecipitation.  Raw 264.7 cells were lysed and 

immunoprecipitated with anti TIPE2 antibody (Novus Bio).  IPs were then analyzed by 

SDS-PAGE and western blot. 
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Figure 3.2  TIPE2 interacts with the “Ras interaction domain” of RGL.  A series of RGL 

truncations were created deleting various important domains of the molecule.  These 

mutants were then coexpressed alongside flag tagged TIPE2 and co-

immunoprecipitations were performed.  The only mutant that TIPE2 could not coIP with 

was the mutant lacking the RID of RGL.  

B 

A 
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Figure 3.3 TIPE2 Displaces Ras from RGL.  Myc tagged RGL1 was co expressed with 

increasing amounts of flag tagged TIPE2.  RGL1 was then IP’d using an anti myc 

antibody and the amount of Ras bound to RGL was measured via western blot.  

Increasing amounts of TIPE2 lead to decreased Ras/RGL1 interaction 
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Figure 3.4  TIPE2 Regulates Ral Activity.  A.) 293T cells were transfected with Flag 

tagged TIPE2, and GTP bound Ral was measured.  TIPE2 Reduces the amount of GTP 

bound Ral.  B.)  TIPE2 -/- bone marrow derived macrophages were lysed and active Ral 

levels were compared to those of w.t. bone marrow derived macrophages.  TIPE2 -/- 

B 

  A 

C 
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macrophages possess more GTP bound RalA than their wild type counterparts.  C.)  

RAW 264.7 macrophages were stimulated with LPS and active Ral levels were assayed 

via a Ral activity assay and western blot. 
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Figure 3.5  TIPE2 Displaces PDK1 From RGL1.  Myc tagged RGL1 was co expressed 

with increasing amounts of flag tagged TIPE2.  RGL1 was then IP’d using an anti myc 

antibody and the amount of PDK1 bound to RGL was measured via western blot.  

Increasing amounts of TIPE2 lead to decreased PDK1/RGL1 interaction. 
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Figure 3.6  Effect of TIPE2 on Actin Polymerization.  A.) Raw 264.7 macrophages 

transfected with either flag tagged TIPE2 or empty plasmid (pRK5) following LPS 

stimulation (200ng/ml) for the indicated times.  F (Filamentous) actin levels were 

determined as described in methods on pages 47-48.  The value of the TIPE2 group at 
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time point zero was set to a value of 1.  Results are means +/- SEM and were pooled from 

three independent experiments (n=12).  *p<0.05; ** p<0.01.   B.)  F actin levels were 

measured in splenocytes from TIPE2 -/- animals or their wild type counterparts at the 

indicated timepoints following 200 ng/ml LPS stimulation as described in methods on 

pages 47-48.  The value at time point zero was set to a value of 1.  Results are means +/- 

SEM and were pooled from three independent experiments (n=6).  * p<0.05; ** p<0.02. 
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Figure 3.7  TIPE2 induces a dysregulation of the Exocyst Complex.  A.)  Co 

immunoprecipitations were carried out for Sec5 and Exo84 and Sec6 in both knockout 

and wild type bone marrow derived macrophages.  Loss of TIPE2 increased the strength 

of the Sec5/Exo84 interaction.  B.)  Flag tagged TIPE2 was transfected in increasing 

amounts in 293T cells and Sec5 was co immunoprecipitated with Sec6 and Exo84.  

Increasing amounts of TIPE reduce the Sec5/Exo84 interaction (Ral regulated step) but 

have no effect on the Sec5/Sec6 interaction. 

B 

A 



73 |  P a g e
 

 

 

 

 

Figure 3.8 Loss of TIPE2 Increases Macrophage Movement.  TIPE2 -/- and wt bone 

marrow derived macrophages were grown on polystyrene dishes.  A “wound” was 

created in the monolayer with a sterile pipette tip and the resulting movement of the 

macrophages into the wound was followed by microscopy.  

A 

B 
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Figure 3.9  TIPE2 Affects Growth and Colony Formation in Soft Agar.  A.)  TIPE2 was 

stably expressed via viral transduction into NIH-3T3 cells and cell growth was 

monitored.  TIPE2 significantly reduced cell growth.  B.)  NIH-3T3 cells were 

transformed with TIPE2 and ability to form colonies in soft agar was compared with 

control NIH-3T3 cells.  TIPE2 significantly reduced colony formation in soft agar. 
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Figure 3.10 TIPE2 delays tumorigenesis in nude mice. Ras-transformed NIH 3T3 
cells that did or did not express TIPE2 were injected subcutaneously into the rear 
flanks of nude mice (2 x106 cells/injection, n = 3), and tumor formation was 
monitored daily. All sites injected with Ras-transformed NIH 3T3 cells eventually 
developed tumors, whereas control NIH 3T3 or NIH 3T3-TIPE2 cell lines did not 
give rise to tumors during the course of this study. Data shown are percent of 
tumors formed and are representative of two independent experiments.  The 
differences between the two groups are statistically significant (p = 0.014). 
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Figure 3.11  Tumors Silence TIPE2 in order to grow.  A.)  TIPE2 protein levels were 

measured in Ras transformed NIH-3T3 cells expressing TIPE2 before injection into Nude 

mice, and then at 14 and 22 days following tumor onset.  TIPE2 was not detectable in 

tumors.  B.)  TIPE2 message levels were checked in pre injection cells as well as tumors, 

and TIPE2 RNA levels were not changed between samples.  C.)  Reconstituted tumors 

were treated with MG132 in order to inhibit the proteasome to check the effect on TIPE2 

levels.  Inhibition of the proteasome allowed TIPE2 levels to rise even beyond those in 

the pre injection cell lines.   
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Figure 3.12  Amount of TIPE2 expression in human hepatocellular carcinoma in.  A.) 

Tumor tissue and B.) control hepatic tissue adjacent to the tumor from the same patient 

was determined by immunohistochemistry as described in materials&methods beginning 

on page 43.  TIP2 positive cells are stained in brown, magnification x400.  C.) 

Quantificatino of the TIPE2 signal from 116 patients was performed as described in 

methods beginning on page 43.  The differences between the two groups are statistically 

significant (p<.001).  
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Figure 3.13  Putative TIPE2 and RGL1 Mechanism. 
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Chapter 4 

TIPE2 and mTOR 

Inhibition 

 

 

 

 

 

 

 

The work in this chapter is unpublished data, and is intended to be published in the near 

future.  
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Abstract 

mTOR is a serine/threonine kinase that plays a central role in responding 

to nutrient and environmental cues.   mTOR interprets these cues, and dictates 

to the cell whether anabolic or catabolic programming should be initiated, as well 

as a host of other important cellular changes.  TIPE2 negatively regulates the 

mTOR pathway, resulting in a marked change in primary mTOR effectors.  

Overexpression of TIPE2 induces a marked down-regulation of the Rictor 

component of mTORC2, while TIPE2 -/- cells show an increased amount of 

Rictor.  TIPE2 interacts with the GBL common subunit of both the mTORC1 and 

mTORC2 complexes, and this interaction may be responsible for the loss of 

Rictor  induced by TIPE2, which in turn likely explains the marked reduction in 

downstream mTOR signaling. 
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Introduction 

mTOR (mechanistic Target Of Rapamycin, also referred to as the 

mammalian Target Of Rapamycin) is a serine/threonine kinase that plays the 

predominant role in interpreting environmental signals to control cell growth and 

protein synthesis, cell survival, cell proliferation, and cell motility (Zoncu 2011).  

This kinase was originally identified as the target of the immunosuppressive 

macrolide rapamycin, and his since been recognized as an extraordinarily 

important molecule in regulating proper cell function.  Due to its central function 

in regulating so many different processes mTOR dysregulation has been linked 

to numerous disease states, including obesity (Um 2004), cancer (Aoki 2001, 

Shah 2001, Podsypanina 2001), type 2 diabetes, neurodegeneration (Chong 

2012), as well as others. 

mTOR exerts its numerous biological functions via two protein complexes 

named mTOR complex 1  (mTORC1) and mTOR complex 2 (mTORC2).  

mTORC1 is composed of six protein subunits; mTOR, GBL, DEPTOR,   Raptor, 

PRAS40, and the Tti/Tel2 complex.  mTORC2 contains seven subunits; mTOR, 

GBL, DEPTOR, Rictor, Sin1, Protor, and the Ti1/Tel2 complex.   

mTORC1 

mTORC1 functions as a cellular computer whose inputs are cellular 

environmental conditions, and whose outputs are either growth and fresh protein 

synthesis, or autophagy to conserve energy and materials (Zoncu 2001).  

mTORC1 is capable of sensing the energy status of the cell via AMPK activity 
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(Reviewed in Hardie 2007), the relative amount of amino acids present via 

detecting the branched chain amino acid leucine (Sancak 2008,), the relative 

amounts of lipids via binding phosphatidic acid (Fang 2001, Yoon 2011), it can 

sense the presence of growth factors, the relative abundance of oxygen, as well 

as cellular stress.  When mTORC1 has received signals acknowledging the 

presence of oxygen, growth factors, energy, raw materials in the forms of lipids 

and amino acids, as well as no negative stress signals, it will signal down to its 

downstream effectors p70S6 Kinase (S6K) and eIF4E binding protein 1 (4EBP1) 

to begin protein synthesis (Haghinghat 1995, Hara 1997, Holz 2005, Max Ma 

2008, ).  It will also inhibit the lipid inhibitor lipin 1 (Peterson 2011) as well as 

signal to inhibit autophagy (Nobukini 2005).  S6K is a kinase which performs 

multiple functions to increase protein synthesis.  Its primary target is the S6 

ribosomal protein, which it phosphorylates to induce protein synthesis at the 

ribosome.  S6K also increases translational initiation and elongation (Max Ma 

2008), and can induce biogenesis of mRNA (Max Ma 2008) as well as 

biogenesis of ribosomes (Mayer 2004, Jastrzebski 2007).  4EBP1 is an inhibitor 

of the cap binding protein eIF4E (Pause 1994).  eIF4E is a crucial part of the 

eIF4F cap binding complex which is necessary in order to efficiently undergo 

efficient cap dependent translation.  mTORC1 can phosphorylate 4EBP1 which 

marks it for degradation (Schalm 2003).  Once 4EBP1 has been degraded eIF4E 

is free to initiate cap dependent translation.  Since protein synthesis is crucial for 

the growth of a cell, mTORC1 is a master regulator of cellular growth. 
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mTORC2 

mTORC2 responds to growth factors, but not to nutrients in the way that 

mTORC1 does.  mTORC2 is the primary kinase that activates the AGC kinase 

AKT (Sarbassov 2005), as well as the kinases SGK1 and PKC (Garcia 2008, 

Facchinetti 2008).  AKT is an extremely important survival signaling molecule 

which promotes survival and reduces apoptois via multiple downstream effectors 

such as the FoxO family of proteins (reviewed in Zhang 2011), which in turn can 

affect the apoptosis modulators FasL and Bim, as well as the cell cycle activators 

Cyclin D1 and D2.  mTORC2 also plays a role in the organization of the actin 

cytoskeleton (Sarbassov 2004). 

mTOR in the Immune System 

Due to the central position occupied by mTOR in regulating survival, 

proliferation, and growth, it is no surprise that mTOR has been shown to have an 

essential role within both the adaptive and innate immune system.  Within the 

adaptive immune system mTOR alters cell surface receptors that control T cell 

trafficking (Finlay 2010).  Inhibition of mTOR in activated CD8+ T cells increases 

expression of CCR7 and CD62L (Sinclair 2008), increasing the trafficking of 

these cells to secondary lymphoid organs (Sinclair 2008).  Additionally there are 

multiple threads of evidence indicating that mTOR modulates CD8+ memory T 

Cell differentiation, inhibition of mTOR during the expansion phase of T Cell 

response results in an increased number of memory CD8+ T cells (Rao 2010, Li 
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2011).  Within CD4+ T cells mTOR plays crucial roles in the appropriate 

differentiation into different CD4+ subsets.  Loss of mTOR results in a loss of 

differentiation into Th1, Th2, and Th17 subsets (Delgoffe 2009).  When loss is 

restricted to mTORC1 components Th1 and Th17 differentiation is impaired 

(Delgoffe 2011), while loss of mTORC2 activity resulted in a failure to develop 

properly differentiate into Th2 subsets (Delgoffe 2011).   

mTOR also plays an important role in the proper operation of the innate 

immune system.  Animals expressing hypomorphic mTOR have smaller spleens 

with fewer monocytes (Zhang 2011).   mTOR inhibition decreases generation of 

human myeloid DCs (va de Laar 2010).  Additionally DCs treated with rapamycin 

have a poor ability to induce allogeneic t cell responses and instead induce Treg 

differentiation (Haidinger 2010).  Moreover in various DC subsets rapamycin 

treatment can impair type I interferon production (Cao 2008 and Colina 2008.), 

and can also impair both pro- and anti-inflammatory cytokine production.   Due to 

its negative effect on autophagy, mTOR can reduce DC function by impairing DC 

autophagy, a process important for proper antigen processing and presentation 

(Lee 2007).  Paradoxically this indicates that depending upon the specific 

conditions mTOR can either inhibit or enhance DC cell mediated T Cell 

activation.    

Inflammation and mTOR 

Both diabetes and obesity are often linked to highly dysregulated mTOR 

signaling.  Additionally “diabesity” as it is sometimes referred to is often 
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described as a disease of inflammation, as both obesity and diabetes are highly 

correlated with excess inflammation.  Attempting to infer causality between 

inflammation and diabesity has proven to be difficult, and a better understanding 

of how inflammatory signaling can intersect with the metabolic signaling involved 

in diabetes and obesity is needed to understand this issue. 
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Materials and Methods 

Animals 

C57BL/6J (B6) mice that carry a Tipe2 gene null mutation were generated 

by backcrossing Tipe2-/- 129 mice (Sun et al., 2008) to B6 mice for 12 

generations. Mice were housed in the University of Pennsylvania Animal Care 

Facilities under pathogen-free conditions. All animal procedures used were pre-

approved by the Institutional Animal Care and Use Committee of the University of 

Pennsylvania. 

Cell lines and plasmids 

HEK 293T cells were purchased from ATCC.  Cells were grown in DMEM 

supplemented with 10% FBS, penicillin and streptomycin.  mTOR, Rictor, Raptor, 

S6K1, and S6K2 plasmids were purchased from Addgene.  Bone marrow was 

removed from femur and was cultured for 7 days in DMEM supplemented with 

10% FBS, penicillin and streptomycin and mCSF.   

Immunoprecipitation 

Cells were lysed with CellLyticM buffer (Sigma) supplemented with 

protease inhibitor (complete, Roche) and phosphatase inhibitor (PhosStop, 

Roche) cocktail tablets. The lysates were cleared by centrifugation for 15 min, 

pre-cleared with 100 ul beads for 30 minutes, and protein concentration was 

determined by Bradford assay.  Antibody was added to 300 ug protein lysate and 

rotated for 2 hours at 4C followed by addition of beads and rotation for an 

additional 2 hours at 4C. Lysates were spun down, resuspended in Laemmli 
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loading dye, and 30 ul of IP run through 4%-12% miniTGX gradient gels, 

purchased from Biorad.  After SDS-PAGE and transfer, the membranes were 

probed with various antibodies.  

Immunoblotting 

Cells were lysed in SDS and total protein concentration determined. 30 g 

protein was loaded to each lane, and separated by SDS-PAGE. After transferring 

to a nitrocellulose membrane, it was blocked with 5% milk in TBST and probed 

with the following primary antibody. 
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Results and Discussion 

TIPE2 has been reported to regulate the immune system, inflammation, 

and survival, but the mechanisms by which it performs these functions are not 

clear.   While attempting to identify survival pathways regulated by TIPE2, we 

discovered that AKT phosphorylation is heavily dysregulated in bone marrow 

derived macrophages isolated from TIPE2 knockout mice (Figure 4.2b).  Loss of 

TIPE2 leads to a marked increase in the amount of AKT phosphorylated at S473, 

indicating increased survival signaling in these cells.  This correlates with a prior 

report of TIPE2 knockout cells being resistant to activation-induced-cell-death 

(Sun 2008).  Since loss of TIPE2 led to increased AKT phosphorylation, it raised 

the question of whether additional TIPE2 could reduce AKT phosphorylation. To 

test this effect the converse experiment was carried out and TIPE2 was 

overexpressed in order to see if overexpression could inhibit AKT 

phosphorylation at S473.  This overexpression did lead to a significant reduction 

in phosphorylation of AKT (Figure 5.5b).  

mTOR signals from two distinct complexes, mTORC1 and mTORC2 

(Figure 4.1).  While AKT is phosphorylated and activated by the mTORC2 

complex, 4EBP1, S6K, and S6 are all downstream of the separate mTORC1 

complex. Since AKT is a downstream effector of the mTORC2 complex, and 

TIPE2 had such a potent effect on its signaling status, we next sought to 

determine whether effectors downstream of mTORC1 were dysregulated by 

TIPE2.  Overexpression of TIPE2 led to large reductions in phosphorylated 

4EBP1, p70S6K, and S6 (Figure 4.2 A,C), indicating that TIPE2 negatively 
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regulates mTORC1 as well as mTORC2.  When co-expressed with its binding 

partner RGL,  the TIPE2 mediated reduction in mTOR signaling is reduced 

(Figure 4.2c), suggesting that TIPE2 has a separate and new binding partner via 

which it is regulating mTOR signaling, and that overexpression of RGL is able to 

compete away some of the TIPE2 from this binding partner. 

Since it seemed likely that TIPE2 was regulating the mTORC1 and 

mTORC2 complexes via a new interacting partner, a series of co-

immunoprecipitations were performed between TIPE2 and members of the two 

complexes.  Since the two subunits that are   common to each complex are 

mTOR and GBL, the effort was first focused on these two members.  While 

TIPE2 will coIP with mTOR itself, the interaction is quite weak and sporadic, 

implying that the interaction is either transient or indirect.  When co-

immunoprecipitated with GBL however, TIPE2 showed a robust interaction, much 

stronger than with mTOR (Figure 4.3).  Since GBL binds directly to mTOR, it is 

likely that any co-immunoprecipitation seen between TIPE2 and mTOR was 

indirect and due to an interaction between TIPE2 and GBL, not an interaction 

with mTOR itself.    Also coIPs were carried out between TIPE2 and the Raptor 

and Rictor subunits of mTORC1 and mTORC2 respectively, and no interaction 

was seen.  

          Next we sought to identify how an interaction between TIPE2 and GBL 

could lead to such a marked reduction in mTOR downstream signaling.  We 

hypothesized that TIPE2 was binding and sequestering GBL, preventing it from 

forming into functional mTORC1 and mTORC2 complexes, and since loss of 
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GBL has been previously shown to lead to a loss of Rictor (Guertin 2006), the 

effect of TIPE2 expression on Rictor was tested.  Overexpression of TIPE2 led to 

a severe reduction in Rictor levels present in cells, but not of either GBL or of 

Raptor, implying that the reduction in protein was specific to just the Rictor 

component of the mTORC2 complex (Figure 4.4b).  Since overexpression of 

TIPE2 leads to increased cell death (Chapter 5), it was necessary to ensure that 

the loss of Rictor expression was a specific function of TIPE2, and not a non-

specific cell-death related effect.  To test this, cells overexpressing Rictor with 

and without TIPE2 were treated with etoposide to induce apoptosis, and only 

those cells with TIPE2 present showed a reduction in Rictor protein 

levels.  Additionally TIPE2 knockout bone marrow derived macrophages were 

compared to their wild type counterparts, and the knockout macrophages had 

significantly more rictor present (Figure 4.4A). 

          TIPE2 interacts with the GBL constant subunit of both the mTORC1 and 

mTORC2 complexes, effectively inhibiting their downstream signaling and 

leading to a reduction in the amount of Rictor present in the cell.  Rictor is the key 

scaffold which maintains mTORC2 integrity, while Raptor is the key scaffold that 

maintains mTORC1 integrity.  While loss of GBL has been shown to correlate 

with reduced levels of Rictor, its loss did not affect Raptor levels (Guertin 

2006).  In line with this a loss of GBL caused mTORC2 signaling to AKT to be 

affected to a more significant degree than mTORC1 signaling to either p70S6K 

or 4EBP1.  This correlates strongly with what we see from TIPE2 overexpression 

– a very strong reduction in phosphorylated AKT, a substrate of mTORC2, and a 
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significant but less intense reduction in phosphorylated levels of p70S6K and 

4EBP1, both substrates of mTORC1.  It is both possible and likely that the effect 

of TIPE2 on mTORC1 signaling is in actuality primarily occurring via its inhibition 

of AKT via reduction in Rictor levels.  AKT is capable of inhibiting the TSC1/2 

complex, which in turn inhibits the activity of mTORC1.  When AKT inhibits the 

inhibitor, it allows mTORC1 to become active, phosphorylating its downstream 

targets S6K and 4EBP1 (Vander Haar 2007, Sancak 2007).  

          The inhibitory effect of TIPE2 on mTOR signaling is particularly relevant 

when considering TIPE2 through the prism of an inflammatory 

regulator.  Animals expressing hypomorphic amounts of mTOR have smaller 

spleens with fewer monocytes (Zhang 2011).  TIPE2 knockout mice have an 

opposite phenotype, having larger spleens (Sun 2008), with a larger percentage 

of monocytes over wild type controls (Wang 2012).  This is exactly what we 

would expect if TIPE2 knockout cells are missing a crucial negative regulator of 

mTOR signaling and thus mTOR is able to transduce a stronger signal than 

would normally occur.  Rapamycin treatment will inhibit mTOR activity, and 

treatment of dendritic cells with rapamycin can impair type I interferon production 

(Cao 2008, Colina 2008).  In contrast, TIPE2 knockout dendritic cells produce 

significantly more type I interferons (Sun 2012).    It is distinctly possible that 

much of the ability for TIPE2 to regulate inflammation is due to its ability to 

modulate mTOR signaling.  

While its role in regulating inflammation and immunity via mTOR is an 

intriguing possibility, a perhaps more clinically relevant and important avenue to 
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consider is the role TIPE2 may play in regulating diabetes and obesity.  TIPE2 is 

a regulator of the mTOR nutrient sensing pathway, and is in turn regulated by 

inflammatory signals (see Chapter 2) which down-regulate TIPE2 

expression.  Obesity and type II diabetes have a strong correlation between 

excessive inflammation and dysregulated nutrient signaling.  While some 

molecular pathways that connect these two themes have been discovered, such 

as the inflammation induced JNK mediated inhibitory phosphorylation of IRS1, 

the precise connection between inflammation and metabolic syndrome is 

incompletely understood.  While it is primarily expressed within the immune 

system, TIPE2 is expressed in both liver and skeletal muscle (Zhang 2011), both 

extremely important insulin responsive tissues, which can become insulin 

resistant if proper homeostatic regulation is lost.  The putative role for TIPE2 as a 

regulator of metabolic syndrome will be a line of work worth investigating in the 

future.  

In addition to its potential role in connecting inflammation with nutrient 

signaling, TIPE2 may also play an important role in atherosclerotic plaque 

formation and the subsequent heart disease caused by said plaque 

formation.  Like diabetes and insulin resistance, atherosclerosis is highly 

associated with inflammation.  One key component of atherosclerotic plaques is 

deposited foam cells, which are macrophages engorged with cholesterol that 

become sticky and adhere to the vascular endothelium, constricting blood flow 

and eventually causing a blockage.  A recent report has indicated that inhibition 

of mTOR during foam cell formation can reduce at least some aspects of foam 
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cell formation (Yu 2011).  Considering that TIPE2 negatively regulates mTOR, 

and is itself negatively regulated by inflammatory signals, and that TIPE2 is 

highly expressed in macrophages, it could prove to be worthwhile to investigate 

the putative role of TIPE2 in foam cell formation. 

By providing a new and exciting linkage between inflammation and the 

primary nutrient and metabolic signaling pathway within the cell, TIPE2 holds a 

great deal of promise as a potential druggable target to treat plethora of diseases 

that currently ail millions of people. 
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Figure 4.1 Mechanistic diagram of mTORC1 and mTORC2 complexes.  GBL and 

the recently discovered inhibitor DEPTOR are constant members of each 

complex.  Raptor provides the mTORC1 specific scaffolding activity while Rictor 

provides mTORC2 specific scaffolding activity. 
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Figure 4.2  mTOR Signaling is negatively regulated by TIPE2.  A.) TIPE2 was 

overexpressed in 293T cells for 24h and the activation status of the downstream 

the mTOR effectors  4EBP1 and S6K were assayed via western blot.  B.) Bone 

marrow derived macrophages were isolated from WT and TIPE2 KO mice as 

described in methods.  Following culturing BMDM were either treated with 

vehicle or LPS for 60 minutes, cells were lysed and the activation status of AKT 

at S473 was assayed via western blot.  C.)  TIPE2 was overexpressed in 293T 

cells with or without co-expression of RGL for 24h.  The activation state of S6, a 

target of the mTOR effector S6K was assayed via western blot. 
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Figure 4.3  TIPE2 Co-Immunoprecipitates with GBL.  Flag-tagged TIPE2 and HA-

tagged GBL were co-expressed in 293T cells for 24h.  Following lysis, lysates 

were cleared of the insoluble fraction, and were incubated with either anti-flag or 

anti mouse IgG for 2h at 4oC.  After a two hour incubation protein G agarose 

beads were added to the lysate in order to immunoprecipate all Ig bound protein.  

Following a 2h incubation with beads protein was eluted and assayed via 

western blot.  
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Figure 4.4 TIPE2 Regulates Rictor.  A.) Bone marrow derived macrophages were 

isolated from WT and TIPE2 KO mice as described in methods.  Following 

culturing cells were lysed and assayed via western blot to compare Rictor levels.  

Lysates were pooled from 3 animals.  B.)  293T cells were either transfected with 

TIPE2 alone, or co-transfected with TIPE2 and one of the following plasmids; 

Raptor, Rictor, and GBL for 24h.  Following transfection cells were lysed and 

lysates were analyzed via western blot to compare the effect of TIPE2 on 

different members of mTOR complexes. 
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Figure 4.5  TIPE2 specifially affects Rictor levels independently of cell death.  

293T cells were either treated with etoposide 10 uM 14h or transfected with 

TIPE2 24h.  Following treatment cells were lysed and lysates were analyzed by 

western blot for the effect of death on Rictor levels.  
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Figure 4.6 Proposed mechanism of TIPE2 Regulation of mTOR Signaling.  Upon 

activation TIPE2 sequesters GBL away from mTOR complexes, resulting in the 

destabilization of mTORC2 and the subsequent destruction of Rictor and a loss 

of function in the mTORC2 complex. 
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Chapter 5 

TIPE2 and Cell 

Death 

 

 

 

Work from this chapter is from:  

*Gus-Brautbar, *Y., Johnson, D., Zhang, L., Sun,H., Wang, P., Zhang, S., Zhang, 
L., and Chen, Y.H. (2012). The anti-inflammatory TIPE2 is an inhibitor of 
the oncogenic Ras. Molecular Cell 45, 610–618.  

*These authors contributed equally to this work 

Along with additional unpublished work, intended for publication in the near 

future.  
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Abstract 

Cell death is a central process crucial to the proper functioning of the 

immune system; and dysregulation of cell death can result in diseases of both 

severe inflammation and immunodeficiency.  TIPE2 has been previously shown 

to regulate AICD in CD4+ murine T cells.  Additionally a role for TIPE2 in the AKT 

and mTOR pathways, both crucial for survival has been established.  Here the 

role of TIPE2 in regulating cell death was investigated.  Overexpression of TIPE2 

is toxic to cells in a dose dependent manner.  Coexpression of TIPE2 alongside 

RGL1, AKT, PDK1, or mTOR, had the effect of reducing TIPE2 mediated cell 

death.  Surprisingly S6K enhanced TIPE2 mediated cell death, indicating that it 

may play a role in activation of TIPE2.  Even more surprisingly when TIPE2 is 

coexpressed with RGL1 and the GBL subunit of the mTOR pathway a massive 

amount of cell death is induced, indicating that TIPE2 may play a role in 

connecting the Ral and mTOR pathways. 
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Introduction 

Cell death is a fundamental biological process that is highly regulated and 

absolutely crucial for the proper development and functioning of all multi cellular 

organisms.  When the death machinery is not functioning appropriately multiple 

different disease states can arise, many of which are related to a loss of control 

within the immune system.   

In a typical immunological response to a foreign antigen, the immune 

system will first recognize the presence of a foreign invader, it will make a 

decision as to the best way to combat this foreign invader, it will begin to multiply 

whatever specific pieces of the immune system are needed to combat the 

invader (T Cells, B Cells, etc.), and following clearance of the foreign antigen the 

immune system will allow for the orderly destruction of the majority of the newly 

created immune cells (Figure 5.1).  If these immune cells fail to properly die off, 

they can begin to non-specifically attack any number of host cells within the 

body, causing a variety of inflammatory disease (Chen 2011).   

Within T cells a common function known as activation-induced-cell-death 

is a well characterized process in which a T cell that is subject to multiple 

stimulations of its T cell receptor undergoes apoptosis and commits suicide 

(Ashwell 1987, Smith 1989).  This functions as a form of protection since a T cell 

which is routinely encountering its cognate antigen is far more likely to be 

attacking a “self” molecule, instead of a foreign invader.  The primary way in 
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which this occurs is via Fas/FasL (discussed in Nagata 1997 and Maher 2002).  

Upon activation a T cell will upregulate Fas, which is a cell surface protein which, 

when bound by Fas ligand (FasL) rapidly induces apoptosis within the cell.  

Additional mechanisms of AICD may include p73, IkBaM, TRAIL, and Bim 

(Reviewed in Strasser 2009, Kaufmann 2011). 

Types of Cell Death 

Cell death is a complicated process, and there are multiple types of cell 

death.  The differing types of cell death can be divided into one of three general 

categories; apoptosis, necrosis, and autophagic cell death. 

Apoptosis is a type of programmed cell death in which a suicide program is 

activated by the cell.  Apoptosis can be triggered by several different pathways, 

but is morphologically characterized by several distinct steps: 

1.) Cell Shrinking and rounding. 

2.) Condensation of the chromatin. 

3.) Fragmentation of the DNA in the nucleus. 

4.) Breakdown of the plasma membrane and budding away into “blebs”. 

5.) Cellular contents are loaded into and removed by the blebs, to later be 

phagocytosed and recycled. 

In a human billions of cells self-terminate by apoptosis each and every day 

(Elmore 2007).  If cells become defective and unable to properly apoptose, a 

variety of diseases can result. Some of these include autoimmune and 

inflammatory diseases if the immune system cannot properly induce apoptosis in 
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inflammation producing cells (Chen 2011).  Numerous forms of cancer can also 

result from incomplete or ineffective apoptosis (Cotter 2009). If cells apoptose too 

easily certain types of neurodegenerative disease may result, as well as 

immunodeficiency.   

While apoptosis is a type of pre-programmed cellular suicide that all cells 

are capable of undergoing, necrosis is an “unplanned” form of cell death in which 

acute injury or toxicity causes the cell to die catastrophically.  The end result of 

apoptosis is the loading of cellular contents into small blebs of membrane, to be 

later phagocytosed and recycled, while the end result of necrosis is usually an 

uncontrolled spillage of cellular contents into the general circulation.  This 

uncontrolled spillage can have varying effects, amongst them it can be highly 

toxic to adjacent cells, and can also be highly immunogenic.  Morphologically 

necrotic cells oftentimes appear to be swollen and puffy.  This is due to a lack of 

cohesion off their plasma membrane, and they become swollen full of fluid.   

Autophagy is a catabolic process whereby a cell will begin to degrade its 

own internal components in order to generate essential nutrients.  This most 

often occurs in response to starvation or stress within the cell.  While a variety of 

autophagic processes and triggers exist, they all result in the degradation of 

internal proteins and organelles by the lysosome.  While autophagy always 

occurs at a low basal level, under certain conditions such as starvation or stress 

it can be upregulated to cause a larger bulk degradation.  In many circumstances 

a large buildup of autophagosomes, as well as heavy upregulation of autophagic 
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machinery is strongly correlated with cell death (Codogo 2005, Tsujimoto 2005).  

It is still not entirely clear exactly how autophagy can cause cell death.   

TIPE2 has previously been established to regulate AICD in primary murine 

CD4+ T cells (Sun 2008).  Due to the central role of appropriate cell death in 

regulating the immune system, as well as the central role of TIPE2 in regulating 

the immune system, the role of TIPE2 in regulating cell death was investigated.   
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Materials & Methods 

Cell Lines and Plasmids 

RAW 264.7 and HEK 293T cells were purchased from ATCC.  Cells were 

grown in DMEM supplemented with 10% FBS, penicillin and 

streptomycin.  mTOR, Rictor, Raptor, myr pdk1, AKT, S6K1, and S6K2 plasmids 

were purchased from Addgene.  TIPE2-Flag plasmid was used as previously 

described (Sun 2008). 

  

Cell Death Quantification 

The 293T cells, 0.5x106/dish, were plated in 6-cm dishes and transfected 

with various plasmids.  All transfections were carried out using FugeneHD 

reagent (Roche) according to the manufacturer’s instructions. 24 hrs later, 

supernatant was collected, and adherent cells were trypsinized and mixed with 

the supernatant. Cells were centrifuged (1000 rpm, 10 minutes), resuspended in 

equal volume of media, and stained with trypan blue. Dead and live cells were 

counted on a hemocytometer.  Four fields of the hemocytometer were counted 

and then averaged for each sample. 

 

Etoposide Treatment 
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Etoposide was purchased from Sigma (St. Louis, MO) part #E1383-25MG.  

Cells were treated with 50 uM etoposide for the indicated times. 

 

Immunoblotting 

Cells were lysed in Cell Lytic M cell lysis buffer (Sigma St. Louis, MO) and 

total protein concentration determined via Bradford analysis. 30 g protein was 

loaded to each lane, and separated by SDS-PAGE. Protein was transferred to a 

nitrocellulose membrane, and was blocked with 5% milk in TBST.  The 

membrane was then probed with the following primary antibodies overnight at 4 

0C: Phospho–AKT (Serine 473, 1:1000, Cell signaling), total AKT (1:1000, Cell 

Signaling), Myc (1:1000 Cell Signaling), Flag (1:1000, Sigma. Detection was 

performed using enhanced chemiluminescence of HRP-conjugated secondary 

antibodies (anti-mouse or anti-rabbit IgG, 1:1000, GE healthcare). 
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Results 

An initial observation was made that TIPE2 expression is upregulated in 

dying cells (Figure 5.2).  Since TIPE2 could either be upregulated to assist in 

inducing cell death, or could be a protective protein upregulated in order to try to 

save dying cells, this effect was further investigated.    In order to determine the 

role of TIPE2 in regulating cell death, flag tagged TIPE2 was overexpressed at 

increasing concentration in HEK 293T cells, and cell death was quantified at 24 

hours (Figure 5.3).  Overexpression of TIPE2 killed cells in a dose dependent 

manner.  In order to identify which pathway(s) TIPE2 was affecting in order to kill 

cells, TIPE2 was co-transfected alongside multiple constructs expressing genes 

from both the Ral and mTOR pathways which TIPE2 has previously been linked 

to (see chapters 3 and 4 of this dissertation for more information on these 

pathways).  Since Ral has been linked to numerous survival and proliferation 

pathways,TIPE2 was first co-expressed alongside Ral A and Ral B, these protein 

failed to compensate for TIPE 2 induced death.  In order to ensure that both of 

the Ral Isoforms were active, constitutively active forms of both Ral A and Ral B 

were also co-expressed alongside TIPE2 (Figure 5.4A).  These also failed to 

provide any rescue from TIPE2 induced death.  Because TIPE2 inhibits RGL1, 

and RGL1 has other functions in addition to acting as a RalGEF, TIPE2 was 

coexpressed alongside RGL1, which provided a rescue of approximately 60% of 

the TIPE2 induced death (Figure 5.4B).  Since RGL provided a rescue, and 

because RGL1 can function as a scaffold to bring PDK1 into contact with its 

target AKT, we next decided to test if active forms of PDK1 and AKT were 

capable of rescuing from TIPE2 induced cell death (Figure 5.4A).  Both 

myristolated PDK1 (an activating mutation) and a constitutively active AKT were 

capable of providing a rescue from TIPE2 induced cell death equal to that of 
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RGL1.  To confirm that the scaffolding activity of RGL1 was necessary for rescue 

from TIPE2 induced cell death a mutant of RGL1 was created in which the N 

terminus was truncated.  The N terminus of RGL1 is required to scaffold for 

PDK1 and AKT, but is not required for its GEF activity.  This N terminal deletion 

mutant which could not activate AKT was also not able to rescue from TIPE2 

induced cell death (Figure 5.4B).  Finally, in order to confirm the central 

importance of dysregulated AKT in TIPE2 induced cell death, a dominant 

negative construct of AKT was coexpressed alongside TIPE2 (Figure 5.5A).  If 

TIPE2 were killing in an AKT independent fashion, death induced by a dominant 

negative AKT would be additive with death induced by TIPE2.  If TIPE2 were 

killing via inhibition of AKT, expression of TIPE2 alongside dominant negative 

AKT should provide no further cell death over dominant negative AKT 

alone.  These conditions were tested and there was no additive effect, indicating 

that TIPE2’s ability to kill cells is via its inhibition of AKT.  To further confirm the 

central role of AKT in regulating TIPE2 induced cell death, the level of AKT 

phosphorylation was checked in a variety of rescue conditions (Figure 5.5B), 

further supporting the importance of AKT. 

While the activation of AKT by RGL1 is always occurring in cells, the 

primary method by which AKT is activated is via the MTORC2 complex, which is 

a complex composed of mTOR, GBL, Rictor, Protor, and Sin1.  Since TIPE2 has 

a negative regulatory effect that occurs intermittently with mTOR, and always 

with Rictor, we needed to determine if this method of AKT activation was also 

involved in TIPE2 induced cell death.  Overexpression of mTOR alongside TIPE2 

rescues cells from death to a similar degree as RGL1, active AKT, and 

myristolyated PDK1 (Figure 5.4A).  Since AKT can lie both upstream and 

downstream of mTOR, depending on which cellular signaling events are active at 
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any given time, we decided to test some additional downstream mTOR 

substrates in order to try to further hone in on which pathways were being 

dysregulated by TIPE2.  p70S6K is a well-known and studied downstream mTOR 

effector.  It is involved in ribosome biogenesis and protein synthesis, and lack of 

all S6K isoforms leads to marked reduction in viability (Pende 2004).  While we 

hypothesized the co-expression of TIPE2 and S6K would either help to rescue 

from TIPE2 induced death, or have no effect, S6K and TIPE2 co expression 

instead increased cellular death (Figure 5.6).  This effect was unexpected, so all 

previous rescue experiments were repeated, and only RGL1 could provide a 

slight rescue from TIPE2+S6K induced death (Figure 5.7).  TIPE2+S6K+mTOR 

actually led to slightly more death than TIPE2+S6K alone (Figure 5.7).   

In order to identify the type of death occurring in cells transfected with 

TIPE2, lysates were checked for cleaved caspase 3 and supernatant was 

checked for HMGB1.  Neither was readily detectable indicating that cell death 

was not occurring via a canonical apoptotic or necrotic pathway.  
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Discussion 

TIPE2 induces death in cells, and the mode of killing was investigated via 

two different approaches.  The first approach was to check for common apoptotic 

(cleaved caspase 3) and necrotic (HMGB1) markers in order to identify what type 

of cell death TIPE2 was inducing.  Neither cleaved caspase 3 nor HMGB1 were 

readily detectable, indicating that a third type of cell death, or a combination of 

different types of death are occurring in cells overexpressing TIPE2. 

The second approach was to use co-expression analysis in order to 

identify which signaling pathway(s) were involved in TIPE2 induced cell 

death.  Full Length RGL1 as well as a variety of truncation mutants were co-

expressed alongside TIPE2, but only full length RGL1 was capable of rescuing 

from TIPE2 induced cell death.  Since full length RGL1 can function as both a 

GEF and a scaffold, each function had to be tested in order to see which was 

responsible for rescuing from TIPE2 induced cellular death.  In order to test 

whether GEF activity was responsible for the rescue an RGL mutant was created 

lacking the N-terminal region, which functions as an autoinhibitory region of RGL, 

resulting in an RGL mutant with higher than normal GEF activity.  This region is 

also crucial for RGL scaffolding activity.  In addition both wild type and 

constitutively active forms of Ral A and Ral B were co-expressed alongside 

TIPE2.  Neither of these approaches were able to rescue from TIPE2 induced 

cell death (Figure 5.4), indicating that despite the well-known pro-survival 

functions of the Ral proteins, that TIPE2 mediated inhibition of RGL GEF 

function, and thus downstream Ral A and Ral B activity, were not responsible for 

the TIPE2 induced cell death.  With inhibition of the GEF activity of RGL ruled out 

as the method by which TIPE2 induces cell death, it was next necessary to 

determine that RGL1 scaffolding activity was responsible for this function.   
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We had already established that TIPE2 disrupts the scaffolding activity of 

RGL (figure 3.5), which brings the kinase PDK1 into close contact with its target 

AKT, allowing AKT to become phosphorylated and activated.   In order to assess 

whether loss of PDK1/AKT was responsible for TIPE2 causing the death that it 

does, active forms of AKT and PDK1 were co-expressed alongside TIPE2.  Both 

active AKT and PDK1 rescued from cell death to the same degree as RGL1, 

indicating that the AKT pathway was likely involved.  

In order to further confirm that TIPE2 induced death was occurring through 

the AKT pathway, TIPE2 was co-expressed alongside dominant negative AKT.  If 

TIPE2 were killing via a means other than AKT, TIPE2 expressed alongside 

dominant negative AKT would show an additive effect on total cell 

death.  Alternatively, if TIPE2 were killing via inhibition of AKT, then expressing a 

dominant negative AKT alongside TIPE2 should not induce any additional cell 

death.  The addition of dominant negative AKT to TIPE2 resulted in no additional 

cell death, confirming that TIPE2 kills via inhibition of the AKT pathway. 

mTOR, another activator of AKT can also rescue from TIPE2 induced cell 

death, further supporting the idea  that inhibition of the AKT pathway is how 

TIPE2 is killing cells.  A dosage of TIPE2 corresponding to 1.5ug on the dose 

response curve in Figure 5.3 was used for nearly all of the signaling assays 

performed earlier in this work.  Taken together, these data indicate that 

dysregulation of the AKT pathway, at least partially by inhibiting PDK1/AKT 

scaffolding provided by RGL, is responsible for the TIPE2 death effect on cells. 

P70S6K is a kinase that transduces downstream signals to induce 

anabolism, cell growth, and protein synthesis. When overexpressed in cells, it 

confers a survival advantage to cells, but paradoxically when co-expressed 
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alongside TIPE2 it has a synergistic effect in which cell death with TIPE2+S6K is 

more severe than with TIPE2 alone.  Co-expression of mTOR, the upstream 

activator of S6K, alongside S6K and TIPE2 results in an increase in death over 

TIPE2+S6K, despite the fact that mTOR co-expression alongside TIPE2 heavily 

reduces death induced by TIPE2.  These data, taken together, indicate that S6K 

may be functioning as an upstream activator of the TIPE2 death “function”.  

GBL and RGL are both proteins that TIPE2 interacts with and neither of 

which cause any toxicity to cells when expressed on their own or together. When 

co-expressed alongside TIPE2 however they induce a large amount of cell death.  

This is despite the fact that RGL can rescue from TIPE2 cell death when co-

expressed individually alongside TIPE2.   This indicates that TIPE2 may 

somehow be serving as a bridge between the mTOR and RAL pathways, 

possibly affecting AKT from two different directions.  Additionally both mTOR and 

Ral can affect autophagy.   Ral signaling promotes autophagy while mTOR 

signaling inhibits autophagy.  It is possible that the cellular death seen from 

TIPE2 is from the interface of these two pathways, confusing the cell with both 

pro- and anti- autophagic signals.   Therefore it is possible that TIPE2 induces 

some sort of autophagic cell death.  More work will need to be completed in order 

to be certain of this. 
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Figure 5.1 Mechanism of how lymphocytes respond to antigenic challenge, divide, and 

then die off.   
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Figure 5.2 Association of TIPE2 Expression with Cell Death.   RAW 264.7 macrophage 

were given a toxic amount of etoposide in order to induce apoptosis (Knethen 1998), and 

lysates were collected over time and TIPE2 message levels were checked with real time 

PCR. 
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Figure 5.3  Overexpression of TIPE2 induces Cell Death.  Increasing amounts of TIPE2 

were overexpressed in 293T for 24 hours.  Death was assayed at 24 hours via trypan blue 

staining. 
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Figure 5.4  Rescue of TIPE2 Induced Death.  A.) TIPE2 was transfected alone or with 

various plasmids from identified affected pathways.  After 24h cell death was assayed 

using trypan blue staining.  B.) TIPE2 death is rescued by full length RGL, but is no 

longer able to be rescued by an N-terminal truncation mutant that lacks the ability to bind 

to and scaffold for PDK1.  C.)  Western blot analysis of certain samples from A and B 

above showing a correlation between AKT phosphorylation and rescue from TIPE2 

induced death. 
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Figure 5.5  TIPE2 affects death by regulating the AKT pathway.  A.)  TIPE2 was 

expressed alone or alongside dominant negative AKT and cell death was quantified using 

Trypan Blue staining.  B.)  TIPE2 was coexpressed alongside various RGL constructs 

and levels of phosphorylated AKT (S473) were measured via western blotting. 
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5.6 S6K and TIPE2 Induce more Cell Death than TIPE2 alone.  293T cells were 

transfected with either TIPE2, S6K1, or TIPE2+S6K1.  24 hours after transfection cell 

death was assayed using Trypan blue staining. 
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Figure 5.7  S6K and TIPE2 Rescue Attempts.  TIPE2 and S6K1 were cotransfected 

alongside all plasmids which are capable of preventing TIPE2 –only induced cell death.  

AKT and PDK1 had no effect, while RGL1 still maintained a small rescue effect even in 

the presence of S6K.  mTOR exacerbated the TIPE2+S6K death effect. 
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Figure 5.8 Compilation of S6K and TIPE2 Death Effects.   
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5.9  RGL and GBL synergize to cause cell death with TIPE2.  293T cells were 

transfected with either vector, TIPE2 alone, or TIPE2 with GBL and RGL1.  After 24h 

transfection time cell death was measured using Trypan blue staining. 
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Chapter 6 

General Discussion 

and Future 

Directions 
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The field of immunity and inflammation has changed tremendously over 

the past decade, and will continue to change at an ever increasing pace of 

discovery.  TIPE2 plays a central role in regulation of the immune system, and is 

slowly garnering increased attention for this role.  

Understanding how TIPE2 is regulated is crucial towards creating 

therapies around the immunomodulatory function of TIPE2.  Depending upon the 

pathologic condition it may be desired to either have more or less TIPE2 

expressed.  For instance as a cancer treatment the expression of TIPE2 could be 

beneficial to either kill tumors, or to prevent them from metastasizing.  In various 

types of immunodeficiency however, a reduction in TIPE2 level may be 

warranted, in order to reduce unnecessary death of lymphocytes.  In chapter 2 

we provided data indicating that TIPE2 is regulated at both the message and 

protein levels.  TIPE2 message is likely regulated by an NF-KB induced 

microRNA, which further work in the lab has indicated is likely mir21.  At the 

protein level TIPE2 interacts with TRCP, and this interaction seems to be 

increased under conditions in which reduced TIPE2 protein is present in the 

lysate.  These data, taken together, indicate that the SCF-TRCP complex is the 

likely E3 ligase complex responsible for the destruction of TIPE2 protein.   

Since TIPE2 levels drop at both the protein and nucleic acid level in 

response to detecting inflammation, the role of TIPE2 as a suppressor of 

inflammatory programming has been supported by this regulation profile.  Data 

from human hepatocellular carcinoma patients from chapter 3 demonstrates that 

TIPE2 expression in non-immune tissues can minimally correlate, if not play a 

causative role in hepatocellular carcinoma.  This may indicate a potential 

diagnostic role for TIPE2, using TIPE2 expression as an indicator for 

carcinogenesis, and possibly metastasis of transformed cells. 
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With this newfound knowledge of the dual forms of TIPE2 regulation, new 

treatments can be devised to specifically target TIPE2 levels within various cell 

types, either promoting or reducing TIPE2 stability.  Likewise current drugs can 

now be reassessed for their effect on TIPE2 expression, possibly allowing for 

more effective use of said therapies.  Hopefully this knowledge will result in a 

series of viable treatments with which to treat a wide array of different diseases. 

Mechanistically TIPE2 appears to modulate the immune system (as well 

as other cell types and tissues within the body), by regulating key cellular 

processes involved in metabolism, survival, and polarization.  By binding to 

RGL1 (and other RalGDS family members) TIPE2 is capable of exerting 

numerous potent effects on the cell, some of which are only in the infant stages 

of study.  By binding RGL1 TIPE2 first and foremost prevents Ras from binding 

to and activating RGL1, thus inhibiting the activation of the small GTPase RalA 

and RalB.  These GTPases are extremely pleiotropic, and could most aptly be 

described as regulators of polarization, although the reach of their regulatory 

events has a hand in nearly every cellular process.  RalA is more heavily 

involved in polarized exocytosis as well as anchorage independent growth, while 

RalB has been more heavily tied to cell survival.  Rapid polarization and 

recruitment of appropriate membrane proteins and remodeling of the actin 

cytoskeleton are hallmarks of all cells of the immune system.  Without the 

capacity to modulate these factors the immune system would lack the plasticity 

required to rapidly adapt to constant onslaught of pathogens it faces.  The 

connection between TIPE2 modulating the immune system via Ral is thus an 

obvious one, and future work will be required in order to truly tease apart 

just how vital the Ral proteins are to the proper functioning of the immune 

system.  What is truly striking about TIPE2 however, is that it affects polarization 
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in multiple ways.  In addition to inhibiting the activation of the Ral family of small 

GTPases, TIPE2 also binds to and inhibits the Rac1 small GTPase.  Similar to 

the Ral proteins, Rac1 is a pleiotropic molecule with many downstream effectors, 

regulating processes as divergent (and important) as cell growth, adhesion, and 

motility.  Rac1 additionally imparts a marked level of regulation upon the actin 

cytoskeleton, much like Ral A and B.  Since the immune system by its very 

nature is migrating throughout the body and sampling the environment, 

molecules such as TIPE2 that regulate both the processes of sampling and 

migration are likely key central regulators for all of these cells. 

Beyond its effect on the Ral proteins, the TIPE2 mediated inhibition of 

RGL1 reduces another important RalGDS family function, the scaffolding activity 

it performs to link PDK1 to its downstream kinase AKT.  Being a central regulator 

of cell survival, the TIPE2 mediated reduction in AKT activation is a very 

important signaling event.  TIPE2 is also connected to AKT via several other 

pathways.  The TIPE2 binding partner Rac1 can interact with the kinase mTOR, 

which falls both upstream and downstream of AKT, and thus can both activate 

AKT and be activated by AKT.  TIPE2 itself can weakly IP with mTOR, possibly 

via using Rac1 as an intermediary.   And finally, and most importantly, TIPE2 

interacts with GBL, the constant subunit of both mTOR signaling complexes.    

The mTORC2 complex is the primary upstream kinase of AKT, and a key 

component of this complex is the scaffold Rictor.  TIPE2 markedly affects the 

level of Rictor present in cells, with overexpression of TIPE2 reducing it, and 

knockout cells showing increased levels.  The most likely reason for this 

destruction is that TIPE2 sequesters GBL away from mTORC2 complexes, 

resulting in the destabilization of the complex and the subsequent proteolytic 

destruction of Rictor.  GBL knockout MEFs have been shown to have this precise 
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phenotype.  The GBL sequestration mediated destruction of Rictor has yet 

to be demonstrated however, and will need to be completed in the future.  

An additional possibility is that TIPE2 could bind and sequester away Sin1, 

another protein that when lost can cause a loss of Rictor.  Unpublished 

data from the Chen lab indicates that TIPE2 can interact with phosphatidic 

acid (PA).  Since mTOR functions as a sensor for this molecule, it is 

possible that TIPE2 can also intersect with the mTOR pathway by binding 

to PA and modulating how mTOR can interact with the crucial signaling 

lipid.  As reported in Chapter 3, the entire mTOR pathway, which is regulated by 

TIPE2, is extremely crucial for the proper function and response of the immune 

system.  With the affect that mTOR modulation has on appropriate T and B cell 

differentiation into effector and memory cells, TIPE2 levels or activation may 

provide a key target during vaccinations in order to generate more robust 

memory cell production.  To date nothing is known about TIPE2 and B Cell 

function, and this will have to be further studies in the future.   It is also 

important to take note that overexpression of TIPE2 causes a loss of 

Rictor, and it can also, in certain conditions, cause a loss of mTOR and of 

RGL.  It is thus possible that TIPE2 has some sort of degradatory function, 

or links certain target proteins to the cellular destruction apparatus.  This 

will require further investigation to deduce how these TIPE2 binding 

partners or pathway partners are being degraded by the cell. 

With the mechanistic data presented so far it is easy to imagine how and 

why TIPE2 has such a dramatic effect on the regulation of the immune system.  

By affecting polarization via Rac and Ral, and by affecting the metabolic state via 

mTOR regulation, TIPE2 would have a dramatic effect on say, the proper 

expression of homing receptors and thus proper trafficking of a lymphocyte.  Or, 
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perhaps, the proper recognition and engulfment of a particle, and acidification of 

a phagolysosome during phagocytosis.  (Both of these phenotypes do occur).  

What is truly interesting though, are the effects of TIPE2 in the non-immune 

system.  While not all cell types express TIPE2, some do, and most express at 

least one of the TNFAIP8 family members, each of which share high homology 

with one another.  As we see in Chapter 3, TIPE2 is expressed by healthy liver 

cells, and appears to be silenced by transformed liver cells within the tumor.  

Since no spontaneous tumors have ever developed in knockout mice, this would 

imply that (at least in certain tissues) loss of TIPE2 is a necessary but not 

sufficient step to induce tumor formation.  This makes assaying for TIPE2 levels 

a fantastic early diagnostic indicator for “at risk” cells.  Reintroduction of TIPE2 

may also be able to destroy already formed tumors.  When it comes to cancer 

however, the effect of TIPE2 would seem to truly be central to metastasis, much 

more so than tumor formation itself.  With TIPE2 regulating pathways involved in 

survival, metabolism, polarization, motility, and anchorage independent growth, 

TIPE2 literally regulates everything needed for effective metastasis.  Thus, 

TIPE2 as a diagnostic may not only provide information regarding tumor 

formation, but may also provide extremely crucial diagnosis indicating likely 

metastasis.  And again, an ability to reintroduce TIPE2, even if it were not able to 

destroy a solid tumor, may prevent that tumor from metastasizing and thus 

prevent the lion’s share of damage and death associated with cancer 

progression.  More work with human tissues will be required to provide a 

definitive link between TIPE2 and cancer metastasis. 

It is also important to note that TIPE2 is associated with and regulated by 

inflammation, and in turn heavily regulates the mTOR pathway.  Dysregulation of 

mTOR signaling as well as inflammation are both highly correlated with type II 
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diabetes and obesity.  It would be foolish to not investigate the potential role 

of TIPE2 in functioning as a bridge between inflammation and mTOR, thus 

possibly providing a new and unknown link between inflammation and 

nutrient signaling, and possibly providing us with another potential 

druggable target in the war against metabolic syndrome.  

Also important to note is that when RGL is coexpressed alongside GBL 

there is no perceived change in any cell viability or health measure.  When TIPE2 

is cotransfected alongside these two proteins they synergize and kill cells to an 

extremely high degree, much higher than TIPE2 alone.  Thus, it is possible that 

TIPE2 function as a bridge between the mTOR and Ral Signaling pathways, 

quite possibly by nucleating the formation of a new complex.  The potential 

for a complex of this sort has particularly important ramifications on how 

we interpret autophagy in the future, since mTOR is a very strong negative 

regulator of autophagy, while Ral is a very strong positive regulator of 

autophagy.  It is possible that TIPE2 is the critical piece that links these two 

pathways and thus determines whether autophagy should be initiated or 

not.  TIPE2 cell death may thus be some sort of autophagic death due to it 

confusing the cell’s normal autophagy system.  This will require further 

investigation.   

It is rather remarkable that TIPE2 manages to regulate AKT via 3 putative 

mechanisms and on both of its activating residues.  TIPE2 regulates the PDK1 

mediated phosphorylation of T308 by inhibiting the scaffolding function of the 

RalGDS family, TIPE2 potentially affects mTOR itself via Rac1 or via direct 

binding, and TIPE2 negatively regulates the Rictor subunit of mTORC2, possibly 

via GBL sequestration.  While the importance of AKT cannot be understated, the 

TIPE2 expression profile when viewed through the prism of cell survival and 
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metabolic regulation offered by AKT offers an interesting perspective on the role 

and purpose of TIPE2 within the immune system.  To use a monocyte as an 

example; before activation a monocyte is primarily at rest, migrating through the 

body and sampling the environment.  At this stage in the life of the monocyte 

TIPE2 is highly expressed, though not toxic, it is only offering a repressive 

function, preventing the monocyte from becoming highly active, creating a 

respiratory burst, etc.  Upon activation the monocyte rapidly and specifically 

downregulates TIPE2 expression at both the message and protein level.  With 

TIPE2 no longer present to inhibit metabolism via mTOR, and polarization via Ral 

and Rac1 the monocyte is free to rapidly migrate, express chemotactic receptors 

on its surface, and undergo heavily metabolic events like a respiratory burst.  

After some amount of time – which we have yet to determine experimentally in 

primary cells – TIPE2 expression is restored.  In the now activated monocytes 

however, TIPE2 is no longer simply repressive, but toxic.  This effect is 

supported by the fact that serum starving TIPE2 overexpressing cells halts any 

TIPE2 toxicity despite not affecting expression.  Additionally TIPE2 only appears 

to be toxic in active and dividing cells.  Cells transfected with TIPE2 that are 

already dense no longer die en masse, despite equal or greater levels of TIPE2 

being expressed in the dense cells.  More work will need to be done to 

support this theory, such as fully tracking TIPE2 expression levels in 

primary cells, and using a variety of artificial activation conditions in 

conjunction with TIPE2 expression in order to fine tune exactly when and 

under what conditions TIPE2 proves to be toxic to cells, instead of just 

inhibitory.   
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TIPE2 seems to regulate polarization and metabolism in multiple and 

important ways.  These modes of regulation give TIPE2 a role in the regulation of 

cell survival, and motility.  They provide a link between TIPE2 and cancer, and 

TIPE2 may minimally serve as a diagnostic indicator of transformation and 

metastasis, if not become a bona fide treatment for these stages of cancer 

development.  TIPE2 regulation of mTOR and Ral have positioned it at a unique 

crossroads between “go” and “no go” signals for the progression of autophagy.  

This may result in TIPE2 playing a central role as an autophagic switch (Figure 

6.1).  Finally TIPE2 may be performing a function similar to AICD, in which it 

proves toxic to cells that have been activated, thus preventing a buildup of 

inflammation producing monocytes and lymphocytes following antigenic 

challenge and clearance.  In conclusion we have only begun to scratch the 

surface of TIPE2 biology and its numerous functions within both the cell and the 

body.  It will prove very interesting to see what we can take from TIPE2 in order 

to advance medical science and dramatically improve the health of people in the 

future.   
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Figure 6.1  TIPE2 may function as an autophagy Switch.  Since TIPE2 is capable 

of inhibiting the anti-autophagy mTOR pathway, and the pro autophagy Ral 

pathway, and TIPE2 clearly connects these two pathways via strange and 

incompletely defined phenotypes (chapter 4, chapter 5), it may function as a 

switch which is either actively inhibiting either mTOR in order to promote 

autophagy within the cell, or inhibit Ral in order to prevent autophagy within the 

cell. 
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Figure 6.2  Cluster Map of TIPE2 interactions, functions, and potential functions.  

TIPE2 and RGL functions are highlighted in green, mTOR in red, and Rac1 in 

blue.  Different potential diseases and therapies to investigate are then blurred by 

color based upon which of these pathways feed into them. 

 



139 |  P a g e
 

 

References 

 

  



140 |  P a g e
 

Ackermann JA, Radtke D, Maurberger A, Winkler TH, Nitschke L: Grb2 regulates 
B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ 
signalling. The EMBO Journal 2011, 30:1621-1633. 

Anand, P., Kunnumakkara, A.B., Kunnumakara, A.B., Sundaram, C., Harikumar, 
K.B., Tharakan, S.T., Lai, O.S., Sung, B., and Aggarwal, B.B. (2008). 
Cancer is a preventable disease that requires major lifestyle changes. 
Pharmaceutical Research 25, 2097–2116. 

Aoki, M., Blazek, E., and Vogt, P.K. (2001). A role of the kinase mTOR in cellular 
transformation induced by the oncoproteins P3k and Akt. Proceedings of 
the National Academy of Sciences of the United States of America 98, 
136–141. 

Ashwell, B.Y.J.D., Cunningham, R.E., Noguchi, P.D., and Hernandez, D. 
(1987).Cell Growth Cycle Block of T Cell Hybridomas Upon Activation with 
Antigen. 165,. 

Awasthi A, Samarakoon A, Chu H, Kamalakannan R, Quilliam LA, Chrzanowska-
wodnicka M, Ii GCW: Rap1b facilitates NK cell functions via IQGAP1-
mediated signalosomes. The Journal of Experimental Medicine 2010, 
207:1923-38. 

Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou Y-H, Formstecher E, Maiti M, 
Hazelett CC, Wauson EM, Balakireva M, et al.: RalB and the exocyst 
mediate the cellular starvation response by direct activation of 
autophagosome assembly. Cell 2011, 144:253-67. 

Botelho RJ, Harrison RE, Stone JC, Hancock JF, Philips MR, Jongstra-bilen J, 
Mason D, Plumb J, Gold MR, Grinstein S: Localized Diacylglycerol-
dependent Stimulation of Ras and Rap1 during Phagocytosis. Journal of 
Biological Chemistry 2009, 284:28522-28532. 

Boussiotis VA,, Freeman GJ, Berezovskaya A, Barber DL, Nadler LM: 
Maintenance of Human T Cell Anergy: Blocking of IL-2 Gene Transcription 
by Activated Rap1. Science 1997, 124:124-128. 

Cao, W., Manicassamy, S., Tang, H., Kasturi, S.P., Pirani, A., Murthy, N., and 
Pulendran, B. (2008). Toll-like receptor-mediated induction of type I 
interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive 
PI(3)K-mTOR-p70S6K pathway. Nature Immunology 9, 1157–1164. 

Carmena, A., Makarova, A., and Speicher, S. (2011). The Rap1-Rgl-Ral 
signaling network regulates neuroblast cortical polarity and spindle 
orientation. The Journal of Cell Biology 195, 553–562. 



141 |  P a g e
 

Carmody, R.J., Ruan, Q., Palmer, S., Hilliard, B., and Chen, Y.H. (2007). 
Negative regulation of toll-like receptor signaling by NF-kappaB p50 
ubiquitination blockade. Science 317, 675-678. 

Caron E, Self AJ, Hall A: The GTPase Rap1 controls functional activation of 
αMβ2 macrophage by LPS and other inflammatory mediators. Current 
Biology 2000, 10:974-978. 

Chang, X., Lazorchak, A.S., Liu, D., and Su, B. (2012). Sin1 regulates Treg-cell 
development but is not required for T-cell growth and proliferation. 
European Journal of Immunology 42, 1639–1647. 

Chen, G., Chen, H., Wang, C., Peng, Y., Sun, L., Liu, H., and Liu, F. (2012). 
Rapamycin ameliorates kidney fibrosis by inhibiting the activation of 
mTOR signaling in interstitial macrophages and myofibroblasts. PloS One 
7, e33626. 

Chen, M. and Wang, J (2011).  Regulation of Immune Responses by 
Spontaneous T cell-mediated Dendritic Cell Death.  Clinical & Cellular 
Immunology.  S3-005, 1-8. 

Chien, Y., Kim, S., Bumeister, R., Loo, Y.M., Kwon, S.W., Johnson, C.L., 
Balakireva, M.G., Romeo, Y., Kopelovich, L., Gale, M., Jr., et al. (2006). 
RalB GTPase-mediated activation of the IkappaB family kinase TBK1 
couples innate immune signaling to tumor cell survival. Cell 127, 157-170. 

Chien, Y., and White, M.A. (2003). RAL GTPases are linchpin modulators of 
human tumour-cell proliferation and survival. EMBO Rep 4, 800-806. 

Chong, Z.Z., Shang, Y.C., Wang, S., and Maiese, K. (2012). Shedding new light 
on neurodegenerative diseases through the mammalian target of 
rapamycin. Progress in Neurobiology. 

Chrzanowska-wodnicka M, Kraus AE, Gale D, Ii GCW, Dc W, Chrzanowska-
wodnicka M, Kraus AE, Gale D, Ii GCW, Vansluys J: Defective 
angiogenesis, endothelial migration, proliferatino, and MAPK signaling in 
Rap1b-deficient mice. Blood 2008, 111:2647-2656. 

Chu H, Awasthi A, Ii GCW, Chrzanowska-wodnicka M, Chu H, Awasthi A, Ii 
GCW, Chrzanowska-wodnicka M, Malarkannan S: Rap1b Regulates B 
Cell Development, Homing, and T Cell-Dependent Humoral Immunity. The 
Journal of Immunology 2008, 181:3373-3383. 

Cirillo R, Ciccarelli A, Oriente A, Marone ANDG: Characterization of The Anti-
Inflammatory Effect of Human Mast Cells. The Journal of Immunology 
1991, 147:4278-4285. 



142 |  P a g e
 

Codogno, P., and Meijer, a J. (2005). Autophagy and signaling: their role in cell 
survival and  and cell death. Cell Death and Differentiation 12 Suppl 2, 
1509–1518. 

Colina, R., Costa-Mattioli, M., Dowling, R.J.O., Jaramillo, M., Tai, L.-H., 
Breitbach, C.J., Martineau, Y., Larsson, O., Rong, L., Svitkin, Y.V., et al. 
(2008). Translational control of the innate immune response through IRF-
7. Nature 452, 323–328. 

Corrotte M, Nyguyen APT, Harlay ML, Vitale N, Bader M-F, Grant NJ: Ral 
isoforms are implicated in Fc gamma R-mediated phagocytosis: activation 
of phospholipase D by RalA. Journal of immunology 2010, 185:2942-50. 

Cotter, T.G. (2009). Apoptosis and cancer: the genesis of a research field. 
Nature Reviews. Cancer 9, 501–507. 

Delgoffe, G.M., Kole, T.P., Zheng, Y., Zarek, P.E., Matthews, K.L., Xiao, B., 
Worley, P.F., Kozma, S.C., and Powell, J.D. (2009). The mTOR kinase 
differentially regulates effector and regulatory T cell lineage commitment. 
Immunity 30, 832–844. 

Delgoffe, G.M., Pollizzi, K.N., Waickman, A.T., Heikamp, E., Meyers, D.J., 
Horton, M.R., Xiao, B., Worley, P.F., and Powell, J.D. (2011). The kinase 
mTOR regulates the differentiation of helper T cells through the selective 
activation of signaling by mTORC1 and mTORC2. Nature Immunology 12, 
295–303. 

Deretic, V. (2012). Autophagy: an emerging immunological paradigm. Journal of 
Immunology (Baltimore, Md. : 1950) 189, 15–20. 

Donahue AC, Fruman DA: Leukocyte signaling Distinct signaling mechanisms 
activate the target of rapamycin in response to different B-cell stimuli. 
Euroean Journal of Immunology 2007, 37:2923-2936 

Dorrello, N.V., Peschiaroli, A., Guardavaccaro, D., Colburn, N.H., Sherman, N.E., 
and Pagano, M. (2006). S6K1- and betaTRCP-mediated degradation of 
PDCD4 promotes protein translation and cell growth. Science (New York, 
N.Y.) 314, 467–471. 

Duchniewicz M, Zemojtel T, Grossmann S, Scheele JS, Zwartkruis FJT, 
Duchniewicz M, Zemojtel T, Kolanczyk M, Grossmann S: Rap1A-Deficient 
T and B Cells Show Impaired Integrin-Mediated Cell Adhesion. Molecular 
and Cellular Biology 2006, 26:643-653. 

Dufour, M., Dormond-Meuwly, A., Demartines, N., and Dormond, O. (2011). 
Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer 



143 |  P a g e
 

Therapy: Lessons from Past and Future Perspectives. Cancers 3, 2478–
2500. 

Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic 
Pathology 35, 495–516. 

Facchinetti, V., Ouyang, W., Wei, H., Soto, N., Lazorchak, A., Gould, C., Lowry, 
C., Newton, A.C., Mao, Y., Miao, R.Q., et al. (2008). The mammalian 
target of rapamycin complex 2 controls folding and stability of Akt and 
protein kinase C. The EMBO Journal 27, 1932–1943. 

Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, a, and Chen, J. (2001). 
Phosphatidic acid-mediated mitogenic activation of mTOR signaling. 
Science (New York, N.Y.) 294, 1942–1945. 

Feig, L.A. (2003). Ral-GTPases: approaching their 15 minutes of fame. Trends 
Cell Biol 13, 419-425. 

Fernandez, D., and Perl, A. (2011). mTOR Signaling : A Central Pathway to 
Pathogenesis in. 9, 173–178. 

Ferro, E., and Trabalzini, L. (2010). RalGDS family members couple Ras to Ral 
signalling and that's not all. Cell Signal 22, 1804-1810. 

Finlay, D., and Cantrell, D. (2010). Phosphoinositide 3-kinase and the 
mammalian target of rapamycin pathways control T cell migration. Annals 
of the New York Academy of Sciences 1183, 149–157. 

García-Martínez, J.M., and Alessi, D.R. (2008). mTOR complex 2 (mTORC2) 
controls hydrophobic motif phosphorylation and activation of serum- and 
glucocorticoid-induced protein kinase 1 (SGK1). The Biochemical Journal 
416, 375–385. 

Gérard A, Mertens AEE, Kammen RAVD, Collard JG: The Par polarity complex 
regulates Rap1 - and chemokine-induced T Cell polarization. The Journal 
of Cell Biology 2007, 176:863-875. 

Gomez-Cambronero, J. (2003). Rapamycin inhibits GM-CSF-induced neutrophil 
migration. FEBS Letters 550, 94–100. 

Gonzalez-Garcia, A., Pritchard, C.A., Paterson, H.F., Mavria, G., Stamp, G., and 
Marshall, C.J. (2005). RalGDS is required for tumor formation in a model 
of skin carcinogenesis. Cancer Cell 7, 219-226. 

Guertin, D. a, Stevens, D.M., Thoreen, C.C., Burds, A. a, Kalaany, N.Y., Moffat, 
J., Brown, M., Fitzgerald, K.J., and Sabatini, D.M. (2006). Ablation in mice 



144 |  P a g e
 

of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 
is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. 
Developmental Cell 11, 859–871. 

Haghighat, a, Mader, S., Pause, a, and Sonenberg, N. (1995). Repression of 
cap-dependent translation by 4E-binding protein 1: competition with p220 
for binding to eukaryotic initiation factor-4E. The EMBO Journal 14, 5701–
5709. 

Haidinger, M., Poglitsch, M., Geyeregger, R., Kasturi, S., Zeyda, M., Zlabinger, 
G.J., Pulendran, B., Hörl, W.H., Säemann, M.D., and Weichhart, T. 
(2010). A versatile role of mammalian target of rapamycin in human 
dendritic cell function and differentiation. Journal of Immunology 
(Baltimore, Md. : 1950) 185, 3919–3931. 

Hamad, N.M., Elconin, J.H., Karnoub, A.E., Bai, W., Rich, J.N., Abraham, R.T., 
Der, C.J., and Counter, C.M. (2002). Distinct requirements for Ras 
oncogenesis in human versus mouse cells. Genes Dev 16, 2045-2057. 

Hanauer, S.B. (2006). Inflammatory bowel disease: epidemiology, pathogenesis, 
and therapeutic opportunities. Inflammatory Bowel Diseases 12 Suppl 1, 
S3–9. 

Hao, Y., Wong, R., and Feig, L.A. (2008). RalGDS couples growth factor 
signaling to Akt activation. Mol Cell Biol 28, 2851-2859. 

Hara, K., Yonezawa, K., Kozlowski, M.T., Sugimoto, T., Andrabi, K., Weng, Q.P., 
Kasuga, M., Nishimoto, I., and Avruch, J. (1997). Regulation of eIF-4E 
BP1 phosphorylation by mTOR. The Journal of Biological Chemistry 272, 
26457–26463. 

Hardie, D.G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians 
of cellular energy. Nature Reviews. Molecular Cell Biology 8, 774–785. 

He, B., and Guo, W. (2009). The exocyst complex in polarized exocytosis. Curr 
Opin Cell Biol 21, 537-542. 

 
Heidt S, Roelen DL, Eijsink C, Kooten CV, Claas FHJ, Mulder A: Effects of 

Immunosuppressive Drugs On Purified Human B Cells: Evidence 
Supporting the Use of MMF and Rapamycin. American Journal of 
Transplantation 2008, 86:1292-1300 

Holmstro TH, Schmitz I, So TS, Poukkula M, Johnson VL, Chow SC, Krammer 
PH, Eriksson JE: MAPK / ERK signaling in activated T cells inhibits CD95 
/ Fas-mediated apoptosis downstream of DISC assembly. EMBO Journal 
2000, 19:5418-5428. 



145 |  P a g e
 

Holz, M.K., Ballif, B. a, Gygi, S.P., and Blenis, J. (2005). mTOR and S6K1 
mediate assembly of the translation preinitiation complex through dynamic 
protein interchange and ordered phosphorylation events. Cell 123, 569–
580. 

Hotamisligil, G.S., and Erbay, E. (2008). Nutrient sensing and inflammation in 
metabolic diseases. Nature Reviews. Immunology 8, 923–934. 

Jastrzebski, K., Hannan, K.M., Tchoubrieva, E.B., Hannan, R.D., and Pearson, 
R.B. (2007). Coordinate regulation of ribosome biogenesis and function by 
the ribosomal protein S6 kinase, a key mediator of mTOR function. 
Growth Factors (Chur, Switzerland) 25, 209–226. 

Jin, R., Junutula, J.R., Matern, H.T., Ervin, K.E., Scheller, R.H., and Brunger, 
A.T. (2005). Exo84 and Sec5 are competitive regulatory Sec6/8 effectors 
to the RalA GTPase. EMBO J 24, 2064-2074. 

 
Katagiri K, Hattori M, Minato N, Irie S-kichi, Takatsu K, Kinashi T: Rap1 Is a 

Potent Activation Signal for Leukocyte Function-Associated Antigen 1 
Distinct from Protein Kinase C and Phosphatidylinositol-3-OH Kinase. 
Molecular and Cellular Biology 2000, 20:1956-1969. 

Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y, Inaba K, 
Kinashi T: Crucial functions of the Rap1 effector molecule RAPL in 
lymphocyte and dendritic cell trafficking. Nature Immunology 2004, 
5:1045-1051. 

Kappler, John W, Staerz, Uwe, White, Janice., and Marrack, Philippa C. (1988).  
Self-tolerance eliminates T cells specific for Mls-modified products of the 
major histocompatibility complex.  Nature.  332, 3.  35-40 

Karin, M., and Greten, F.R. (2005). NF-kappaB: linking inflammation and 
immunity to cancer development and progression. Nat Rev Immunol 5, 
749-759. 

Kaufmann, T., Strasser, a, and Jost, P.J. (2012). Fas death receptor signalling: 
roles of Bid and XIAP. Cell Death and Differentiation 19, 42–50. 

Kaur, S., Sassano, A., Majchrzak-Kita, B., Baker, D.P., Su, B., Fish, E.N., and 
Platanias, L.C. (2012). Regulatory effects of mTORC2 complexes in type I 
IFN signaling and in the generation of IFN responses. Proceedings of the 
National Academy of Sciences of the United States of America 109, 7723–
7728. 

Knethen, A., Lotero, A., Brune, B.,  (1998).  Etoposide and cisplating induced 
apoptosis in activated RAW 264.7 macrophages is attenuated by cAMP-
induced gene expression.  Oncogene 17, 287-294. 



146 |  P a g e
 

Koike T, Yamagishi H, Hatanaka Y, Fukushima A, Chang J-wen, Xia Y, Fields M, 
Chandler P, Iwashima M: A Novel ERK-dependent Signaling Process That 
Regulates Interleukin-2 Expression in a Late Phase of T Cell Activation. 
The Journal of biological chemistry 2003, 278:15685-15692. 

Kong, L., and Ge, B.X. (2008). MyD88-independent activation of a novel actin-
Cdc42/Rac pathway is required for Toll-like receptor-stimulated 
phagocytosis. Cell Res 18, 745-755. 

van de Laar, L., Buitenhuis, M., Wensveen, F.M., Janssen, H.L. a, Coffer, P.J., 
and Woltman, A.M. (2010). Human CD34-derived myeloid dendritic cell 
development requires intact phosphatidylinositol 3-kinase-protein kinase 
B-mammalian target of rapamycin signaling. Journal of Immunology 
(Baltimore, Md. : 1950) 184, 6600–6611. 

Lakatos, P.L. (2006). Recent trends in the epidemiology of inflammatory bowel 
diseases : Up or down ? INCIDENCE IN THE WESTERN WORLD : 
NORTH / WEST EUROPE AND NORTH AMERICA. 12, 6102–6108. 

Laliberté, B., Wilson, A.M., Nafisi, H., Mao, H., Zhou, Y.Y., Daigle, M., and Albert, 
P.R. (2010). TNFAIP8: a new effector for Galpha(i) coupling to reduce cell 
death and induce cell transformation. Journal of Cellular Physiology 225, 
865–874. 

Lamouille, S., Connolly, E., Smyth, J.W., Akhurst, R.J., and Derynck, R. (2012). 
TGF-β-induced activation of mTOR complex 2 drives epithelial-
mesenchymal transition and cell invasion. Journal of Cell Science 125, 
1259–1273. 

Laragione, T., and Gulko, P.S. (2010). mTOR regulates the invasive properties of 
synovial fibroblasts in rheumatoid arthritis. Molecular Medicine 
(Cambridge, Mass.) 16, 352–358. 

Lee, B.-H., Lee, M.J., Park, S., Oh, D.-C., Elsasser, S., Chen, P.-C., Gartner, C., 
Dimova, N., Hanna, J., Gygi, S.P., et al. (2010). Enhancement of 
proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 
179–184. 

Lee, H.K., Lund, J.M., Ramanathan, B., Mizushima, N., and Iwasaki, A. (2007). 
Autophagy-dependent viral recognition by plasmacytoid dendritic cells. 
Science (New York, N.Y.) 315, 1398–1401. 

Ley, K., Miller, Y.I., and Hedrick, C.C. (2011). Monocyte and macrophage 
dynamics during atherogenesis. Arteriosclerosis, Thrombosis, and 
Vascular Biology 31, 1506–1516. 



147 |  P a g e
 

Li, D., Song, L., Fan, Y., Li, X., Li, Y., Chen, J., Zhu, F., Guo, C., Shi, Y., and 
Zhang, L. (2009). Down-regulation of TIPE2 mRNA expression in 
peripheral blood mononuclear cells from patients with systemic lupus 
erythematosus. Clinical Immunology (Orlando, Fla.) 133, 422–427. 

Li, Q., Rao, R.R., Araki, K., Pollizzi, K., Odunsi, K., Powell, J.D., and Shrikant, P. 
a (2011). A central role for mTOR kinase in homeostatic proliferation 
induced CD8+ T cell memory and tumor immunity. Immunity 34, 541–553. 

Li Y, Yan J, De P, Chang H-chen, Ii KWC, Nivanka C, Peng X, Kim C, Kapur R, 
Chen H, et al.: Rap1a Null Mice Have Altered Myeloid Cell Functions 
Suggesting Distinct Roles for the Closely Related Rap1a and 1b Proteins. 
The Journal of Immunology 2007, 179:8322-8331. 

Lim, K.H., Baines, A.T., Fiordalisi, J.J., Shipitsin, M., Feig, L.A., Cox, A.D., Der, 
C.J., and Counter, C.M. (2005). Activation of RalA is critical for Ras-
induced tumorigenesis of human cells. Cancer Cell 7, 533-545. 

 
Lim, K.H., O'Hayer, K., Adam, S.J., Kendall, S.D., Campbell, P.M., Der, C.J., and 

Counter, C.M. (2006). Divergent roles for RalA and RalB in malignant 
growth of human pancreatic carcinoma cells. Curr Biol 16, 2385-2394. 

Ma, X.M., Yoon, S.-O., Richardson, C.J., Jülich, K., and Blenis, J. (2008). SKAR 
links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation 
efficiency of spliced mRNAs. Cell 133, 303–313. 

Maher, S., Toomey, D., Condron, C., and Bouchier-Hayes, D. (2002). Activation-
induced cell death: the controversial role of Fas and Fas ligand in immune 
privilege and tumour counterattack. Immunology and Cell Biology 80, 
131–137. 

Margutti P, Matarrese P, Conti F, Colasanti T, Delunardo F, Garofalo T, Profumo 
E, Riganò R, Siracusano A, Salvati B, et al.: Autoantibodies to the C-
terminal subunit of RLIP76 induce oxidative stress and endothelial cell 
apoptosis in immune-mediated vascular diseases and atherosclerosis. 
Blood 2008, 111:4559-4570. 

Marko AJ, Miller RA, Kelman A, Frauwirth KA: Induction of Glucose Metabolism 
in Stimulated T Lymphocytes Is Regulated by Mitogen-Activated Protein 
Kinase Signaling. PloS one 2010, 5:e15425. 

 

Martin, T.D., Samuel, J.C., Routh, E.D., Der, C.J., and Yeh, J.J. (2011). 
Activation and involvement of Ral GTPases in colorectal cancer. Cancer 
Res 71, 206-215. 



148 |  P a g e
 

Martin, T.D., Mitin, N., Cox, A.D., Yeh, J.J., and Der, C.J. (2012). 
Phosphorylation by protein kinase Cα regulates RalB small GTPase 
protein activation, subcellular localization, and effector utilization. The 
Journal of Biological Chemistry 287, 14827–14836. 

Mayer, C., Zhao, J., Yuan, X., and Grummt, I. (2004). mTOR-dependent 
activation of the transcription factor TIF-IA links rRNA synthesis to nutrient 
availability. Genes & Development 18, 423–434. 

McLaren, J.E., Michael, D.R., Ashlin, T.G., and Ramji, D.P. (2011). Cytokines, 
macrophage lipid metabolism and foam cells: implications for 
cardiovascular disease therapy. Progress in Lipid Research 50, 331–347. 

Mcleod SJ, Shum AJ, Lee RL, Takei F, Gold MR, Immunol MRJ, Biol MRJ: The 
Rap GTPases Regulate Integrin-mediated Adhesion, Cell Spreading, Actin 
Polymerization, and Pyk2 Tyrosine Phosphorylation in B Lymphocytes. 
The Journal of biological chemistry 2004, 279:12009-12019. 

Mitchell D, Olive C: Regulation of Toll-like receptor-induced chemokine 
production in murine dendritic cells by mitogen-activated protein kinases. 
Molecular Immunology 2010, 47:2065-2073. 

Moskalenko, S., Henry, D.O., Rosse, C., Mirey, G., Camonis, J.H., and White, 
M.A. (2002). The exocyst is a Ral effector complex. Nat Cell Biol 4, 66-72. 

 
Moskalenko, S., Tong, C., Rosse, C., Mirey, G., Formstecher, E., Daviet, L., 

Camonis, J., and White, M.A. (2003). Ral GTPases regulate exocyst 
assembly through dual subunit interactions. J Biol Chem 278, 51743-
51748. 

 
Murai, H., Ikeda, M., Kishida, S., Ishida, O., Okazaki-Kishida, M., Matsuura, Y., 

and Kikuchi, A. (1997). Characterization of Ral GDP dissociation 
stimulator-like (RGL) activities to regulate c-fos promoter and the 
GDP/GTP exchange of Ral. J Biol Chem 272, 10483-10490. 

 
Nagami, K.  Kawashima, Y., Kuno, H., Kemi, M., Matsumoto, H. (2002).  In vitro 

Cytotoxiciity Assay to Screen Compounds for Apoptosis-Inducing Potential 
on Lymphocytes and Neutrophils.  The Journal of Toxicological Studies 
27, 191-203. 

 Nagata, S. (1997). Apoptosis by Death Factor. Cell 88, 355–365. 

Nobukuni, T., Joaquin, M., Roccio, M., Dann, S.G., Kim, S.Y., Gulati, P., Byfield, 
M.P., Backer, J.M., Natt, F., Bos, J.L., et al. (2005). Amino acids mediate 
mTOR/raptor signaling through activation of class 3 phosphatidylinositol 



149 |  P a g e
 

3OH-kinase. Proceedings of the National Academy of Sciences of the 
United States of America 102, 14238–14243. 

Oh, W.J., Wu, C., Kim, S.J., Facchinetti, V., Julien, L.-A., Finlan, M., Roux, P.P., 
Su, B., and Jacinto, E. (2010). mTORC2 can associate with ribosomes to 
promote cotranslational phosphorylation and stability of nascent Akt 
polypeptide. The EMBO Journal 29, 3939–3951. 

O’Neill, L. a J., and Bowie, A.G. (2007). The family of five: TIR-domain-containing 
adaptors in Toll-like receptor signalling. Nature Reviews. Immunology 7, 
353–364. 

Oxford, G., Owens, C.R., Titus, B.J., Foreman, T.L., Herlevsen, M.C., Smith, 
S.C., and Theodorescu, D. (2005). RalA and RalB: antagonistic relatives 
in cancer cell migration. Cancer Res 65, 7111-7120. 

Pang, C., Gao, Z., Yin, J., Zhang, J., Jia, W., and Ye, J. (2008). Macrophage 
infiltration into adipose tissue may promote angiogenesis for adipose 
tissue remodeling in obesity. 313–322. 

Pasparakis, M. (2009). Regulation of tissue homeostasis by NF-kappaB 
signalling: implications for inflammatory diseases. Nature Reviews. 
Immunology 9, 778–788. 

Pause, Arnim, Belsham, Graham J, Gingras, Annie-Claude, Donze, Olivier, and 
Sonenberg, Nahum (1988).  Insulin-dependent stimulation of protein 
synthesis by phosphorylation of a regulator of 5’ –cap function.  Nature.  
371, 27.  762-767 

Pende, M., Um, S.H., Mieulet, V., Goss, V.L., Mestan, J., Mueller, M., Fumagalli, 
S., Kozma, S.C., Thomas, G., Pende, M., et al. (2004). -Terminal 
Oligopyrimidine mRNA Translation and Reveal a Mitogen-Activated 
Protein Kinase-Dependent S6 Kinase Pathway S6K1 / S6K2 Mice Exhibit 
Perinatal Lethality and Rapamycin-Sensitive 5Ј-Terminal Oligopyrimidine 
mRNA Translation and Reveal a Mitogen-Activated Protein Kinase-
Dependent S6 Kinase Pathway.  Molecular and Cellular Biology 24, 3112-
3124. 

Perkins, N.D. (2012). The diverse and complex roles of NF-κB subunits in 
cancer. Nature Reviews. Cancer 12, 121–132. 

Peterson, T.R., Sengupta, S.S., Harris, T.E., Carmack, A.E., Kang, S. a, 
Balderas, E., Guertin, D. a, Madden, K.L., Carpenter, A.E., Finck, B.N., et 
al. (2011). mTOR complex 1 regulates lipin 1 localization to control the 
SREBP pathway. Cell 146, 408–420. 



150 |  P a g e
 

Podsypanina, K., Lee, R.T., Politis, C., Hennessy, I., Crane, a, Puc, J., Neshat, 
M., Wang, H., Yang, L., Gibbons, J., et al. (2001). An inhibitor of mTOR 
reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. 
Proceedings of the National Academy of Sciences of the United States of 
America 98, 10320–10325. 

Powell, J.D., and Delgoffe, G.M. (2010). The mammalian target of rapamycin: 
linking T cell differentiation, function, and metabolism. Immunity 33, 301–
311. 

Powell, J.D., Pollizzi, K.N., Heikamp, E.B., and Horton, M.R. (2012). Regulation 
of immune responses by mTOR. Annual Review of Immunology 30, 39–
68. 

Rangarajan, A., Hong, S.J., Gifford, A., and Weinberg, R.A. (2004). Species- and 
cell type-specific requirements for cellular transformation. Cancer Cell 6, 
171-183. 

Rao, R.R., Li, Q., Odunsi, K., and Shrikant, P. a (2010). The mTOR kinase 
determines effector versus memory CD8+ T cell fate by regulating the 
expression of transcription factors T-bet and Eomesodermin. Immunity 32, 
67–78. 

Riese MJ, Grewal J, Das J, Zou T, Patil V, Chakraborty AK, Koretzky GA: 
Decreased Diacylglycerol Metabolism Enhances ERK Activation and 
Augments CD8 T Cell Functional Responses. Journal of Biological 
Chemistry 2011, 286:5254-5265.NEW 

Romanuik, T.L., Ueda, T., Le, N., Haile, S., Yong, T.M.K., Thomson, T., Vessella, 
R.L., and Sadar, M.D. (2009). Novel biomarkers for prostate cancer 
including noncoding transcripts. The American Journal of Pathology 175, 
2264–2276. 

Rosner, M., Fuchs, C., Siegel, N., Valli, A., and Hengstschläger, M. (2009). 
Functional interaction of mammalian target of rapamycin complexes in 
regulating mammalian cell size and cell cycle. Human Molecular Genetics 
18, 3298–3310. 

Rosner, M., and Hengstschläger, M. (2008). Cytoplasmic and nuclear distribution 
of the protein complexes mTORC1 and mTORC2: rapamycin triggers 
dephosphorylation and delocalization of the mTORC2 components rictor 
and sin1. Human Molecular Genetics 17, 2934–2948. 

Rosse, C., Hatzoglou, A., Parrini, M.C., White, M.A., Chavrier, P., and Camonis, 
J. (2006). RalB mobilizes the exocyst to drive cell migration. Mol Cell Biol 
26, 727-734. 



151 |  P a g e
 

 
Sale, E.M., and Sale, G.J. (2008). Protein kinase B: signalling roles and 

therapeutic targeting. Cell Mol Life Sci 65, 113-127. 

Salmond, R.J., and Zamoyska, R. (2011). The influence of mTOR on T helper 
cell differentiation and dendritic cell function. European Journal of 
Immunology 41, 2137–2141. 

Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R. a, Thoreen, C.C., Bar-
Peled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and 
mediate amino acid signaling to mTORC1. Science (New York, N.Y.) 320, 
1496–1501. 

Sancak, Y., Thoreen, C.C., Peterson, T.R., Lindquist, R. a, Kang, S. a, Spooner, 
E., Carr, S. a, and Sabatini, D.M. (2007). PRAS40 is an insulin-regulated 
inhibitor of the mTORC1 protein kinase. Molecular Cell 25, 903–915. 

Sánchez-ruiz J, Mejías R, García-belando M, Barber DF, González-garcía A, 
Gonza A: Ral GTPases Regulate Cell-Mediated Cytotoxicity in NK Cells. 
The Journal of Immunology 2011, 187:2433-2441 

Sarbassov, D.D., Ali, S.M., Kim, D., Guertin, D.A., Latek, R.R., Erdjument-
bromage, H., Tempst, P., and Sabatini, D.M. (2004). Rictor , a Novel 
Binding Partner of mTOR , Defines a Rapamycin-Insensitive and Raptor-
Independent Pathway that Regulates the Cytoskeleton. 14, 1296–1302. 

Sarbassov, D.D., Guertin, D. a, Ali, S.M., and Sabatini, D.M. (2005). 
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. 
Science (New York, N.Y.) 307, 1098–1101. 

Sasaki T, Oliveira-dos-santos AJ, Stanford WL, Kozieradzki I, Joza N, Mak TW: 
Function of PI3K in Thymocyte Development, T Cell Activation, and 
Neutrophil Migration. Science 2000, 1040:1040-1046. 

Schalm, S.S., and Blenis, J. (2002). Identification of a conserved motif required 
for mTOR signaling. Current Biology : CB 12, 632–639. 

Schalm, S.S., Fingar, D.C., Sabatini, D.M., and Blenis, J. (2003). TOS Motif-
Mediated Raptor Binding Regulates 4E-BP1 Multisite Phosphorylation and 
Function. 13, 797–806. 

Schwamborn JC, Püschel AW: The sequential activity of the GTPases Rap1B 
and Cdc42 determines neuronal polarity. Nature Neuroscience 2004, 
7:923-929. 



152 |  P a g e
 

Sebzda E, Bracke M, Tugal T, Hogg N, Cantrell DA: Rap1A positively regulates T 
cells via integrin activation rather than inhibiting lymphocyte signaling. 
Nature Immunology 2002, 3:251-258. 

Seneviratne, A.N., Sivagurunathan, B., and Monaco, C. (2012). Toll-like 
receptors and macrophage activation in atherosclerosis. Clinica Chimica 
Acta; International Journal of Clinical Chemistry 413, 3–14. 

Shah, S. a, Potter, M.W., Ricciardi, R., Perugini, R. a, and Callery, M.P. (2001). 
FRAP-p70s6K signaling is required for pancreatic cancer cell proliferation. 
The Journal of Surgical Research 97, 123–130. 

Shimonaka M, Katagiri K, Nakayama T, Fujita N, Tsuruo T, Yoshie O, Kinashi T: 
Rap1 translates chemokine signals to integrin activation, cell polarization, 
and motility across vascular endothelium under flow. The Journal of Cell 
Biology 2003, 161:417-427. 

Shin J, Brien TFO, Grayson JM: Differential Regulation of Primary and Memory 
CD8 T Cell Immune Responses by Diacylglycerol Kinases. The Journal of 
Immunology 2012, doi:10.4049/jimmunol.1102265. 

Sinclair, L.V., Finlay, D., Feijoo, C., Cornish, G.H., Gray, A., Ager, A., 
Okkenhaug, K., Hagenbeek, T.J., Spits, H., and Cantrell, D. a (2008). 
Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways 
control T lymphocyte trafficking. Nature Immunology 9, 513–521. 

Smith, Christopher A, Williams, Gwyn T, Kingston, Rosetta, and Owen, John J. T 
(1989).  Antibodies to CD3/T-cell receptor complex induce death by 
apoptosis in immature T cells in thymic cultures.  Nature.  337, 12.  181-
184. 

Smith, S.C., Oxford, G., Baras, A.S., Owens, C., Havaleshko, D., Brautigan, D.L., 
Safo, M.K., and Theodorescu, D. (2007). Expression of ral GTPases, their 
effectors, and activators in human bladder cancer. Clin Cancer Res 13, 
3803-3813. 

 
Sowalsky, A.G., Alt-Holland, A., Shamis, Y., Garlick, J.A., and Feig, L.A. (2011). 

RalA Function in Dermal Fibroblasts Is Required for the Progression of 
Squamous Cell Carcinoma of the Skin. Cancer Res. 

 
Spaargaren, M., and Bischoff, J.R. (1994). Identification of the guanine 

nucleotide dissociation stimulator for Ral as a putative effector molecule of 
R-ras, H-ras, K-ras, and Rap. Proc Natl Acad Sci U S A 91, 12609-12613. 

 



153 |  P a g e
 

Spiczka, K.S., and Yeaman, C. (2008). Ral-regulated interaction between Sec5 
and paxillin targets Exocyst to focal complexes during cell migration. J Cell 
Sci 121, 2880-2891. 

Strasser, A., Jost, P.J., and Nagata, S. (2009). The many roles of FAS receptor 
signaling in the immune system. Immunity 30, 180–192. 

Stuart LM, Boulais J, Charriere GM, Hennessy EJ, Brunet S, Jutras I, Goyette G, 
Rondeau C, Letarte S, Huang H, et al.: LETTERS A systems biology 
analysis of the Drosophila phagosome. Nature 2007, 445:95-101. 

Su, H., Bidere, N., Zheng, L., Cubre, A., Sakai, K., Dale, J., Salmena, L., Hakem, 
R., Straus, S., and Leonardo, M. (2005).  Requirement for caspase-8 in 
NF-kapaaB activation by antigen receptor.  Science 307, 1465-1468. 

Sugihara, K., Asano, S., Tanaka, K., Iwamatsu, A., Okawa, K., and Ohta, Y. 
(2002). The exocyst complex binds the small GTPase RalA to mediate 
filopodia formation. Nat Cell Biol 4, 73-78. 

Sun, H., Gong, S., Carmody, R.J., Hilliard, A., Li, L., Sun, J., Kong, L., Xu, L., 
Hilliard, B., Hu, S., et al. (2008). TIPE2, a negative regulator of innate and 
adaptive immunity that maintains immune homeostasis. Cell 133, 415–
426. 

Sun, H., Zhuang, G., Chai, L., Wang, Z., Johnson, D., Ma, Y., and Chen, Y.H. 
(2012). TIPE2 Controls Innate Immunity to RNA by Targeting the 
Phosphatidylinositol 3-Kinase-Rac Pathway. Journal of Immunology 
(Baltimore, Md. : 1950). 

Tian, X., Rusanescu, G., Hou, W., Schaffhausen, B., and Feig, L.A. (2002). 
PDK1 mediates growth factor-induced Ral-GEF activation by a kinase-
independent mechanism. EMBO J 21, 1327-1338. 

Tsujimoto, Y., and Shimizu, S. (2005). Another way to die: autophagic 
programmed cell death. Cell Death and Differentiation 12 Suppl 2, 1528–
1534. 

Tsukamoto N, Hattori M, Yang H, Bos JL, Minato N: Rap1 GTPase-activating 
Protein SPA-1 Negatively Regulates Cell Adhesion. The Journal of 
biological chemistry 1999, 274:18463-18469. 

Tsukamoto H, Irie A, Nishimura Y: B-Raf Contributes to Sustained Extracellular 
Signal-regulated Kinase Activation Associated with Interleukin-2 
Production Stimulated through the T Cell Receptor. The Journal of 
biological chemistry 2004, 279:48457-48465. 



154 |  P a g e
 

Um, S.H., Frigerio, F., Watanabe, M., Picard, F., Joaquin, M., Sticker, M., 
Fumagalli, S., Allegrini, P.R., Kozma, S.C., Auwerx, J., et al. (2004). 
Absence of S6K1 protects against age- and diet-induced obesity while 
enhancing insulin sensitivity. Nature 431, 200–205. 

Uniacke, J., Holterman, C.E., Lachance, G., Franovic, A., Jacob, M.D., Fabian, 
M.R., Payette, J., Holcik, M., Pause, A., and Lee, S. (2012). An oxygen-
regulated switch in the protein synthesis machinery. Nature 486, 126–129. 

Urano, T., Emkey, R., and Feig, L.A. (1996). Ral-GTPases mediate a distinct 
downstream signaling pathway from Ras that facilitates cellular 
transformation. EMBO J 15, 810-816. 

Vander Haar, E., Lee, S.-I., Bandhakavi, S., Griffin, T.J., and Kim, D.-H. (2007). 
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. 
Nature Cell Biology 9, 316–323. 

Wade, T., White, J., Kushnir, E., Biackman, M., Bill, J., Roehm, N., and Marrack, 
P. (1997). A T Cell Receptor VP Segment That Imparts Reactivity to a 
Class II Major Histocompatibility. 49,. 263-271. 

Wai L-en, Fujiki M, Takeda S, Martinez OM, Krams SM: Rapamycin, But Not 
Cylcosporine or FK506, Alters Natural Killer Cell Function. Transplantation 
2008, 85:145-149. 

Wang, Z., Fayngerts, S., Wang, P., Sun, H., Johnson, D.S., Ruan, Q., Guo, W., 
and Chen, Y.H. (2012). TIPE2 protein serves as a negative regulator of 
phagocytosis and oxidative burst during infection. Proceedings of the 
National Academy of Sciences of the United States of America 109, 
15413–15418. 

Ward, Y., Wang, W., Woodhouse, E., Linnoila, I., Liotta, L., and Kelly, K. (2001). 
Signal pathways which promote invasion and metastasis: critical and 
distinct contributions of extracellular signal-regulated kinase and Ral-
specific guanine exchange factor pathways. Mol Cell Biol 21, 5958-5969. 

 
White, M.A., Vale, T., Camonis, J.H., Schaefer, E., and Wigler, M.H. (1996). A 

role for the Ral guanine nucleotide dissociation stimulator in mediating 
Ras-induced transformation. J Biol Chem 271, 16439-16442. 

 
Wolthuis, R.M., Bauer, B., van 't Veer, L.J., de Vries-Smits, A.M., Cool, R.H., 

Spaargaren, M., Wittinghofer, A., Burgering, B.M., and Bos, J.L. (1996). 
RalGDS-like factor (Rlf) is a novel Ras and Rap 1A-associating protein. 
Oncogene 13, 353-362. 

 



155 |  P a g e
 

Wolthuis, R.M., de Ruiter, N.D., Cool, R.H., and Bos, J.L. (1997). Stimulation of 
gene induction and cell growth by the Ras effector Rlf. EMBO J 16, 6748-
6761. 

Woodward, M.J., de Boer, J., Heidorn, S., Hubank, M., Kioussis, D., Williams, O., 
and Brady, H.J.M. (2010). Tnfaip8 is an essential gene for the regulation 
of glucocorticoid-mediated apoptosis of thymocytes. Cell Death and 
Differentiation 17, 316–323. 

Wu, F., Wang, S., Xing, J., Li, M., and Zheng, C. (2012). Characterization of 
nuclear import and export signals determining the subcellular localization 
of WD repeat-containing protein 42A (WDR42A). FEBS Letters 586, 
1079–1085. 

Xi, W., Hu, Y., Liu, Y., Zhang, J., Wang, L., Lou, Y., Qu, Z., Cui, J., Zhang, G., 
Liang, X., et al. (2011). Roles of TIPE2 in hepatitis B virus-induced hepatic 
inflammation in humans and mice. Molecular Immunology 48, 1203–1208. 

Xie, X., and Guan, K.-L. (2011). The ribosome and TORC2: collaborators for cell 
growth. Cell 144, 640–642. 

Xu L, Salloum D, Medlin PS, Saqcena M, Yellen P, Perrella B, Foster D a: 
Phospholipase D Mediates Nutrient Input to Mammalian Target of 
Rapamycin Complex 1 (mTORC1). The Journal of Biological Chemistry 
2011, 286:25477-86. 

Yamamoto, a, Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R., and Tashiro, 
Y. (1998). Bafilomycin A1 prevents maturation of autophagic vacuoles by 
inhibiting fusion between autophagosomes and lysosomes in rat 
hepatoma cell line, H-4-II-E cells. Cell Structure and Function 23, 33–42. 

Yang, Q., Inoki, K., Ikenoue, T., and Guan, K.-L. (2006). Identification of Sin1 as 
an essential TORC2 component required for complex formation and 
kinase activity. Genes & Development 20, 2820–2832. 

Yoon, M.-S., Sun, Y., Arauz, E., Jiang, Y., and Chen, J. (2011). Phosphatidic 
acid activates mammalian target of rapamycin complex 1 (mTORC1) 
kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an 
allosteric effect. The Journal of Biological Chemistry 286, 29568–29574. 

Yu, M., Kang, X., Xue, H., and Yin, H. (2011). Toll-like receptor 4 is up-regulated 
by mTOR activation during THP-1 macrophage foam cells formation. Acta 
Biochim Biophys Sin, 43. 940–947. 

Zhang, S., Readinger, J. a, DuBois, W., Janka-Junttila, M., Robinson, R., Pruitt, 
M., Bliskovsky, V., Wu, J.Z., Sakakibara, K., Patel, J., et al. (2011a). 



156 |  P a g e
 

Constitutive reductions in mTOR alter cell size, immune cell development, 
and antibody production. Blood 117, 1228–1238. 

Zhang, S., Readinger, J. a, DuBois, W., Janka-Junttila, M., Robinson, R., Pruitt, 
M., Bliskovsky, V., Wu, J.Z., Sakakibara, K., Patel, J., et al. (2011b). 
Constitutive reductions in mTOR alter cell size, immune cell development, 
and antibody production. Blood 117, 1228–1238. 

Zhang, S., Zhang, Y., Wei, X., Zhen, J., Wang, Z., Li, M., Miao, W., Ding, H., Du, 
P., Zhang, W., et al. (2010). Expression and regulation of a novel 
identified TNFAIP8 family is associated with diabetic nephropathy. 
Biochimica Et Biophysica Acta 1802, 1078–1086. 

Zhang, X., Tang, N., Hadden, T.J., and Rishi, A.K. (2011c). Akt, FoxO and 
regulation of apoptosis. Biochimica Et Biophysica Acta 1813, 1978–1986. 

Zhang, X., Wang, J., Fan, C., Li, H., Sun, H., Gong, S., Chen, Y.H., and Shi, Y. 
(2009). Crystal structure of TIPE2 provides insights into immune 
homeostasis. Nature Structural & Molecular Biology 16, 89–90. 

Zhang, Y., Wei, X., Liu, L., Liu, S., Wang, Z., Zhang, B., Fan, B., Yang, F., 
Huang, S., Jiang, F., et al. (2012). TIPE2, a Novel Regulator of Immunity, 
Protects against Experimental Stroke. The Journal of Biological Chemistry 
287, 32546–32555. 

Zheng Y, Collins SL, Lutz MA, Amy N, Kole TP, Zarek PE, Powell JD, Zheng Y, 
Collins SL, Lutz MA, et al.: A Role for Mammalian Target of Rapamycin in 
Regulating T Cell Activation versus Anergy. The Journal of Immunology 
2007, 178:2163-2170. 

Zinzalla, V., Stracka, D., Oppliger, W., and Hall, M.N. (2011). Activation of 
mTORC2 by association with the ribosome. Cell 144, 757–768. 

Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011). mTOR: from growth signal 
integration to cancer, diabetes and ageing. Nature Reviews. Molecular 
Cell Biology 12, 21–35. 


	University of Pennsylvania
	ScholarlyCommons
	1-1-2013

	The Role of TIPE2 in the Regulation of Inflammation and Tumorigenesis
	Derek Johnson
	Recommended Citation

	The Role of TIPE2 in the Regulation of Inflammation and Tumorigenesis
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories


	tmp.1408554005.pdf.kLYcl

