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Understanding the Metabolic and Genetic Regulation of Breast Cancer
Recurrence Using Magnetic Resonance-Based Integrative Metabolomics

Abstract
Breast cancer is the most commonly diagnosed malignancy in women and is the leading cause of cancer-
related death in the female population worldwide. In these women, breast cancer recurrence--local, regional,
or distant--represents the principal cause of death from this disease. The mechanisms underlying tumor
recurrence remain largely unknown. To dissect those mechanisms, our laboratory has developed inducible
transgenic mouse models that accurately recapitulate key features of the natural history of human breast
cancer progression: primary tumor development, tumor dormancy and recurrence. Dysregulated metabolism
has long been known to be a key feature in tumorigenesis. Yet, very little is known about the connection, if
any, between cellular metabolic changes and breast cancer recurrence. In this work, I design and implement a
systems engineering-based approach, magnetic resonance-based integrative metabolomics, to better
understand the metabolic and genetic regulation of breast cancer recurrence. Through a combination of 1H
and 13C magnetic resonance spectroscopy (MRS), mass spectrometry (MS) as well as gene expression
profiling and functional metabolic and genetic studies, I aim to identify the metabolic profile of mammary
tumors during breast cancer progression, identify the molecular basis and role of differential glutamine uptake
and metabolism in breast cancer recurrence and finally, investigate the molecular basis and role of differential
lactate production in breast cancer recurrence. The findings suggest an evolving metabolic phenotype of
tumors during breast cancer progression as well as metabolic dysregulation in some of the key regulatory
nodes that control that evolution. Identifying the metabolic changes associated with tumor recurrence can
pave the way for identifying novel diagnostic strategies and therapeutic targets that can contribute to
improved clinical management and outcome for breast cancer patients.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Bioengineering

First Advisor
Lewis A. Chodosh

Second Advisor
Mitchell D. Schnall

Keywords
Breast Cancer, Cancer Metabolism, Magnetic Resonance Spectroscopy, Metabolomics, Tumor Recurrence

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/625

http://repository.upenn.edu/edissertations/625?utm_source=repository.upenn.edu%2Fedissertations%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages


Subject Categories
Biomedical | Oncology | Radiology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/625

http://repository.upenn.edu/edissertations/625?utm_source=repository.upenn.edu%2Fedissertations%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

UNDERSTANDING THE METABOLIC AND GENETIC REGULATION OF BREAST CANCER 

RECURRENCE USING MAGNETIC RESONANCE-BASED INTEGRATIVE METABOLOMICS 

Dania Daye 

A DISSERTATION 

in 

Bioengineering 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2013 

 

 

Supervisor of Dissertation     Co-Supervisor of Dissertation 

_________________________     _________________________ 

Lewis A. Chodosh, M.D., Ph.D.     Mitchell D. Schnall, M.D., Ph.D. 

Professor of Cancer Biology     Professor of Radiology 

 

Graduate Group Chairperson 

________________________ 

Daniel A. Hammmer, Ph.D. 

Professor of Bioengineering 

 

Dissertation Committee: 

Peter F. Davies, Ph.D., Professor of Pathology and Laboratory Medicine (Chair) 

M. Celeste Simon, Ph.D., Professor of Cell and Developmental Biology 

Jim Delikatny, Ph.D., Research Associate Professor of Radiology 



 

 

 

 

 

 

 

UNDERSTANDING THE METABOLIC AND GENETIC REGULATION OF BREAST CANCER 

RECURRENCE USING MAGNETIC RESONANCE-BASED INTEGRATIVE METABOLOMICS 

COPYRIGHT 

2013 

Dania Daye 

 

This work is licensed under the  
Creative Commons Attribution- 
NonCommercial-ShareAlike 3.0 
License 
 
To view a copy of this license, visit 

http://creativecommons.org/licenses/by-nc-sa/3.0/



iii 

 

 

 

 

 

 

To my grandmother who remains my greatest inspirati on in my academic pursuits  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGMENTS  

 

This work would not have been possible without the assistance and support of several people.  I 

could not have wished for better advisors than Dr. Lewis A. Chodosh and Dr. Mitchell D. Schnall.  

Your scientific foresight, dedication, teaching and mentorship have enriched my PhD and made 

me the scientist that I am.  I am also deeply indebted to Dr. Anthony Mancuso, Dr. Suzanne 

Wehrli, Dr. Stephen Pickup, Dr. Itzhak Nissim, Samantha L. Dwyer and Dr. Liz Yeh for the 

countless hours that they have spent teaching me, answering my questions and discussing ideas.  

I would also like to convey my warmest thanks for my committee members, Dr. Peter Davies, Dr. 

Celeste Simon and Dr. Jim Delikatny, for their invaluable input on this work, as well as Dr. 

Kathryn Wellen for many helpful scientific discussions.  

My sincere thanks to all members of the Chodosh lab for making the last three years an 

experience that I will always fondly look back on.  Particularly, I would like to thank Ania Payne, 

Lauren Smith, Jason Ruth, Daniel Abravanel, Tien-Chi Pan, Dhruv Pant, James Alvarez, Yi Feng, 

Chien-Chung Chen, Yan Chen, Chris Sterner, George Belka, Judy Farrell, Carrie Kitzmiller, 

Katelyn Wichert and Judith Smith for all of their help through various stages of my project.  

 I was also very fortunate to receive tremendous encouragement and support from many 

mentors and role models who believed in me and continuously provided me with the inspiration to 

persist on this path during both the rewarding and challenging phases of this process.  I would 

like to extend my deepest gratitude to Dr. Emily Conant, Dr. Despina Kontos, Dr. Becky Wells, Dr. 

Susan Margulies, Dr. Vivian Cheung, Dr. Skip Brass, Dr. Ann Tiao, Dr. Brad Keller and Maggie 

Krall.  Thank you for your support and for your unwavering confidence and belief in me.   

 I would like to acknowledge the funding sources of my graduate training: the Howard 

Hughes Medical Institute Gilliam Fellowship and the Paul and Daisy Soros Fellowship.  Lastly, I 

would like to thank Dr. Rebecca Richards-Kortum, my undergraduate research advisor, for 

serving for many years as an exceptional role model and for inspiring me to pursue a career in 

science.                                                                                                                                                                                                                                                                                                



v 

 

ABSTRACT 
 

UNDERSTANDING THE METABOLIC AND GENETIC REGULATION OF BREAST 

CANCER RECURRENCE USING MAGNETIC RESONANCE-BASED 

 INTEGRATIVE METABOLOMICS 

Dania Daye 

Lewis A. Chodosh, M.D., Ph.D.  

Mitchell D. Schnall, M.D., Ph.D. 

Breast cancer is the most commonly diagnosed malignancy in women and is the leading 

cause of cancer-related death in the female population worldwide.  In these women, 

breast cancer recurrence—local, regional, or distant—represents the principal cause of 

death from this disease.  The mechanisms underlying tumor recurrence remain largely 

unknown.  To dissect those mechanisms, our laboratory has developed inducible 

transgenic mouse models that accurately recapitulate key features of the natural history 

of human breast cancer progression: primary tumor development, tumor dormancy and 

recurrence.  Dysregulated metabolism has long been known to be a key feature in 

tumorigenesis.  Yet, very little is known about the connection, if any, between cellular 

metabolic changes and breast cancer recurrence.  In this work, I design and implement 

a systems engineering-based approach, magnetic resonance-based integrative 

metabolomics, to better understand the metabolic and genetic regulation of breast 

cancer recurrence.  Through a combination of 1H and 13C magnetic resonance 

spectroscopy (MRS), mass spectrometry (MS) as well as gene expression profiling and 

functional metabolic and genetic studies,  I aim to identify the metabolic profile of 

mammary tumors during breast cancer progression, identify the molecular basis and role 

of differential glutamine uptake and metabolism in breast cancer recurrence and finally, 
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investigate the molecular basis and role of differential lactate production in breast cancer 

recurrence.  Our findings suggest an evolving metabolic phenotype of tumors during 

breast cancer progression as well as metabolic dysregulation in some of the key 

regulatory nodes that control that evolution.  Identifying the metabolic changes 

associated with tumor recurrence can pave the way for identifying novel diagnostic 

strategies and therapeutic targets that can contribute to improved clinical management 

and outcome for breast cancer patients. 
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CHAPTER 1 

Breast Cancer Recurrence and Metabolism 
 

 

1.1 Breast Cancer Recurrence 

Epidemiology  

Breast cancer is the most commonly diagnosed malignancy in women and the leading 

cause of cancer-related death in the female population worldwide1.  In the United States, 

breast cancer is the second leading cause of death in women and the leading cause of 

death in females aged 40 to 592.  This year, approximately 230,000 women are 

projected to be diagnosed with invasive breast cancer and approximately 40,000 will die 

from this disease3.  Since 1975, breast cancer mortality rates have declined with the 

wide adoption of screening mammography and improvements in available treatment 

options.  However, this trend is largely due to improvements in the diagnosis and 

treatment of primary breast cancer, as recurrent breast cancer remains a fatal disease4.   

A number of risk factors are associated with the development of breast cancer.  

These include older age and female gender, which are among the strongest risk factors.  

Women are 100 times more likely to develop breast cancer than men, with 207,000 

breast cancers diagnosed among women, as compared to 2,000 diagnosed in men in 

20105.  Breast cancer incidence rates also increase with age2.  Other risk factors include 

race/ethnicity, reproductive and hormonal factors, environmental factors and exposure to 

ionizing radiation. 
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 In the US, breast cancer is the most commonly diagnosed malignancy in women 

of all major ethnic groups4.  However, the highest incidence rates are reported in 

Caucasians (124 per 100,000) and the lowest in Asian Americans (82 per 100,000) with 

African Americans, Hispanics and Native Americans having intermediate incidence rates 

(113 per 100,000, 90 per 100,000 and 92 per 100,000 respectively)6.  Reproductive and 

endocrine factors have also been reported to strongly contribute to breast cancer risk.  

For instance, younger age at menarche and later age at menopause are associated with 

increased risk for breast cancer7.  Furthermore, nulliparity and older age at first birth are 

associated with increased risk of breast cancer7, 8.  Other risk factors for breast cancer 

include exposure to ionizing radiation at a young age, especially in patients who have 

undergone treatment for Hodgkin’s lymphoma9.  

A number of studies have reported an association between breast cancer risk 

and lifestyle and dietary factors.  Substantial evidence suggests an association between 

high body mass index (BMI), low physical activity, smoking, high alcohol intake and high 

fat intake and an increased risk of breast cancer10-13.  Finally, a positive family history of 

breast cancer in a first-degree relative is also an important risk factor.  Although family 

history is reported in only about 15 to 20% of women with breast cancer, familial 

inheritance of certain gene mutations (such as in BRCA1, BRCA2, p53, ATM and PTEN) 

is an established risk factor that predisposes to a high susceptibility of developing this 

disease14.  In addition, having a personal history of invasive breast cancer also 

increases the risk of developing cancer in the contralateral breast by approximately 1 

percent per year15.   

With declining mortality rates resulting from widespread adoption of screening 

mammography and improvements in adjuvant therapy, more women are surviving their 
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primary breast cancers with earlier detection and better treatment regimens16.  In this 

regard, breast cancer patients are at risk for developing a recurrent tumor in the 

ipsilateral breast.  Breast cancer recurrence describes the return of breast cancer after 

primary treatment.  There are three types of recurrent breast cancer: local, regional and 

distant.  In local recurrence, breast cancer appears at the original tumor site.  In regional 

recurrence, cancer occurs in the chest wall or regional lymph nodes.  In distant 

recurrence, breast cancer can reappear in other sites including the lungs, liver, bone, 

brain and other organs.  Most breast cancer recurrences appear in the first decade 

following primary treatment, with the majority occurring in years 2 to 517.  Recurrences 

can also occur much later, especially for ER-positive tumors with up to one half of those 

recurrences happening more than five years after diagnosis18.   

Recurrence rates of primary breast cancers are associated with the mode of 

therapy used to treat the primary tumors, as well as a number of important prognostic 

markers that include lymph node involvement at diagnosis and primary tumor size19.  In 

patients treated with surgery but not adjuvant therapy, recurrence rates can approach 

50% in lymph node-positive patients and 32% in node-negative patients in the 10-year 

period following diagnosis20.  Current treatment guidelines recommend adjuvant therapy 

for qualifying patients, combined with either surgical breast conservation therapy with 

radiation therapy (BCT + RT) or mastectomy for most breast cancer patients.  

Recurrence rates post-mastectomy generally range between 8 and 10%21, 22.  

Recurrence rates in the treated breast following BCT with radiation therapy have been 

reported to range between 10 and 15%23.  However, women who only receive BCT, 

without radiation therapy, have rates of local recurrence as high as 34%21, 24.   
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With breast conservation therapy, recurrences tend to appear later compared to 

patients treated with mastectomy, with a median time of three to four years with the 

former versus two to three years with the latter25.  For patients treated for invasive breast 

cancer, more than 80% of locoregional recurrences following BCT are also invasive and 

75% are isolated to the ipsilateral breast26, 27.  Following mastectomy, recurrences tend 

to occur in the chest wall (50 to 70%) or regional nodes (40%) with the latter being 

associated with poorer survival28.  Five-year survival rates for women with breast cancer 

recurrences range from 7 to 50% with combined chest wall and supraclavicular node 

recurrences carrying the worst prognosis28.   

According to the American Cancer Society, the current 5-year survival rate of 

women afflicted with primary breast cancer ranges between 67-93% for women 

diagnosed with stages 0-III disease29.  However, this mortality rate is disproportionately 

being observed in the cohort of breast cancer patients diagnosed with primary tumors.  

Recurrent disease is almost uniformly fatal.  Our understanding of breast cancer 

recurrence remains relatively limited.  More research is needed in this area in an effort to 

achieve better survival and improved quality-of-life in patients afflicted with recurrent 

disease.   

 

Recurrence Risk Assessment 

In breast cancer management, it is important to have access to prognostic markers 

capable of providing information on the clinical outcome of patients.  To date, pathologic 

evaluation of tumor tissue remains the gold standard for this purpose.  In particular, 

clinicians often rely on lymph node status, tumor size, histologic grade, histologic tumor 
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type and the presence or absence of lymphatic and vascular invasion as the key factors 

for predicting clinical outcome in breast cancer patients30, 31.  Each of these factors has 

been associated with increased likelihood of cancer recurrence.  Lymph node 

involvement remains one of the strongest factors associated with increased recurrence: 

the higher the number of involved lymph nodes, the worse the patient’s prognosis.  

Conversely, negative lymph node status has been consistently associated with a 

favorable outcome31.  Histologically, positive excision margin, larger tumor size, higher 

histological grade, vascular invasion and higher proliferation rate predict increased 

likelihood of recurrence31, 32.  High proliferation rate is associated with shorter disease-

free and overall survival33.  Hormone receptor status is also an important predictor of 

prognosis, whereby ER and PR receptor positivity are each associated with favorable 

outcomes23.  In contrast, the presence of HER2/neu amplification and overexpression is 

associated with high rates of relapse and poor overall prognosis34.   

 In 2005, the St. Gallen expert consensus meeting defined three risk categories of 

breast cancer recurrence in patients with operable breast cancer based on the above 

prognostic factors35.  According to their classification criteria, patients can be divided into 

those with low, intermediate or high recurrence risks.  Their report concluded that 

patients had a low risk for recurrence if they had node-negative breast cancer of size 

less than 2 cm, histologic grade of 1, negative HER2/neu receptor status, no peritumoral 

vascular invasion and the patient is older than 35 at the time of diagnosis.  Patients are 

at intermediate risk of recurrence if their disease is node-negative and at least one of the 

following is present: tumor size greater than 2 cm, histologic grade of 2 or 3, presence of 

peritumoral vascular invasion, HER2/neu overexpression or amplification, or the patient 

is younger than 35.  Patients can also have an intermediate risk of recurrence if they 
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have node-positive disease, but no HER2/neu overexpression.  Finally, patients have a 

high risk for breast cancer recurrence if they have node-positive disease with HER2/neu 

amplification or overexpression.  Based on these risk categories, treatment 

recommendations were established that highlight the importance of personalizing 

treatment options based on patient prognosis.   

 More recently, commercial genetic assays have been introduced to aid in 

assessing patient prognosis and predicting recurrence risk.  One of these is Oncotype 

DX, a 21-gene assay that is used to generate a prognostic score predicting recurrence 

risk in patients with newly diagnosed node-negative ER-positive disease36.  The use of 

this multigene assay to aid in patient prognostication and treatment decisions is now 

recommended in treatment guidelines promulgated by the American Society of Clinical 

Oncology (ASCO).  The wide implementation of this test highlights the importance of 

prognostic molecular profiling research in breast cancer management.   

 

Diagnosis of Tumor Recurrence 

With more women surviving their primary breast cancers as a result of advances in 

detection and treatment options, post-treatment surveillance strategies to detect 

recurrent disease are taking center stage.  The primary goal of these strategies is the 

early detection and treatment of potentially curable recurrent disease.  With the majority 

of breast cancer recurrences reported in the first 5 years following diagnosis, the 

greatest emphasis of surveillance is during that time period.  However, lifelong follow-up 

remains warranted as recurrent tumors may arise as late as 20 years following primary 

tumor development18.  According to published guidelines by ASCO and the National 
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Comprehensive Cancer Network (NCCN), routine history and physical exam as well as 

regularly scheduled mammograms are the standard of care for the surveillance of breast 

cancer survivors37.   

 According to the published guidelines, breast cancer survivors should be seen 

every three to six months during the first three years post primary therapy, every six to 

twelve months for the next two years, and then annually18.  Mammograms are 

recommended starting six months after definitive treatment, then obtained every 6 to 12 

months thereafter.  Local recurrences are detected by mammography alone in 40 to 

75% of cases, by physical exam alone in 10 to 30% of the cases, and by combination of 

the two in 10 to 15% of the cases38, 39.  With a large number of recurrences diagnosed by 

routine screening mammography, most published guidelines recommend long-term 

follow-up with screening mammography even in older patients.  Potentially curable local 

recurrences have been reported up to 10-years post treatment38.  Notably, however, 

breast conservation therapy can lead to marked architectural distortion of the breast, 

which thereby limits the sensitivity of both clinical exam and mammography.  These facts 

warrant the exploration of other imaging modalities for the early detection of recurrent 

disease.    

 The detection of clinically or radiographically suspicious lesions triggers further 

work-up, including biopsy.  Core needle biopsy or excisional biopsy are typically 

performed to confirm or rule out the diagnosis of local recurrence.  If confirmed, the 

biopsied tissue is assayed for receptor status and HER2/neu overexpression for 

prognostic information and to aid in treatment decisions.   
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Role of Imaging in Breast Cancer Recurrence 

Mammography is currently considered the gold standard for post-treatment surveillance 

of breast cancer survivors.  However, with both radiation therapy and surgery being the 

mainstay of treatment, the breast frequently undergoes architectural distortion and local 

mass-like fibrosis that renders the detection of local recurrence more challenging.  In 

those patients, up to one half of local recurrences are mammographically occult.  With 

reduced mammographic sensitivity in this context, MRI is being explored as a potential 

technique to complement mammographic surveillance.  Accumulating evidence 

suggests that MRI is able to detect mammographically occult lesions in architecturally 

distorted breasts40, 41.  However, while MRI provides increased sensitivity, this technique 

is far less specific and has a high rate of false-positives.  As a result, the widespread 

clinical implementation for surveillance remains controversial.  Current clinical guidelines 

recommend that MRI be used in women at high risk for recurrence with the decision 

being made based on the complexity of the clinical scenario.   

 Additional evidence exists suggesting a benefit of adding ultrasound to screening 

mammography to complement the surveillance of breast cancer survivors.  A large 

randomized clinical trial conducted to address this question revealed an increased 

diagnostic yield with 4.2 additional recurrences detected due to the addition of 

ultrasound for every 1,000 women screened42.  However, similar to MRI, the addition of 

ultrasound to mammography also resulted in a substantial increase in false-positives, 

making its widespread clinical implementation also controversial.   

 At present, PET imaging is primarily used for the staging of women in whom 

breast cancer has been detected.  However, its role in surveillance remains less clear.  
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To our knowledge, no trials are currently available that have considered this question.  

Some retrospective cohort studies have reported a high sensitivity of PET for the early 

detection of recurrent lesions43, 44.  It is not clear, however, whether PET will have 

specificity drawbacks similar to MRI and ultrasound.  It is possible that the use of PET 

for surveillance might be a promising approach.  Further studies are needed to assess 

its role. 

 At present, mammography remains the mainstay for the surveillance of breast 

cancer patients as indicated by the guidelines of the American Society of Clinical 

Oncology (ASCO).  Other imaging modalities might hold additional promise for improved 

sensitivity.  However, larger clinical trials are needed to validate their potential role in the 

surveillance of breast cancer survivors.   

 

Treatment of Breast Cancer Recurrence 

Treatment decisions for breast cancer recurrence are made following biopsying the 

detected lesion as part of the staging process.  During that process, hormone receptor 

status as well as HER2/neu overexpression is determined.  This information aids the 

clinician to better tailor treatment choices to complement standard therapeutic 

approaches.  Treatment decisions are also primarily dictated by the initial therapy that 

was employed to eradicate the primary tumor, typically consisting of either breast 

conservation therapy (BCT) with radiation therapy or mastectomy.  Of note, some 

recurrent lesions are not amenable to biopsy such as in the case of bone metastasis.  In 

these instances and although not an ideal approach, treatment decisions are based on 

the features of the original primary tumor. 
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 For patients who originally underwent BCT for their primary cancers, the most 

established predictor of prognosis following surgical excision has been reported to be 

the duration of time between BCT and recurrence detection.  Recurrences occurring less 

than 2 years from diagnosis tend to have worse prognosis than those that are detected 

more than 2 years after diagnosis23.  Mastectomy is the principal treatment for local 

recurrence following BCT.  After mastectomy, the risk of a subsequent recurrence has 

been reported to be less than 10%45.  Addition of radiation therapy to the treatment 

regimen is often not possible, as most patients undergo whole breast irradiation during 

initial treatment of their primary tumor, making it less likely to improve survival rates. 

 For patients who underwent mastectomy as part of the treatment for their primary 

breast cancer, recommended treatment options for locoregional recurrence consist of 

wide local excision of all gross disease combined with radiation therapy28, 46.  However, 

with a post-mastectomy recurrence, the likelihood of a subsequent recurrence following 

treatment can be as high as 70%47.  Similar to BCT, the likelihood of local control of 

disease is greatest when recurrence happens more than 2 years following initial therapy 

and when recurrent disease is focal rather than multifocal48, 49. 

 For locoregional recurrences occurring after BCT or mastectomy, established 

treatment guidelines recommend the addition of systemic therapy to surgery and 

radiation therapy.  Chemotherapy is recommended for women with hormone receptor-

negative disease, as is hormonal therapy for those with hormone receptor-positive 

disease.  Addition of trastuzumab is indicated in women with HER2/neu-positive 

disease.  Although recommended, the clear benefit of systemic therapy following local 

disease control (i.e. surgery and radiation therapy) has not been fully established.  



11 

 

Randomized clinical trials are warranted to further validate the effect of this treatment 

approach.   

 

HER2/neu Amplification and Breast Cancer Recurrence 

HER2/neu is amplified and overexpressed in 18 to 20% of human breast cancers50, 51.  

The HER2/neu oncogene encodes a 185 KD transmembrane glycoprotein with an 

intrinsic intracellular tyrosine kinase activity52.  It activation is critical for the activation of 

intracellular signaling pathways responsible for epithelial cell growth and differentiation53.   

Assessing HER2/neu status in diagnosed breast cancers is an essential part of standard 

clinical management, as HER2/neu overexpression carries both predictive and 

prognostic value.  HER2/neu positivity identifies women likely to benefit from treatments 

targeted against HER2/neu such as trastuzumab and lapatinib.  In addition, HER2/neu 

status may identify women who are more likely to be sensitive or resistant to certain 

systemic treatment regimens.  Women with HER2/neu-positive breast cancers tend to 

be more sensitive to anthracyclines, but display relative resistance to endocrine 

therapies, mainly selective estrogen modulator therapy (SERM)54, 55.   

 In addition to its predictive value in the clinical management of breast cancer 

patients, HER2/neu status also provides prognostic information.  In particular, HER2/neu 

overexpression is associated with high rates of disease recurrence and acquired 

resistance to therapy.  HER2/neu overexpression is also correlated with other pathologic 

factors previously shown to predict poor prognosis such as tumor grade, tumor size and 

lymph node status51, 55, 56.  HER2/neu amplification and overexpression is an 



12 

 

independent predictor of decreased 10-year relapse free survival in both node-positive 

and node-negative breast cancer patients57.   

 In 2005, assessing HER2/neu overexpression took center stage when the St. 

Gallen International expert consensus added HER2/neu status as a feature defining 

recurrence risk category.  According to their published report published, "HER2/neu 

status should be regarded as useful for patient care, with overexpression indicating 

worse prognosis."35 Today, HER2/neu-status is also part of a 21-gene recurrence score 

assay that is widely used clinically, Oncotype DX.  This test is recommended by ASCO 

for the assessment of recurrence risk in women with ER-positive, node-negative disease 

to guide treatment decisions36.   

 Although trastuzumab is the mainstay therapy for women with HER2/neu-positive 

disease, resistance to therapy develops commonly, especially in the context of recurrent 

disease.  Studies suggest that a number of recurrent cancers downregulate HER2/neu, 

upregulate other genes or activate alternative pathways to escape therapy, particularly 

PI3K, IGF-1 and MYC58-60.  A subset of tumors also express p95HER2 , a truncated form 

of HER2 that has intrinsic kinase activity but lacks the extracellular trastuzumab binding 

domain61.  These cancers tend to have worse prognosis.  Acquiring a better 

understanding of the mechanisms contributing to the resistance to therapy and worse 

prognosis typically associated with HER2/neu overexpression is vital to achieve better 

survival rates in patients diagnosed with HER2/neu-positive disease.   
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Mouse Model of HER2/neu Breast Cancer Recurrence 

As was summarized above, despite significant improvements in five-year survival rates 

in recent years, breast cancer recurrence still constitutes the principal cause of morbidity 

and mortality in this disease.  At present, the mechanisms underlying tumor recurrence 

remain largely unknown.  As such, identifying critical drivers of breast cancer recurrence 

is essential for improving the long-term survival of breast cancer patients.  To dissect the 

mechanisms responsible for breast cancer recurrence, our laboratory has developed a 

number of inducible transgenic mouse models that accurately recapitulate key features 

of the natural history of human breast cancers, including primary tumor development, 

minimal residual disease, tumor dormancy and tumor recurrence62-66.  One of those 

models, the MMTV-rtTa;TetO-HER2/neu model, is a mammary-specific inducible 

transgenic model designed to investigate the molecular underpinnings of HER2/neu-

induced tumorigenesis as well as the treatment and recurrence of mammary tumors 

induced by this oncogene66.   

The MMTV-rtTa;TetO-HER2/neu model is a doxycycline-inducible bitransgenic 

mouse model, in which the reverse tetracycline-inducible transactivator (rtTA) is 

specifically expressed in the epithelial compartment of the mammary gland under the 

control of the mouse mammary tumor virus (MMTV) promoter.  Following the 

administration of doxycycline, rtTA binds to the TetO operator and induces the 

expression of the neu oncogene, leading to the eventual development of a primary 

mammary tumor.  Upon doxycycline withdrawal, HER2/neu expression is acutely 

downregulated and tumors regress to a non-palpable state.  Here, genetic 

downregulation of HER2/neu mimics the effect of targeted phamacologic inhibition 

against this receptor.  However, as observed in patients, the tumors subsequently recur 
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in a stochastic manner following a latent period that reflects tumor dormancy.  

Accordingly, we believe that assessing the molecular and phenotypic differences 

between primary and recurrent mammary tumors in this model will shed light on 

mechanisms of tumor recurrence that may contribute to the reported association 

between HER2/neu-positive breast cancers and poor prognosis.  Moreover, 

understanding the molecular pathways responsible for recurrence will be essential for 

enabling improvements in the detection and treatment of recurrent disease. 

 

1.2 HER2/neu Overexpression and Cancer Metabolism  

HER2/neu over-expression in breast cancer results in activation of the (PI3K)-AKT 

signaling pathway67, 68.  Persistent activation of the (PI3K)-AKT pathway, independent of 

HER2/neu activation, is associated with poorer response and resistance to trastuzumab 

in humans59, 69 as well as an increased risk of local tumor recurrence70.  The (PI3K)-AKT 

pathway plays a central role in the regulation of cellular metabolism and is thought to 

underlie the increased dependence of cancer cells on glycolysis71, 72.  Accordingly, 

understanding the metabolic dependencies of cancer cells during breast cancer 

progression might further our understanding of recurrence and permit the identification of 

novel prognostic markers and therapeutic targets.   

 Dysregulated cellular metabolism is a key feature of tumorigenesis73-75.  Among 

the numerous metabolic pathways altered in cancer cells, aerobic glycolysis (the 

Warburg effect), glutamine metabolism and fatty acid/lipid synthesis are among the most 

established of these and have been found to be required for tumor growth within 
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different contexts73.  In what follows, we briefly summarize the key features of each of 

these three pathways.   

 

Role of Aerobic Glycolysis (Warburg Effect) in Tumo rigenesis 

The Warburg effect, which consists of high glucose utilization and increased lactate 

production in tumors despite the presence of oxygen, is among the most fundamental 

alterations observed in tumor metabolism76.  AKT induction can increase glycolysis and 

lactate production and is sufficient to induce the Warburg effect in nontransformed cells 

as well as cancer cells77-79.  Given the established association of the (PI3K)-AKT 

pathway with breast cancer recurrence70 and the role of AKT in inducing the Warburg 

effect, studying alterations in glycolysis and lactate production during breast cancer 

progression could help elucidate key metabolic control points that might contribute to 

carcinogenesis. 

 Increased lactate production has been directly implicated in established 

hallmarks of cancer.  For example, high lactate levels have been correlated with 

avoidance of immunosurveillance within the tumor microenvironment80.  Patients with 

high lactate levels in their sera tend to exhibit higher tumor burden and worse overall 

prognosis81.  Similarly, high lactate levels have also been associated with increased 

tumor invasion and metastasis82.  At the molecular level, a number of enzymes directly 

implicated in modulating lactate levels have been shown to be required for tumor growth.  

Particularly, inhibition of the expression of the A subunit of lactate dehydrogenase (Ldha) 

as well as the expression of the M2 isoform of pyruvate kinase (Pkm2) have been shown 

to reduce the growth rate of primary tumors in vivo83, 84.  Ldha is the enzyme directly 
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responsible for lactate production.  Pkm2 is the embryonic isoform of pyruvate kinase, 

the isoform that is preferentially expressed in cancer cells and that has been shown to 

be associated with increased lactate levels.   

        In the glycolytic pathway, lactate dehydrogenase catalyzes the 

interconversion of pyruvate and lactate with concomitant interconversion of NADH and 

NAD+.  Functional lactate dehydrogenases, considered to be key mediators of 

glycolysis, are homo- and hetero-tetramers of M and H proteins encoded by the Ldha 

and Ldhb genes respectively85.  Five iso-enzymes, with different activity levels, have 

been described in the literature: LDH-1 (4H), LDH-2 (3H1M), LDH-3 (2H2M), LDH-4 

(1H3M) and LDH-5 (4M)85.  High LDH-5 levels have been associated with worse 

prognosis and have been shown to play a direct functional role in promoting cancer 

growth84, 86.  On the other hand, while some reports suggest a possible contribution of 

Ldhb in cancer progression87, its role remains less well understood.   

 

Glutamine Metabolism in Cancer 

Another metabolic pathway required for the growth of certain tumor types is 

mitochondrial glutamine metabolism.  Since the 1950s, glutamine has been recognized 

as an important tumor nutrient that contributes to key metabolic processes in 

proliferating cancer cells88, 89.  Glutamine participates in bioenergetics, supports cell 

defenses against oxidative stress, complements glucose metabolism and is an obligate 

nitrogen donor for nucleotide and amino acid synthesis73, 75, 90-93.   

The metabolism of glutamine can be divided into reactions that use its α-nitrogen, 

γ-nitrogen or carbon skeleton.  The γ-nitrogen from glutamine’s amide group is a 
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required nitrogen source for de novo nucleotide synthesis.  This nitrogen is needed in 

three independent enzymatic steps in purine synthesis, as well as in two independent 

steps in pyrimidine synthesis92.  The γ-nitrogen is also required for hexosamine 

biosynthesis, a precursor for glycosylation reactions.  The rate-limiting step of 

hexosamine production is catalyzed by glutamine:fructose-6-phosphate amido-

transferase.  This reaction uses glutamine’s amido nitrogen to produce glucoasamine-6-

phosphate, a precursor for O-linked and N-linked glycosylation  in cells90.   

Glutamine’s γ-nitrogen is released following glutamine’s conversion into 

glutamate by glutaminase (Gls).  The glutaminase-catalyzed reaction leads to the 

formation of glutamate and ammonia.  The latter is a potentially toxic metabolite, mostly 

secreted from the cell and shown to play a role in inducing autophagy94, 95.  Glutamate 

carries glutamine’s remaining nitrogen and is a major nitrogen source for nonessential 

amino acid production in cells.  Alanine transaminase and aspartate aminotransferase 

catalyze the transfer of glutamate’s amino group directly into alanine and aspartate, 

respectively.  Furthermore, transfer of the amino group from glutamate to alpha-

ketoacids is also used to generate serine, glycine, cysteine, arginine, asparagine and 

proline.  In addition to its role in nonessential amino acid synthesis, glutamate is also an 

important component of the synthesis of glutathione, an endogenous antioxidant that 

protects cells against various forms of oxidative stress.   

The final major fate of glutamine is the oxidation of its carbon backbone in 

mitochondria.  Entry of glutamine’s carbon into the TCA cycle requires conversion of 

glutamine into glutamate by glutaminase, followed by conversion of glutamate into 

alpha-ketoglutarate by glutamate dehydrogenase, alanine transaminase or aspartate 

transaminase.  The complete oxidation of glutamine’s carbon backbone in the TCA 
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cycle, through a process termed glutaminolysis, contributes to lipid synthesis and results 

in the production of lactate through the malic enzyme, conversion to pyruvate and, 

finally, re-introduction into the TCA cycle as acetyl-coA.  This process allows glutamine 

to participate in lipid synthesis and to support anaplerosis, the replenishment of TCA 

cycle intermediates.  It also leads to the production of ATP and NADPH.  The latter is an 

important reducing equivalent required for lipid and nucleotide synthesis as well as for 

maintaining GSH in the reduced state. 

Glutamine itself also influences a number of signaling pathways that contribute to 

tumor growth, in part through maintaining activation of the mTOR kinase, a major 

component of the (PI3K)-AKT pathway.  Myc activation has also recently been found to 

induce glutamine addiction in certain cancer cell lines96, 97.  Specifically, Myc can render 

tumor cells dependent on glutamine uptake to sustain their viability by directly regulating 

the levels of the glutamine transporter slc1a5 and indirectly regulating gls1 (glutaminase) 

expression through miR-23a/b92, 96, 98, 99.  Glutaminase is a key glutaminolytic enzyme 

that converts glutamine to glutamate and whose expression is required for tumor 

growth100, 101.  While MYC amplification is linked to aggressive tumor behavior and poor 

prognosis102-111, to date no association has been established between increased 

glutamine metabolism and breast cancer recurrence.  Establishing such a connection 

could suggest new avenues for diagnostic and targeted therapeutic strategies in breast 

cancer recurrence.    
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Lipid Biosynthesis is Tumorigenesis 

Another characteristic feature of cancer cells is increased lipogenesis, the process by 

which acetyl-coA is converted to lipids.  Increased lipid biosynthesis is of particular 

importance with its key contribution to membrane synthesis in rapidly proliferating cancer 

cells, as well as its role in forming the backbone for lipid-based signaling molecules112.  

In lipogenesis, glucose-derived pyruvate enters the TCA cycle through it conversion to 

acetyl-coA, a reaction catalyzed by pyruvate dehydrogenase (PDH).  This, in turn, is 

condensed with oxaloacetate to produce citrate by citrate synthase.  Citrate is then 

exported into the cytoplasm where it is converted back to acetyl-coA by ATP citrate 

lyase (ACL), the entry point to lipogenesis.   

 Emerging evidence also suggests a contribution of glutamine-derived carbon to 

citrate production under hypoxic conditions113.  This occurs through a process termed 

reductive carboxylation where glutamine carbon is consumed while proceeding in the 

“reverse” direction in the TCA cycle to act as a major contributor to citrate production 

and lipid synthesis in glutamine-dependent cancer cells subjected to hypoxic conditions.   

 A number of oncogenic signaling pathways are involved in regulating lipid 

metabolism.  In Particular, the PI3K-(AKT) pathway as well as the MAPK pathway have 

each been found to play a role in lipid biosynthesis, through regulation of SREBP-

dependent transcription of several key lipogenic enzymes, primarily ATP citrate lyase 

(ACL) and fatty acid synthase (FAS)114, 115.  Due to its importance in the synthesis of 

cholesterol and fatty acid synthesis, ACL is an especially promising therapeutic target in 

cancer cells.  FAS catalyzes the reaction in lipogenesis that leads to the production of 

fatty acids.  Both ACL and FAS have been shown to be required for cancer growth within 
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the context of AKT-driven tumors.  ACL knockdown reduces the rate of tumor growth in 

vivo116, 117.  Similarly, FAS inhibition results in the reduced proliferation of tumor cells 

both in vitro and in vivo118.   

 While modulation of lipid metabolism is increasingly seen as a promising 

approach to cancer treatment, the role of lipogenesis in cancer progression remains less 

understood.  Further research in this area is warranted to explore changes in the 

lipogenic phenotype, if any, that accompany cancer progression.  Identifying such 

changes could help elucidate novel therapeutic targets in cancer progression and 

recurrence. 

 

1.3 Thesis Objectives 

The goal of this work was to identify the metabolic changes that occur during breast 

cancer progression.  Specifically, we proposed to use 1H Magnetic Resonance 

Spectroscopy (MRS) and 13C MRS for the in vivo study of alterations in cellular 

metabolism that occur during breast cancer progression.  Magnetic resonance-based 

results were subsequently used to guide the implementation of an integrative 

metabolomics approach, where we further characterized the observed metabolic 

phenotypes using mass spectrometry, gene expression profiling, biochemical assays 

and functional genetic experiments to better understand the metabolic and genetic 

regulation of breast cancer recurrence.  These studies were pursued through three aims: 

SA1: Identify the evolving metabolic profile of mammary tumors during breast cancer 

progression using 1H MRS. 
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SA2: Identify the molecular basis and role of differential glutamine uptake and 

metabolism during breast cancer recurrence. 

SA3: Investigate the molecular basis and role of differential lactate production during 

breast cancer recurrence. 

Understanding the metabolic dependencies of cancer cells during breast cancer 

recurrence will further our understanding of cancer progression.  This has the potential 

to  pave the way for the identification of early diagnostic markers of recurrence as well 

as prognostic markers and therapeutic targets that could be used to improve the care 

and outcome of women with breast cancer.   
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CHAPTER 2 

Magnetic Resonance-based Integrative Metabolomics: Design and 

Implementation of a Systems Engineering-based Approach 

 

2.1 Introduction 

In this chapter, we aim to design and implement a process-based system to establish a 

structured and optimizable framework that allows for better understanding of the 

metabolic and genetic regulation of breast cancer recurrence.  In an effort to achieve this 

end, we use a systems engineering-based approach as a guiding strategy.  Systems 

engineering is an interdisciplinary engineering field that focuses on solving complex 

technical problems.  It often involves working on projects residing at the intersection of 

different technical fields and typically necessitates the coordination of teams with diverse 

scientific backgrounds.  In systems engineering, the basic principles of addressing a 

given problem consist of a 3-step approach: 1) define the problem and its components; 

2) develop and deploy a system aimed to solve the problem at hand; and 3) assess, 

validate and optimize the performance of the proposed system.  Among those, the 

development of a system is the most crucial step of this process.  A system consists of a 

group of components that work together to achieve a specific purpose.  Proposed 

systems can be process-oriented, product-oriented or service-oriented.  Here, we 

attempt to design a process-oriented system to define a structured framework for 

understanding the metabolic and genetic regulation of breast cancer recurrence.   
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 The first step in a systems engineering development approach involves 

decomposing the problem at hand into smaller measurable components.  For our 

purposes, those can consist of: 

1. Identifying the metabolic differences between primary and recurrent tumors in a 

mouse model of breast cancer recurrence 

2. Investigating the precise dysregulated steps in the identified metabolic pathways 

3. Identifying the underlying molecular/genetic determinants of the observed 

metabolic changes 

4. Assessing the functional effect of the identified changes on tumorigenesis 

5. Investigating the translational potential and relevance of our findings to human 

breast cancer 

The second step of the systems engineering approach consists of analyzing and 

proposing individual solutions to each of the identified components.  Here, we propose 

the following solutions to each of the steps identified above: 

1. Unsupervised metabolic profiling using 1H Magnetic Resonance Spectroscopy to 

identify metabolic differences between primary and recurrent tumors 

2. Pathway-focused characterization of key dysregulated steps and fluxes using 

13C-labeling experiments followed by Mass Spectrometry and/or 13C-Magnetic 

Resonance Spectroscopy 

3. Genetic expression profiling at the mRNA and protein level and enzyme activity 

assessment of potential underlying molecular/genetic determinants of observed 

changes  
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4. Genetic engineering of cells to modulate expression levels of identified genetic 

changes in order to assess their role in tumor growth and progression  

5. Computational biology and statistical modeling using microarray and outcome 

data in human cancers to assess the clinical translational potential of a given 

metabolic observation 

In this approach, we rely on established metabolic engineering strategies to derive 

insights about breast cancer progression.  By detecting dysregulated metabolites using 

1H-MRS, we first identify, on a macroscopic level, metabolic alterations that accompany 

tumor recurrence across multiple pathways.  Subsequently, pathway-specific 

characterization is performed using isotopic tracers.  Metabolism of these tracers 

generates a pool of labeled metabolites with various levels of enrichment that reflect the 

metabolic state of the pathway catabolizing the labeled substrate.  Analysis of the 

enrichment distribution enables identification of kinetic limiting steps in a given pathway 

and sheds light on genetic modifications that might underlie the observed metabolic 

changes.  The identified genetic underpinning is further interrogated using biochemical 

and molecular biology techniques to assess its functional role in tumor growth and 

progression as well as its translational potential.   

 Combined, the above two steps enable development of the functional architecture of 

the proposed process-based system.  Lastly, the final step of the systems engineering 

approach involves aggregation of the proposed solutions to ensure that the combined 

product of the system provides an adequate and measurable solution to the problem at 

hand.  Using the system proposed above, the final outcome for a metabolic observation 

that successfully fulfills each of the components of this process-based system, will result 

in a well-characterized metabolic dysregulation that exerts a functional effect on 
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tumorigenesis, as well as evidence for potential clinical relevance.  In aggregate, this 

should result in a better understanding of the metabolic and genetic regulation of breast 

cancer recurrence. 

 The interdisciplinary approach articulated above, which we will term magnetic 

resonance-based integrative metabolomics, will combine molecular biology, 

biochemistry, computational biology, imaging, statistical modeling, clinical science and 

engineering principles and is envisioned to allow for rigorous assessment of the 

diagnostic, prognostic and predictive potential of a given metabolic observation.  

Ultimately, a measurable outcome of this system could include the clinical translation of 

a metabolic finding identified and characterized using this approach.   

In this chapter, we expand on the individual steps of this approach and present a 

technical overview of some of the underlying technical concepts necessary for the 

adoption of this system.  A schematic of the proposed system is shown is Figure 1 and 

each step is discussed in further detail in what follows.   

 

2.2 Proposed Approach 

I. Unsupervised Magnetic Resonance-based Metabolic Profiling  

Magnetic resonance spectroscopy (MRS) is a widely used technique to monitor total 

metabolite concentrations in vivo and in tissue samples119, 120.  MRS exploits the 

magnetic properties of NMR active nuclei.  For instance, nuclei with spin quantum 

number ½ (such as 1H and 13C) can orient themselves either parallel (‘‘spin up’’) or anti-

parallel (‘‘spin down’’) to an externally-applied magnetic field.  The net magnetization 

and the available NMR signal are proportional to the population difference between the 
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two states.  By convention, an external magnetic field is assigned to act along the z-axis 

of a 3-dimensional frame of reference.  Thus, at thermal equilibrium, the spins of NMR-

active nuclei exhibit a net magnetization along the z-direction.  In magnetic resonance 

spectroscopy, a 90-degree radio frequency (RF) pulse is typically applied to a sample 

placed in a magnetic field.  This rotates the net magnetization from the z-direction to the 

y-direction.  The spins subsequently precess about the z-axis while simultaneously 

relaxing to align back along the original direction of the externally-applied magnetic field.  

The behavior of spins placed in a magnetic field and subjected to RF excitation can be 

described using the Bloch equations: 

 

where gamma corresponds to the gyromagnetic ratio; Mx, My and Mz correspond to the 

magnetization along the x,y and z directions, respectively; Bo is the externally-applied 

magnetic field; T1 is the spin-lattice relaxation and T2 is the spin-spin relaxation.   

Following RF excitations, as the spins relax to align along the externally-applied 

magnetic field, they generate RF pulses that are collectively detected by the NMR 

system as a free induction decay (FID) signal.  This signal, which represents the 

behavior of spins as a function of time, is a convolution of the RF pulses being emitted 

by the decaying spins.  Applying a Fourier transform operation to the resulting FID leads 

to the generation of the 1D NMR spectrum that represents each of the component 

resonance frequencies of the molecules present in a sample.  Each peak (or collection 
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of peaks) in a spectrum represents the resonance frequency of one specific nucleus in a 

particular species of molecule.   

When 1H MRS is applied to study the metabolism of a tissue sample, the 

spectrum typically consists of multiple frequency components due to the many 

detectable molecular constituents of the tissue.  Of note, different components can 

possess molecular groups with similar chemical shifts allowing their peaks to overlap, 

which can limit the utility of these spectra for the detection and quantification of certain 

compounds within tissues.   

1H MRS permits the identification and quantification of a relatively large number 

of metabolites that are present in tumor samples.  The area under each peak is 

proportional to the molar concentration of the molecule identified at a specific chemical 

shift on the spectrum.  This approach provides an unsupervised metabolic profiling 

technique, where we are able to broadly screen and identify metabolic differences 

between primary and recurrent tumors in a mouse model of breast cancer recurrence.  

Those differences can then be further assessed using pathway-specific characterization.   

Other unsupervised metabolic profiling techniques are also available, such as 

mass spectrometry.  These can also be alternatively pursued for this step of the process 

for yet broader metabolic screening.   

 

II. Pathway-focused Metabolic Characterization Usin g 13C-Labeling Experiments 

In order to better characterize pathway-specific metabolic dysregulation in primary and 

recurrent tumors, we propose the implementation of 13C-labeling experiments.  In these 

experiments, a 13C-labeled tracer is infused into mice bearing primary or recurrent 

tumors.  Tumors can then be dissected and 13C isotopic enrichment as well as positional 

labeling assessed.  This technique allows for the construction of a metabolic flux map for 
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a specific compound and provides information about the amount and distribution of each 

labeled metabolite in a given pathway.  The two most-widely used techniques for this 

purpose are mass spectrometry and 13C-MRS.  MRS is the preferred technique when 

determination of positional labeling in a compound is desired.  Mass spectrometry (MS), 

on the other hand, provides information about the amount of 13C-enrichment of individual 

metabolite isotopomers with no information on which carbon is labeled within a 

molecule.  The information provided by MS and 13C-MRS studies can be highly 

complementary in metabolic studies.   

 The basis of 13C-MRS is similar to that described above.  In mass 

spectrometry, samples are typically first derivatized and fractionated by liquid or gas 

chromatography.  Following fractionation, samples are ionized by electron impact.  The 

resulting ions are subsequently characterized based on their mass to charge ratio (m/z).  

With ions typically carrying a single charge, the fragments are separated based on their 

molecular weight.  The typical MS spectrum contains a number of peaks corresponding 

to different fragments of a given compound.  Mass isotopomers are molecules that have 

incorporated the same number of labeled atoms.  They are usually denoted by M0 (no 

label incorporation beyond natural abundance), M+1 (molecule has incorporated 1 

labeled carbon), M+2 (molecule has incorporated 2 labeled carbons) etc... 13C-

enrichment is typically reported in molar percent enrichment (MPE), reflecting the mol 

fraction (%) of analytes containing 13C atoms in excess of natural abundance, where: 

MPE (M+i) = % AM+i/[AM + Σ AM+i] 

AM and AM+I represent the peak area from MS ions corrected for natural abundance and 

corresponding to the unlabeled (M0) and 13C-labeled (M+i) mass isotopomers, 

respectively.  The number of labeled carbons in a molecule can sometimes provide 
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information about the direction in which a pathway is proceeding, such as in the case of 

reductive carboxylation in the TCA cycle.  The extent of labeling can provide information 

about the flux in a specific pathway as well as help identify any potential dysregulated 

enzymatic steps.   

 In this work, we use 13C-MRS when looking for compounds with relatively high 

concentration in tumors, allowing for their easy detection by MRS.  In these cases, 

compounds labeled at only one or two carbons are used and positional labeling and 

concentration are assessed by following the label on the NMR spectrum through some 

of the successive steps of the given pathway.   

 On the other hand, when attempting to investigate metabolic flux and trying to 

characterize individual enzymatic steps known to yield low-concentration products, MS is 

used.  In those cases, we use uniformly labeled compounds to assess the amount of 

labeling and the isotopomers present for each metabolic step in a given pathway.  The 

combination of 13C-MRS and MS following tracer infusion allows for a focused approach 

to identify key steps within a pathway where metabolism might be dysregulated in 

primary and recurrent tumors. 

 Another emerging technique that could further aid in this step of our approach is 

hyperpolarized magnetic resonance spectroscopy.  This technique allows the 

characterization of single enzyme-characterized reactions in real-time following the 

injection of a hyperpolarized 13C-tracer.  Future studies will seek to incorporate this 

technique to further refine our proposed approach. 
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III. Genetic Profiling of Potential Underlying Dete rminants of Observed Metabolic 

Changes 

Once a key dysregulated metabolic step is identified in a metabolic pathway, assessing 

its underlying molecular determinants constitutes the next step in our proposed 

approach.  To achieve this end, we perform expression profiling of the genes expressing 

the key enzymes known to catalyze the identified dysregulated metabolic reactions.  

Expression profiling is done at both the mRNA as well as the protein level to account for 

any post-translational modifications that might underly the observed metabolic changes.  

mRNA levels are assessed by qRT-PCR and protein levels are assessed by 

immunoblotting.   

 Changes in metabolite levels can also result solely from changes in enzymatic 

activity, rather than gene expression.  To address this possibility, we also perform 

enzymatic activity assays and zymography experiments.  Enzymatic activity assays 

allows the user to measure the rate of conversion of a given metabolite into a product 

while measuring a surrogate of the reaction rate constant.  Zymography, on the other 

hand, provides for a mean to isolate different isozymes of a given enzyme and to assess 

their individual activity.  These techniques can be complementary depending on the 

enzyme being investigated.   

 Finally, in order to establish a direct association between a given metabolic 

change and an identified change in gene expression, we genetically engineer primary 

and recurrent tumor cells to downregulate or overexpress the gene in question.  This is 

followed by assessment of the levels of the associated metabolite relative to its levels in 

control cells.  A change in the metabolite levels in the expected direction in the context of 

gene expression level modulation establishes the identified genetic change as the most 

likely molecular determinant of the changing metabolite level. 
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IV. Assessment of the Functional Effect of the Iden tified Metabolic  and Genetic 

Change 

Once a genetic change is identified and characterized, the next step consists of 

assessing the functional role of this change in tumorigenesis.  This can be achieved 

through orthotopic tumor experiments where genetically-engineered cells, in which the 

expression level of the metabolic gene of interest has been modulated, are injected into 

the mammary fat pads of immunocompromised mice.  The effect of gene modulation on 

tumor growth can then be followed and assessed.  Differences in the growth rates of 

tumors with gene downregulation (or overexpression) relative to controls indicates a 

functional role for the identified metabolic and genetic alteration in tumorigenesis.  

Furthermore, we also perform a tumor recurrence assay to assess the effect of 

metabolic gene modulation on the complex phenotype of tumor regression and 

recurrence.  The details of this assay are detailed in Chapter 6.   

 If a functional effect is demonstrated, we proceed to identify the mechanism that 

might underlie the observed metabolic and genetic change as well as to characterize the 

molecular pathway by which the observed metabolic and genetic changes might 

contribute to tumorigenesis and/or recurrence.  This can enable the identification of 

upstream metabolic regulators that could serve as useful therapeutic targets. 

  

V. Assessment of the Translational Potential of a F unctional Metabolic and  

Genetic Finding 

In an effort to assess the translational potential of an identified functional metabolic and 

genetic finding, we conduct human association analysis where we assess the effect of 

the expression of the identified metabolic gene on prognosis in human breast cancer 

datasets.  In this work, we investigate the correlation between metabolic gene 
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expression from microarray data and recurrence-free survival in breast cancer patients.  

This is done following the stratification of patients into cancer subtype-specific subsets to 

reduce the contribution of confounding variables.  Most of this analysis is conducted in 

node-negative patients and patients not treated with chemotherapy in order to evaluate 

the effect of each gene on outcome data, independent of those variables.  In the context 

of this analysis, identifying a correlation between metabolic gene expression level and 

outcome using Cox proportional hazards modeling indicates a potential prognostic role 

for a metabolic change in breast cancer patients.  Eventual clinical translational, 

however, will require proving that a newly-identified marker can add to existing 

clinicopathological prognostic markers.  In this work, we show a proof-of-concept of such 

an approach at the end of chapter 7.   

 Further clinical translational can also be assessed by investigating whether the 

identified metabolic gene can act as a predictive marker for response to therapy.  Such 

an analysis will necessitate access to datasets of treated patients with available outcome 

data of partial versus complete pathologic response post-treatment.  Finally, one can 

also assess the translational potential of a metabolic finding where imaging techniques 

can be developed and assessed for a potential role either in the early detection of 

tumors upregulating a specific metabolic pathway or monitoring response to therapies 

targeted against that pathway. 

 

2.3 System Impact and Validation 

In summary, our proposed systems-based approach, magnetic resonance-based 

integrative metabolomics, involves combining multi-disciplinary techniques to address 

the problem of understanding the metabolic and genetic regulation of breast cancer 

recurrence.  By combining molecular biology, biochemistry, computational biology, 
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imaging, statistical modeling, clinical science and engineering principles, our system 

provides a top-down framework for the assessment of the clinical and functional 

relevance of specific pre-clinical metabolic observations.  It is our hope that this 

approach will lead to better avenues for clinical translation of newly identified functional 

metabolic and genetic findings and better aid in the management and treatment of 

cancer patients.  

In what follows, we attempt to validate and optimize our proposed system.  In 

chapter 3, we present results of the unsupervised metabolic profiling of primary and 

recurrent tumors conducted in our mouse model using 1H-MRS.  In chapters 5 and 6, we 

validate the remaining steps of our approach by studying the roles of glutaminolysis and 

lactate metabolism in breast cancer recurrence.  This is followed by an assessment of 

the translational potential of findings from those studies.   
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2.4 Figure Legend 

 

Figure 1. Magnetic resonance-based integrative metabolomics: functional 

architecture of the proposed process-based system to better understand the 

metabolic and genetic regulation of breast cancer recurrence.  Presented is the 

proposed multi-step algorithm aimed to address the problem at hand.  Following 

systems engineering conceptual frameworks, the algorithm consists of 3 key steps: 1) 

problem formulation; 2) the proposed multi-step process-based system; and 3) system 

assessment, optimization and validation.   
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2.5 Figures 
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CHAPTER 3 

Metabolic and Genetic Profiling of Mammary Tumor Recurrence using1H 

Magnetic Resonance Spectroscopy 

 
 

ABSTRACT 

Tumor recurrence represents the principal cause of mortality in human breast cancer, 

yet little is known about its underlying molecular mechanisms.  In particular, while 

alterations in cellular metabolism have long been recognized as a key feature of the 

development of primary cancers, the metabolic changes that accompany cancer 

recurrence are poorly understood, if at all.  To address this gap, we have used 1H 

magnetic resonance spectroscopy (MRS) in combination with expression analysis of key 

metabolic enzymes to identify changes in metabolism that occur during mammary tumor 

recurrence in genetically engineered mice.  The resulting metabolic and genetic profile 

revealed highly reproducible alterations in recurrent mammary tumors, which displayed 

higher levels of lactate and glycine, lower levels of succinate and phosphocholine (PC), 

and a higher glutamate to glutamine ratio (glu/gln) compared to primary tumors.  These 

characteristic changes in metabolites were accompanied by concordant changes in 

expression of the corresponding enzymes that control their production and consumption.  

Accordingly, observed changes in the levels of succinate, glu/gln, phosophocholine, 

glycine and lactate, were significantly correlated with higher expression levels of Sdhb 

and Gls, as well as lower levels of Chka, Gldc and Ldhb, respectively.  A composite 

metabolic gene expression activity score based upon observed metabolic and genetic 

changes in recurrent mouse mammary tumors was associated with decreased relapse-
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free survival in women with HER2/neu-positive breast cancer.  In aggregate, our findings 

demonstrate that tumor recurrence is accompanied by pronounced and reproducible 

alterations in tumor metabolism.  This, in turn, suggests that increased understanding of 

the molecular determinants underlying these metabolic alterations will provide insights 

into the molecular pathways that drive breast cancer recurrence, as well as aid in the 

identification of novel biological markers and therapeutic targets that could improve 

clinical outcomes in breast cancer patients.  

 

3.1 Introduction 

Breast cancer is the most commonly diagnosed malignancy as well as the leading cause 

of cancer mortality among women worldwide1, 121.  While improvements in detection and 

treatment in recent decades have led to increases in overall survival, breast cancer 

recurrence remains the principal cause of death from this disease66.  In fact, up to 20% 

of women with breast cancer will be diagnosed with recurrent breast cancer within 10 

years of completing adjuvant treatment122.  Nevertheless, despite the unrivaled clinical 

importance of breast cancer recurrence, little is known about the molecular mechanisms 

underlying it development.   

 The HER2/neu proto-oncogene is amplified and overexpressed in up to 25% of 

primary human breast cancers and its amplification is associated with aggressive tumor 

behavior and poor prognosis, in part due to high rates of relapse51, 123.  Notably, 

HER2/neu amplification results in downstream activation of the PI3K-AKT signaling 

pathway, which plays a central role in the regulation of cellular metabolism67, 68, 71, 72.  

However, while the role of dysregulated cellular metabolism in primary cancer 
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development has been a focus of intense investigation, the metabolic changes that 

accompany breast cancer recurrence are poorly understood73-75, 124.  While some studies 

have examined the association between metabolism and histopathologically-based 

prognostic features of primary breast cancers125-127, or have explored predictive models 

for the early detection of recurrent breast cancer based on metabolic profiles in patient 

sera128-131, to date no direct comparisons of the metabolic features of primary and 

recurrent human breast cancers have been reported. 

 To address this question, we have employed a mammary-specific, doxycycline-

inducible bitransgenic mouse model for HER2/neu-induced breast cancer that accurately 

recapitulates key features of human breast cancer progression, including primary tumor 

development, tumor dormancy and tumor recurrence 63, 66, 132.  In this study, we have 

used 1H Magnetic resonance spectroscopy (MRS) to identify metabolic changes that 

accompany mammary tumor recurrence in mice bearing HER2/neu-induced mammary 

tumors, elucidated some of the molecular determinants that might underlie those 

changes, and examined the association between the observed metabolic changes and 

relapse-free survival in women with HER2/neu-positive breast cancer.  These studies 

provide new insights into the metabolic alterations that accompany breast cancer 

progression. 

 

3.2 Methods 

Mouse model 

Primary and recurrent mouse mammary tumors were generated in MMTV-rtTA;TetO-

HER2/neu (MTB/TAN) doxycycline-inducible bitransgenic mice as previously 
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described63, 66, 132.  HER2/neu expression was induced in MTB/TAN mice by the addition 

of 2 mg/mL doxycycline.  Tumors that reached a size of approximately 1 cm x 1cm were 

dissected and immediately clamp-frozen in liquid nitrogen.  Nine primary mammary 

tumors and nine recurrent mammary tumors were harvested from a cohort of 18 

MTB/TAN mice, along with normal mammary tissue from three un-induced MTB/TAN 

mice.  All animal experiments were performed in accordance with protocols approved by 

the University of Pennsylvania institutional animal care and use committee (IACUC).  

 

Sample preparation 

Frozen tissue samples weighing 200±50 mg were homogenized in ice-cold 12% 

perchloric acid.  Care was taken to avoid including visibly necrotic areas of tumors.  After 

homogenization, samples were centrifuged at 15,000 g for 10 min.  The supernatant was 

collected and neutralized with KOH.  Samples were then centrifuged at 15,000 g for 10 

min and supernatants were collected and lyophilized.  Lyophilized samples were 

dissolved in 0.6 ml D2O before introduction into a 5-mm NMR tube for spectroscopic 

analysis. 

 

1H NMR spectroscopy 

NMR spectroscopy was performed at 400MHz on a Bruker Avance DMX 400 wide-bore 

spectrometer.  Fully relaxed proton spectra were acquired with a 5 mm inverse probe 

using the following conditions: PW 45º, TR 8s, water saturation during the relaxation 

delay, 6775 Hz SW, TD 64k and 64 scans.  An external standard made of 

trimethylsilylpropionic acid (TSP) was introduced into the NMR tube and used as a 
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chemical shift reference and as a quantification standard.  Metabolite resonance 

assignments were estimated based on previously published spectra in breast cancer 

tissue133.  The resonance assignments used in this study are listed in Table 1.  Analysis 

of collected NMR spectra was performed using NUTS (Acorn NMR Inc).  Peak integrals 

were computed for each metabolite and normalized to the number of contributing 

protons per molecule, to tissue weight, and to the known concentration of the TSP 

external standard to allow for inter-sample comparison.  Metabolite concentrations are 

provided as µmol/gram of wet weight of tissue.   

 

RNA isolation and qRT-PCR 

Snap-frozen primary and recurrent mammary tumor tissue samples were homogenized 

to prepare for RNA extraction.  RNA isolation was performed using the RNeasy RNA 

isolation kit (Qiagen) according to the manufacturer’s protocol.  The cDNA High Capacity 

Reverse Transcriptase Kit (Applied Biosystems) was used for reverse transcription 

according to the manufacturer’s protocol starting from 2 µg of RNA.  qRT-PCR was 

performed using the resulting cDNA.  qRT-PCR analysis was carried out on the Applied 

Biosystems 7900 HT Fast Real-Time PCR system using 6-carboxyfluorescein–labeled 

Taqman probes (Applied Biosystems).  qRT-PCR analysis was performed on the 9 

recurrent tumors profiled in this study and 8 primary tumors.  Sufficient tissue was not 

available for one of the primary tumors.   
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Principal component analysis 

Principal component analysis was performed using Matlab (Mathworks Inc.).  Briefly, the 

loadings and scores were computed from a matrix that included metabolite levels for the 

14 metabolites analyzed for each of the 21 samples included in this study.  The 

outputted scores represent the principal components.  For the analyzed dataset, a scree 

plot revealed that the first 3 components explained 94% of the observed variance.  

Accordingly, a plot of the first three principal components is presented.   

 

Statistical analysis 

Statistical significance was determined using a two-tailed Student's t-test.  Univariate 

linear regression to assess the correlation between gene expression levels and 

metabolite levels was performed using Matlab (Mathworks Inc.).  Pearson analysis was 

used to assess the extent of correlation.  The significance of the t-test and of the 

Pearson correlation analysis was determined at p<0.05. 

 

Metabolic gene expresion signature generation and h uman association analysis 

A tumor metabolism gene expression signature was generated from the qRT-PCR data 

of the six profiled metabolic enzymes whose mRNA expression levels exhibited 

differences between primary and recurrent breast tumors in the MTB/TAN mouse model.  

The six metabolic enzymes whose expression was included in the signature were Ldhb, 

Gldc, Phgdh, Gls1, Sdhb, Chka.  The metabolic gene expression signature was used to 

assess the combined activities of these enzymes in microarray data of mouse and 

human breast tumors using a previously described scoring system134.  The signature 



42 

 

was validated using a set of 10 primary and recurrent MTB/TAN mammary tumors from 

another study.  Prognostic value of this six-gene signature was subsequently 

assessed in 943 lymph node-negative patients who did not receive any systemic 

adjuvant treatment.   

In the human association analysis, five human breast cancer microarray data 

sets135-139 profiled using the Affymetrix HG-U133A platform were downloaded from Gene 

Expression Omnibus and RMA-normalized individually.  943 lymph node-negative 

patients who did not receive any systemic adjuvant therapy were identified from these 

five data sets according to available clinical information.  Microarray data for these 

patients were mean-centered by gene within each data set and combined into one data 

set.  HER2-positive status was approximated by visual inspection of the rank plot of 

HER2 mRNA level, and defined as samples having mean-centered log2 expression 

greater than 1.  Patients were assigned to either a high scoring or a low scoring class 

based on their metabolism signature scores.  The cutoff between high- and low-scoring 

classes was determined by an outcome-oriented approach140.  Differences in 5-year 

relapse-free survival between the two classes was assessed by p-value from the log-

rank test and hazard ratio from Cox proportional hazards regression.  To guard against a 

high false-positive rate resulting from multiple testing, a corrected p-value was also 

calculated as part of the cut-point determination step140.  These analyses were 

performed specifically for the HER2-positive subset of patients.  All data analyses were 

performed in the R environment141.   
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3.3 Results 

To identify metabolic differences between primary and recurrent mammary tumors in a 

genetically defined model system, we made use of a previously described doxycycline-

dependent genetically engineered mouse model for HER2/neu-induced mammary 

tumorigenesis63, 66.  In this model, the reverse tetracycline-dependent transcriptional 

activator, rtTA, is specifically expressed in the mammary epithelial compartment of 

MMTV-rtTA (MTB) transgenic mice under the control of the mouse mammary tumor 

virus promoter/enhancer132.  When interbred with TetO-HER2/neu (TAN) transgenic 

mice, in which expression of an activated allele of the rat HER2/neu proto-oncogene is 

controlled by the tet operator, administration of doxycycline to MTB/TAN bitransgenic 

mice results in binding of activated rtTA to the tet operator, and expression of the 

HER2/neu transgene in mammary epithelial cells63.   

 Activation of HER2/neu in MTB/TAN mice results in mammary epithelial 

hyperplasia and the eventual development of primary mammary tumors that are 

addicted to HER2/neu expression63.  Consequently, when doxycycline is withdrawn, the 

resulting acute downregulation of HER2/neu pathway activity results in the regression of 

mammary tumors to a non-palpable state, akin to the treatment of women with 

HER2/neu-amplified breast cancers with a targeted agent that blocks HER2/neu 

activity63.  Also akin to human breast cancer patients, primary mammary tumors that 

regress to a non-palpable state following doxycycline withdrawal subsequently recur with 

stochastic kinetics following a variable latent period that mimics human tumor dormancy 

(Figure 1A)66.  Recurrent mammary tumors in this system do not re-activate the 

HER2/neu transgene, but rather escape their dependence on HER2/neu signaling by 

activating alternate growth and survival pathways66.  
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Primary and recurrent mammary tumors exhibit differ ent metabolic profiles 

We compared the metabolic profiles of primary mammary tumors arising in doxycycline-

induced MTB/TAN mice with recurrent mammary tumors that had arisen in MTB/TAN 

mice harboring primary tumors that had regressed to a clinically undetectable state 

following doxycycline withdrawal, and had then recurred in the absence of doxycycline.   

 Tumors that reached a size of approximately 1 cm were dissected, clamp-frozen 

and homogenized in ice-cold perchloric acid.  Following centrifugation and neutralization 

of supernatants with KOH, lyophilized samples were dissolved in D2O.  1H NMR 

spectroscopy was performed at 400MHz on a Bruker Avance DMX 400 wide-bore 

spectrometer and fully relaxed proton spectra were acquired with a 5 mm inverse probe.  

Trimethylsilylpropionic acid (TSP) was introduced as an external standard and used as a 

chemical shift reference and quantification standard.   

 Metabolite resonance assignments were estimated based on published spectra 

in breast cancer tissue133 and are listed in Table 1.  Analysis of collected NMR spectra 

was performed using NUTS (Acorn NMR Inc).  Peak integrals were computed for each 

metabolite and normalized to the number of contributing protons per molecule and to 

tissue weight, as well as to the known concentration of the TSP external standard to 

enable inter-sample comparison.  Metabolite concentrations were calculated as 

µmol/gram of wet weight of tissue.  

 1H MRS metabolic profiling of 9 primary and 9 recurrent mammary tumors from a 

cohort of 18 MTB/TAN mice revealed clear differences in spectroscopic features 

between primary and recurrent mammary tumors (Figure 1B).  The spectroscopic 

profiles of tumors were also distinct from those of un-induced mammary glands in which 

the HER2/neu oncogene had not been activated.  Quantification of fourteen metabolites 
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in the 1H spectra of each tumor yielded eight metabolites that exhibited statistically 

different levels (p<0.05) between primary and recurrent tumors (Table 2).  Specifically, 

when compared to primary mammary tumors, recurrent tumors displayed higher levels 

of lactate, glutamate, taurine and glycine, and lower levels of succinate, glutamine, 

phosphocholine and myo-Inositol. Alanine, acetate, creatine, choline, 

glycerophosphocholine and formate levels were unchanged.  Further analysis also 

revealed a higher glutamate to glutamine ratio (glu/gln) and a higher glycine to creatine 

ratio (Gly/Cr) in recurrent tumors compared to primary tumors.  No changes were 

observed in the ratio of alanine to creatine (Ala/Cr) or the ratio of total choline (the sum 

of the choline, phosphocholine (PC) and glycerophosphocholine (GPC) integrals) to 

creatine (tCho/Cr). 

 Principal component analysis performed on the fourteen quantified metabolites in 

each spectrum revealed distinct metabolic signatures of primary tumors, recurrent 

tumors and un-induced mammary glands (Figure 1C).  Unsupervised dimensionality 

reduction of the metabolic data into three orthogonal components led to consistent 

clustering of the twenty-one analyzed tissue samples by tumor/gland type in principal 

component space.   

 

Lactate levels increase during mammary tumor recurr ence 

Recurrent mammary tumors exhibited higher lactate levels than primary tumors.  

Therefore, we sought to determine the potential underlying molecular determinant of 

these observed changes.  A number of steps in the glycolytic pathways have been 

previously implicated in dictating cellular lactate levels.  These include reactions 

catalyzed by pyruvate kinase isoform M2 (Pkm2), lactate dehydrogenase A subunit 

(Ldha) and lactate dehydrogenase B subunit (Ldhb).  Pkm2 expression is associated 
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with increased lactate production.  Ldha catalyzes the conversion of pyruvate to lactate 

and Ldhb is thought to be responsible for catalyzing the reverse reaction of lactate to 

pyruvate conversion.  Quantification of the expression levels of each of the above genes 

by qRT-PCR revealed similar expression levels of Ldha and Pkm2 in primary and 

recurrent tumors (p>0.05).  Ldhb expression, however, was downregulated in recurrent 

tumors compared to primary tumors (p<0.05) (Figure 2B).   

 Univariate linear regression to examine the correlation between lactate levels 

and the expression of each of the above genes in the analyzed tissue samples revealed 

a statistically significant correlation between lactate levels and Ldhb expression 

(r=0.556, p=0.017) as well as between lactate levels and Pkm2 expression levels 

(r=0.496, p=0.036) (Figure 2C).  However, whereas Pkm2 expression was unchanged 

during the process of recurrence, Ldhb expression was downregulated approximately 

10-fold in recurrent tumors.  As expected from the fact that Ldhb catalyzes the 

conversion of lactate to pyruvate, the correlation between lactate levels and Ldhb 

expression was negative (Figure 2C).  Taken together, these data suggest that recurrent 

tumors may have higher lactate levels as a consequence of Ldhb downregulation.  

 

Glycine levels increase during mammary tumor recurr ence 

Recurrent mammary tumors exhibit higher levels of glycine.  To investigate the 

underlying molecular determinants of the change in glycine levels during mammary 

tumor progression, we examined the expression levels of phosphoglycerate 

dehydrogenase (Phgdh) and glycine decarboxylase (Gldc) in primary and recurrent 

tumors.  Each of these genes has been previously implicated in regulating glycine levels 

during tumorigenesis.  Phgdh catalyzes the conversion of the 3-phosophoglycerate 

glycolytic intermediate into 3-phophohydroxypuruvate contributing glycolytic carbon to 
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the serine biosynthesis pathway where glycine is produced (Figure 3A).  Gldc is a 

component of the glycine cleavage system and catalyzes the breakdown of glycine into 

carbon dioxide and ammonia (Figure 3A).  qRT-PCR revealed higher levels of Phgdh 

and lower levels of Gldc in recurrent tumors compared to primary tumors (p<0.05) 

(Figure 3B).  Specifically, recurrent tumors exhibited an approximately 10-fold 

downregulation in Gldc expression and an approximately two-fold increase in Phgdh 

levels compared to primary tumors.   

To assess the correlation between glycine levels and the expression of each of 

these genes, univariate linear regression was performed.  Regression analysis revealed 

a statistically significant correlation between glycine levels and Gldc levels when 

considering all analyzed tumors (r=0.546 and p=0.028) (Figure 3C).  As predicted based 

on the fact that Gldc catalyzes the breakdown of glycine, the correlation between Gldc 

expression and glycine levels was negative.  In contrast, Phgdh levels were not 

significantly correlated with glycine levels in the analyzed tumors.  Together, these data 

indicate that the observed upregulation in glycine levels in recurrent tumors may be due 

to Gldc downregulation. 

 

Glutamine, choline and succinate metabolism exhibit  marked changes during 
mammary tumor recurrence 

Spectroscopic results revealed higher glutamate levels and lower glutamine levels in 

recurrent tumors compared to primary tumors.  Since the inter-conversion of glutamine 

and glutamate is catalyzed by glutaminase (Gls), we sought to identify changes in 

glutaminase expression levels that might occur during the process of recurrence.  qRT-

PCR quantification of glutaminase expression revealed a modest increase in Gls1 

(referred to as Gls in this study) expression levels in recurrent tumors compared to 
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primary tumors (p<0.05) (Figure 4B).  Univariate linear regression analysis revealed a 

statistically significant correlation between the ratio of glutamate to glutamine (Glu/Gln) 

and Gls1 expression levels across all the tumors analyzed (r=0.53, p=0.024).  Since 

Gls1 catalyzes the conversion of glutamine to glutamate, higher Gls1 levels are thought 

to be associated with: a) decreased glutamine levels reflecting increased consumption; 

b) increased glutamate levels reflecting increased production; and, by extension, c) 

increased glutamate to glutamine ratio.  Indeed, the correlation between Gls1 expression 

and the glutamate to glutamine ratio was positive.  Combined, these data indicate that 

increased ratio of glutamate to glutamine observed in recurrent tumors might reflect 

increased glutamine to glutamate conversion due to upregulation of Gls1 expression.   

 In addition to changes in glutamate to glutamine ratio, recurrent tumors also 

exhibited lower phosphocholine levels compared to primary tumors.  To investigate the 

molecular determinants of this change, we assessed the expression of choline kinase α 

(Chka) in primary and recurrent tumors.  Choline kinase catalyzes the conversion of 

choline to phosphocholine (Figure 4A).  qRT-PCR analysis revealed nearly 3-fold lower 

Chka expression in recurrent tumors compared to primary tumors (p<0.05) (Figure 4B).  

Univariate linear regression demonstrates a statistically significant correlation between 

phosphocholine metabolite levels and Chka expression (r=0.503, p=0.034) (Figure 4C).  

As anticipated based on the fact that Chka catalyzes the conversion of choline into 

phosphocholine, the correlation between phosphocholine levels and Chka expression 

was positive.  Overall, our data suggest that decrease in phosphocholine level observed 

in recurrent tumors may be due to Chka downregulation. 

 Spectroscopic profiling also revealed lower succinate levels in recurrent tumors 

compared to primary tumors.  The conversion of succinate to fumarate in the TCA cycle 

is catalyzed by succinate dehydrogenase.  To investigate whether changes in the 
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expression of this enzyme might underlie observed changes in succinate levels in 

recurrent tumors, qRT-PCR quantification of succinate dehydrogenase B (Sdhb) levels 

was performed.  Recurrent tumors exhibited 2-fold higher Sdhb levels compared to 

primary tumors (p<0.05) (Figure 4B).  Univariate linear regression also showed a 

significant correlation between succinate levels and Sdhb expression levels among the 

tumors analyzed (r=0.486, p=0.041) (Figure 4C).  As expected based on the fact that 

Sdhb catalyzes the conversion of succinate to fumarate, the correlation between 

succinate levels and Sdhb expression was negative.  Together, the data suggest that the 

decreased succinate levels observed in recurrent tumors might be a consequence of 

increased succinate consumption due to Sdhb upregulation.   

 

Changes in metabolism during mammary tumor recurren ce in mice are associated 
with decreased relapse-free survival in women with HER2-positive human breast 
cancer 
 
We generate a metabolic gene expression signature based on changes in expression 

levels of the six profiled metabolic genes whose expression differed between primary 

and recurrent MTB/TAN tumors examined in this study (Figure 5A).  This signature was 

used to assign a score to individual tumors based on the expression levels of those six 

genes.  As expected, the scores generated using this signature were higher in recurrent 

MTB/TAN mouse tumors compared to primary tumors, in an independent cohort of mice 

(Figure 5B).  We then assessed the potential prognostic value of this metabolic gene 

expression signature assessing scores in a group of 947 human breast cancer patients 

with node-negative breast cancer.  Since the signature had been generated and 

validated in a HER2/neu-positive breast cancer mouse model, we preformed a human 

association analysis in patients whose breast cancers were HER2-positive.  This 

analysis revealed that patients whose breast cancers expressed levels of these 
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metabolic enzymes that most closely resembled those found in recurrent mouse 

mammary tumors were more likely to relapse over a 5-year period (HR=2.42, p=0.004 

and pcorrected=0.007) (Figure 5C).   

 

3.4 Discussion 

In this study, we show that primary and recurrent mammary tumors display different 1H 

MRS metabolic profiles and we correlate these metabolic changes with corresponding 

changes in expression levels of enzymes associated with the production or consumption 

of those metabolites.  Specifically, recurrent tumors exhibit higher levels of lactate, 

glutamate, taurine and glycine, and lower levels of succinate, glutamine, phosphocholine 

and myo-inositol.  Tumor expression levels of Ldhb, Gldc, Gls, Sdhb and Chka were 

significantly correlated with the levels of lactate, glycine, glutamate/glutamine, succinate 

and phosphocholine, respectively.  Furthermore, a metabolic gene expression signature 

generated based on alterations in gene expression that occur during tumor recurrence in 

mice was associated with decreased relapse-free survival in HER2-positive breast 

cancer patients.  Combined, these results suggest that tumor metabolism evolves during 

breast cancer progression and raise the possibility that changes in the expression of 

certain key metabolic genes may be useful for predicting clinical outcomes in breast 

cancer patients.   

While a role for MRS in evaluating metabolism in breast cancers has previously 

been established through spectroscopic studies133, 142-144, few studies have examined 

differences in metabolism between primary and recurrent tumors.  In a study evaluating 

the role of 1H MRS and GC-MS metabolic profiling in the early detection of breast cancer 

recurrence, eleven serum metabolites were identified that were able to predict breast 

cancer recurrence in a cohort of 56 patients130.  Similarly, studies of human brain tumors 
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using 1H MRS and 31P MRS identified a number of metabolic changes, including those  

in glycine, alanine, glutamate and total choline in recurrent astrocytomas and 

glioblastomas128, 129.  In agreement with those studies, our results further confirm a 

changing metabolic landscape during cancer progression. 

 In this study, we report increased lactate levels in recurrent mammary tumors in 

mice.  Increased lactate concentrations have been correlated with metastatic spread and 

recurrence in cervical cancer145 and have been shown to predict prognosis in several 

cancers, including brain and breast cancers146, 147.  Spectroscopic studies examining 

tumor recurrence in breast cancer and brain cancer patients also reported increased 

lactate levels in recurrent tumors128-130.  Our results suggest that Ldhb dowregulation 

may be one underlying molecular determinant of the observed increase in lactate levels 

during tumor progression.  Previous studies have implicated Ldha and Pkm2 as key 

players in modulating lactate concentrations in tumors83, 148.  The role of Ldhb in 

tumorigenesis, however, has received relatively little attention.  Some have reported 

Ldhb downregulation and increased lactate levels in highly metastatic prostate cancer 

cell lines87 and metastatic hepatocellular carcinoma149.  We speculate that Ldhb 

downregulation might play a role in breast cancer recurrence.  However, further studies 

will be needed to investigate this possibility. 

 Similar to our observation showing increased glycine levels in recurrent tumors in 

mice, higher glycine levels have been reported in recurrent astrocytomas and recurrent 

glioblastomas compared to their corresponding primary tumors128.  Increased glycine 

production occurs when higher amounts of carbon from glycolysis are diverted into 

serine biosynthesis, the pathway implicated in glycine and serine production.  Genetic 

profiling of enzymes involved in this pathway in mice revealed increased Phgdh levels 

and lower Gldc levels in recurrent tumors.  Recent studies have identified Phgdh as a 
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central player in tumorigenesis and have implicated it in modulating glycine levels in a 

number of human cancers150, 151.  In our study however, Gldc, but not Phgdh, was 

significantly correlated with glycine levels in tumor samples.  Gldc is a key component of 

the glycine cleavage system.  We speculate that lower Gldc levels might result in glycine 

accumulation due to reduced glycine breakdown.  Recent studies suggest a role for 

glycine decarboxylase in tumor initiatiting cells in non-small cell lung cancer152.  Further 

studies will be needed to evaluate the role of Gldc in cancer progression.   

 Recurrent mouse mammary tumors also exhibited increased levels of glutamate 

and decreased levels of glutamine, reflected in an increased glutamate to glutamine ratio 

(glu/gln).  An increased glu/gln rato has also been reported in recurrent astroctyomas in 

humans128.  Interestingly, examination of sera from patients with recurrent breast cancer 

showed decreased, rather than increased, glutamate levels compared to patients without 

recurrence130.  We speculate that the differences in our findings might stem from the fact 

that our measurements were made in tumor tissue whereas decreased glutamate levels 

were reported in patients’ sera.  While tumor tissue might exhibit increased glutamate 

production, glutamate might not be readily secreted into the blood.   

 The observed increase in glu/gln ratio observed in this study could be explained 

by the increase in Gls1 levels that are found in recurrent tumors.  The production of 

glutamate from glutamine is catalyzed by glutaminase (Gls1).  Here, we report increased 

Gls1 levels in recurrent tumor recurrence that correlated with increases in the ratio of 

glu/gln.  Gls1 has been identified as a key component in Myc-driven tumorigenesis97, 98 

and its expression is required for tumor growth in xerograft models100, 153, 154.  Gls1 has 

not been previously implicated in the process of tumor recurrence.  Indeed, to our 

knowledge, few studies have examined the association between changes in 
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glutaminolytic activity and tumor progression.  Our data suggest that increased 

glutamine metabolism may play a role in breast cancer progression. 

 Another metabolic feature of tumor recurrence observed in our model was 

decreased phosphocholine production.  Choline metabolism in tumorigenesis has been 

subject of intense study since the 1980s155.  In particular, phosphocholine has been 

shown to be a second messenger essential for mitogenic acitivity156.  Multiple studies 

have reported an association between increased choline uptake and phosphocholine 

production and malignant transformation157-160, as well as progressive increases in total 

choline during tumor progression125, 127.  Fewer studies, however, have reported 

decreased total choline or phosphocholine levels in tumors.  Examination of tissue 

samples from recurrent brain tumors found increased total choline levels in recurrent 

astrocytoma, but decreased total choline in recurrent glioblastomas, compared to 

corresponding primary tumors128.  Similarly, decreases in phosphocholine/glyceryl-

phosphocholine ratio have been reported during mammary tumors progression from 

estrogen-dependent growth to estrogen-independent growth161.  

 We speculate that the decrease in phosphocholine levels that we observe in 

recurrent mouse mammary tumors could be due to the HER2/neu-independent growth of 

recurrent tumors.  Activation of the PI3K pathway has been demonstrated to upregulate 

Chka levels in tumors162, 163.  In this regard, the PI3K pathway is active in primary 

HER2/neu-driven tumors, but not in recurrent tumors in our model.  As predicted from 

this, we found decreased levels of Chka in recurrent mammary tumors.  Chka catalyzes 

the conversion of choline into phosphocholine and expression levels of Chka correlated 

with the observed phosphocholine levels in the samples analyzed.  While increased 

Chka levels and increased choline metabolism have been previously correlated with 

worse prognosis in human cancer127, 164, our results suggest that decreased Chka levels 
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and decreased phosphocholine levels might be a feature of tumor progression in certain 

cancers.   

 Recurrent tumors exhibited lower succinate levels compared to primary tumors.  

Dysregulated succinate metabolism has been linked to tumorigenesis.  Specifically, 

several studies have identified mutations in succinate dehydrogenase that result in 

succinate accumulation, a phenomenon that promotes tumorignenesis through the 

stabilization of hypoxia inducible factor (Hif)165.  The conversion of succinate to fumarate 

is catalyzed by succinate dehydrogenase (Sdh).  In this study, we report increased 

levels of Sdhb expression in recurrent tumors that were correlated with succinate levels.  

In theory, higher Sdhb levels will be expected to induce higher consumption of 

succinate, resulting in lower levels of succinate in recurrent tumors.  Sdhb dysregulation 

has been previously reported in familial phaeochromocytomas and paragangliomas166.  

While we have not yet determined whether succinate dehydrogenase is mutated in 

recurrent tumors, we speculate that increased Sdhb expression may contribute to breast 

cancer progression.  

 Spectroscopic profiling of recurrent tumors also revealed decreased myo-Inositol 

and increased taurine levels compared to primary tumors.  Previous studies have 

reported both increases and decreases in myo-inositol and taurine levels with malignant 

transformation in breast and brain tumors128, 143, 167 as well as a decrease in myo-inositol 

levels as astrocytomas progress to higher grades126.  Both taurine and myo-inositol play 

a role in cellullar osmoregulation168.  Myo-inositol has also been shown to contribute to 

the cellullar messenger inositol polyphosphates pool169.  However, the precise 

contribution of myo-inositol and taurine levels to tumorigenesis remains undefined.  

Based on our findings in this study, we speculate that changes in myo-inositol and 
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taurine metabolism might be involved in tumor recurrence either through their effect on 

osmoregulation and/or through the role of myo-inositol in cellullar signaling.   

 To begin to assess the potential clinical applicability of our findings, we 

generated a gene expression signature based on the expression of key metabolic 

enzymes identified in our study and assessed its prognostic potential in a cohort of 

breast cancer patients.  Expression of metabolic enzymes associated with tumor 

recurrence in mice was associated with decreased recurrence-free survival in patients 

with HER2-positive breast cancers.  Previous studies have suggested a role for 

metabolic profiling of sera samples in the prognosis assessment of patients with breast 

cancer130 as well as colorectal cancer131.  Our study further confirms that evaluation of 

the expression of specific metabolic enzymes could potentially aid in predicting risk of 

relapse in patients diagnosed with HER2-positive breast cancer. 

 While our study identifies a number of metabolic differences between primary 

and recurrent mammary tumors, our analysis was limited to fourteen metabolites 

detectable by 1H MRS.  A more comprehensive metabolic profiling study remains to be 

conducted using mass spectrometry for a broader view of the metabolic changes that 

occur during tumor progression.  Furthermore, the genetic profiling component of this 

study was limited to assessing gene expression levels by qRT-PCR.  Clearly, changes in 

the expression levels of metabolic enzymes are only one contributing factor to the level 

of enzymatic activity that can alter metabolite levels.  More comprehensive future studies 

will be needed to directly assess changes in enzyme activity at the protein level.  An 

additional limitation of this study is that the human association analysis focused on 

patients with HER2-positive breast cancers without stratification by tumor subtype or 

classical prognostic characteristics.  Stratification of larger human datasets by tumor 

grade and subtype, while accounting for known clinical prognostic factors, could unveil 
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additional associations between changes in metabolites and breast cancer progression.  

Finally, this study was limited to examining steady-state metabolite levels in tumor 

extracts.  Given that metabolism is a dynamic process, future studies using isotopic 

labeling experiments in vivo will be needed to gain a better understanding of the 

changes in metabolic pathway fluxes that might accompany tumor recurrence. 

 Taken together, our results suggest that tumor metabolism evolves during breast 

cancer progression.  Specifically, recurrent tumors exhibit increased lactate levels as 

well as increased glutamate to glutamine ratio that may be indicative of a more active 

glutaminolytic phenotype.  We also found increases in glycine levels that may reflect the 

diversion of glycolytic intermediates into serine biosynthesis.  Finally, recurrent tumors 

also exhibited decreased phosphocholine and Chka levels.  Overall, our results indicate 

that metabolic profiling could improve our understanding of the molecular pathways 

involved in breast cancer recurrence.  Further assessment of these pathways might 

enable the identification of novel therapeutic targets as well as diagnostic or prognostic 

markers useful in the management of breast cancer patients. 
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3.5 Tables 

Table 1. 1H Metabolites assessed in this study. Chemical shifts are measured in 
reference to 3-trimethylsilylpropionate (TSP) at 0 ppm. (m:multiplet; db:doublet; GPC: 
glycerophosphocholine; PC: phosphocholine). 

Metabolite Abbreviation 
Chemical 

Shift (ppm) 
Spin-Spin Proton(s) 

Lactate Lac 1.33 Doublet CH3 

Alanine Ala 1.47 Doublet CH3 

Acetate Acet 1.91 Singlet CH3 

Glutamate Glu 2.06 Multiplet CH2 

Succinate Succ 2.40 Singlet CH2 

Glutamine Gln 2.46 db of triplet CH2 

Creatine Cr 3.03 Singlet CH3 

Choline Cho 3.20 Singlet (CH3)3-N
+

 

PC PC 3.59 Singlet (CH3)3-N
+
 

GPC GPC 3.67 Singlet (CH3)3-N
+
 

Taurine Tau 3.25,3.41 Triplet, triplet CH2-N, CH2-S 

Glycine Gly 3.97 Singlet CH2 

myo-Inositol Ino 3.29,3.55,4.07 Triplet, m, triplet H5;H1,H3;H2 

Formate For 8.46 Singlet CH-O 
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Table 2. Metabolite quantification in primary and recurrent mammary tumors.  Results 
are normalized to grams of wet weight of the extracted tumor.  g ww: grams of wet 
weight; gly: glycine; gln: glutamine; glu: glutamate; tCho: total choline; ala: alanine; cr: 
creatine, pc: phosphocholine, gpc: glycerophophocholine . 

Metabolite 
Primary Tumor 

(µmol/g ww) 

Recurrent Tumor 

(µmol/g ww) 
p-value 

Lactate 7.85 ± 1.66 11.38 ± 1.40 <0.001 

Alanine 2.14 ± 0.41 2.08 ± 0.34 0.372 

Acetate 1.26 ± 0.92 0.83 ± 0.44 0.122 

Glutamate 3.48 ± 0.37 4.45 ± 1.43 0.042 

Succinate 0.61 ± 0.10 0.44 ± 0.05 <0.001 

Glutamine 0.59 ± 0.19 0.32 ± 0.07 0.002 

Creatine 1.82 ± 0.59 1.90 ± 0.70 0.397 

Choline 0.35 ± 0.11 0.31 ± 0.06 0.172 

PC 1.03 ± 0.39 0.52 ± 0.16 0.002 

GPC 1.40 ± 0.40 1.26 ± 0.29 0.216 

Taurine 5.20 ± 0.87 7.31 ± 2.14 0.016 

Glycine 1.18 ± 0.09 2.18 ± 0.56 <0.001 

myo-Inositol 4.42 ± 2.1 2.65 ± 0.66 0.020 

Formate 0.99 ± 0.79 0.71 ± 0.31 0.178 

Gly/Cr 0.69 ± 0.18 1.22 ± 0.45 0.002 

tCho/Cr 1.61 ± 0.46 1.98 ± 2.59 0.342 

Ala/Cr 1.27 ± 0.42 1.21 ± 0.47 0.385 

Glu/Gln 6.74 ± 2.38 12.67 ± 1.53 <0.001 
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3.6 Figure Legends 

 

Figure 1. Primary and recurrent mammary tumors exhibit different metabolic 

phenotypes.  (A) The HER2/neu doxycycline-inducible bitransgenic mouse model 

(MTB/TAN) used in this study reproduces key features of human breast cancer 

progression: primary tumor development, tumor dormancy and tumor recurrence.  (B) 

Sample spectra from an un-induced mammary gland, a primary tumor and a recurrent 

tumor displaying different metabolic profiles.  TSP is used as an external.  Spectra are 

shown for tissue of similar weights.  TSP: 3-trimethylsilylpropionate; Lac: Lactate CH3; 

Ala: Alanine CH3; Acet: Acetate CH3; Glu: Glutamate CH2-4; Succ: Succinate CH2; Gln: 

Glutamine CH2-4; Cr: Creatine CH3; Cho: Choline; Phosphocholine (PC) and 

Glycerophosphocholine (GPC); Ino: Inositol; Tau: Taurine CH2-N-; Gly: Glycine; For: 

Formate; tCho is total choline and is the combination of choline, PC and GPC.  (C) 

Principal component analysis conducted on the metabolites analyzed in this study 

confirms distinct metabolic signatures for primary and recurrent tumors.  Un-induced 

display metabolic profiles distinct from tumors. 

 

Figure 2. Lactate metabolism is upregulated in mammary tumor recurrence.  (A) 

Reactions leading to lactate production in glycolysis.  Only enzymes previously shown to 

affect lactate levels are shown.  (B) Expression levels of enzymes implicated in lactate 

production in primary and recurrent tumors in the MTB/TAN model.  (C) Correlation 

between lactate levels measured by proton MRS and expression levels of associated 

metabolic enzymes assessed by qRT-PCR.  Pkm2: pyruvate kinase isoform M2; Ldha: 

lactate dehydrogenase A; Ldhb: lactate dehydrogenase B. 
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Figure 3. Glycine metabolism is upregulated in mammary tumor recurrence.  (A) 

Reactions leading to glycine production.  3-PG is a metabolic intermediate in the 

glycolytic pathway.  (B) Expression levels of enzymes in the pathways implicated in 

glycine production in primary and recurrent tumors in the MTB/TAN model.  (C) 

Correlation between glycine levels measured by proton MRS and expression levels of 

associated metabolic enzymes assessed by qRT-PCR.  3-PG: 3-Phophoglycerate; 3-

PHP: 3-Phosphohyroxypyruvate; Phgdh: phosphoglycerate dehydrogenase; Gldc: 

glycine decarboxylase. 

 

Figure 4. Glutamine, choline and succinate metabolism exhibit marked changes 

during mammary tumor recurrence.  (A) Reactions leading to consumption of 

glutamine, choline and succinate respectively.  (B) Expression levels of enzymes 

implicated in each of the metabolic pathways in primary and recurrent tumors in the 

MTB/TAN model.  (C) Correlation between metabolite levels or ratio measured by proton 

MRS and expression levels of associated metabolic enzymes assessed by qRT-PCR.  

Gls: glutaminase, Chka: choline kinase α; Sdhb: succinate dehydrogenase b; Gln: 

glutamine; Glu: glutamate. 

 

Figure 5. High expression in human breast cancers of metabolic enzymes 

characteristic of recurrent mouse mammary tumors is associated with decreased 

relapse-free survival in HER2-positive human breast cancer.  (A) A heatmap 

showing expression levels of 6 profiled metabolic genes whose expression differed 

between primary and recurrent MTB/TAN tumors.  qRT-PCR expression levels of these 
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genes were used to generate a metabolic gene expression signature.  (B) Validation of 

the generated metabolic expression signature in an independent set of 10 primary and 

recurrent tumors showing that recurrent MTB/TAN tumors exhibit higher metabolic gene 

expression activity score.  (C) Expression of metabolic enzymes characteristic of 

recurrent mouse mammary tumors is associated with decreased 5-year relapse-free 

survival in HER2-positive breast cancer patients.  Ldhb: lactate dehyrdrogenase B; Gldc: 

glycine decarboxylase; Gls: glutaminase; Chka: choline kinase α; Sdhb: succinate 

dehydrogenase b; H.R.: hazard ratio.   
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3.7 Figures 

Figure 1 
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CHAPTER 4 

Metabolic Reprogramming in Cancer: Unraveling the Role of Glutamine in 

Tumorigenesis 

 

ABSTRACT 

Increased glutaminolysis is now recognized as a key feature of the metabolic profile of 

cancer cells, along with increased aerobic glycolysis (the Warburg effect).  In this 

chapter, we discuss the roles of glutamine in contributing to the core metabolism of 

proliferating cells by supporting energy production and biosynthesis.  We address how 

oncogenes and tumor suppressors regulate glutamine metabolism and how cells 

coordinate glucose and glutamine as nutrient sources.  Finally, we highlight the novel 

therapeutic and imaging applications that are emerging as a result of our improved 

understanding of the role of glutamine metabolism in cancer.   

 

4.1 Introduction 

Glutamine has long been recognized to play a unique role in the metabolism of 

proliferating cells, as compared to other amino acids88, 89.  It is the most abundant amino 

acid in plasma, and most tumors consume and utilize glutamine at much higher rates 

than other amino acids88.  Although glutamine is a non-essential amino acid in normal, 

non-dividing tissue, it is essential for the proliferation of most cells and the viability of 

some cancer cells that have become addicted to glutamine170.  Glutamine metabolism 

contributes to the ability of cancer cells to continuously grow and proliferate by 
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supporting ATP production and biosynthesis of proteins, lipids, and nucleic acids.  

Glutamine also modulates redox homeostasis and can impact the activity of signal 

transduction pathways90, 92.   

 Glutamine’s involvement in oxidative mitochondrial metabolism in cancer cells 

was reported as early as the 1970s171, and recent investigation has greatly expanded 

our understanding of the role and regulation of glutamine metabolism in cancer.  In this 

article, we discuss the role of glutamine in supporting cellular proliferation and review 

current knowledge of how oncogenes and tumor suppressors regulate glutamine 

metabolism.  We also discuss mechanisms through which metabolism of glutamine and 

glucose may be coordinated.  Finally, we address the therapeutic and imaging 

applications that are emerging as a result of increasing recognition of the importance of 

glutamine metabolism in cancer. 

 

4.2 Glutamine Metabolism Supports Cell Proliferation 

Glutamine plays several important metabolic roles in the cell.  It serves as a carbon 

source for energy production, contributes carbon and nitrogen to biosynthetic reactions, 

and regulates redox homeostasis (Figure 1).  Glutamine availability and metabolism can 

also modulate activity of signal transduction pathways.  As we discuss below, each of 

these functions of glutamine contributes to its ability to support cell growth and 

proliferation.   
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Glutamine: a Primary Carbon Source for Energy Produ ction and Biosynthesis 

Each of glutamine’s fates in the cell serve important functions, although it is glutamine’s 

role in supporting mitochondrial metabolism that is the primary reason that it is required 

in such large quantities.  While non-proliferating cells can completely oxidize glucose-

derived carbon in the TCA cycle to support their energy needs, proliferating cells use 

nutrients to support biosynthesis in addition to ATP production74.  In proliferating cells, 

the TCA cycle metabolite citrate is exported out of the mitochondria to be used for 

generation of acetyl-CoA in the cytoplasm, which serves as a precursor for lipid 

biosynthesis.  Because of the continual loss of citrate from the TCA cycle, replenishment 

of TCA intermediates (anaplerosis) is necessary, and glutamine serves as an important 

anaplerotic substrate in most proliferating cells.  Citrate is generated from the 

condensation of acetyl-CoA and oxaloacetate, and 13C labeling of glucose and glutamine 

in proliferating glioblastoma cells demonstrated that in these cells glutamine is a major 

source of oxaloacetate, whereas glucose carbon is the predominant source of acetyl-

CoA91.  Glutamine’s role as a carbon source supporting TCA cycle function is critical for 

glutamine-addicted cancer cells.  Cells expressing oncogenic levels of c-Myc die upon 

glutamine withdrawal, and viability can be restored by supplementing cells with TCA 

cycle intermediates, such as pyruvate, oxaloacetate, or alpha-ketoglutarate97, 98, 172. 

 By contributing to citrate production, glutamine also supports de novo 

lipogenesis91, 173.  While glutamine frequently plays a supporting role in lipogenesis by 

allowing transfer of glucose-derived acetyl-CoA from the mitochondria to the cytoplasm 

through citrate, glutamine carbon can also directly supply acetyl-CoA for lipogenesis.  

This can occur through two mechanisms.  First, glutamine can contribute to lipogenesis 

through conversion of malate into pyruvate by malic enzyme, providing pyruvate that can 
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then re-enter the TCA cycle as acetyl-CoA174, 175.  Second, glutamine, after conversion to 

alpha-ketoglutarate, can undergo reductive carboxylation to generate isocitrate, which is 

then converted into citrate176-181.  The direct contribution of glutamine to de novo 

lipogenesis is particularly apparent under conditions of hypoxia or mitochondrial 

dysfunction, in which a number of cancer cell lines were shown to depend almost 

exclusively on the reductive metabolism of alpha-ketoglutarate to synthesize acetyl-

CoA177-179, 181. Remarkably, HIF-alpha expression is sufficient to drive reductive 

carboxylation of alpha-ketoglutarate, even under normoxic conditions, indicating that 

“reversal” of the TCA cycle can be actively programmed177, 178.  In lymphoma cells, on 

the other hand, Myc was shown to promote increased oxidation of glutamine, even 

under hypoxia174.  Glutamine could in fact fully sustain the oxidative TCA cycle, even in 

the absence of glucose, in Myc-driven cells174.  Recent estimates indicate that 10-25% of 

acetyl-CoA used for de novo lipogenesis comes from glutamine under normoxic 

conditions, and that up to 80% of acetyl-CoA for lipogenesis may come from glutamine 

in hypoxia178.  Thus, the mechanism by which glutamine fuels lipid synthesis and 

proliferation is highly dependent on the oxygen and nutrient availability in the tumor 

environment, as well as oncogene expression, underlining the metabolic flexibility of 

cancer cells.   

 

 Glutamine: a Nitrogen Donor 

In addition to the major function of glutamine in supplying carbon to mitochondria, 

glutamine serves as a nitrogen source.  As depicted in Figure 1, the amido and amino 

groups of glutamine contribute to multiple biosynthetic pathways, including synthesis of 

non-essential amino acids, nucleotides, and hexosamines.  Glutamine deprivation 
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causes growth arrest in most cell lines, and recent studies have highlighted glutamine’s 

role as a nitrogen donor during proliferation.  Supplementation of glutamine-starved Myc-

driven cells with TCA intermediates was shown to rescue viability but not proliferation, 

suggesting that during proliferation, glutamine serves critical functions in addition to 

supporting the TCA cycle172.  Indeed, rescue of proliferation during glutamine deprivation 

in Hep3B cells was more potent when cells were supplemented with alternate nitrogen 

sources such as alanine or asparagine than with alpha-ketoglutarate.  Supplementation 

of alanine and alpha-ketoglutarate together produced a synergistic rescue182.   

 In particular, glutamine’s role in nucleotide biosynthesis, in which it is an obligate 

nitrogen donor for both purine and pyrimidine synthesis, has been implicated in ongoing 

support of proliferation.  K-ras transformed fibroblasts cultured in glutamine-depleted 

media exhibit decreased cellular proliferation and abortive S phase entrance, which 

could be restored by addition of the four deoxyribonucleotides183.  This result suggests 

that DNA synthesis may be particularly constrained by availability of glutamine and thus 

may inhibit proliferation when glutamine availability is limited.  Interestingly, the 

expression of glutaminase (Gls1), an enzyme that catalyzes the conversion of glutamine 

to glutamate, is regulated during the cell cycle, with high expression during S phase that 

decreases as cells progress into G2/M.  Glutamine consumption correlates with Gls1 

expression, and following entry into S Phase, glutamine-deprived cells fail to progress to 

G2/M phases184.  Thus, glutamine’s function during DNA synthesis contributes to its role 

in supporting cell proliferation. 
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 Role of Glutamine in Cell Signaling  

In addition to its direct metabolic roles, glutamine has also been implicated in modulating 

cell signaling pathways to promote growth.  Slc1a5 (ASCT2), a high-affinity L-glutamine 

transporter, is upregulated in multiple types of cancer and has been implicated in 

mediating net glutamine uptake in cancer cells185.  Entry of glutamine into the cell 

through Slc1a5 plays a role in regulating mammalian target of rapamycin complex 1 

(mTORC1) activity185-187.  The mechanism for this was recently elucidated; glutamine 

uptake and subsequent rapid efflux through Slc7a5 (LAT1) in exchange for essential 

amino acids (EAA) allows EAA-dependent mTORC1 activation186. 

 In addition to its role in promoting mTORC1 activation to support cell growth, 

some evidence suggests a possible role for glutamine in regulation of other signaling 

pathways.  As a substrate for oxidative mitochondrial metabolism, glutamine may also 

influence signaling through regulation of mitochondrial ROS production188.  For example, 

in IL-3-dependent hematopoietic progenitors, inhibition of glutamine metabolism with 6-

diazo-5-oxo-L-norleucine (DON) blocks the sustained IL-3-dependent phosphorylation of 

Stat5175.  Stat5 phosphorylation in DON-treated cells could be rescued by alpha-

ketoglutarate, suggesting that mitochondrial metabolism of glutamine could modulate 

Stat5 phosphorylation.  Antioxidant treatment inhibited glutamine-dependent Stat5 

phosphorylation in this context, consistent with previous studies showing that Stat5 

phosphorylation can be promoted under conditions in which reactive oxygen species 

(ROS) levels are elevated189, 190.  In the context of oncogenic Kras, glutamine 

metabolism and mitochondrial ROS production was shown to contribute to cells’ capacity 

to proliferate by promoting ERK signaling191.  Through modulation of physiological ROS 
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production from the mitochondria, glutamine metabolism may participate in modulating 

multiple cell signaling pathways.   

  

Glutamine in Regulation of Redox Homeostasis 

In addition to glutamine metabolism contributing to mitochondrial ROS production 

through its oxidation in the TCA cycle, much recent evidence indicates that glutamine 

metabolism plays a key role in the maintenance of cellular redox homeostasis98, 174, 192, 

193.  This is due in large part to the role of glutamine in synthesis of glutathione, an 

endogenous antioxidant comprised of glutamate, cysteine, and glycine194, 195.  As 

described above, glutamate derives in large part from glutamine taken up by the cell.  

Furthermore, glutamate can contribute to the uptake of cystine through the 

countertransporter Slc7a11196.  In its antioxidant role, glutathione (GSH) donates 

electrons, becoming oxidized (GSSG).  In order to restore glutathione to its reduced 

form, NADPH is required.  Glutamine metabolism can also lead to increased production 

of NADPH, through its metabolism through malic enzyme92.  Accordingly, glutamine 

metabolism was shown to promote an increased GSH/GSSG ratio in p53+/+ cells 

(discussed further below)192, 193.  

 

4.3 Oncogenes Regulate Glutamine Metabolism   

As outlined above, glutamine plays an important role in supporting cancer cell 

proliferation.  Perhaps not surprisingly, data has emerged in recent years demonstrating 

that glutamine metabolism is directly regulated by oncogenes and tumor suppressors.  

Increased glutaminase activity was reported to correlate with tumor growth rate as early 
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as the 1960s 197, 198, and Myc has recently emerged as a critical regulator of glutamine 

metabolism and glutamine addiction in cancer cells97, 98, 172.  A growing number of other 

tumor suppressors and oncogenes have also been implicated in regulating glutamine 

metabolism100, 192, 193, 199.  

 

Myc: Master Regulator of Glutamine Metabolism 

Myc, a proto-oncogene and major regulator of cell proliferation, stimulates expression of 

multiple metabolic genes and is well known to promote glycolytic metabolism 200.  More 

recently, it has become clear that Myc also stimulates glutamine uptake and metabolism 

97, 98.  Oncogenic levels of Myc cause glutamine addiction, and cells undergo apoptosis 

when deprived of glutamine97, 172.  Myc stimulates glutamine metabolism both directly 

and indirectly.  As a transcription factor, Myc directly binds the promoters and stimulates 

expression of glutamine metabolism genes, such as the transporter Slc1a597.  Myc also 

promotes glutaminase activity indirectly by repressing expression of miR-23a/b, which 

targets Gls198.  

What functions of glutamine are critical for mediating cell survival in the context 

of oncogenic Myc?  Viability in the absence of glutamine was rescued by 

supplementation with TCA cycle substrates97, 98, 172, indicating that glutamine’s 

anaplerotic role is critical for supporting cell survival in Myc-transformed cells. 

Furthermore, RNAi-mediated suppression of Gls1 also led to an increase in ROS levels 

and cell death, associated with diminished glutathione levels98.  In Myc-driven cells, 

carbon derived from glutamine was shown to be preferentially used for glutathione 
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synthesis, in contrast to carbon originating from glycolysis174.  These results suggest that 

glutamine’s antioxidant roles are important for survival in Myc-driven cells. 

 

 Role of Rho GTPases in Glutamine Metabolism 

Rho GTPases have also recently been reported to regulate glutamine metabolism 100.  

Cancer cells dependent on Rho GTPase signaling display higher glutaminase activity, 

regulated in an NF-kB-dependent manner, and glutaminase activity is required for the 

transforming capability of at least three different Rho GTPases (Cdc42, Rac1 and 

RhoC)100.  A small molecule inhibitor that impaired the growth and invasive potential of 

RhoGTPase-transformed fibroblasts and human cancer cells was found to target 

glutaminase, suggesting that glutamine metabolism could potentially be targeted in the 

context of Rho GTPase-driven tumorigenesis100. 

 

 Ras Transformation and Glutamine 

While Kras-mediated transformation has been reported to stimulate greater dependence 

on metabolism of glucose than glutamine, Kras-transformed cells nevertheless exhibit 

sensitivity to reduced glutamine conditions and fail to proliferate at levels of glutamine 

that can support growth of non-transformed cells183.  Metabolic flux analysis provided 

evidence for both increased utilization of glutamine carbon to support the TCA cycle and 

contribution of glutamine’s nitrogen to biosynthetic processes in Kras transformed 

cells201.  Interestingly, mitochondrial metabolism was shown to promote proliferation in 

the context of oncogenic Kras through generation of ROS intermediates by the Qo site of 

mitochondrial complex III.  Glutamine-dependent ROS production promoted growth 
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through regulation of ERK signaling, and disruption of mitochondrial respiration led to 

decreased tumor formation in an in vivo mouse model of Kras-driven lung cancer199.   

Depending on ROS levels and cellular state, ROS can either have pro-

proliferative effects in stimulating signal transduction or can cause damage and death 188, 

202.  The role of glutamine in the regulation of ROS levels appears to be different 

depending on context98, 174, 192, 193, 199.  Moreover, the complementing effects of glutamine 

in increasing oxidative mitochondrial metabolism and hence ROS production versus 

promotion of antioxidant defenses may balance differently and regulate different cell 

fates depending on cell type and/or oncogenic context.   

 

 p53: A tumor suppressor’s role in glutamine metabo lism 

p53 is the first tumor suppressor to be shown to regulate glutamine metabolism.  p53 

induces the expression of Gls2, leading to increased mitochondrial oxidative 

phosphorylation and energy production from glutaminolysis.  Gls2 induction also 

increased glutathione levels and reduced ROS levels, conveying protection against 

oxidative stress-induced apoptosis.  Induction of Gls2 was suggested to contribute to 

p53-dependent tumor suppression, since Gls2 expression was reduced in liver tumors 

and overexpression of Gls2 reduced tumor cell growth and colony formation 192, 193.   

It is noteworthy that Gls1 and Gls2 seem to have contrasting effects in 

tumorigenesis.  Myc induces the expression of Gls1, while p53 induces the expression of 

Gls2.  Gls1 downregulation inhibits oncogenic transformation and cancer cell 

proliferation100, 153, 154, 174 while overexpression of Gls2 is tumor suppressive192, 193.  The 

two isoenzymes of glutaminase are known to have different structural and kinetic 
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properties, are subject to different regulation mechanisms, and exhibit different tissue-

specific expression203.  Notably, both enzymes have been implicated in regulating 

glutathione production and redox homeostasis, which is important for mediating cell 

survival in Myc-driven cells, as well as for protecting against p53-dependent apoptosis98, 

192, 193.  Hence, cellular context may be important for determining whether these enzymes 

act to promote or suppress tumorigenesis.  It is also possible that alternate activities of 

these enzymes could also play a role in their divergent effects; for example, Gls2 was 

reported to interact with other proteins and to alter gene expression patterns in glioma 

cells204, 205.  Further investigation is needed to understand the mechanisms underlying 

the different roles of Gls1 and Gls2 in tumorigenesis.   

 

4.4 Mutations in Metabolic Enzymes and Glutamine Metabolism 

As described above, a growing number of mutations in cancer have been reported to 

impact glutamine metabolism.  Metabolic enzymes are also mutated in some cancers, 

including mutations in succinate dehydrogenase (SDHA, SDHB, SDHC, SDHAF2), 

fumarate hydratase (FH), and isocitrate dehydrogenase (IDH1/2).  While the metabolic 

profiles of tumors bearing mutations in metabolic enzymes are unique based on the 

mutation, glutamine metabolism is also impacted in each of these circumstances.   

 

 IDH Mutations and Glutamine Metabolism 

Mutations within IDH1 and IDH2 have been reported in low-grade gliomas, acute 

myeloid leukemias, and a number of other malignancies206-212.  While wild type IDH1 and 

2 interconvert alpha-ketoglutarate and isocitrate, these mutations result in a neomorphic 
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activity that catalyzes the conversion of alpha-ketoglutarate into 2-hydroxyglutarate (2-

HG), a molecule described as an oncometabolite for its ability to independently induce 

metabolic changes similar to those associated with IDH mutations213, 214.  2-HG is 

thought to act by inhibiting certain alpha-ketoglutarate-dependent enzymes, including 

histone demethylases and Tet proteins, which can convert 5-methylcytosine into 5-

hydroymethylcytosine and may participate in DNA demethylation215-219.   

Glutamine is the main source of alpha-ketoglutarate used by mutant IDH to 

produce 2-HG.  Hence, the possibility that targeting glutamine metabolism could 

influence the activity of the mutant IDH enzyme was investigated154.  Glutaminase 

inhibition indeed led to slowed proliferation of glioblastoma cells expressing mutant as 

compared to wild-type IDH1, and the growth suppression was rescued by alpha-

ketoglutarate.  However, despite reducing glutamate and alpha-ketoglutarate levels and 

suppressing growth in IDH1 mutant cells, 2-HG levels remained unaltered upon Gls 

inhibition154.  The mechanism through which Gls inhibition selectively acts on cells 

expressing mutant IDH is not clear.  Of note, metabolic profiling of IDH mutant cell lines 

indicates that broad metabolic changes occur in the presence of mutant IDH, including 

altered levels of TCA intermediates220; it is plausible that such alterations could play a 

role in sensitizing IDH mutant cells to suppression of glutaminase.   

 

 SDH and FH Mutations and Glutamine Metabolism 

Mutations in the genes encoding the TCA cycle enzymes succinate dehydrogenase 

(SDH) and fumarate hydratase (FH) cause familial and sporadic paraganglioma and 

phaeochromocytoma (SDH mutations) or hereditary leiomyomatosis and renal cell 

carcinoma (FH mutations)221, 222.  These mutations render the enzymes inactive, leading 
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to the accumulation of succinate and fumarate in the mitochondria.  High levels of these 

metabolites can inhibit members of the prolyl hydroxylase family (PHDs), which are 

alpha-ketoglutarate dependent223, 224.  This prevents the degradation of hypoxia inducible 

factor-1 (HIF-1α) and leads to a pseudohypoxic response and enhanced glycolysis.  The 

pseudohypoxic response mediates the increased tumorigenicity induced by the loss of 

these mitochondrial tumor suppressors223-225.  

Two recent studies have investigated the metabolic changes that result from FH 

mutations that allow these cells to survive and proliferate.  Metabolic modeling to assess 

pathways that allow cells to survive in the absence of FH, identified the heme 

biosynthesis pathway as synthetically lethal with FH mutations226.  Glutamine carbon is 

diverted into heme biosynthesis from succinyl-CoA.  This mechanism simultaneously 

allows generation of NADH by alpha-ketoglutarate dehydrogenase in order to fuel some 

ATP production by oxidative phosphorylation, as well as providing an outlet for glutamine 

carbon, from the impasse in the TCA cycle created by FH deficiency226.  To generate 

acetyl-CoA to synthesize lipids, FH-deficient cells were shown to rely on reductive 

carboxylation of glutamine-derived alpha-ketoglutarate to provide citrate181.  

 

4.5 Coordinating Glutamine and Glucose Utilization in Cancer 

As we have discussed, glutamine metabolism supports proliferation at several levels and 

its metabolism is directly regulated in many cancers.  Together, glucose and glutamine 

serve as the primary nutrients to fuel cancer cell proliferation.  Recent data indicate that 

the metabolism of these two nutrients is linked and that proliferating cells actively 

coordinate their metabolism (Figure 2).  In cancer cells, oncogenic Myc puts into place 

gene expression programs to simultaneously increase the uptake and metabolism of 
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both glucose and glutamine, as has been discussed in recent reviews200, 227, 228.  Cells 

presumably must also be able to detect and adapt to changing nutrient availability.  Two 

distinct mechanisms, described in section 5.1, have recently been reported through 

which glucose or glutamine availability is sensed and used to regulate the metabolism of 

the other nutrient.  On the other hand, recent data, discussed in section 5.2, indicates 

that some cancer cells also have the capacity to switch carbon source or compensate for 

reduced availability or metabolism of one nutrient by utilizing more of the other.    

 

Metabolism of glucose and glutamine is coordinated 

Recent data suggest that cells actively employ mechanisms to regulate metabolism of 

glucose or glutamine, dependent on the availability of the other (Figure 2).  Glucose 

availability was recently shown in an IL-3-dependent hematopoietic cell line to modulate 

cellular uptake of glutamine through the hexosamine biosynthetic pathway175, a branch 

of glucose metabolism that generates UDP-N-acetyl-D-glucosamine (UDP-GlcNAc), a 

donor substrate for glycosylation reactions229, 230.  Glucose deprivation inhibited growth-

factor-stimulated glutamine uptake, as a result of suppression of IL-3R surface 

expression and downstream signaling.  IL-3R is N-glycosylated and supplementing cells 

with the GlcNAc, a hexosamine pathway metabolite, at least partially rescued IL-3R 

surface expression and IL-3-dependent glutamine uptake.  Hence, glucose flux into the 

hexosamine biosynthetic pathway to support surface receptor glycosylation may serve 

as a metabolic checkpoint, though which cells can regulate growth-factor-dependent 

uptake of glutamine, in a glucose-dependent manner175. 

Reciprocally, a mechanism has been described through which glutamine 

availability can modulate glucose uptake, through the transcription factor MondoA.  
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MondoA is a member of the basic helix-loop-heliz zipper (bHLHZip) transcription factor 

family.  Similar to Myc, MondoA interacts with Mlx, a Max-like bHLHZip protein, and 

binds to E-box sites on target genes227.  The MondoA:Mlx complex is a glucose sensor 

present in the cytoplasm231.  Upon glucose uptake, the MondoA complex detects 

elevations in glucose-6-phosphate levels and transits into the nucleus232.  There, it 

stimulates expression of thioredoxin interacting protein (TXNIP), which constrains 

glucose uptake232.  A recent study showed that glutamine availability inhibited 

transcriptional activation of TXNIP expression by recruiting a histone deacetylase-

dependent co-repressor to the N-terminus of MondoA233.  Reduced TXNIP expression 

led to enhanced glucose uptake, as well as cell growth and proliferation. 

Supplementation of cells with alpha-ketoglutarate could also promote transcriptional 

repression of TXNIP and the induction of glucose uptake, suggesting that glutamine-

dependent anaplerosis modulates glucose uptake and cell growth through regulation of 

MondoA transcriptional activity233. 

 

 Carbon source flexibility in cancer cells  

Glucose and glutamine metabolism are regulated in a coordinated manner, and nutrient 

addiction can cause cancer cells to die in the absence of either glucose or glutamine.   

Cancer cells are notoriously resourceful, however, and two recent studies suggest that 

some cancer cells may be able to switch carbon sources.  Using SF188 glioblastoma 

cells, which overexpress Myc, the effects of impairments in glucose availability on 

glutamine uptake and metabolism were assessed93.  Glucose deprivation caused a large 

increase in the activity of glutamate dehydrogenase (GDH), and GDH was shown to be 

required for cells to survive impairments in glycolysis93.  Reciprocally, impairment of 
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glutamine metabolism led cells to adapt to become fully reliant on glucose for 

mitochondrial metabolism234.  Silencing of glutaminase suppressed growth, but cells 

were able to partially compensate by utilizing pyruvate carboxylase (PC) to allow use of 

glucose-derived carbon for anaplerosis234.  Thus, glutamine and glucose metabolic 

pathways might be able to compensate for one another in some circumstances, a 

possibility that should be considered when developing cancer therapeutics targeting 

metabolism.   

 

4.6 Glutamine Metabolism: Therapeutic and Imaging Implications 

 Therapeutic Targeting of Glutamine Metabolism 

With the recognition that metabolic reprogramming is a key feature of transformed cells 

has come significant interest in targeting metabolism, including glutamine metabolism, 

as a cancer therapy.  With glutamine participating in several key processes necessary 

for proliferation, as described in this article, there may be opportunities to interfere with 

glutamine metabolism at multiple points.  Gls inhibition has shown promise in several 

models100, 101, 153, 154, 174, 235.  Given the adaptability of cancer cells, inhibition of glutamine 

metabolism may potentially work best when combined with other therapies.  Specific 

strategies for targeting glutamine metabolism in cancer cells have been recently 

reviewed in detail, to which the reader is referred for more information92, 99, 236.  Targeting 

glutamine metabolism is an area of intense interest with much potential for future 

investigation and therapeutic benefit. 
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Glutamine Imaging: New Diagnostic Potential 

Interest in imaging glutamine metabolism is also rising, in recognition of its potential to 

elucidate biologic characteristics of tumors exhibiting increased glutamine metabolism 

and to assess response to glutamine-targeted therapy237.  Novel glutamine-based 

imaging techniques have emerged over the last few years, including positron emission 

tomography (PET) imaging and hyperpolarized magnetic resonance (MR).   

Fluorinated glutamines have been synthesized for PET imaging, analogous to 

the commonly used fluorodeoxyglucose-(FDG)-PET used for imaging tumors that 

consume high levels of glucose.  In particular, 18F-(2S,4R)4-fluoroglutamine was shown 

to be taken up both by glutamine-dependent cancer cell lines and by tumors in mice, 

indicating the promise of this technology for imaging glutaminolytic tumors238, 239.  Very 

recently, another glutamine PET tracer, l-[5-11C]-glutamine, was described and has 

shown promise for the imaging of glutaminolytic cells and tumors, both in vitro and in 

vivo240. 

Magnetic resonance imaging has long been used as a technique allowing direct 

assessment of glutaminolytic intermediates.  1H magnetic resonance spectroscopy 

(MRS) allows the quantification of both glutamine and glutamate and can be used to 

measure the steady-state concentrations of both of these metabolites in vitro and in 

vivo169, 237, 241.  However, metabolism is a dynamic process and increased information 

can be gained from examining metabolic fluxes.  Probing metabolic fluxes has been 

typically achieved by administering isotopically-labeled compounds (such as 13C-labeled 

metabolites) to cells or animals and following the incorporation of the labeled nuclei (e.g. 

carbon) into downstream metabolites91, 242, 243.  Yet, the biggest challenge with 13C MRS 
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has long been the low signal-to-noise ratio (SNR) due to the low gyromagnetic ratio of 

the NMR-active carbon.  Advances in MR imaging recently led to the introduction of a 

novel method, hyperpolarized MR, for real-time monitoring of single enzyme-catalyzed 

reactions of glutamine and glutamate metabolism.  In hyperpolarized MR, a molecule is 

labeled with an NMR-active nucleus (typically 13C) and that molecule is hyperpolarized 

using dynamic nuclear polarization (DNP).  By dramatically increasing the fraction of 

targeted nuclei that are polarized (by as much of a factor of 105), DNP allows a large 

increase in the SNR for detection of the labeled metabolite compared to 13C MR 

conducted at thermal equilibrium.  This allows the user to observe the carbon transfer 

from substrate to product, as well as to compute the in vivo reaction rate of the 

conversion being observed.  In the case of glutamine metabolism, this includes the 

ability to monitor and quantify the progressive conversion of glutamine into glutamate 

and glutamate into alpha-ketoglutarate.  To date, successful hyperpolarization has been 

reported for [5-13C]-glutamine, [1-13C]-glutamate, and [5-13C-4-2H2]-glutamine 244-246.  

While these agents have been successfully used in cells, their implementation in animal 

models remains limited.  The polarization tends to decay relatively rapidly following 

injection into living tissues minimizing the time frame during which the signal can be 

detected.  For instance, the spin-lattice relaxation (T1) of the labeled carbon in [5-13C]-

glutamine is on the order of 16 seconds245.  Strategies allowing improvements in 

polarization levels and T1 prolongation of these agents might pave the way for wider in 

vivo implementation.   

Overall, these techniques show significant promise for the monitoring of 

glutamine metabolism in vivo allowing improved diagnosis and monitoring of glutamine-

dependent tumors.   
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4.7 Conclusion 

Glutamine is one of the most versatile nutrients, contributing to many aspects of 

metabolism in cancer and proliferating cells.  It is required in large quantities to support 

mitochondrial metabolism during proliferation, and its roles as a nitrogen donor and a 

regulator of cellular redox status and signal transduction also contribute to proper cell 

function, growth, and proliferation.   

The uptake and metabolism of the other major carbon source supporting 

proliferation, glucose, has been a major research focus in several fields for years, and 

new details continue to emerge.  Glucose uptake is highly complex and is regulated both 

through transcriptional control of the expression of glycolytic enzymes and signaling-

dependent control of the trafficking of the glucose transporters themselves.  By 

comparison, the regulation of glutamine metabolism is relatively poorly understood, 

though intense research into this topic is rapidly increasing our understanding of the role 

of glutamine in cancer.  It is likely that additional complexities and levels of regulation will 

continue to emerge with further investigation.  Better understanding of the signal 

transduction pathways that regulate glutamine metabolism, both in response to normal 

growth factor cues and oncogene activation, will be important.  Understanding how cells 

adapt to inhibition of metabolic pathways will also be critical as more therapeutics 

targeting cancer cell metabolism are developed.  Future investigation should also focus 

on in vivo study of glutamine metabolism, particularly as better imaging technologies 

emerge, with the ultimate goal of identifying strategies to most effectively target 

glutamine metabolism in cancer, likely in combination with other therapies.  
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4.8 Figure Legends 

Figure 1. Glutamine metabolism in cancer cells.  Glutamine contributes to 

bioenergetics and biosynthesis through reactions that use its α-nitrogen (green), γ-

nitrogen (yellow) or carbon skeleton (pink).  The γ-nitrogen from glutamine’s amide 

group is a required nitrogen source for synthesis of nucleotides, hexosamines, and 

asparagine.  During nucleotide synthesis, the alpha nitrogen is contributed in three 

independent enzymatic steps in purine synthesis and two reactions in pyrimidine 

synthesis.  The alpha nitrogen can also be removed by glutaminase, which generates 

glutamate and ammonia.  Ammonia has been previously shown to play a role in inducing 

autophagy.  Glutamate carries most of glutamine’s α-nitrogen and is a major nitrogen 

source for nonessential amino acid production in cells.  Alanine aminotransferase (also 

known as glutamate: pyruvate transaminase; Gpt) and aspartate aminotransferase (also 

known as glutamate: oxaloacetate transaminase; Got) catalyze the transfer of 

glutamate’s amino group directly into pyruvate and oxaloacetate to produce alanine and 

aspartate, respectively.  Synthesis of other non-essential amino acids, including serine 

and the amino acids synthesized from serine, glycine and cysteine, requires the 

contribution of the amino group from glutamate.  Glutamate is also a precursor for 

synthesis of arginine and proline.  In addition to its role in amino acid synthesis, 

glutamate is an important component of the synthesis of glutathione, an endogenous 

antioxidant that protects cells against various forms of oxidative stress.  The final major 

fate of glutamine, following its conversion to glutamate and then glutamate’s conversion 

to alpha-ketoglutarate, is the oxidation of its carbon backbone in the mitochondria 

leading to energy production.  Glutaminolysis contributes to production of mitochondrial 

NADH, which is used to support ATP production by oxidative phosphorylation.  
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Glutamine metabolism also contributes to production of NADPH and lipid and amino acid 

biosynthesis.  The TCA cycle metabolite citrate can also exit the mitochondria to be used 

for generation of cytoplasmic acetyl-CoA, a precursor for fatty acid biosynthesis. 

Similarly, malate produced in the TCA cycle can exit the mitochondria and contribute to 

pyruvate and lactate production.  gln: glutamine; glu: glutamate; gls: glutaminase; GSH: 

glutathione; OAA: oxaloacetate; Asp: aspartate; Pyr: pyruvate; Ala: alanine; Gpt: 

glutamate: pyruvate transaminase ; Got: glutamate: oxaloacetate transaminase; α-KG: 

α-ketoglutarate; glc: glucose. 

  

Figure 2. Coordination of glutamine and glucose utilization during proliferation.  

Glucose and glutamine metabolism are linked and actively coordinated in cancer cells.  

Myc simultaneously increases the uptake and metabolism of both glucose and glutamine 

by regulating key transporters and enzymes involved in both pathways (shown in blue).  

Those targets highlighted in blue are transcriptionally activated by Myc, while those 

boxed in blue are regulated by Myc through other mechanisms.  PKM2 expression is 

promoted by Myc through regulation of splicing factors and Gls1 is a target of miR23a/b, 

which is transcriptionally repressed by Myc.  Two other mechanisms have been recently 

described that can contribute to cellular adaptation to nutrient availability.  Glucose 

availability can control cellular uptake of glutamine through utilization of glucose in the 

hexosamine biosynthetic pathway (pathway shown in green).  Glucose deprivation leads 

to a suppression of growth-factor-stimulated glutamine uptake, as a result of 

suppression of growth factor surface expression and downstream signaling in the 

absence of glucose.  On the other hand, glutamine availability can be sensed by the cell 

to control uptake of glucose through the transcription factor MondoA (pathway shown in 
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pink).  The MondoA complex is a glucose sensor present in the cytoplasm.  Upon 

increase in glucose levels, MondoA detects elevation in glucose-6-phosphate levels and 

is translocated into the nucleus.  There, it interacts with a MondoA transcriptional target, 

TXNIP, that induces a potent feedback circuit that restricts glucose uptake and cell 

growth.  Glutamine availability inhibits activation of TXNIP and induces an increase in 

glucose uptake.  Glut1: glucose transporter 1; HK2: Hexokinase 2; G6P: glucose-6-

phosphate; F6P: fructose-6-phosophate; F-1,6-BP: fructose-1,6-biphosphate; PEP: 

phosphoenolpyruvate; PFK: phosphofructokinase; PKM2: pyruvate kinase isoform M2; 

Ldha: lactate dehydrogenase A; GF: growth factor; GlcNAc: N-acetyl-D-glucosamine; 

gls: glutaminase; Slc1a5 (ASCT2): a high-affinity L-glutamine transporter. 
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CHAPTER 5 

Glutamine Addiction: A Targetable Hallmark of Breast Cancer Recurrence 
 
 

ABSTRACT 

Increased glutaminolysis has been increasingly recognized as a key feature of 

tumorigenesis.  To date, no association has been established between glutamine 

metabolism and breast cancer progression.  In this study, we investigate the 

glutaminolytic differences between primary and recurrent mammary tumors and assess 

their role as a potential therapeutic target.  We use an MMTV-rtTa;TetO-HER2/neu 

doxycycline-inducible bitransgenic mouse model which accurately reproduces key 

features of the natural history of human breast cancer progression: primary tumor 

development, tumor dormancy and recurrence.  We find that recurrent tumors exhibit 

higher glutamine uptake and glutamate production, when compared to primary tumors.  

13C-labeling experiments suggest increased glutaminolytic activity and increased 

reductive carboxylation in tumor recurrence.  The observed increase in glutamine 

metabolism also seems to contribute to the tumorigenicity of recurrent mammary tumor 

cells.  Recurrent, but not primary tumor cells are glutamine-addicted.  The observed 

changes in the glutaminolytic profile are accompanied by increased expression of the 

glutamine transporter, Slc1a5, as well as increased expression of glutaminase (Gls1) in 

recurrent tumors.  Both Slc1a5 and Gls1 expression are required for recurrent, but not 

primary tumor growth in vivo.  Recurrent tumors also exhibit increased endogenous 

expression of the Myc oncogene.  Myc was found to be required for Slc1a5 and Gls1 

expression as well as increased glutamine uptake and glutamate production in recurrent 

tumor cells.  Human association analysis reveals a statistically significant association 
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between SLC1A5, but not GLS1 expression and increased recurrence risk in 11 human 

breast cancer datasets.  Combined, our results suggest that recurrent HER2/neu 

mammary tumors are glutamine-addicted.  Targeting glutamine metabolism might be a 

promising therapeutic strategy for the treatment of breast cancer recurrence.   

 

5.1 Introduction 

Breast cancer is the leading cause of cancer-related death and the most commonly 

diagnosed malignancy among women worldwide247.  While advances in detection and 

therapy have led to improvements in the overall survival of women diagnosed with 

primary breast cancer, a substantial fraction of breast cancer survivors will ultimately 

relapse with recurrent breast cancer.  Indeed, since recurrent breast cancer can be 

treated, but not cured, tumor recurrence remains the principal cause of mortality in this 

disease66.  Nevertheless, despite its clinical importance, the molecular mechanisms 

underlying tumor recurrence remain poorly understood.   

 Dysregulated metabolism has long been known as a hallmark of human cancer, 

particularly aerobic glycolysis or the Warburg effect 74, 75.  More recently, increased 

utilization of glutamine has emerged as an important component of the altered metabolic 

profile of cancer cells90-92, 99.  Since the 1950s, glutamine has been recognized as key 

nutrient for proliferating cancer cells88, 89.  For example, glutamine is an obligate nitrogen 

donor for nucleotide and amino acid synthesis, contributes to bioenergetics, supports 

cell defenses against oxidative stress, and complements glucose metabolism73, 75, 90-93.  

Glutamine also influences a number of signaling pathways that contribute to tumor 

growth, most notably through maintaining activity of the mTOR kinase186.  To date, 
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however, no association between changes in glutamine metabolism and cancer 

progression has been established.  

 In this study, we have investigated the changes in glutamine metabolism within 

the context of a genetically engineered mouse model for mammary tumorigenesis 

induced by the oncogene HER2/neu that accurately recapitulates key features of the 

natural history of human breast cancer progression, including minimal residual disease, 

tumor dormancy and recurrence63, 66.  A member of the epidermal growth factor receptor 

family of tyrosine kinases, HER2/neu is amplified and overexpressed in ~20% of primary 

human breast cancers and its overexpression is associated with aggressive tumor 

behavior, high rates of recurrence and poor prognosis51, 55, 57, 123.  Supporting the critical 

role of HER2/neu signaling in human breast cancer, therapies such as trastuzumab and 

lapatinib that target this molecule are effective in treating both early stage and advanced 

breast cancers248-251.  In addition, HER2/neu activation results in downstream activation 

of the PI3K-AKT signaling pathway, an important regulator of cellular metabolism67, 68, 71.   

 Our in vivo and in vitro studies reveal increased glutaminolysis in mammary 

tumor recurrence.  13C labeling experiments in vivo also reveal higher rates of reductive 

carboxylation in recurrent tumors.  These metabolic observations are accompanied by 

Myc-driven increased expression levels of both Slc1a5 and Gls1.  Slc1a5 is a glutamine 

transporter and Gls1 expresses the glutaminase enzyme, the enzyme that catalyzes the 

conversion of glutamine to glutamate at the beginning of the glutaminolytic pathway.  

Slc1a5 and Gls1 are found to be required for recurrent, but not primary tumor growth.  

SLC1A5 expression levels are also positively correlated with reduced 10-year 

recurrence-free risk in human breast cancer patients.   
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5.2 Methods 

Animals, cell culture and recurrence assays  

The MMTV-rtTa;TetO-HER2/neu (MTB/TAN) doxycycline-inducible bitransgenic mouse 

model has previously been described63, 132.  All mice were housed and treated in 

accordance with protocols approved by the Institutional Animal Care and Use Committee 

at the University of Pennsylvania.  MTB/TAN mice were bred, housed, induced with 2 

mg/ml doxycycline, monitored for tumor development and recurrence, and sacrificed as 

previously described66.  

Tumor cells from primary mammary tumors arising in MTB/TAN mice maintained 

on doxycycline were isolated and cultured in the presence of doxycycline as described66, 

as were tumor cells from recurrent mammary tumors arising in MTB/TAN mice bearing 

tumors that had fully regressed following doxycycline withdrawal and HER2/neu 

downregulation, and had then subsequently recurred spontaneously in the absence of 

doxycycline or HER2/neu transgene expression.  Primary and recurrent tumor cells were 

transduced with retroviruses expressing either shRNAs targeting genes of interest and 

puromycin was used to select stably-transduced polyclonal cells.   

 

Glutamine addiction assay 

To assess the glutamine addiction phenotype of tumor cells, 300,000 primary or 

recurrent tumor cells were plated in triplicate in complete tumor media and incubated for 

24 hr.  Culture media was then removed and replaced with fresh tumor media, fresh 

tumor media lacking glutamine (Invitrogen), or fresh tumor media lacking glutamine but 

supplemented with 7 mM alpha-ketoglutarate (Sigma-Aldrich).  Following incubation for 

96 hr, cell viability was quantified by trypan blue exclusion using a Vi-CELL Cell Viability 

Analyzer (Beckman Coulter).  
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Slc1a5, Gls1 and Myc knockdown  

For in vivo experiments, Slc1a5 and Gls1 expression were knocked down using 

retroviruses expressing commercially available shRNA constructs targeting these genes 

(Applied Biosystems).  Five shRNA-expressing constructs were tested for each gene.  

The two shRNA's yielding the greatest knockdown for each gene were used for 

subsequent experiments.  An shRNA targeting renilla luciferase was used as a negative 

control.  Slc1a5 and Gls1 expression knockdown was confirmed by qRT-PCR.  

 For in vitro experiments, knockdown of c-Myc expression in recurrent tumor cells 

was performed using commercially available siRNAs (Ambion).  Two different siRNAs 

exhibiting c-Myc knockdown were employed.  A scrambled siRNA was used as a 

negative control (Ambion).  siRNA transduction was performed according to 

manufacturer's instructions and cells were incubated with siRNAs for 48 hr.  Myc 

knockdown was confirmed by qRT-PCR. 

 

Orthotopic tumor assays 

Orthotopic tumor growth assays were performed in athymic nude mice (nu/nu) 

purchased from Taconic (Germantown, NY).  Cells were injected into the inguinal 

mammary fat pads of 10-12 nu/nu mice for each experimental group.  Experiments were 

performed in parallel with five experimental arms, including one experimental arm for 

each of the Slc1a5 or Gls1 shRNA contructs, as well as a control arm for the renilla 

luciferase shRNA.  Each of the number four mammary fat pads of each mouse was 

injected with 500,000 tumor cells.   

For primary orthotopic tumor growth assays, HER2/neu expression in 

transplanted cells was induced by administering 2 mg/mL doxycycline in drinking water.  

Mice injected with recurrent tumor cells were maintained on water without doxycycline.  
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Tumor size was measured 2-3 times per week and tumor volume was determined by 

caliper measurements for each injected site using the following formula: Tumor volume = 

(smallest diameter2 * largest diameter)/2.  Tumors were followed until they reached a 

size of approximately 15x15 mm.  Mean tumor growth rate (MGR) was calculated for 

each tumor as described252. 

 

RNA Isolation and qRT-PCR 

RNA extraction was performed on snap-frozen primary and recurrent mammary tumor 

tissue and cell samples as described253.  Samples were homogenized and RNA isolation 

was carried out using the RNeasy RNA isolation kit (Qiagen) according to 

manufacturer’s instructions.  Reverse transcription was performed from 2 µg of RNA 

using the cDNA High Capacity Reverse Transcriptase Kit (Applied Biosystems) 

according to the manufacturer's instructions.  qRT-PCR analysis for Slc1a5 and Gls1 

mRNA levels was performed on the Applied Biosystems 7900 HT Fast Real-Time PCR 

system using 6-carboxyfluorescein–labeled Taqman probes (Applied Biosystems).  

Expression levels of each gene were normalized to TBP. 

 

Western blotting 

Mammary tumors and cultured cell were homogenized in T-PER protein lysis buffer 

(Thermo Scientific).  Primary antibodies were obtained from Abcam (anti-Slc1a5 and 

anti-Gls1), or Santa Cruz (anti-c-Myc).  Horse radish peroxidase-conjugated secondary 

antibodies (Jackson Laboratories) were used to probe membranes incubated with the 

anti-c-Myc antibody.  The enhanced chemiluminescent system (ECL; Amersham) was 

used to detect the bound secondary antibodies.  Anti-Slc1a5 and Gls primary antibodies 

were detected using Alexa-Fluor-conjugated secondary antibodies (Molecular Probes).  
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The Odyssey V3.0 system (Li-COR Biosciences) was used to visualize and quantify 

proteins of interest.  

 

Glutamine and glutamate level determination in cult ure  

Ex vivo tumor culture experiments were performed following a procedure similar to that 

described by Banerjee et al.254.  Briefly, a total of 4 primary and 4 recurrent mammary 

tumors that had reached a size of 12x12 mm were dissected using sterile technique, 

diced to yield fragments approximately 2x2 mm in diameter, weighed and equally 

distributed between 3 wells containing tumor culture media.  Samples were maintained 

in a tissue culture incubator in 5% CO2 at 37oC for 96 hr, after which tumor tissue was 

collected, re-weighed, and the culture media harvested for determination of metabolite 

levels.  Concentrations of glutamine and glutamate in culture media were determined 

using a 7100 Multiparameter Bioanalytical System (YSI life Sciences).  The amount of 

each metabolite consumed or produced by tumor tissue samples was computed as the 

difference between the level of that metabolite in conditioned media from cultured tumor 

fragments compared to its level in control media incubated without tissue, and then 

normalized to the average weight of cultured tumor in that well.  Positive values denote 

metabolite production, whereas negative values denote metabolite consumption.  

Samples from each tested condition were run in triplicate and statistical significance was 

determined using a Student's t-test. 

 A similar procedure for metabolite level determination was used for cell culture 

studies.  300,000 cells were plated and incubated in cell culture media for 96 hours.  

Glutamine consumption and glutamate production levels were determined using a 7100 

Multiparameter Bioanalytical System (YSI life Sciences).  Measured metabolite levels 

were normalized to the number of cultured cells in each well.  
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PET imaging 

A total of 6 mice, 3 bearing primary mammary tumors and 3 bearing recurrent tumors, 

were each injected with 508±13 µCi of L-[5-11C]-Glutamine prepared as described255.  

Dynamic PET imaging was performed on a small-animal Mosaic PET scanner (Philips, 

Inc.).  For each mouse, 12 frames were acquired at 5-min intervals.  Tumor 

segmentation and uptake quantification were performed at each frame for each mouse 

using the AMIDE software256.  Uptake values were normalized according to the injected 

dose and the weight of each mouse and the area under each uptake curve (AUC) was 

computed.  Differences in AUC values between primary and recurrent tumors were 

assessed using a Student's t-test.  

 

13C-labeling experiments  

A total of 8 mice, 4 bearing primary tumors and 4 bearing recurrent mammary tumors, 

were infused through a tail vein catheter with an 8 mM solution of L-[3-13C]-glutamine 

(Isotec) over a period of 45 minutes.  At the end of the infusion period, tumors were 

dissected and clamp-frozen in liquid nitrogen.  Perchloric acid extraction was performed 

as described128.  NMR spectroscopy was performed at 9.4T on an Avance III 400 wide-

bore spectrometer (Bruker).  Carbon spectra were acquired overnight with a 5 mm BBO 

probe under the following conditions: pulse width of 45 degrees, TR 1.4s, 24 kHz 

spectral width, 64K data points and 35,000 – 40,000 scans.  Spectral analysis was 

performed using the NMR NUTS software (Acorn, Inc.).  Statistical significance was 

determined using a Student's t-test.  

 Measurement of 13C isotopomers was performed on a Triple Quad 6410 mass 

spectrometer combined with an LC 1290 Infinity mass selective detector (Agilent), as 

described257.  Briefly, samples were first purified by passage through either AG-1 or AG-
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50 cation exchange columns (Biorad) and then converted into t-butyldimethylsilyl 

derivatives.  Isotopic enrichment of glutamine was monitored using ions at 431, 432, 

433, 434, 435, 436 and 437 m/z for M0, M+1, M+2, M+3, M+4, M+5 and M+6, 

respectively.  Isotopic enrichment of 13C-glutamate was monitored using ions at 432, 

433, 434, 435, 436 and 437 m/z for M0, M+1, M+2, M+3, M+4 or M+5, respectively.  

Isotopic enrichment of 13C-aspartate was monitored using ions at 418, 419, 420, 421 and 

422 m/z for M0, M+1, M+2, M+3 and M+4, respectively.  Isotopic enrichment of 13C-

succinate was monitored using ions at 289, 290, 291, 293 and 294 m/z for M0, M+1, 

M+2, M+3 and M+4, respectively.  Isotopic enrichment of 13C-lactate was monitored 

using ions at 261, 262, 263 and 264 m/z for M0, M+1, M+2 and M+3, respectively.  

Isotopic enrichment of 13C-malate was monitored using ions at 419, 420, 421, 422 and 

423 m/z for M0, M+1, M+2, M+3 and M+4, respectively.  Isotopic enrichment of 13C-

citrate was monitored using ions at 459, 460, 461, 462, 463, 464 and 465 m/z for M0, 

M+1, M+2, M+3, M+4, M+5 and M+6, respectively.   

13C-enrichment is reported in molar percent enrichment (MPE), reflecting the mol 

fraction (%) of analytes containing 13C atoms in excess of natural abundance, where 

MPE (M+i) = % AM+i/[AM + Σ AM+i], and AM and AM+i represent the peak area from MS ions 

corrected for natural abundance and corresponding to the unlabeled (M0) and 13C-

labeled (M+i) mass isotopomers, respectively.  

 

Human breast cancer microarray data analysis 

Meta-analysis of the association between relapse-free survival and the expression of 

SLC1A5 and GLS was performed using microarray and clinical data from 11 human 

breast cancer data sets.  Data were obtained from NCBI GEO or authors' websites258-261.  

Microarray data were converted to base 2 log scale if the original data were on a 
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different scale.  Affymetrix microarray data were normalized using Robust Multi-array 

Average (RMA) when .CEL files were available.  For situations in which multiple 

microarray features mapped to the same gene on a single platform, the feature with the 

highest median absolute deviation (for two-color arrays), or the probe set with "_at" suffix 

and highest median expression (for Affymetrix arrays) was chosen to represent the 

target gene.  

Within each data set, the effect size of the association between mRNA 

expression for a given gene and 10-year relapse-free survival was estimated using two 

different methods: 1) hazard ratio from Cox proportional hazards regression in which 

gene expression was modeled as a continuous variable; and 2) the concordance index 

(c-index).  Each type of effect size estimate was combined across data sets by meta-

analysis using the inverse-variance weighting method.  For data sets in which relapse-

free survival information was not available, but distant metastasis-free survival 

information was available, metastasis-free survival was used for survival analysis.  

Between-study homogeneity of survival association was tested using chi-squared 

test on Cochran’s Q statistic, for which a p-value of less than 0.1 was interpreted as 

evidence of significant heterogeneity.  In the presence of significant heterogeneity, the 

random-effect model was used for meta-analysis.  In the absence of significant 

heterogeneity, the fixed-effect model was used.  Cox proportional hazards regression, 

concordance index analysis, and meta-analysis were performed using the “coxph” 

function in the “survival” package, the “survConcordance” function in the “survival” 

package and the “metagen” function in the “meta” packages in R 2.15.0.  The precision 

of the meta-analysis p-values was verified using Monte Carlo permutation tests by 

randomly permuting sample labels and repeating the above meta-analyses 10,000 

times.  
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5.3 Results 

Recurrent mammary tumors exhibit increased glutamin e consumption and 

glutamate production 

To better define the molecular and cellular events that contribute to breast cancer 

recurrence, we have developed a doxycycline-inducible transgenic mouse model that 

displays key features of human breast cancer progression, including minimal residual 

disease, tumor dormancy and recurrence.  In this model, the reverse tetracycline-

inducible transactivator (rtTA) is specifically expressed within the epithelial compartment 

of the mammary gland under the control of the mouse mammary tumor virus (MMTV) 

promoter132 in mice bearing the MMTV-rtTA transgene (MTB), and expression of the 

HER2/neu oncogene is driven by the tet operator63 in mice bearing the TetO-HER2/neu 

transgene (TAN).  Following the administration of doxycycline to MMTV-rtTA;TetO-

HER2/neu (MTB/TAN) bitransgenic mice in drinking water, doxycycline-bound rtTA in 

mammary epithelial cells binds to the tet operator and induces expression of the 

HER2/neu oncogene132.  Doxycycline induction of HER2/neu in bitransgenic animals 

results in the development of epithelial hyperplasias, focal atypical hyperplasias and, 

ultimately, invasive mammary adenocarcinomas in a manner that is highly penetrant, 

mammary-specific, and absolutely dependent on transgene induction by doxycycline.   

Importantly, the inducible nature of these transgenic models permits the 

complete downregulation of the HER2/neu oncogenic stimulus following tumor 

formation.  Surprisingly, we have found that virtually all HER2/neu-induced mammary 

tumors regress to a non-palpable state following oncogene downregulation, suggesting 

that tumors become “addicted” to the oncogenic signaling pathways that led to their 

formation63, 66.  However, analogous to the phenomena of tumor recurrence in women 

with breast cancer, many fully regressed tumors in MTB/TAN mice spontaneously recur 
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over periods of up to a year, ultimately resulting in the death of the animal66.  As such, 

this model parallels the natural history of human breast cancer and enables mechanistic 

approaches to elucidating the mechanisms that underlie tumor recurrence.  

To begin to investigate whether changes in glutamine metabolism occur during 

the process of mammary tumor recurrence in vivo, we used the L-[5-11C]-glutamine 

tracer to perform dynamic positron emission tomography (PET) on MTB/TAN 

bitransgenic mice bearing either primary or recurrent mammary tumors.  Both primary 

and recurrent mammary tumors exhibited L-[5-11C]-glutamine uptake higher than that of 

non-tumor tissues, however L-[5-11C]-glutamine uptake in recurrent tumors appeared to 

be higher than that of primary tumors (Fig. 1A).  Quantification of normalized L-[5-11C]-

glutamine tumor uptake over time revealed higher uptake over time for recurrent tumors 

compared to primary mammary tumors (AUCmean= 313.4±34.4 vs. 242.5 ±8.92; p=0.007) 

(Fig. 1B).  This suggested the possibility that glutaminolysis is up-regulated during the 

process of mammary tumor recurrence in vivo. 

 To further explore this potential difference in glutamine metabolism, we 

conducted tumor culture experiments in which explanted primary and recurrent 

mammary tumors from MTB/TAN mice were dissected, minced and cultured for 96 

hours.  Differences in glutamine uptake and glutamate production were determined.  

Concentrations of glutamine and glutamate in culture media were determined using a 

7100 Multiparameter Bioanalytical System and the amount of each metabolite consumed 

or produced by each tumor sample was computed as the difference between the level of 

that metabolite in conditioned media from cultured tumor fragments compared to its level 

in control media incubated in the absence of tumor tissue.  Results were normalized by 

weight of cultured tumor tissue.   
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 In accordance with our in vivo PET studies using L-[5-11C]-glutamine, this 

analysis revealed that recurrent mammary tumors exhibited a 3.4-fold higher level of 

glutamine  uptake compared to primary tumors (Fig. 1C; p=0.001).  Consistent with this, 

recurrent tumors also displayed a 1.7-fold increase in glutamate production compared to 

primary tumors (Fig. 1D; p=0.004).  Together with our findings using L-[5-11C]-glutamine 

PET, these results suggest that recurrent mammary tumors in MTB/TAN mice exhibit 

higher glutamine uptake and metabolism than primary mammary tumors in this same 

model.  

 

Recurrent tumors display higher glutaminolytic flux  and increased reductive 

carboxylation  

To investigate the differences in glutaminolytic activity between primary and recurrent 

mammary tumors, we next performed 13C-glutamine labeling experiments.  Mice bearing 

primary and recurrent tumors were infused with a solution containing L-[3-13C]-

glutamine.  Metabolism of the 13C- labeled tracer was followed using magnetic 

resonance spectroscopy (MRS) and mass spectrometry.   

Using MRS, we found that primary and recurrent mammary tumors displayed 

clear differences in the concentrations of 3-13C-glutamine (Gln-3) and3-13C-glutamate 

(Glu-3) (Fig. 2A).  Specifically, the integral ratio of labeled Glu-3 to labeled Gln-3 was 

2.8-fold higher in recurrent tumors compared to primary tumors (Fig. 2B; p<0.001).  This 

suggests that recurrent tumors exhibit greater conversion of glutamine to glutamate than 

primary tumors. 

 Assessment of metabolite isotopomers from this experiment using mass 

spectrometry revealed higher mole percent excess (MPE) in recurrent tumors compared 

to primary tumors for all tested intermediates of the glutaminolytic pathway downstream 
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of glutamine (Fig. 2C).  Specifically, glutamate, aspartate, succinate, malate, citrate and 

lactate each exhibited higher 13C-labeling amounts in recurrent tumors than in primary 

tumors.  Conversely, glutamine displayed lower labeling in recurrent tumors compared to 

primary tumors, which would be consistent with higher consumption of the 13C-glutamine 

label in recurrent tumors.   

Interestingly, assessment of metabolite isotopomers from this experiment also 

revealed higher overall labeling of citrate compared to succinate in both primary and 

recurrent mammary tumors.  This suggests the possibility that active reductive 

carboxylation may occur in each of these tumor types in vivo.  This effect, however, was 

more pronounced in recurrent tumors, as evidenced by higher MPE that were observed 

for each if the metabolites considered.  In aggregate, these results are compatible with a 

model in which recurrent tumors exhibit increased glutaminolytic flux as well as reductive 

carboxylation.   

 

Recurrent, but not primary, tumor cells are glutami ne-addicted  

To begin to assess the functional significance of the increase in glutaminolysis that we 

observed in recurrent mammary tumors, we next sought to determine the effect of 

glutamine deprivation on the viability and growth of primary and recurrent mammary 

tumor cells in vitro.  Primary and recurrent mammary tumor cell lines derived from tumor-

bearing MTB/TAN mice were plated in control media containing glutamine, growth 

factors and serum and then shifted to control media, to media lacking glutamine, or to 

media lacking glutamine but supplemented with alpha-ketoglutarate.   

When grown in control media containing glutamine, both primary and recurrent 

tumor cells became fully confluent 96 hours post plating (Fig. 3A).  In contrast, culturing 

cells in glutamine-deprived media led to marked cell death in recurrent, but not primary, 
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tumor cells.  This effect on recurrent tumor cells was rescued by supplementing 

glutamine-deprived media with alpha-ketoglutarate.   

 Consistent with these observations, quantification of cell viability by trypan blue 

exclusion revealed an 47% reduction in cell viability, when recurrent tumor cells were 

cultured in media lacking glutamine, compared to recurrent tumor cells cultured in 

control media containing glutamine (Fig. 3B; p=0.002).  In contrast, no difference was 

observed in the viability of primary tumors cells cultured in media containing or lacking 

glutamine.  The loss of cell viability observed in recurrent tumor cells subjected to 

glutamine deprivation was fully and efficiently rescued by the addition of alpha-

ketoglutarate to the medium, indicating that the carbon backbone of glutamine is 

required for recurrent tumor cell growth.  Together, these observations are consistent 

with a model in with recurrent, but not primary, mammary tumors cells are glutamine-

addicted. 

 

Slc1a5, Gls1 and glutamine metabolism are up-regula ted in recurrent tumors in a 

c-Myc-dependent manner 

During glutaminolysis, glutamine can first be taken up by cancer cells through the 

sodium-dependent neutral amino acid transporter, Slc1a5.  Glutamine is subsequently 

converted to glutamate by glutaminase, a reaction reported to be the rate-limiting step in 

glutamine metabolism262, 263.  In an effort to identify the underlying molecular 

determinants for the increase in glutamine uptake observed in recurrent tumors, we first 

measured expression of the glutamine transporter Slc1a5 by qRT-PCR and 

immunoblotting, since we had observed increased uptake of glutamine by PET in vivo as 

well as increased uptake of glutamine from culture medium in vitro.  Slc1a5 is known to 

be a key neutral amino acid transporter in cells and its inhibition reduces glutamine 
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uptake in vitro186.  This analysis revealed that recurrent mammary tumors exhibit 2.8-fold 

higher steady-state levels of Slc1a5 than primary tumors, at the mRNA level (Fig. 4A; 

p=0.002).  Immunoblotting also revealed higher Slc1a5 at the protein level (Fig. 4B). 

Analogous to our findings with Slc1a5, our observation that recurrent tumors 

exhibit higher levels of glutamate production compared to primary tumors, led us to 

investigate whether glutaminase (Gls1) is upregulated in recurrent tumors, since Gls1 

expresses the glutaminase enzyme which is known to catalyze the conversion of 

glutamine into gltuamate.  We found that recurrent tumors express a 1.8-fold higher level 

of Gls1 expression than primary tumors at the mRNA level (p=0.024) (Fig. 5A).  

Immunoblotting also revealed higher Gls1 at the protein level (Fig. 5B). 

In light of the upregulation of glutamine metabolism that we observed in recurrent 

tumors, as well as the known regulatory role of the proto-oncogene c-Myc and glutamine 

metabolism, we considered the possibility that c-Myc was responsible for the observed 

upregulation of Slc1a5 and Gls1 in recurrent mammary tumors.  Myc has been 

previously shown to regulate Slc1a5 level by binding to its promoter, as well as modulate 

Gls1 levels through mir23a/b97, 98.  Consistent with this prediction, immunoblotting 

revealed Myc upregulation in recurrent mammary tumors (Fig. 7A).  Myc upregulation 

was accompanied by increased expression of the downstream Myc targets Odc1, 

Ccnb1, Mthfd2, Nap1l1, Col1a1, and Pmp22 (Fig. 7B).   

Consistent with the supposition that c-Myc upregulation contributes to the 

observed upregulation of Slc1a5 and Gls1 in recurrent tumors, downregulation of c-Myc 

expression in recurrent tumor cell lines using siRNA approaches resulted in 

downregulation of Slc1a5 and Gls1 (Fig. 7C).  In addition, c-Myc downregulation by 

either of two siRNAs also led to a decrease in glutamine consumption as well as a 

decrease in glutamate production in recurrent tumor cells (Fig. 7D).  Together, these 
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findings suggest that c-Myc upregulation in recurrent mammary tumors is responsible for 

the observed increases in Slc1a5 and Gls1 expression, as well as for increased 

glutamine metabolism.  

 

Slc1a5 is required for recurrent, but not primary, tumor growth  

Our observations to this point suggested the possibility that the growth of recurrent, but 

not primary mammary tumors is dependent upon the c-Myc-induced upregulation of 

glutamine transport and metabolism.  To begin to test this hypothesis, we asked whether 

upregulation of Slc1a5 contributed to the higher levels of glutamine uptake observed in 

recurrent tumors, as well as recurrent tumor growth.  To this end, we knocked down 

expression of Slc1a5 in primary and recurrent tumor cells using retrovirally transduced 

shRNAs (Fig. 4C, E).  As anticipated, Slc1a5 downregulation was accompanied by 

decreased glutamine uptake in both primary and recurrent tumor cells.   

Primary and recurrent tumor cells with and without Slc1a5 knockdown were then 

implanted orthotopically into the mammary glands of nu/nu mice in order to assess the 

effect of Slc1a5 knockdown on the rate of orthotopic tumor growth.  Slc1a5 

downregulation did not alter the growth rate of primary orthotopic tumors as tumors 

formed by primary tumor cells expressing either of two Slc1a5 shRNAs grew at the same 

rate as tumors formed by primary tumor cells expressing a control hairpin (Fig. 4D).  In 

contrast, orthotopic tumors formed by recurrent tumor cells expressing shRNAs directed 

against Slc1a5 grew 3.5 to 4.6-fold more slowly than tumors formed by recurrent tumor 

cells expressing a control hairpin (Fig. 4F; 23.36±12.82 MGRcontrol vs. 

MGRshRNA1=6.71±2.35, MGRshRNA2=5.03±1.34; pshRNA1<0.001, pshRNA2<0.001).  These 

findings indicate that while Slc1a5 is required for efficient glutamine uptake in both 
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primary and recurrent mammary tumor cells, Slc1a5 is required for the growth of 

recurrent, but not primary, mammary tumors. 

 

Gls1 is required for recurrent, but not primary, tumor g rowth  

To investigate the functional consequences of Gls1 upregulation on tumor growth, we 

knocked down expression of Gls1 in primary as well as recurrent tumor cells using two 

different shRNAs (Fig. 5C, E).  As anticipated, Gls1 downregulation was accompanied 

by reduced glutamate production in both primary and recurrent tumor cells.   

Primary and recurrent tumor cells with and without Gls1 knockdown were next 

implanted orthotopically into the mammary glands of nu/nu mice in order to assess the 

effect of Gls1 knockdown on the rate of orthotopic tumor growth.  As observed for 

Slc1a5, Gls1 downregulation did not alter the growth rate of primary orthotopic tumors as 

tumors formed by primary tumor cells expressing either of two Gls1 shRNAs grew at the 

same rate as tumors formed by primary tumor cells expressing a control hairpin (Fig. 

5D).  In contrast, orthotopic tumors formed by recurrent tumor cells expressing shRNAs 

directed against Gls1 grew 3.9 to 4.2 fold more slowly than tumors formed by recurrent 

tumor cells expressing a control hairpin (Fig. 5F; 23.36±12.82 MGRcontrol vs. 

MGRshRNA1=6.30±1.98, MGRshRNA2=5.23±0.99; pshRNA1<0.001, pshRNA2<0.001).  These 

findings indicate that while Gls1 is required for efficient glutamate production in both 

primary and recurrent mammary tumor cells, Gls1 is required for the growth of recurrent, 

but not primary mammary tumors. 
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Elevated Slc1a5 expression is associated with an in creased risk of recurrence in  

women with breast cancer 

Our observations in mice that glutaminolysis is up-regulated in recurrent mammary 

tumors, that recurrent mammary tumor cells are glutamine-addicted, and the both 

Slc1a5 and Gls1 are differentially required for recurrent tumor growth, we considered the 

possibility that expression Slc1a5 or Gls1 in primary tumors might be associated with 

recurrence-free survival in women with breast cancer.  Based on the above data, we 

hypothesized that if upregulation of glutaminolysis functionally contributes to tumor 

recurrence in humans, that women with primary breast cancers expressing higher levels 

of Slc1a5 or Gls1 might relapse at a faster rate than women whose breast cancers 

express lower levels of Slc1a5 or Gls1.   

To test this hypothesis, we collected unique patient profiles from 11 published 

human primary breast cancer microarray data sets, each of which contained at least 50 

patients in addition to information on relapse-free survival.  For each data set, the effect 

size of the association between Slc1a5 or Gls1 mRNA expression and relapse-free 

survival was estimated using Cox proportional hazard regression in which Slc1a5 or 

Gls1expression were modeled as continuous variables; and 2) the concordance index 

(c-index).  To derive an overall estimate and statistical significance of the association 

between mRNA expression and relapse-free survival while accounting for the 

heterogeneity among data sets, effect size estimates were combined across data sets 

by meta-analysis using the inverse-variance weighting method.  In the presence of 

significant heterogeneity (p-value for Cochran’s Q statistic < 0.1), a random-effect mode 

was used for meta-analysis.  Otherwise, a fixed-effect model was used.  

When considering all patients encompassed by the 11 data sets, a significant 

positive association was observed between elevated SLC1A5 expression and risk of 
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relapse in breast cancer patients within 10 years of diagnosis (H.R. = 1.41 [1.18-1.67], 

p=0.00012; Fig. 6A).  In contrast, no significant association was observed between 

GLS1 expression and relapse-free survival (Fig. 6B).  These results suggest an overall 

association between SLC1A5 expression and the risk of tumor recurrence and breast 

cancer patients.   

 

5.4 Discussion 

Since the 1950s, glutamine has been recognized as an important nutrient for 

proliferating cancer cells88.  Glutamine acts as a carbon and nitrogen source supporting 

energy production as well as contributing to biosynthesis reactions and redox 

homeostasis74, 91, 173, 182, 191.  In this study, we have shown that recurrent mammary 

tumors that spontaneously arise in genetically engineered mice following HER2/neu 

downregulation and primary tumor regression exhibit increased glutaminolysis and are 

glutamine-addicted.  While several studies have demonstrated significantly reduced 

viability of a number of human cancer cell lines following glutamine withdrawal97, 98, 172, 

199, to our knowledge no study has demonstrated a shift from glutamine independence to 

glutamine addiction during the course of cancer progression in vivo in an autochthonous 

tumor model.  Our results highlight the potential importance of glutaminolysis beyond its 

previously reported role in primary tumor growth. 

In this study we have demonstrated that recurrent mammary tumors that arise in 

a HER2/neu-induced mammary tumor model exhibit increased glutamine uptake and 

glutamate production, as well as increased reductive carboxylation, compared to primary 

tumors.  This observed increase in glutaminolysis was accompanied by increased 
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expression of the glutamine transporter, Slc1a5, as well as the glutaminase enzyme, 

Gls1.  Moreover, we found that upregulation of Slc1a5 and Gls1 was driven by c-Myc, 

which was itself upregulated in recurrent tumors and shown to be required for their 

observed glutaminolytic phenotype.  Finally, consistent with the glutamine-addicted 

nature of recurrent mammary tumor cells, we found that Slc1a5 and Gls1 are each 

preferentially required for the growth of recurrent, but not primary, mammary tumors.  

Combined, these results suggest an important role of glutamine metabolism in the 

recurrence of HER2/neu-induced mammary tumors.  

 In this study, we report the spontaneous upregulation of both Slc1a5 and Gls1 

during the process of recurrence of HER2/neu-induced primary mammary tumors 

induced to regress by HER2/neu pathway downregulation.  We also find that Slc1a5 and 

Gls1 are each required in vivo for the growth of recurrent, but not primary, tumors.  Gls1 

has previously been reported to be required for tumor growth in some primary tumors in 

the context of xenografted tumors from cell lines100, 101, 153, 262, 263.  To our knowledge, 

however, a requirement for Slc1a5 in tumor growth has not been previously 

demonstrated.  Indeed, while the conversion of glutamine to glutamate catalyzed by 

glutaminases is a known rate-limiting step in glutamine metabolism, transport of 

glutamine by Slc1a5 is not.  As such, our results provide some of the first evidence to 

support an important functional role for Slc1a5 in tumor growth, as well as functional role 

for Slc1a5 and Gls1 in tumor progression.   

While many studies have established a key role for Slc1a5 in glutamine transport 

in cancer cells185, 186, Slc1a5 can transport a number of small neutral amino acids other 

than glutamine.  As such, it is possible that the functional effect of Slc1a5 knockdown on 

tumor growth could be due to differential transport of a neutral amino acid other than 

glutamine.  Nevertheless, given the tight association that we observe in our model 
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between spontaneous Slc1a5 upregulation and increased glutamine metabolism, as well 

as shRNA-mediated Slc1a5 knockdown and downregulation of glutamine uptake, we 

favor the possibility that the effects of Slc1a5 in recurrent tumor cells are indeed 

mediated by its transport of glutamine. 

 To date, a number of oncogenes have been reported to regulate glutamine 

metabolism97, 98, 191, 192.  Among those, Myc is known to be a key regulater of 

glutaminolysis in cancer cells264.  Oncogenic levels of Myc have been shown to directly 

induce glutamine addiction as well as apoptosis following glutamine withdrawal97, 172.  In 

our model, we observe the spontaneous upregulation of Myc expression, as well as the 

expression of Myc transcriptional targets, during the spontaneous recurrence of 

HER2/neu-induced mammary tumors.  Moreover, we find that Myc upregulation is 

responsible for the observed glutaminolytic phenotype of recurrent tumors by virtue of its 

ability to positively regulate the expression of Slc1a5 and Gls1.  Myc has been 

previously shown to transcriptionally regulate a number of genes involved in metabolism, 

including Slc1a597, and is known to regulate glutaminase activity indirectly by repressing 

the expression of miR23a/b98.  Our findings that glutamine metabolism in recurrent 

tumors is regulated by Myc expression provides further in vivo confirmation of these 

reports and highlight an important role of Myc in cancer recurrence.  This, in turn, 

suggests the potential utility of blocking downstream metabolic effectors of the Myc 

pathway, particularly those involved in glutamine metabolism, in human cancers.  

 Glutamine carbon is known to support de novo lipogenesis, which can occur 

through the conversion of glutamine-derived α-ketoglutarate to citrate through reductive 

carboxylation followed by acetyl-coA production176-181.  Previous studies have reported 

this finding in vitro.  Our findings provide evidence for increased reductive carboxylation 

in vivo in recurrent mammary tumors, compared to primary tumors, manifested as high 
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citrate labeling from glutamine.  It has been suggested that the “reverse” TCA cycle 

accompanying active reductive carboxylation is most pronounced under hypoxic 

conditions and within the context of mitochondrial dysfunction177-179, 181.  We speculate 

that the increase in reductive carboxylation that we observe in recurrent tumors may 

result from increased hypoxic conditions within these tumors.  However, direct 

demonstration that this is the case will require further investigation.  

 Finally, our analysis of relapse-free survival in breast cancer patients revealed a 

significant positive association of SLC1A5, but not GLS1, expression levels with an 

increased risk of recurrence.  Consistent with our findings in genetically engineered 

mouse models for breast cancer recurrence, patients with primary tumors expressing 

elevated levels of SLC1A5 exhibited higher 10-year relapse rates when compared to 

women whose cancers expressed lower levels of SLC1A5.  These results are in 

agreement with reports in the literature indicating that of high SLC1A5 levels are 

associated with reduced survival in some human cancers, including colorectal265 and 

prostate adenocarcinomas266.  To our knowledge, however, no studies have established 

an association between GLS1 expression levels and survival in human cancer patients.  

Additional work will be needed to determine, by multivariate analysis, whether either of 

these genes is associated with patient outcome independent of currently used 

clinicoprognostic factors. 

 In conclusion, our findings provide direct evidence for an evolving metabolic 

phenotype of breast cancers during the course of tumor progression, as well as support 

for a role for glutamine metabolism as a potentially targetable feature in recurrent breast 

cancers.  While additional studies will be required to assess the translational potential of 

our findings. Glutamine addiction, a newly identified hallmark of breast cancer 

recurrence, can be further exploited to establish potential early tumor recurrence 
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diagnotic markers of increased glutamine uptake; targeted anti-recurrence therapies 

against Slc1a5 and Gls1; and finally breast cancer prognostic markers through SLC1A5 

expression profiling in individual tumors.  
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5.5 Figure Legends 

Figure 1. Recurrent tumors exhibit increased glutamine metabolism (A) L-[5-11C]-

Glutamine PET imaging reveals higher tracer uptake in recurrent tumors relative to 

primary tumors.  (B) Quantification of the L-[5-11C]-Glutamine dynamic PET 

measurements shows higher mean area under the curve (AUC) in recurrent tumors, 

when compared to primary tumors.  Uptake values at each timeframe were normalized 

to the injected dose and the weight of each mouse.  (C) Tumor culture experiments 

reveal higher glutamine uptake in recurrent tumors.  (D) Tumor culture experiments 

show increased glutamate production in recurrent tumors.  The measured metabolite 

levels in the tumor culture experiments were normalized to the wet weight of the cultured 

tumors.   

 

Figure 2. Recurrent tumors exhibit higher glutaminolytic flux and increased 

reductive carboxylation (A) Assessment of L-[3-13C]-glutamine metabolism using 13C-

magnetic resonance spectroscopy (MRS) reveals increased labeled glutamate 

production from glutamine in recurrent tumors relative to primary tumors.  

Representative spectra from 2 of the tumors examined are shown.  Glu-3: 3-13C-

glutamate; Gln-3: 3-13C-glutamine.  (B) Quantification of the integral ratio of the Glu-3 

peak to the Gln-3 peak in all the primary and recurrent tumors examined reveals 

statistically significant higher ratios in recurrent tumors.  (C) Assessment of metabolite 

isotopomers using mass spectrometry reveals higher mole percent excess levels of 

glutamate, aspartate, succinate, malate, citrate and lactate in recurrent tumors when 

compared to primary tumors.  Glutamine labeling was lower in recurrent tumors 
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indicating higher label consumption.  Gln: glutamine; Glu: glutamate; Asp: aspartate; 

Succ: sucinate; Mal: malate; Citric: citrate; Lac: lactate.   

 

Figure 3. Recurrent tumor cells are glutamine-addicted (A) Primary tumors cells 

cultured in control media and media lacking glutamine exhibit similar growth 

characteristics.  Recurrent tumor cells cultured in media lacking glutamine exhibit 

decreased growth and increased cell death compared to those cultured in control media.  

The observed glutamine-addiction phenotype displayed by recurrent tumor cells can be 

rescued by media supplementation with α-ketoglutarate.  (B) Quantification of cell 

viability by trypan blue reveals decreased viability of recurrent tumor cells cultured in 

media lacking glutamine.  All other conditions exhibited similar viability levels.  Gln: 

glutamine; α-kg: α-ketoglutarate. 

 

Figure 4. Slc1a5 is upregulated in recurrence and is required for tumor growth (A) 

qRT-PCR profiling of primary and recurrent tumors reveals higher expression levels of 

Slc1a5 at the mRNA level.  (B) Recurrent tumors exhibit higher protein levels in 

recurrent tumors.  (C) Confirmation of Slca15 knockdown in primary tumor cells was 

assessed by qRT-PCR.  2 shRNA constructs were used.  Ctrl: Control.  (D) Slc1a5 

knockdown does not affect the mean growth rate of primary tumors in vivo.  (E) 

Confirmation of Slc1a5 knockdown in recurrent tumor cells was performed by qRT-PCR.  

2 shRNA constructs were used.  (F) Slc1a5 downregulation in recurrent tumors leads to 

statistically significant lower mean growth rate of recurrent tumors in vivo.  Mean tumor 

growth rate was calculated from bi-weekly caliper measurement of tumor dimensions.   
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Figure 5. Gls1 is upregulated in recurrence and is required for tumor growth (A) 

Recurrent tumors exhibit higher expression of Gls1 levels relative to primary tumors at 

the mRNA level.  Gene expression levels were assessed using qRT-PCR.  (B) Gls1 has 

higher expression at the protein level in recurrent tumors.  (C) Confirmation of Gls1 

knockdown in primary tumor cells by qRT-PCR.  2 shRNA constructs were used.  (D) 

Gls1 downregulation does not affect primary tumor mean growth rate in vivo.  (E) 

Confirmation of Gls1 knockdown in recurrent tumor cells.  2 shRNA constructs were 

used.  (F) Gls1 knockdown results in a marked decrease in mean tumor growth rate in 

recurrent tumors in vivo.  Mean tumor growth rate was calculated from bi-weekly caliper 

measurement of tumor dimensions.   

 

Figure 6. SLC1A5 , but not GLS1 expression is associated with recurrence risk in 

human breast cancer (A) Cox proportional hazard regression of 11 human datasets 

reveals a statistically significant association between high SLC1A5 expression and 10-

year cancer relapse risk.  When all datasets are considered, the random effect model 

yields a hazard ratio of 1.58 (p=0.0067).  HR: hazard ratio; CI: confidence interval.  (B) 

Examination of the same human datasets does not reveal a statistically significant 

association between GLS1 expression and 10-year relapse risk.  The combined hazard 

ratio was 0.96 (p=0.56).  This analysis was conducted using a meta-analysis-based 

algorithm. 

 

Figure 7. Myc is upregulated in recurrence and drives Slc1a5  and Gls1 

upregulation (A) Myc exhibits increased expression in recurrent tumors on the protein 

level.  (B) Myc upregulation is accompanied by increased expression of a number of 

known downstream Myc targets.  Target expression level was assessed using qRT-
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PCR.  (C) Downregulation of Myc expression in recurrent tumor cells is accompanied by 

decreased expression of Slc1a5 and Gls1.  Myc downregulation was achieved with Myc-

targeted siRNAs.  Gene expression levels were assessed using qRT-PCR.  (D) Myc 

downregulation was also accompanied by decreased glutamine consumption and 

decreased glutamate production.  Negative values correspond to metabolite 

consumption and positive values correspond to metabolite production.  Metabolite 

measurements were normalized to the average number of cells in each well.   
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CHAPTER 6 

Ldhb Downregulation by Sirt3 Contributes to the Warburg Effect and 

Promotes Breast Cancer Recurrence 

 

ABSTRACT 

Tumor recurrence is the principal cause of mortality in women with breast cancer.  

Despite its clinical importance, little is known about the mechanisms underlying breast 

cancer recurrence.  Increased lactate levels have been shown to be a poor prognostic 

marker in cancer patients and have been proposed to be a characteristic feature of 

metastatic and recurrent tumors.  In this study, we assess changes in lactate metabolism 

during breast cancer progression in a genetically-engineered mouse model of 

HER2/neu-induced breast cancer that recapitulates key features of the natural history of 

breast cancer progression including primary tumor development, tumor dormancy and 

recurrence.  We find that recurrent mammary tumors exhibit increased lactate levels, 

compared to primary tumors, and that downregulation of Ldhb in recurrent tumors was 

responsible for  this change.  Ldhb, a subunit of the LDH enzyme, favors the conversion 

of lactate to pyruvate.  Consequently, decreased Ldhb expression in recurrent tumors 

favors the accumulation of lactate due to a reduced ability to oxidize this metabolite.  We 

further determined that Ldhb downregulation plays a functional role in tumor recurrence 

as Ldhb knockdown in primary tumor cells was sufficient to promote tumor recurrence in 

orthotopic mouse experiments.  Consistent with a role for Ldhb downregulation in human 

breast cancer progression, low Ldhb was associated with reduced recurrence-free 

survival in breast cancer patients, particularly those whose tumors exhibited HER2/neu 
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amplification.  Ldhb downregulation in recurrent tumors was due to downregulation of 

the NAD-dependent mitochondrial deacetylase, Sirt3, an effect that was mediated by 

Hif1-α.  Taken together, our results suggest a functional role for Ldhb downregulation in 

promoting breast cancer recurrence and suggest potential clinical applications of Ldhb 

expression as a prognostic factor in human breast cancer.   

 

6.1 Introduction 

Breast cancer is the most commonly diagnosed malignancy in women and is the second 

leading cause of cancer-related death in women in the U.S.2, 5.  Among women with 

breast cancer, tumor recurrence represents the principal cause of mortality17.  

Nevertheless, little is known about the molecular mechanisms by which breast cancer 

cells survive therapy and recur.  In particular, while dysregulated metabolism has long 

been recognized as a key feature of cancer development, the metabolic changes 

accompanying cancer recurrence are largely unexplored.  Progress in this area has 

been greatly hindered by the lack of models for breast cancer recurrence.  To address 

this gap, our laboratory has developed a series of inducible bitransgenic mouse models 

that accurately recapitulate human breast cancer progression, including primary tumor 

development, minimal residual disease, tumor dormancy and recurrence63-65.  In this 

study, we explore the changes in lactate metabolism that accompany breast cancer 

progression and identify their underlying causes and potential functional role in tumor 

recurrence.   

Increased lactate production in tumors has generally been associated with 

advanced disease in cancer patients.  For example, high lactate levels have been 
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reported in metastatic recurrent tumors in human cervical cancers, head and neck 

cancers, lung cancers and colorectal cancers145, 267-271.  In addition, lactate accumulation 

in the plasma of cancer patients has also been found to be positively correlated with 

tumor burden82.  These results provide evidence for a potential role of increased lactate 

metabolism in cancer progression. 

The tendency of cancer cells to produce large amounts of lactate, despite the 

presence of oxygen, was first observed by Otto Warburg in the 1930s76.  Today, aerobic 

glycolysis, or the Warburg effect, is recognized as one of the most characteristic features 

of the metabolic profile of cancer cells.  In the presence of oxygen, cancer cells 

metabolize most of the glucose they uptake and convert it to lactate.  At the end of the 

glycolytic pathway, lactate dehydrogenase catalyzes the interconversion of pyruvate to 

lactate.  Lactate dehydrogenases consist of homo- and hetero- tetramers of M and H 

proteins encoded by the Ldha and Ldhb genes respectively85.  Five iso-enzymes, with 

different activity levels, have been described: LDH1 (4H), LDH2 (3H1M), LDH3 (2H2M), 

LDH4 (1H3M) and LDH5 (4M)85.  LDH5, which consists of 4 Ldha subunits, is known to 

favor the conversion of pyruvate to lactate85.  To date, differential lactate production in 

cancer cells has mainly been ascribed to changes in Ldha84, 272.  More recently, cancer 

cells were found to preferentially express the embryonic isoform of pyruvate kinase, 

Pkm2273, which increases lactate levels in tumors273.  In addition, both Ldha and Pkm2 

appear to be required for tumor growth83, 274.  In contrast, at present, little is known about 

the role of Ldhb in tumorigenesis.   

 In this study, we investigate changes in lactate metabolism during breast cancer 

progression and characterize the functional role of these changes on tumorigenesis.  In 

doing so, we establish a novel role for Ldhb downregulation in promoting cancer 



129 

 

recurrence in genetically engineerd mice and identify the mechanism behind the 

observed changes in mammary tumorigenesis and tumor recurrence.  Consistent with a 

role in human breast cancer progression, Ldhb downregulation was associated with 

reduced recurrence-free survival in breast cancer patients.   

 

6.2 Methods 

Animals, cell culture and recurrence assay 

The MMTV-rtTa;TetO-HER2/neu (MTB/TAN) doxycycline-inducible bitransgenic mouse 

model has been described63, 132.  All mice were housed and treated in accordance with 

protocols approved by the Institutional Animal Care and Use Committee at the University 

of Pennsylvania.  MTB/TAN mice were bred, housed, induced with 2 mg/ml doxycycline, 

monitored for tumor development and recurrence, and sacrificed as described66.   

Tumor cells from primary mammary tumors arising in MTB/TAN mice maintained 

on doxycycline were isolated and cultured in the presence of doxycycline as described66.  

Primary tumor cells were transduced with retroviruses expressing shRNAs targeting 

genes of interest and were selected in puromycin for stably-transduced polyclonal 

populations.   

 

Magnetic resonance spectroscopy 

PCA extraction was performed on 4 primary and 4 recurrent flash-frozen tumor samples 

using 12% perchloric acid.  Extracted samples were lyophilized and dissolved in 0.6 ml 

D2O.  1H NMR spectroscopy was performed at 400MHz on a Bruker Avance DMX 400 



130 

 

wide-bore spectrometer.  Fully relaxed proton spectra were acquired with a 5 mm 

inverse probe using the following conditions: PW 45º, TR 8s, water saturation during the 

relaxation delay, 6775 Hz SW, TD 64k and 64 scans.  An external standard made of 

trimethylsilylpropionic acid (TSP) was introduced in the NMR tube and used as a 

chemical shift reference and as a quantification standard.  Metabolite resonance 

assignments were made based on previously published spectra in breast cancer 

tissue133.  Analysis of collected NMR spectra was performed using NUTS (Acorn NMR 

Inc). 

 

13C-labeling experiments and mass spectrometry 

Three primary tumor-bearing mice and three recurrent mammary tumor-bearing mice, 

were infused through a tail vein catheter with a 200 mM solution of D-[1,2-13C]-glucose 

(Isotec) over a period of 45 minutes.  Six additional mice, 3 bearing primary tumors and 

3 bearing recurrent tumors were infused through a tail vein catheter with a 40 mM 

solution of L-[U-13C]-lactate for 45 minutes.  At the end of the infusion period, tumors 

were dissected and clamp-frozen in liquid nitrogen.  Perchloric acid extraction was 

performed as described128.   

Measurement of 13C isotopomers was performed on a Triple Quad 6410 mass 

spectrometer combined with an LC 1290 Infinity mass selective detector (Agilent), as 

described257.  Briefly, samples were first purified by passage through either AG-1 or AG-

50 cation exchange columns (Biorad) and then converted into t-butyldimethylsilyl 

derivatives.  Isotopic enrichment of lactate, alanine, citrate, glutamate, malate and 

aspartate were monitored.  13C-enrichment was computed as molar percent enrichment 



131 

 

(MPE), reflecting the mol fraction (%) of analytes containing 13C atoms in excess of 

natural abundance, where MPE (M+i) = % AM+i/[AM + Σ AM+i], and AM and AM+i represent 

the peak area from LC-MS ions corrected for natural abundance and corresponding to 

the unlabeled (M0) and 13C-labeled (M+i) mass isotopomers, respectively.  To reflect the 

amount of each labeled metabolite pool relative to the total available metabolite amount 

in the tissue, results are presented as the Σ 13C- labeled Metabolite: Σ(13C- labeled 

Metabolite) = [Metabolite Concentration] x Σ(MPE). 

 

In vitro metabolite level quantification 

300,000 cells were plated and incubated in cell culture media for 96 hours.  Lactate and 

glucose levels present in the media at 96 hours were determined using a 7100 

Multiparameter Bioanalytical System (YSI life Sciences).  The amount of each metabolite 

consumed or produced by cells in each well was computed as the difference between 

the level of that metabolite in conditioned media from cultured cells compared to its level 

in control media incubated without cells, and then normalized to the average number of 

cultured cells in that well.  Positive values denote metabolite level increase, whereas 

negative values denote metabolite level decrease.  Samples from each tested condition 

were run in triplicate and statistical significance was determined using a student's t-test. 

  

RNA isolation and qRT-PCR 

RNA extraction was performed on snap-frozen primary and recurrent mammary tumor 

tissue and cell samples as described253.  Samples were homogenized and RNA isolation 
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was carried out using the RNeasy RNA isolation kit (Qiagen) according to 

manufacturer’s instructions.  Reverse transcription was performed from 2 µg of RNA 

using the cDNA High Capacity Reverse Transcriptase Kit (Applied Biosystems).  qRT-

PCR analysis for mRNA levels was carried out on an Applied Biosystems 7900 HT Fast 

Real-Time PCR system using 6-carboxyfluorescein–labeled Taqman probes (Applied 

Biosystems).  Expression levels were normalized to TBP. 

 

Western blotting 

Mammary tumors were homogenized with a sonicator in TPER protein lysis buffer 

(Thermo Scientific).  Primary antibodies were obtained from Abcam (anti-Ldhb and anti-

Ldha), or Cell Signaling (anti-Pkm2, anti-Sirt3 and anti-Hif1).  Horse radish peroxidase-

conjugated secondary antibodies (Jackson Laboratories) were used to probe 

membranes incubated with the anti-Pkm2, anti-Hif1 and anti-Sirt3 antibodies.  The 

enhanced chemiluminescent system (ECL; Amersham) was used to detect the bound 

secondary antibodies.  Anti-Ldha and Ldhb primary antibodies were detected using 

Alexa-Fluor-conjugated secondary antibodies (Molecular Probes).  The Odyssey V3.0 

system (Li-COR Biosciences) was used to visualize and quantify proteins of interest.  

 

Hif1 gene pathway activity 

A hypoxia gene expression signature was generated from a dataset obtained from the 

NCBI GEO website (GSE3188).  Cyber-T analysis was performed  to identify 

differentially regulated genes in breast cancer cells under hypoxic conditions.  A p-value 
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cutoff of 0.01 and a fold change cutoff of 2 generated a 288-gene hypoxia gene 

signature. The generated signature was used to assess hypoxic pathway activity in 

microarray data of mouse tumors using a scoring system described previously134.   

 

Pkm1 and Pkm2 isoform quantification  

We designed 5’ and 3’ oligonucleotide primers (ACACGAAGGTCGACATCCTC and 

CAAGGGGACTACCCTCTGG) for the Pkm gene.  Using RNA extracted from primary 

and recurrent tumor samples, Pkm1 and Pkm2 were amplified using PCR.  Equivalent 

amounts of amplified Pkm1 and Pkm2 fragments were digested with Pst1, Econ1 

restriction enzyme, both enzymes or neither enzymes.  EcoN1 is specific for Pkm1 and 

Pst1 is specific for the Pkm2.  Following digestion, products were electrophoresed on a 

non-denaturing polyacrylamide gel.  The gel was stained with ethidium bromide prior to 

UV imaging.   

 

LDH activity determination 

LDH was extracted from primary and recurrent tumor samples using the Biovision LDH 

Activity Quantification kit (Biovision, Inc.) according to manufacturer's instructions.  

Protein amounts were quantified in each of the extracted samples and the same amount 

of protein was loaded in each well prior to activity measurements.  Enzyme activity is 

presented as amount of lactate converted into pyruvate in nmol/min/ml. 
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Zymography 

To separate the different LDH isoenzymes, aliquots from the same samples extracted for 

LDH activity assays were subjected to a non-denaturing polyacrylamide gel for 

electrophoresis.  Following electrophoresis, gels were placed in a staining solution 

containing NAD+, lactate and Syber Gold.  NADH produced during the conversion of 

lactate to pyruvate reacts with Syber Gold thereby reflecting the activity of each of the 

LDH isoenzymes.   

 

Ldhb shRNA constructs 

Oligonucleotides targeted against Ldhb were designed using RNAi Central 

(http://katahdin.cshl.org/siRNA/RNAi.cgi?type=shRNA).  The following sequences were 

used: Ldhb shRNA-1: TGCTGTTGACAGTGAGCGCCCTCATCGAGTCCATGCTGAA- 

TAGTGAAGCCACAGATGTATTCAGCATGGACTCGATGAGGTGCCTACTGCCTCGG; 

and Ldhb shRNA-2: TGCTGTTGACAGTGAGCGAACAGACAATGACAGTGAGAACTA- 

GTGAAGCCACAGATGTAGTTCTCACTGTCATTGTCTGTCTGCCTACTGCCTCGGA.  

Oligonucleotides were cloned into the MLP vector and retroviral vectors and 

supernatants were generated as described253. 
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siRNA experiments 

Knockdown of Sirt3 and Hif1 expression in primary tumor cells was performed using 

commercially available siRNAs (Ambion).  A scrambled siRNA was used as a negative 

control (Ambion).  siRNA transduction was performed according to manufacturer's 

instructions and cells were incubated with siRNAs for 48 hrs.  Sirt3 and Hif1 knockdown 

were confirmed by qRT-PCR. 

 

Orthotopic tumor assay 

Orthotopic tumor assays were performed in athymic nude mice (nu/nu) (Taconic, 

Germantown, NY).  Cells were injected into the inguinal mammary fat pads of 10-12 

nu/nu mice for each experimental group.  Experiments were performed in parallel with 

three experimental arms, including one experimental arm for each of the Ldhb shRNA 

contructs, as well as an arm for a control shRNA.  Cells expressing an empty MLP 

vector were used in the control group.  1 million tumor cells were injected into the 

number four mammary fat pads of each mouse.   

For primary orthotopic tumor growth assays, HER2/neu expression in 

transplanted cells was induced by administering 2 mg/mL doxycycline in drinking water.  

Tumor size was measured 2-3 times per week and tumor volume was determined by 

caliper measurements for each injected site using the following formula: Tumor volume = 

(smallest diameter2 * largest diameter)/2.  Tumors were followed until they reached a 

size of approximately 15x15 mm.  Mean tumor growth rate (MGR) was calculated for 

each tumor as described252. 
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For orthotopic recurrence assays, mice were maintained on doxycycline until 

primary tumors reached a size of 3x3 mm.  Doxycycline was then withdrawn and tumors 

were followed for regression.  The incidence and latency of tumor recurrence was 

assessed from biweekly measurements.  Kaplan-Meier curves were generated for 

recurrence-free survival following doxycycline withdrawal and compared between the 

two cohorts using a logrank test. 

 

Human association analysis 

Microarray data sets135, 137, 138 profiled using the Affymetrix HG-U133A platform were 

downloaded from Gene Expression Omnibus and individually RMA-normalized.  943 

lymph node-negative patients who did not receive any systemic adjuvant therapy were 

identified according to available clinical information.  Microarray data were mean-

centered by gene within each data set and combined into one data set.  HER2-positive 

status was approximated by inspection of the rank plot of HER2 mRNA levels, and 

defined as samples having mean-centered log2 expression greater than 1.  Patients 

were assigned to high- or low-scoring classes based on their metabolic gene expression 

signature scores.  The cutoff between high- and low-scoring classes was determined by 

an outcome-oriented approach140.  Differences in 5-year relapse-free survival between 

the two classes were assessed by p-value from the log-rank test and hazard ratio from 

Cox proportional hazards regression.  To guard against high false-positive rates resulted 

from multiple testing, a corrected p-value was also calculated as part of the cut-point 

determination step140.  Analyses were performed specifically for the HER2-positive 

subset of patients.  All data analyses were performed in the R environment141.   
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6.3 Results 

To assess the differences in lactate metabolism between primary and recurrent tumors, 

we made use of a previously described doxycycline-dependent genetically engineered 

mouse model for HER2/neu-induced mammary tumorigenesis63, 66.  In this model, 

activation of HER2/neu results in mammary epithelial hyperplasia and the eventual 

development of primary mammary tumors that are addicted to HER2/neu expression63.  

When doxycycline is withdrawn, the resulting acute downregulation of HER2/neu 

pathway activity results in the regression of mammary tumors to a non-palpable state.  

This mimics the effect of therapy in women with HER2/neu-amplified breast cancers who 

are treated with a targeted agent that blocks HER2/neu activity63.  Akin to human breast 

cancer patients, primary mammary tumors that regress to a non-palpable state following 

doxycycline withdrawal subsequently recur with stochastic kinetics following a variable 

latent period that mimics human tumor dormancy66.  Recurrent mammary tumors in this 

system do not re-activate the HER2/neu transgene, but rather escape their dependence 

on HER2/neu signaling by activating alternate growth and survival pathways66.  

 

Recurrent tumors exhibit higher lactate levels than  primary tumors 

We used 1H magnetic resonance spectroscopy (MRS) to evaluate lactate levels in 

primary and recurrent mammary tumors.  Metabolic profiling of primary and recurrent 

mammary tumors revealed several metabolites whose concentrations differed between 

primary and recurrent tumors, including lactate whose levels were 30% higher levels in 

recurrent tumors (p=0.002) (Figure 1A).  These results were confirmed with mass 

spectrometry where in metabolite quantification in primary and recurrent tumors also 

revealed 40% higher lactate levels in recurrent tumors (p=0.014) (Figure 1B). 
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To further characterize the source of the higher lactate levels observed in 

recurrent tumors, we used 13C-labeled compounds and determined their isotopic labeling 

at specific metabolic steps.  Since increased lactate levels in cancer cells have primarily 

been attributed to the Warburg effect, we tested the hypothesis that increased lactate 

levels in recurrent tumors result from increased glycolytic flux.  To achieve this end, we 

infused [1,2-13C]-glucose into primary as well as recurrent tumor-bearing mice.  The total 

amount of 13C-labeled metabolite was used as a readout of glucose carbon contribution 

to each of the assessed metabolites.  Surprisingly, this analysis revealed that glucose 

exhibited a lower 13C-labled carbon contribution to lactate in recurrent tumors compared 

to primary tumors (p=0.004) (Figure 1C).  This suggested that the increased lactate 

levels observed in recurrent tumors might not simply be the product of increased glucose 

metabolism.   

We next sought to determine whether increased lactate concentrations in 

recurrent tumors might result from lactate accumulation in the tumors driven by reduced 

lactate metabolism.  To test this hypothesis, we infused [3-13C]-lactate into primary 

tumor-bearing mice and recurrent tumor-bearing mice.  Assessment of isotopic labeling 

and quantification of the total amount of available metabolite revealed a higher total 

amount of labeled lactate in recurrent tumors compared to primary tumors (p=0.01) 

(Figure 1D).  Consistent with our hypothesis, recurrent tumors displayed lower levels of 

total labeled alanine from lactate, potentially reflecting reduced lactate uptake and 

metabolism in recurrent tumors (Figure 1D). 
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Recurrent tumors exhibit similar Ldha and Pkm2 but lower Ldhb levels 

To identify the underlying molecular determinants responsible for the observed 

differences in lactate levels, we used qRT-PCR to quantify the mRNA expression levels 

of Ldha and Ldhb.  Expression profiling in primary and recurrent tumors  revealed similar 

Ldha expression levels (p=0.151), but a 5-fold decrease in Ldhb expression levels as 

tumors progressed from the primary to recurrent stage (p=0.016) (Figure 2A).  These 

results were confirmed at the protein level where Ldha levels were similar in primary and 

recurrent tumors and Ldhb levels were decreased in recurrent tumors (Figure 2B).   

 Another enzyme implicated in contributing to increased lactate levels in cancer is 

the embryonic isoform of pyruvate kinase, Pkm2.  To assess whether differences in 

Pkm2 levels, or differences in the Pkm2/Pkm1 ratio, might be responsible for the 

observed change in lactate level, we examined Pkm2 expression at the mRNA and 

protein levels and compared them to those of Pkm1, the adult isoform of pyruvate 

kinase.  Since Pkm1 and Pkm2 result from alternative splicing of the Pkm gene 

transcript (Figure 2C), we designed primers to amplify both Pkm1 and Pkm2 and sought 

to quantify each isoform using restriction enzymes specific to each amplified fragment.  

Our results revealed that primary and recurrent tumors exhibited similar levels of Pkm1 

and Pkm2 (Figure 2C).  This was further confirmed by western blotting which revealed 

similar levels of Pkm2 protein in primary and recurrent tumors (Figure 2D).   

 In summary, our results indicate that primary and recurrent mammary tumors 

exhibit similar Ldha and Pkm2 levels, but lower levels of Ldhb, suggesting that reduced 

Ldhb levels might contribute to the elevated levels of lactate observed in recurrent 

tumors. 
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Ldhb downregulation levels result in lower LDH acti vity and reduced lactate 

metabolism in recurrent tumors  

To further characterize the metabolic effects of Ldhb downregulation, we evaluated the 

distribution of LDH isoforms in primary and recurrent tumors.  The LDH enzyme is a 

tetramer consisting of different numbers of Ldha and Ldhb subunits, which manifests as 

five different enzyme isoforms.  The LDH5 isoform consists of four Ldha subunits 

whereas the LDH1 isoform consists of four Ldhb subunits.  Zymography performed on 

protein lystes prepared from primary and recurrent tumors revealed a shift in the 

distribution of the LDH isoforms as tumors recur.  While primary tumors expressed all 

five isoforms of LDH, recurrent tumors only expressed LDH4 and LDH5, and lacked LDH 

isoforms containing two or more subunits of Ldhb (isoforms 1, 2 and 3) (Figure 3A).   

 As Ldhb is known to favor the conversion of lactate into pyruvate, we sought to 

quantify any differences in the rate of this reaction between primary and recurrent 

tumors.  Profiling of LDH enzymatic activity in primary and recurrent tumors revealed 

40% lower LDH activity converting lactate to pyruvate in recurrent tumors compared to 

primary tumors (p=0.014) (Figure 3B).   

 To directly address whether reduced Ldhb levels contributed to the high lactate 

levels observed in recurrent tumors, we downregulated expression of Ldhb in a recurrent 

tumor cell line (Figure 3C), incubated these Ldhb knockdown cells in media containing 

lactate and quantified the amount of lactate present in the media at 96 hours.  These 

studies revealed that shRNA-mediated Ldhb downregulation resulted in signficant 

increase in the amount of lactate present in the media at 96 hours compared to the cells 

expressing a control shRNA (p<0.05) (Figure 3D).  Similar results were obtained with 
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two different shRNA constructs.  These findings suggest Ldhb downregulation in 

recurrent tumor cells could contribute to higher lactate levels that we observed in the 

recurrent tumors in vivo.   

 

Lower Ldhb levels promote tumor recurrence in mice and are correlated with 

lower recurrence-free survival in human breast canc er 

To assess the functional effect of Ldhb downregulation on breast cancer progression, we 

employed an orthotopic tumor assay in which we genetically manipulated the expression 

of Ldhb in primary tumor cells derived from MMTV-rtTa;TetO-HER2/neu mice in which a 

HER2/neu transgene was expressed in a doxycycline-inducible manner (Figure 3C) prior 

to injecting them in the mammary fat pad of nu/nu mice.  In this assay, primary tumor 

growth was induced by doxycycline administration to nu/nu mice whose mammary fat 

pads had been injected with primary tumor cells that had been transduced with an Ldhb 

shRNA or control shRNA.  When those tumors reached a size of 3x3 mm, doxycycline 

was withdrawn to induce tumor regression then monitored for the appearance of 

recurrent tumors (Figure 4A).  Our results revealed that primary tumors derived from 

cells in which Ldhb had been knocked down recurred at a significantly faster rate 

compared to primary tumors derived from cells transduced with a control shRNA 

(Figures 4B and 4C).  These results were reproduced with two different shRNA 

constructs (HR1=0.2755, p1=0.001 and HR2=0.21, p2<0.001).  This indicates that Ldhb 

downregulation in primary tumor cells is sufficient to promotoe tumor recurrence. 

 To further assess the effect of Ldhb knockdown on tumorigenesis, we 

investigated the effect of Ldhb knockdown on primary tumor growth.  Primary tumor cells 
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expressing either a control shRNA or an shRNA directed against Ldhb were injected into 

the mammary fat pads of nu/nu mice.  Tumor growth was induced by the administration 

of doxycycline to induce HER2/neu transgene expression and was followed biweekly 

until tumors reached a size of 15x15 mm.  Quantification of mean tumor growth rate did 

not reveal any differences in primary tumor growth between control tumors and those 

with Ldhb knockdown (p1=0.932, p2=0.743) (Figure 4D).   

 To investigate the potential clinical relevance of our findings, we assessed the 

association between Ldhb gene expression levels and the risk of tumor recurrence in a 

cohort of breast cancer patients with HER2-positive, node-negative tumors.  Consistent 

with our findings in mice, this analysis revealed that tumors with lower levels of LDHB 

expression were associated with reduced 5-year metastasis-free survival (HR=-2.88 and 

p=0.0158).   

In aggregate, our results indicate that Ldhb downregulation is sufficient to 

promote tumor recurrence, but has no effect on primary tumor growth.  Moreover, 

reduced LDHB levels were associated with reduced recurrence-free survival in breast 

cancer patients.   

 

Ldhb downregulation is caused by Sirt3 downregulati on  

Sirt3 is an NAD-dependent mitochondrial deacetylase known to regulate glycolytic 

activity through Hif1-α destabilization275.  We hypothesized that the reduced levels of 

Ldhb expression that we observed in recurrent tumors was due to a decrease in 

expression of Sirt3.  To begin to address this hypothesis, we assessed Sirt3 levels in 

primary and recurrent tumors.  qRT-PCR experiments revealed lower expression of Sirt3 
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at the mRNA level in recurrent tumors (p=0.038) (Figure 5A).  These results were further 

confirmed by western blotting which revealed lower expression of Sirt3 at the protein 

level in recurrent tumors (Figure 5B).   

 Next, we used siRNAs targeted against Sirt3 to directly address whether Sirt3 

was capable of modulating Ldhb levels in recurrent tumor cells.  siRNA-mediated 

downregulation of Sirt3 resulted in downregulation of Ldhb, but not Ldha (Figure 5C).  

Similar results were obtained with two different siRNAs.   

 Consistent with this, assessment of changes in metabolite levels in the media 48 

hours post-transfection revealed higher lactate levels in the media of cells with siRNAs 

targeted against Sirt3 (Figure 5D).  These findings suggest that Sirt3 downregulation in 

recurrent tumors contributes to the observed decrease in Ldhb levels as well as the 

accompanying increase in lactate levels observed in recurrent tumors. 

 

Downregulation of Ldhb is mediated through Hif1   

To further characterize the mechanism responsible for Ldhb downregulation, we 

investigated whether the effect of Sirt3 was mediated through Hif1, a previously-

described downstream effector of Sirt3.  First, we assessed whether recurrent tumors 

exhibited higher levels of Hif1-α stabilization.  Western blotting revealed higher levels of 

Hif1 in recurrent tumors compared to primary tumors (Figure 6A).  These results were 

confirmed by assessing Hif1 pathway activity using a gene expression signature 

incorporating known Hif1 targets.  Consistent with our immunoblotting results, Hif1 

pathway activity was higher in recurrent tumors compared to primary tumors (p=0.022) 

(Figure 6B). 
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 To address whether the effect of Sirt3 downregulation on Ldhb expression is 

mediated through Hif1, we used siRNAs targeted against both Hif1 and Sirt3 in recurrent 

tumor cells.  Again, downregulation of Sirt3 expression led to a reduction in Ldhb levels 

as previously (p=0.003).  However, simultaneous downregulation of both Sirt3 and Hif1 

abrogated the effect of Sirt3 dowregulation on Ldhb expression (Figure 6C).  Ldha levels 

were unaffected by Sirt3 or Hif1 downregulation.   

 Consistent with these findings, assessing changes in lactate levels in the media 

in which the cells were incubated revealed that Sirt3 downregulation resulted in higher 

lactate levels in the media, whereas simultaneous downregulation of both Sirt3 and Hif1 

abrogated the effect of Sirt3 downregulation on lactate compared to control cells (Figure 

6D).  These results suggest that the effect of Sirt3 on Ldhb expression and lactate levels 

is mediated through Hif1. 

 

6.4 Discussion 

In this work, we provide evidence for increased lactate levels as tumors progress from 

primary to recurrent stage.  Our findings further suggest that this increase in lactate 

results from decrease in the expression of Ldhb, which encodes the LDH subunit that 

favors the conversion of lactate to pyruvate.  Consistent with this, recurrent tumors 

exhibited a shift in the LDH isoforms that they express towards homo- and heterodimers 

containing fewer subunits of Ldhb which would be expected to result in a reduction in the 

conversion of lactate to pyruvate.  Notably, this reduction in Ldhb expression was also 

associated with a functional effect on tumorigenesis, as Ldhb knockdown in primary 

tumors accelerated the appearance of recurrent tumors indicating that Ldhb 
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downregulation is sufficient for tumor recurrence.  In contrast, Ldhb downregulation had 

no effect on primary tumor growth.  Mechanistically, Ldhb downregulation could be 

ascribed to downregulation of the NAD-dependent deacetylase, Sirt3, which was 

observed in recurrent tumors.  Finally, we find that the effect of Sirt3 on Ldhb and lactate 

levels was mediated through Hif1.  Together, our findings suggest that Ldhb 

downregulation plays a rate-limiting role in tumor recurrence.   

 High intratumoral lactate levels have previously been associated with poor 

patient prognosis and increased risk for metastasis and recurrence in human cervical 

cancers, head and neck cancers and lung cancers145, 267-270.  Increased lactate levels are 

also associated with increased tumor invasion, metastasis and tumor burden and have 

been directly linked to tumor avoidance of immunosurveillance82, 276, 277.  In this regard, it 

has been postulated that high lactate levels in the extracellular space lead to an acidic 

environment that results in more aggressive tumor behavior82.  High lactate levels also 

inhibit lactate export from T cells in the tumor microenvironment, significantly reducing 

their function in tumor recognition276.  Results from our study suggest that increased 

lactate levels are associated with tumor progression and breast cancer recurrence. 

 While most metabolism models suggest that net increased lactate production in 

cancer cells results from the Warburg effect, several studies suggest that exogenous 

lactate can act as a carbon source for oxidative metabolism278-280.  Specifically, evidence 

exists suggesting a symbiosis between oxygenated and hypoxic cells within tumors, 

wherein hypoxic cells use glucose as their major energy source while oxygenated cells 

use lactate generated by hypoxic cells to maintain their metabolic activity280-282.  Our 

findings are compatible with this model in that we find that primary tumors, in our model, 

do indeed uptake and metabolize lactate.  In fact, in primary tumors, lactate was a 
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significant precursor of alanine and glutamate carbon compared to glucose, consistent 

with observations in rat C6 glioma cells278.  Our findings also suggest differential lactate 

metabolism by primary and recurrent tumors.  In light of the increased lactate levels that 

we observed in recurrent tumors, we had initially expected to find increased glycolytic 

flux and increased lactate production in recurrent tumors.  Surprisingly, we found that 

recurrent tumors exhibited reduced glucose metabolism as well as reduced lactate 

oxidation, despite the higher net amount of lactate found in those tumors.  These 

findings suggest a potential metabolic shift away from lactate oxidation toward lactate 

accumulation in recurrent tumors, which might underlie their aggressive behavior. 

 Previous reports have implicated Ldha levels in regulating lactate production and 

in contributing to the ability of tumors to proliferate under hypoxic conditions272, 274.  

Similarly, cancer cells have recently been found to exhibit an isoform switch in pyruvate 

kinase whereby tumors preferentially express high levels of the embryonic form Pkm2 

compared to normal tissues, which primarily express Pkm1273.  This isoform switch 

modulates lactate production and plays a functional role in tumorigenesis, in that Pkm2 

is required for tumor growth273.  In our study, however, both Ldha and Pkm2 were 

expressed at similar levels in primary and recurrent tumors, and were therefore unlikely 

to be responsible for the increased levels of lactate observed in recurrent tumors.  

Rather, we found that the ldhb subunit of LDH that preferentially converts lactate to 

pyruvate, was markedly downregulated during the course of tumor recurrence.  While 

some reports have suggested a potential association between Ldhb downregulation and 

increased metastasis in some human cancers87, 149, 283, our findings provide the first 

direct evidence for a functional role for Ldhb downregulation in tumor recurrence.   
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 Downregulation of Ldhb in recurrent tumors results in a reduction in LDH 

isoforms 1-4 such that these tumors primarily express LDH5, an isoform that consists of 

4 Ldha subunits.  LDH5 has the highest efficiency of converting pyruvate to lactate.  As 

such, recurrent tumors exhibiting Ldhb dowregulation primarily produce and secrete 

lactate while exhibiting a reduced ability to uptake and metabolize lactate.  This would be 

anticipated to result in lactate accumulation, as we observed in recurrent tumors. 

 A limited number of studies have suggested an association between decreased 

Ldhb expression and increased metastasis and invasive tumor behavior.  A laser 

microdissection study in colorectal tumors found a significant reduction in LDHB in the 

infiltrative edges of the tumors, in the absence of changes in  LDHA expression271.  

Other studies have shown LDHB downregulation in metastatic human prostate cancer 

samples when compared to benign prostate tissue87.  These results are in agreement 

with our findings that Ldhb is downregulated as tumors progress to the stage of 

recurrence, and that LDHB downregulation is associated with reduced recurrence-free 

survival in human breast cancer patients, primarily those exhibiting HER2-positive breast 

cancer. 

In this study, we have established a direct functional link between Ldhb 

downregulation and reduced recurrence-free survival in an animal model that faithfully 

recapitulates key features of breast cancer progression.  Using an orthotopic tumor 

assay, we demonstrated that Ldhb downregulation is sufficient to promote tumor 

recurrence.  To our knowledge, this is the first evidence identifying a functional role for 

Ldhb in tumor progression.  Reduced Ldhb expression contributes to lactic acid 

accumulation by reducing lactate uptake and metabolism within tumors.  This, in turn, 

leads to decreased pH in the tumor microenvironment, thereby stimulating tumor 
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invasion while impairing immunogenicity.  A role for increased lactate levels in inducing 

and selecting for a stem-like phenotype in cancer cells has also been suggested.  

Moreover, Kennedy et al. have reported increased expression of the transcriptional 

repressor Snail and epithelial-to-mesenchymal transition (EMT) in breast cancer cells 

chronically subjected to high lactate levels284.  As our laboratory has previously reported 

increased Snail expression and EMT in recurrent tumors66, we speculate that tumor 

recurrence driven by elevated lactate levels could facilitate induction of a stem-like 

phenotype and EMT in a subset of tumor cells.  Such cells might persist following 

regression of the primary tumor and could give rise to recurrent tumors at a later time. 

 Sirtuins have recently emerged as important regulators in cancer metabolism.  In 

particular, Sirt3, an NAD-dependent mitochondrial deacetylase has been reported to 

repress glycolytic activity and proliferation in breast cancer cells and to modulate lactate 

levels275.  While Sirt3 has principally been found to affect Ldha expression275, we found 

that Sirt3 was downregulated in recurrent tumors and demonstrated that Sirt3 

downregulation in primary tumor cells led to a reduction in Ldhb expression.  To our 

knowledge, this is the first evidence that Sirt3 regulates Ldhb expression.  

 As lactate levels are also significantly influenced by hypoxia, we investigated the 

link between Sirt3, hypoxia and Ldhb expression.  Previous studies have established 

that the ability of Sirt3 to regulate glycolytic activity is dependent upon Hif1-α 

destabilization275.  Consistent with this, we found higher Hif1-α protein levels in recurrent 

tumors compared to primary tumors.  Moreover, while Sirt3 downregulation led to a 

reduction in Ldhb levels, siRNA-mediated Hif1 dowregulation abrogated the effect of 

Sirt3 on Ldhb expression consistent with a model in which Sirt3 regulates Ldhb through 

Hif1.  Of note, Hif1 controls the expression of target genes by binding to the hypoxia 
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response element (HRE) thereby inducing upregulation of target genes285.  To our 

knowledge, few reports exist suggesting that Hif1-α stabilization induces downregulation 

of gene expression.  As such, the impact of Hif1 on Ldhb downregulation might be 

mediated by a Hif1 target.  In addition, some studies have suggested that the Ldhb 

promoter is hypermethylated in human cancers87, 283.  It is possible that promoter 

hyperpmethylation might play an additional role in regulating the expression of Ldhb.  

Interestingly, Ldha levels did not change during tumor recurrence despite Hif1-α 

stabilization.   

 In summary, our findings provide direct evidence for a functional role for Ldhb 

downregulation in tumor recurrence.  Ldhb downregulation was sufficient to accelerate 

tumor recurrence and was sufficient to induce lactate accumulation within tumors.  

These changes were driven by Sirt3 downregulation and mediated by changes in Hif1 

stabilization.  Our findings suggest that Ldhb expression may serve as a useful 

prognostic marker for breast cancer patients and that modulating LDH activity may have 

therapeutic utility.   
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6.5 Figure Legends 

 

Figure 1. Recurrent tumors exhibit higher lactate levels than primary tumors. 

(A) 1H MRS reveals differences in selected metabolites between primary and recurrent 

tumors. 30% higher steady-state lactate levels were observed in recurrent tumors.  

Results are shown from a total of 4 primary and 4 recurrent tumors arising in MTB/TAN 

mice.  (B) Higher lactate levels in recurrent tumors confirmed by mass spectrometry 

analysis in the same mice as in (A).  Lactate levels are normalized to mg of total protein 

(TP) in the analyzed tissue samples.  (C) 13C-labeled glucose infusion of tumor-bearing 

mice reveals lower production of labeled lactate from glucose in recurrent tumors relative 

to primary tumors.  Results represent the amount of labeled metabolite from the total 

available metabolite pool.  White bars represent primary tumors and black bars 

represent recurrent tumors. (D) Labeled lactate infusion of tumor-bearing mice reveals 

higher accumulation of labeled lactate and less lactate oxidation in recurrent tumors 

compared to primary tumors.  Results represent the total amount of labeled metabolite 

pool.  White bars represent primary tumors and black bars represent recurrent tumors.   

(** indicates p<0.05). 

 

Figure 2. Recurrent tumors exhibit lower Ldhb expression levels.  (A) Recurrent 

tumors exhibit lower Ldhb expression but similar Ldha expression at the mRNA level 

compared to primary tumors.  Expression levels were assessed by qRT-PCR in 4 

primary and 4 recurrent tumors.  Expression was normalized to TBP.  (B) Recurrent 

tumors exhibit lower Ldhb, but similar Ldha protein levels compared to primary tumors.  

Tubulin is shown as a loading control.  (C, D) Recurrent tumors exhibit similar Pkm1 and 
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Pkm2 expression levels.  Pkm1 and Pkm2 are the product of differential splicing of the 

Pkm gene.  Pkm1 and Pkm2 were amplified from RNA extracted from primary and 

recurrent tumor samples.  Relative expression was assessed by electrophoresis of 

digested or undigested amplification products on a non-denaturing polyacrylamide gel.  

EcoN1 is a restriction enzyme specific for Pkm1 and Pst1 is specific for Pkm2.  (E) 

Recurrent tumors exhibit similar Pkm2 protein levels compared to primary tumors.  

Tubulin is shown as a loading control.   

 

Figure 3. Ldhb  downregulation results in higher lactate levels (A) Zymography 

reveals that recurrent tumors lack LDH isoenzymes LDH1, LDH2 and LDH3.  Protein 

was extracted from 3 primary and 3 recurrent tumors and electrophoresed on a non-

denaturing polyacrylamide gel.  (B) Assessment of the conversion of lactate to pyruvate 

reveals reduced LDH activity in catalyzing that conversion compared to primary tumors.  

Results are for LDH extracted from 3 primary and 3 recurrent tumors.  (C) shRNA 

knockdown of Ldhb in primary tumor cells compared to controls.  Expression levels were 

assessed in primary tumor cells by qRT-PCR and normalized to TBP.  (D) Conditioned 

media from primary tumor cells with Ldhb knockdown exhibit higher lactate levels 

compared to control cells.  Results were normalized to the average number of cultured 

cells in each well.  (* indicates p<0.05). 

 

Figure 4. Ldhb  downregulation promotes tumor recurrence in mice and is 

associated with reduced recurrence-free survival in human breast cancer.  (A) 

Schematic of orthotopic tumor recurrence assay consisting of injecting genetically-
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engineered primary-tumor derived cells into the mammary fat pad of nu/nu mice, 

inducing tumor growth by doxycycline administration, withdrawing doxycycline treatment 

to induce tumor regression to a non-palpable state followed by the stochastic 

appearance of recurrent tumors following a latency period.  (B,C) Ldhb knockdown in 

primary tumors promotes recurrence in the MTB/TAN mouse model using two different 

shRNA constructs.  Results are from 24 injected sites in each experimental group.  (D) 

Primary tumors with Ldhb knockdown grow at a similar rate compared to control tumors.  

Tumor growth was assessed by computing the mean growth rate (MGR) as tumors 

increased in size from 5x5 mm to 15x15 mm.  Results are from 20 injected sites in each 

experimental group.  (E) Ldhb knockdown is associated with reduced recurrence-free 

survival in HER2-positive human breast cancer among patients with node-negative 

disease who did not receive adjuvant therapy.  (H.R.: Hazard Ratio; p: p-value). 

 

Figure 5. Sirt3  downregulation reduces Ldhb  levels in recurrence.  (A) Recurrent 

tumors exhibit low Sirt3 mRNA levels compared to primary tumors.  Expression levels 

were assessed by qRT-pCR and normalized to TBP.  Results are from 4 primary and 4 

recurrent tumors.  (B) Recurrent tumors exhibit lower Sirt3 protein levels relative to 

primary tumors.  Tubulin is shown as a loading control.  (C) Downregulation of Sirt3 in 

primary tumor cells leads to downregulation of Ldhb levels without affecting Ldha levels.  

Sirt3 knockdown was achieved by siRNA transfection.  Expression levels were assessed 

by qRT-PCR and normalized to TBP.  (D) Sirt3 knockdown results in increased lactate 

levels in the culture media.  Results were normalized to the average number of cultured 

cells in each well. 
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Figure 6. Sirt3 downregulation of Ldhb  is mediated through Hif1.  (A) Recurrent 

tumors exhibit Hif1-α protein stabilization.  Tubulin is used as a loading control.  (B) 

Recurrent tumors exhibit higher Hif1-α pathway activity.  Pathway activity was assessed 

by considering expression of known Hif1 targets.  The EPS algorithm used outputs a 

pathway activity score based on the combined expression of target genes present in the 

signature.  (C) Simultaneous downregulation of Sirt3 and Hif1 abrogates the effect of 

Sirt3 on Ldhb expression levels.  While Sirt3 downregulation leads to a decrease in Ldhb 

levels, simultaneous downregulation of Sirt3 and Hif1 abrogates the effect of Sirt3 on 

Ldhb expression.  Sirt3 and Hif1 were downregulated in primary tumor cells using 

siRNAs targeted to those genes.  Expression levels were assessed by qRT-PCR and 

normalized to TBP.  (D) Simultaneous downregulation of Sirt3 and Hif1 in primary tumor 

cells does not change lactate levels in culture media.  Results were normalized to the 

average number of cultured cells in each well.  (** indicates p<0.05). 
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CHAPTER 7 

Conclusions and Future Directions 
 

 

7.1 Thesis Summary 

In this work, we present evidence for an evolving metabolic phenotype within breast 

cancers during the course of tumor recurrence.  We speculate that metabolic 

reprogramming could be a mechanism by which tumors escape therapy and recur.  A 

better understanding of the basis for the metabolic changes that accompany tumor 

recurrence might allow for the development of more effective approaches to preventing 

and treating recurrent breast cancers.   

Using a systems engineering approach, we have designed and implemented a 

process-based system aimed at increasing our understanding of the metabolic and 

genetic regulation of breast cancer recurrence.  Magnetic resonance-based metabolic 

profiling of primary and recurrent tumors allows for broad identification of potential 

metabolic pathways that exhibit differential activity in recurrent tumors compared to 

primary tumors in a mouse model of mammary tumor recurrence.  The identified 

metabolic changes are further characterized with 13C-labeling infusion experiments in 

vivo.  Mass spectrometry analysis and 13C magnetic resonance spectroscopy are used 

for pathway-focused assessment allowing the detection of changes in metabolic flux or 

the identification of key dysregulated steps in a given pathway.  Once potential 

dysregulated metabolic steps are identified, we proceed to identify the underlying 

genetic determinant(s) of those changes and assess the functional role of those in 
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tumorigenesis as well as their effect on tumor recurrence.  If a gene is found to exhibit a 

functional effect on tumor recurrence, the potential for clinical translation of our findings 

is assessed using microarray and outcome data from human breast cancer patients.  

The top-down process-based system of: 

1. identifying potential dysregulated metabolic pathways using magnetic 

resonance spectroscopy in a mouse model of mammary tumor 

recurrence,  

2. identifying the specific affected metabolic steps using 13C-labeling 

experiments,  

3. connecting those to their underlying molecular determinants, 

4. characterizing their functional effect in tumorigenesis, 

5. assessing their translational potential using human  microarray data  

forms the basis of our magnetic resonance-based integrative metabolomics approach 

that we propose and implement here as a mean to better understand the metabolic and 

genetic regulation of breast cancer recurrence.  This approach was implemented and 

validated in two metabolic pathways, glutaminolysis and lactate metabolism, which 

exhibited differences between primary and recurrent tumors in 1H magnetic resonance 

studies.   

 1H magnetic resonance profiling of primary and recurrent tumors led to the 

identification of a number of metabolites whose levels exhibited statistically significant 

differences between primary and recurrent tumors.  Recurrent tumors displayed higher 

lactate levels, lower succinate levels, higher glutamate to glutamine ratio, lower 

phosphocholine levels and higher glycine levels than primary tumors.  Higher levels of 

Sdhb and Gls expression as well as lower levels of Chka, Gldc and Ldhb in recurrence 
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can potentially explain the observed succinate, glu/gln, phosophocholine, glycine and 

lactate metabolite level changes, respectively.  The identified changes might have 

translational potential for human breast cancer prognosis prediction.  A metabolic gene 

expression signature based on the metabolic changes observed in recurrent tumors in 

mice successfully predicted 5-year recurrence risk in human breast cancer patients with 

HER2-positive disease.  Two of the identified differences in this study, increased lactate 

levels and increased glutamate to glutamine ratio, were further pursued using the 

process-based system proposed above to further characterize their contribution to 

breast cancer recurrence. 

 The first pathway we chose to assess was glutaminolysis with this pathway 

known to be a key feature of tumorigenesis.  13C-labeling experiments suggested 

increased glutaminolytic activity and increased reductive carboxylation in tumor 

recurrence.  The observed changes in the glutaminolytic profile were accompanied by 

increased expression of the glutamine transporter, Slc1a5, as well as increased 

expression of glutaminase (Gls1) in recurrent tumors.  Both Slc1a5 and Gls1 expression 

were required for recurrent, but not primary tumor growth in vivo.  Recurrent tumors also 

exhibited increased endogenous expression of the Myc oncogene.  Myc was found to be 

required for Slc1a5 and Gls1 expression as well as increased glutamine uptake and 

glutamate production in recurrent tumor cells.  Human association analysis further 

revealed a positive correlation between Slc1a5 expression levels and recurrence-free 

survival in human breast cancer patients.   

 The second pathway that we chose to further characterize was lactate 

metabolism.  The Warburg effect, consisting of increased aerobic glycolytic flux and 

increased lactate production, is one of the most fundamental observations in cancer 



163 

 

metabolism.  Interestingly, 13C-labeling experiments showed that recurrent tumors do not 

exhibit increased glycolytic flux but rather seem to accumulate lactate and display 

reduced oxidation of this metabolite.  Molecular profiling experiments identified 

downregulation of Ldhb in recurrent tumors as the potential underlying molecular 

determinant of the differential lactate levels between the two tumor stages.  This 

translated into recurrent tumors lacking LDH isozymes 1,2 and 3.  Ldhb is found to be 

regulated by the NAD-dependent mitochondrial deacetylase Sirt3; and this effect is 

mediated through Hif1.  Functional experiments further suggested a role for Ldhb 

downregulation in promoting tumor progression and recurrence.  Furthermore, we found 

that Ldhb downregulation in human breast cancer patients, particularly in those with 

HER2-positive disease, is correlated with reduced recurrence-free survival. 

 Combined, our findings validate our proposed process-based system for 

understanding the metabolic and genetic regulation of breast cancer recurrence.  Our 

findings further provide evidence for metabolic reprogramming in breast cancer 

progression and suggest a role for increased glutaminolysis and lactate metabolism in 

promoting recurrence.  The identified molecular determinants, Slc1a5, Gls1 and Ldhb 

might potentially serve as therapeutic targets as well as prognostic markers that could 

aid in the clinical management of breast cancer patients.   

 

7.2 Future Directions 

From the Genome to the metabolome and back: how do metabolic changes drive 

tumor recurrence? 

In chapter 6, we provided evidence that Ldhb downregulation, which results in increased 

lactate levels, promote tumor recurrence.  The mechanism by which this process takes 
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place remains to be investigated.  Here, we propose a potential pathway that might be 

underlying this phenomenon.   

In this work, our findings suggest that Ldhb downregulation is induced by Sirt3 

downregulation.  In a separate experiment, we also found evidence that Sirt3 levels were 

modulated by changes in Myc levels (Figure 1A).  To our knowledge, this is the first 

evidence of Myc regulating Sirt3 expression.  With Sirt3 downregulation, tumors exhibit 

increased lactate levels due to the associated Ldhb level changes.  The accumulation of 

lactate and the reduced conversion of lactate to pyruvate are accompanied by reduced 

amounts of NADH, a key product of this reaction.  High availability of NAD has been 

found to correlate with increased expression and activation of another NAD-dependent 

deacetylase, Sirt1286.  Interestingly, increased Sirt1 levels and activity are correlated with 

increased p53 deacetylation287.  This, in turn, is associated with pro-survival signaling 

and evasion of apoptosis.  A schematic of this proposed pathway is shown in Figure 1B. 

We speculate that increased Myc levels are the initiating genetic event that 

triggers a number of downstream metabolic changes, one of which is increased lactate.  

The increased lactate, in turn, might promote epigenetic changes by affecting p53 

acetylation providing a survival advantage to some tumor cells and allowing them to 

evade apoptosis.  The tumor cells where this phenomenon takes place might be 

potentially persisting following HER2/neu downregulation and recurring at a later time.   

In terms of the glutaminolytic changes that accompany breast cancer 

progression, we speculate that a subset of cells in the primary tumors upregulate 

glutamine metabolism and that those cells escape HER2/neu downregulation and persist 

as a result of the ammonia generated from increased glutamine uptake and breakdown.  

Ammonia is released as glutamine is converted into glutamate.  Increased ammonia 

levels in tumors have been associated with autophagy288, a mechanism that tumor cells 
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might use to become dormant.  It is possible that during dormancy, most of the 

increased glutamine uptake is diverted into ammonia to maintain autophagy.  This can 

be achieved by tumor cells maintaining low expression levels of enzymes that typically 

allow the entry of glutamine carbon into the TCA cycle, such as Gls1 or Glud1.  As 

tumors escape from dormancy, cells might upregulate these genes allowing 

glutaminolysis to support increased growth and energy production and leading to the 

appearance of a recurrent tumor.  We speculate that during dormancy, Myc upregulation 

induces increased glutamine uptake and conversion into ammonia, potentially promoting 

Atg1 levels to support autophagy.  As cells escape from dormancy, increased 

glutaminolysis promotes tumor recurrence through the diversion of glutamine's carbon 

into TCA cycle intermediates to support tumor growth.   

 

Serine biosynthesis pathway: a potential therapeuti c target for cancer recurrence 

Recently, the serine biosynthesis pathway has emerged as a novel key pathway in 

cancer metabolism289, 290.  Particularly, phosphoglycerate dehydrogenase (Phgdh), the 

enzyme responsible for the conversion of 3-phosphoglycerate into 3-

phosphohydroxypyruvate, was found to play an important role in tumorigenesis.  

Particularly, Phgdh was shown to be required for primary tumor growth in mammary 

tumors in mice289, 290.  The association between increased serine biosynthesis, Phgdh 

levels and cancer recurrence warrants further investigation.   

 In our model, D-[1,2-13C-]-glucose infusion revealed a more active serine 

biosynthesis pathway in recurrent tumors compared to primary tumors.  13C-MRS studies 

show marked labeled glycine production from glucose in recurrent tumors relative to 

primary tumors (Figures 2A and 2B).  In the serine biosynthesis pathway, serine is 
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converted into glycine before glycine is broken down to contribute to nucleotide 

synthesis.  In our model, we assessed the levels of Phgdh expression.  Indeed, recurrent 

tumors exhibit increased expression levels of Phgdh compared to primary tumors 

(Figure 2C).   

Together, these results provide evidence for increased serine biosynthesis 

pathway activity in recurrent tumors.  The functional implication of these observations on 

tumor recurrence should be further interrogated.   

 

Myc: the master metabolic regulator of tumor recurr ence  

In this work, we presented evidence that Myc overexpression could be responsible for 

the increase in glutaminolysis observed in recurrent tumors.  Similarly, figure 1A 

suggests that Myc also regulates expression of the NAD-dependent mitochondrial 

deacetylase, Sirt3.  Sirt3, in turn, modulates Ldhb levels and lactate accumulation in 

recurrent tumors.  While very little evidence is available connecting the serine 

biosynthesis to Myc, available microarray data through the Myc oncogene database 

(http://www.myc-cancer-gene.org/) suggests that Phgdh might be a Myc target.   

 Combined, these results lead us to speculate that Myc might act as a master 

regulator of the metabolic reprogramming that accompanies tumor recurrence (Figure 3).  

While primary tumors, in which HER2/neu is activated, are thought to be mainly 

dependent on glycolysis for their energy needs, it is possible that Myc upregulation in a 

subset of primary tumor cells might allow those to escape HER2/neu downregulation.  

The metabolic pathways that are activated with Myc overexpression might confer a 
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survival advantage to the transformed tumor cells and allows= them to undergo 

dormancy and later recur.   

 

Other potential regulators of metabolic reprogrammi ng in recurrence: Does Akt 

play a role? 

While tumor recurrence in our model is HER2/neu-independent, unpublished data from 

our lab suggests activation of the Akt pathway in recurrent tumors, as evidenced by the 

detection of high p-Akt levels.  With Akt known to play a role in metabolism, it remains to 

be investigated how the activity of this pathway affects the metabolic reprogramming 

observed in recurrent tumors.  Previous studies have suggested that Akt activity is 

associated with decreased GSK-3 activity291.  This, in turn, is known to lead to reduced 

Myc phosphorylation and reduced Myc degradation291.  Is it possible that Akt, acting 

upstream of Myc, might be the ultimate metabolic regulator in tumor recurrence? 

 In an effort to address this question, we inhibited AKT in a human breast cancer 

cell line, MCF-7, that we show to be glutamine addicted (Figure 4A and 4B).  Within the 

context of glutamine-addiction, AKT inhibition using 2 different siRNA constructs led to a 

reduction in MYC levels as well as a decrease in both SLC1A5 and GLS1 levels (Figure 

4C).  These data provide preliminary evidence that AKT might act upstream of MYC and 

regulate glutaminolysis and potentially other metabolic pathways through its effect on 

MYC.  The direct effect of Akt inhibition on the metabolism of recurrent tumor cells in our 

mouse model remains to be further assessed.  We speculate, however, that Akt might 

be the ultimate regulator of metabolism in tumor recurrence (Figure 4D). 
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 Of note, Akt has been shown to have no effect on glutamine metabolism within 

the context of Myc overexpression97.  Our data suggest, however, a potential role of Akt 

in glutamine metabolism, suggesting that this effect might be context-dependent.  

Further human association analysis also shows that AKT activity is positively correlated 

with SLC1A5 expression in human breast cancer samples, providing further evidence of 

a potential link between AKT and glutamine metabolism (Table 1).  The exact 

mechanism underlying this observation and the role of AKT in tumor recurrence is not 

well understood. 

 

Glutamate dehydrogenase: an alternative glutaminoly tic target in breast cancer 

recurrence 

Glutamate dehydrogenase (Glud1), in addition to Got1 and Gpt1, is an enzyme 

responsible for the conversion of glutamate into alpha-ketoglutarate.  This enzyme 

catalyzes a critical step of glutaminolysis with this reaction being the entry point of the 

glutamine carbon into the TCA cycle to support anaplerosis.  Assessment of alpha-

ketoglutarate levels in recurrent tumors revealed higher levels of this metabolite relative 

to primary tumors (Figure 5A).  These results were further confirmed with 13C-labeling 

experiments where we detected higher alpha-ketoglutarate enrichment in recurrent 

tumors relative to primary tumors, following the infusion of [3-13C]- glutamine (Figure 5B).  

Genetic profiling of primary and recurrent tumors in our model have shown similar levels 

of Gpt1 and Got1 but higher levels of Glud1 at both the mRNA and protein level (Figure 

5C and 5D).  Glud1 has been shown to be an especially promising therapeutic target in 

cancer.  An in vivo study reported cytostatic effects resulting from Glud1 inhibition in 

tumors, without the nonspecific toxicity usually observed with generalized inhibition of 
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glutamine metabolism92.  Another study reported decreased tumor growth in vivo upon 

inhibition with aminooxyacetate (AOA), an agent that blocks the conversion of glutamate 

to alpha-ketoglutarate292.  In light of this evidence and the known upregulation of 

glutaminolysis in tumor recurrence, investigating the effect of Glud1 inhibition in tumor 

recurrence is warranted.   

 Accordingly, we assessed the effect of Glud1 downregulation on tumor growth 

using 1 shRNA targeted against this gene.  Indeed, downregulation of Glud1 did lead to 

a reduction in mean tumor growth rate of recurrent tumors relative to controls (Figure 

5E).  This provides preliminary evidence of the potential of Glud1 as a therapeutic target 

of tumor recurrence.   

 Previous studies have suggested that Glud1 is regulated by Sirt4 in pancreatic 

beta cells293.  In our model, we have evidence that Sirt4 levels are higher in recurrent 

tumors compared to primary tumors (Figure 5F).  It remains to be investigated whether 

Sirt4 level changes are behind the observed Glud1 expression level changes in tumor 

recurrence.   

 Here, we show preliminary results for a role of Glud1 in tumor recurrence.  

Further investigation is warranted to better understand the role of Glud1 and to further 

characterize the mechanism responsible for the changes in its levels. 

 

Hyperpolarized magnetic resonance: potential in bre ast cancer prognostication 

NMR of hyperpolarized precursors has recently emerged as the technique of choice for 

monitoring dynamic real-time changes in metabolism in vivo, with substantially high 

resolution and sensitivity294-307.  By creating an artificial non-equilibrium distribution of the 
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spins, hyperpolarized imaging allows direct molecular imaging of the molecules 

containing the hyperpolarized nucleus with a signal-to-noise ratio (SNR) up to 100,000 

times greater than typical magnetic resonance techniques294-296.  This new technique 

offers many new possibilities for imaging tissue function in vivo308-313.   

 For the past few decades, the conventional magnetic resonance (MR) technique 

used to monitor total metabolite concentrations in vivo has consisted of Nuclear 

Magnetic Resonance (NMR) spectroscopy, a technique that exploits the magnetic 

properties of NMR active nuclei119, 120.  However, this approach can only measure 

steady-state metabolite levels and is of limited utility in vivo, especially in the case of 

lactate.  Lactate and lipid peaks usually overlap on 1H NMR spectra, such that 

monitoring modulations in lactate can be difficult even when methods of lipid 

suppression are used.  This is especially a problem in the case of in vivo breast MRS 

wherein a large percentage of the total composition of the tissue is fat.  Similarly, the 

glutamine and glutamate peaks typically overlap on 1D proton spectra, thereby 

complicating the accurate quantification of the individual concentration of each of the two 

metabolites in vivo.  13C-MRS is another conventional MR technique to assess 

metabolite levels but the low natural abundance of 13C makes its use for in vivo studies 

quite challenging due to SNR limitations. 

Here, we propose using hyperpolarized [1-13C]-pyruvate and [5-13C]-glutamine for 

the in vivo study of cellular metabolism.  We plan to investigate the role of their 

conversion into lactate and glutamate, respectively, as potential biomarkers for cancer 

progression.  Being able to reliably identify metabolic changes in tumor tissue and 

showing that those changes could reflect Ldhb and Slc1a5 expression levels, might 

provide evidence for a potential role of this technique in prognosis predication in cancer.   
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 Here, we conducted preliminary experiments in vivo where we injected primary 

and recurrent tumor-bearing mice with [1-13C]-pyruvate and observed its conversion into 

lactate in real time.  13C-spectra were collected at 1s intervals and a representative stack 

of those is presented for one mouse in Figure 6A.  The area under each peak at each 

time point was computed and normalized to the total carbon in the spectra.  Normalized 

peak amplitudes for both lactate and pyruvate were plotted with respect to time for each 

of the mice assessed in this study (Figure 6B and 6C).  Preliminary results show 

potential differences in dynamic lactate levels between primary and recurrent tumors.  

Those differences were further quantified by fitting the lactate and pyruvate curves to a 

modified Bloch equation model for two-site chemical exchange as previously described 

by Day et al.310: 

 

L and P denote lactate and pyruvate respectively.  Lz and Pz are the z-magnetizations of 

the 13C nucleus in lactate and pyruvate.  ρL and ρP are the spin-lattice relaxation rates, L 

and P at infinity are the equilibrium magnetizations which are equivalent to their steady 

state concentrations.  The data generated in our experiment were fit to this model using 

the 5-parameter solution proposed by Ziehurt et al.314.  The fits obtained from the 

generated model are presented in Figures 6D and 6E.  Representative reaction rates 

yielded by this model are presented in Table 2 for one primary and one recurrent tumor.   



172 

 

 Combined, these results show preliminary evidence that in vivo hyperpolarized 

magnetic resonance spectroscopy is a viable technique for the assessment of in vivo 

cancer metabolism.  It remains to be investigated how reproducible the detected 

changes are and whether the observed differences correlate with gene expression 

changes.  If validated, this technique might have potential to play a role in breast cancer 

prognostication, 

 

Metabolic gene expression signature: how does it me asure to current clinical 

prognostic variables? 

In Chapter 3, we presented a metabolic gene expression signature able to predict 5-year 

recurrence status in a cohort of breast cancer patients diagnosed with HER2-positive 

breast cancer.  Current clinical practice assesses the recurrence risk of breast cancer 

patients based on a number of clinicoprognostic variables, the most established of which 

include tumor size, tumor grade, receptor status (ER and PR), and HER2 status.  In 

order to address the potential clinical contribution of our proposed metabolic gene 

expression signature, we sought to assess whether this signature is an independent 

predictor of recurrence and whether it adds to the information provided by the 

traditionally used clinical prognostic variables.  Accordingly, we performed logistic 

regression modeling with recurrence status as the response variable.  Clinical variables 

were only available for a small patient dataset consisting of 31 patients.  The first 

implemented model included the currently used clinical variables that were available for 

this dataset: tumor size, tumor grade and ER status (Table 3).  Independent contribution 
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of each partial regression coefficient was assessed using the Wald test.  Tumor size was 

an independent predictor of recurrence status.   

Following the addition of the metabolic gene expression signature, both tumor 

size and the metabolic gene expression score were independent contributors to the 

prediction of recurrence status (Table 3).  These results indicate that the metabolic gene 

expression signature that we propose further adds to the currently used clinical variables 

when it comes to patient prognosis assessment.  These results were further validated by 

receiver operator curve (ROC) analysis.  The ROC curve of the clinical variables alone 

had an AUC of 0.82.  Addition of the metabolic gene expression score significantly 

added to the performance of the model where the AUC of the new model was 0.91. 

These results represent a proof-of-principle analysis and remain to be validated 

in a larger dataset, with more clinical variables and potentially compared to clinically-

used recurrence assays such as Oncotype DX.  If validated, the proposed metabolic 

gene expression signature has significant potential to aid in prognosis prediction in 

cancer patients.   

 

7.3 Conclusions 

In this work, we introduce magnetic resonance-based integrative metabolomics, a 

process-based systems approach, to understand the metabolic and genetic regulation of 

breast cancer recurrence.  Using this approach, we 1) identified a number of potentially 

dysregulated metabolic pathways using magnetic resonance spectroscopy in a disease 

model system, 2) characterized the key affected steps using 13C-labeling experiments, 3) 

identified the underlying molecular determinants of the observed metabolic changes, 4) 
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investigated the functional effect of those changes on tumor recurrence, and 5) 

assessed the translational potential of our findings.  This approach was validated in two 

metabolic pathways, glutaminolysis and lactate metabolism, which were shown to exhibit 

differences between primary and recurrent tumors in our mouse model.  Recurrent 

tumors exhibit increased glutamine uptake and metabolism.  Those Myc-driven changes 

are caused by increased expression of Gls1 and Slc1a5, two genes that seem to play a 

role in recurrent tumor growth.  Slc1a5 was also associated with human breast cancer 

prognosis.  Similarly, recurrent tumors exhibit increased lactate levels.  Sirt3-mediated 

downregulation of Ldhb is responsible for those changes.  Downregulation of Ldhb 

seems to promote recurrence in mice and to be associated with decreased recurrence-

free survival in human breast cancer patients. 

 The success of our proposed process-based system in elucidating some of the 

metabolic regulation of breast cancer recurrence leads us to propose wider adoption of 

this approach for the investigation of metabolism in tumorigenesis.  This system provides 

a top-down framework that allows multi-level assessment of the clinical and functional 

relevance of a specific metabolic observation.  By combining molecular biology, 

biochemistry, computational biology, imaging, statistical modeling, clinical science and 

engineering principles, this interdisciplinary approach allows for rigorous assessment of 

the diagnostic, prognostic and predictive potential of a given metabolic change.  This 

system might provide for better avenues for clinical translation of metabolic findings and 

facilitate the adoption of basic science discoveries to aid in the management of cancer 

patients.   

In the era of personalized medicine, identifying tumors with specific metabolic 

changes using imaging techniques shown to act as biomarkers for established functional 
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genetic alterations (i.e. affecting tumor growth or progression), might serve as a 

successful strategy to tailor treatments and prognosis assessment to individual patients.  

Furthermore, with metabolic changes often occurring prior to morphologic changes in 

cancer, such technique also has the potential to allow for early detection of tumors and 

for the early and non-invasive assessment of the patients’ response to tailored therapies.  

Lactate and glutamine imaging might be two such techniques and might aid in the early 

detection of recurrent tumors and improve the management of breast cancer patients. 
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7.4 Tables 

Table 1. Correlation between AKT pathway activity and SLC1A5 expression in 12 
human breast cancer datasets.  Correlation was assessed using Pearson correlation 
analysis. 

 

Study Pearson Correlation P-value 

Pawitan 0.386 5.06E-07 

Chang 0.334 4.19E-09 

Miller 0.321 2.00E-07 

Hess 0.282 0.00101 

Saal 0.256 0.00831 

Chin 0.222 0.0156 

VantVeer 0.219 0.0309 

Bild 0.188 0.018 

Oh 0.127 0.109 

Sorlie 0.123 0.357 

Wang 0.0926 0.118 

Chanrion -0.126 0.119 
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Table 2. Representative reaction rate constants computed from hyperpolarized MRS 
data from one primary and one recurrent tumors using a 5-parameter fit solution to 
modified Bloch equation model for 2-site chemical exchange.  Mice were injected with 
hyperpolarized [1-13C]-pyruvate. 
 

 
Primary Tumor  Recurrent Tumor 

Kpyr
����

lac (s
-1) 0.037 0.093 

Kpyr
����

ala (s
-1) 0.011 0.0016 
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Table 3. Logistic Regression Analysis to assess independent contribution of metabolic 
gene expression signature in predicting recurrence risk after adjusting for a number of 
clinicoprognostic variables in breast cancer patients.  (p-value is result of Wald test; Reg. 
Coef: regression coefficient; p-val: p-value). 

 

Logistic Regression Model of Clinicoprognostic Variables 

 Reg.  Coef. p-val. 

Model Constant -3.18 0.371 

ER Status -0.29 0.780 

Tumor Size -1.78 0.046 

Tumor Grade 1.69 0.1771 

 

 

Logistic Regression Model of Clinicoprognostic Variables + Metabolic Signature 

 Reg.  Coef. p-val. 

Model Constant -6.80 0.227 

ER Status -0.80 0.562 

Tumor Size -3.69 0.041 

Tumor Grade 3.71 0.081 

Metabolic Signature 11.12 0.043 
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7.5 Figure Legends 

 

Figure 1. Model of increased lactate promoting breast cancer recurrence.  (A) 

Downregulation of Myc is accompanied by upregulation of Sirt3 expression.  Myc 

downregulation was achieved using 2 different siRNA constructs targeted against this 

gene.  Expression levels were assessed by qRT-PCR and normalized to TBP.  (B) 

Proposed model of how Myc Upregulation contributed to lactate level modulation 

through its action on Sirt3.  Increased lactate is thought to increase Sirt1 levels and 

acitivty.  This affects p53 deacetylation and resulting in pro-survival signaling and 

apoptosis resistance.   

 

Figure 2. Recurrent tumors exhibit increased serine biosynthesis pathway activity.  

(A,B) Infusion of D-[1,2-13C]-glucose in 3 primary and 3 recurrent tumor-bearing mice 

results in markedly higher labeled glycine production in recurrent tumors when 

compared to primary tumors.  Shown are representative 13C-MRS spectra from one 

primary (A) and one recurrent mouse (B).  Area where the glycine peak resides is 

highlighted in red.  Results were reproduced in all 3 primary and 3 recurrent tumors 

considered.  Glycine is produced from serine in the serine biosynthesis pathway.  (C) 

Recurrent tumors exhibit higher PHGDH levels when compared to primary tumors.  

Expression levels were assessed using qRT-PCR and normalized to TBP.  PHGDH is a 

key enzyme in the serine biosynthesis pathway. 
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Figure 3. Model of metabolic reprogramming in breast cancer recurrence.  In 

primary tumors, neu activation activates the PI3k/AKT pathway, a known key regulator of 

glycolysis.  With doxycycline withdrawal, neu and AKT activity are downregulated.  

Recurring tumors exhibit marked metabolic reprogramming driven by Myc 

overexpression.  Recurrent tumors upregulate lactate metabolism, glutamine metabolism 

and serine biosynthesis, all shown to be affected by Myc. 

 

Figure 4. AKT might be another regulator of glutamine metabolism.  (A) MCF-7 

cells are glutamine- addicted and this effect is rescued by alpha-ketoglutarate.  Cells 

were cultured for 96 hours in 1) regular media, 2) glutamine-deprived media and 3) 

glutamine-deprived media supplemented with alpha-ketoglutarate.  (B) Quantification of 

cell death in each well by trypan blue 96 hours post-incubation.  Glutamine withdrawal 

leads to death of a large proportion of the MCF-7 cells.  Viability is restored by the 

addition of alpha-ketoglutarate.  Samples were run in triplicates.  (C) AKT inhibition leads 

to downregulation of MYC, SLC1A5 and GLS1 levels in MCF-7 cells.  AKT inhibition was 

achieved using 2 different siRNAs targeted against this gene.  Expression levels were 

assessed by qRT-PCR and normalized to TBP.  (D) Proposed Model of AKT regulating 

glutamine metabolism by acting through MYC.   

 

Figure 5. Glud1 as an additional glutaminolytic target in breast cancer recurrence.  

(A) Recurrent tumors exhibit higher alpha-ketoglutarate levels relative to primary tumors.  

Results are from 4 primary and 4 recurrent tumors.  (B) Recurrent tumors exhibit higher 

alpha-ketoglutarate enrichment when compared to primary tumors following [3-13C]-
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glutamine infusion.  Enrichment was assessed using mass spectrometry.  Results are 

presented as mole percent excess (MPE).  (C,D) Recurrent tumors exhibit higher levels 

of Glud1 at both the mRNA and protein levels.  mRNA levels were assessed using qRT-

PCR and normalized to TBP.  In the western blot, tubulin was used as a loading control.  

(E) Glud1 downregulation leads to reduced mean growth rate of recurrent tumors.  

Glud1 downregulation was achieved by using an shRNA targeted again the gene.  (F) 

Sirt4 exhibits higher expression levels in recurrent tumors when compared to primary 

tumors as assessed by qRT-PCR.  Expression levels were normalized to TBP.  Sirt4 has 

been previously shown to modulate Glud1 levels.   

 

Figure 6. Hyperpolarized magnetic resonance spectroscopy in primary and 

recurrent tumor-bearing mice.  (A) Representative stacked spectra following the 

injection of hyperpolarized 13C-pyruvate into the tail vein of a primary tumor-bearing 

mouse.  Spectra were collected at 1 second intervals.  (B) Dynamic curves of pyruvate 

level changes in the primary and recurrent tumors assessed in this study.  Each point 

corresponds to the area under the pyruvate curve at one time point.  Data were 

normalized to total carbon.  Muscle was used as a control.  (C) Dynamic curves of 

lactate level changes in the tumors considered.  Each point corresponds to the area 

under the curve at one time point.  Data were also normalized to total carbon.  Muscle 

was used as a control.  (D) Representative fit of a pyruvate curve from a primary tumor 

using 5-parameter solution to the 2-site exchange chemical model.  (E) Representative 

fit of a lactate curve from a primary tumor using 5-parameter solution to the 2-site 

chemical exchange model.  The fits were used to estimate the LDH reaction rate.   
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Figure 7. Performance of metabolic gene expression signature in predicting tumor 

recurrence in breast cancer patients.  Receiver Operator Curve (ROC) analysis was 

performed on the results from 1) the logistic regression model that incorporates the 

clinical prognostic variables and 2) the model that incorporates the metabolice gene 

expression signature in addition to those variables.  Area under the curve (AUC) 

computation revealed an improvement in the performance of the model when the 

signature is added (AUC=0.91) compared to the model that incorporates the clinical 

variables only (AUC=0.82).   
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Figure 7 
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