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Essays in Problems of Optimal Sequential Decisions

Abstract
In this dissertation, we study several Markovian problems of optimal sequential decisions by focusing on
research questions that are driven by probabilistic and operations-management considerations. Our
probabilistic interest is in understanding the distribution of the total reward that one obtains when
implementing a policy that maximizes its expected value. With this respect, we study the sequential selection
of unimodal and alternating subsequences from a random sample, and we prove accurate bounds for the
expected values and exact asymptotics. In the unimodal problem, we also note that the variance of the optimal
total reward can be bounded in terms of its expected value. This fact then motivates a much broader analysis
that characterizes a class of Markov decision problems that share this important property. In the alternating
subsequence problem, we also outline how one could be able to prove a Central Limit Theorem for the
number of alternating selections in a finite random sample, as the size of the sample grows to infinity. Our
operations-management interest is in studying the interaction of on-the-job learning and learning-by-doing in
a workforce-related problem. Specifically, we study the sequential hiring and retention of heterogeneous
workers who learn over time. We model the hiring and retention problem as a Bayesian infinite-armed bandit,
and we characterize the optimal policy in detail. Through an extensive set of numerical examples, we gain
insights into the managerial nature of the problem, and we demonstrate that the value of active monitoring
and screening of employees can be substantial.
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ABSTRACT

ESSAYS IN PROBLEMS OF OPTIMAL SEQUENTIAL DECISIONS

Alessandro Arlotto

Noah Gans

J. Michael Steele

In this dissertation, we study several Markovian problems of optimal sequential decisions by

focusing on research questions that are driven by probabilistic and operations-management

considerations. Our probabilistic interest is in understanding the distribution of the total

reward that one obtains when implementing a policy that maximizes its expected value.

With this respect, we study the sequential selection of unimodal and alternating subse-

quences from a random sample, and we prove accurate bounds for the expected values and

exact asymptotics. In the unimodal problem, we also note that the variance of the optimal

total reward can be bounded in terms of its expected value. This fact then motivates a much

broader analysis that characterizes a class of Markov decision problems that share this im-

portant property. In the alternating subsequence problem, we also outline how one could be

able to prove a Central Limit Theorem for the number of alternating selections in a finite

random sample, as the size of the sample grows to infinity. Our operations-management

interest is in studying the interaction of on-the-job learning and learning-by-doing in a

workforce-related problem. Specifically, we study the sequential hiring and retention of het-

erogeneous workers who learn over time. We model the hiring and retention problem as a

Bayesian infinite-armed bandit, and we characterize the optimal policy in detail. Through

an extensive set of numerical examples, we gain insights into the managerial nature of the

problem, and we demonstrate that the value of active monitoring and screening of employees

can be substantial.
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CHAPTER 1 : Introduction

This dissertation studies several Markovian problems of optimal sequential decisions (a.k.a.

Markov Decision Problems) in which a decision-maker faces uncertain outcomes and needs to

make decisions throughout a discrete time horizon with finitely- or infinitely-many decision

times. Each period’s decision has both immediate and long-term consequences, and the

decision-maker needs to balance them in some way. In fact, by not accounting for these

intertemporal relationships, the decision-maker may not achieve a good overall performance.

To see how these decisions are interconnected, let’s consider a classical operation research

problem, the stochastic knapsack problem (c.f. Martello and Toth, 1990). A decision-maker

is given a knapsack with finite capacity, and he is sequentially presented with arriving items

of random size. Any time he sees an item arriving, the size of the item is revealed, and the

decision-maker chooses whether to include the item in the knapsack or not. If he chooses

to include an item, then he loses some of the capacity he has available, and this constrains

his future decisions. If he chooses not to include an item, then capacity is preserved, but

the decision-maker, who does not know the sizes of the items arriving in the future, might

have lost one opportunity for inclusion.

The way in which the decision maker should balance the immediate and the long-term

effects of his decisions depends on his objective. For instance, in the knapsack problem

discussed earlier, decisions will be very different if the decision-maker’s goal is to maximize

the expected number of items included in the knapsack, or to minimize the expected time

it takes to fill the knapsack up. Throughout this dissertation, we fix the decision-maker’s

objective to multiperiod expected reward maximization (or, equivalently, expected cost

minimization), possibly with discounting.

With this objective in mind, scholars have been usually interested in
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(a) establishing the existence of an optimal policy, i.e. a policy that maximizes the total

expected reward over the time horizon in consideration;

(b) obtaining properties of the optimal policy to gain intuition into the nature of the se-

quential decision process;

(c) evaluating the performance of the optimal policy, and comparing it with heuristics that

are usually easy to implement.

These questions are at the basis of our dissertation work, which is also motivated by prob-

abilistic and operation-management considerations, as we discuss below.

A Probabilistic Approach to Markov Decision Problems

In this dissertation, we go beyond the classical questions, (a)-(c), described above, as we

are also interested in gaining a probabilistic understanding of the optimal total reward that

one earns when implementing a policy that maximizes its expected value. This probabilistic

reasoning is what has motivated the work in Chapters 2, 3, and 4, in which we study specific

Markov decision problems, and we consider the following research questions:

(i) Given the existence of a Markov deterministic policy (often unique) that maximizes

the total expected multiperiod reward, what can we say about the actual size of such

expected reward? Can we prove accurate bounds for any given horizon length, n, so

that, as n grows to infinity, we obtain exact asymptotics?

(ii) For the same policy, what can we say about the variability of the total reward?

(iii) And, what about limit theorems? Can we characterize the limiting distribution of the

total reward obtained when one implements the policy that maximizes its expected

value when the horizon length, n, grows to infinity?

Questions (i)-(iii) are quite natural to probabilists, but have received remarkably little

attention in the Markov-decision-problem literature. Ultimately, the total reward that one

2



earns when implementing an optimal policy is a random variable, and it can be seen as a sum

of dependent one-period rewards, where the dependency is induced by the decision-maker’s

actions.

In studying the distributional aspects of the optimal total reward, we make extensive use

of the following techniques:

• Prophet inequalities: a priori bounds on the performance of any feasible selection

policy that depends only on the sequential nature of the problem and not on the

decision-maker’s actions.

• Martingale methods: Markov decision problems have an immediate connection

with martingale methods. The value function that describes the expected reward

to-go from any decision time 1 ≤ t ≤ n to the end of the horizon, n, can be used

to construct a martingale that becomes useful in characterizing the variance and the

limiting distribution of the optimal total reward.

• Time-inhomogeneous Markov chain theory: A Markov decision problem is

mathematically described through a time-inhomogeneous Markov chain, and the one

period rewards are functions of such a Markov chain. Time-inhomogeneity plays a

crucial role in finite-horizon problems, as the decision-maker’s actions vary with the

decision time.

• Relationships between finite and infinite horizon problems: infinite-horizon

discounted problems are usually better behaved and, for this reason, people often

prefer to pass from finite to infinite horizon set-ups. In the specific alternating-

subsequence problem (Chapter 4), we pass back from infinite to finite horizon, and we

quantify the size of the expected total-reward for the finite horizon formulation with

accuracy.

3



An Operations-Management Application of Markov Decision Problems

Markov decision problems are an important framework for modeling real-life decision-

making. With this respect, we study a work-force management application in which an

employer needs to decide on the sequential employment of heterogeneous workers who learn

over time. Heterogeneity reflects the fact that workers’ abilities may differ, while the learn-

ing over time (also known as on-the-job learning) takes into account the fact that workers’

experiences might affect their performance. On-the-job learning is, in fact, an important el-

ement of the operations of call-centers, manufacturing and other activities, especially when

there may be high turnover of employees.

In this set-up, our analysis focuses on the standard dynamic programming questions, (a)-(c),

described above, and our main contribution is on the managerial implications of monitoring

and screening employees. After formulating the hiring and retention problem as a Bayesian

infinite-armed bandit, we characterize the optimal policy in detail, and, through an extensive

set of numerical examples, we demonstrate that the value of active monitoring and screening

of employees can be substantial.

Overview of the Subsequent Chapters

In Chapter 2, we consider the problem of selecting sequentially a longest unimodal subse-

quence from a sequence of independent, identically distributed, continuous random vari-

ables, and we find that a person doing optimal sequential selection does within a factor of

the square root of two as well as a prophet who knows all of the random observations in

advance of any selections. Our analysis applies, in fact, to the selection of subsequences

that have d+ 1 monotone blocks, and, by including the case d = 0, our analysis also covers

monotone subsequences. We also show that the variance of the optimal number of unimodal

selections can be expressed in terms of its expected value. This phenomenon turns out to

be typical in a much larger class of Markov decision problems, which we study in Chapter

3.
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In Chapter 4, we consider the sequential selection of a longest alternating subsequence

from a sequence of independent, identically distributed, continuous random variables, and

we determine the exact asymptotic behavior of the expected optimal number of alternating

selections. Moreover, we find that a person who is constrained to make sequential selections

does only about 12% worse than a person who can make selections with full knowledge of

the random sequence. We also consider the limiting distribution of the optimal number of

alternating selections, and we outline the steps that are needed for proving a Central Limit

Theorem.

In Chapter 5, we consider the hiring and retention of heterogeneous workers who learn over

time, as described earlier in this introduction.
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CHAPTER 2 : Optimal Sequential Selection of Unimodal Subsequences

A classic result of Erdős and Szekeres (1935) tells us that in any sequence x1, x2, . . . , xn

of n real numbers there is a subsequence of length k = dn1/2e that is either monotone

increasing or monotone decreasing. More precisely, given x1, x2, . . . , xn one can always find

a subsequence 1 ≤ n1 < n2 < · · · < nk ≤ n for which we either have

xn1 ≤ xn2 ≤ · · · ≤ xnk , or xn1 ≥ xn2 ≥ · · · ≥ xnk .

Many years later, Fan Chung (1980) considered the analogous problem for unimodal se-

quences. Specifically, she sought to determine the maximum value `n such that in any

sequence of n real values x1, x2, . . . , xn one can find a subsequence xi1 , xi2 , . . . , xik of length

k = `n and a “turning place” 1 ≤ t ≤ k for which one either has

xi1 ≤ xi2 ≤ · · · ≤ xit ≥ xit+1 ≥ · · · ≥ xik , or

xi1 ≥ xi2 ≥ · · · ≥ xit ≤ xit+1 ≤ · · · ≤ xik .

Through a sustained and instructive analysis, she surprisingly obtained an exact formula:

`n =
⌈
(3n− 3/4)1/2 − 1/2

⌉
.

Shortly afterwards, Steele (1981) considered unimodal subsequences of permutations, or

equivalently, unimodal subsequences of a sequence of n independent, uniformly distributed

This chapter is written under the supervision of Prof. J. Michael Steele. The results presented here are
also in the joint paper Arlotto and Steele (2011), published in Combinatorics, Probability and Computing.
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random variables X1, X2, . . . , Xn. For the random variables

Un = max{k : Xi1 ≤ Xi2 ≤ · · · ≤ Xit ≥ Xit+1 ≥ · · · ≥ Xik , where

1 ≤ i1 < i2 < · · · < ik ≤ n},

and

Dn = max{k : Xi1 ≥ Xi2 ≥ · · · ≥ Xit ≤ Xit+1 ≤ · · · ≤ Xik , where

1 ≤ i1 < i2 < · · · < ik ≤ n},

it was established that

E [max{Un, Dn}] ∼ E[Un] ∼ E[Dn] ∼ 2(2n)1/2 as n→∞. (2.1)

Here, we consider analogs of the random variables Un, Dn and Ln = max{Un, Dn} but

instead of seeing the whole sequence all at once, one observes the variables sequentially.

Thus, for each 1 ≤ i ≤ n, the chooser must decide at time i when Xi is first presented

whether to accept or reject Xi as an element of the unimodal subsequence. The sequential

(or on-line) selection for the simpler problem of a monotone subsequence — the analog of

the original Erdős and Szekeres (1935) problem — was considered long ago in Samuels and

Steele (1981).

Main Results

We denote by Π(n) the set of all feasible policies for the unimodal sequential selection

problem for {X1, X2, . . . , Xn} where these random variables are independent with a common

continuous distribution function F . Given any feasible sequential selection policy πn ∈ Π(n),

if we let τk denote the index of the k’th selected element, then for each k the value τk is

a stopping time with respect to the increasing sequence of σ-fields Fi = σ{X1, X2, ..., Xi},

7



1 ≤ i ≤ n. In terms of these stopping times, the random variable

Uon(πn) = max{k : Xτ1 ≤ Xτ2 ≤ · · · ≤ Xτt ≥ Xτt+1 ≥ · · · ≥ Xτk , where

1 ≤ τ1 < τ2 < · · · < τk ≤ n},

is the length of the unimodal subsequence that is selected by the policy πn. For the moment,

we just consider unimodal subsequences that begin with an increasing piece and end with

a decreasing piece; either of these pieces is permitted to have size one.

For each n there is a policy π∗n ∈ Π(n) that maximizes the expected length of the selected

subsequence, and the main issue is to determine the asymptotic behavior of this expected

value. The answer turns out to have an informative relationship to the off-line selection

problem. A prophet with knowledge of the whole sequence before making his choices will

do better than an optimal on-line chooser, but he will only do better by a factor of
√

2.

Theorem 2.1 (Expected Length of Optimal Unimodal Subsequences). For each n ≥ 1,

there is a π∗n ∈ Π(n), such that

E[Uon(π∗n)] = sup
πn∈Π(n)

E[Uon(πn)],

and for such an optimal policy one has the upper bound

E[Uon(π∗n)] < 2n1/2

and the lower bound

2n1/2 − 4(π/6)1/2n1/4 −O(1) < E[Uon(π∗n)]

which combine to give the asymptotic formula

E[Uon(π∗n)] ∼ 2n1/2 as n→∞.

8



In a natural sense that we will shortly make precise, the optimal policy π∗n is unique.

Consequently, one can ask about the distribution of the length Uon(π∗n) of the subsequence

that is selected by the optimal policy, and there is a pleasingly general argument that gives

an upper bound for the variance. Moreover, that bound is good enough to provide a weak

law for Uon(π∗n).

Theorem 2.2 (Variance Bound). For the unique optimal policy π∗n ∈ Π(n), one has the

bounds

Var[Uon(π∗n)] ≤ E[Uon(π∗n)] < 2n1/2. (2.2)

Corollary 2.3 (Weak Law for Unimodal Sequential Selections). For the sequence of optimal

policies π∗n ∈ Π(n), one has the limit

Uon(π∗n)/
√
n

p−→ 2 as n→∞.

The variance bound in Theorem 2.2 and its corollary hold for a much larger class of Markov

decision problems that go beyond the unimodal subsequence problem, which we study in

Chapter 3.

Organization of the Proofs

The proof of Theorem 2.1 comes in two halves. First, we show by an elaboration of an

argument of Gnedin (1999) that there is an a priori upper bound for E[Uon(πn)] for all n

and all πn ∈ Π(n). This argument uses almost nothing about the structure of the selection

policy beyond the fact, from Section 2.3, that it suffices to consider policies that are specified

by acceptance intervals. For the lower bound, we simply construct a good (but suboptimal)

policy. Here, there is an obvious candidate, but the proof of its efficacy seems to be more

delicate than one might have expected.

The proof of Theorem 2.2 in Section 2.2 exploits a martingale that comes naturally from

the Bellman equation. The summands of the quadratic variation of this martingale are then

9



found to have a fortunate relationship to the probability that an observation is selected.

It is this “self-bounding” feature that leads one to the bound (2.2) of the variance by the

mean.

In Section 2.4, we outline analogs of Theorems 2.1 and 2.2 for subsequences that can be

decomposed into d + 1 alternating monotone blocks (rather than just two). If one takes

d = 0, this reduces to the monotone subsequence problem, and in this case only the variance

bound is new. Finally, in Section 2.5 we comment briefly on two conjectures. These deal

with a more refined understanding of Var[Uon(π∗n)] and with the naturally associated central

limit theorem.

2.1. Mean Bounds and Exact Asymptotics: Proof of Theorem 2.1

Since the distribution F is assumed to be continuous and since the problem is unchanged

by replacing Xi by its monotone transformation F−1(Xi), we can assume without loss of

generality that the Xi are uniformly distributed on [0, 1]. Next, we introduce two tracking

variables. First, we let Si denote the value of the last element that has been selected

up to and including time i. We then let Ri denote an indicator variable that tracks the

monotonicity of the selected subsequence; specifically we set Ri = 0 if the selections made

up to and including time i are increasing; otherwise we set Ri = 1.

The sequence of real values {Si : Ri = 0, 1 ≤ i ≤ n} is thus a monotone increasing sequence,

though of course not in the strict sense because there will typically be long patches where

the successive values of Si do not change. Similarly, {Si : Ri = 1, 1 ≤ i ≤ n} is a monotone

decreasing sequence, and the full sequence {Si : 1 ≤ i ≤ n} is a unimodal sequence — in

the non-strict sense that permits “flat spots.” As a convenience for later formulas, we also

set S0 = 0 and R0 = 0.
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The Class of Feasible Interval Policies

Here, we will consider feasible policies that have acceptance sets that are given by inter-

vals. It is reasonably obvious that any optimal policy must have this structure, but for

completeness we give a formal proof of this fact in Section 2.3.

Now, if the value Xi is under consideration for selection, two possible scenarios can occur: if

Ri−1 = 0 (so one is in the “increasing part” of the selected subsequence), then a selectable Xi

can be above or below Si−1. On the other hand, if Ri−1 = 1 (and one is in the “decreasing

part” of the selected subsequence), then any selectable Xi has to be smaller than Si−1.

Thus, to specify a feasible interval policy, we just need to specify for each i an interval

[a, b] ⊂ [0, 1] where we accept Xi if Xi ∈ [a, b] and we reject it otherwise. Here, the values

of the end-points of the interval are functions of i, Si−1, and Ri−1. In longhand, we write

the acceptance interval as

∆i(Si−1, Ri−1) ≡ [a(i, Si−1, Ri−1), b(i, Si−1, Ri−1)].

There are some restrictions on the functions a(i, Si−1, Ri−1) and b(i, Si−1, Ri−1). To make

these explicit, we consider two sets of functions, A and B. We say a ∈ A provided that

a : {1, 2, ..., n} × [0, 1]× {0, 1} → [0, 1] and

0 ≤ a(i, s, r) ≤ s for all s ∈ [0, 1], r ∈ {0, 1} and 1 ≤ i ≤ n.

Similarly, we say b ∈ B provided that b : {1, 2, ..., n} × [0, 1]× {0, 1} → [0, 1] and

s ≤ b(i, s, 0) ≤ 1 for all s ∈ [0, 1] and 1 ≤ i ≤ n;

0 ≤ b(i, s, 1) = s for all s ∈ [0, 1] and 1 ≤ i ≤ n.

Together a pair (a, b) ∈ A × B defines an interval policy πn ∈ Π(n) where we accept Xi at
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time i if and only if Xi ∈ ∆i(Si−1, Ri−1). We let Π′(n) denote the set of feasible interval

policies.

Three Representations

First, we note that for Si we have a simple update rule driven by whether Xi is rejected or

accepted:

Si =


Si−1 if Xi /∈ ∆i(Si−1, Ri−1)

Xi if Xi ∈ ∆i(Si−1, Ri−1).

For the sequence {Ri}, the update rule is initialized by setting R0 = 0; one should then

note that only one change takes place in the values of the sequence {Ri}. Specifically, we

change to Ri = 1 at the first i such that Si < Si−1, i.e. the first instance where we have a

decrease in our sequence of selected values. For specificity, we can rewrite this rule as

Ri =


1 if Xi ∈ ∆i(Si−1, Ri−1)

and Si−1 = max{Sk : 1 ≤ k ≤ i}

Ri−1 otherwise.

(2.3)

Finally, using 1(E) to denote the indicator function of the event E, we see by counting

the occurrences of the “selection events” Xi ∈ ∆i(Si−1, Ri−1), that for each 1 ≤ k ≤ n the

number of selections made up to and including time k is given by the sum of the indicators

Uok (πn) =
k∑
i=1

1 (Xi ∈ ∆i(Si−1, Ri−1)) . (2.4)

Proof of the Upper Bound (An a priori Prophet Inequality)

The immediate task is to show that for all n ≥ 1 and all πn ∈ Π′(n), one has the inequality

E[Uon(πn)] < 2n1/2. (2.5)
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It will then follow from Proposition 2.8 in Section 2.3 that the bound (2.5) holds for all

πn ∈ Π(n). We start with the representation (2.4) and then after two applications of the

Cauchy-Schwarz inequality we have

E[Uon(πn)] =
n∑
i=1

E [b(i, Si−1, Ri−1)− a(i, Si−1, Ri−1)]

≤ n1/2

{
n∑
i=1

(E [b(i, Si−1, Ri−1)− a(i, Si−1, Ri−1)])2

}1/2

≤ n1/2

{
n∑
i=1

E
[
(b(i, Si−1, Ri−1)− a(i, Si−1, Ri−1))2

]}1/2

.

The target bound (2.5) is therefore an immediate consequence of the following — curiously

general — lemma.

Lemma 2.4 (Telescoping Bound). For each n ≥ 1 and for any strategy πn ∈ Π′(n), one

has the inequality

n∑
i=1

E
[
(b(i, Si−1, Ri−1)− a(i, Si−1, Ri−1))2

]
< 4. (2.6)

Proof. We first introduce a bookkeeping function g : [0, 1]× {0, 1} → [0, 2] by setting

g(s, r) =

 s, if r = 0

2− s, if r = 1.

Trivially g is bounded by 2, and we will argue by conditioning and telescoping that the left

side of inequality (2.6) is bounded above by 2E [g(Sn, Rn)] < 4. Specifically, if we condition

on Fi−1, then the independence and uniform distribution of Xi gives us, after a few lines of
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straightforward calculation, that

E[g(Si,Ri)− g(Si−1, 0) | Fi−1]

=

∫ Si−1

a(i,Si−1,0)
(g(x, 1)− Si−1) dx+

∫ b(i,Si−1,0)

Si−1

(g(x, 0)− Si−1) dx

=
1

2
(b(i, Si−1, 0)− a(i, Si−1, 0))2

+ (Si−1 − a(i, Si−1, 0)) (2− Si−1 − b(i, Si−1, 0)) .

Since last summand is non-negative we have the tidier bound

(b(i, Si−1, 0)− a(i, Si−1, 0))2 ≤ 2E[g(Si, Ri)− g(Si−1, 0) | Fi−1]. (2.7)

By an analogous direct calculation one also has the identity

E[g(Si, 1)− g(Si−1, 1) | Fi−1] =

∫ Si−1

a(i,Si−1,1)
(g(x, 1)− g(Si−1, 1)) dx (2.8)

=
1

2
(b(i, Si−1, 1)− a(i, Si−1, 1))2 .

Since Ri−1 = 1 implies Ri = 1, we can write g(Si, Ri)− g(Si−1, Ri−1) as the sum

{g(Si, Ri)− g(Si−1, 0)}1(Ri−1 = 0) + {g(Si, 1)− g(Si−1, 1)}1(Ri−1 = 1),

so the two bounds (2.7) and (2.8) give us the key estimate

(b(i, Si−1, Ri−1)− a(i, Si−1, Ri−1))2 ≤ 2E[g(Si, Ri)− g(Si−1, Ri−1) | Fi−1].

Finally, when we take the total expectation and sum, one sees that telescoping gives

n∑
i=1

E
[
(b(i, Si−1, Ri−1)− a(i, Si−1, Ri−1))2

]
≤ 2E [g(Sn, Rn)] < 4,

just as needed.
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Proof of the Lower Bound (Exploitation of Suboptimality)

We construct an explicit policy π̃n ∈ Π(n) that is close enough to optimal to give us the

bound

2n1/2 − 4(π/6)1/2n1/4 −O(1) < E[Uon(π∗n)]. (2.9)

The basic idea is to make an approximately optimal choice of an increasing subsequence

from the sample {Xi : 1 ≤ i ≤ n/2} and an approximately optimal choice of a decreasing

subsequence from the sample {Xi : n/2+1 ≤ i ≤ n}. The cost of giving up a flexible choice

of the “turn-around time” is substantial, but this class of policies is still close enough to

optimal to give the required bound (2.9).

For the moment, we assume that n is even. We then select observations according to the

following process:

• For 1 ≤ i ≤ n/2, we select the observation Xi if and only if Xi falls in the interval

between Si−1 and min{1, Si−1 + 2n−1/2}.

• We set Sn/2 = 1 and for n/2 + 1 ≤ i ≤ n, we select the observation Xi if and only if

Xi falls in the interval between max{0, Si−1 − 2n−1/2} and Si−1.

Here, of course, the selections for 1 ≤ i ≤ n/2 are increasing and the selections for n/2+1 ≤

i ≤ n are decreasing, so the selected subsequence is indeed unimodal.

We then consider the stopping time

ν = min{i : Si > 1− 2n−1/2 or i ≥ n/2},

and we note that the representation (2.4), the suboptimality of the policy π̃n, and the

symmetry between our policy on 1 ≤ i ≤ n/2 and on n/2 + 1 ≤ i ≤ n will give us the lower

bound

2E

[
ν∑
i=1

1

(
Xi ∈ [Si−1, Si−1 + 2n−1/2]

)]
≤ E[Uon(π̃n)] ≤ E[Uon(π∗n)]. (2.10)
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Wald’s Lemma now tells us that

E

[
ν∑
i=1

1

(
Xi ∈ [Si−1, Si−1 + 2n−1/2]

)]
= 2n−1/2E[ν],

so we have

4n−1/2 E[ν] ≤ E[Uon(π∗n)].

The main task is to estimate E[ν]. It is a small but bothersome point that the summands

1
(
Xi ∈ [Si−1, Si−1 + 2n−1/2]

)
are not i.i.d. over the entirety of the range i ∈ [1, n/2]; the

distribution of the last terms differ from that of the predecessors. To deal with this nuisance,

we take Zj , 1 ≤ j <∞, to be a sequence of random variables defined by setting

Zj =

 0 w.p. 1− 2n−1/2

Uj w.p. 2n−1/2,

where the Uj ’s are independent and uniformly distributed on [0, 2n−1/2]. Easy calculations

now give us for all 1 ≤ j <∞ that

EZj =
2

n
, Var[Zj ] =

8n1/2 − 12

3n2
<

8

3n3/2
, and |Zj − EZj | <

2

n1/2
. (2.11)

Next, if we set S̃0 ≡ 0 and put

S̃i =

i∑
j=1

Zj , for 1 ≤ i ≤ n,

for 1 ≤ i ≤ ν, we have Si
d
= S̃i. Setting ν̃ = min{i : S̃i > 1 − 2n−1/2 or i ≥ n/2} we also

have ν
d
= ν̃, so to estimate E[ν] it then suffices to estimate

E[ν̃] =

n/2−1∑
i=0

P (ν̃ > i) =

n/2−1∑
i=0

P
(
S̃i ≤ 1− 2n−1/2

)
=
n

2
−
n/2−1∑
i=0

P
(
S̃i > 1− 2n−1/2

)
.
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The proof of the lower bound (2.9) will then be complete once we check that

n/2−1∑
i=0

P
(
S̃i > 1− 2n−1/2

)
< (π/6)1/2n3/4 + dn1/2e. (2.12)

This bound turns out to be a reasonably easy consequence of Bernstein’s inequality (c.f.,

Lugosi, 2009, Theorem 6) which asserts that for any i.i.d sequence {Zj} with the almost

sure bound |Zj − EZj | ≤M one has for all t > 0 that

P

 i∑
j=1

{Zj − EZj} > t

 ≤ exp

{
− t2

2iVar[Z1] + 2Mt/3

}
.

If we set n∗ = bn/2−n1/2−1c, then Bernstein’s inequality together with the bounds (2.11)

and some simplification will give us

n/2−1∑
i=0

P
(
S̃i > 1− 2n−1/2

)
≤ dn1/2e+

n∗∑
i=0

P
(
S̃i > 1− 2n−1/2

)
≤ dn1/2e+

n∗∑
i=0

exp

{
−

3
(
−2i− 2n1/2 + n

)2
8n
(
n1/2 − 1

) }
.

The summands are increasing, so the sum is bounded by

∫ n/2−n1/2

0
exp

{
−

3
(
−2u− 2n1/2 + n

)2
8n
(
n1/2 − 1

) }
du = (2/3)1/2(n3/2 − n)1/2

∫ α(n)

0
e−u

2
du,

where α(n) = (3/8)1/2
(
n1/2 − 2

)
(n1/2−1)−1/2. Upon bounding the last integral by π1/2/2,

one then completes the proof of the target bound (2.12). Finally, we note that if n is odd,

one can simply ignore the last observation at the cost of decreasing our lower bound by at

most one.

Remark 2.5. A benefit of Bernstein’s inequality (and the slightly sharper Bennett in-

equality) is that one gets to take advantage of the good bound on Var[Zj ]. The workhorse

Hoeffding inequality would be blind to this useful information.
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2.2. Variance Bound: Proof of Theorem 2.2

To prove the variance bound in Theorem 2.2, we need some of the machinery of the Bell-

man equation and dynamic programming. To introduce the classical backward induction,

we first set vi(s, r) equal to the expected length of the longest unimodal subsequence of

{Xi, Xi+1, . . . , Xn} that is obtained by sequential selection when Si−1 = s and Ri−1 = r.

We then have the “terminal conditions”

vn(s, 0) = 1, vn(s, 1) = s, for all s ∈ [0, 1]

and we set

vn+1(s, r) ≡ 0 for all s ∈ [0, 1] and r ∈ {0, 1}.

For 1 ≤ i ≤ n− 1, we have the Bellman equation:

vi(s, r) =



∫ s
0 max {vi+1(s, 0), 1 + vi+1(x, 1)} dx if r = 0

+
∫ 1
s max {vi+1(s, 0), 1 + vi+1(x, 0)} dx

(1− s)vi+1(s, 1) if r = 1

+
∫ s

0 max {vi+1(s, 1), 1 + vi+1(x, 1)} dx.

(2.13)

One should note that the map s 7→ vi(s, 0) is continuous and strictly decreasing on [0, 1]

for 1 ≤ i ≤ n − 1 with vn(s, 0) = 1 for all s ∈ [0, 1]. In addition, the map s 7→ vi(s, 1) is

continuous and strictly increasing on [0, 1] for all 1 ≤ i ≤ n.

If we now define a∗ : {1, 2, . . . , n} × [0, 1]× {0, 1} → [0, 1] by setting

a∗(i, s, r) = inf {x ∈ [0, s] : vi+1(s, r) ≤ 1 + vi+1(x, 1)} , (2.14)

then we have a∗ ∈ A. Similarly, if we define b∗ : {1, 2, . . . , n} × [0, 1] × {0, 1} → [0, 1] by
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setting

b∗(i, s, r) =

 sup {x ∈ [s, 1] : vi+1(s, 0) ≤ 1 + vi+1(x, 0)} if r = 0.

s if r = 1.
(2.15)

then we have b∗ ∈ B. Here, a∗(i, s, r) and b∗(i, s, r) are state-dependent thresholds for

which one is indifferent between (i) selecting the current observation x, adjusting r to r′

as in (2.3), and continuing to act optimally with new state pair (x, r′), or (ii) rejecting the

current observation, x, and continuing to act optimally with unchanged state pair, (s, r).

By the Bellman equation (2.13) and the continuity and monotonicity properties of the value

function, the values a∗ and b∗ provide us with a unique acceptance interval for all 1 ≤ i ≤ n

and all pairs (s, r). The policy π∗n associated with a∗ and b∗ then accepts Xi at time

1 ≤ i ≤ n if and only if

Xi ∈ ∆∗i (Si−1, Ri−1) ≡ [a∗(i, Si−1, Ri−1), b∗(i, Si−1, Ri−1)],

where, as in Section 2.1, Si−1 is the value of the last observation selected up to and including

time i − 1, and Ri−1 tracks the direction of the monotonicity of the subsequence selected

up to and including time i− 1. In Section 2.3, we will prove that this policy is indeed the

unique optimal policy for the sequential selection of a unimodal subsequence.

We do not need a detailed analysis of a∗ and b∗, but it is useful to collect some facts. In

particular, one should note that a∗(i, s, r) = 0 whenever vi+1(s, r) ≤ 1 and b∗(i, s, 0) = 1

whenever vi+1(s, 0) ≤ 1. In addition, the difference b∗(i, s, r) − a∗(i, s, r) provides us with

an explicit bound on the increments of the value function vi(s, r), as the following lemma

suggests.

Lemma 2.6. For all s ∈ [0, 1], r ∈ {0, 1} and 1 ≤ i ≤ n, we have

0 ≤ vi(s, r)− vi+1(s, r) ≤ b∗(i, s, r)− a∗(i, s, r) ≤ 1. (2.16)
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Proof. The lower bound is trivial and it follows by the fact that vi(s, r) is strictly decreasing

in i for each (s, r) ∈ [0, 1]× {0, 1}.

For the upper bound, we first assume that r = 0. Then, subtracting vi+1(s, 0) on both sides

of equation (2.13) when r = 0 and using the definition of a∗ and b∗, we obtain

vi(s, 0)− vi+1(s, 0) = −(b∗(i, s, r)− a∗(i, s, r))vi+1(s, 0)

+

∫ s

a∗(i,s,r)
(1 + vi+1(x, 1)) dx+

∫ b∗(i,s,r)

s
(1 + vi+1(x, 0)) dx.

Recalling the monotonicity property of s 7→ vi+1(s, r), we then have

vi(s, 0)− vi+1(s, 0) ≤ −(b∗(i, s, r)− a∗(i, s, r))vi+1(s, 0)

+ (s− a∗(i, s, r))(1 + vi+1(s, 1)) + (b∗(i, s, r)− s)(1 + vi+1(s, 0)),

and since vi+1(s, 1) ≤ vi+1(s, 0), we finally obtain

vi(s, 0)− vi+1(s, 0) ≤ b∗(i, s, r)− a∗(i, s, r) ≤ 1,

as (2.16) requires. The proof for r = 1 is very similar and it is therefore omitted.

We now come to the main lemma of this section.

Lemma 2.7. The process defined by

Yi = Uoi (π∗n) + vi+1(Si, Ri) for all 0 ≤ i ≤ n,

is a martingale with respect to the natural filtration {Fi}0≤i≤n. Moreover, for the martingale

difference sequence di = Yi − Yi−1 one has that

|di| = | Yi − Yi−1 | ≤ 1 for all 1 ≤ i ≤ n.

Proof. We first note that Yi is Fi-measurable and bounded. Then, from the definition of
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vi(s, r) we have that vi(Si−1, Ri−1) = E
[
Uon(π∗n)− Uoi−1(π∗n) | Fi−1

]
. Thus,

Yi = Uoi (π∗n) + E [Uon(π∗n)− Uoi (π∗n) | Fi] = E [Uon(π∗n) | Fi] ,

which is clearly a martingale.

To see that the martingale differences are bounded let

Wi = vi+1(Si−1, Ri−1)− vi(Si−1, Ri−1)

represents the change in Yi if we do not select Xi, and let

Zi = (1 + vi+1(Xi,1(Xi < Si−1))− vi+1(Si−1, Ri−1))1(Xi ∈ ∆∗i (Si−1, Ri−1))

represents the change when we do select Xi. We then have that

di = Wi + Zi,

and by our Lemma 2.6 we know that −1 ≤Wi ≤ 0. Moreover, the definition of the threshold

functions a∗ and b∗ and the monotonicity property of s 7→ vi+1(s, r) give us that 0 ≤ Zi ≤ 1,

so that |di| ≤ 1, as desired.

Final Argument for the Variance Bound

For the martingale differences di = Yi − Yi−1 we have

Yn − Y0 =
n∑
i=1

di, and Var[Yn] = E

[
n∑
i=1

d2
i

]
,

and we also have the initial representation

Y0 = Uo0 (π∗n) + v1(S0, R0) = v1(0, 0) = E[Uon(π∗n)]
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and the terminal identity

Yn = Uon(π∗n) + vn+1(Sn, Rn) = Uon(π∗n).

We now recall the decomposition di = Wi+Zi introduced in the proof of Lemma 2.7, where

Wi = vi+1(Si−1, Ri−1)− vi(Si−1, Ri−1)

and

Zi = (1 + vi+1(Xi,1(Xi < Si−1))− vi+1(Si−1, Ri−1))1(Xi ∈ ∆∗i (Si−1, Ri−1)).

Since Wi is Fi−1 measurable, we have

E
[
d2
i | Fi−1

]
= E

[
Z2
i | Fi−1

]
+ 2Wi E [Zi | Fi−1] +W 2

i .

We also have 0 = E [di | Fi−1] = Wi + E [Zi | Fi−1] so

E
[
d2
i | Fi−1

]
= E

[
Z2
i | Fi−1

]
−W 2

i . (2.17)

Finally, from the definition of Zi, a
∗ and b∗ we obtain

E
[
Z2
i | Fi−1

]
=

∫ b∗(i,Si−1,Ri−1)

a∗(i,Si−1,Ri−1)
(1 + vi+1(x,1(x < Si−1))− vi+1(Si−1, Ri−1))2 dx

≤ b∗(i, Si−1, Ri−1)− a∗(i, Si−1, Ri−1),

since the integrand is bounded by 1. Summing (2.17), applying the last bound, and taking

expectations gives us

Var[Uon(π∗n)] ≤
n∑
i=1

E [b∗(i, Si−1, Ri−1)− a∗(i, Si−1, Ri−1)] = E[Uon(π∗n)],
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where the last equality follows from our basic representation (2.4).

2.3. Intermezzo: Optimality and Uniqueness of Interval Policies

The unimodal sequential selection problem is a finite horizon Markov decision problem with

bounded rewards and finite action space, and for such a problem, it is known that there

exists a non-randomized Markov policy π∗n that is optimal (c.f. Bertsekas and Shreve, 1978,

Corollary 8.5.1) . This amounts to saying that there exists an optimal strategy π∗n such

that for each i, Si−1 and Ri−1, there is a Borel set D∗i (Si−1, Ri−1) ⊆ [0, 1] such that Xi is

accepted if and only if Xi ∈ D∗i (Si−1, Ri−1). Here, we just want to show that the Borel sets

D∗i (Si−1, Ri−1) are actually intervals (up to null sets).

Given the optimal acceptance sets D∗i (Si−1, Ri−1), 1 ≤ i ≤ n, we now set

vi(Si−1, Ri−1) = E

[
n∑
k=i

1(Xk ∈ D∗k(Sk−1, Rk−1))
∣∣Fi−1

]
,

so we have the recursion

vi(Si−1, Ri−1) = E
[
1(Xi ∈ D∗i (Si−1, Ri−1)) + vi+1(Si, Ri)

∣∣Fi−1

]
, (2.18)

and vi(s, r) is just the optimal expected number of selections made from the subsample

{Xi, Xi+1, . . . , Xn} given that Si−1 = s and Ri−1 = r. We then note that vn(s, 0) = 1 for

all s ∈ [0, 1], and one can check by induction on i that the map s 7→ vi(s, 0) is continuous

and strictly decreasing in s for 1 ≤ i ≤ n− 1. A similar argument also gives that the map

s 7→ vi(s, 1) is continuous and strictly increasing in s for all 1 ≤ i ≤ n.

If we now set

a(i, Si−1, Ri−1) = ess inf D∗i (Si−1, Ri−1) and

b(i, Si−1, Ri−1) = ess supD∗i (Si−1, Ri−1),

23



then we want to show for all 1 ≤ i ≤ n and all (Si−1, Ri−1) that we have

P({Di(Si−1, Ri−1)c ∩ [a(i, Si−1, Ri−1), b(i, Si−1, Ri−1)]}) = 0.

To argue by contradiction, we suppose that there is an 1 ≤ i ≤ n and an acceptance set

D∗i ≡ D∗i (Si−1, Ri−1) that is not equivalent to an interval; i.e. we suppose

P({D∗ci ∩ [a∗(i, Si−1, Ri−1), b∗(i, Si−1, Ri−1)]}) > 0. (2.19)

We then consider the sets

Li = [0, Si−1] ∩D∗i and Ui = [Si−1, 1] ∩D∗i ,

and we introduce the intervals

L̃i = [Si−1 − |Li|, Si−1] and Ũi = [Si−1, Si−1 + |Ui|],

where |A| denotes the Lebesgue measure of a set A. The set D̃i = L̃i∪ Ũi is also an interval

and |D̃i| = |D∗i |, so, if we can show that

E[1(Xi ∈ D∗i ) + vi+1(Si, Ri)] < E[1(Xi ∈ D̃i) + vi+1(Si, Ri)], (2.20)

then the representation (2.18) tells us that policy π∗n is not optimal, a contradiction.

To prove the bound (2.20), we note that

E
[
1(Xi ∈ D̃i) + vi+1(Si, Ri)

∣∣Fi−1

]
− E

[
1(Xi ∈ D∗i ) + vi+1(Si, Ri)

∣∣Fi−1

]
= E

[
vi+1(Xi, Ri)1(Xi ∈ D̃i)

∣∣Fi−1

]
− E

[
vi+1(Xi, Ri)1(Xi ∈ D∗i )

∣∣Fi−1

]
since D̃i and D∗i are Fi−1-measurable and E[1(Xi ∈ D̃i)|Fi−1] = E[1(Xi ∈ D∗i )|Fi−1]. By
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our construction, we also have the identities

E
[
vi+1(Xi, Ri)1(Xi ∈ D̃i)

∣∣Fi−1

]
=

∫
L̃i

vi+1(x, 1) dx+

∫
Ũi

vi+1(x, 0) dx, (2.21)

and

E
[
vi+1(Xi, Ri)1(Xi ∈ D∗i )

∣∣Fi−1

]
=

∫
Li

vi+1(x, 1) dx+

∫
Ui

vi+1(x, 0) dx. (2.22)

Now since |Li| = |L̃i| implies that |L̃i ∩ Lci | = |Li ∩ L̃ci |, we can write

∫
L̃i

vi+1(x, 1) dx−
∫
Li

vi+1(x, 1) dx =

∫
L̃i∩Lci

vi+1(x, 1) dx−
∫
Li∩L̃ci

vi+1(x, 1) dx

= (βi − αi)|L̃i ∩ Lci |, (2.23)

where αi = αi(Si−1, Ri−1), and βi = βi(Si−1, Ri−1) are chosen according to the mean

value theorem for integrals. The sets L̃i ∩ Lci and Li ∩ L̃ci are almost surely disjoint since

L̃i ∩ Lci ⊂ [Si−1 − |Li|, Si−1] and Li ∩ L̃ci ⊂ [0, Si−1 − |Li|]. So, we find that αi < βi since

vi+1(x, 1) is strictly decreasing in x.

An analogous argument tells us that we can write

∫
Ũi

vi+1(x, 1) dx−
∫
Ui

vi+1(x, 1) dx = (δi − γi)|Ũi ∩ U ci |, (2.24)

where γi < δi and γi and δi depend on (Si−1, Ri−1). If we now set

ci(Si−1, Ri−1) = min{βi − αi, δi − γi},

then the identities (2.21) and (2.22) and the differences (2.23) and (2.24) give us the bound

ci(Si−1, Ri−1)|D̃i ∩D∗ci |≤E
[
vi+1(Xi, Ri)1(Xi ∈ D̃i)−vi+1(Xi, Ri)1(Xi ∈ D∗i)

∣∣Fi−1

]
.

Since ci(Si−1, Ri−1) > 0, the assumption (2.19) implies that the left hand-side above is
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strictly positive. When we take total expectation we get

0 < E
[
vi+1(Xi, Ri)1(Xi ∈ D̃i)− vi+1(Xi, Ri)1(Xi ∈ D∗i )

]
.

In view of the recursion (2.18), this contradicts the optimality of π∗. This completes the

proof of (2.20), and, in summary we have the following proposition.

Proposition 2.8. If π∗n is an optimal non-randomized Markov policy for the unimodal

sequential selection problem, then, up to sets of measure zero, π∗ is an interval policy.

Corollary 2.9. There is a unique policy π∗n ∈ Π(n) that is optimal.

To prove the corollary, one combines the optimality of the interval policy given by Proposi-

tion 2.8 with the monotonicity properties of the Bellman equation (2.13). Specifically, the

map s 7→ vi(s, 0) is strictly decreasing in s for all 1 ≤ i ≤ n− 1 and the map s 7→ vi(s, 1) is

strictly increasing in s for all 1 ≤ i ≤ n, so the equations (2.14) and (2.15) determine the

values a∗(·) and b∗(·) uniquely.

2.4. Generalizations and Specializations: d-Modal Subsequences

There are natural analogs of Theorems 2.1 and 2.2 for “d-modal subsequences,” by which we

mean subsequences that are allowed to make “d-turns” rather than just one. Equivalently,

these are subsequences that are the concatenation of (at most) d+1 monotone subsequences.

If we let Uo,dn (π∗n) denote the analog of Uon(π∗n) when the selected subsequence is d-modal,

then the arguments of the preceding sections may be adapted to provide information on

the expected value of Uo,dn (π∗n) and its variance. Here, one should keep in mind that the

case d = 0 is not excepted; the arguments of the preceding sections do indeed apply to the

selection of monotone subsequences.

Theorem 2.10 (Expected Length of Optimal d-Modal Subsequences). If Π(n) denotes

the class of feasible policies for the d-modal subsequence selection problem, then there is a
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unique π∗n ∈ Π(n) such that

E[Uo,dn (π∗n)] = sup
πn∈Π(n)

E[Uo,dn (πn)].

Moreover, for all n ≥ 1 and d ≥ 0 one has

c(d)1/2n1/2 − c(d)3/4(π/3)1/2n1/4 −O(1) < E[Uo,dn (π∗n)] < c(d)1/2n1/2, (2.25)

where c(d) = 2(d+ 1). In particular, one has

E[Uo,dn (π∗n)] ∼ {2(d+ 1)}1/2n1/2 as n→∞.

One should note that the case d = 0 corresponds to the monotone subsequence selection

problem studied by Samuels and Steele (1981) and more recently by Gnedin (1999). The

monotone selection problem is also equivalent to certain bin packing problems studied by

Bruss and Robertson (1991) and Rhee and Talagrand (1991).

In the special case of d = 0, our upper bound (2.25) agrees with that of Bruss and Robertson

(1991) as well as with the result of Gnedin (1999). Our lower bound (2.25) on the mean

for d = 0 turns out to be slightly worse than that of Rhee and Talagrand’s (1991) since our

constant for the n1/4 term is 23/4(π/3)1/2 ∼ 1.72, while theirs is 81/4 ∼ 1.68.

For the d-modal problem, one can also prove the a variance bound that generalizes Theorem

2.2 in a natural way.

Theorem 2.11 (Variance Bound for d-Modal Subsequences). For the unique optimal policy

π∗n ∈ Π(n), one has the bound

Var[Uo,dn (π∗n)] ≤ E[Uo,dn (π∗n)].

Chebyshev’s inequality and Theorem 2.11 now combine as usual to provide a weak law for
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Uo,dn (π∗n). Even for d = 0 this variance bound is new.

2.5. Two Conjectures

Numerical studies for small d and moderate n, support the conjecture that one has the

asymptotic relation

Var[Uo,dn (π∗n)] ∼ 1

3
E[Uo,dn (π∗n)] as n→∞. (2.26)

As observed by an anonymous reader, the methods of Section 2.2 and the concavity of

the value function established in Samuels and Steele (1981) are in fact enough to prove an

appropriate lower bound

1

3
E[Uo,dn (π∗n)]− 2 < Var[Uo,dn (π∗n)] where d = 0. (2.27)

Here, one should now be able to prove an upper bound on Var[Uo,dn (π∗n)] that is strong

enough to establish the case d = 0 of the conjecture (2.26), but confirmation of this has

eluded us.

Also, by numerical calculations of the optimal policy π∗n and by subsequent simulations of

Uo,dn (π∗n) for d = 0, d = 1, and modest values of n, it seems likely that the random variable

Uo,dn (π∗n) obeys a central limit theorem. Specifically, the natural conjecture is that for all

d ≥ 0 one has

√
3
(
Uo,dn (π∗n)−

√
2(d+ 1)n

)
(2(d+ 1)n)1/4

=⇒ N(0, 1) as n→∞. (2.28)

Implicit in this conjecture is the belief that the lower bound (2.25) can be improved to

{2(d+ 1)n}1/2 − o(n1/4), or better.

So far, the only central limit theorem available for a sequential selection problem is that

obtained by Bruss and Delbaen (2001, 2004) for a Poissonized version of the monotone

subsequence problem. Given the sequential nature of the problem, it appears to be difficult
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to de-Poissonize the results of Bruss and Delbaen (2004) to obtain conclusions about the

distribution of Uo,dn (π∗n) even for d = 0.

For completeness, we should note that even for the off-line unimodal subsequence problem,

not much more is known about the random variable Un than its asymptotic expected value

(2.1). Here one might hope to gain some information about the distribution of Un by the

methods of Bollobás and Brightwell (1992) and Bollobás and Janson (1997), and it is even

feasible — but only remotely so — that one could extend the famous distributional results

of Baik et al. (1999) to unimodal subsequences. More modestly, one certainly should be

able to prove that the distribution of Un is not asymptotically normal. One motivation for

going after such a result would be to underline how the restriction to sequential strategies

can bring one back to the domain of the central limit theorem.
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CHAPTER 3 : Markov Decision Problems where Means Bound Variances

The reward Rn(π∗n) that one receives by following an optimal policy π∗n for a Markov decision

problem (MDP) with n <∞ decision periods is a random variable, and its expected value

is often well understood. Still, just knowing the mean of a random variable leaves much

that is unknown. Given the extensive literature on MDPs, it is striking that we typically

fail to have much understanding of the distribution of Rn(π∗n) that goes beyond what can

be said about its expected value.

Moreover, in many MDPs, the reward Rn(π∗n) has a direct economic interpretation, and

ultimately one is expected to make a well-founded judgment about the utility of an optimal

policy π∗n. Here, it is clear that one needs to take into account the riskiness of the reward.

The simplest measures of riskiness are the standard deviation and the variance of Rn(π∗n),

yet even these are often unstudied for MDPs.

Our main goal here is to identify a substantial class of MDPs for which we can say something

general and useful about the variance of Rn(π∗n). Specifically, we identify an example-rich

class of MDPs for which the variance of Rn(π∗n) can be bounded by a small constant multiple

of its expectation. Several useful consequences follow from this bound, including practical

constraints on the riskiness of the realized reward and a straightforward weak law of large

numbers.

A Typical Example

To fix ideas and to gain some intuition, we first consider a simple version of the sequential

knapsack problem. The capacity c ∈ (0,∞) of the knapsack is given, and we are sequentially

presented with non-negative values Y1, Y2, . . . , Yn that we view as item sizes. We assume

that the item sizes are independent random variables with common distribution F , and for

This chapter is written under the supervision of Prof. Noah Gans and J. Michael Steele. The results
presented here are also in a joint research paper with Noah Gans and J. Michael Steele.
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specificity, we assume there are constants A > 0 and α > 0 such that F (x) ∼ Axα as x→ 0.

In the simplest — but most important — case, the random variables Yi, 1 ≤ i ≤ n, are

uniformly distributed on [0, 1]. In this case we have F (x) = x for x ∈ [0, 1], so we have

A = 1 and α = 1.

Now, at time t when Yt is first presented, the decision maker must determine whether to

include or to exclude Yt from the knapsack. The goal of the decision maker is to maximize the

expected number of items that can be included without exceeding the capacity constraint.

We let Π(n) denote the set of all non-anticipating knapsack policies, and for any policy πn ∈

Π(n) we let τi denote the index of the ith item that is chosen for inclusion in the knapsack.

Non-anticipation of the policy πn is equivalent to saying that each τi is a stopping time with

respect to the increasing sequence of σ-fields Ft = σ{Y1, Y2, . . . , Yt}, 1 ≤ t ≤ n. Moreover,

we have a concrete representation for the number of items included in the knapsack when

one follows the policy πn; the reward is simply the number of inclusions

Rn(πn) = max

{
k :

k∑
i=1

Yτi ≤ c

}
.

Given this setup, classical results from dynamic programming — and common sense — now

assure us that for each n there is a Markov deterministic policy π∗n ∈ Π(n) that maximizes

the expected number of items in the knapsack.

A great deal is known about the expected value E [Rn(π∗n)] of the optimal policy under this

model. In particular, the analysis of Coffman et al. (1987) tells us that

E [Rn(π∗n)] ∼
[
Aα−α(α+ 1)αcn

]1/(1+α)
as n→∞.

This relation was subsequently refined by an upper bound in Bruss and Robertson (1991)

and by a lower bound in Rhee and Talagrand (1991), so this is a problem where the mean

is genuinely well-understood.
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The Variance Bound

The main result obtained here now tells us that one can supplement this characterization

of the expected value with a bound on the variance. Specifically, in this problem we have

Var [Rn(π∗n)] ≤ E [Rn(π∗n)] for each 1 ≤ n <∞. (3.1)

As an immediate corollary of this bound, we obtain a weak law of large numbers for Rn(π∗n).

Specifically, from the variance bound (3.1) and Chebyshev’s inequality, one finds that as

n→∞ we have that

n−1/(1+α)Rn(π∗n)
p−→

[
Aα−α(α+ 1)αc

]1/(1+α)
.

Here, one should notice that the distribution of the realized reward is a consequence of

the underlying model and of the optimality criterion, which focuses exclusively on the

expected reward E[Rn(π∗n)]. Since the optimality of strategy π∗n only takes the expected

reward into consideration, it is noteworthy that there is any relation at all between the

mean of the reward Rn(π∗n) and its variance. One cannot rule out the a priori possibility

that the optimal strategy π∗n might perversely inflate the variance Var[Rn(π∗n)] just to eke

out a modest increment to the mean E[Rn(π∗n)], and there might be MDPs for which such

unsightly behavior occurs. Still, for a substantial class of natural problems, the optimal

policy is not so short sighted.

Tools, Proofs, and Further Examples

The behavior exhibited by this example turns out to be typical of a large class of MDPs.

The identifying feature of these problems is that they satisfy a natural paid-to-play property

that we describe in detail in Section 3.1. In Section 3.2 we state our main result and discuss

some immediate implications.
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The proof of the main result follows in Section 3.3, and in Section 3.4 we provide some

easy-to-check sufficient conditions that assure an MDP is paid-to-play. Finally, in Sections

3.5 and 3.6 we offer examples of paid-to-play MDPs from operations research, operations

management, financial engineering and combinatorial optimization. We also review some

connections with related literature, and we underscore some open problems.

3.1. Markov Decision Problems and the Paid-to-Play Property

Here, a discrete-time Markov decision problem is specified by a 5-tuple (X ,A, f, r, n) where

X is the state space, A is the action space, f is a deterministic state transition function, r

is the one-period reward function, and n is the time horizon. We will further suppose that

X has the form X1×X2, so the state of the system at time t can be written as (xt, yt) with

xt ∈ X1 and yt ∈ X2. This extra structure on X allows us to accommodate states (xt, yt) for

which xt provides some appropriate summary of the “past” and yt reflects the current state

of an exogenous random process. Specifically, we take yt = Yt, where the random variables

{Yt : 1 ≤ t ≤ n} are independent with known distributions {Ft : 1 ≤ t ≤ n}.

Now, given a state (x, y) ∈ X and a time 1 ≤ t ≤ n we let At(x, y) ⊆ A denote the set of

feasible actions, and we write

Γt = {(x, y, a) : (x, y) ∈ X , a ∈ At(x, y)}

for the set of the time-t admissible state-action pairs.

When the system is in state (xt, yt) and the action at ∈ At(xt, yt) is chosen, we receive a

reward rt(xt, yt, at). After we choose action at, the system moves from (xt, yt) to (xt+1, yt+1)

where

xt+1 = f(t, xt, yt, at) and yt+1 = Yt+1. (3.2)

In general, a Markov policy is a sequence πn = (µ1, µ2, . . . , µn) of time-indexed stochastic

kernels µt that associate with each state (xt, yt) ∈ X a probability measure on the set of
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feasible actions At(xt, yt). Here we are only concerned with Markov deterministic policies

where for each t and (xt, yt), the selection kernel µt assigns mass one to some action at ∈

At(xt, yt).

To complete the description of the MDP (X ,A, f, r, n), we should add that all spaces are

assumed to be Polish and all maps are assumed to be measurable. These properties are

present in almost any problem of practical interest.

Policies and Optimality

In this general formulation, again Π(n) denotes the set of all non-anticipative policies, and

for any πn ∈ Π(n) we let

Rk(πn) =
k∑
t=1

rt(Xt, Yt, At), 1 ≤ k ≤ n

be the reward accrued up to and including time k.

The optimality criterion of interest in this paper is the so-called expected total reward.

Hence, we are interested in finding the policy π∗n ∈ Π(n) such that

E[Rn(π∗n)] = sup
π∈Π(n)

E[Rn(π)]. (3.3)

Standard dynamic programming techniques allow us to express the value of the optimization

problem (3.3) in recursive form. Specifically, we have the Bellman equation which tells us

that, at each time 1 ≤ t ≤ n and for each state (Xt, Yt) = (x, y), the expected value of the

optimal policy over periods t to n is

vt(x, y) = sup
a∈At(x,y)

{rt(x, y, a) + E [vt+1(f(t, x, y, a), Yt+1)]} , (3.4)

and this backwards recursion is initialized by setting vn+1(x, y) = 0 for all state values

(x, y) ∈ X . We let a∗t ∈ At(x, y) denote the optimal action for period t when in state (x, y),
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and we recall that

E[v1(X1, Y1)] = E[Rn(π∗n)];

that is, the expected value of the value function at time one is equal to the expected value

of the optimal reward over the full set of n time periods.

Under mild integrability conditions on the reward function, it is known that there is a

Markov policy that is optimal (c.f. Bertsekas and Shreve, 1978, Corollary 8.1.1) and, if the

supremum in (3.4) is achieved for each (x, y) ∈ X and each 1 ≤ t ≤ n, the optimal Markov

policy can be taken to be deterministic (c.f. Bertsekas and Shreve, 1978, Proposition 8.5.)

Moreover, this deterministic Markov policy is generated by the Bellman recursion (3.4).

Here, we restrict our analysis to problems in which there is an optimal Markov deterministic

policy, and we let π∗n denote such a policy.

Paid-to-Play Markov Decision Problems

Intuitively, in a paid-to-play MDP the decision maker needs to be rewarded (paid) to take

an action that changes its current state (to-play). Thus, without an appropriate reward, the

decision maker will always prefer to stay in the current state rather than make a transition

to some other feasible state.

More formally, a paid-to-play MDP has three properties that are expressed most easily with

help from the Bellman equation (3.4). To specify these, we first let x∗t+1 = f(t, xt, yt, a
∗
t )

denote the state that one reaches by taking the optimal action, a∗t , at time t when in state

(xt, yt). We can now lay out the full definition.

35



Definition 3.1 (Paid-to-Play MDPs). A Markov decision problem (X ,A, f, r, n) is said

to have the paid-to-play property if

(a) the reward function rt : Γt → R is non-negative and uniformly bounded; i.e. there is a

K <∞ such that 0 ≤ rt(x, y, a) ≤ K for all (x, y, a) ∈ Γt and all 1 ≤ t ≤ n;

(b) for each state (xt, yt) and each decision time 1 ≤ t ≤ n, the set of actions At(xt, yt)

includes a do-nothing action a0 for which one has rt(xt, yt, a
0) = 0 and f(t, xt, yt, a

0) =

xt;

(c) for each time 1 ≤ t ≤ n and for each state (xt, yt) one has that

E
[
vt+1(x∗t+1, Yt+1)

]
≤ E [vt+1(xt, Yt+1)] . (3.5)

Condition (a) is self-explanatory. It is automatically satisfied in many (but not all) problems

of interest. At a later point, we will consider how this condition may be relaxed.

Condition (b) assures us that we always have the possibility of remaining in state xt at time

t+ 1, and it tells us that if we take this do-nothing action then we receive no reward. One

consequence of this assumption is that it assures us that the quantity E [vt+1(xt, Yt+1)] that

appears in the equation (3.5) of Condition (c) is always well defined.

Condition (c) gets to the essence of the paid-to-play property. It says that if the decision

maker does not receive a reward for moving to a new state, then the decision maker always

stays in the current state. Thus, unless there is a strictly positive reward for moving, we

have a∗t = a0
t , x

∗
t+1 = xt, and the inequality (3.5) becomes an equality.

3.2. Paid-to-Play MDPs: Bounding the Variance by the Mean

We can now state our main theorem and explore some of its immediate consequences.

Theorem 3.2 (Variance Bound). Let (X ,A, f, r, n) be a Markov decision problem and let
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π∗n ∈ Π(n) be a Markov deterministic policy such that

E[Rn(π∗n)] = sup
π∈Π(n)

E[Rn(π)].

If the Markov decision problem has the paid-to-play property, then

Var[Rn(π∗n)] ≤ K E[Rn(π∗n)], (3.6)

where K is the uniform bound on the one-period reward function.

Theorem 3.2 provides us with an immediate measure of the dispersion of the optimal total

reward, Rn(π∗n). Specifically, it tells us that we have a bound on coefficient of variation of

the optimal total reward:

CoeffVar[Rn(π∗n)] =
(Var[Rn(π∗n)])1/2

E[Rn(π∗n)]
≤
(

K

E[Rn(π∗n)]

)1/2

.

Here, K bounds the one-period reward and E[Rn(π∗n)] is the multi-period optimal expected

reward which typically goes to infinity as n→∞. Consequently, for the typical paid-to-play

MDP, the coefficient of variation goes to zero as n→∞.

The variance bound (3.6) and Chebyshev’s inequality also provide estimates of concentration

for the distribution of the optimal total reward. Specifically, for any ε > 0, Chebyshev’s

inequality tells us that

P (|Rn(π∗n)− E[Rn(π∗n)]| > ε) ≤ ε−2K E[Rn(π∗n)],

so if we take where α > 1 and set ε = α {K E[Rn(π∗n)]}1/2, then we have

P
(
|Rn(π∗n)− E[Rn(π∗n)]| > α {K E[Rn(π∗n)]}1/2

)
≤ α−2.

In the typical case when E[Rn(π∗n)]→∞ as n→∞, the Chebyshev bound gives us a weak
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law of large numbers, which is worth setting out as a corollary.

Corollary 3.3 (Weak Law for Optimal Total Rewards with Large Horizon). In any paid-

to-play Markov decision problem where E[Rn(π∗n)]→∞ as n→∞, one has

Rn(π∗n)

E[Rn(π∗n)]

p−→ 1 as n→∞.

This corollary is good news for the variability-adverse decision maker. It tells us that in the

typical case, where E[Rn(π∗n)] → ∞ as n → ∞, the reward that is realized by the optimal

strategy will (with increasingly high probability) behave like its mean. In particular, the

corollary provides the decision maker with a ex-ante justification for viewing the expected

reward as a credible MDP objective function. In a paid-to-play MDP, what one gets is

probably close to what one expects.

3.3. A Martingale Proof

The proof of Theorem 3.2 begins with the easy observation that the Bellman equation (3.4)

leads to a general martingale. We then find that this martingale carries all the information

that is needed to bound the variance of the optimal total reward, once we check that the

paid-to-play property gives us useful control of the martingale differences.

Lemma 3.4 (Bellman Martingale). For 0 ≤ t ≤ n, the process defined by

Mt = Rt(π
∗
n) + E [vt+1(Xt+1, Yt+1) | Ft]

is a martingale with respect to the natural filtration Ft = σ{X1, Y1, Y2, . . . , Yt}.

Proof of Lemma 3.4. We first note that Mt is Ft measurable and bounded. We then observe

that

vt+1(Xt+1, Yt+1) = E[Rn(π∗n)−Rt(π∗n) | Ft+1].
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Since Ft ⊆ Ft+1, an application of the tower property gives us

E [vt+1(Xt+1, Yt+1) | Ft] = E[Rn(π∗n)−Rt(π∗n) | Ft],

and since Rt(π
∗
n) is Ft-measurable, we then obtain

Mt = E[Rn(π∗n) | Ft],

which is clearly a martingale.

For t = 0 and t = n, we have the initial and terminal values of Mt:

M0 = E[v1(X1, Y1) | F0] = E[Rn(π∗n)] and Mn = Rn(π∗n).

Also, for each 1 ≤ t ≤ n, we have the martingale difference sequence

dt = Mt −Mt−1

= rt(Xt, Yt, A
∗
t ) + E [vt+1(Xt+1, Yt+1) | Ft]− E [vt(Xt, Yt) | Ft−1] . (3.7)

By telescoping sums and orthogonality of the martingale differences, we also have

Mn −M0 =
n∑
t=1

dt and Var [Mn] = E

[
n∑
t=1

d2
t

]
,

where Mn = Rn(π∗n) and M0 = E[Rn(π∗n)].

Now we use Condition (b) of the paid-to-play property to rewrite the martingale difference

dt more conveniently. By adding and subtracting E [vt+1(Xt, Yt+1) | Ft−1] on the right-hand

side of (3.7), we obtain

dt = At +Bt
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where

At = E [vt+1(Xt, Yt+1) | Ft−1]− E [vt(Xt, Yt) | Ft−1]

and

Bt = rt(Xt, Yt, A
∗
t ) + E

[
vt+1(X∗t+1, Yt+1) | Ft

]
− E [vt+1(Xt, Yt+1) | Ft−1] .

The deterministic state transition function (3.2) implies that Xt is Ft−1-measurable, so, by

the independence of the random variables {Yt : 1 ≤ t ≤ n}, we have

E [vt+1(Xt, Yt+1) | Ft−1] = E [vt+1(Xt, Yt+1) | Ft] ,

and we rewrite Bt more nicely as

Bt = rt(Xt, Yt, A
∗
t ) + E

[
vt+1(X∗t+1, Yt+1) | Ft

]
− E [vt+1(Xt, Yt+1) | Ft] . (3.8)

We also see that At is Ft−1-measurable, so

E[d2
t | Ft−1] = E[B2

t | Ft−1] + 2AtE[Bt | Ft−1] +A2
t (3.9)

and, since 0 = E[dt | Ft−1] = At + E[Bt | Ft−1], we obtain E[Bt | Ft−1] = −At. Thus, from

(3.9) we have

E[d2
t | Ft−1] = E[B2

t | Ft−1]−A2
t .

For each state realization (Xt, Yt) = (xt, yt), the optimality of action a∗t and Condition (c)

of the paid-to-play property together imply that

0 ≤ rt(xt, yt, a∗t ) + E
[
vt+1(x∗t+1, Yt+1)

]
− E [vt+1(xt, Yt+1)] ≤ rt(xt, yt, a∗t ),

so, by recalling the representation (3.8), we have

0 ≤ Bt ≤ rt(Xt, Yt, A
∗
t ).
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The uniform boundedness of the rewards then implies that

B2
t ≤ rt(Xt, Yt, A

∗
t )

2 ≤ K rt(Xt, Yt, A
∗
t ),

and taking conditional expectations, we obtain

E[B2
t | Ft−1] ≤ K E[rt(Xt, Yt, A

∗
t ) | Ft−1].

Finally, by taking total expectations and summing, we have

Var[Rn(π∗n)] ≤ K E

[
n∑
t=1

rt(Xt, Yt, A
∗
t )

]
= K E[Rn(π∗n)], (3.10)

as desired.

Remark 3.5. The paid-to-play property and the decomposition dt = At + Bt combine

nicely to imply that the martingale Mt, 0 ≤ t ≤ n, has bounded differences. In particular,

we have |dt| ≤ K. To see this, first notice that 0 ≤ Bt ≤ K, where the lower bound follows

from the optimality of action A∗t and the upper bound follows from conditions (a)–(c) of

the paid-to-play property. At the same time, the representation E[Bt | Ft−1] = −At gives

us −K ≤ At ≤ 0, so indeed we have the uniform bound |dt| = |At +Bt| ≤ K.

Remark 3.6. The uniform bound on the reward function rt, 1 ≤ t ≤ n, can be relaxed

with a much milder requirement on the second moment of rt. In fact, when taking total

expectations in (3.10), we see that Theorem 3.2 still holds if there is a constant K < ∞

such that

E[r2
t (Xt, Yt, A

∗
t )] ≤ KE[rt(Xt, Yt, A

∗
t )] uniformly in t.

This condition holds rather widely; in particular it holds for rewards with exponential tails.

Naturally, the bounded difference property of the martingale Mt in Remark 3.5, would no

longer hold in this case.
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3.4. A Sufficient Condition for Paid-to-Play

If the value function vt(x, y) defined by the Bellman equation is monotone non-decreasing

in x for each given y and for all 1 ≤ t ≤ n, and if the state variable xt is a monotone

non-increasing function of time, 1 ≤ t ≤ n, then the key Condition (c) of the paid-to-play

property is satisfied. This gives us a simple criterion for a MDP to have the paid-to-play

property, and the situation is common enough to justify summarization as a proposition.

Proposition 3.7 (Sufficient Conditions). A Markov decision problem (X ,A, f, r, n) satisfies

Condition (c) of the paid-to-play property if:

(i) the fist component X1 of the state space (X1,X2) is a partially ordered set;

(ii) for any xt, the optimal transition x∗t+1 = f(t, xt, yt, a
∗
t ) satisfies x∗t+1 ≤ xt;

(iii) the value function x 7→ vt+1(x, y) is non-decreasing in x for each y ∈ X2.

Remark 3.8. As a small variation, one should also note that the key Condition (c) is also

satisfied whenever we have xt ≤ x∗t+1, and the map x 7→ vt+1(x, y) is non-increasing in x

for each y ∈ X2.

3.5. Three Examples

Markov decision problems with the paid-to-play property are remarkably common. Ex-

amples occur in operations research, operations management, financial engineering, and

combinatorial optimization. Here, we note that the unimodal subsequence selection prob-

lem in Chapter 2 can be cast as a paid-to-play Markov decision problem, and we focus on

three additional examples. These should be sufficiently general to suggest many further

examples.

3.5.1. Dynamic and Stochastic Knapsack Problem

The knapsack problem is one of the most studied problems in operations research (c.f.

Martello and Toth, 1990; Kellerer et al., 2004). Its theory is rich, and its persistent real-
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world appearances support both deterministic and stochastic interpretations.

Here, we will focus just on the paper of Papastavrou et al. (1996), which considers a knapsack

of capacity 0 < c < ∞ and items that arrive over a discrete time horizon with n periods.

For each time period 1 ≤ t ≤ n, the probability of an arrival in period t is assumed to be

a constant p > 0, and associated with each arriving item there is a pair (W,Z) of random

variables, where W is viewed as the size of the arriving item “to be packed” and Z is viewed

as the reward that one earns if the currently presented item is selected for placement in the

knapsack.

The sequence of size-reward pairs (Wt, Zt), 1 ≤ t ≤ n is assumed to be independent with a

common distribution F (w, z) = P(W ≤ w,Z ≤ z) with support in R × [0,K] ⊂ R2, where

K < ∞. An arriving item can be accepted only if its size is smaller than or equal to the

remaining capacity of the knapsack, and the goal is to determine a strategy that maximizes

the expected reward that is accumulated by the end of the time horizon.

To derive the Bellman equation for this problem, we first suppose that at time t we have

remaining capacity equal to x. With probability 1 − p, no new arrival occurs, and the

remaining level of capacity x does not change. In this case, one is left with the expected

reward over the remaining time that is equal to vt+1(x). On the other hand, with probability

p, an arrival occurs and the size-reward pair (w, z) becomes known to the decision maker.

With probability 1−F (x,K), the size w exceeds the remaining capacity, in which case the

arriving item cannot be accepted, and one is again left with the expected reward to-go,

vt+1(x). Finally, if w ≤ x, then it is feasible to accept the arriving item, and one chooses

the action that yields the largest expected reward-to-go. If we do not accept the new item

we have vt+1(x), but if we accept the new item then we have z + vt+1(x− w).

Assembling these observations, we see that for each time 1 ≤ t ≤ n and each level of
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remaining capacity x ∈ [0, c] the Bellman equation is given by

vt(x) = (1− p)vt+1(x) + p(1− F (x,K) )vt+1(x) (3.11)

+ p

∫
[0,x]×[0,K]

max{vt+1(x), z + vt+1(x− w)}dF (w, z),

together with the boundary conditions

vt(0) = 0 for 1 ≤ t ≤ n and vn+1(x) = 0 for x ∈ [0, c].

For this MDP we have non-negative, uniformly bounded rewards, and the remaining ca-

pacity Xt is a non-increasing function of t under any feasible policy. Also, at any time, the

decision maker can refuse to accept the offered item, and this leaves the capacity unchanged

and yields zero reward. Finally, according to Lemma 1 of Papastavrou et al. (1996), the

value function vt(x) is non-decreasing in x, so all of the conditions of Proposition 3.7 are

met. Hence the knapsack problem of Papastavrou et al. (1996) is indeed a paid-to-play

MDP.

In just the same way, one can verify that knapsack problems studied by Coffman et al.

(1987), Bruss and Robertson (1991) and Rhee and Talagrand (1991) are all paid-to-play

MDPs. In any knapsack problem one always has the option of a do-nothing action, and the

paid-to-play property is then easily checked from the monotonicity of the value function

x 7→ vt(x), 1 ≤ t ≤ n.

One should also note that the MDPs of capacity-control revenue management (c.f. Talluri

and van Ryzin, 2004, Section 2.5.1) share much of the structure of the classical knapsack

problem. In capacity control problems the initial capacity is discrete and “item arrivals”

are now replaced with customer arrivals. Each newly arriving customer offers a price Z = z

for one unit of capacity. The decision maker needs to decide whether to sell at price z, or

to reject the offer and wait for the next arriving customer.

44



Here, one can derive a Bellman equation that is quite close to (3.11). Rejection of the offer

corresponds to the required do-nothing action, and the monotonicity of the value function

x 7→ vt(x) is also immediate from the problem definition. So, just as before, one checks that

the capacity-control revenue problem is a paid-to-play MDP.

3.5.2. Investment Problems with Stochastic Opportunities

Derman et al. (1975) and Prastacos (1983) study a sequential investment problem with

initial capital of c. At each time 1 ≤ t ≤ n, an investment opportunity arises independently

with probability 0 < p ≤ 1, and the investor gets to see its quality Yt = y. The investor

then decides the amount, a, that is to be invested in the opportunity, and this generates a

return, r(y, a), that is a deterministic, non-negative, non-decreasing and bounded function

of the pair (y, a), such that r(y, 0) = 0 for all y.

To derive the Bellman equation of this problem, suppose that at time t the investor capital x

on hand. With probability 1− p no investment opportunity arises, no capital gets invested,

and the investor is left with the expected return over periods t + 1 to n, vt+1(x). With

probability p, however, an investment opportunity arises and the investor sees its quality

Yt = y. He then chooses the investment amount a ≤ x that maximizes the return function

g(a) = r(y, a) + vt+1(x − a). Thus, for each 1 ≤ t ≤ n the investor’s Bellman equation is

given by

vt(x) = (1− p)vt+1(x) + p

∫
max

0≤a≤x
{r(y, a) + vt+1(x− a)} dF (y), (3.12)

together with the boundary conditions

vt(0) = 0 for all 1 ≤ t ≤ n and vn+1(x) = 0 for all x ∈ [0, c].

We now note that Condition (a) of paid-to-play MDPs is satisfied since the return function

is non-negative, time independent, and bounded. The investor always has the possibility of

investing zero capital in new opportunities. This yields zero return and does not change the

level of remaining capital. Thus, Condition (b) is also met. Finally, one can check that the
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map x 7→ vt(x) is non-decreasing in x for all 1 ≤ t ≤ n (see also Prastacos, 1983, Theorem

2.1) and that x∗t+1 ≤ xt for each t. Hence, by appealing to Proposition 3.7, we find that

Condition (c) is also met, and therefore the investment problem is a paid-to-play MDP.

Extensions that retain the paid-to-play property include known and time-dependent prob-

abilities {pt, 1 ≤ t ≤ n}, as well as known and time-dependent quality distributions

{Ft, 1 ≤ t ≤ n}.

3.5.3. Network Capacity Control and Stochastic Depletion Problems with Deterministic

Transitions

In the basic version of the problem (c.f. Talluri and van Ryzin, 2004, Section 3.2) a network

has ` resources and a firm sells m products. Each product is a bundle of the ` resources sold

at a given price. For each resource 1 ≤ i ≤ ` and each product 1 ≤ j ≤ m, we let cij = 1 if

product j uses resource i, and cij = 0 otherwise. This gives us an ` ×m incidence matrix

C = [cij ], where cj is the jth column vector of C, and it includes all of the resources used

by product j.

At each time 1 ≤ t ≤ n, a decision maker is sequentially presented with an arriving customer

who offers nonzero prices for subsets of the m products. More formally, we let Y t =

(Y1,t, Y2,t, . . . , Ym,t) be the demand vector for period t in which Yj,t = yj > 0 indicates

a request for product j at price yj . The sequence {Y t : 1 ≤ t ≤ n} is assumed to be

independent across time, with known joint probability distribution Ft.

To derive the Bellman equation for this problem suppose that, at time t, the state of the

network is described by a vector x = (x1, x2, . . . , x`)
T of resource capacities. A decision

maker then sees a vector of offered prices Y t = y = (y1, y2, . . . , ym) and, for each yj > 0, he

needs to decide whether to sell product j at price yj . Thus, the decision maker chooses an

allocation vector a = (a1, a2, . . . , am)T that maximizes the sum of the one-period revenues,

ya, plus the expected revenues to-go, vt+1(x−Ca).
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We let At(x,y) = {a ∈ {0, 1}m : Ca ≤ x} be the set of product bundles that are available

for sale at time t, and we write the Bellman equation as

vt(x) = E
[

max
a∈At(x,y)

{ya+ vt+1(x−Ca)}
]
. (3.13)

As usual, the backwards induction in (3.13) begins by setting vn+1(x) = 0 for all x.

Given the real-word motivation of the problem we can assume that prices are non-negative

and bounded so that Condition (a) of the paid-to-play property is met. The allocation

vector a = (0, 0, . . . , 0) is a feasible choice for every time 1 ≤ t ≤ n and for any state (x,y),

and it yields zero revenues, so Condition (b) is also met. Finally, the use of resources over

time implies that the state-of-the-network process, X1,X2, . . . ,Xn, is non-increasing, and

one can check that the value function (3.13) is non-decreasing in x. Proposition 3.7 then

gives us that Condition (c) is also met, and we can conclude that the network capacity

control problem is a paid-to-play MDP.

An alternative way of considering this setup is to see it as a special case of a stochastic

depletion problem with deterministic transitions (c.f. Chan and Farias, 2009). In fact, any

problem for which the choice of an optimal action generates a deterministic depletion of

some system resources is a paid-to-play MDP. Another example that falls into this more

general framework is the sequential selection of random vectors under a sum constraint,

studied by Stanke (2004).

3.6. Connections with Related Literature and Open Problems

Related Literature

The theory of MDPs has considered variance criteria that aim to incorporate the attitude

of the decision maker toward risk or variability. This stream of research has evolved by

studying non-standard objectives (different from the total expected reward in (3.3)) that

change the nature of the optimization problem. In particular, scholars have been interested
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in variance-penalized MDPs as well as in expected reward maximization, subject to variance

constraints. See White (1988) and references therein as well as Filar et al. (1989), Baykal-

Gürsoy and Ross (1992), Sobel (1994), and Puterman (1994).

Our focus in this paper is different. We take the total expected reward criterion as given,

and we study the variance generated under the optimal Markov deterministic policy for

a particular class of finite-horizon MDPs. The work of Sobel (1982) and Feinberg and

Fei (2009) similarly considers the variance of the optimal total reward in infinite-horizon,

discounted MDPs.

The literature on variance bounds for functions of independent random variables also has

bearing on our work. In particular, the inequality established by Efron and Stein (1981)

and improved by Steele (1986) (see also Lugosi, 2009, Section 4) provides an a priori upper

bound for the variance of g(Y1, . . . , Yn), where g : Rn → R is a measurable function, and

Y1, . . . , Yn are arbitrary independent random variables. However, this bound is difficult to

use in a sequential setting, as it requires that we estimate what happens when each random

variable is replaced (one at the time) by an independent copy of itself, or is left out. In the

context of sequential problems, this estimation becomes difficult as each replacement may

change subsequent decisions and subsequent one-period rewards in a way that is difficult

to control. Our approach, based on the Bellman martingale in Lemma 3.4, is much more

natural in a sequential setting, and it has the additional benefit of leading to quantities that

are easier to estimate.

Open Problems

The fact that optimal Markov deterministic policies for finite-horizon MDPs are usually

non-stationary makes the distributional analysis of Rn(π∗n) challenging. In this paper, we

have isolated a substantial class of MDPs that might be suitable for further research in at

least two directions.

The first set of work would complement the variance upper bound in Theorem 3.2 with
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some useful lower bound, possibly of the same order. A general result seems difficult, but

one can resort to specific analysis of each decision problem that might provide the desired

lower bound.

The second direction seeks to understand the relation between finite-horizon and infinite-

horizon discounted, or poissonized, MDPs. The question that arises in this context is

whether one can obtain useful information on the former by studying the latter two. In fact,

infinite-horizon discounted and poissonized problems are often characterized by stationary

optimal policies that are easier to analyze. One usually can go back and forth between

different formulations to obtain useful information about the first moment of Rn(π∗n), but

it is unclear at the moment how this technique can be used to extract useful information

about moments other than the first, or for distributional results.
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CHAPTER 4 : Optimal Sequential Selection of Alternating Subsequences

Given a finite (or infinite) sequence x = {x1, x2, ..., xn, . . .} of real numbers, we say that

a subsequence xi1 , xi2 , . . . , xik , . . . with 1 ≤ i1 < i2 < . . . < ik < · · · is alternating if we

have xi1 < xi2 > xi3 < xi4 · · · . When x is an element of the set of permutations Sn of the

integers {1, 2, . . . , n}, the study of the set of alternating permutations goes back to Euler

(c.f Stanley, 2010).

Here, we are mainly concerned with the length a(x) of the longest alternating subsequence of

x. This function has been more recently studied by Widom (2006), Pemantle (c.f. Stanley,

2007, p. 568) and Stanley (2008). In particular, they consider the situation in which x

is chosen at random from Sn. By exploiting explicit formulas for generating functions and

delicate applications of the saddle point method, they were able to obtain exact formulas

for the first two moments and to prove a central limit theorem. Specifically, if x is chosen

according to the uniform distribution on the set of permutations Sn and if An := a(x)

denotes the length of the longest alternating subsequence of x, then for n ≥ 4 one has

E[An] =
2n

3
+

1

6
and Var[An] =

8n

45
− 13

180
.

More recently, Houdré and Restrepo (2010) used purely probabilistic means to obtain a

simpler proof of this result and the corresponding central limit theorem. Moreover, the

methods of Houdré and Restrepo also apply to models of random words that are more

refined than simple random selection from a set of permutations.

Here, we study the problem of making on-line selection of an alternating subsequence. That

is, we now regard the sequence x1, x2, ... as being presented to us sequentially, and, at the

This chapter is written under the supervision of Prof. J. Michael Steele. The results presented here
concerning the behavior of the expected number of optimal alternating selections (finite and infinite horizon)
are also in the joint paper Arlotto, Chen, Shepp, and Steele (2011), published in the Journal of Applied
Probability.
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time i when xi is presented, we must choose to include xi as a term of our subsequence —

or we must reject xi as a member of the subsequence.

We will consider the sequence to be given by independent random variables X1, X2, . . .

that have a common continuous distribution F , and, since we are only concerned with

order properties, one can without loss of generality take the distribution to be uniform

on [0, 1]. We now need to be more explicit about the set Π of feasible strategies for on-

line selection. At time i, when presented with Xi we must decide to select Xi based on

its value, the value of earlier members of the sequence, and the actions we have taken

in the past. All of this information can be captured by saying that τk, the index of the

k’th selection, must be a stopping time with respect to the increasing sequence of σ-fields,

Fi = σ{X1, X2, . . . , Xi}, i = 1, 2, . . . . Given any feasible policy π ∈ Π, the random variable

of most interest here is Aon(π), the number of selections made by the policy π up to and

including time n. In other words, Aon(π) is equal to the largest k for which there are stopping

times 1 ≤ τ1 < τ2 < · · · < τk ≤ n such that {Xτ1 , Xτ2 , . . . , Xτk} is an alternating sequence.

Theorem 4.1 (Asymptotic Selection Rate for Large Samples). For each n = 1, 2, ..., there

is a policy π∗n ∈ Π such that

E[Aon(π∗n)] = sup
π∈Π

E[Aon(π)],

and for such an optimal policy one has for all n ≥ 1 that

(2−
√

2)n ≤ E[Aon(π∗n)] ≤ (2−
√

2)n+ C,

where C is a constant with C < 11− 4
√

2 ∼ 5.343. In particular, one has

E[Aon(π∗n)] ∼ (2−
√

2)n as n→∞.

The proof of this result exploits the analysis of a closely related selection problem in which
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one considers a sample of size N where N is geometrically distributed with parameter

0 < ρ < 1 (so one has P(N = k) = ρk−1(1− ρ), k = 1, 2, 3, . . . .) Here, we also assume that

N is independent of the sequence X1, X2, . . ..

Parallel to our first theorem, we consider the number AoN (π) of selections made by a feasible

policy π up to and including the random time N . The geometric smoothing provided by N

gives us a useful “shift symmetry” that is missing in the fixed n problem, and the analysis

of a geometric sample turns out to be far more tractable. In particular, one can determine

the exact expected length of the sequence selected by an optimal policy.

Theorem 4.2 (Expected Selection Size in Geometric Samples). For each 0 < ρ < 1, there

is a π∗ ∈ Π, such that

E[AoN (π∗)] = sup
π∈Π

E[AoN (π)],

and for such an optimal policy one has

E[AoN (π∗)] =
3− 2

√
2− ρ+ ρ

√
2

ρ(1− ρ)
∼ (2−

√
2)(1− ρ)−1 as ρ→ 1.

These theorems respectively tell us that optimal on-line selection yields subsequences that

grow at a linear rate (2 −
√

2)n ∼ 0.585n or (2 −
√

2)EN ∼ 0.585EN . This is about a

12% discount off the rate (2/3)n ∼ 0.667n that one would obtain with a priori knowledge

of the full finite sample {X1, X2, ..., Xn}, and this discount seems quite modest given the

great difference in the knowledge that one has.

To build some intuition about these rates, one should also consider the “maximally timid

strategy” where one chooses the first observation that falls in [0, 0.5], then one chooses

the next observation that falls in [0.5, 1], and then the next that falls in [0, 0.5], and so

on. This strategy obviously leads to an asymptotic selection rate of 0.5n. Finally, one

should also consider the “purely greedy strategy” where one accepts any new arrival that

is feasible given the previous selections. Curiously enough, by a reasonably quick Markov

chain calculation one can show that the greedy strategy leads to the same selection rate
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0.5n that one finds for the “maximally timid strategy.”

We begin by proving Theorem 4.2 which will give us an exact formula for the expected

number of selections made under the optimal policy for geometric samples. This result will

then be used to prove the upper and lower bounds of Theorem 4.1.

4.1. Infinite Horizon Formulation: Mean

We now let Si denote the value of the last member of the subsequence selected up to and

including time i. To keep track of the up-down nature of our selections, we then set Ri = 0

if Si is a local minimum of {S0, S1, . . . , Si} and set Ri = 1 if Si is a local maximum. To

initialize our process, we set S0 = 1 and R0 = 1.

Next, we make the class Π of feasible policies more explicit. For each 1 ≤ i < ∞ and for

each pair (Si−1, Ri−1) a feasible strategy π specifies a set ∆i(Si−1, Ri−1) such that

∆i(Si−1, 0) ⊆ [Si−1, 1] and ∆i(Si−1, 1) ⊆ [0, Si−1],

and Xi is selected for our subsequence if and only if Xi ∈ ∆i(Si−1, Ri−1). For each π ∈ Π,

we have the basic relation

AoN (π) =
N∑
i=1

1(Xi ∈ ∆i(Si−1, Ri−1)) =
∞∑
i=1

1(Xi ∈ ∆i(Si−1, Ri−1))1(i ≤ N),

and by taking expectations on both sides we have

E[AoN (π)] = E

[ ∞∑
i=1

ρi−1
1(Xi ∈ ∆i(Si−1, Ri−1))

]
.

We come to this relation by considering random sample sizes with the geometric distribution,

but the right side of this identity can also be interpreted as the infinite-horizon discounted

expected length of the alternating subsequence selected by π. We are interested in the
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policy π∗ ∈ Π such that

E[AoN (π∗)] = sup
π∈Π

E

[ ∞∑
i=1

ρi−1
1(Xi ∈ ∆i(Si−1, Ri−1))

]
,

and from the general theory of Markov decision problems, we know that an optimal policy

can be characterized as the solution of an associated Bellman equation.

First Bellman Equation

For any i such that Si−1 = s and Ri−1 = r, we let v(s, r) denote the expected number of

selections made after time i by an optimal policy. By the lack of memory property of the

geometric distribution and by the usual considerations of dynamic programming, one can

now check that v(s, r) satisfies Bellman equation:

v(s, r) =


ρsv(s, 0) +

∫ 1
s max {ρv(s, 0), 1 + ρv(x, 1)} dx if r = 0

ρ(1− s)v(s, 1) +
∫ s

0 max {ρv(s, 1), 1 + ρv(x, 0)} dx if r = 1.

(4.1)

To see why this equation holds, first consider the case when r = 0 (so the next selection is

to be a local maximum). With probability ρ we get to see another observation Xi+1 and,

with probability s, the value we observe is less than the previously selected value. In this

case, we do not have the opportunity to make a selection, and this observation contributes

the term ρsv(s, 0) to our equation.

Next, consider the case when s < Xi+1 ≤ 1. Now one can choose to select Xi+1 = x or

not. If we do not select Xi+1 = x, the expected number of subsequent selections is ρv(s, 0)

and, if we do select Xi+1 = x, we increment sequence by 1 and the expected number of

subsequence selections that are made by an optimal policy in the future given by ρv(x, 1).

Since Xi+1 is uniformly distributed in [s, 1] the expected optimal contribution is given by

the second term of our Bellman equation (top line). The proof of the second line of the

Bellman equation is completely analogous.
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Finally, given a solution v(s, r) to the Bellman equation (4.1), we have

v(1, 1) = E[AoN (π∗)],

so, now our goal is to determine v(1, 1). To do this it will be useful to reorganize the

Bellman equation (4.1) in a tidier form. This is possible since the solution v(s, r) of the

Bellman equation has a useful symmetry property.

Lemma 4.3 (Reflection Identity). For all s ∈ [0, 1], the solution v(s, r) of the Bellman

equation (4.1) satisfies

v(s, 0) = v(1− s, 1). (4.2)

Proof. The Bellman equation (4.1) is a fixed point equation, and by the classical theory of

dynamic programming, it can be solved by value iteration (c.f. Bertsekas and Shreve, 1978,

Sec. 9.5) . We will prove the identity (4.2) by showing that it holds for the sequence of

approximations, so it also holds for the limit.

We first set v0(s, r) = 0 for all (s, r) ∈ [0, 1] × {0, 1} and we note that v0 trivially satisfies

the Reflection Identity (4.2). Next, for our induction hypothesis, we assume that we have

vn−1(s, 0) = vn−1(1 − s, 1) for all s ∈ [0, 1]. The next iterate in the sequence is then given

by

vn(s, 0) = ρsvn−1(s, 0) +

∫ 1

s
max

{
ρvn−1(s, 0), 1 + ρvn−1(x, 1)

}
dx.

By applying our induction hypothesis on vn−1, we then obtain

vn(s, 0) = ρsvn−1(1− s, 1) +

∫ 1

s
max

{
ρvn−1(1− s, 1), 1 + ρvn−1(1− x, 0)

}
dx.

Now, after changing variables in the integral on the right-hand side, we find

vn(s, 0) = ρsvn−1(1− s, 1) +

∫ 1−s

0
max

{
ρvn−1(1− s, 1), 1 + ρvn−1(x, 0)

}
dx

= vn(1− s, 1),
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and this completes the induction step. Now, for all (s, r) ∈ [0, 1]×{0, 1}, we have vn(s, r)→

v(s, r) as n → ∞ so taking limits in the last identity completes the proof of the reflection

identity.

A Simpler Equation

Using the reflection identity (4.2) we can put the Bellman equation (4.1) into a more graceful

form. Specifically, if we introduce a single variable function v(y) defined by setting

v(y) ≡ v(y, 0) = v(1− y, 1),

then substitution into our original equation (4.1) gives us

v(y) = ρyv(y) +

∫ 1

y
max {ρv(y), 1 + ρv(1− x)} dx. (4.3)

Here we should note that by the definition of v(y) = v(y, 0) we have that v(·) is continuous,

v(1) = 0, and v is non-increasing on [0, 1]. We will show shortly that v is actually piecewise

linear and it is constant on an initial segment of [0, 1].

An Alternative Interpretation

The symmetrized equation (4.3) can be used to obtain a new probabilistic interpretation of

v(y). To set this up, we first put

g(y) = inf{x ∈ [y, 1] : ρv(y) ≤ 1 + ρv(1− x)}. (4.4)

With this definition, we can rewrite (4.3) a bit more nicely as

v(y) = ρg(y)v(y) +

∫ 1

g(y)
{1 + ρv(1− x)} dx. (4.5)

Thus, one removes the maximum from the integrand (4.3) at the price of introducing a

threshold function g that depends on v.
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We now recursively define random variables {Yi : i = 1, 2, . . .} by setting Y0 = 0 and taking

Yi =


Yi−1 if Xi < g(Yi−1)

1−Xi if Xi ≥ g(Yi−1),

and finally introduce a new value function

v0(y) ≡ E

[ ∞∑
i=1

ρi−1
1(Xi ≥ g(Yi−1))

∣∣∣∣ Y0 = y

]
. (4.6)

The next proposition shows that v0(y) is actually equal to v(y). As part of the bargain, we

obtain a concrete characterization of the threshold function g.

Proposition 4.4 (Structure of the Solution of the Bellman Equation). We have the fol-

lowing characterizations of g and v0:

(i) There is a unique ξ0 ∈ [0, 1] such that

g(y) = max{ξ0, y} for all 0 ≤ y ≤ 1,

and moreover 0 ≤ ξ0 < 1/2.

(ii) The function v0(·) is a solution of the Bellman equation (4.3), so, by uniqueness, we

have v0(y) = v(y) for all 0 ≤ y ≤ 1.

Proof. From the definition of g we see that

ρv(y) ≤ 1 + ρv(1− y) ⇒ g(y) = y. (4.7)

Now, for 1/2 ≤ y we have 1− y ≤ y, so the monotonicity of v gives us the bound ρv(y) ≤

1 + ρv(1− y); consequently, we have g(y) = y for y ∈ [1/2, 1].

If the condition (4.7) holds for all y ∈ [0, 1/2), then g(y) = y for all y ∈ [0, 1] and we can
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take ξ0 = 0. Otherwise there is a y0 ∈ [0, 1/2) for which we have

1 + ρv(1− y0) < ρv(y0).

For ∆(y) = 1 + ρv(1 − y) − ρv(y), we then have ∆(y0) < 0 and ∆(1) = 1 + ρv(0) > 0, so

by continuity we have S = {y : ∆(y) = 0} 6= ∅. If we now take ξ0 to be the infimum of S,

then ξ0 ∈ [y0, 1/2) ⊂ [0, 1/2) and ρv(ξ0) = 1 + ρv(1 − ξ0). The definition of g now tells us

that g(y) = ξ0 for y ≤ ξ0 and g(y) = y for ξ0 ≤ y. This completes the proof of the first part

of the proposition.

Finally, to check that v0 solves the equation (4.6), we just condition on the value of X1 and

calculate the expectation of the sum. When we take the total expectation, we get the right

side of (4.5).

Characterization of the Critical Value

Now that we know that the threshold function g for the solution of Bellman equation (4.3)

has the form g(y) = max{ξ0, y} for some ξ0 ∈ [0, 1/2), the main problem is to find ξ0. The

natural plan is to fix ξ ∈ [0, 1/2] and to consider a general selection function of the form

f(y) = max{ξ, y} ≡ (ξ ∨ y). We then want to calculate the associated value function and

to optimize over ξ.

The associated value function is given by

V (y, ξ, ρ) = E

[ ∞∑
i=1

ρi−1
1(Xi ≥ max{ξ, Yi−1})

∣∣∣∣ Y0 = y

]
, (4.8)

and Proposition 4.4 then tells us that

max
ξ∈[0,1/2]

V (y, ξ, ρ) = v(y) for all y ∈ [0, 1].

If we abbreviate V (y, ξ, ρ) by setting V (y) ≡ V (y, ξ, ρ), then by conditioning on X1 in
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equation (4.8) we see that V (y) satisfies the integral equation

V (y) = (ξ ∨ y)ρV (y) +

∫ 1

ξ∨y
{1 + ρV (1− x)} dx

= (ξ ∨ y)ρV (y) +

∫ 1−(ξ∨y)

0
{1 + ρV (x)} dx. (4.9)

This equation has several attractive features. In particular, if we set y = 1 then from

0 < ρ < 1 we see V (1) = 0. Also, by writing

V (y) =
1

1− ρ(ξ ∨ y)

∫ 1−(ξ∨y)

0
{1 + ρV (x)} dx,

we see that the right side does not change when y ∈ [0, ξ], so we have

V (y) = V (y′) for all 0 ≤ y, y′ ≤ ξ. (4.10)

From now on, we will let V ′(ξ) denote the right derivative of the integral equation (4.9)

evaluated at ξ, and let V ′(1 − ξ) denote the left derivative of (4.9) evaluated at 1 − ξ.

Elsewhere V ′(y) simply denotes the derivative of (4.9) evaluated at y.

Lemma 4.5. The solution of equation (4.9) satisfies the following four conditions:

(i) V (1− ξ)(1− ρ+ ρξ) = ξ + ρξV (ξ);

(ii) V ′(ξ)(1− ρξ) = ρ[V (ξ)− V (1− ξ)]− 1;

(iii) V ′(1− ξ)(1− ρ+ ρξ) = ρ[V (1− ξ)− V (ξ)]− 1;

(iv) V ′(1− ξ)(1− ρ+ ρξ)2(1− ρξ) = V ′(ξ)(1− ρξ)2(1− ρ+ ρξ) + (1− ρ+ ρξ)2− (1− ρξ)2.

Proof. Conditions (i)–(iii) are easy to check. Condition (i) is just (4.9) evaluated at 1 − ξ

together with (4.10). Conditions (ii) and (iii) simply follow by evaluating (4.9) at ξ and

1− ξ respectively and by differentiating both sides with respect to ξ.
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The proof of Condition (iv) requires more work. Consider y ∈ (ξ, 1− ξ) so that the integral

equation (4.9) becomes

V (y) = yρV (y) +

∫ 1−y

0
{1 + ρV (x)} dx.

Differentiating once we have

V ′(y)(1− ρy) = ρ[V (y)− V (1− y)]− 1, (4.11)

and differentiating again gives us

V ′′(y)(1− ρy)− ρV ′(y) = ρV ′(y) + ρV ′(1− y). (4.12)

To estimate the value of V ′(1 − y) we note that 1 − y ∈ (ξ, 1 − ξ), and we evaluate the

integral equation (4.9) at 1− y. We then differentiate with respect to y to obtain

V ′(1− y)(1− ρ+ ρy) = ρ[V (1− y)− V (y)]− 1. (4.13)

By combining equations (4.11) and (4.13), we then have

V ′(1− y) = (1− ρ+ ρy)−1(−V ′(y)(1− ρy)− 2),

which we can plug into the last addend of (4.12) to obtain

V ′′(y)(1− ρy)(1− ρ+ ρy) = V ′(y)ρ(1− 2ρ+ 3ρy)− 2ρ. (4.14)

By multiplying both sides of (4.14) by (1− ρy), we obtain the critical identity

V ′′(y)(1− ρy)2(1− ρ+ ρy) = V ′(y)ρ(1− ρy)(1− 2ρ+ 3ρy)− 2ρ(1− ρy). (4.15)

For h(y) = (1− ρy)2(1− ρ+ ρy) notice that h′(y) = −ρ(1− ρy)(1− 2ρ+ 3ρy), so that we
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can rewrite the identity (4.15) as

V ′′(y)h(y) + V ′(y)h′(y)−
[
(1− ρy)2

]′
= 0.

An immediate integration then gives us

V ′(y)h(y)− (1− ρy)2 = C,

where C is a constant, and if we take C = V ′(ξ)h(ξ)− (1− ρξ)2 we find

V ′(y) = V ′(ξ)
h(ξ)

h(y)
+

(1− ρy)2 − (1− ρξ)2

h(y)
for all ξ < y < 1− ξ. (4.16)

Finally, on setting y = 1− ξ we recover the desired condition (iv).

Calculation of the Critical Value.

Conditions (i)–(iv) in Lemma 4.5 generate a system of four equations in four unknowns,

V (ξ), V (1− ξ), V ′(ξ), and V ′(1− ξ). By solving this system one finds

V (ξ) =
2− 2ξ − ρ+ 2ρξ − 2ρξ2

2(1− ρ)(1− ρξ)
(4.17)

V (1− ξ) =
ρ
(
2− 4ρξ − ρ2 + 4ρ2ξ − 2ρ2ξ2

)
2(1− ρ)(1− ρξ)2(1− ρ+ ρξ)

V ′(ξ) =
−2 + 4ρ− 4ρξ − ρ2 + 2ρ2ξ2

2(1− ρξ)2(1− ρ+ ρξ)
(4.18)

V ′(1− ξ) =
−2 + 4ρξ + ρ2 − 4ρ2ξ + 2ρ2ξ2

2(1− ρξ)(1− ρ+ ρξ)2
.

Finally, by substituting (4.18) into (4.16) we get

V ′(y) =
−(2− ρ)2 + 2(1− ρy)2

2(1− ρ+ ρy)(1− ρy)2
for all ξ < y < 1− ξ.

Now, given any ξ, we want to compute V (0, ξ, ρ). We first recall that we have V (1, ξ, ρ) = 0
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and V (y, ξ, ρ) = V (ξ, ξ, ρ) for all 0 ≤ y ≤ ξ. We therefore find that ∂
∂yV (y, ξ, ρ) = 0 on

0 ≤ y ≤ ξ, so on integrating we have

V (1, ξ, ρ)− V (0, ξ, ρ) =

∫ 1

0
V ′(y) dy =

∫ 1

ξ
V ′(y) dy

and hence

V (0, ξ, ρ) = −
∫ 1

ξ
V ′(y) dy.

We now optimize this last quantity with respect to ξ. By differentiating both sides with

respect to ξ we get

∂

∂ξ
V (0, ξ, ρ) = V ′(ξ)

and we are interested in the value ξ0 such that

V ′(ξ0) = 0.

Our formula (4.18) for V ′(ξ0) tells us that V ′(ξ0) = 0 if and only if

2(1− ρξ0)2 = (2− ρ)2.

We therefore find that the unique choice for ξ0 is given by

ξ0 =
1√
2

+
1−
√

2

ρ
. (4.19)

A routine calculation verifies that V ′′(ξ0) < 0, so we have found our maximum.

When we evaluate V (ξ0, ξ0, ρ) using equation (4.17), we find

V (ξ0, ξ0, ρ) =
3− 2

√
2− ρ+ ρ

√
2

ρ(1− ρ)
,
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and this gives us the main formula of Theorem 4.2. From this formula it is immediate that

lim
ρ↑1

(1− ρ)V (ξ0, ξ0, ρ) = 2−
√

2,

so the proof of Theorem 4.2 is complete.

4.2. Finite Horizon Formulation: Mean Bounds and Exact Asymptotics

We will use our results for geometric sample sizes to get both lower and upper bounds for

the finite sample size selection problem. The lower bound is the easiest. For fixed n, one

can use the (now suboptimal) policy from an appropriately chosen geometric sample size

problem. The proof of the upper bound is considerably harder, and the method will be

described later in this section. Before making these arguments, we need to organize a few

structural observations.

Selection Policies and a Bellman Equation for Finite Samples

When the sample size n is deterministic and known, the feasible policies need to take this

information into account. In particular, the selection thresholds will no longer be stationary;

they will depend on the number of sample elements that remain to be seen.

Just as in Section 4.1, we consider the pairs (Si−1, Ri−1), 1 ≤ i ≤ n, where Si−1 is the size

of the last selection made before time i and Ri−1 is 0 or 1 accordingly as the last selection

was a local minimum or a local maximum. A feasible policy π ∈ Π again specifies a set

∆n−i+1(Si−1, Ri−1) that depends only on past actions, but now we have dependence on the

number of remaining periods, n − i + 1. For any policy π ∈ Π, the expected size of the

selected sample can then be written as

E[Aon(π)] = E

[
n∑
i=1

1(Xi ∈ ∆n−i+1(Si−1, Ri−1))

]
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and there is an optimal policy π∗n for which we have

E[Aon(π∗n)] = sup
π∈Π

E[Aon(π)].

In this case, an optimal policy can be characterized as the solution to a finite sample Bellman

equation. Specifically, we set v0(s, r) ≡ 0 for all (s, r) in [0, 1]× {0, 1}, and for k ≥ 1 we let

vk(s, r) =

 svk−1(s, 0) +
∫ 1
s max {vk−1(s, 0), 1 + vk−1(x, 1)} dx if r = 0

(1− s)vk−1(s, 1) +
∫ s

0 max {vk−1(s, 1), 1 + vk−1(x, 0)} dx if r = 1.

This equation is justified by the same considerations that were used in the derivation of

equation (4.1), and we note that, here, the subscript k denotes the number of periods left

to the end of the time horizon.

Symmetry and Simplification

For the finite sample size problem, one loses much of the nice symmetry of the geometric

sample size problem. Nevertheless, the solution of the finite sample Bellman equation still

has a reflection identity analogous to that given by Lemma 4.3.

Lemma 4.6. The solution of the finite sample Bellman equation satisfies

vk(s, 0) = vk(1− s, 1) for all k ≥ 1 and all s ∈ [0, 1]. (4.20)

Proof. Again we use an induction argument, but this time we do not need to take limits of

an infinite sequence of approximate solutions. Instead we simply use backward induction

and always work with exact solutions.

Since we have v1(s, 0) = 1 − s and v1(1 − s, 1) = 1 − s, we see that equation (4.20) holds

for k = 1, so we suppose by induction that vk−1(s, 0) = vk−1(1− s, 1). One then has

vk(s, 0) = svk−1(s, 0) +

∫ 1

s
max {vk−1(s, 0), 1 + vk−1(x, 1)} dx,
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so by applying the induction hypothesis on the right-hand side one obtains

vk(s, 0) = svk−1(1− s, 1) +

∫ 1

s
max {vk−1(1− s, 1), 1 + vk−1(1− x, 0)} dx.

If we now change variable in this last integral, we get

vk(s, 0) = svk−1(1− s, 1) +

∫ 1−s

0
max {vk−1(1− s, 1), 1 + vk−1(x, 0)} dx

= vk(1− s, 1),

and this completes the induction step.

We can now define a new single variable function vk(y) by setting

vk(y) = vk(y, 0) = vk(1− y, 1) (4.21)

and, by substitution into the original finite sample Bellman equation we have

vk(y) = yvk−1(y) +

∫ 1

y
max {vk−1(y), 1 + vk−1(1− x)} dx. (4.22)

Here we should also note that vk(·) is continuous and non-increasing on [0, 1] for all k ≥ 1.

The Threshold Functions

We now define the finite-sample equivalent of the threshold function (4.4) by setting

gk(y) = inf{x ∈ [y, 1] : vk−1(y) ≤ 1 + vk−1(1− x)}. (4.23)

If we then set Y0 = 0 and define Yi recursively by setting

Yi =


Yi−1 if Xi < gn−i+1(Yi−1)

1−Xi if Xi ≥ gn−i+1(Yi−1),

(4.24)
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then, in complete parallel to the geometric case, we see that the solution of the finite sample

Bellman equation (4.22) can be written more probabilistically as

v1(y) = E

[
n∑
i=1

1(Xi ≥ gn−i+1(Yi−1))

∣∣∣∣ Y0 = y

]
. (4.25)

Finally, from equation (4.21) we have

v1(0) = v1(0, 0) = v1(1, 1) = E[Aon(π∗n)],

and this gives us the last piece of structural information that we need.

Proof of the Lower Bound

To prove that

(2−
√

2)n ≤ E[Aon(π∗n)] for all n ≥ 1

we only need to choose a good suboptimal policy. We now fix ξ ∈ [0, 1/2] and we consider

the policy in which Xi is selected if and only if Xi ≥ max{ξ, Yi−1}. Here, Y0 = y is in the

interval [0, 1− ξ] and the Yi’s are defined recursively by setting

Yi =


Yi−1 if Xi < max{ξ, Yi−1}

1−Xi if Xi ≥ max{ξ, Yi−1}.

The sequence {Yi : i = 0, 1, . . .} is a discrete-time Markov Chain on the state space [0, 1−ξ].

For a measurable C ⊆ [0, 1− ξ] we let |C| denote the Lebesgue measure of C, and we write

the transition kernel of the process {Yi : i = 0, 1, . . .} as

K(y, C) = 1(y ∈ C)(ξ ∨ y) + |C ∩ [0, 1− (ξ ∨ y)]|.

It is now easy to check that the process {Yi} has a unique stationary distribution γ, and

in fact γ is just the uniform distribution on [0, 1 − ξ], (i.e., γ(C) = (1 − ξ)−1|C| for all
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measurable C ⊆ [0, 1− ξ]).

For any starting value Y0 = y ∈ [0, 1 − ξ], the suboptimality of the selection functions

max{ξ, Yi−1} gives that

E

[
n∑
i=1

1(Xi ≥ max{ξ, Yi−1})
∣∣∣∣ Y0 = y

]
≤ v1(y).

Since v1(y) is non-increasing in y, we see that for any starting distribution µ supported on

[0, 1− ξ] one has

Eµ

[
n∑
i=1

1(Xi ≥ max{ξ, Yi−1})

]
≤ Eµ[v1(Y0)] ≤ v1(0) = E[Aon(π∗n)].

If one chooses the starting distribution µ to be the stationary distribution γ, then

Eγ

[
n∑
i=1

1(Xi ≥ max{ξ, Yi−1})

]
= nEγ [1−max{ξ, Y0})] ≤ E[Aon(π∗n)], (4.26)

and we can compute the first expression explicitly. So, we have

Eγ [1−max{ξ, Y0}] =
1

1− ξ

∫ 1−ξ

0
1−max{ξ, y} dy =

1− 2ξ2

2(1− ξ)
.

We can maximize this by taking ξ = 1−2−1/2 (as in (4.19) when ρ = 1), and we then obtain

Eγ [1−max{ξ, Y0})] = 2−
√

2.

Together with the inequality (4.26), this completes the proof of our lower bound.

Proof of the Upper Bound

The proof of the upper bound in Theorem 4.1 requires a more sustained argument. Unlike

the problem for geometric samples, the value function vk(·) is no longer constant on an

initial segment of [0, 1]. Nevertheless, the next proposition tells us that the value function

does have a useful uniform boundedness on an initial segment. This is the first of several
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structural observations that we will need to obtain our upper bound for E[Aon(π∗n)].

Proposition 4.7 (Value Function Initial Segment Bounds). For all 0 ≤ u < 1/6, the

functions vk(·) defined by the Bellman recursion (4.22) satisfy

(i) 1 < vk(u)− vk(5/6), for all k ≥ 2;

(ii) vk(u)− vk(1/6) < 1, for all k ≥ 1.

Moreover, the threshold functions gk(y) defined by equation (4.23) are guaranteed to satisfy

1/6 ≤ gk(y) for all y ∈ [0, 1] and all k ≥ 3.

Naturally enough, the proof of this proposition depends on inductive arguments that exploit

the defining Bellman equation. The first of these arguments gives us some control over the

changes of vk(u) when we change both k and u.

Lemma 4.8 (Restricted Supermodularity). For y ∈ [0, 1/2] and u ∈ [y, 1−y], the functions

{vk(·)} defined by the Bellman recursion (4.22) satisfy

vk−1(u)− vk−1(1− y) ≤ vk(u)− vk(1− y) for all k ≥ 1.

Proof. We proceed by induction on k. For k = 1, we have v0(u) = 0 for all u ∈ [0, 1].

Moreover, v1(u) = 1− u and v1(1− y) = y, so we have

v0(u)− v0(1− y) ≤ v1(u)− v1(1− y) for all u ∈ [y, 1− y].

Now, for our backward induction, we can assume more generally that

vk−1(u)− vk−1(1− y) ≤ vk(u)− vk(1− y) for all u ∈ [y, 1− y].
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The Bellman equation (4.22) then gives us

vk+1(u)− vk+1(1− y) = uvk(u) +

∫ 1

u
max {vk(u), 1 + vk(1− x)} dx

− (1− y)vk(1− y)−
∫ 1

1−y
max {vk(1− y), 1 + vk(1− x)} dx,

and, since u ≤ 1− y, we can break up the first integral to obtain

vk+1(u)−vk+1(1− y) = uvk(u)−(1− y)vk(1− y) +

∫ 1−y

u
max {vk(u), 1 + vk(1− x)} dx

+

∫ 1

1−y
max {vk(u), 1 + vk(1− x)} −max {vk(1− y), 1 + vk(1− x)} dx. (4.27)

For x ∈ [1−y, 1], we have vk(y) ≤ vk(1−x) since vk(·) is non-increasing on [0, 1]. Therefore,

since y ≤ u ≤ 1− y we have vk(1− y) ≤ vk(u) ≤ vk(y) so that for x ∈ [1− y, 1] we have

max {vk(u), 1 + vk(1− x)} = max {vk(1− y), 1 + vk(1− x)} = 1 + vk(1− x),

and we see that the integral (4.27) equals 0. We now have just the identity

vk+1(u)− vk+1(1− y) = uvk(u)− (1− y)vk(1− y) +

∫ 1−y

u
max {vk(u), 1 + vk(1− x)} dx

or, equivalently,

vk+1(u)− vk+1(1− y) = u (vk(u)− vk(1− y))

+

∫ 1−y

u
max {vk(u)− vk(1− y), 1 + vk(1− x)− vk(1− y)} dx.

Changing variables in this last integral then gives us the convenient identity

vk+1(u)− vk+1(1− y) = u (vk(u)− vk(1− y))

+

∫ 1−u

y
max {vk(u)− vk(1− y), 1 + vk(x)− vk(1− y)} dx. (4.28)
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Since y ≤ u and 1− u ≤ 1− y, we can now use our induction assumption to obtain

vk+1(u)− vk+1(1− y) ≥ u (vk−1(u)− vk−1(1− y))

+

∫ 1−u

y
max {vk−1(u)−vk−1(1− y), 1+vk−1(x)−vk−1(1− y)} dx

= vk(u)− vk(1− y),

where the last equality follows from the recursion (4.28).

We can now complete the proof of the Value Function Bounds in Proposition 4.7.

Proof of Proposition 4.7. We begin by proving (i) by induction on k. For k = 2, one

iteration of the recursive definition of the Bellman equation (4.22) gives us that v2(x) =

(3/2)(1 − x2), so v2(u) − v2(5/6) = (3/2)(25/36 − u2) > 1 since by hypothesis we have

u < 1/6. We now make the induction assumption

1 < vk−1(u)− vk−1(5/6) for 0 ≤ u < 1/6,

and observe from the Bellman equation (4.22) that

vk(u)− vk(5/6) = uvk−1(u) +

∫ 1

u
max{vk−1(u), 1 + vk−1(1− x)} dx

− 5/6 vk−1(5/6)−
∫ 1

5/6
max{vk−1(5/6), 1 + vk−1(1− x)} dx.

Since u < 5/6, the monotonicity of vk−1(·) implies vk−1(5/6) ≤ vk−1(u). So, for x ∈ [5/6, 1],

we have max{vk−1(5/6), 1 + vk−1(1 − x)} ≤ max{vk−1(u), 1 + vk−1(1 − x)}. This gives us

the lower bound

u (vk−1(u)−vk−1(5/6))+

∫ 5/6

u
max{vk−1(u)−vk−1(5/6), 1+vk−1(1− x)−vk−1(5/6)} dx

≤ vk(u)− vk(5/6).
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To get a lower bound for the integral of the maximum, we replace the integrand by vk−1(u)−

vk−1(5/6) on [u, 1/6) and replace it by 1+vk−1(1 − x)−vk−1(5/6) on [1/6, 5/6]. Changing

variables then gives us

1

6
(vk−1(u)− vk−1(5/6)) +

∫ 5/6

1/6
{1 + vk−1(x)− vk−1(5/6)} dx ≤ vk(u)− vk(5/6). (4.29)

By our induction hypothesis, the first addend satisfies the bound

1

6
<

1

6
(vk−1(u)− vk−1(5/6)) , (4.30)

and by Lemma 4.8, the second integral satisfies the bound

∫ 5/6

1/6
{1 + v1(x)− v1(5/6)} dx ≤

∫ 5/6

1/6
{1 + vk−1(x)− vk−1(5/6)} dx.

If we now recall that v1(x) = 1− x and compute the integral on the left-hand side, we then

obtain

32

36
≤
∫ 5/6

1/6
{1 + vk−1(x)− vk−1(5/6)} dx. (4.31)

Finally, adding (4.30) and (4.31) and recalling (4.29) gives us our target bound

1 <
38

36
≤ vk(u)− vk(5/6).

To prove condition (ii) we again use induction. For k = 1, we have v1(u) = 1 − u, so

v1(u)− v1(1/6) = 1/6− u < 1. Suppose now that

vk−1(u)− vk−1(1/6) < 1 for 0 ≤ u < 1/6.
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The Bellman recursion (4.22) then gives us

vk(u)− vk(1/6) ≤
∫ 1/6

0
max{vk−1(u)−vk−1(1/6), 1+vk−1(1− x)−vk−1(1/6)} dx

+

∫ 5/6

1/6
max{vk−1(u), 1 + vk−1(x)} −max{vk−1(1/6), 1 + vk−1(x)} dx

+

∫ 1

5/6
max{vk−1(u), 1 + vk−1(1− x)} −max{vk−1(1/6), 1 + vk−1(1− x)} dx.

For x ∈ [0, 1/6], we can check that first integrand is bounded by 1. To see this, we first

note that left maximand is bounded by 1 by the induction assumption. Next, we note that

vk−1(1− x) ≤ vk−1(5/6) so, for the second maximand one has the bound 1 + vk−1(1− x)−

vk−1(1/6) ≤ 1 + vk−1(5/6)− vk−1(1/6) and this last term is non-positive by the inequality

(i).

For x ∈ [1/6, 5/6], the second integrand is bounded by

max{vk−1(u)− vk−1(1/6), 1 + vk−1(x)− vk−1(1/6)} ≤ 1,

since both maximands are bounded by 1; the first one because of the induction assumption

and the second one because it is non-increasing in x and attains its maximum for x = 1/6.

Finally, for x ∈ [5/6, 1] the third integrand is bounded by

max{vk−1(u)− 1− vk−1(1− x), 0},≤ 0

since −vk−1(1 − x) ≤ −vk−1(1/6), and by the induction assumption, we see that the left

maximand vk−1(u)− 1− vk−1(1/6) is also non-positive. So, at last we have

vk(u)− vk(1/6) ≤ 5/6 < 1,

and this completes the proof of condition (ii).
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The last claim of Proposition 4.7 is that 1/6 ≤ gk(y) for all y ∈ [0, 1] and all k ≥ 3. If

y ∈ [1/6, 1] this bound is trivial since y ≤ gk(y) for all 1 ≤ i ≤ n. If y ∈ [0, 1/6), then

the inequality (i) gives us that 1 < vk−1(y)− vk−1(5/6) for all k ≥ 3, so that the definition

of gk(y) in (4.23) gives the required lower bound. This completes the proof of Proposition

4.7.

Proof of the Upper Bound — The Last Step

We now have all the tools that we need to prove that there is a constant C < 11− 4
√

2 ∼

5.343 such that

E[Aon(π∗n)] ≤ (2−
√

2)n+ C for all n ≥ 1.

We first note that the bound is trivial for n = 1 and n = 2. For n ≥ 3, we let {gn, . . . , g1}

denote the optimal threshold functions determined by recursive solution of the Bellman

equation (4.22) for the finite horizon problem with sample size n. We will use the first n−2

of these functions to construct a suboptimal selection policy for the geometric sample size

problem. From the suboptimality of this policy we will obtain an inequality that will lead

to our upper bound.

Construction of a Suboptimal Policy for the Infinite Horizon Problem

We now consider the infinite horizon problem, and, as before, we let {X1, X2, . . .} denote

the sequence of observations. Here is our selection process:

• We let T0 denote the index of the first observation in the sequence that falls in the

interval [5/6, 1]. We select that observation as first element of our subsequence and

we set YT0 = 1−XT0 . We note that YT0 has the uniform distribution in [0, 1/6].

• Next we use the functions {gn, . . . , g3} to decide which of the next n− 2 observations

are to be selected. Specifically, we make our i’th selection in the series if XT0+i ≥
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gn−i+1(YT0+i−1), where as usual the YT0+i are defined by the recursion

YT0+i =


YT0+i−1 if XT0+i < gn−i+1(YT0+i−1)

1−XT0+i if XT0+i ≥ gn−i+1(YT0+i−1).

Here one should recall that, by Proposition 4.7, we have 1/6 ≤ gk(YT0+i−1) for all

k ≥ 3, so we have 0 ≤ YT0+i ≤ 5/6 for 1 ≤ i ≤ n− 2.

• We will now show how our selection process can be repeated in a stationary way. For

j = 0, 1, 2, . . . we proceed as follows:

1. If YTj+n−2 ∈ (1/6, 5/6], then we let

τj = inf{i ≥ 1 : XTj+n−2+i ≥ 5/6},

and we select the observation XTj+n−2+τj . We note that the random variable

YTj+n−2+τj = 1−XTj+n−2+τj is uniformly distributed on [0, 1/6].

2. If YTj+n−2 ≤ 1/6 , then we simply let τj = 0, and we again note that YTj+n−2+τj

is uniformly distributed on [0, 1/6].

3. We set Tj+1 = Tj + n− 2 + τj and set j = j + 1.

4. Just as in the second bullet, we use the functions {gn, . . . , g3} to decide which

observations to select from {XTj+1, XTj+2, ..., XTj+n−2}. At time Tj +n− 2 we are

left with some value YTj+n−2, and we return to Step 1 of this bullet.

Analysis of the Policy

The suboptimal policy we constructed provides us with an increasing sequence of stopping

times 0 < T0 < T1 < T2 < · · · such that the times {Tj : j ≥ 1} are regeneration times

for the process {Yi : i ≥ T0}. Moreover, we also have an i.i.d. sequence of stopping times
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{τj : j ≥ 1} with distribution

τj
d
=


0 if YT0+n−2 ≤ 1/6

inf{i ≥ 1 : Xi > 5/6} if YT0+n−2 > 1/6.

These regeneration times {Tj : j ≥ 1} can be written as function of the stopping times

{τj : j ≥ 1}; specifically, we have

Tj = T0 + (n− 2)j +

j∑
`=1

τ`. (4.32)

For any pair (Tj , YTj ), 1 ≤ j <∞, the number r(Tj , YTj ) of selections made from {XTj+1, . . . ,

XTj+n−2} is then given by the sum

r(Tj , YTj )
def
=

n−2∑
i=1

1(XTj+i ≥ gj(YTj+i−1)).

For each 0 < ρ < 1, the selection process described gives us a feasible policy that provides a

lower bound on the expected length – E[AoN (π∗)] – of the alternating subsequence selected

by an optimal policy form a sample of geometric size.

Moreover, if for discounting purposes we view the number of selections r(Tj , YTj ) as being

counted all at time Tj +n−2, then we obtain a lower bound for the expected value achieved

by our suboptimal policy. We therefore have the bound

E

 ∞∑
j=0

ρTj+n−2r(Tj , YTj )

 ≤ E[AoN (π∗)]. (4.33)

We now note that T0 and YT0 are independent, and we also note that, for each j ≥ 1, the
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post-Tj process {YTj+i : i ≥ 0} is independent of Tj . Consequently, we have the factorization

E
[
ρTj+n−2r(Tj , YTj )

]
= E

[
ρTj+n−2

]
E
[
r(Tj , YTj )

]
for all j ≥ 0, (4.34)

and since Tj is a regeneration epoch, we also have

E
[
r(Tj , YTj )

]
= E [r(T0, YT0)] for all j ≥ 0.

For YT0 = y ∈ [0, 1/6], we recall the identity (4.25) and we observe that

vn(y)− 2 ≤ E[r(T0, YT0)|YT0 = y],

since the policy of the right-hand side agrees with the policy of the left-hand side for the

first n− 2 observations, and the policy of the right-hand side never selects the last two.

The monotonicity of vn(·) and the inequality (ii) of Proposition 4.7 then give us the lower

bound

E[Aon(π∗n)]− 3 = vn(0)− 3 ≤ E[r(T0, YT0)|YT0 = y] for all 0 ≤ y ≤ 1/6,

so by recalling that 0 ≤ YT0 ≤ 1/6 and taking total expectations we see that

E[Aon(π∗n)]− 3 ≤ E[r(T0, YT0)].

The factorization (4.34) then gives us the bound

E
[
ρTj+n−2

]
(E[Aon(π∗n)]− 3) ≤ E

[
ρTj+n−2r(Tj , YTj )

]
for all j ≥ 0.

If we now sum over j, use the representation (4.32) and use the suboptimality condition
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(4.33), then we have

(E[Aon(π∗n)]− 3)E

 ∞∑
j=0

ρT0+(n−2)(j+1)+
∑j
`=1 τ`

 ≤ E[AoN (π∗)]. (4.35)

We now note that T0 is also independent from the random variables {τj : j ≥ 1}, and we

recall that the τj ’s are i.i.d., so

E

 ∞∑
j=0

ρT0+(n−2)(j+1)+
∑j
`=1 τ`

 = E
[
ρT0
] ∞∑
j=0

ρ(n−2)(j+1) E [ρτ1 ]j .

Since x 7→ ρx is convex, Jensen’s inequality tells us that ρET0 ≤ E[ρT0 ] and that ρEτ1 ≤

E[ρτ1 ], so we have

ρET0+n−2
∞∑
j=0

(
ρn−2+Eτ1

)j
≤ E[ρT0 ]

∞∑
j=0

ρ(n−2)(j+1) E[ρτ1 ]j .

The left-hand side is an easy geometric series, and by substitution in equation (4.35), we

obtain the crucial bound

E[Aon(π∗n)] ≤ 3 +
1− ρn−2+Eτ1

ρET0+n−2
E[AoN (π∗)].

From the explicit formula for E[AoN (π∗)] in Theorem 4.2, we then have

E[Aon(π∗n)] ≤ 3 +
(1− ρn−2+Eτ1)(3− 2

√
2− ρ+ ρ

√
2)

ρET0+n−1(1− ρ)
.

The bound above holds for all 0 < ρ < 1, so by letting ρ ↑ 1, we obtain

E[Aon(π∗n)] ≤ 3 + (2−
√

2)(n− 2 + Eτ1) < (2−
√

2)n+ 11− 4
√

2

since E[τ1] < 6. This completes the proof of the upper bound.
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Figure 1: Threshold functions g∗k(·), k = 1, 2, . . . , 10 and g∗∞(y) for y ∈ [0, 35/100].
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4.3. A Path to the Central Limit Theorem for the Finite-Horizon Formulation

In a recent working paper, Arlotto and Steele (2012) study a Central Limit Theorem for

the optimal number of alternating selections

Aon(π∗n) =
n∑
i=1

1
(
Xi ≥ g∗n−i+1(Yi−1)

)
.

Their argument is based on a more refined analysis of the threshold function g∗k(·), k ≥ 1 in

(4.23). For the reader’s benefit, in Figure 1 we plot the threshold functions g∗1(y), g∗2(y), . . . ,

g∗10(y) (solid) and the limiting function g∗∞(y) (dashed) for y ∈ [0, 35/100], and we note that

Arlotto and Steele (2012) actually prove that

• the sequence {g∗k(·) : k ≥ 1} is monotonically increasing and bounded, i.e.

g∗k(y) ≤ g∗k+1(y) ≤ 1 for all y ∈ [0, 1],
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and therefore it converges uniformly to a limiting threshold function g∗∞(y).

• The limiting threshold function g∗∞ : [0, 1]→ [0, 1] satisfies

g∗∞ = max{ξ0, y},

where ξ0 = 1− 1/
√

2 is the value of (4.19) when ρ = 1.

Then, they construct the selection policy π∞ that uses the threshold function g∗∞ at all

decision times. For Y ′0 = 0, one has the Markov chain

Y ′i =


Y ′i−1 if Xi < g∗∞(Y ′i−1)

1−Xi if Xi ≥ g∗∞(Y ′i−1),

and the auxiliary random variable

Aon(π∞) =

n∑
i=1

1
(
Xi ≥ g∗∞(Y ′i−1)

)
.

A functional martingale Central Limit Theorem (c.f. Jones, 2004) for Aon(π∞) then gives

that

Aon(π∞)− (2−
√

2)n√
n

=⇒ N(0, σ2) as n→∞.

This limit theorem can then be used to obtain distributional information on Aon(π∗n) and,

in particular, one can prove that the variance of Aon(π∗n) and Aon(π∞) are asymptotically

equivalent, i.e.

Var [Aon(π∗n)] ∼ Var [Aon(π∞)] ∼ σ2n as n→∞,

and that

Aon(π∗n)− (2−
√

2)n√
n

d∼ Aon(π∞)− (2−
√

2)n√
n

as n→∞.
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Thus, one concludes that

Aon(π∗n)− (2−
√

2)n√
n

=⇒ N(0, σ2) as n→∞,

as desired.

4.4. Observations on Methods and Connections

Our principal goal has been to provide a reasonably definitive solution to a concrete prob-

lem of sequential optimization. Still, the natural expectation is that the solution of such

a problem should also offer some novel methodological perspective. Here, we began by ex-

ploiting the well-known idea of passing to the infinite horizon problem, but less commonly

(and somewhat doggedly) we made the trek back from the infinite horizon problem to the

finite horizon problem. In retrospect, that trek had elements of inevitability to it, but it

also had surprises.

In a natural and easy way, the policy for the infinite horizon problem gave us a lower bound

for the finite horizon problem, but our first surprise was the discovery (at first numerically)

that the lower bound was so close to optimal. There was also something natural about the

upper bound for the finite horizon problem, though at first we argued it by contradiction.

The idea was that if we had a policy for finite horizon that was “too good”, then one should

be able to concatenate that policy to give a policy for the infinite horizon problem that

would do better than our known optimal policy. The resulting contradiction would then

provide an upper bound.

This three-step process would seem to be applicable to many problems of optimal selection,

though, from the details of our proof, it is clear that special features must be exploited. For

example, without obtaining four relations in Lemma 4.5, we would not have been able to

solve the infinite horizon problem. Three of these relations were straightforward, but the

critical fourth relation still seems “lucky.” We are also fortunate that symmetry relations

simplified our Bellman equations. These simplifications have an intuitive basis from the

80



alternating nature of the problem, but it seems fortuitous that these relations could be

made rigorous by inductions (of several kinds) on the Bellman equation.

There are many problems where one would like to go from the infinite horizon problem to the

finite horizon problem, but one especially attractive is that of the optimal on-line selection

of a monotone subsequence from a sample of independent observations. Here one knows

the asymptotic behavior of the means for both finite samples Samuels and Steele (1981)

and random samples — including geometric sized samples — (Gnedin 1999; 2000). Most

notably, in the infinite horizon case one has a precise understanding of the variance and

even a central limit theorem (Bruss and Delbaen 2001; 2004). It would be quite interesting

to know if such an analogous CLT can be obtained under the finite horizon formulation.
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CHAPTER 5 : Optimal Hiring and Retention Policies for Heterogeneous Workers

who Learn

Workers are heterogeneous, and they evolve over time. Evolution often takes the form of

on-the-job learning, with attendant decreases in the time required to complete tasks or

improvements in quality. When employees turn over (quit) or are terminated they may be

replaced by new hires who differ in ability and experience.

Often there may be uncertainty regarding employee attributes. Significant random varia-

tions in task times or quality – driven by task-by-task variability – can make it difficult for

an employer to infer a given employee’s efficiency or quality, particularly for new employees

who have little or no previous track record.

Uncertainty, together with these many sources of variation – across employees, across tasks,

and over time – makes decisions regarding the retention of workers complex. The longer

a worker is retained, the better an inference an employer can make regarding his or her

attributes. On-the-job learning, which can lead to quality improvements in incumbent

employees, also favors employee retention. Yet the opportunity cost of retaining a poor

performer can be great, particularly if there is wide variation in quality across the population

of potential hires.

In this chapter, we develop and analyze a model that integrates all of these factors. In

our model, an employer (referred to as “she”) seeks to hire and retain a fixed number of

employees from an infinite, heterogeneous population of potential hires. Each employee

(referred to as “he”) repeatedly performs the same task, whose cost the employer wishes

to minimize or, equivalently, whose quality is to be maximized. Each hire moves down a

learning curve, but elements of the curve’s parameters are unknown to the employer. The

This chapter is written under the supervision of Prof. Noah Gans. The results presented here are also
in a joint research paper with Stephen E. Chick and Noah Gans.
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employer takes a Bayesian view of employees’ types. By repeatedly observing the task

performance of a given worker, she can make increasingly better judgments concerning his

quality. After each such task, the employee decides whether he wants to continue working

or not. Given that the worker decides to stay, the employer can decide whether to retain

him or to replace him with a new hire. Each of these decisions has a cost for the employer.

A quitting cost is incurred when a worker quits, a switching cost is incurred when a worker

is terminated, and a training cost is incurred for each newly hired employee.

We formulate this problem as an infinite-horizon, discounted problem in which, at any time,

the employer uses a single worker. We show that this problem is, essentially, a multi-armed

bandit problem with switching costs and an infinite number of arms. (See, e.g. Gittins

1989; Banks and Sundaram 1992; Bergemann and Välimäki 2001; Sundaram 2005.) In our

Bayesian setting, we prove that several classical bandit results hold in our case as well.

• The employer can use a worker’s prior distribution and tenure to calculate a so-called

Gittins index, and at any time it is optimal for the employer to use a Gittins-index

minimal employee.

• It is optimal to retain current employees as long as their Gittins indices compare

favorably to those of potential hires.

• If a current employee’s Gittins index is not minimal, however, then it is optimal to

hire a new worker and to never return to the current employee.

This last property is known as “no-recall” and is particularly interesting from an application

perspective. Farias and Madan (2011) study bandits that do not recall, or equivalently that

are irrevocable.

We also indicate how these Gittins-index results extend to more complex settings: those

in which the employer retains multiple employees as well as those in which she hires from

multiple, heterogeneous pools of potential hires. In both cases our original results regarding
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“no-recall” properties generalize directly.

Given the availability of a Gittins index, the above policy is both intuitive and straight-

forward to execute. Unfortunately, the Gittins index is difficult to calculate. Nevertheless,

for specific common forms of the learning-curve function, and when performance can be

appropriately transformed into normally-distributed data with known sampling variances

and unknown means (with a conjugate prior distribution), we:

• show that, for a fixed level of experience, the Gittins index is monotone in the posterior

mean of the unknown parameter, which allows us to delineate a simple stopping

boundary, below which a current worker’s employment should continue and above

which it should stop;

• develop approximations to the Gittins index that are straightforward to calculate and

implement.

These approximations are the basis for numerical examples in that provide insights into

the economic nature of the hiring and retention problem. In particular, we:

• demonstrate that the stopping boundary reflects a tradeoff between two types of learn-

ing: the performance improvement that is linked to an employee’s on-the-job experi-

ence, and the statistical learning that allows the employer to make better judgments

concerning a worker’s ability;

• show that the value of active monitoring and screening of employees can be substantial;

• observe that the early stages of workers’ tenures are the most important for the effec-

tiveness of the optimal Gittins-index policy;

• suggest that simple hiring policies with a trial period followed by a one-shot hiring

and retention decision have the potential to perform well, within a few percent of the

optimal Gittins-index policy.
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Sensitivity analysis with respect to model parameters provides further insights. In addition

to direct gains that accrue from steeper learning curves, investments in employee learning

can provide an important secondary benefit: the optimality of lower termination rates.

Reductions in the variability of task performance can improve the sensitivity of screen-

ing procedures and similarly reduce optimal termination rates. The ability to terminate

employees should motivate managers to consider a broader spectrum of potential hires.

5.1. Literature review

There is a vast empirical literature on learning-curve phenomena (Yelle, 1979), as well as

papers devoted to effective managerial control of factors that affect or depend on learning

(Dada and Srikanth, 1990; Wiersma, 2007). Much of it is segmented into the individual (e.g.,

Nembhard and Uzumeri, 2000a; Nembhard, 2001) and organizational levels (e.g., Bailey,

1989; Lapré et al., 2000; Pisano et al., 2001). Nembhard and Uzumeri (2000b) provide a

unified study that considers both of them. Our analysis focuses on the individual level.

There also exists a rich literature that addresses labor quality and selection. The literature

on secretary problems develops a normative approach to the initial screening and hiring

of employees who come from a heterogeneous pool (Freeman, 1983). Similarly, there is

work on multi-armed bandit problems that addresses matching problems in labor-markets:

typically, problems in which employees choose firms (Jovanovic, 1979; Banks and Sundaram,

1992; Sundaram, 2005). In our context this work can be reinterpreted as addressing firms

choosing employees.

The literature that explicitly addresses both worker heterogeneity and learning is much

smaller. Most closely related to our work is Nagypál (2007), which models both learning-

about-match-quality (between workers and a firm) and learning-by-doing. That paper’s

aims and results differ significantly from ours. Its model and analysis enable the use of

statistical methods to discriminate between the two forms of learning in empirical employ-

ment records. We focus on model-based, and normative insights into the nature of effective
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retention/termination decisions.

A few recent papers in operations-related fields also address dimensions of heterogeneity

in learning and employee retention. Shafer et al. (2001) provide empirical evidence of the

heterogeneity of learning curves across individuals who assemble car radios. Pisano et al.

(2001) document heterogeneity across hospital units that perform cardiac surgery. Gans

et al. (2010) show that the service times of call-center agents reflect on-the-job learning, as

well as agent heterogeneity. Mazzola and McCardle (1996, 1997) develop models to estimate

uncertain learning curves and to control production run lengths, given that a firm faces this

uncertainty. None of these papers considers uncertainty regarding learning curves across

individuals or groups, however. Neither do they address employee turnover or employee

retention decisions.

Shafer et al. (2001) consider individual learning curves and show that, by not considering

learning-parameter variations across workers, one may significantly underestimate overall

productivity, given workers who operate independently. Nembhard and Osothsilp (2002)

show how task complexity affects the distribution of individual learning and forgetting

parameters.

The managerial implications of learning have received less attention. Nembhard (2001)

is the first to propose a method that assigns workers to tasks based on learning rates of

individuals, considers forgetting as well as learning, and offers heuristics for managers. Our

work differs in that we derive optimal policies and our numerical experiments use somewhat

different learning curves.

Pinker and Shumsky (2000), Gans and Zhou (2002) and Whitt (2006) study learning with

respect to the operations management/human resource management (OM/HRM) interface.

Their work does not take into account worker heterogeneity. Gans et al. (2003) and Aksin

et al. (2007) are recent surveys that include discussion of learning and HRM in the call-center

industry. Gaimon (1997) and Carillo and Gaimon (2000) study the importance of learning
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when new technologies are introduced. Gaimon et al. (2011) use mathematical models and

empirical data to assess learning-before-doing, which can be modeled as training costs in our

analysis, and learning-by-doing, which is modeled by learning curves. Goldberg and Touw

(2003) consider statistical inference of learning curve parameters in a managerial context.

5.2. The Hiring and Retention Problem with One Employee

In this section, we define the problem of an employer who requires the services of a single

worker and who, at each discrete period of time, decides whether to retain the current

employee or to terminate him and hire someone else from an infinite pool of workers. The

assumption that there exists an infinite pool of potential hires is appropriate in so-called

“employers’ markets,” in which the potential workforce is sufficiently large that workers

who quit need not be considered again. Section 5.4 explores the employment of multiple

hires, as well as the presence of several, heterogeneous pools of workers.

At each time t = 0, 1, 2, . . . the employer requires the service of a single employee, i, drawn

from an infinite pool of potential workers, St; S0 represents the initial pool from which

the employer can draw. If employee i quits at time t then he is removed from the pool of

potential hires and St+1 = St\{i}. We let π(t) = i ∈ St denote the employer’s choice of

employee i at time t and define π = {π(0), π(1), . . .} to be a hiring and retention policy that

specifies which workers the employer engages over time.

The performance of potential workers is uncertain and evolving over time. If worker i ∈ St

is employed at time t, then his performance is defined by the relation

Zi,t = g(θi, ni,t, εi,t), (5.1)

where θi ∈ Ω is a vector of parameters that reflects worker i’s ability, ni,t = 0, 1, 2, . . .

reflects his experience to date, εi,t is a noise term with support E , and g(·) is a deterministic

function of its arguments. We denote the realization of Zi,t by zi,t. For θi = (ai, bi), Yelle
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(1979) describes the following commonly-used form:

Zi,t = exp (ai + bi ln(ni,t + 1) + εi,t) , ni,t = 0, 1, 2, . . . . (5.2)

Here, ai is a parameter that determines a base-level of performance and bi < 0 describes

the rate of learning. If Zi,t were task time, then ai and bi would be scaled in the logarithm

of the time unit.

The structural results concerning optimal policies, in Section 5.3, require only the general

functional form (5.1), together with some technical assumptions. Furthermore, the function

g(·) is quite general and, in addition to learning, might reflect the effect of other factors

such as fatigue. While our analysis does hinge on a single measure of performance, the

representation of an outcome, Zi,t, can be generalized to explicitly represent multiple di-

mensions (such as revenue, cost, quality) that are aggregated into a single score by using a

functional. Section 5.5, in which we develop methods for explicitly calculating the stopping

boundaries necessary to implement optimal policies, assumes a more specific form of Zi,t,

such as that given by (5.2).

At the end of a given period, after his performance, the current employee notifies the

employer of his intention to continue working or to leave. So, we associate with each

worker a sequence of Bernoulli leaving decisions, Li = (Li,0, Li,1, Li,2, . . .), indexed only by

experience, such that worker i leaves or quits at the end of period t, after his (ni,t + 1)st

performance if and only if Li,0 = Li,1 = · · · = Li,ni,t−1 = 0 and Li,ni,t = 1. We denote the

realization of Li and Li,ni,t by `i and `i,ni,t respectively. For any hiring policy π and for

each worker i ∈ S0, we let

Λi(π) =
∞∑
t=0

1(π(t) = i) (5.3)

be i’s working lifetime: the number of periods he is employed. In turn, we define worker i’s
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quitting probability, qi,n, to be

qi,n = P (Li,n = 1|Λi(π) ≥ n+ 1) , (5.4)

and call 1− qi,n worker i’s continuation probability.

For t ≥ 0, let Hi,t = {(zπ(s),s, `π(s),nπ(s),s
) : π(s) = i, s ≤ t} (Hi,0 = ∅) denote worker i’s

employment history up to time t. The quitting probability of an employee with experience

ni,t, qi,ni,t , may depend on Hi,t and on his ability θi, but it is assumed to be independent

of the employer’s hiring policy, π:

P (Li,n = 1|Λi(π) ≥ n+ 1) = P
(
Li,n = 1|Λi(π′) ≥ n+ 1

)
for all π 6= π′ and all i, n.

This independence assumption is restrictive, and it is not difficult to imagine how employee

turnover decisions may be influenced by the employer’s retention (and compensation) poli-

cies. For example, by paying better performers more, the employer could provide an incen-

tive for employee turnover patterns to change in a manner that is favorable to her. The

inclusion of these types of incentives and responses extends the analysis of the employer’s

hiring and retention problem from the realm of single-decision-maker optimization problems

to that of stochastic games and is beyond the focus of our current work. Nevertheless, the

strategic interaction of employer and employees is both interesting and important, and we

will briefly return to this issue in the numerical results of Section 5.6.

The employer does not know each employee’s θi or `i in advance. Rather, she believes that

there exists a random vector, Θ, that reflects the distribution of abilities in the population

of potential workers, and a random set of leaving decisions, L. The distributions for Θ and

L can be estimated using historical data and statistical techniques.

Each time the employer hires a new worker, she views that worker’s Θi and Li as iid samples

from the population distributions. At time t = 0 all potential workers, i ∈ S0, have the
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same history, Hi,0 = ∅, the same prior distribution for Θi, νi,0 ≡ ν̂, and no prior experience

so that ni,t ≡ 0. Thus, at time t = 0, the employer is indifferent among her choices.

At any time t > 0, each worker, i, has cumulative experience ni,t, and the employer uses

i’s employment history, Hi,t, to update her beliefs concerning the distribution of the pa-

rameter Θi. We denote the posterior distribution that describes the employer’s uncertainty

concerning Θi at time t as νi,t(X) = P (Θi ∈ X|Hi,t), where X ⊆ Ω is any Borel set. For

Θi ∼ νi,t we let Zi,t ≡ Z(νi,t, ni,t), and for {Θi = θi}, we assume that worker i’s perfor-

mance {Z(νi,t, ni,t) |θi} has density ξni,t(z |θi). If worker i is employed at time t, then his

experience, ni,t, increases deterministically by one, and ni,t+1 = ni,t + 1. Moreover, the em-

ployer updates her belief concerning i’ ability distribution according to Bayes’ rule. If P(Ω)

is the set of all probability measures, ν, on Ω, then the Bayes operator β : P(Ω)×R→ P(Ω)

is defined as

β(νi,t, z)(X) =

∫
X ξni,t(z|θ) dνi,t∫
Ω ξni,t(z|θ) dνi,t

= νi,t+1(X), (5.5)

for each Borel subset X ⊆ Ω. Thus for any given observation, z, the Bayes operator maps

the prior distribution, νi,t, to its posterior distribution, νi,t+1.

Within each period, t, the employer incurs a task-related cost that is driven by the selected

employee’s performance, c(zi,t). We assume that c(z) is continuous and nondecreasing in z,

which reflects an efficiency-based measure of employee performance. Because the employer

does not know employees’ true abilities, in each period she uses her belief concerning the

distribution of the current employee’s ability, νi,t, to estimate his expected task-related cost:

E[c (Z(νi,t, ni,t))] =

∫
Ω

(∫
E
c (g(θ, ni,t, x)) ξni,t(g(θ, ni,t, x) |θ) dx

)
dνi,t. (5.6)

The employer also incurs costs that are specific to the hiring and retention policy she is

implementing. If, at the start of a period, the employer hires a new employee, she incurs

an initial hiring (or training) cost, ch. If, at the end of a period, the employee quits, the

employer bears a quitting cost, cq, that includes potential separation costs and the cost of
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recruiting a replacement. If the employee does not quit, then the employer may decide to

terminate him and switch to a different worker, in which case she bears a switching cost, cs.

Training, switching and quitting costs are assumed to be nonnegative. To properly account

for switching and quitting costs, we introduce for each worker i and each time t a switching

indicator, ui,t, such that if policy π employs worker i over several, disjoint, time periods,

then the index ui,t switches between 0 and 1, and it equals one at every time t such that

worker i was not employed at t − 1. Formally, we set ui,0 = 1 for all i ∈ S0 and for t ≥ 1

we let

ui,t =


0 if π(t− 1) = i

1 if π(t− 1) 6= i.

When {ui,t−1 : i ∈ S0} 6= {ui,t : i ∈ S0}, the workers employed at time t − 1 and at time t

differ, and the employer needs to incur the switching or quitting cost for the worker that

was employed at time t− 1.

For any time τ ≥ 0 and any set of prior distributions, experiences and switching indices,

(ν,n,u) = {(νi,τ , ni,τ , ui,τ ) : i ∈ S0}, the infinite-horizon total expected discounted cost of

any hiring and retention policy, π, from time τ onwards is

Cτπ(ν,n,u) = E
[ ∞∑
t=τ

γt
{

ch1(nπ(t),t = 0) + c
(
Z(νπ(t),t, nπ(t),t)

)
(5.7)

+csuπ(t),t1(π(t− 1) ∈ St ∩ t > 0)

+cquπ(t),t1(π(t− 1) 6∈ St ∩ t > 0)

}]
, (5.8)

where the discount factor is γ ∈ [0, 1). We note that in each period, t, the employer

bears four possible sources of cost. The first, ch1(nπ(t),t = 0), is the hiring and training

cost for a new worker, and it is incurred only once, at the beginning of employee π(t)’s

tenure. The second, c
(
Z(νπ(t),t, nπ(t),t)

)
, reflects employee π(t)’s task-related costs. The

third, csuπ(t),t1(π(t−1) ∈ St∩ t > 0), is the cost of switching to a different worker at time t,

should the previous employee be terminated. The fourth source of cost, cquπ(t),t1(π(t−1) 6∈
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St∩ t > 0), reflects the cost of switching to a different worker at time t, should the previous

employee quit. By observing that 1(π(t−1) ∈ St∩t > 0)+1(π(t−1) 6∈ St∩t > 0) = 1(t > 0),

we rewrite (5.7) as

Cτπ(ν,n,u) = −cs1(τ = 0) + E
[ ∞∑
t=τ

γt
{

ch1(nπ(t),t = 0) (5.9)

+c
(
Z(νπ(t),t, nπ(t),t)

)
+ csuπ(t),t

+(cq − cs)uπ(t),t1(π(t− 1) 6∈ St ∩ t > 0)

}]
.

In this new formulation, the switching cost, cs, is incurred any time the worker employed

at time t is different from that employed at time t− 1. The difference, cq − cs, then adjusts

the value of the switching cost if the worker employed at t − 1 has quit. The quantity,

−cs1(τ = 0), outside the expectation compensates for the switching cost incurred for the

first worker ever employed because ui,0 = 1 for all i ∈ S0.

We let Π denote the set of non-anticipating hiring policies, and we assume that the employer

seeks a policy π∗ ∈ Π that minimizes the expected discounted value of future employment

costs

π∗ = argminπ∈ΠC
0
π(ν,n,u). (5.10)

For the problem to be analytically tractable, we assume that the parameter space Ω is a

Borel subset of Rd, and we require that the single-period, task-related costs are uniformly

bounded, i.e. c (g(θ, n, x)) ∈ [Kinf ,Ksup] for each triple (θ, n, x) ∈ Ω × N × E . (See, e.g.

Sundaram 2005.)

5.3. Structure of the Optimal Policy

The hiring and retention problem can be formulated as a Bayesian bandit problem with an

infinite number of arms. Two elements of the problem complicate the analysis, however.

First, when an employee quits, the arm associated with him becomes unavailable. Second,

when the employer switches from one employee to another, she incurs the switching costs,
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cs, that cannot be attributed to a single employee. In characterizing the optimal hiring and

retention policy, we must address both of these difficulties.

5.3.1. Transformation to Problem with No Quitting

The fact that employees quit can be compensated for by transforming the problem with

quitting into one in which workers are always available. Rather than quitting, they become

unproductive, and their cost exceeds that of any productive worker. To do so we assume that

each employee, i ∈ S0, becomes unproductive at time t, after his (ni,t+1)st performance with

probability equal to qi,ni,t in (5.4). When employee i becomes unproductive at time t, his

ability distribution changes from νi,t to νi,t+1 = 1K where K ∈ (Ksup +ch+max{cq, cs},∞)

and c(Z(1K , n)) = K for every n. Once employee i has become unproductive, he will never

be able to go back to the productive state. The choice Ksup + ch + max{cq, cs} < K implies

that the cost of an unproductive worker exceeds the cost of any possible realization of any

productive worker, plus the largest cost of hiring a new worker. We then define the stopping

time

Λi = inf {ni,t ≥ 1 : c (Z(νi,t, ni,t)) = K} (5.11)

as the time at which employee i becomes unproductive. Because unproductive workers

cannot go back to the productive state, we set qi,k = 0 for all k > n when Λi = n, and we

modify the Bayes operator (5.5) as follows:

β(νi,t, z)(X) =


1K if νi,t = 1K∫
X ξni,t (z|θ) dνi,t∫
Ω ξni,t (z|θ) dνi,t

otherwise.
(5.12)

Call the original problem in (5.10), in which employees quit, Problem 1, and call the modified

problem, in which they become unproductive, Problem 2. The following lemma confirms

the fact that the problem with workers who become unproductive is analogous to that of

those who quit.

Lemma 5.1. (i) In Problem 2, any policy that employs unproductive workers is never
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optimal.

(ii) A policy is optimal for Problem 1 if and only if is optimal for Problem 2.

Proofs of these claims and of others below are found in Section 5.8.

Lemma 5.1 tells us that for for each policy π ∈ Π, employee i’s working lifetime Λi(π) in (5.3)

and the time at which employee i becomes unproductive (5.11) are closely related. In fact,

if employee i quits before he is terminated, then 1 + Λi(π) = Λi. Otherwise, 1 + Λi(π) < Λi.

Lemma 5.2. If E[Λi] < ∞ then any policy for Problem 1 uses an infinite number of

workers, a.s..

Thus, if each employee’s expected lifetime is finite, then the employer will end up hiring

an infinite stream of employees in Problem 1. Similarly, an employer who avoids using

employees who have become unproductive in Problem 2 will also use an infinite number of

employees if E[Λi] <∞.

5.3.2. Transformation to Problem with Retirement Option

We derive the optimal policy for Problem 2 by solving a family of stopping problems in

which, at each period, n, the employer chooses between employing a single worker, i ∈ S0,

or terminating all employment and paying a so-called “retirement” cost, m. Given that we

are considering an optimal stopping problem for a single employee, we drop the subscripts

for the employee index, i, and the time index, t.

This approach, called the retirement-option problem, was introduced by Whittle (1980) for

bandit problems with a finite number of arms and extended by Banks and Sundaram (1992)

and Sundaram (2005) to study infinite-armed bandit models. In our context, the employer’s

problem is an infinite-horizon, discounted Markov Decision Process with uniformly bounded

costs, a fact that implies that there exists an optimal hiring and retention policy that is

stationary and deterministic (Bertsekas and Shreve 1978, Prop. 9.8). The optimal value

A policy is stationary if, at any time t, the action it prescribes in a given state is independent of t. A
policy is deterministic if the action it prescribes is never randomized.
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function for the retirement-option approach satisfies the following Bellman equation:

V (ν, n, u,m) = min{m,HV (ν, n, u,m)} (5.13)

where

HV (ν, n, u,m) = csu+ ch1(n = 0) + E[c(Z(ν, n))]

+γ(1− qn)E[V (β(ν, Z(ν, n)), n+ 1, 0,m)]

+γqn [cq − cs + V (1K , n+ 1, 0,m)] . (5.14)

In words, at any decision time, the employer has the choice of retiring at cost m, or con-

tinuing the employment of the worker currently on trial. The expected discounted cost

of continuing, HV (ν, n, u,m), can be interpreted by looking at whether the employee is

productive (ν 6= 1K) or not (ν = 1K). If the employee is productive, then with probability

1− qn, he remains productive and β(ν, Z(ν, n)) =
∫
X ξn(z|θ) dν∫
Ω ξn(z|θ) dν

. With probability qn, he be-

comes unproductive and his ability distribution changes to 1K . If the employee is already

unproductive at n, then qn = 0, and the modified definition of the Bayes operator (5.12)

gives us β(1K , Z(1K , n)) = 1K .

Here, we restrict our attention to values of m such that m ≤ K/(1− γ), so that retiring is

attractive when ν = 1K . Then, (5.14) becomes

HV (ν, n, u,m) = csu+ ch1(n = 0) + E[c(Z(ν, n))]

+γ(1− qn)E[V (β(ν, Z(ν, n)), n+ 1, 0,m)]

+γqn [cq − cs +m] . (5.15)

If ν 6= 1K and the employee is productive at n, the last addend represents the cost difference

paid for an employee who has quit, cq − cs, plus the retirement cost for the employer, m.

The quantity HV (ν, n, u,m) hence represents the cost of employing a worker with ability
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distribution, ν, experience, n, and switching indicator, u, for at least one period, followed

by an optimal termination decision that depends on the retirement payment, m.

The stopping time

Λ̃(ν, n, u,m) = inf {r ≥ 1 : HV (νr, n+ r, ur,m) > m} (5.16)

is the time at which the employer chooses to retire, and {νr}r≥1 and {ur}r≥1 represent the

evolution of the ability distribution and the switching indicator after period n. For r = 0,

we set ν0 ≡ ν and u0 ≡ u.

Let Qn = {ω : Λ > n, Λ̃(ν, n, u,m) = Λ − n} be the set of sample paths for which a

productive worker with ability distribution, ν, experience, n, and switching indicator, u,

quits before he is terminated. Notice that, if a worker is already unproductive at n and

ν = 1K , then Λ ≤ n and therefore Qn = ∅. Then, we can write the expected discounted

cost of continuing (5.15) as

HV (ν, n, u,m) = E
[
csu+ ch1(n = 0) (5.17)

+

Λ̃(ν,n,u,m)−1∑
r=0

γrc(Z(νr, n+ r)) + γΛ̃(ν,n,u,m) {(cq − cs)1Qn +m}
]
.

This last representation and its properties will be crucial in the proofs of many of our

results.

Given the availability of the value function (5.13), we are interested in the value of m for

which the employer is indifferent between continuing to employ the current hire or retiring,

at cost m. We denote that value by the index

M(ν, n, u) = sup {m ∈ R : V (ν, n, u,m) = m} . (5.18)

This index is well-defined because the value function (5.13) is concave and non-decreasing
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in m, a fact that is stated and proved in Section 5.8.

5.3.3. Optimal Policy

When the employer switches from one employee to another she incurs a switching cost,

cs, that is not arm specific, a fact that makes the analysis delicate. In particular, if the

employer switches away from a given employee, i, and then returns to i at a later period,

she pays a switching cost that she would not have incurred had she continued to employee i

over contiguous periods. For this reason, the presence of switching costs can make so-called

index policies sub-optimal and make the optimal policy extremely difficult to characterize

(Banks and Sundaram, 1994; Jun, 2004).

To determine the optimal policy, we therefore proceed in two stages. First, we demonstrate

that index policies are optimal for the simpler case without switching costs: cs = 0. Then,

we use details of the optimal policy to show that, in fact, index policies continue to be

optimal when switching costs cs > 0 are introduced.

When cs = 0, the hiring and retention problem 2 is a simple variant of the infinite-arm

bandit problems analyzed by Banks and Sundaram (1992) and Sundaram (2005). In fact,

when cs = 0, the optimality equation (5.13) and the index (5.18) are constant with respect

to u and workers’ states can be reinterpreted as evolving independently of each other.

Theorem 5.3 below shows that, in this case, a hiring and retention policy is optimal if and

only if it always selects an employee with a minimal index (5.18). Its proof, in Section 5.8,

follows the arguments of Gittins and Jones (1974) and of Sundaram (2005).

Theorem 5.3 (Optimality of an Index Policy without Switching Costs). Assume that

cs = 0, and that νi,0 = ν̂, ni,0 = 0, and ui,0 = 1 for all i ∈ S0. A policy π∗ is optimal if and

only if

π∗(t) ∈
{
i ∈ S0 : Mi(νi,t, ni,t, ui,t) = inf

j∈S0

Mj(νj,t, nj,t, uj,t)

}
, a.s. for all t = 0, 1, 2, . . ..

Remark 5.4. When cs = 0, the assumption that all workers i ∈ S0 have ability distribution
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νi,0 ≡ ν̂, experience ni,0 = 0, and switching indicator ui,0 = 1 can be relaxed. In fact,

Theorem 5.3 also holds for any initial state (ν,n,u) such that there are infinitely many

workers i ∈ S0 with ability distribution νi,0, experience ni,0, and switching indicator ui,0

such that Mi(νi,0, ni,0, ui,0) = M(ν̂, 0, 1) (Sundaram, 2005, Theorem 4.1).

Theorem 5.3 generalizes to the case with cs > 0. The intuition behind the generalization

is that, if it is optimal to terminate a worker with switching indicator equal to 0, then it

is optimal never to employ the same worker again, even if his switching indicator changes

to 1. In our problem, this last claim holds because, at any time, there are infinitely many

identical workers who have never been employed. Without such availability, one could

construct counterexamples in which the index policy is not optimal (Banks and Sundaram,

1994).

Corollary 5.5 (Optimality of an Index Policy with Switching Costs). Assume that cs > 0

and that νi,0 = ν̂, ni,0 = 0, and ui,0 = 1 for all i ∈ S0. A policy π∗ is optimal if and only if

π∗(t) ∈
{
i ∈ S0 : Mi(νi,t, ni,t, ui,t) = inf

j∈S0

Mj(νj,t, nj,t, uj,t)

}
, a.s. for all t = 0, 1, 2, . . ..

Remark 5.6. For Corollary 5.5, we can also relax the assumption that all workers are

identical. The corollary still holds for any initial state (ν,n,u) such that there are infinitely

many workers i ∈ S0 with ability distribution νi,0, experience ni,0, and switching indicator

ui,0 such that Mi(νi,0, ni,0, ui,0) = M(ν̂, 0, 1), and infi∈S0 Mi(νi,t, ni,t, ui,t) = M(ν̂, 0, 1).

Given the structure of the optimal policy in Theorem 5.3 and Corollary 5.5, we can jus-

tifiably call (5.18) a Gittins index. Moreover, when the optimal policy is implemented,

Corollary 5.5 implies that there is often just one Gittins-index-minimal employee.

Corollary 5.7. Assume that νi,0 = ν̂, ni,0 = 0, and ui,0 = 1 for all i ∈ S0, and let

m̂ = M(ν̂, 0, 1) be the Gittins index of a worker who has not yet been tried. Then, at any

time, t, at most one worker, i, has Gittins index Mi(νi,t, ni,t, ui,t) < m̂.

Together Lemma 5.1 and Theorem 5.3 also imply the following useful “no-recall” property.
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Corollary 5.8 (“No-Recall” Property). Assume that νi,0 = ν̂, ni,0 = 0, and ui,0 = 1 for all

i ∈ S0, and let ti = inf{t : π∗(t) = i} be the first time worker i is employed. Then, under

an optimal Gittins-index policy π∗:

(i) Worker i is employed continuously for Λi(π
∗) periods; that is π∗(t) = i for all ti ≤ t <

ti + Λi(π
∗).

(ii) It is never optimal to employ worker i from time ti + Λi(π
∗) on; that is π∗(t) 6= i for

all t ≥ ti + Λi(π
∗).

Therefore, it is never optimal to employ a worker who was previously replaced, and we can

reinterpret the switching costs as costs that are due upon firing.

Under the optimal policy, the employer calculates the index for untried workers, m̂. Then

she chooses an employee, i, at random from the pool of untried employees, and after i’s

tth performance, she recalculates i’s Gittins index based on the posterior distribution νi,t.

If the new Gittins index has a value of m̂ or less, then it is optimal to retain the current

employee. If the updated Gittins index rises above m̂ then it is optimal to terminate him

and hire a new employee, at random, from the pool.

For an employer seeking to retain a single employee, the hiring and retention problem

decomposes into a sequence of iid optimal stopping problems: hire an employee from the

pool and retain him until he turns over or his Gittins index rises above m̂, whichever comes

first. Given the iid nature of the stopping problems, we can show that the Gittins index

of the untried workers is closely related to the total expected discounted cost under the

optimal policy.

Theorem 5.9. Assume that νi,0 = ν̂, ni,0 = 0, and ui,0 = 1 for all i ∈ S0, and let

m̂ = M(ν̂, 0, 1) be the Gittins index of a worker who has not yet been tried. If E[Λ1] < ∞

then m̂− cs = infπ∈ΠC
0
π(ν,n,u).

Theorem 5.9 is appealing because it links the expected total discounted cost under the
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optimal policy to the Gittins index. This type of result does not usually hold in a general

bandit setting. Here, it relies on the presence of infinitely many identical, untried workers

and on the “no-recall” property of the optimal policy described in Corollary 5.8. This allows

us to interpret our hiring process as a discounted renewal reward process in which the tenure

of every worker is the length of the renewal interval, and the cost of each worker throughout

his tenure is the reward. The renewal intervals as well as the rewards are iid. In Section 5.5,

we use Theorem 5.9 to estimate the expected discounted value of a Gittins-index policy.

5.4. Extensions: Multiple Parallel Workers and Different Pools

Sections 5.2 and 5.3 considered the problem of employing a single worker. We now consider

two extensions. Section 5.4.1 considers the problem in which distinct (infinite) pools of

heterogeneous workers are available. Section 5.4.2 considers an employer who wishes to

retain multiple employees who work in parallel. In both cases, the optimality of an index

rule is retained.

5.4.1. Heterogeneous Populations

When the employer faces a finite number of heterogeneous populations, her optimal hiring

and retention policy is the same as the one proposed in Corollary 5.5. (See also Remark

5.6.) For example, consider two infinite pools Sν0 and Sη0 , for which the untried workers

have common prior distributions ν̂ and η̂, with ν̂ 6= η̂. Let M(ν̂, 0, 1) and M(η̂, 0, 1) be

the indices of the untried workers in each pool. If M(ν̂, 0, 1) 6= M(η̂, 0, 1), then workers

belonging to the pool with larger index are never employed by an optimal policy. Otherwise,

if M(ν̂, 0, 1) = M(η̂, 0, 1), then the employer is indifferent between the two populations.

5.4.2. Hiring and Retention of Multiple Workers

Assume now that νi,0 = ν̂, ni,0 = 0, and ui,0 = 1 for all i ∈ S0, and consider the hiring

and retention problem in which the employer wishes to retain a fixed number, D, of people

working in parallel.
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One can partition the infinite pool of potential employees, S0, into D separate, countably

infinite pools, S1,0, . . . ,SD,0, of identical workers with common prior distribution, ν̂, no

experience, and common switching indicator equal to 1. When employee i in pool d quits

at time t, he is removed from that pool so that Sd,t+1 = Sd,t\{i}. Then, the infinite-horizon

total expected discounted cost is

C0,D
π (ν,n,u) = E

[ ∞∑
t=0

γt
D∑
d=1

(
ch1(nπd(t),t = 0) + c(Z(νπd(t),t, nπd(t),t, )) (5.19)

+ uπd(t),t1(t > 0)cs1(πd(t− 1) ∈ Sd,t)

+ uπd(t),t1(t > 0)cq1(πd(t− 1) 6∈ Sd,t)
)]
,

where πd(t) ∈ Sd,t identifies the index of the worker who is employed from pool d at

time t, νπd(t),t his ability distribution, nπd(t),t his experience, and uπd(t),t the value of his

switching indicator. By interchanging the sums in (5.19) one obtains C0,D
π (ν,n,u) =∑D

d=1C
0,d
π (ν,n,u), where C0,d

π (ν,n,u) is the dth position’s expected discounted cost, as

defined in (5.7). Thus, the D positions’ costs are separable so that the total expected

discounted cost is minimized when a Gittins-index minimal worker is employed in each

pool.

At any time, t, at which the employer seeks to hire a new worker for any of the D positions,

she can employ any untried worker who belongs to the pool of potential employees, St. This

result, due to Bergemann and Välimäki (2001), crucially depends on the assumption that

all workers have the same experience and ability distribution at time t = 0, so that the

artificial splitting of potential hires into D pools is possible.

We note that our analysis of multiple employees also hinges on the independence of the

outcomes of various employees’ tasks. In many settings, task outcomes may be correlated

across workers, however, and the optimality of an allocation index is no longer valid, as is

the case for other bandit problems with correlated arms. One potentially promising avenue

for addressing such correlations in future work is the knowledge gradient approach (Frazier
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et al., 2009).

5.5. Implementing the Optimal Policy

This section shows how analytic properties of the hiring and retention problem can be

combined with dynamic programming to enable the computation of the relevant Gittins

indices when performance has certain structural properties. As shown in Section 5.8, for

any given ν, n, u the value function, V (ν, n, u,m), is concave and nondecreasing in m.

Therefore, given ν, n, u a simple search scheme, such as bisection, can be used to find the

largest fixed point, M(ν, n, u), that defines the Gittins index.

Because our set of iid stopping problems allows us to focus on a single employee, we drop

the indices i and t as subscripts and let Zn = g(θ, n, εn). To calculate solution values, we

explicitly define the functional form of the (n + 1)st performance for a worker, Zn. We

assume that g(·) is invertible and that

g−1(Zn) = A+ h(n) + εn, n = 0, 1, 2, . . . , (5.20)

is a linear model where A determines an unknown base-level that may vary across workers,

h(n) is a known learning function, and εn is normally distributed noise with mean 0 and

known variance σ2.

Because A is unknown, the mean of the noise can be assumed to be zero without loss of

generality. We assume that the potential hire’s base level of performance, A, has initial

prior distribution, ν̂, that is normally distributed with mean µ̂ and variance σ̂2, N(µ̂, σ̂2).

The form in (5.20) implies another structural property that will be useful for computing the

Gittins indices of workers. The random variables g−1(Zn)− h(n) are normally distributed

with unknown mean A and variance σ2+σ̂2. By standard Bayesian analysis, ν, the posterior

distribution of A after observing n tasks, zn = (z0, z2, . . . , zn−1), is normal with

E[A | zn] =
µ̂(σ2/σ̂2) +

∑n−1
k=0(g−1(zk)− h(k))

n+ σ2/σ̂2
and Var[A | zn] =

σ̂2σ2

σ2 + nσ̂2
.
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Define p̂ = σ2/σ̂2, and let p = p̂ + n, where n is the number of samples observed for the

single-worker problem. Set yp = µ̂ p̂+
∑n−1

k=0(g−1(zk)− h(k)) and wp = yp/p. The posterior

distribution, ν, of A given zn is thus N(wp, σ
2/p). We can therefore describe (ν, n) by

(wp, p).

These assumptions are sufficient to guarantee that both the Bellman equation (5.13) and

the Gittins index (5.18) are monotone in the posterior mean of A, wp.

Proposition 5.10. For any given p, u, and m the value function V (wp, p, u,m) is nonde-

creasing in wp. For any given p, and u the Gittins index M(wp, p, u) is nondecreasing in

wp.

The monotonicity of the Gittins index with respect to wp allows us to concisely describe the

optimal policy. For each p = p̂+ n, there is a simple “stopping” boundary, b(p), such that

it is optimal to retain the employee (continue) if wp < b(p) and to terminate the employee

(stop) if wp > b(p).

Arlotto et al. (2010) provides more detail for how to use the above results to approximate

V and the stopping boundary, b, when (5.20) applies, the functions g and h are known and

finite for finite values of their arguments, the noise, εn, has zero mean and known sampling

variance, σ2, and the prior distribution for A is N(wp̂, σ
2/p̂), so that Proposition 5.10

applies. In summary, we use the common technique of approximating the evolution of

the posterior distribution as samples are observed, a Gaussian process, with the evolution

of the posterior distribution of a related trinomial process on a grid. We construct the

necessary grid of points in the (w, p) coordinate system, estimate the terminal conditions

(the period at which the dynamic programming backwards recursion starts, typically a

large number of periods in the future) using Monte Carlo simulation, perform a backward

recursion using a trinomial tree approximation on the grid of points to approximate both

V and the optimal stopping boundary for a given value of m, and then search for the value

of m that identifies the Gittins index. This process also identifies the optimal stopping

boundary that determines the optimal solution to the hiring and retention problem.
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The numerical results in Section 5.6 correspond to a learning function that sets g(z) = ez

and h(n) = b ln(n+ 1). This corresponds to (5.2) with a common learning parameter bi = b

and

ln(Zn) = A+ b ln(n+ 1) + εn, n = 0, 1, 2, . . . , (5.21)

where εn ∼ N(0, σ2). Here, (5.21) is consistent with empirical studies of various industries.

For example, Brown et al. (2005), Shen (2003), and Shen and Brown (2006) provide evidence

that handle times for call-centers are frequently lognormally distributed.

The above approach can be used to numerically evaluate other forms of h(·), and we have

also tested h(n) = b ln(1 +n/(n+ ζ1)) and h(n) = b ln(1 + min{n, ζ2}). While the details of

the stopping boundaries can change with the functional form, the qualitative conclusions

we reach from numerical tests with these functions are analogous to what we describe

below in Section 5.6. Similarly, we can define a as a common, known parameter and

g−1(Zn) = a + Bh(n) + εn to model pools of workers with a common base level of quality

and heterogeneous rate of learning. While the theoretical results described in Section 5.3

hold for even more complex settings, such as those with heterogeneous and unknown A and

B, the numerical approach here becomes more difficult. In particular, stopping boundaries

become multidimensional and monotonicity results, such as those described in Proposition

5.10, may not hold.

5.6. Numerical Examples and the Value of Screening

In this section, we use the methods described in Section 5.5 to calculate Gittins indices, as

well as associated optimal stopping boundaries, for several examples. We also use discrete

event simulation to estimate rates of termination and voluntary turnover. We compare the

performance of the optimal Gittins-index policy with that of other easily implementable

policies and demonstrate that an active hiring and retention policy reduces costs and im-

proves the pool of workers who are employed. We perform a sensitivity analysis with respect

to the key parameters of our model, and we conclude that increases in employee learning
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rates reduce costs, improve the pool of employed workers and lower termination rates.

Moreover, we observe that managers favor pools of potential workers with a broader set of

abilities.

5.6.1. Balancing Uncertainty and Learning Effects

The first example is loosely motivated by a call center. Each Zn represents the average

duration (in minutes) of the calls that an agent handles after n days of experience. We use

the log-linear learning curve model (5.21). The distribution of the base-level performance

parameter, A, has mean µ̂ = 0.90 and standard deviation σ̂ = 0.40, and the sampling

standard deviation in the daily average of the service times is σ = 0.80. This implies

an expected service time of untried agents of E[Z0] = 3.67. The annual discount rate is

10%, so the one-period discount rate is γ = 0.9996 (based on a year of 250 days), and

the cost function is linear, c(z) = cz, with unit cost c = 1. The training cost is ch = 30

which corresponds to the expected cost of employing untried workers for approximately 10

days (2 weeks). Termination and quitting costs are set equal to 0. (See Theorem 5.12,

below, in Section 5.6.3.) Learning is deterministic with rate b = ln(α)/ ln(250), where

α ∈ [0, 1] represents the amount of learning accrued in the first year of tenure so that

E[Z249] = αE[Z0]. Choosing α = 0.50, we obtain b = −0.1255.

For lack of real-world data concerning turnover behavior, and to focus our numerical results

on the effects of learning, we assume that the quitting probability qn is constant over time.

We let qn = 0.01 for all n, so (in the absence of termination) workers turn over, on average,

every 100 days.

Figure 2 displays the stopping boundary associated with the Gittins index for untried em-

ployees who, in this example, have m̂ = 5, 491.7. The left panel plots the stopping boundary

with respect to the posterior mean of A, and the solid line in the right panel plots the anal-

ogous stopping boundary with respect to the posterior mean of Zn. From Proposition 5.10,

we know that an employee whose posterior mean falls below these stopping boundaries has

105



Figure 2: Stopping boundaries for posterior mean of A (left) and for E[Zn] (right).
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a Gittins index below m̂ and should be retained, and one whose posterior mean falls above

the stopping boundary should be replaced by a new hire.

In the left panel, we see that the stopping boundary with respect to the posterior mean

of A has an interesting shape. The initial jump from the prior mean, µ̂ = 0.90, up to

1.27 is attributed to the elimination of the training cost, ch, which is incurred only on day

zero. Afterwards, the stopping boundary has a “cupped” shape for the first few periods of

an employee’s tenure. The dip reflects the effect of statistical learning on the part of the

employer. As more samples are collected, uncertainty about the “true” quality of the worker

decreases, and the employer can screen workers on the basis of a more informative prior

distribution. The subsequent climb reflects the gains the employee enjoys as on-the-job

experience makes even relatively poor-quality workers attractive candidates for retention.

In its right most reaches, the curve appears to increase to an asymptote involving a constant

minus h(n) (a phenomenon that was observed for other learning functions we tested).

The right panel shows the stopping boundary with respect to E[Zn]. Here, the stopping

boundary is unimodal, with a peak on day 1 due to the elimination of the day-zero training

cost, followed by a monotone decrease that is initially steep and that later flattens out.

Unlike the left panel, the right panel does not explicitly display a “dip” that reflects the
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Table 1: Optimal policy and employee retention.
(standard errors for the mean in parenthesis)

Day 1 Days 2 – 10 Days 11 – 20 Total
Terminated workers 0.0196 (.0006) 0.2830 (.0020) 0.0557 (.0010) 0.3982 (.0022)
Workers who quit 0.0102 (.0005) 0.0692 (.0011) 0.0539 (.0010) 0.6018 (.0022)

problem’s two conflicting forces, between the employer’s statistical learning and the employ-

ees’ learning by doing. Instead, after day 1, we find a monotonically decreasing stopping

boundary that requires a worker’s expected performance to keep improving over time. The

dashed line in both panels plots the prior mean, µ̂, (left) and the expected call times, E[Zn],

(right) for an “average” employee with base-level service time A = µ̂. The vertical distance

between the two curves is a measure of how much better or worse a “marginally retained”

employee is in comparison to an “average” employee. The presence of training costs induces

managers to retain workers who are worse than average.

The simulation results in Table 1 describe how the optimal policy affects employee retention.

The results are based on 50,000 trials of the single-worker optimal stopping problem, and

they show the fraction of workers who are terminated or quit within various time windows.

The policy terminates 39.82% of the employees: 1.96% of workers are terminated on day 1,

28.30% are terminated during periods 2 through 10, and 9.57% thereafter. Hence, much of

the termination occurs early on. Of course, termination rates vary significantly with training

costs. In Section 5.6.3, we present a sensitivity analysis that addresses this relationship.

5.6.2. How the Optimal Policy compares with Simpler Policies

This section compares the optimal policy with four families of alternative hiring policies.

In the first family, workers are never terminated, and they serve until they naturally turn

over. In the second, workers are monitored for a limited screening period, during which they

can be terminated after each day of performance. If retained at the end of the screening

period, they are never terminated. In Table 2, we report results for this type of policy

when the screening period is 5, 10 or 20 days long. The third family considers Gittins-index
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policies in which workers are screened and termination can occur every 5, 10 or 20 days of

performance. (Note that the optimal policy described in this paper is a Gittins-index policy

in which screening takes place each day.) Finally, the fourth family considers policies with a

trial period of a given length (1, 5, 10 or 20 days) within which workers are not terminated.

At the end of the trial period the employer decides whether to retain or terminate the

worker, and, if he is retained, he is not terminated until he turns over. In all cases, we use

optimal retain/terminate thresholds, given the details of the particular policy.

Table 2 reports infinite-horizon total expected discounted costs, termination rates, long-run

average service rates and the expected discounted number of monitored periods for each

policy. The results reported are obtained by simulating 1,000 trials with enough workers

to cover 50,000 time periods within each trial. We also report analogous simulation results

for the optimal policy and note that, because it is estimated via simulation, rather than

backward recursion, the Gittins index for this example varies slightly (within one standard

error) from that reported in Section 5.6.1.

The results in the second column of Table 2 show that the optimal policy we examined leads

to a substantial reduction in cost. For instance, the policy that does not screen employees

has a total expected discounted cost that is 10.41% higher than that of the optimal Gittins-

index policy. We already know from Table 1 that most termination in the optimal policy

occurs relatively early in employees’ tenure. It is not surprising then, that the policy that

screens workers in each of the first 20 days performs nearly as well as the optimal one.

Interestingly, the Gittins-index policy that screens workers every 5 days also performs close

to optimally. Thus, screening needs not to occur every period for a policy to be effective.

The results for “one-shot” at 5 and 10 periods also suggest that simple, one-shot retention

decisions have the potential to perform well, with average discounted costs within a few

percent of the optimal Gittins-index policy.
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For any hiring policy, π, its long-run average service rate is

µ(π)−1 = lim
T→∞

1

T

T∑
t=1

1

E[Zπ(t),t]
,

the long-run average number of calls that an agent handles per minute each day. Its nu-

merical values are reported in column four of Table 2, and they suggest that the optimal

Gittins-index policy leads to an overall improvement of employee performance. Moreover,

the quantity µ(π)−1 can then be used to obtain a rough estimate of the number of agents

needed for a given call volume. For instance, if we compare the optimal Gittins-index pol-

icy with the “never screen” policy, we see that the former requires, on average, 16.41%

fewer workers to maintain the same level of capacity. To more clearly understand this, con-

sider the hypothetical scenario in which a call center has an average load of 53.64 calls per

minute. With the optimal policy, this requires employing 53.64 / 0.6417 = 83.59 workers

– long-run average – to have a “fully-loaded” system. With the policy “never screen”, the

same “fully-loaded” system requires 53.64 / 0.5364 = 100 workers, and the optimal policy

employs 16.41% fewer workers.

The rightmost column of Table 2 counts the expected discounted number of periods in

which the employer monitors the performance of its employees. Naturally, the optimal

Gittins-index policy in which monitoring occurs every day is the most expensive along this

dimension. Interestingly, the policies “Screen 1-20” and “Gittins every 5” perform well

with respect to costs and require approximately one fourth of the monitoring effort on the

part of the employer. Thus, to the extent that monitoring is an expensive activity, the

nature of effective policies may change. While the explicit representation and optimization

of monitoring is beyond the scope of the current paper, it certainly merits future work.

5.6.3. Sensitivity analysis

This section examines how the optimal policy depends on four key parameters: employees’

learning rates; employer uncertainty regarding employee performance; task-by-task variabil-
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Figure 3: Stopping boundaries for different learning rates.

0 100 200 300 400 500 600 700 800 900
0.8

1

1.2

1.4

1.6

1.8

2

Actual number of samples (n)

St
op

pi
ng

 b
ou

nd
ar

y 
fo

r 
po

st
er

io
r 

m
ea

n 
of

 A

Analysis of heterogeneity in learning across workers
(s

0
=4.00, µ

0
=0.90, σ

0
=0.40, σ=0.80, c

h
=30)

 

 

b=−0.2511 b=−0.1255 b=−0.0521

0 100 200 300 400 500 600 700 800 900
1.5

2

2.5

3

3.5

4

4.5

5

Actual number of samples (n)

St
op

pi
ng

 b
ou

nd
ar

y 
fo

r 
E

[Z
n]

Analysis of heterogeneity in learning across workers
(s

0
=4.00, µ

0
=0.90, σ

0
=0.40, σ=0.80, c

h
=30)

 

 

b=−0.2511 b=−0.1255 b=−0.0521

Other parameters: µ̂ = 0.90, σ̂ = 0.40, σ = 0.80, ŝ = 4, ch = 30, cs = cq = 0.

ity; and training costs. The Gittins indices, turnover and termination rates reported in this

section are computed as in Section 5.6.1.

Learning rates.

Section 5.6.1 studied a pool of workers whose performance improves by 50% over the first

250-day year (b = −0.1255). Here, we compare this performance with that of fast-learning

workers who improve by 75% in the first one year (b = −0.2511), as well as that of slow-

learning workers who improve only by 25% in the same amount of time (b = −0.0521). All

other parameters are as in Section 5.6.1.

Figure 3 plots the stopping boundary with respect to the posterior mean of A (left) and with

respect to E[Zn] (right) in these new settings. In the left panel, we notice that the “cupped”

shape of the stopping boundary in the early stages of employment is more prominent for the

slow learners, and the set of their allowable posterior means is smaller. On the other hand,

the fast-learning workers immediately benefit from a tangible performance improvement in

their first few days so that the “cupped” part of the stopping boundary disappears. The

contribution of this experience-based learning is so high that the screening policy retains

workers with a broader set of posterior means. With a faster learning rate, every employee
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is faster for each level of experience, and one expects the stopping boundary with respect

to E[Zn] to decline. This is indeed the case and, in the right panel of Figure 3, we see that

the stopping boundary for fast-learning workers is the bottom one. A similar argument

explains why the stopping boundary for slow learners is the top one in the right panel.

To more clearly understand the effect of changes in employees’ learning, we also look at

the values of the Gittins index, at the fraction of terminated workers, and at the long-run

average service rate for these three b’s. Table 3 shows that the optimal retention policy for

pools of fast learners generates the smallest infinite-horizon expected-discounted cost, the

lowest fraction of terminated workers and the largest service rate. Conversely, slow learners

are the most expensive, have the highest termination rates and the lowest long-run average

service rates.

Table 3’s results suggest a potentially important, positive sequence of managerial impli-

cations. Improvements in on-the-job learning rates make employees with relatively poor

initial abilities quickly become attractive relative to untried employees, and it is optimal for

the employer to retain them. As a consequence, optimal termination rates decline. Thus,

improvements in on-the-job learning rates may allow the employer to enjoy a secondary

benefit of being able to retain a wider array of employees. Moreover, there is evidence from

the management literature that lower rates of termination may make a company a more

desirable place to work and improve its pool of potential hires (Huselid, 1995). Such an

employee response to changes in the employment policy is of potential interest. As noted

in the introduction, explicit treatment of the phenomenon would extend our analysis in to

the realm of stochastic games, however.

Remark 5.11. Empirical evidence in the learning literature shows that slower learners

can produce higher value in the long run (see, e.g., March, 1991; Uzumeri and Nembhard,

1998). In our model, this effect could be investigated by segmenting slow learners and fast

learners in two different populations. If the prior ability distribution in each population were

known, then the optimal policy would be as in Section 5.4.1 and only workers belonging to
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the population with better index would be employed. If the prior ability distributions were

unknown, however, one would need to construct a hierarchical model that goes beyond the

scopes of the current paper.

Variance of base-level performance in prior distribution.

We parameterize the employer’s uncertainty concerning the ability of untested workers using

the prior standard deviation of A, σ̂2. By varying σ̂ while holding σ constant, we can see

how the optimal screening policy changes with worker heterogeneity. Here, we analyze

three values of the prior standard deviation, 0.20, 0.40, and 0.80 (i.e., σ̂2 = 0.04, 0.36, 0.64

respectively), and we discuss how they affect our results. All other parameters remain

constant, as in Section 5.6.1.

Table 4 shows how the Gittins index, the fraction of terminated workers, and the long-run

average service rate change with σ̂2. The values obtained in the numerical example agree

with the general idea that the Gittins index reflects an option value inherent in the ability

to change arms, and it favors arms with more diffuse prior distributions. In our context this

implies that, for a given µ̂, an increase in the variation of ability across workers allows the

employer to screen more strictly, thereby increasing termination rates, retaining relatively

more capable employees, and lowering total costs.

Sampling variance.

We then perform a sensitivity analysis with respect to the sampling variance, σ2. The

analysis is similar to that for the prior variance, but here we keep σ̂ constant as we let σ

vary. The values of σ we consider are 0.60, 0.80, 1.00. The other parameters are fixed as in

Section 5.6.1.

Table 5 displays the increase in the Gittins index and the decrease in the long-run average

service rate as σ increases. It also indicates that, for lower σ, the fractions of employees who

are terminated are lower. Thus, reductions in within-period variability improve the selectiv-
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ity and effectiveness of screening procedures, allowing the employer to reduce termination

rates using the optimal policy.

Training costs.

Section 5.6.1 studied a setting in which every time a new worker is employed, the employer

incurs a training cost, ch = 30. Here we perform a sensitivity analysis that studies how

termination rates and total expected discounted costs vary with training costs. When

different values of training costs are considered, the stopping boundaries in Figure 2 change

as one would expect. The stopping boundary with respect to the posterior mean of A jumps

up as training costs increase, and it retains its peculiar “cupped” shape. Thus, the same

observations about two competing forces made in Section 5.6.1 hold here as well. Similarly,

an increase in training costs also produces an upward shift of the stopping boundary with

respect to E[Zn]. Naturally, when there are no training costs and ch = 0, the initial jump

disappears in both boundaries.

Table 6 shows how the Gittins indices, the fractions of terminated workers, and the long-run

average service rates change when ch = {0, 15, 30, 60}. It is interesting to note that when

training costs are absent, the screening process is very selective and terminates 58.49%

of employees on day 1 and 87.36% overall. As training costs enter into the problem, the

termination rates quickly drop, and the values of the Gittins indices and of the service rates

follow, naturally, the opposite trend.

Switching and quitting costs.

One would expect that changes in switching and quitting costs would similarly affect the

optimal policy. However, the theorem below shows that, when the quitting probabilities

are constant – so that qi,n = q for all n and for all i ∈ S0 – this is not the case.

To state the theorem we need to keep track of how the training, quitting and switching

costs affect the Gittins index. To that end, we modify our notation to account for these
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differences, letting M(ν, n, u, ch, cs, cq) be the Gittins index (5.18), and

m̂(ch, cs, cq) = M(ν̂, 0, 1, ch, cs, cq).

Theorem 5.12. Assume that νi,0 = ν̂, ni,0 = 0, and ui,0 = 1 for all i ∈ S0. Then, if the

quitting probabilities are constant, i.e. qi,n = q for all i ∈ S0 and all n,

Mi(νi,t, ni,t, ui,t, ch, cs, cq) < m̂(ch, cs, cq)

if and only if

Mi(νi,t, ni,t, ui,t, ch + cs, 0, 0) < m̂(ch + cs, 0, 0),

for all t ≥ 0.

Thus, if the hazard rate for quitting is constant for all employees at all times, then changes in

switching and quitting costs do not affect the relative ordering of workers’ Gittins indices. Of

course, the values of the Gittins indices change, as do the (analogous) expected discounted

costs of the problem. But because the relative orderings do not change, changes in the

switching and quitting costs do not affect the optimal policy, and we therefore do not

report a sensitivity analysis with respect to cs or cq.

When the quitting probabilities are not constant, the specifics of the optimal policy can

change with cs and cq. Nevertheless, the overall structure of the optimal policy does not

change. Theorem 5.3 and Corollary 5.5 hold for any quitting behavior qi,n as in (5.4).

5.7. Conclusions

This paper studies how statistical and on-the-job learning together determine the nature of

optimal hiring and retention decisions. Statistical learning arises when workers are hetero-

geneous and the employer does not know their true quality. On-the-job learning occurs as

experience affects workers’ performance.
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The literature related to this problem comes from various areas, such as labor economics,

statistical decision theory, learning-curve theory, and service operations, among others. Our

analysis of the hiring and retention problem integrates aspects from all of these streams and

adapts the classical Bayesian bandit setup to incorporate training, switching and quitting

dynamics. In addition to proving the optimality of an index policy, we show that a “no-

recall” property (Corollary 5.8) ensures that worker lifetimes and costs follow the iid pattern

of a discounted renewal reward process. The iid nature of such a sequence allows us to

express the optimal infinite-horizon total expected discounted cost as a function of the

Gittins index (Theorem 5.9).

Our numerical results show that active screening of employees can significantly improve ex-

pected costs and long-run average employee performance. Because most termination takes

place early in employees’ tenures, relatively simple finite-horizon and one-shot policies also

have the potential to perform well. Our sensitivity analysis shows that, as is common in

bandit problems, the ability to terminate employees should motivate managers to consider

a broader spectrum of potential hires. Moreover, both reductions in within-task variability

and improvements in employee learning provide the additional benefit of lowering termina-

tion rates.

5.8. Proofs of Mathematical Results

Proofs of mathematical claims are presented in the order of their appearance in the main

paper. (The statement “Proof of . . . ” is presented in bold face). When other technical

results are needed, they are stated with a full proof or suitable reference, in the location

that they are needed (the result is presented in standard typeface).

To simplify the exposition, we introduce the following shorthand. For any given initial

state, (ν,n,u), let Mi ≡ M(νi,0, ni,0, ui,0) denote the initial value of worker i’s index,

Λ̃i(m) ≡ Λ̃(νi,0, ni,0, ui,0,m) be the stopping time (5.16), HVi(m) ≡ HV (νi,0, ni,0, ui,0,m)

be i’s expected continuation cost (5.17), and Ci,t ≡ csui,t + ch1(ni,t = 0) + c (Z(νi,t, ni,t)) +
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(cq − cs)1(νπ(t−1),t = 1K ∩ t > 0) be worker i’s one-period cost for being employed at time

t.

Proof of Lemma 5.1.

For (i), let π be a hiring and retention policy for Problem 2 that employs unproductive

workers. Then, let T = inf{t : nπ(t),t ≥ Λπ(t)} to be the first time that such a worker is

employed. The one-period cost at time T for employing the unproductive worker π(T ) is

γTK. Construct a new policy πT such that πT (t) = π(t) for t < T , and πT (t) = π(t + 1)

for t ≥ T . For any initial state (ν,n,u) we have that

C0
π(ν,n,u) = −cs + E

[
T−1∑
t=0

γtCπ(t),t + γTK +
∞∑

t=T+1

γtCπ(t),t

]

C0
πT (ν,n,u) = −cs + E

[
T−1∑
t=0

γtCπ(t),t +

∞∑
t=T+1

γt−1Cπ(t),t

]
,

and

C0
πT (ν,n,u)− C0

π(ν,n,u) = E

[
(1− γ)

( ∞∑
t=T+1

γt−1Cπ(t),t

)
− γTK

]

< E

[
(1− γ)

( ∞∑
t=T+1

γt−1K

)
− γTK

]

= E
[
(1− γ)

γTK

1− γ
− γTK

]
= 0.

Thus, the infinite horizon total expected discounted cost of πT is strictly smaller than that

of π and π cannot be optimal.

For (ii) we begin with the if part. If: Let π∗ be optimal for Problem 2. Then by part (i)

of the lemma, policy π∗ employs no unproductive worker and, therefore, π∗ is feasible for

Problem 1. For any initial state (ν,n,u) and for any policy π feasible for Problem 1, we note

that π is also feasible for Problem 2, and we let C0
π,1(ν,n,u) and C0

π,2(ν,n,u) respectively

be the infinite-horizon total expected discounted cost of policy π in Problem 1 and 2 and
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we observe that C0
π,1(ν,n,u) = C0

π,2(ν,n,u). Because π∗ is optimal for Problem 2 and

feasible for Problem 1, we obtain that C0
π∗,1(ν,n,u) = C0

π∗,2(ν,n,u) ≤ C0
π,2(ν,n,u) =

C0
π,1(ν,n,u) for all π feasible for Problem 1. Hence, π∗ is also optimal for Problem 1.

Only if: Let π∗ be optimal for Problem 1. Then, any policy, π, that is feasible for Problem

1 is feasible for Problem 2, and C0
π,1(ν,n,u) = C0

π,2(ν,n,u). By part (i) of the Lemma, we

know that any policy π that is feasible for Problem 2 but not for Problem 1 cannot be op-

timal. Then, by optimality and feasibility we obtain that C0
π∗,2(ν,n,u) = C0

π∗,1(ν,n,u) ≤

C0
π,1(ν,n,u) = C0

π,2(ν,n,u), and policy π∗ is also optimal for Problem 2.

Proof of Lemma 5.2.

Suppose that π ∈ Π is a policy for Problem 1 and that E[Λi] < ∞ for all i ∈ S0. No

policy for Problem 1 can use an employee after he has quit. Thus, the random variable

Λi(π) in (5.3) satisfies 0 ≤ Λi(π) ≤ Λi on every sample path, for all i ∈ S0. Suppose, by

contradiction, that policy π ∈ Π only employs κ <∞ workers with some positive probability

ε > 0. Because π ∈ Π we have

P

(
κ∑
i=1

Λi(π) ≥ ζ

)
≥ ε (5.22)

for all ζ ∈ R. Given that 0 ≤ Λi(π) ≤ Λi and that the Λi’s are iid, Markov’s inequality

implies that P (
∑κ

i=1 Λi(π) ≥ ζ) ≤ P (
∑κ

i=1 Λi ≥ ζ) ≤ κE[Λ1]/ζ. Picking any ζ > κE[Λ1]/ε

would contradict (5.22) from which we conclude that π 6∈ Π. Hence, each policy for Prob-

lem 1 employs an infinite number of workers with probability 1.

Properties of the Value Function and of the Gittins Index.

Lemma 5.13. For each ν, n, and u, V (ν, n, u,m) is concave, non-decreasing and Lipschitz

continuous in m, with Lipschitz constant equal to 1.

Proof. We proceed by means of the Value Iteration Algorithm (see, e.g. Bertsekas and
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Shreve, 1978, Section 9.5, Definition 9.10 and Proposition 9.14). Let v0(ν, n, u,m) = 0 for

all m ∈ R, and notice that v0 is trivially nondecreasing, concave, and Lipschitz-1 continuous

in m for each ν, n, and u. Assume that vk−1(ν, n, u,m) is nondecreasing, concave, and

Lipschitz-1 continuous in m for each ν, n, and u. Let

vk(ν, n, u,m) = min

{
m, csu+ ch1(n = 0) + E[c(Z(ν, n))]

+ γ(1− qn)E[vk−1(β(ν, Z(ν, n)), n+ 1, 0,m)]

+ γqn

[
cq − cs + vk−1(1K , n+ 1, 0,m)

]}
,

and notice that csu + ch1(n = 0) + E[c(Z(ν, n))] is constant with respect to m, γ(1 −

qn)E[vk−1(β(ν, Z(ν, n)), n + 1, 0,m)] is nondecreasing, concave, and Lipschitz-γ(1 − qn)

continuous in m by the induction assumption and the fact that these properties are pre-

served when taking expectations.The induction assumption also yields that γqn
[
cq − cs +

vk−1(1K , n+1, 0,m)
]

is nondecreasing, concave, and Lipschitz-γqn continuous in m. Mono-

tonicity and concavity are preserved under minimization, so we have that vk(ν, n, u,m) is

nondecreasing and concave in m.

To obtain that vk(ν, n, u,m) is also Lipschitz-1 continuous in m the argument is similar, but

a little more care is required. Given two Lipschitz functions h, h′ with Lipschitz constants

c1, c2 respectively, min{h, h′} is Lipschitz with constant c3 = max{c1, c2}. In our context,

the left minimand is Lipschitz-1 continuous, and the right minimand is Lipschitz-γ contin-

uous, with γ < 1, so that vk(ν, n, u,m) is also Lipschitz-1 continuous in m. To conclude

our argument, we let k →∞ so vk(ν, n, u,m)→ V (ν, n, u,m).

Lemma 5.14. (i) HV (ν, n, u,m) < m if and only if M(ν, n, u) < m. (ii) HV (ν, n, u,m) >

m if and only if m < M(ν, n, u). (iii) HV (ν, n, u,m) = m if and only if m = M(ν, n, u).

Proof. We prove each of the three statements in turn. (i) If M(ν, n, u) < m then

V (ν, n, u,m) < m. In turn, V (ν, n, u,m) < m implies it is optimal not to retire so

HV (ν, n, u,m) = V (ν, n, u,m) < m. If HV (ν, n, u,m) < m, we have that HV (ν, n, u,m) =
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V (ν, n, u,m) < m. Then the fact that M(ν, n, u) < m follows by the definition of the Git-

tins index (5.18), M(ν, n, u), and the fact that the Bellman equation (5.13), V (ν, n, u,m), is

concave and non-decreasing in m with V (ν, n, u,m) ≤ m for all m. (ii) It follows directly

from the proof of (i) by reversing the inequalities. (iii) It follows combining claims (i)

and (ii).

Lemma 5.15. For each ν, and n M(ν, n, 0) ≤M(ν, n, 1).

Proof. Because cs ≥ 0 it is immediate to see that V (n, ν, 0,m) ≤ V (n, ν, 1,m) for each m.

Then, given the monotonicity property of the value function V (ν, n, u,m) in m for each

given n, ν, u (Lemma 5.13), we have that M(ν, n, 0) = sup{m : V (n, ν, 0,m) = m} ≤

sup{m : V (n, ν, 1,m) = m} = M(n, ν, 1).

Proof of Theorem 5.3

Given the initial state (ν,n,u) such that νi,0 ≡ ν̂, ni,0 ≡ 0, and ui,0 ≡ 1 for all i ∈ S0, we

have that all workers have index M(ν̂, 0, 1) ≡ m̂. Thus, at any time t there are at most t

workers who have been employed, so that there are at most t indices with values different

than m̂. Hence, for each t = 0, 1, 2, . . ., the infimum in Theorem 5.3 is attained and the

index policy described in Theorem 5.3 is well defined.

Recall that cs = 0 by hypothesis. Then, the optimality equation (5.13) and the expected

discounted cost of continuing (5.14) are constant with respect to u, i.e. V (ν, n, 0,m) =

V (ν, n, 1,m) and HV (ν, n, 0,m) = HV (ν, n, 1,m) for all ν, n,m. We also have M(ν, n, 0) =

M(ν, n, 1), and the value of the Gittins index of a given worker is independent from that of

other workers.

To prove Theorem 5.3, we now introduce some additional notation. We let π(j) be the

hiring and retention policy that begins by employing worker j and continues according to

the index rule. We also let π(i, j) be the policy that first employs worker i (with ability

distribution νi,0, experience ni,0, and switching indicator ui,0) as long as his Gittins index
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does not exceed its original value, M(νi,0, ni,0, ui,0). Policy π(i, j) then employs worker

j for at least one period, until j’s index exceeds the original value of worker i’s index,

M(νi,0, ni,0, ui,0). After employing worker i and j as described, policy π(i, j) continues

according to the index rule.

Lemmas 5.16-5.18 study the cost of the employment policies π(i, j), π(j, i), π(i), and π(j).

The lemmas hold for any initial state, (ν,n,u), such that there are infinitely many workers,

i, with νi,0 = ν̂, ni,0 = 0, and ui,0 = 1.

Lemma 5.16. If Mi = Mj then C0
π(i,j)(ν,n,u) = C0

π(j,i)(ν,n,u).

Proof. By construction, the infinite-horizon expected discounted cost of policy π(i, j) is

C0
π(i,j)(ν,n,u) = E

Λ̃i(Mi)−1∑
t=0

γtCi,t +

Λ̃i(Mi)+Λ̃j(Mi)−1∑
t=Λ̃i(Mi)

γtCj,t +
∞∑

t=Λ̃i(Mi)+Λ̃j(Mi)

γtCπ(t),t


= HVi(Mi) + E

[
γΛ̃i(Mi)

]{
−Mi +HVj(Mi)− E

[
γΛ̃j(Mi)

]
Mi

}
+ C

Λ̃i(Mi)+Λ̃j(Mi)

π(i,j) (ν ′,n′,u′) (5.23)

where C
Λ̃i(Mi)+Λ̃j(Mi)

π(i,j) (ν ′,n′,u′) is the expected discounted (to t = 0) continuation cost of

policy π(i, j) after having employed worker i for Λ̃i(Mi) periods, and worker j for Λ̃j(Mi)

periods. Because only workers i and j have been employed, the new state, (ν ′,n′,u′), differs

from (ν,n,u) only in its ith and jth coordinates. Similarly,

C0
π(j,i)(ν,n,u) = HVj(Mj) + E

[
γΛ̃j(Mj)

]{
−Mj +HVi(Mj)− E

[
γΛ̃i(Mj)

]
Mj

}
+ C

Λ̃j(Mj)+Λ̃i(Mj)

π(j,i) (ν ′,n′,u′).

Because Mi = Mj we have that, at time Λ̃i(Mi) + Λ̃j(Mi), the continuation costs

C
Λ̃i(Mi)+Λ̃j(Mi)

π(i,j) (ν ′,n′,u′) and C
Λ̃j(Mj)+Λ̃i(Mj)

π(j,i) (ν ′,n′,u′)

are equal. Moreover, we can use Lemma 5.14 to obtain that HVj(Mi) = Mi = HVi(Mi)
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and HVi(Mj) = Mj = HVj(Mj) so that

C0
π(i,j)(ν,n,u)− C0

π(j,i)(ν,n,u)

= Mi − E
[
γΛ̃i(Mi)

]
E
[
γΛ̃j(Mi)

]
Mi −Mi + E

[
γΛ̃j(Mi)

]
E
[
γΛ̃i(Mi)

]
Mi = 0,

as desired.

Lemma 5.17. If Mi = infkMk and Mi < Mj then C0
π(i,j)(ν,n,u) < C0

π(j)(ν,n,u).

Proof. Policy π(j) employs worker j for the first period and then continues according to the

index rule. After his first performance, worker j is retained as long as he is index minimal.

When worker j is terminated, Lemma 5.16, tells us that we can choose policy π(j) to employ

worker i, and continuing with the index rule. Thus,

C0
π(j)(ν,n,u) = HVj(Mi) + E

[
γΛ̃j(Mi)

]{
−Mi +HVi(Mi)− E

[
γΛ̃i(Mi)

]
Mi

}
+ C

Λ̃j(Mi)+Λ̃i(Mi)

π(j) (ν ′,n′,u′),

where C
Λ̃j(Mi)+Λ̃i(Mi)

π(j) (ν ′,n′,u′) is the expected discounted continuation cost of policy π(j)

after having employed worker j for Λ̃j(Mi) periods, and worker i for Λ̃i(Mi) periods. The

new state, (ν ′,n′,u′), differs from (ν,n,u) only in his jth and ith coordinates.

We now recall the representation (5.23) for the expected cost of policy π(i, j), and we observe

that the expected continuation costs C
Λ̃i(Mi)+Λ̃j(Mi)

π(i,j) (ν ′,n′,u′) and C
Λ̃j(Mi)+Λ̃i(Mi)

π(j) (ν ′,n′,u′)

are equal. From Lemma 5.14 we know that HVi(Mi) = Mi. Because Mi < Mj we also have

Mi < HVj(Mi). Then,

C0
π(i,j)(ν,n,u)− C0

π(j)(ν,n,u) = [Mi −HVj(Mi)]
(

1− E
[
γΛ̃i(Mi)

])
< 0,

as desired.

Lemma 5.18. If Mi = infkMk and Mi < Mj then C0
π(i)(ν,n,u) < C0

π(j)(ν,n,u).
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Proof. Because Mi = infkMk and Mi < Mj , Lemma 5.17 tells us that policy π(i, j) strictly

improves policy π(j). We now argue that π(i, j) can be improved by employing a Gittins

index minimal worker at all times. The first worker that is employed by policy π(i, j), i, is

Gittins index minimal. At his termination, the state of the system changes from the initial

(ν,n,u) to (ν ′,n′,u′), which differs only in the ith coordinate. After the employment of

worker i, policy π(i, j) prescribes the employment of worker j. Its continuation value then

equals that of policy π(j) when starting in state (ν ′,n′,u′). Lemma 5.17 then tells us that

if j is not Gittins index minimal at (ν ′,n′,u′) then, it is strictly better to use the policy

π(`, j) where worker ` is such that M` = infkMk, and M` < Mj . Iterating on this reasoning

we obtain that policy π(i), the index policy, is strictly better than any index policy in that

begins with a worker that is not index minimal.

We are now ready to complete the proof of Theorem 5.3.

Proof of Theorem 5.3. “If:” Let π be any employment policy and consider the policy πT

such that πT (t) = π(t) for all 0 ≤ t < T and πT (t) = π∗(t) for T ≤ t, where π∗ denotes the

index rule. At any time T the system is in state (ν ′,n′,u′) which is different from the initial

(ν,n,u) in at most T coordinates. Thus, there are infinitely many workers whose state has

never changed, and whose index equals m̂, so that policy πT is well defined. Because the

problem is discounted (γ < 1) and the one-period costs are uniformly bounded, we can

pick any ε > 0 and choose T so that C0
πT

(ν,n,u) − C0
π(ν,n,u) < ε. Then, according to

Lemma 5.18, we might improve policy πT by employing a Gittins-index minimal worker at

time T − 1. Thus C0
πT−1(ν,n,u) ≤ C0

πT
(ν,n,u) and also C0

πT−1(ν,n,u)−C0
π(ν,n,u) < ε.

Iterating back to T = 1 we have C0
π0(ν,n,u) − C0

π(ν,n,u) < ε, where π0 is the index

policy π∗. Because ε is arbitrary we then have C0
π0(ν,n,u) ≤ C0

π(ν,n,u). Because the

choice of policy π was also arbitrary, we can choose π to be any optimal policy so that

C0
π(ν,n,u) ≤ C0

π0(ν,n,u) ≤ C0
π(ν,n,u). Thus, the index policy π0 is optimal too.

“Only if:” Let π be an optimal policy, and assume that π is not an index policy. Let T be
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the first time at which π does not employ a Gittins-index minimal worker, and construct

the policy π̂ such that π̂(t) = π(t) for all 0 ≤ t ≤ T and π̂(t) = π∗(t) for all T < t, where, as

usual, π∗ denotes the index policy. Because both π and π∗ are optimal, policy π̂ is optimal

too. However, by Lemma 5.18 we can strictly improve on policy π̂ by selecting an index

minimal worker at time T , and by doing so we obtain that policies π̂ and π cannot be

optimal, a contradiction.

Proof of Corollary 5.5

To prove Corollary 5.5, let C0
π(ν,n,u, ch, cs) be the cost function (5.9) that makes explicit

the dependence on the training cost, ch, and on the switching cost cs. We know by Theorem

5.3 that C0
π(ν,n,u, ch, 0) is minimized if and only if π is an index policy. Similarly, the

same happens for C0
π(ν,n,u, cs + ch, 0) because we are just imposing a different training

cost, cs + ch. For all policy π ∈ Π, we then have that

C0
π∗(ν,n,u, cs + ch, 0) ≤ C0

π(ν,n,u, cs + ch, 0) ≤ cs + C0
π(ν,n,u, ch, cs). (5.24)

The first inequality holds by the optimality of policy π∗. The second inequality holds because

the switching cost, cs, is incurred every time the workers employed in two subsequent periods

differ (not only at the first employment of a new worker). The second inequality is met

with equality for all policies π that never recall previously employed workers.

“If:” We now show that if π is the index policy in Corollary 5.5, then cs + C0
π(ν,n,u)

achieves the lower bound (5.24). At time t = 0 all workers have the same index, m̂, and

the employer chooses a worker, i, at random from the pool. Worker i is then employed for

Λ̃i(m̂) periods, and his index Mi(νi,Λ̃i(m̂)
, n

i,Λ̃i(m̂)
, 0) > m̂. Because worker i is not index

minimal at time Λ̃i(m̂), another worker, j, is employed. This causes a transition of the state

of worker i, from (ν
i,Λ̃i(m̂)

, n
i,Λ̃i(m̂)

, 0) to (ν
i,Λ̃i(m̂)+1

, n
i,Λ̃i(m̂)+1

, 1), with ν
i,Λ̃i(m̂)

= ν
i,Λ̃i(m̂)+1

,

and n
i,Λ̃i(m̂)

= n
i,Λ̃i(m̂)+1

. By Lemma 5.15 we know that M(n, ν, 0) ≤ M(n, ν, 1) for each

ν, n. Because worker i in state (ν
i,Λ̃i(m̂)

, n
i,Λ̃i(m̂)

, 0) has index exceeding m̂, the same happens
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to worker i when in state (ν
i,Λ̃i(m̂)+1

, n
i,Λ̃i(m̂)+1

, 1).

Repeating this argument for all employed workers, we see that the transition of u from 0 to

1 only increases the indices of workers whose indices are greater than m̂ and, in turn does

not change the dynamics of the index policy which then agrees with the index policy, π∗,

used to achieve C0
π∗(ν,n,u, cs + ch, 0).

“Only if:” Assume that π is an optimal policy for C0
π(ν,n,u, ch, cs). From the “if” part of

the proof, we know that an optimal π satisfies

C0
π∗(ν,n,u, cs + ch, 0) = cs + C0

π(ν,n,u, ch, cs),

i.e. it achieves the lower bound (5.24). Then π is also an optimal policy for C0
π∗(ν,n,u),

and Theorem 5.3 tells us that π must be an index policy.

Proof of Corollary 5.7.

At t = 0, no worker has ever been employed and all the workers have Gittins index m̂.

Then, the sampling process starts with a random selection of worker, i, from the stationary

pool of candidates. Worker i is employed at all times, t, such that Mi(νi,t, ni,t, ui,t) =

infj{Mj(νj,t, nj,t, uj,t)} ≤ m̂. As soon as i is discarded, Mi(νi,t, ni,t, ui,t) > m̂ and the

sampling process starts again.

Proof of Corollary 5.8.

It follows immediately from Lemma 5.1 and Theorem 5.3.

Proof of Theorem 5.9.

Consider the retirement-option problem described in Section 5.3. By Lemma 5.14-(iii), we

obtain m̂ = HV (ν̂, 0, 1, m̂), and we note that HV (ν̂, 0, 1, m̂) is the total expected discounted

cost of employing a productive worker, i, with ability distribution, νi,0 = ν̂, experience

127



ni,0 = 0, and switching indicator ui,0 = 1 for at least one period followed by an optimal

termination decision that depends on the retirement payment m̂. Recall now the definition

of the optimal stopping time Λ̃(ν, n, u,m) in (5.16) and the stopping-time representation

for HV (ν, n, u,m) in (5.17). Thus

HV (ν̂, 0, 1, m̂) = E

cs + ch +

Λ̃(ν̂,0,1,m̂)−1∑
r=0

γrc(Z(νr, r)) + γΛ̃(ν̂,0,1,m̂) [(cq − cs)1Q0 + m̂]

 .
Because m̂ = HV (ν̂, 0, 1, m̂), we obtain

(
1− E

[
γΛ̃(ν̂,0,1,m̂)

])
m̂ (5.25)

= E

cs + ch +

Λ̃(ν̂,0,1,m̂)−1∑
r=0

γrc(Z(νr, r)) + γΛ̃(ν̂,0,1,m̂)(cq − cs)1Q0

 .

At time t = 0 all workers i ∈ S0 have ability distribution, νi,0 = ν̂, experience ni,0 = 0, and

switching indicator ui,0 = 1. Theorem 5.3 tells us that worker i can be optimally retained

at time t if and only if his Gittins-index is minimal, i.e. Mi(νi,t, ni,t, ui,t) ≤ m̂. Worker

i stops being employed at time Λ̃i(ν̂, 0, 1, m̂) either because he is terminated or he quits.

Because all workers i ∈ S0 are identical, the sequence {Λ̃i ≡ Λ̃i(ν̂, 0, 1, m̂), i = 1, 2, 3, . . .} is

iid. Set Λ̃0 ≡ 0, recall that Λi is the time at which worker i becomes unproductive, and let

Qi,0 = {ω : Λ̃i(ν̂, 0, 1, m̂) = Λi} be the set of sample paths for which worker i quits before
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he is terminated. Then,

cs + inf
π∈Π

C0
π(ν,n,u) = E

[ ∞∑
k=1

γ
∑k−1
i=0 Λ̃i

( Λ̃k−1∑
r=0

γr {(cs + ch)1(r = 0) + c (Z(νr, r))}

+ γΛ̃k(cq − cs)1Qk,0
)]

=

∞∑
k=1

E
[
γ
∑k−1
i=0 Λ̃i

]
E
[ Λ̃k−1∑
r=0

γr {(cs + ch)1(r = 0) + c (Z(νr, r))}

+ γΛ̃k(cq − cs)1Qk,0
]

= m̂
(

1− E
[
γΛ̃1

]) ∞∑
k=1

E
[
γ
∑k−1
j=0 Λ̃j

]
= m̂ (5.26)

where (5.26) follows from (5.25), and
∑∞

k=1 E
[
γ
∑k−1
j=0 Λ̃j

]
= 1 + E[γΛ̃1 ] + E[γΛ̃1 ]2 + . . . =(

1− E
[
γΛ̃1

])−1
.

Proof of Proposition 5.10.

We first prove the following lemma that uses the notion of a likelihood ratio order (Shaked

and Shanthikumar, 2007, Section 1.C). Suppose thatX is a random variable with probability

density function (pdf) fX and that Y is a random variable with pdf fY . We write X ≤lr Y

(X is stochastically smaller than Y in the likelihood ratio sense) if fY (z)/fX(z) increases

in z over the union of the supports of X and Y .

Lemma 5.19. Let g : R3 → R be such that for A ∼ ν, β(ν, z)([−∞, a]) = P (A ≤ a|Z = z)

is nondecreasing in z for any given ν. If, for any a ≤ a′, ξn(z|a′)/ξn(z|a) is nondecreasing

in z, then V (ν, n, u,m) ≤ V (ν ′, n, u,m), for any ν ≤lr ν
′, and for each given n, u,m.

The monotonicity of the Bayes operator ensures that the Bayesian update implies that larger

observations lead to stochastically larger posterior distributions in some sense. Notice also

that, for several well-known families of distributions, the likelihood ratio comparison can

be simply checked by comparing distribution parameters. Müller and Stoyan (2002, Table
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1.1) proposes such comparison criteria for several continuous and discrete distributions.

Proof of Lemma 5.19. To show monotonicity of the value function (5.13) with respect to

the likelihood ratio order, we proceed by means of the Value Iteration Algorithm (see, e.g.

Bertsekas and Shreve, 1978, Section 9.5, Definition 9.10 and Proposition 9.14). We fix n, u,

and m, and we let v0(ν, n, u,m) = 0 for all distributions ν. Trivially, we have that v0 is

lr-nondecreasing in ν. We then assume that vk−1(ν, n, u,m) ≤ vk−1(ν ′, n, u,m) for ν ≤lr ν
′,

and we write

vk(ν, n, u,m) = min{m, csu+ ch1(n = 0) + E[c(Z(ν, n))] (5.27)

+ γ(1− qn)E[vk−1(β(ν, Z(ν, n)), n+ 1, 0,m)]

+γqn[cq − cs + vk−1(1K , n+ 1, 0,m)]}.

In equation (5.27), we first notice that the quantity csu + ch1(n = 0) + γqn[cq − cs +

vk−1(1K , n+ 1, 0,m)] is independent, hence constant, with respect to ν and ν ′.

Because ξn(z|a′)/ξn(z|a) is nondecreasing in z for any a ≤ a′, the definition of the likelihood

ratio order yields that Z(a, n) ≤lr Z(a′, n). From Shaked and Shanthikumar (2007, Theorem

1.C.17) and the fact that ν ≤lr ν
′ we obtain that Z(ν, n) ≤lr Z(ν ′, n). We now also have that

E[Z(ν, n)] ≤ E[Z(ν ′, n)] because the likelihood ratio order (≤lr) implies the usual stochastic

order (≤st) (Shaked and Shanthikumar, 2007, Theorem 1.C.1).

Finally, by noting that Z(ν, n) ≤lr Z(ν ′, n) we obtain that

β(ν, Z(ν, n)) ≤lr β(ν, Z(ν ′, n)) ≤lr β(ν ′, Z(ν ′, n)).

The first ordering holds because β(ν, z) is nondecreasing in z (Shaked and Shanthiku-

mar, 2007, Theorem 1.C.8). The second ordering holds because ν ≤lr ν ′ (Shaked and

Shanthikumar, 2007, Example 1.C.58). Then, the induction assumption and the mono-

tonicity property of the expected value yield that E[vk−1(β(ν, Z(ν, n)), n + 1, 0,m)] ≤
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E[vk−1(β(ν ′, Z(ν ′, n)), n+ 1, 0,m)]. Thus, the right minimand in (5.27) is lr-nondecreasing

in ν. The first minimand, m, is constant with respect to ν, so that vk(ν, n, u,m) ≤

vk(ν ′, n, u,m), provided that ν ≤lr ν
′. Repeated application of the Value Iteration Al-

gorithm then yields V (ν, n, u,m) ≤ V (ν ′, n, u,m), for any ν ≤lr ν
′, as desired.

Proof of Proposition 5.10. The posterior distribution of A has distribution N(wp, σ
2/p).

The normal distribution has the monotone likelihood ratio property required by Lemma 5.19

(see, e.g. Müller and Stoyan, 2002, Table 1.1). An application of that lemma proves the

desired monotonicity for V .

For the Gittins index we have the following. Given ν ∼ N(wp, σ
2/p) and ν ′ ∼ N(w′p, σ

2/p)

with wp ≤ w′p, we have that ν ≤lr ν
′, so V (ν, n, u,m) ≤ V (ν ′, n, u,m) for any n, u, and m.

Then,

M(ν, n, u) = sup{m : V (ν, n, u,m) = m} ≤ sup{m : V (ν ′, n, u,m) = m} = M(ν ′, n, u),

as desired.

Proof of Theorem 5.12.

For each given ν, n, u and m, recall the definition of the stopping time Λ̃(ν, n, u,m) in

(5.16). Also, recall that Λi is the time at which i becomes unproductive, and let Qi,0 =

{ω : Λ̃i(ν̂, 0, 1, m̂) = Λi} be the set of sample paths for which worker i with state (ν̂, 0, 1)

quits before he is terminated. At time t = 0 all workers i ∈ S0 have νi,0 = ν̂, ni,0 = 0, and

ui,0 = 1. From the proof of Theorem 5.9 we know that the sequence {Λ̃i(ν̂, 0, 1, m̂), i =

1, 2, 3, . . .} is iid. The {Λi, i = 1, 2, 3, . . .} are also iid, so that the Qi,0’s are iid too.

Because qi,n = q for all i ∈ S0 and all n, the proof of this result hinges on showing that

E

Λ̃(ν̂,0,1,m̂)−1∑
r=0

γr+1q

 = E
[
γΛ̃(ν̂,0,1,m̂)

1Q0

]
, (5.28)
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which would imply that

E
[ Λ̃(ν̂,0,1,m̂)−1∑

r=0

γrc(Z(νr, r)) + γΛ̃(ν̂,0,1,m̂)(cq − cs)1Q0

]
(5.29)

= E

Λ̃(ν̂,0,1,m̂)−1∑
r=0

γr {c(Z(νr, r)) + γq(cq − cs)}

 .
This would give an alternative representation for C0

π∗(ν,n,u). Under the optimal employ-

ment policy

C0
π∗(ν,n,u)

= −cs + E
[ ∞∑
k=1

γ
∑k−1
i=0 Λ̃i

( Λ̃k−1∑
r=0

γr {(cs + ch)1(r = 0) + c (Z(νr, r))}+ γΛ̃k(cq − cs)1Qi,0
)]
,

where the Λ̃k ≡ Λ̃k(ν̂, 0, 1, m̂) for all k, Λ̃0 ≡ 0. Then, (5.29) allows us to write C0
π∗(ν,n,u)

as

C0
π∗(ν,n,u)

= −cs + E

 ∞∑
k=1

γ
∑k−1
i=0 Λ̃i

Λ̃k−1∑
r=0

γr {(cs + ch)1(r = 0) + c (Z(νr, r)) + γq(cq − cs)}


= −cs + inf

π∈Π

{
E
[ ∞∑
t=0

γt
{

(cs + ch)1(nπ(t),t = 0) + c
(
Z(νπ(t),t, nπ(t),t)

)
+ γq(cq − cs)

} ]}
.

The quantity γq(cq−cs) is a shifting constant that does not affect the minimization problem,

so we have

C0
π∗(ν,n,u) (5.30)

= −cs + inf
π∈Π

{
E
[ ∞∑
t=0

γt
{

(cs + ch)1(nπ(t),t = 0) + c
(
Z(νπ(t),t, nπ(t),t)

)} ]}
+
γq(cq − cs)

1− γ
.

The solution to the minimization problem on the right hand side is the same as the solution
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to that minimization problem if the training cost is cs + ch and the switching and quitting

costs are set equal to 0. As a consequence Mi(ni,t, νi,t, ui,t, ch, cs, cq) < m̂(ch, cs, cq) if and

only if Mi(ni,t, νi,t, ui,t, ch + cs, 0, 0) < m̂(ch + cs, 0, 0) for all t ≥ 0. To complete our

argument, we then need to prove (5.28). The left-hand side satisfies

E

Λ̃(ν̂,0,1,m̂)−1∑
r=0

γr+1q

 =

∞∑
r=1

γrqP(Λ̃(ν̂, 0, 1, m̂) ≥ r), (5.31)

and the right-hand side satisfies

E
[
γΛ̃(ν̂,0,1,m̂)

1Q0

]
= E

[
γΛ̃(ν̂,0,1,m̂)

1(Λ̃(ν̂, 0, 1, m̂) = Λ)
]

=
∞∑
r=1

γrP(Λ = r, Λ̃(ν̂, 0, 1, m̂) = r). (5.32)

By using the shorthand Λ̃ ≡ Λ̃(ν̂, 0, 1, m̂), recalling that Λ̃
d
= 1 + Λ(π∗), and using the

definition for the quitting probability, q, in (5.4) we have

qP(Λ̃ ≥ r) = P(Lr−1 = 1|Λ(π∗) ≥ r − 1)P(Λ̃ ≥ r)

= P(Lr−1 = 1|Λ̃ ≥ r)P(Λ̃ ≥ r)

= P(Lr−1 = 1, Λ̃ ≥ r),

where the last equality follows from the definition of conditional probability. Recall from

(5.11) that P(Lr−1 = 1, Λ̃ ≥ r) = P(Λ = r, Λ̃ ≥ r), and because Λ = r implies Λ̃ ≤ r we also

have P(Λ = r, Λ̃ ≥ r) = P(Λ = r, Λ̃ = r), which in turn implies qP(Λ̃ ≥ r) = P(Λ = r, Λ̃ = r),

just as needed in (5.31) and (5.32) to complete the proof of (5.28).
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