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breadth on mismatch costs, which arise from demand uncertainty, and we find that product line breadth has a
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ABSTRACT 

 

ECONOMETRIC ANALYSIS OF PRICING AND OPERATIONAL STRATEGIES 

Antonio Moreno-Garcia 

Christian Terwiesch 

 

This dissertation contains three essays. The first essay, entitled “Pricing and 

Production Flexibility: An Empirical Analysis of the U.S. Automotive Industry,” uses a 

detailed dataset of the U.S. auto industry to examine the relationship between 

production flexibility and responsive pricing. Our analysis shows that deploying 

production flexibility is associated with a reduction in observed discounts and with an 

increase in plant utilization. Our results allow quantifying some of the benefits of 

production flexibility. The second essay, entitled “An Empirical Analysis of Reputation in 

Online Service Marketplaces,” uses a detailed dataset from a leading online intermediary 

for software development services to empirically examine the role of reputation on 

choices and prices in service marketplaces. We find that buyers trade off reputation and 

price and are willing to accept higher bids posted by more reputable bidders. Sellers 

primarily use a superior reputation to increase their probability of being selected, as 

opposed to increasing their prices. Our analysis shows that the numerical reputation 

score has a smaller effect in situations where there exists a previous relationship 
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between buyer and seller, when the seller has certified his or her skills, when the seller is 

local, or in situations that prompt higher interpersonal trust. The third essay, entitled 

“The Effects of Product Line Breadth: Evidence from the Automotive Industry,” studies the 

effects of product line breadth on market shares and costs, using data from the U.S. 

automotive industry. Our results show a positive association between product line 

breadth and market share and production costs. Beyond the effects on production costs, 

we study the effect of product line breadth on mismatch costs, which arise from demand 

uncertainty, and we find that product line breadth has a substantial impact on average 

discounts and inventories. Our results also show that platform strategies can reduce 

production costs and that a broader product line can provide a hedge against changes in 

demand conditions. 
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Chapter 1 

Introduction 

This dissertation contains three independent essays that contribute to the 

empirical literature in operations and information management.  

The first essay, entitled “Pricing and Production Flexibility: An Empirical Analysis of 

the U.S. Automotive Industry,” examines the benefits of production flexibility in the 

automotive industry. Although the costs of deploying production flexibility are typically 

known to the firms, the benefits of flexibility are often more elusive. The main objective 

of this essay is to understand the interplay between pricing and production flexibility 

and to quantify the benefits of production flexibility. While there is a vast theoretical 

literature on production flexibility with endogenous pricing (e.g., Van Mieghem and 

Dada, 1999; Chod and Rudi, 2005; Goyal and Netessine, 2007), no previous work has 

empirically studied how flexibility affects prices. This essay combines several 

proprietary datasets of the U.S. automotive industry that provide production, sales and 

pricing information between 2002 and 2009. During this period, multiple vehicle models 

experienced changes in the flexibility with which they were manufactured (from 

inflexible to flexible or vice versa). This gives an identification strategy to examine the 

effect of flexibility. The analysis shows that deploying production flexibility is associated 

with reductions in observed discounts, as a result of an increased ability to match supply 

and demand. Under the market conditions observed between 2002 and 2009, flexibility 

accounts for average savings in discounts of $200 to $700 per vehicle. The deployment of 
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flexibility has effects on plant utilization, too. Jordan and Graves (1995) suggest a 

positive association between flexibility and capacity utilization when prices are 

exogenous. The ability to use responsive pricing does not alter this positive association, 

and the results empirically support the claim that the deployment of flexibility is 

associated with an increase in plant utilization (4% higher in the analyzed period).  

The second essay, entitled “An Empirical Analysis of Reputation in Online Service 

Marketplaces,” is concerned with a recent phenomenon of increasing economic 

importance. Technology has reduced the transaction costs associated with outsourcing 

tasks, and markets that match service buyers (firms or individuals who post work they 

would like to procure) and service sellers (firms or individuals who bid for the jobs 

posted by buyers) have proliferated. These markets have the potential to significantly 

affect the way service procurement is conducted, but they present novel challenges 

because buyers have little information about bidders and little control over their work, 

which leads to increased adverse selection and moral hazard problems, and to a higher 

uncertainty regarding the outcome of the collaboration. In this context, reputation 

systems are likely to play an important role in the service procurement process, but their 

impact in this setting has not been studied in the literature – unlike with product 

markets like eBay, where there has been extensive research (e.g., Bajari and Hortacsu 

2004). This essay uses a detailed dataset from a leading online intermediary for software 

development services to empirically study reputation in online service marketplaces and 

its effect on prices and market outcomes. The analysis shows that buyers trade off seller 

reputation and price and are willing to accept higher bids posted by more reputable 

bidders. Sellers increase their bids with their reputation score, but primarily use a 

superior reputation to increase their probability of being selected as opposed to 

increasing their price. The essay also studies how various variables moderate the 
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importance of the reputation score. The reputation score has a smaller effect in situations 

where there exists a previous relationship between buyer and seller, when the seller has 

certified his or her skills, when the seller is local, or in situations that prompt higher 

interpersonal trust.  

The third essay, entitled “The Effects of Product Line Breadth: Evidence from the 

Automotive Industry,” studies the effects of product line breadth in the U.S. automotive 

industry during the period 2002-2009. Theoretical models (e.g., Lancaster 1990) suggest 

that broader product lines should result in higher firm market shares and in higher 

production costs. However, as noted by Netessine and Taylor (2007), “empirical 

researchers have analyzed linkages between variety and production costs, but have 

arrived at contradicting conclusions.” This essay provides new evidence from the U.S. 

automotive industry, showing the effects of a broader product line on market shares and 

costs. The results suggest that one additional product in the line is associated with an 

increase of 0.1% in the market share of an automaker and with an increase of around 

$175 on the average production costs. In addition to providing evidence from a new 

industry to the literature on product line breadth, this essays attempts to bridge the gap 

between some theoretical notions that have been developed in the operations 

management and product development communities and the existing empirical 

literature on the effects of product line breadth. For example, Fisher (1997) discusses two 

types of costs in supply chains: physical costs are the costs of production, transportation 

and inventory storage, while market mediation costs arise “when supply exceeds demand 

and a product has to be marked down and sold at a loss or when supply falls short of 

demand, resulting in lost sales opportunities and dissatisfied customers.” The literature 

on product line breadth has focused on the first type of costs, but has not considered the 

second type, which are a consequence of demand uncertainty and can be generically 
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referred to as mismatch costs. In the automotive industry, mismatch costs can be 

observed in the form of discounts and inventories. The effects of product line breadth on 

mismatch costs are found to be substantial, with an additional product in the line being 

associated with an increase of around $100 in average discounts and with carrying three 

additional days of supply in the average inventory of the models offered by the firm. On 

the other hand, it has been suggested that product platforms (Robertson and Ulrich 

1998) allow offering a broad product line while controlling production and development 

costs. Consistent with this view, data from the U.S. automotive industry shows that 

using platform families decreases the production costs. Finally, the essay develops an 

attribute-based measure of product line breadth that captures the range of fuel economy 

levels offered by an automaker, and shows that automakers who offer a broader range 

of fuel economy levels increase their market share and reduce their average discounts as 

gas prices increase, suggesting that choosing the right type of product breadth can 

provide a hedge against changes in demand.  

While the three essays are independent and self-contained studies, each of them 

focusing on specific research questions, there are some common themes that are present 

in all of them, which broadly characterize the general contribution of this dissertation.  

One common theme is that these three essays study questions that can be 

broadly characterized as pertaining to operations strategy (Van Mieghem 2008). The first 

essay is concerned with the strategic decision of deploying manufacturing flexibility 

(Van Mieghem 2008, Chapter 5) and the upsides of this decision in terms of pricing 

power and increased resource utilization. The second essay is concerned with the 

strategic decision of sourcing (Van Mieghem 2008, Chapter 7). In the setting of the 

second essay, sourcing is done through an online marketplace, and the focus of the work 

is to understand how buyers weigh seller reputation in their procurement strategy. The 
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third essay is concerned with product line strategy and its effects on market shares and 

costs. The settings in which these questions are analyzed are complementary. Essays 1 

and 3 focus on a manufacturing setting (the automotive industry), while the second 

essay focuses on a service context (software development). 

 The second common theme that the three essays touch on is pricing. The first 

essay analyzes how the deployment of product mix flexibility affects pricing power. The 

second essay analyzes the tradeoffs made between price and reputation by buyers and 

sellers of services in an online marketplace. The third essay provides evidence on how 

product line breadth affects price discounts.  

A third common theme that is relevant to the three studies is the theme of 

flexibility. Flexibility is typically defined as the ability to adjust and respond to new 

information (Van Mieghem 2008), and it can take multiple forms. In the first essay, the 

main type of flexibility of concern is the ability to produce multiple products using the 

same resources. Firms can adjust to new conditions by adjusting their production mix 

and/or by using responsive pricing. The setting of the second essay could be 

characterized as one where workforce capacity is flexible. As opposed to maintaining a 

dedicated workforce, buyers can use online service marketplaces to tap into the global 

talent pool on an on-demand basis. On the other hand, there is flexibility on the seller 

side as well, since workers do not depend on a particular employer and can decide when 

to work. In the third essay, we consider a specific type of shock to which companies may 

want to adjust: changes in gas prices that change the relative demand for different 

products. Firms can respond to those changes by changing the production mix (as in 

Essay 1) or they can hedge against those changes by offering a broad product line (Essay 

3).  
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Finally, on the methodological side, a common feature that is shared by the three 

essays is that they are all empirical studies. The three studies use observational data that 

comes from proprietary sources. For the first and the third essays, we have collaborated 

with TrueCar.com, a market research company specialized in new car pricing, and we 

have gained access to an extensive dataset on prices and incentives in the U.S. auto 

industry. We have combined this pricing data with other more widely available data 

about the U.S. automotive industry, including sales, production and plant data that 

comes from Ward’s Automotive and Automotive News. For the second essay, we have 

partnered with vWorker (formerly rentacoder.com), one of the leading intermediaries 

for software development projects, who has given us access to the entire history of 

transactions conducted on the site, including more than 1,800,000 bids corresponding to 

more than 250,000 projects that were posted in between May 2001 and November 2010. 

Actually, one by-product of this dissertation is the compilation of these two novel 

datasets in the space of automotive pricing and online service marketplaces. These 

datasets can be used to study multiple questions in operations management and other 

related fields, beyond the essays included in this dissertation.  
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Chapter 2 

Pricing and Production Flexibility1 

Abstract 

 

Despite the abundant theoretical literature on production flexibility, price 

postponement and dynamic pricing, there exists limited empirical evidence on how 

production flexibility affects pricing decisions. Using a detailed dataset of the U.S. auto 

industry, we examine the relationship between production flexibility and responsive 

pricing. Our analysis shows that deploying production flexibility is associated with 

reductions in observed discounts, as a result of an increased ability to match supply and 

demand. We estimate that, under the observed market conditions between 2002 and 

2009, flexibility accounts for average savings in discounts of $200 to $700 per vehicle. 

This is equivalent to savings of about 10% of the total discounts provided in the 

industry. We also demonstrate that list prices and plant utilization increase after the 

deployment of flexibility, providing additional sources of benefit from flexibility 

adoption. To the best of our knowledge, our paper provides the first piece of empirical 

evidence on how the deployment of production flexibility affects firms’ pricing 

behavior.    

                                                      

1 This chapter is based on Moreno, A., C. Terwiesch. 2011. Pricing and Production 

Flexibility. An Empirical Analysis of the U.S. Automotive Industry. Working Paper.  
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2.1. Introduction 

Flexibility is typically defined as the ability to adjust and respond to new 

information (Van Mieghem 2008). Flexibility can take multiple forms. Flexibility can 

exist with respect to a firm’s pricing decisions (pricing flexibility) as has been 

demonstrated in a large body of literature on dynamic pricing (including yield 

management and revenue management; see Bitran and Caldentey 2003 for an overview). 

Flexibility can also exist with respect to a firm’s production decisions (production 

flexibility). Typically, such changes in production take the form of different production 

quantities (volume flexibility, see Sethi and Sethi 1990) and different product mixes (mix 

flexibility, see Fine and Freund 1990).  

The objective of this paper is to understand the interplay between pricing flexibility 

and production flexibility. To motivate this choice of research objective, consider the 

automotive industry and its market dynamics in 2007. Over the first six months of 2007, 

fuel prices in the US increased by roughly 50% (from $2 per gallon to $3 per gallon), 

creating a significant (and exogenously triggered) shift in demand towards more fuel 

efficient vehicles. The responses to this market shift varied substantially across 

automotive manufacturers. To illustrate this variation, consider two comparable vehicles 

in the mid-size SUV segment, the Ford Edge and the Honda Pilot. Both vehicles have the 

same fuel economy (17 mpg in the city and 23 mpg on the highway). Figure 2.1 shows 

how Ford and Honda reacted to the shift in demand towards more fuel efficient 

vehicles, away from SUVs. Figure 2.1 (left) displays monthly production levels. 

Production volumes for the Ford Edge remained relatively constant, while production 

volumes for the Honda Pilot were reduced as gas prices increased. Figure 2.1 (right) 

displays the average incentives the two manufacturers provided. We will provide a 

careful definition of incentives at a latter point. For now, observe that the incentives 
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provided by Honda did not change with fuel prices, while incentives for the Ford Edge 

increased significantly over 2007. In other words, Ford relied on its ability to adjust 

prices (by providing incentives), while Honda relied on its ability to adjust production 

volume. 

One of the essential aspects of production flexibility in the auto industry is given by 

the number of vehicle types that can be manufactured in a production facility. This is 

what the operations literature typically calls mix flexibility. Prior literature (e.g. Jordan 

and Graves, 1995) has identified some of the benefits of mix flexibility and has 

recognized that partial flexibility in the allocation of products to plants can yield most of 

the benefits of full flexibility. Our definition of flexibility (developed in Section 4) 

captures this notion of partial mix flexibility and is based on the ability of a plant to 

manufacture multiple platforms. According to our definition of flexibility, in 2007, the 

Honda Pilot was produced in flexible plants. We therefore consider it a “flexible model” 

for that time period. In contrast, the Ford Edge was produced in plants that could only 

produce this one SUV platform. We thus define it as an “inflexible model” for that time 

period. The two models in our motivating example also differ in a number of other 

aspects beyond flexibility, and no conclusion about the effect of flexibility can be drawn 

from the example alone. The rest of this paper explores systematically how companies 

adjust to changes in demand. In particular, the paper studies the relationship between 

production flexibility and pricing suggested by the motivating example.  

The link between pricing and production flexibility has not been empirically studied 

in the existing literature. This might be partially explained by the difficulty of obtaining 

adequate data. In our empirical setting, the U.S. automotive industry, list prices 

(Manufacturer Suggested Retail Prices, from now on “MSRP”) for new vehicles are 

relatively easy to find. However, manufacturers constantly apply incentives that result 
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in discounts and transaction prices that are significantly below the MSRP. These 

incentives and thus the actual transaction prices are much harder to obtain. The absence 

of pricing data has limited prior research to studying sales volume as opposed to 

analyzing the underlying demand dynamics. These demand dynamics, including the 

demand volatility, however, are essential when analyzing the benefits associated with 

flexibility.  

We have collaborated with TrueCar.com, a market research company specialized in 

new car pricing, and we have gained access to a proprietary data set on prices and 

incentives in the U.S. auto industry. We have combined this pricing data with other data 

about the U.S. automotive industry, including sales, production and plant data. 

Combining these datasets, we are able to model consumer demand, changes in 

consumer demand, and manufacturer’s responses to these changes, be it in the form of 

price adjustment or in the form of production adjustment. This allows us to empirically 

analyze the relationship between flexibility and pricing. Our main identification strategy 

exploits the fact that in our sample there are models that change their flexibility level 

from flexible to inflexible and vice versa.  This unique dataset, together with our 

econometric approach, allows us to make the following three contributions: 

First, we show how production flexibility affects incentives. Short run price 

adjustments in the automotive industry occur mainly through discounts from the MSRP 

that are implemented using incentives from the manufacturer. We provide evidence that 

deploying flexibility allows manufacturers to reduce the use of incentives, typically by 

between $200 and $700 per vehicle. To the best of our knowledge, this is the first 

empirical evidence supporting the theoretical literature on production flexibility with 

endogenous pricing (e.g. Van Mieghem and Dada, 1999; Chod and Rudi, 2005; Goyal 

and Netessine, 2007; Ceryan et al 2011).  
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Second, we analyze the effect of flexibility on plant utilization. Jordan and Graves 

(1995) suggest a positive association between flexibility and capacity utilization when 

prices are exogenous. The ability to use responsive pricing does not alter this positive 

association, and we empirically support the claim that the deployment of flexibility is 

associated with an increase in plant utilization. Our measure of flexibility is built on 

Jordan and Graves’s chaining model, emphasizing the benefits of partial mix flexibility. 

We show that partial mix flexibility increases plant utilization by about 4%. 

Third, we introduce a novel approach to measuring demand volatility. In presence of 

endogenous pricing, a measure of sales variance would be affected by the firm’s 

discounting behavior, and would therefore be an unsuitable measure of volatility. Our 

measure is based on a structural choice model that includes the actual transaction prices. 

This enables us to estimate counterfactuals (what would have been demand had there 

been no discounts?). Using this structural model of demand volatility, we develop a 

cross-sectional analysis in which we show how demand volatility affects discounts. We 

show that models with lower demand volatility give lower discounts, regardless of 

production flexibility. This suggests that firms that can design vehicles that are not 

exposed to substantial demand volatility can avoid price discounts even when they do 

not rely on flexible production. Our demand model identifies Mini, Porsche, Smart, and 

Lexus as makes that were able to have a consistent demand pattern in an industry that 

was otherwise plagued by volatility. 

The rest of the chapter is organized as follows. Section 2 discusses the underlying 

theory and related literature and also develops our main hypotheses. Section 3 describes 

our dataset. Section 4 describes our measures of production flexibility and demand 

volatility. Section 5 introduces the econometric specification and describes the 

identification strategy. In Section 6, we present our main results, followed by Section 7 
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which conducts several robustness checks and also explores alternative explanations.  

Finally, Section 8 concludes and points at some areas of current and future research.  

2.2. Theoretical Context and Hypotheses 

The literature on flexibility and the literature on dynamic pricing and revenue 

management provide the theoretical context for our work. Within the literature on 

flexibility, there exist a number of studies that have modeled the flexibility and 

production postponement decisions, to which our work is related. The earlier work in 

this research stream models the flexibility investment decision under uncertainty in 

product demand (Fine and Freund, 1990). Jordan and Graves (1995) introduced the 

concept of partial flexibility and demonstrate that partial flexibility can yield most of the 

benefits of full flexibility. Both of these studies, as well as many others not mentioned 

here, assume prices to be exogenous. In contrast, the literature on dynamic pricing and 

revenue management has largely focused on developing models that let firms adjust 

prices when capacity is exogenous. Gallego and Van Ryzin (1994) is a seminal paper in 

this line of research; see Bitran and Caldentey (2003) and Elmaghraby and Keskinocak 

(2003) for comprehensive overviews. Some of the more recent literature on flexibility 

and postponement has endogenized the pricing decision in models where firms also 

choose capacity. For example, Van Mieghem and Dada (1999) study how the timing of 

decisions with respect to the demand uncertainty, in particular production and price 

postponement, affects the strategic investment decision of the firm and its value. Other 

recent papers that analyze flexibility in presence of responsive or dynamic pricing are 

Chod and Rudi 2005, Goyal and Netessine 2007, and Ceryan et al 2011. Despite these 

careful analytical studies of dynamic pricing and production flexibility, the empirical 

evidence in this area remains scarce, which is one motivation of the present study.  
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A topic in the manufacturing strategy literature that has been empirically studied 

more extensively is what one might call the opposite of mix flexibility, focus. Focus has 

been shown to improve operational performance in some settings (e.g. Huckman and 

Zinner 2008, Kc and Terwiesch 2011). Our empirical analysis shows evidence of some 

positive benefits of producing multiple product lines in one facility (and thereby be 

unfocused) and thus speaks to the flexibility vs. focus debate.  

The Marketing literature on promotions is also related to our work. This literature 

has mainly focused on quantifying the effect of promotion on sales (e.g. Gupta 1988) and 

other related issues (for a comprehensive review, see Neslin 2002). To our knowledge, 

no paper in this line of work has studied how decisions related to flexibility and 

utilization affect promotions and so we only mention this field for the sake of 

completeness. 

A number of empirical operations papers have studied various aspects of the 

automotive production process, including MacDuffie et al. 1996, Fisher and Ittner 1999, 

and Fisher et al. 1999. Closest to our work, Cachon and Olivares (2010), study the drivers 

of inventory in the U.S. downstream automotive supply chain. Our paper is concerned 

with understanding the drivers of observed pricing, rather than the drivers of 

inventories, but we share their interest in the role of flexibility. Also, Goyal et al (2006), 

empirically study the drivers of manufacturing flexibility in the automotive industry. 

Our paper does not look into what drives flexibility, but into the effects flexibility has on 

pricing.    

A key novelty of our paper is the fact that we consider the manufacturer’s pricing. 

Very few empirical papers in operations management have examined the role of prices. 

An exception is Gaur et al. 2005, which investigates the correlation of inventory turnover 
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and gross margin. Including prices also allows us to build a rich model of the demand 

dynamics, including an appropriate measure of demand volatility. 

In order to motivate our research hypotheses, consider again our example from the 

introduction. To keep the example simple, assume two types of vehicles, fuel efficient 

and fuel inefficient, and two types of plants, flexible (can produce both types of vehicle) 

and inflexible (can only produce one type of vehicles).  Following an increase in gas 

prices, demand for fuel inefficient vehicles decreases. The manufacturer can respond by 

offering more incentives (higher discounts from the MSRP) for fuel inefficient vehicles 

or by reducing the production volume of fuel inefficient vehicles. By definition, for a 

manufacturer with an inflexible plant, a reduction in production volume of the fuel 

inefficient vehicle implies a reduction in plant utilization. This leads to an increase in the 

average cost per vehicle in the plant, because the plant’s fixed costs are spread over a 

lower number of units. Higher average costs result, all else being equal, in lower average 

profits per car. If the manufacturer with the inflexible plant decides to maintain high 

production volume (and thus high plant utilization), incentives are needed to avoid 

vehicles accumulating in inventory. In this case, the revenue per vehicle sold decreases, 

which also results in lower average profits.  

A manufacturer with a flexible plant can shift production of the fuel efficient model 

to the plant that is presently producing the less attractive fuel inefficient vehicle. 

Depending on the level of correlation between demand for fuel efficient and fuel 

inefficient vehicles, overall demand for the manufacturer might go down or not go 

down. However, some pooling benefits exist even at modest levels of positive 

correlation and so the manufacturer with the flexible plant is less affected by the 

exogenous demand shock. Note that after adjusting the product mix, the manufacturer 

with the flexible plant might still decide to reduce plant utilization (at the expense of a 
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higher average cost) or to increase incentives (at the cost of foregoing revenue). The 

optimal decisions will be a result of manufacturers playing a complex game in which the 

equilibrium decisions with regards to production volumes and incentives provided will 

depend on their demand and cost curves and those of their competitors. Rather than 

estimating the parameters of those curves, we are interested in the equilibrium average 

relationship between flexibility and incentives under the demand patterns observed 

during our period of analysis. The exact magnitude of the effect of flexibility will 

depend on the shape of the cost and demand curves as demonstrated in the recent 

modeling work by Ceryan et al (2011). Since flexibility allows manufacturers with a 

flexible plant to adjust the mix, these manufacturers have an additional tool they can use 

before engaging in giving costly incentives. We thus hypothesize: 

Hypothesis H1. The deployment of flexibility is associated with a reduction of the average 

incentives 

In addition to confirming that the direction of the effect is the one we hypothesize, 

we also seek to quantify the magnitude of the impact of flexibility on discounts for the 

US automotive market during the period covered by our data (2002-2009). 

Next, we turn our attention to the relationship between flexibility and plant 

utilization. Firms can offer incentives to encourage sales. These incentives are 

hypothesized to be higher for inflexible plants and thus the relationship between 

flexibility and utilization depends on the actual cost and demand curves. In absence of a 

complete equilibrium model, we follow the Jordan and Graves (1995) argument that 

flexibility allows firms to change the production mix and thus provides them with an 

alternative to reducing plant utilization:  
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Hypothesis H2. The deployment of flexibility is associated with an increase in plant 

utilization 

Again, rather than merely validating that the effect goes in the hypothesized 

direction, we are interested in providing an estimate of the magnitude of the effect of 

flexibility on plant utilization. 

Our primary hypothesis H1 refers to effects of flexibility on incentives, but flexibility 

is not the only way in which firms can avoid giving incentives. Some manufacturers 

seem to be able to design and market vehicles that are not subject to substantial demand 

volatility. Understanding the causal pathway of how these manufacturers are able to 

limit demand volatility is beyond the scope of this paper. Instead, we restrict our last 

hypothesis to the effect of demand volatility on incentives:  

Hypothesis H3. Firms give lower incentives for vehicles with low demand volatility  

2.3. Empirical Setting and Data 

Our empirical analysis focuses on the U.S. automotive industry, covering the section 

of the supply chain that spans from the manufacturers to the final consumers. There are 

three main reasons why we decided to choose the automotive industry as our empirical 

setting. First, the automotive industry is important on its own. The U.S. automotive 

industry is responsible for more than 3 million jobs in the U.S and contributes 5% of the 

total U.S. GDP (Ramey and Vine 2006). Second, it is an industry where operations and 

supply chain management play a major role, and companies are known to follow 

different operational strategies. Third, there is a limited amount of manufacturers in the 

market and their final product is comparable using a reduced number of attributes. The 

methodology that we use can be easily adapted to study the impact of flexibility on 
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prices in other industries and also to study the impact of other operational decisions 

besides the deployment of flexibility. 

In the auto industry, there exist a number of prices that govern the transactions 

between manufacturers, dealers and customers. The manufacturer sets the MSRP. 

Vehicles are typically allocated to dealers before they are produced. Manufacturers 

charge dealers the invoice price when the vehicle is released for transportation. The final 

transaction price is usually obtained after some haggling between the consumer and the 

salesperson. At predetermined times (typically quarterly), the manufacturer reimburses 

a percentage of the invoice price (or the MSRP, depending on the manufacturer), known 

as the holdback. This common practice explains how the dealers can profitably sell cars 

below the invoice price.  

In addition to discounts, a manufacturer can offer trade incentives at various times. 

Incentives include any costly action undertaken by the manufacturer to reduce the net 

cost of purchasing a vehicle, and they can be targeted to the dealer or to the final 

customer. These incentives sometimes take the form of loans in favorable conditions or 

other initiatives of financial nature.  

In this paper we focus on the manufacturer’s pricing decisions. To respond to 

changing market conditions, manufacturers offer varying levels of incentives to dealers 

and/or consumers. In 2009, auto companies reportedly spent more than $28 billion in 

incentives. Table 2.1 shows the average incentives offered by each manufacturer. This 

includes incentives given by the manufacturers to both dealers and final consumers, and 

includes the cost of financial incentives (e.g. 0% interest loans). However, it does not 

include the holdback, which is relatively stable over time and typically does not change 

with market conditions. 
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There exist systematic differences in the incentives that firms give. The Big Three are 

among the companies who offer the highest incentives, and Toyota and Honda are 

among the companies who offer the lowest incentives. Our analysis explains part of this 

observed variation through variables such as production flexibility and demand 

volatility. We will use firm (and model) level fixed effect to ensure that we truly identify 

the effect of flexibility as opposed to picking up firm level effects. 

Our data covers the vehicles marketed in the U.S. in the period of 2002-2009. We 

have information on the 348 distinct models (e.g. Chevrolet Malibu) marketed in the U.S. 

during the period. Our analysis uses monthly data and we have a total of 20,052 model-

month (e.g. Chevrolet Malibu, February 2003) observations. We combine three sources 

of data: volume data, pricing data and vehicle-level data.  

Volume data. The volume data is obtained from WARDS automotive and includes 

monthly sales and domestic production (if applicable). Domestic production refers to 

vehicles produced in the U.S., Mexico or Canada. If a car is imported from outside this 

region, we label it as not domestic. We have information about the platform on which 

each of the domestically produced models is based and the segment to which they 

belong. We observe how domestic production is distributed across different plants, and 

also across different facilities within the plant (e.g. Fremont 1 and Fremont 2). We have 

also obtained data on the annual capacity of U.S. plants, which allows us to calculate the 

plant utilization.  

Pricing data. We have obtained incentive data from TrueCar. TrueCar is a market 

information company that provides prospective car buyers with real transaction price 

data of new cars (www.truecar.com). TrueCar obtains data directly from car dealers, 

respected dealer management system (DMS) providers, and well-known data 

aggregators within the automotive space. We have collaborated with TrueCar and we 

http://www.truecar.com/
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have obtained access to some of their historical data. In this paper we focus on the 

incentives given by manufacturers. As are sales and production data, incentive data is 

available at the model-month level and indicate the average amount spent by the 

manufacturer for each vehicle sold in that month. The measure includes incentives given 

to the dealers and to the final consumers, and it also includes incentives of financial 

nature (e.g. credit in favorable condition), which are converted to their equivalent 

monetary values. The incentive figure does not include holdbacks, since these are not 

used to respond to market conditions.  Not all the incentives are necessarily passed-

through to the consumer (see Busse et al 2006), yet incentives always represent an 

additional cost to the manufacturer.  

Vehicle level data. Our model of demand volatility uses data on vehicle attributes, 

which we also obtain from WARDS Automotive. The attributes we focus on are weight, 

horsepower, fuel economy, length, height, wheel base and MSRP. These attributes 

remain constant within the model year. Combining fuel economy with gas prices 

(obtained from the Energy Information Administration), we can generate a measure of 

miles per dollar, which varies monthly for every given model. The vehicle attributes are 

specific to the trim level (e.g. Chevrolet Malibu LS 4dr Sedan) and model year. This 

poses some integration challenges, because our sales, inventory and incentive data is 

available at the model level (e.g. Chevrolet Malibu), and we do not observe the 

breakdown of sales for the different trims of a model (or for different model years that 

might be sold simultaneously). Our solution is to match every model with the median of 

the attributes across the different trims in which a model is available. We also run some 

robustness checks using the minimum and the maximum of the attributes instead of the 

median. 
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2.4. Measures of Flexibility and Volatility 

Our objective is not to identify the specific contribution of each of the types of 

flexibility identified in the previous literature, but to define a simple measure that 

embodies the most important dimensions of flexibility at the strategic level in the auto 

industry. We refer the reader to the review by Sethi and Sethi (1990) that identifies over 

50 ways to operationalize flexibility. 

Our primary measure of flexibility is an objective measure based on the demonstrated 

ability of a plant to produce multiple products in the same facility. This is what has been 

called mix flexibility or product flexibility in some taxonomies (for example, see Parker 

and Wirth 1999). Mix flexibility has been used in prior academic studies and is also used 

by analysts following the automotive industry. For example, the Prudential Report, a 

third party evaluation of the financial outlook of the various US car manufacturers, uses 

the number of nameplates manufactured in a production line as the criteria to define a 

plant as flexible. Lines producing more than one nameplate are considered flexible, 

while lines producing a single nameplate are considered inflexible.  

We use a binary variable to code flexibility. We define a production facility as 

flexible if it produces more than one platform. We choose the number of platforms as 

opposed to the number of products for our measure of mix flexibility because the 

number of platforms is more related to the necessary technological and managerial 

complexity in the plant (two “different” products can just be branded versions of the 

same vehicle). As an example, Figure 2.2 shows the allocation of platforms to plants for 

Nissan and Ford in the end of 2010. According to our measure, the four plants that 

Nissan has in North America were flexible in the end of 2010, while only five out of the 

thirteen North American plants that manufacture Ford vehicles were flexible. The figure 
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is just a snapshot, as flexibility has evolved over time. With substantial investments, an 

inflexible plant can become flexible. In some rare cases, a flexible plant can become 

inflexible. This can happen, for example, when one of the models manufactured in the 

plant is discontinued and leaves the plant with a single allocated platform. 

Since our sales and incentive data are at the model-month level, we assign a 

flexibility score to every model on a monthly basis. A model is given a high flexibility 

score in a given month if it has at least some production in a domestic (North American) 

flexible facility. Previous research has shown that partial flexibility can go a long way in 

achieving the benefits of full flexibility (Jordan and Graves 1995). This insight has been 

extended to multi-stage supply chains (Graves and Tomlin 2003), queuing settings 

(Bassamboo et al. 2008), and newsvendor settings (Bassamboo et al. 2010). Model 

flexibility changes over time, since a model can (a) be shifted from a flexible to an 

inflexible plant, (b) be shifted from an inflexible to a flexible plant, or (c) remain at a 

plant which changes its flexibility level because of changes in other models. This 

variation in model flexibility over time is essential for our identification strategy, as we 

discuss in Section 5.  

We consider fully imported models not flexible. Transportation adds a lead time of 

at least 4 to 6 weeks to the production time, meaning that firms have a limited ability to 

quickly adjust production to match changes in demand. The inability to adjust to 

demand because of poor mix flexibility and because of long lead times can have 

different effects. In order to make sure that our decision to code fully imported models 

as inflexible does not drive the results, we perform additional analyses without the fully 

imported models. Our results do not change qualitatively.  
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 Using our definition of flexibility, we can perform a simple comparison between the 

incentives given for models manufactured with flexibility and for models manufactured 

without flexibility. The average incentive for models that are produced with flexibility 

was $2,691 in 2007, while the average incentive for models that are produced without 

flexibility was $3,411 in the same year. Not all the difference between the two groups 

($720) comes necessarily from differences in flexibility. It could be, for example, that 

Japanese firms are more flexible and that Japanese firms also provide systematically 

lower discounts for reasons different from flexibility. A more refined econometric 

analysis is needed. 

Our flexibility measure is based on the demonstrated ability to produce a mix, but a 

plant could have this flexibility and choose not to use it. Moreover, a plant can produce 

multiple products but have each product allocated to an independent production line 

without mix flexibility. To strengthen our measure of flexibility, we also created 

flexibility scores of the plants based on the subjective assessment of an industry expert. 

Ron Harbour is widely acknowledged as a leading expert in understanding the US 

automotive industry. He has visited every single plant in the US automotive industry 

and has been the producer of the Harbour reports (now published through Oliver 

Wyman). We compared his subjective assessment that he kindly provided to us with our 

measure and found them to largely be consistent. We also performed our empirical 

analysis using his evaluation as the flexibility measure and found the results to be 

similar. To allow future research to replicate our results and build on our work, the 

remainder of this paper is based on the objective flexibility measure that we previously 

defined. 
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Estimation of the demand system 

A crude measure of demand volatility could be defined based on sales volatility. 

However, monthly sales depend on the incentives that are given. Ideally, we would like 

to measure the volatility of demand in absence of incentives. Since this is not possible, 

we have to create a structural model that models the underlying demand dynamics. We 

then can evaluate the counter-factual sales at non-discounted prices. Based on these 

sales data not polluted by price discounts, we can then generate our measure of 

volatility.   

We start by estimating the parameters of the demand curve Diym(p), which gives the 

demand for vehicle i in year y and month m. This demand depends on the price of 

vehicle i, attributes of vehicle i, the prices of all vehicles in the market other than i, and 

the attributes of all vehicles in the market other than i. 

The choice model that we use to estimate the demand system is a nested 

multinomial logit model. As in other multinomial models, each alternative (vehicle 

model) is defined as a bundle of attributes and consumers choose the one that gives 

them the highest utility or the outside option of not buying.  

The nested multinomial logit model has the advantage that it allows reasonable 

substitution patterns and avoids the independence of irrelevant alternatives problem 

present in multinomial logit models, which imply proportional substitution patterns 

between alternatives (for more details, see Train 2009). With respect to other similar 

models like the random coefficients logit (Berry et al. 1995), it has the advantage that it is 

more parsimonious and that we do not need to specify a distribution for the 

heterogeneity of consumer preferences. The flexibility in the substitution patterns is 

given by the nests. In the nested logit model, the set of alternatives is partitioned into 
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subsets. Substitution patterns are proportional within nests, but can vary across nests. 

We use the combination of vehicle segment and luxury indicator variables in the 

construction of the nests (for example, a nest contains “luxury SUVs”).  

To estimate the model, we follow the transformation described in Berry (1994) and 

write : 

     0 |ln ln lnjt t jt jt jt g jts s x p s         (2.1)

 

where sjt, s0t and sjt|g are, respectively, the market shares of model j in time t, the share of 

the outside good (no purchase) in time t and the share of the nest g to which model j 

belongs in time t; xjt are the product characteristics, and jt
 
is a shock unobserved to the 

econometrician. We do not observe the actual price pjt   faced by the consumer in time t. 

We approximate it as the list price minus the average incentive for model j at time t. As 

product characteristics, we use the vehicle size variables, a proxy for acceleration given 

by horsepower/weight and the miles per dollar, which depends on the current gas price 

and the MPG of the vehicle. We also include segment-time dummies.  

We use instrumental variables to account for price endogeneity. The instrumental 

variables that we use are based on Berry et al. (1995). We include the characteristics of 

the other models of the same manufacturer and the characteristics of the rest of the 

vehicles on the market (for more details, see Berry et al. 1995). Changes in the choice set 

(introduction and removal of models), changes in vehicle attributes, changes in gas 

prices, and segment trends captured by the dummy variables allow us to identify the 

coefficients of the demand model. Table 2.A1 reports the estimates of the demand 

system. 
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Evaluation of counterfactual sales at reference prices 

Once we have estimated the demand model, we can calculate counterfactual 

measures. We define CSALESiym=Diym(p) as the counterfactual sales that we would expect 

to observe for model i in year y and month m, if the vehicles were priced at a price vector 

p. For the choice of the vector p, we can use a reference price level that is not affected by 

the incentive behavior. We propose using the list prices, but other alternatives are also 

possible (e.g. using the average prices). 

The method allows us to construct an alternative series of counterfactual sales over 

the entire period of analysis. This series gives a measure of the underlying demand that 

is not contaminated by the incentives that the firms decided to give.  

 Generation of volatility measure 

Based on the counterfactual sales CSALESiym at a vector of reference prices, we 

compute demand volatility VOLm for a model as the coefficient of variation of this series: 

(CSALES )

(CSALES )

iym

m

iym

stdev
VOL

mean


 
 (2.2)

 

This gives a measure of demand volatility for each of the models in our dataset that 

is not contaminated by the incentive behavior. 

2.5. Econometric Specification and Identification 

Automotive manufacturers play a complex game in which the equilibrium 

decisions with regards to flexibility deployment, production and incentive will depend 
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on their demand and cost curves and those of their competitors. One potential approach 

to analyze their decisions would be to fully characterize the problem that firms are 

solving and to structurally estimate the model primitives. However, the lack of cost data 

and the number of interdependent decisions that firms are making limit the appeal of 

such an approach. Our approach is instead to focus on the equilibrium average 

relationship between flexibility and incentives under the demand patterns observed 

during our period of analysis. We start by modeling the impact of flexibility on 

discounts (incentives).  

We use a family of reduced form specifications that model discounts as:  

 (2.3)

 

where i is the model, t is the month and s(i) is the segment to which model i belongs. All 

specifications include itFLEX , the demonstrated flexibility measure described in Section 

4; i , a model fixed effect; ( )s i t , a variable that controls for segment-time interactions; 

and uit, the error term. The set of additional controls includes the variables

_ itDISCOUNT COMP , the MPDit, AGEit, INTRODUCTIONit, PHASE_OUTit and 

DESIGN_CHANGEit, described in Table 2.2.  

Hypothesis H1 (the deployment of flexibility is associated with a reduction of the 

average incentives) holds if  < 0, with  giving the magnitude of the impact of 

flexibility on discounts. 

Model fixed effects capture the contribution to discounts of any model 

characteristics that do not change over time (for example, being a model produced by a 

Japanese firm, being a Ford, being a Toyota Corolla or being an SUV are features that do 



 

29 

 

not change over time). The identification of the coefficients, including that of flexibility, 

will be based on temporal variations of the level of discounts for a given model. The 

identification of the coefficient of flexibility is achieved from vehicles that change from 

flexibility to inflexibility or vice versa. During our period of analysis, around 25% of the 

models experience some change in their flexibility score.  

As an example of the variation that helps to identify the coefficient of flexibility, 

Figure 2.3 shows the evolution of incentives for two similar vehicles, the GMC Envoy 

and the Nissan Pathfinder.  Both vehicles were manufactured in inflexible plants until 

September 2004. The evolution of the average incentive is similar for both vehicles 

before that. In September 2004, the Nissan Pathfinder started to be produced in the 

flexible Smyrna Plant, making the model flexible according to our definition. After that, 

the average incentive for the Nissan Pathfinder dropped considerably, compared with 

the average incentive given for the GMC Envoy. Our econometric analysis does a more 

rigorous job by controlling for additional variables that may play a role before and after 

the deployment of flexibility. For example, in the period shown in Figure 2.3 there were 

also changes in MSRP. Therefore not all the difference in observed incentives comes 

from flexibility. 

Using flexible technology to produce a model is clearly an endogenous decision, 

since firms choose which models to produce with flexible technology and when. This 

decision might be based on factors that also affect the discount policy for the vehicle, 

and the specification shown above could result in biased estimates if the use of flexibility 

is correlated with any unobserved variable captured by the error term.   

Model fixed effects reduce the extent of the problem, because they account for 

any potentially ignored cross-sectional variable that might affect discounts and might be 

correlated with the adoption of flexibility. For example, labor practices that do not vary 
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much during our period of analysis. If there existed a labor practice (e.g. union status) 

that would be correlated with the error term (i.e. it would affect incentives once 

controlling for everything else we observe) and would be correlated with flexibility, not 

controlling for labor practices would lead to biased estimates.  Adding fixed effects deals 

with omitted variables (e.g. labor practices) that are constant over time for a given 

model.   

The potential endogeneity concern is further attenuated if we control for 

additional variables. In particular, some of our specifications control for the vehicle list 

price (MSRP), which is adjusted yearly. Unobserved changes in the demand conditions 

expected by the firm for a year, which can be potentially correlated with the adoption of 

flexibility, can be accounted for by observed changes in the list price. Also, all our 

specifications include segment-time dummies. They account for any temporal shocks 

that affect all models of a given segment. This includes any temporal trends in discounts 

at the segment level as well as any global industry trends.  

In order to be protected against any remaining source of flexibility endogeneity, 

we use instrumental variables. A good instrumental variable for the flexibility with 

which a model is produced should be correlated with the flexibility variable (relevance 

condition) and uncorrelated with the error term (exogeneity condition). We use the 

average flexibility of the rest of models of the same make as an instrument for the 

flexibility of a model. This instrument satisfies the relevance condition because there 

exists correlation in the adoption of flexibility for different plants of the same firm. On 

the other hand, we do not expect the discounts of a model to be affected by the flexibility 

of the other models of the firm, after including all our controls.. We have also used 

variations of the instrument (for example, excluding models that are manufactured in 
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the same plant as the model of interest in the calculation of the average flexibility) 

without substantial changes in the results 

The unit of observation for the specification described above is the model-month. 

Since the subjective assessment provided by the expert is at the plant level, we replicate 

the analysis at the plant level. In order to do that, we compute the production weighted 

incentive given at every plant. The econometric specification is the following: 

 

(2.4)

 

where DISCOUNTpt is the production weighted average incentive, FLEXpt is the plant 

flexibility measure, CONTROLSpt  include any plant level controls, p is a fixed effect, t is 

a set of time dummies and upt is the error term. Based on this specification, we can use 

either the objective measure of demonstrated mix flexibility or the subjective flexibility 

measure provided by the expert. 

In order to assess the impact of flexibility on utilization, we perform the analysis 

at the level of the manufacturing plant. We use the following specification: 

 (2.5)

 

 

where UTILpt is the plant utilization of plant p in month t, FLEXpt is the plant flexibility 

and CONTROLSpt  include any plant level controls. The model includes plant fixed 

effects and time effects. Again, the identification of the effect of flexibility comes from 

temporal variations in plant flexibility. Hypothesis H2 (the deployment of flexibility is 

0 1pt pt pt p t ptDISCOUNT FLEX CONTROLS u        

0 1pt pt pt p t ptUTIL FLEX CONTROLS u        
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associated with an increase in plant utilization) holds if  > 0, with  giving the 

magnitude of the impact of flexibility on discounts. 

Finally, in order to test Hypothesis H3 (firms give lower incentives for vehicles 

with low demand volatility), we focus on the cross-sectional variation, and we compute 

discount and volatility measures for each model. Our objective is to assess whether some 

of the cross-sectional differences between model discounts can be attributed to 

differences in demand volatility. Define: 

 (2.6)

 

where 
iDISCOUNT is the average discount given for model i during our period of 

analysis, and VOLi is the volatility of demand of model i during the period of analysis, 

calculated using the model described in Section 4. Note that this specification does not 

account for those variables affecting the average discount that were considered in our 

model described in Equation 2.3, such as flexibility and other controls. To incorporate 

the effect of those variables, we can use the model fixed effect i from (3) as the 

dependent variable. The model fixed effect represents the persistent model level shock 

in discounts, net of the effect of the other variables of the model. Define: 

 (2.7)

 

Hypothesis H3 holds if  > 0. Note that in this specification the analysis is cross-

sectional, and we have only one observation per model.  Equation 2.7 links the 

coefficient of variation of demand over the entire period with the model-fixed effect on 

the incentives. 

0 1i iVOL     

0 1i iDISCOUNT VOL    
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2.6. Results 

We begin by estimating the models characterizing model level discounts 

(Equation 2.3). Table 2.3 shows the estimates using OLS. The first three columns focus 

on vehicles with some domestic production (that is, excluding fully imported vehicles), 

while Columns 4, 5 and 6 show the estimates using all the vehicles marketed in the U.S., 

including those that are fully imported.  

Columns 1 and 4 show the estimates including the flexibility and the competitor 

discounts variables and segment time interactions, but without any other controls and 

without including fixed effects. In both groups the flexibility coefficient is negative and 

significant, suggesting that flexibility is associated with lower discounts. However, in 

these cases endogeneity is a serious concern - flexible vehicles might have other 

characteristics that result in the observed lower discount activity.  

Columns 2 and 5 incorporate model fixed effects, which account for persistent 

unobserved variables at the model level. The effect of flexibility is still negative and 

significant when we add the model fixed effects (-202.4 for the models with domestic 

production and -300.5 for all the models). Columns 3 and 6 incorporate additional 

controls for some variables that change over time. The flexibility estimate remains 

almost constant across these models, which suggests that flexibility adoption is not 

correlated with those observed variables. Columns 3 and 6 are our preferred 

specifications in Table 2.3, as they include all controls. We observe an estimated effect of 

flexibility on discounts of -215.5 for vehicles with domestic production and -$293.8 for all 

vehicles. These coefficients can be interpreted as the average dollar savings in discounts 

that are obtained by switching a model from an inflexible facility to a flexible one. 

Standard errors are robust and clustered by model. The results of Table 2.3 show that the 
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effect of flexibility is both statistically and economically significant. Flexibility explains 

about 10% of the average discount.   Discounts of the competitors in the segment are 

partially matched (around $0.25 per dollar of competitor discounts, when including the 

controls).  

Despite our extensive set of controls, the OLS specification estimated in Table 2.3 

can still suffer from an endogenous vehicle-to-flexibility assignment as described in 

Section 5. Table 2.4 shows the estimates when we use the average flexibility of the rest of 

the models of the same make as an instrument for flexibility and then estimate the 

model using 2SLS. Again, we separately report the results for the vehicles with domestic 

production (Columns 1 and 2) and for all vehicles (Columns 3 and 4). 

The estimates displayed in Table 4 show that the coefficient of flexibility is even 

more negative when using the instrumental variable estimation. The rest of coefficients 

remain largely unchanged. Our preferred specifications are the ones given in Columns 2 

and 4, which include all the control variables, besides the model fixed effects and the 

segment-time dummies. These columns suggest an effect of -699 and -1295 for the 

vehicles with domestic production and for all vehicles, respectively. Both the OLS and 

the 2SLS results show support for H1. In other words, the adoption of flexibility is 

associated with a reduction of discounts. In the IV model, the point estimates, which 

quantify the average effect of flexibility on discounts, change significantly compared to 

the OLS estimates. The Durbin-Wu-Hausman test allows us to reject the hypothesis that 

the flexibility is exogenous (e.g. p=0.0054 for the specification shown in Column 2) and 

therefore the 2SLS method is suitable. However, as often is the case with IV estimation, 

we have to acknowledge that our instrument might have problems related to the 

violation of the two conditions, instrument exogeneity and relevance.  
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The IV model assumes that the discounts given for a model are not affected by 

the flexibility of the other plants. This instrument exogeneity condition is not testable in 

our case, because we only have one instrument. We are thus in the just-identified case. If 

the relevance condition is satisfied only weakly, it is well known that instrumental 

variables can have a small sample bias (for example, see Angrist and Pischke 2009). The 

instrument is correlated with the endogenous variable and the first stage for Column 2 

has an adjusted R-squared of 0.744, but the Partial R-squared is 0.06, which seems 

somewhat low, suggesting that we should be cautious because we might have a weak 

instrument. Another potential problem could be that the instrument might affect a 

particular subpopulation more significantly, and it also might be picking up additional 

effects, such us portfolio effects that might or might not be related to flexibility.  

Altogether, these potential problems with the instruments suggest that we 

should not take the 2SLS estimates at face value. But this does not mean that they are 

useless. The results of the instrumental variable estimation suggest that our OLS 

estimation, if biased, is probably biased upwards, and that the effect of flexibility on 

discounts is stronger than the effect estimated by OLS. Thus, we can consider our OLS 

results as a lower bound on the effect of flexibility.   

The modeling literature can offer some guidance in interpreting our findings and 

in understanding in what direction our OLS estimates are likely to be biased. Demand 

uncertainty has been identified as one of the key drivers of flexibility adoption (Fine and 

Freund 1990, Swaminathan and Lee 2003). We can argue what the likely direction of the 

bias would be if flexibility is adopted as a response to increased expected uncertainty for 

the demand of one model. Given that price adjustments in the auto industry are 

asymmetric (discounts from the list price are offered when demand is low but price 

premiums over the list price are never charged), a more uncertain demand will probably 
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result in higher average discounts. To see that, note that as the variance of the demand 

distribution increases, the size of the price adjustments downwards (if realized demand 

is low) or upwards (if realized demand is high) is expected to increase. Since the upward 

price increases are capped by the list price, we expect the average effect to result in 

higher discounts. If the flexibility adoption is correlated with expected uncertainty, our 

flexibility variable is likely to pick up part of the contribution of uncertainty to 

discounts, which is expected to be positive. This suggests that a potential correlation 

between the flexibility variable and the omitted uncertainty is positive. Therefore the 

OLS coefficient of flexibility would be biased upwards. This is consistent with the results 

that we find with our instrumental variable specification.  

In summary, our results indicate that under the observed market conditions 

between 2002 and 2009, flexibility accounts for average savings in discounts of between 

$200 and $700 per vehicle, for cars with domestic production. The results of the analysis 

using the subjective measure of flexibility are qualitatively similar and are shown in 

Table 2.A2 in the Appendix.  

Turning our attention to the effect of flexibility on utilization, Table 2.5 shows the 

estimates of the specification given by equation 5, for which the unit of observation is 

the plant-month. The model includes plant fixed effects and time effects. Columns 1 and 

2 use the mix flexibility variable described in Section 4. Columns 3 and 4 use a modified 

version based on the highest flexibility that a plant has had in the past. This modified 

version assumes that a plant that has become flexible stays flexible. 

All specifications have a positive coefficient for flexibility, supporting H2. 

Columns 1 and 3 do not include plant fixed effects. Columns 2 and 4 control for plant 

fixed effects and provide lower estimates for the effect of flexibility. Column 2 uses our 

regular measure of plant flexibility, and the OLS estimate of the magnitude of the effect 
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of flexibility on utilization is 9.8%. Since the flexibility measure captures the 

demonstrated flexibility rather than the potential flexibility, there exists a potential 

endogeneity problem. A plant that is able to produce multiple platforms might only do 

so when demand for them is high. We also expect high utilization when demand for the 

products manufactured in a plant is high. Therefore, the effect attributed to flexibility 

might be actually related to unobserved demand shocks. In order to attenuate this 

potential problem, Column 4 shows the estimates when we build the plant flexibility 

variable based on historical data. We assume that a plant that has ever produced more 

than two platforms at the same time in the past remains flexible, even if the firm might 

decide not to use that flexibility. When doing that, the effect of flexibility on utility is 

attenuated, and is estimated to be around 4%. In all cases, the results support our 

Hypothesis H2. The average plant has the capacity to produce around 15,000 vehicles 

per month. Increasing utilization by 4% is roughly equivalent to producing a total of 600 

more vehicles per month. If the fixed costs of operating the plant do not increase, 

adopting flexibility results in lower fixed costs per vehicle sold and more efficient capital 

investments. 

Finally, we estimate the specifications (2.6) and (2.7). For these specifications, the 

unit of observation is the model (one observation for the entire period). The two 

specifications differ in the dependent variable, but both analyze how the demand 

volatility of a model (calculated as described in Section 4) affects the incentives. Table 2.6 

shows the results. In Column 1, the dependent variable is the mean incentive for the 

model. In Column 2, we use the model fixed effect of specification (3) as the dependent 

variable, and we analyze how the demand volatility of a model affects the part of the 

incentives that is unexplained by the variables included in specification (3).  
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We use a log transformation for our volatility variable. We see that the coefficient 

of demand volatility is positive in both cases, and therefore Hypothesis H3 holds. We 

conclude that firms give lower incentives for vehicles with low demand volatility. Figure 

2.4 plots the model fixed effect vs the log of the demand volatility. The first subplot 

shows the data at the model level and suggests the positive association between 

flexibility and incentives that we observe in Table 2.6. The second subplot shows the 

aggregation of the data at the make level. Again, we see a positive association. 

A couple of makes stand out in Figure 2.4 (Smart, Mini, Lexus and Porsche) as 

they have unusually low fixed effect on the incentive and unusually low demand 

volatility. These are makes that are able to avoid giving incentives regardless of their 

flexibility, thanks to their low underlying demand volatility. This suggests that besides 

using flexibility, there are other tools that firms can use control incentives, and that some 

makes are “robust by design” against shocks in demand. 

2.7. Robustness Checks and Alternative Explanations 

Our main measure of flexibility, the measure based on the demonstrated mix 

flexibility described in Section 4, has several potential shortcomings. In Section 4, we 

have presented an alternative subjective measure based on an expert assessment, and we 

have shown above that the results obtained with such a measure were qualitatively 

similar. We find that the measures based on the demonstrated flexibility and the 

flexibility measures based on the expert’s assessment are highly correlated (>0.8). 

Besides validating our results with the subjective measure, we have performed a series 

of robustness checks to our analysis with the demonstrated flexibility measure.  
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One of the potential shortcomings of our demonstrated flexibility measure is the 

fact that it is based on what the plants choose to product, rather than what the plants can 

produce. For example, we have noticed that in some (infrequent) cases a flexible plant 

produces only one model during a short period of time. In order to address this, we 

have redefined our flexibility measure as the maximum flexibility observed over the last 

n months (with n=3 and n=6), finding estimates that are consistent with the results that 

we have described. In the plant level analysis, we have also used the “record” flexibility, 

that is, the maximum historical flexibility for the plant (see Table 2.5), again, with 

qualitatively similar results. 

Another potential shortcoming of our measure is that we do not have production 

data at the line level but at the plant level. However, having multiple platforms 

produced in independent lines of the same plant is not much different from having 

independent plants. This could result in an overestimation of the available flexibility in 

some cases. To address this potential problem, we have identified the cases where this 

could have been an issue by examining the number of lines per plant. We obtain that 

information from the Harbour Reports. Our results are robust to excluding those 

observations.   

We have also tested for alternative definitions of our incentive variable. For 

example, in specification 2.3 we used the monetary amount of the discounts, but our 

results are robust to using log transformations and also to using a relative measure of 

discounts, expressing them as a percentage of the list price.   

The analysis shown in Section 6 focuses on short run pricing given by discounts 

from the MSRP. The effect of flexibility on prices depends on the effect of flexibility on 

MSRP. It could be the case that after deploying flexibility lower discounts are 

accompanied by lower list prices. This would result in an ambiguous effect on final 
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transaction prices and on manufacturer revenue per car. The relation between flexibility 

and list prices is given by the following specification: 

 (2.8)

 

Table 2.7 shows the impact of flexibility on MSRP, according to specification 2.8, 

where the unit of observation is the model-month. Columns 1 and 2 show OLS 

estimates, columns 3 and 4 show the 2SLS estimates using the same instruments as for 

Table 2.4. All columns include model fixed effects and segment time interactions. Except 

for the OLS estimation with all vehicles, the coefficient of flexibility in all regressions is 

positive and significant and we conclude that flexibility is not associated with lower list 

prices. 

Having established that prices and average revenue per car increase after 

deploying flexibility, it is interesting to analyze whether this is at the expense of sales. 

We have conducted several tests on whether flexibility is associated with a sales 

decrease, but this hypothesis can be rejected (see Table 2.A3). Therefore, our estimates 

for the effect of flexibility on discounts provide lower bounds on the average effect of 

flexibility on revenues per car. 

Regarding the explanation of the phenomenon we are describing, our preferred 

one is that flexibility allows to better match supply and demand, and having fewer and 

less important supply-demand mismatches allows to avoid using incentives. An 

alternative explanation would be based on cost. Lower discounts could be also derived 

from the fact that the marginal costs of production are higher with flexibility. However, 

observe that sales do not decrease after flexibility is deployed. It is difficult to explain 

why customers would be willing to buy more and at higher prices.  

0 1it it it i st itMSRP FLEX CONTROLS u        
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2.8. Conclusion and Discussion 

In this paper we have illustrated some of the benefits of deploying production 

flexibility. We have shown that the deployment of production flexibility is associated 

with savings in discounts of between $200 and $700 per vehicle during our period of 

analysis, 2002-2009. We have shown that list prices (MSRP) increase with the use of 

flexibility, and therefore both transaction prices and manufacturer revenue per car 

increase when vehicles are produced with flexibility. Flexibility is not the only lever that 

firms can use to avoid using discounts. Designing products that are robust to shocks in 

demand is an alternative strategy, as suggested from the fact that vehicles with low 

demand volatility engage less often in discounting activity. We have also shown that 

flexibility is associated with higher utilization, 4% more on average. All the rest being 

equal, achieving higher utilization allows firms to reduce the fixed cost per vehicle, and 

therefore to increase average profits.   

To see the managerial importance of flexibility and the results presented in this 

paper, consider the following, back-on-the-envelope calculation. Ford sells about 150K 

vehicles per month. If, through flexibility, Ford could reduce its discounts by the most 

conservative amount we estimated ($200), our model suggests incremental profits of 

150K*$200=30M$ per month. This does not include the benefits of higher plant 

utilizations and potentially increased sales (see our results of Tables 2.5 and 2.A3). Of 

course, when evaluating the deployment of flexibility, firms have to also examine the 

associated costs. The costs of flexibility depend highly on the current plant and product 

portfolio of the firm. For newly built plants, the costs of a flexible plant and the costs of 

an inflexible plant are nowadays very similar. But the capital investment of a new plant 

is huge, and firms typically update and retool existing plants. The cost of doing that 

depends on the plant technology and the models that are going to be manufactured. It is 
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therefore difficult to give a universal measure for the costs of flexibility. As a reference 

point, consider Ford’s plans to retool its Wayne (MI) plant, which is estimated to require 

a $550 million investment. Rather than illustrating a cost benefit analysis for each 

manufacturer, we have presented our estimates of the average benefit of flexibility based 

on discount savings. Firms can combine our results and methodology with their detailed 

information about their cost structure and current capital equipment in order to evaluate 

the convenience of investing in flexibility. 

As far as the implication for the academic community is concerned, we believe 

that the models that we present in this paper open up several opportunities for future 

research. We have developed a model of customer demand rather than relying on sales 

as a proxy for demand. This allows us to integrate the pricing decision into the analysis, 

something that has been done in the modeling literature, but not in prior empirical 

work. Within the realm of flexibility, one potential extension using a similar approach 

could be to analyze the flexibility investment decision jointly with the demand system. 

More generally, future research can estimate the impact of other operational variables, 

including product variety, fuel efficiency or the timing of new product launches. 

Empirical models of pricing could be particularly fruitful in studying the interplay 

between pricing and inventory decisions. This area has been the subject of several 

modeling papers but there is little empirical research complementing the theoretical 

results.  
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2.10. Tables. 

Table 2.1:  Average Trade Incentives (2003-2009) 

Company  Mean  as % of MSRP  

Porsche  809  1.10% 

Honda  1,024  4.00% 

Toyota  1,083  4.30% 

Daimler  2,469  4.80% 

BMW  2,691  5.80% 

Subaru  1,470  5.80% 

Volkswagen  2,041  7.30% 

Nissan  2,170  8.30% 

Mazda  2,040  8.60% 

Hyundai Group  2,252  11.00% 

Mitsubishi  2,776  12.00% 

Chrysler  3,682  13.00% 

Ford  3,585  13.00% 

General Motors  3,587  13.00% 
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Table 2.2: Variables 

Variable  Description  

 

DISCOUNTit 

 

Average incentive given for model i in month t 

FLEXit Binary variable that indicates if model i is flexible in month t, according to 

the measure described in Section 4  

DISCOUNT_COMPit For every model, we compute the average incentive per car given by the 

competitors in models of the same segment and luxury level  

MSRPit Median list price of the model, constant during the model year.   

MPDit Miles per dollar. The evolution of gas prices changes the attractiveness of 

some models. Incentives might respond to that. We define 

MPD=MPG/gasprice. This variable changes over time for a given model 

according to the evolution of gas prices. 

 

AGEit Number of years since the model was first introduced 

 

INTRODUCTIONit Dummy variable that is 1 in the model year when the model is 

introduced 

 

PHASE_OUTit  Dummy variable that is 1 for observations that correspond to the last year 

in which a model is produced and for observations after  

production for the model has stopped 

 

DESIGN_CHANGEit  Dummy variable that is 1 when there has been a change in vehicle 

characteristics that might relate to changes in design with respect to the 

previous model year 
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Table 2.3: OLS estimates 

  (1) (2) (3) (4) (5) (6) 

VARIABLES Only Domestic All Vehicles 

            

FLEX -676.9*** -202.4*** -215.5*** -196.5*** -300.5*** -293.8*** 

 

(37.80) (43.90) (42.69) (34.07) (43.52) (42.51) 

DISCOUNT_COMP  0.161*** 0.368*** 0.238*** 0.154*** 0.388*** 0.267*** 

 

(0.0436) (0.0357) (0.0341) (0.0320) (0.0300) (0.0305) 

 

 

  

 

  MODEL FIXED EFFECTS No Yes Yes No Yes Yes 

 

 
  

 
  

SEGMENT-TIME DUMMIES Yes Yes Yes Yes Yes Yes 

 

 
  

 
  

ADDITIONAL CONTROLS No No Yes+  No No Yes+  

 

 
  

 
  

Constant 1,790*** 690.4*** -2,588*** 1,148*** 436.3*** -2,211*** 

 

(196.3) (91.65) (276.2) (136.1) (73.31) (248.9) 

 

 

  

 

  Observations 10,043 10,043 9,929 17,166 17,166 17,052 

R-squared 0.169 0.721 0.747 0.133 0.690 0.707 

Robust standard errors in parentheses.      *** p<0.01, ** p<0.05, * p<0.1 
+ indicates the following controls:  INTRODUCTION, PHASE_OUT, AGE, MPD, MSRP, 

DESIGN_CHANGE 
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Table 2.4: IV estimates 

  (1) (2) (3) (4) 

 

2SLS 
VARIABLES Only domestic All Vehicles 
          
FLEX -576.9*** -699.0*** -1,280*** -1,295*** 

 

(187.7) (177.7) (233.9) (226.1) 

DISCOUNT_COMP 0.388*** 0.264*** 0.373*** 0.250*** 

 

(0.0356) (0.0338) (0.0297) (0.0302) 

     MODEL FIXED EFFECTS Yes Yes Yes Yes 

     SEGMENT-TIME DUMMIES Yes Yes Yes Yes 

     ADDITIONAL CONTROLS No Yes+ No Yes+ 

     Constant 1,273*** 767.3 1,202*** 806.0* 

 

(224.4) (492.6) (363.6) (461.8) 

     Observations 10,034 9,923 17,064 16,953 

R-squared 0.719 0.743 0.679 0.695 

Robust standard errors in parentheses.      *** p<0.01, ** p<0.05, * p<0.1 
+ indicates the following controls:  INTRODUCTION, PHASE_OUT, AGE, 

MPD, MSRP, DESIGN_CHANGE 
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Table 2.5: Flexibility and plant utilization 

  (1) (2) (3) (4) 

 

OLS OLS OLS OLS 

VARIABLES UTIL UTIL UTIL UTIL 

         

FLEX 0.138*** 0.0980***  

 

 

(0.00837) (0.0121)  

 FLEX_RECORD  

 

0.113*** 0.0377*** 

 

 

 

(0.00858) (0.0136) 

PLANT FIXED EFFECTS No Yes No Yes 

CONSTANT 0.522*** 0.481*** 0.392*** 0.379*** 

 

(0.0394) (0.0321) (0.0350) (0.0261) 

 

 

 

 

 Observations 7,606 7,606 7,606 7,606 

R-squared 0.193 0.520 0.190 0.517 

Robust standard errors in parentheses.       

*** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 2.6: Incentives and demand volatility 

  (1) (2) 

 

 

 VARIABLES Mean Incentive Model Fixed Effect 

     

L_VOL 2,030*** 1,368*** 

 

(189.6) (253.2) 

Constant 3,981*** 731.1*** 

 

(131.8) (175.9) 

 

 

 Observations 325 296 

R-squared 0.262 0.090 
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Table 2.7: MSRP and flexibility 

  (1) (2) (3) (4) 

 

OLS OLS 2SLS 2SLS 

VARIABLES Only domestic All vehicles Only domestic All vehicles 

          

FLEX 274.9*** 72.27 2,104*** 1,370*** 

 

(56.78) (68.75) (282.0) (304.7) 

Constant 27,501*** 29,877*** 12,052*** 10,527*** 

 

(103.0) (85.04) (241.3) (259.5) 

     Observations 10,044 17,167 10,035 17,065 

R-squared 0.979 0.986 0.976 0.985 

Robust standard errors in parentheses.      *** p<0.01, ** p<0.05, * p<0.1 

All columns include the following controls:  INTRODUCTION, PHASE_OUT, 

AGE,DESIGN_CHANGE 

 

Table 2.A1:  Estimates of the Demand System 

  (1) 

 

IV Nested Logit 

VARIABLES MS 

    

MODEL_PRICE -9.30e-05*** 

 

(1.13e-06) 

SIZE 0.000208*** 

 

(5.58e-06) 

HPWT 18.63*** 

 

(0.700) 

MPD -0.0354*** 

 

(0.00358) 

L_MKSHIINSEG 0.805*** 

 

(0.0145) 

CONSTANT -3.700*** 

 

(0.186) 

  Observations 17,683 

R-squared 0.729 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Includes segment-time  interactions 
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Table 2.A2: Subjective assessment of flexibility 

  (1) (2) (3) (4) 

  

 

  VARIABLES AVG_INC AVG_INC AVG_INC AVG_INC 

          

MIX_FLEX -772.8*** -218.0*** 

  

 

(55.17) (59.22) 

  HARBOUR_FLEX 

  

-448.2*** -821.7*** 

   

(129.5) (180.1) 

PLANT FIXED EFFECTS No Yes No  Yes 

Constant 2,822*** 2,871*** 3,607*** 3,945*** 

 

(209.6) (112.1) (326.1) (229.5) 

     Observations 4,427 4,427 1,221 1,221 

R-squared 0.075 0.698 0.027 0.730 

   

     Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Columns 1 and 2 show the effect of the demonstrated mix flexibility on plant 

level average incentives. We observe that those effects are similar to the ones found at 

the model level. Columns 3 and 4 show the effect of the subjective assessment of 

flexibility on plant level average discounts. We observe that they are also negative and 

statistically and economically significant. 
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Table 2.A3: Flexibility and sales 

  (1) (2) (3) (4) 

     VARIABLES SALES SALES SALES SALES 
          
FLEX 495.1*** 468.3*** 509.7*** 282.7** 

 
(136.9) (135.6) (135.1) (114.5) 

INCENTIVE 
  

0.215*** 0.305*** 

   
(0.0312) (0.0278) 

PROD 
   

0.267*** 

    
(0.0147) 

MODEL FIXED EFFECTS Yes Yes Yes Yes 

     SEGMENT-TIME DUMMIES Yes Yes Yes Yes 

     ADDITIONAL CONTROLS No Yes
+  Yes

+

  Yes
+

  

     Observations 10,044 9,930 9,930 9,930 
R-squared 0.886 0.888 0.888 0.907 
Robust standard errors in parentheses 

    *** p<0.01, ** p<0.05, * p<0.1 
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2.11. Figures. 

 

 

Figure 2.1: Production (left) and incentive (right) data for Ford Edge vs Honda 

Pilot. 
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Figure 2.2: Allocation of platforms to North American plants at Nissan (left) and 

Ford (right) 

 

 

Figure 2.3: Average incentive for GMC Envoy and Nissan Pathfinder 

GMC 

Envoy 

Nissan 

Pathfinder 
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Figure 2.4. Model fixed effects and demand volatility. a) Model level. b) Make 

averages.  
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Chapter 3 

Reputation in Online Service 

Marketplaces2 

Abstract 

Online service marketplaces allow service buyers to post their project requests 

and service providers to bid for them. In order to reduce the transactional risks, 

marketplaces typically track and publish previous seller performance as a numerical 

reputation score. By analyzing a detailed dataset with more than 1,800,000 bids 

corresponding to 270,000 projects posted between 2001 and 2010 in a leading online 

intermediary for software development services, we empirically study the effects of 

reputation on market outcomes. We find that buyers trade off reputation and price and 

are willing to accept higher bids posted by more reputable bidders. Sellers increase their 

bids with their reputation score, but primarily use a superior reputation to increase their 

probability of being selected as opposed to increasing their price. We study how various 

variables moderate the importance of the reputation score: we observe that the 

reputation score has a smaller effect in situations where there exists a previous 

relationship between buyer and seller, when the seller has certified his or her skills, 

when the seller is local, or in situations that prompt higher interpersonal trust.   

                                                      

2 This chapter is based on Moreno, A., C. Terwiesch and E. Krasnokutskaya. 2012. Doing 

Business with Strangers: An Empirical Analysis of Reputation in Online Service Marketplaces. 

Working Paper. 
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3.1.  Introduction 

Online reverse auctions have been used since the 1990s for procurement in large 

corporations, but recent technological developments have enabled small- and medium-

sized enterprises and even individuals to use similar mechanisms to fulfill their service 

procurement needs. Platforms offering online service marketplaces matching buyers and 

sellers of services have proliferated, with some of the leading examples being 

www.vworker.com, www.elance.com, www.guru.com and www.odesk.com. In the late 

2000s, the financial crisis increased the number of self-employed professionals and the 

need for small firms and entrepreneurs to drive down costs, which resulted in an 

increase of the use of the most popular service procurement platforms (The Economist 

2010, Hipple 2010).  

Online service marketplaces are intermediaries that connect buyers and sellers of 

services. Buyers are firms or individuals who post work they would like to procure (for 

example, the development of an iPhone application) and request bids for this work. 

Sellers are firms or individuals (for example, iPhone developers) who bid for the jobs 

posted by buyers. Such online service marketplaces present distinctive traits in contrast 

to their offline counterparts. Traditional markets often involve personal relationships 

that can generate trust, especially when there is repeated interaction. In online service 

marketplaces, buyers have little information about bidders, and little control over their 

work, which leads to increased adverse selection and moral hazard problems, and to a 

higher uncertainty regarding the outcome of the collaboration. In such an uncertain 

environment, reputation and trust play a crucial role. Reputation creates a link between 

past behavior and the expectation of future behavior (Mailath and Samuelson, 2006). The 

intermediary platform typically offers a reputation system that keeps track of the 

http://www.vworker.com/
http://www.elance.com/
http://www.odesk.com/
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buyers’ and bidders’ past behavior and facilitates trust (Resnick et al. 2000, Resnick and 

Zeckhouser 2002, Dellarocas 2003).  

Online service marketplaces also differ substantially from online marketplaces 

for products (e.g., eBay), for which there already exists an impressive amount of 

research studying the role of reputation (e.g., Bajari and Hortacsu 2003, Houser and 

Wouders 2005, Resnick et al. 2006, Cabral and Hortacsu 2010). The most important 

differences are the form of the auction, the service auction’s global footprint, and the 

difficulty to specify the seller’s effort. Online service marketplaces as studied in this 

paper take the form of reverse auctions, where the sellers submit bids in response to 

buyers’ requests for project work. This allows sellers to use their reputation score to 

increase their pricing power. Moreover, given the multiple bids with varying prices and 

reputation scores, the buyer faces a multi-attribute auction. Hence, unlike in the 

commonly studied eBay setting, price alone is not likely to predict the winning bid (in 

our sample, more than 40% of the projects were not awarded to the lowest bid). In 

absence of a physical product and the associated shipping needs, online service 

marketplaces also tend to have a global footprint. This is further accentuated by the 

opportunity for global wage rate arbitrage. In such global setting, the legal context 

governing the transaction is highly ambiguous, and thus buyers need to rely on 

reputation more than on potential litigation. Finally, given the skills of the seller, the 

accuracy of the specifications, the time it takes to complete the work, and the potential 

fraudulent seller behavior, the uncertainty associated with the quality of a service 

transaction is larger than for physical goods. This uncertainty can lead to post-

contractual opportunism and thus further increases the importance of reputation. 

Despite the growing importance of online service marketplaces and the special 

importance that reputation plays in them, there exists, to the best of our knowledge, no 
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prior empirical work analyzing the role of reputation in such settings. One explanation 

for this gap in research relates to the availability of data. eBay transactions are visible to 

the public, and the product is predictably rewarded to the highest bid. In contrast, in 

online service marketplaces, the bids are not visible to the public and the multi-attribute 

nature of the auction makes predicting the winning bid difficult, if not impossible. 

Through collaboration with vWorker (formerly rentacoder.com), one of the leading 

marketplaces for software development and other business services, we have obtained 

access to an extensive proprietary dataset. Our dataset includes more than 1,800,000 bids 

corresponding to more than 270,000 projects posted between 2001 and 2010 by 122,000 

coders. This dataset includes participants from over 80 countries.  In fact, more than 85% 

of the projects have the buyer and the winning seller located in different countries. A 

unique feature of our data is that we observe all the transactions in the market and 

during a long period of time, so that we are also able to follow buyers and sellers over 

time. This allows us to study how sellers adjust their bid setting strategy as their 

reputation changes.  

We use a discrete choice framework to study how buyers choose between 

competing bids from different service providers and how they trade off different 

attributes, focusing primarily on the role of reputation. Our econometric approach, 

together with the unique data set we assembled, allows us to make the following 

contributions.  

First, we show that in the multi-attribute auction context created by the online 

service marketplace we study, buyers trade off the cost of the service with the reputation 

of the seller. We find a significant and large reputation premium. One additional point 

in the reputation score (out of 10) has approximately the same effect on bid choice as a 
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reduction by one standard deviation in the bid amount. This extends prior research that 

has been done on product auctions. 

Second, we show that bidders internalize the fact that reputation is valuable to 

buyers, and adjust their bidding strategy as they accumulate reputation. Bidders start by 

bidding low when their reputation is low or unestablished, so that they can build 

reputation. They increase their bids as their reputation improves. However, bidders 

adjust their bid prices to a lesser extent than the buyers adjust choices. One additional 

point in the reputation score (in a range 0-10) is associated with an increase in bid 

equivalent to 1% of the standard deviation of the bids received for a project. In other 

words, the coders benefit from their increased reputation mostly through higher 

volume, rather than through higher prices. 

Third, we analyze the moderators of reputation. Our data presents significant 

variation not only in reputation scores but also in other available information and 

attributes of the coder. This allows us to study how the effect of the reputation score 

interacts with other variables. We show that reputation is less important for coders who 

have certified their skills by taking an online test, for coders who are from the same 

country as the buyer, for coders with whom the buyer has worked before, and for coders 

who leave cues that prompt interpersonal trust, like posting a picture in their profile. We 

interpret these findings according to existing economic and behavioral theories. 

The rest of the chapter is organized as follows. Section 2 discusses related 

literature. Section 3 introduces the empirical setting and describes the institutional 

details of the market. Section 4 develops hypotheses based on previous research. Section 

5 describes the data. Section 6 presents the econometric specification and the results of 

the estimation of the models. Finally, Section 7 concludes by pointing at some of the 
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managerial implications of our findings and at some areas of current and future 

research.  

3.2.  Literature Review 

Our study of reputation in online service marketplaces has close connections to 

literature streams in information systems, operations management, economics and 

management of organizations. 

This paper is closely related to the information systems literature that studies 

reputation in online auctions and its effect on market outcomes. Most of the work in this 

domain has focused on product auctions, especially in the eBay market (Bajari and 

Hortacsu 2003, Houser and Wouders 2005, Resnick et al. 2006, Cabral and Hortacsu 

2010, among others). Bajari and Hortacsu (2004) reviews some of the most relevant 

papers, which overall find some evidence supporting the claim that seller reputation has 

a positive effect on prices in eBay auctions. Some recent work in information systems 

has focused on the role of online reputation systems and, more generally, online 

feedback mechanisms. Dellarocas (2003) and Dellarocas (2006) provide comprehensive 

reviews. Bolton et al. (2004) perform an experimental investigation on the effectiveness 

of electronic reputation mechanisms. Bakos and Dellarocas (2011) compare litigation and 

online reputation as quality assurance mechanisms using analytical models. Other 

papers address some of these issues empirically using observational data. For example, 

Chevalier and Mayzlin (2006) study the effect of word of mouth on sales, and Dellarocas 

and Wood (2008) study the feedback mechanism at eBay and the impact of reciprocity 

and the informativeness of missing reviews. Some recent papers use text mining 

techniques to study the importance of user feedback and reviews (Ghose at al. 2009, 

Archak et al. 2011).  
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The operations management community has devoted considerable efforts to 

study procurement auctions. Most of the papers describe analytical models (e.g., 

Elmaghraby 2000, 2004, Tunca and Zenios 2006, Wan and Beil 2009). Pinker et al. (2003) 

provide a review of the literature related to the management of online auctions. Some 

recent work has also focused on markets for the procurement of innovation (e.g., 

Terwiesch and Xu 2008, Yang et al. 2011). Despite the abundance of theoretical models, 

there is very limited work studying online service marketplaces or procurement 

auctions empirically.  Among those, Gefen and Carmel (2008) study offshoring and 

global trade in online service marketplaces, Stanton and Thomas (2010) analyze the role 

of intermediary agencies in screening candidates in online labor markets, Snir and Hitt 

(2003) study the effects of costly bidding in internet-based procurement of professional 

services, and Tunca et al. (2011) study online procurement auctions for legal services by 

General Electric. Our paper complements this literature in procurement auctions by 

analyzing the role of reputation in markets for service procurement.  

The economics literature has provided a significant number of models to analyze 

reputation. Some general references are Bar-Isaac and Tadelis (2008), Mailath and 

Samuelson (2006), and MacLeod (2007). The reputation models can be roughly 

categorized into two frameworks. The first framework deals with reputation as Bayesian 

updating on a hidden type (Kreps and Wilson 1982, Kreps et al. 1982). Under this 

framework, the reputation system has predominantly a signaling role – in our particular 

case, it would give information about the skill and trustworthiness of the coder. The 

second framework sees reputation as a coordination equilibrium in a repeated game 

context (Klein and Leffler 1981). Under this framework, reputation has mainly a 

sanctioning role – in our particular case, the threat of a bad rating would induce high 

effort on the coder side. In reality, these two frameworks are stylized extremes that 
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allow us to focus on isolated sources of information asymmetry (pure signaling vs. pure 

moral hazard). In practice, both sources of information asymmetry are important in 

these markets (see Cabral 2005 and Dellarocas 2006 for a more detailed description of 

the frameworks). Our paper uses these models to formulate hypotheses about the effect 

of the reputation score on outcomes and to interpret the results.  

Finally, our work is also related to the trust literature in management of 

organizations. In this literature, trust has been defined as “the willingness of a party to 

be vulnerable to the actions of another party  based  on  the  expectation  that  the  other  

will  perform  a particular  action  important  to  the  trustor,  irrespective  of  the  ability  

to monitor  or control  that  other part,” (Mayer et al., 1995). While the economic 

literature has discussed trust normatively as arising from the equilibrium of a repeated 

game (Cabral 2005), the literature in management of organizations literature has 

followed a more behavioral approach and typically grounds trust in psychological 

processes analogous to the processes that facilitate collaboration. Trust is a subjective 

measure that is influenced by the context in which transactions take place and by the 

individuals’ biases. For example, the literature in organizational psychology has 

identified situations that prompt interpersonal trust, such as homophily (people are 

more likely to trust similar people) or familiarity (see Brass 2011), and some research in 

psychology and in human-computer interface has pointed out the importance of 

anthropomorphism (people are more willing to trust human agents than nonhuman 

agents) (see Waytz et al. 2010). Our work discusses the role of some of these behavioral 

drivers of trust in the choices made by buyers in an online service marketplace and, in 

particular, we explore how interpersonal trust moderates the influence of the 

quantitative information provided by the reputation system.  
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To our knowledge, no paper has empirically studied reputation mechanisms in 

an online service marketplace. Therefore, we contribute to the existing literature by 

extending the analysis to a new setting of increasing economic importance. Beyond this 

novel empirical setting, we extend the line of prior work by introducing a set of 

moderating variables and by taking advantage of repeatedly observing the same seller 

over time. 

3.3. Description of the Empirical Setting 

Our data comes from vWorker.com, an on-line intermediary that brings together 

buyers and sellers of software development services and other professional services. The 

company began as rentacoder.com, but later expanded the scope of services beyond 

software. 

At vWorker, registered buyers (firms or individuals) submit projects to the 

intermediary seeking bids from coders. Along with this submission, the buyer provides 

a project specification, lists the required skills for a successful completion of the project, 

and sets a targeted deadline. Registered sellers (coders) read the descriptions of the 

projects. Depending on their relevant expertise and their overall interest in the project, a 

small fraction of coders then submit bids to the intermediary. Bidders can observe the 

current number and characteristics of participants in an auction, but they cannot see the 

competing bids of other coders. At a time pre-determined by the buyer, the intermediary 

ends the auction and presents a catalog of all bids to the buyer. The buyer sees the bids, 

including prices, coder location, coder reputation, and the number of projects the coder 

has completed. With a click on the coder, the buyer can obtain more detailed 

information on the coder, including a picture of the coder as well as a history of the 
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coder’s prior work alongside with comments and reputation scores posted by previous 

buyers.  

 When choosing from the menu, the buyer thus observes all bids and has access 

to all information about the submitting coders. Based on this information, the buyer 

awards the project to one coder. At the moment of choice, the buyer potentially faces 

both adverse selection (are the coders qualified for the job?) as well as moral hazard 

(will the coders keep their promises?). The intermediary provides a set of measures to 

reduce these problems. First, the intermediary keeps a rating (reputation score) for each 

of the participants in the marketplace based on the feedback from historical transactions. 

Second, the intermediary provides an arbitration system to resolve potential disputes 

should the service not meet the buyer’s expectations. When the buyer chooses the coder, 

the buyer submits the funds corresponding to the bid he has chosen to an escrow 

account managed by the intermediary. The money remains in escrow until the service 

has been carried out at the satisfaction of the buyer. 

Upon completion of the work (or after arbitration), the money (or in the case of 

arbitration, a fraction of the money) is transferred to the coder. Finally, the buyer has an 

opportunity to rate the coder, leading to an update in the coder’s reputation score, 

which is computed as the average of the previous ratings received by the coder. The 

buyer can also provide verbal comments (positive or negative) for the coder. 

Turning our attention to the supply side of this market, coders make several 

decisions. First, they decide whether to bid for a project or not. If they decide to bid, they 

decide the amount they want to bid, and if they are awarded the project, they decide the 

level of effort they exert. Furthermore, coders can take tests on the site to certify their 

skills (for example, they can take a C++ exam to become a certified C++ coder). These 

certifications appear in their profiles and can be viewed by buyers. Coders face a 
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dynamic decision problem: they are bidding and working on projects in the near term, 

but they also have to think strategically about the future. Strategic considerations arise 

from the fact that the website keeps track of work done by coders and the resulting 

buyer satisfaction. This makes past coder actions a part of public information in the 

market. And, as discussed above, future buyers will take this information into account 

when they choose among competing bids. Coders can also be influenced by their own 

reputation when setting their bids. Assuming that buyers value coder reputation 

positively and that buyers trade off reputation and price (which is something that we 

hypothesize and test in the next sections), a coder, especially one who is new to this 

marketplace, may bid relatively low in order to accumulate some experience or to build 

reputation. Experienced coders with good reputation scores, in contrast, may bid 

relatively high because they know that buyers appreciate their higher reputation score 

and are willing to pay premium prices for this. 

3.4. Theoretical Foundations and Hypotheses Development 

We analyze four effects of coder reputation on market outcomes. First, we study 

how buyers choose among competing bids, focusing on how buyers react to coders’ 

reputation scores. Second, we study how the evolution of coders’ reputation scores 

affects their bids. Third, we study how particular informational situations and 

characteristics of the coders moderate the effect of the reputation score on buyer choice. 

And fourth, we analyze how information unobserved to us as researchers, yet 

potentially public information in the marketplace, complements the structured 

reputation score created by the intermediary.  

In order to develop our hypotheses, we rely mainly on results derived from 

economic models of asymmetric information as they apply to reputation systems. 
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Reputation systems are primarily used to reduce moral hazard and adverse selection 

problems. In online service marketplaces, moral hazard could occur once a project is 

awarded if the coder engages in post-contractual opportunism by exerting less effort 

than the one required to deliver what was promised. The reputation mechanism can 

reduce moral hazard by offering a sanctioning device (Dellarocas, 2006). As noted by 

Dellarocas (2006), “if the community follows a norm that punishes traders with histories 

of bad behavior (by refusing to buy from them, or by reducing the price they are willing 

to pay for their products) and if the present value of punishment exceeds the gains from 

cheating, then the threat of public revelation of a trader’s cheating behavior in the 

current round provides rational traders with sufficient incentives to cooperate.”  Klein 

and Leffler (1981) develop the notion that repetition can induce trustworthiness and 

contract performance. In our particular case, and focusing on buyer’s actions, if such a 

sanctioning device is in place we would expect buyers to be more likely to award 

projects to coders with histories of good behavior (e.g., to coders with high reputation) 

or to be willing to higher bids to coders with a better reputation.  

Buyers do not have information about the real ability or intentions of the sellers, 

creating an adverse selection problem.  In such a setting, reputation mechanisms can act 

as signaling devices. For example, the fact that a coder has received consistently high 

ratings in a particular type of project may allow the buyer to update his beliefs with 

respect to the skills of the coder. Assuming that commitment to high effort is a “type” 

characteristic (e.g., there are coders who are always exert high effort and coders who 

always exert low effort), the reputation score also gives a signal about the likelihood of 

the coder exerting high effort. Frameworks dealing with reputation as Bayesian 

updating on a hidden type are described in Kreps and Wilson (1982) and Kreps et al, 

(1982).  
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Dellarocas (2006) describes the distinction between pure moral hazard and pure 

adverse selection settings in that in the former case, all sellers are assumed to have the 

same ability level and are capable of the same type of behavior, while in the latter case 

they have different intrinsic abilities. In pure moral hazard settings, the reputation 

system is used to constrain behavior, while in pure adverse selection settings the 

reputation system is used to induce learning.  

Our first analysis aims to estimate the effect of coder reputation score on buyer’s 

choice behavior. The two frameworks described above support the hypothesis that 

higher coder reputation should result in a higher perceived utility for the buyer and thus 

a higher probability of the bid being chosen. According to a pure moral hazard model, a 

higher reputation score would induce higher effort by the coder because building 

reputation is costly for the coders, and a coder with a higher reputation is exposed to a 

higher potential sanction for a deviation of the expected behavior, and therefore is more 

likely to cooperate. According to a pure signaling model, a coder with a higher 

reputation score is more likely to have better skills or to be committed to exerting high 

effort in the task. Consequently, we hypothesize: 

Hypothesis 1. The probability of awarding a project to a coder increases with the 

reputation score of the coder. 

Empirical support for this hypothesis would complement prior work in product 

auctions that have established a price premium of product auctions in these settings (see 

Bajari and Hortacsu 2004 for a review). Besides confirming that the direction of the effect 

is the one we hypothesize, we are interested in quantifying the trade-off between price 

and reputation made by buyers in online service marketplaces.  
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The second part of our analysis is concerned with how a coder behaves in this 

market. To the extent that buyers care about reputation (Hypothesis 1), a profit-

maximizing coder will take advantage of this preference. Specifically, a coder who 

achieves a higher reputation can follow one of two strategies. First, the coder can benefit 

from his reputation by increasing the bid amount and keeping the probability of being 

chosen constant. Second, the coder can benefit from his reputation by bidding at the 

same level as before and enjoying a higher probability of winning a given auction. In 

other words, coders can extract the benefits of higher reputation through price or 

through volume. It is an empirical question to find how those two (potentially 

coexisting) mechanisms play out in this market. We thus hypothesize: 

Hypothesis 2a. The bid amounts set by coders increase with their reputation score. 

Hypothesis 2b. The probability of a coder winning a project increases with the 

reputation score of the coder. 

Beyond testing these two hypotheses, we are interested in the magnitude of the 

price adjustment, if such adjustment exists. The comparison between the magnitude of 

the price effect in coder bidding and the reputation-price tradeoff made by the buyer 

allows us to interpret whether the coder extracts the reputation premium mostly 

through price or through volume. These hypotheses also allow us to explore a subtle 

difference between online service marketplaces and product auctions. Consider an eBay 

auction for a good with at least one bidder and no reserve price. If there is a reputation 

premium, we would expect this to be materialized through a higher closing price in the 

auction. Consider now a project in a service marketplace like ours. Higher reputation of 

one bidder does not necessarily result in a higher expected transaction price. The 

reputation premium can be manifested just through an alternative allocation of the 

project, other than the one that would have occurred if the reputation had stayed the 
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same. For example, the higher reputation can just help this coder gain a project that 

would have gone to another coder with lower reputation and same price. If coders do 

not increase their bids with their reputation score (i.e., if Hypothesis 2a is not 

supported), the reputation premium will result in a different allocation of projects but 

not necessarily in higher prices. But if coders increase their bids as they increase their 

reputation (i.e., if Hypothesis 2a is validated), at least some of the reputation premium 

will reach the market in the form of higher transaction prices. 

While the reputation score is an important element to facilitate online 

transactions, the effect of reputation score on buyer choice is not equally important in 

every situation. Our third analysis considers variables that moderate the effect of 

reputation on choice. We develop hypotheses on how the buyer’s utility for reputation 

score interacts with other available informational situations and coder characteristics. 

Our purpose is not to establish an exhaustive list of all the situations that might interact 

with reputation, but to offer some representative examples of moderating variables that 

affect the utility of the reputation score, according to mechanisms that can be explained 

from available theories drawn from signaling models, sanctioning models, and 

behavioral models of trust. In particular, we propose hypotheses regarding how the 

impact of the numerical score on buyer’s choice is moderated by four situations that 

exist in our market but that also have a broader applicability. 

First, consider the role of coder certification. Because the reputation score has a 

signaling function, it is informative to study how its impact changes when there are 

alternative signals available. Our market provides one feature that allows us to explore 

this question: vWorker allows coders to certify their skills by taking a timed skill 

assessment test. For example, coders can take a test to certify their C++ coding skills. The 

certification information is visible to the buyers in the platform, and they might take it 
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into account when awarding projects. This certification works as a signaling device 

(Spence 1973): it is costly to obtain (workers must take a test) and the costs of obtaining 

it are higher for less able coders. We would therefore expect that the buyer’s perceived 

utility increases with the availability of coder certification. How should the availability 

of additional information affect the impact of the reputation score on buyer’s choice? For 

coders who do not have certification, the reputation score is the only available signal. 

Coders who have certified skills have another available signal and therefore in those 

cases the reputation score is a less informative signal overall, and we expect it to have a 

lower impact on buyer’s decisions than when there are no signals other than the 

reputation score. This is formalized in the following hypotheses: 

Hypothesis 3-1a. The probability of awarding an auction to a coder is higher when a 

coder is certified. 

Hypothesis 3-1b. The reputation score has a lower impact on buyer’s choice probability 

when a coder is certified. 

Second, consider the importance of a prior relationship between buyer and seller. 

From a signaling standpoint, having worked with a coder in the past gives firsthand 

information on the coder’s skills. Analogous to the previous case, we can hypothesize 

that an additional available signal can reduce the informativeness of the reputation 

score. But there are also other important behavioral considerations derived from the 

literature on management of organizations. This literature has studied the aspects that 

influence perceived trustworthiness and that can induce trust in uncertain transactions. 

Familiarity between organizations and individuals has been observed to breed trust 

(Gulati 1995), and therefore we would expect that familiarity with the coder will result 

in higher valuation for the buyer. Furthermore, perceived trustworthiness can also make 

up for a lower reputation score. This is formalized in the following hypotheses: 
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Hypothesis 3-2a. The probability of awarding an auction to a coder is higher when the 

buyer has worked with the coder before. 

Hypothesis 3-2b. The reputation score has a lower impact on buyer’s choice probability 

when the buyer has worked with the coder before. 

Third, consider the effect of location on reputation and trust. It has been noted 

that similarity between agents simplifies communication and makes trust generation 

easier (Kossinets and Watts 2009). Therefore, we predict that buyers will prefer coders 

from the same country, all else being equal. An alternative justification for this 

hypothesis is that when the buyer and coder are from the same country, there are 

alternative sanctioning devices. For example, it is easier for the buyer to use the court of 

law if the project is performed poorly and arbitration is not favorable. The availability of 

alternative sanctioning devices reduces the appeal of using threats to the reputation 

score as a sanctioning device, and therefore we would expect the impact of the 

reputation score to be lower when the coder is local. Furthermore, the increased 

perceived trustworthiness of a local coder can make up for a lower reputation score. We 

formalize these notions with the following hypotheses: 

Hypothesis 3-3a. The probability of awarding an auction to a coder is higher when the 

coder is local. 

Hypothesis 3-3b. The reputation score has a lower impact on buyer’s choice probability 

when a coder is local. 

Fourth, the last moderator of reputation that we explore is the availability of a 

coder’s picture. Recent research in psychology has demonstrated that people are more 

willing to punish an agent that they consider mindful (Gray et al., 2007), and it has been 
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suggested that anthropomorphizing agents results in increased trustworthiness (Waytz 

et al., 2010). Accordingly, we hypothesize: 

Hypothesis 3-4a. The probability of awarding an auction to a coder is higher when the 

coder has a picture. 

Hypothesis 3-4b. The reputation score has a lower impact on buyer’s choice probability 

when a coder has a picture. 

3.5. Data 

Our dataset includes the 273,837 projects that were posted in vWorker between 

May 2001 and November 2010. We observe a total of 1,822,705 bids. This amounts to an 

average of 6.66 bids per project. Most of our data corresponds to the period in which 

vWorker was called rentacoder.com and the projects are primarily concerned with 

software development services. The projects are typically small. The mean winning bid 

is $126.50 (median winning bid is $50). Most of the bids (94.5%) are below $500. 

For each project, we compute the number of bids received, the winning bid, and 

the highest, lowest, mean and median bid. Besides that, we know the date when the bid 

request was posted, and the rating given to the coder. Table 3.1 shows some summary 

statistics at the project, bid and coder level. 

The participation of the bidders in the market is very heterogeneous. More than 

half of the coders submitted 3 or less bids. Many of the coders did not win any auction. 

Actually, only 29,786 of the 122,102 coders (24%) won at least one project during the ten 

years of our sample. Some features of this market are consistent with the Pareto 
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property: a large number of users are mostly inactive and a small number of users 

generate a large fraction of the transactions on the site.  

3.6. Econometric Specification and Results 

3.6.1 Econometric Model of Buyer Choice 

The multi-attribute procurement auction can be modeled using a conditional 

logit specification (McFadden 1974). We assume that the utility that a generic buyer 

obtains from accepting a bid b submitted for project i can be expressed as 

   
     

       (3.1)

 

where Xib are the attributes of the bids that affect the utility that the buyer 

receives from choosing that bid. Let C(b) denote the coder that submits the bid b, B(i) 

denote the buyer that submits the project i, S(i) denote the set of bids received for project 

i and D(b) denote the date when the bid b is submitted. These attributes can be broken 

down into the subvectors  Xib=(Xproject|Xbid|Xcoder|Xrelation|Xbid-set)  using the following 

simplified notation: 

 Xproject are attributes that depend only on the project and are constant for 

all bids received for the project, such as the number of bids received for 

the project.  

 Xbid are attributes that depend only on the bid, such as the bid amount.  

 Xcoder are attributes that depend on the coder, such as the coder’s country 

of origin, and potentially on the time D(b) when the bid is submitted, 

such as the reputation score of the coder at that time. 
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 Xrelation are attributes that depend on the relationship between a given 

coder and a given buyer, and potentially on the time D(b) when the bid is 

submitted. Examples are an indicator of whether the coder and buyer are 

from the same country or an indicator of whether the buyer has worked 

with the coder before at the time of bid submission 

 Xbid-set are attributes that depend on the bid and on the other set of bids S(i) 

received for the project. One example of this type of variable is whether a 

bid is the smallest one received for a project. 

We do not observe the utility that the buyer obtains from choosing a bid but we 

do observe which bid b=1..J the buyer chooses, if any. Let Yi=b if bid b is chosen by buyer 

for project i, which implies uib>uik for all k≠b. If the error ib follows a Gumbel (type 1 

extreme value) distribution, the probability of choosing a bid has a closed form: 

  (    )  
    

  

∑     
   

   

 
(3.2)

 

Note that the coefficients that correspond to the variables included in Xproject (i.e., 

variables that remain constant for all the bids received for a project) cannot be identified 

from this model, since the conditional logit model requires variation across alternatives. 

3.6.2 Reputation and Bid Choice 

We start by analyzing how buyers use the available information in their bid 

choice decision. In particular, we are interested in the effect of reputation on the 

probability of a bid being chosen. We start with a parsimonious model that allows us to 

quantify the effect of coder reputation on buyer’s choices. 
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In the bid-specific set of variables Xbid we would include the amount of the bid. 

However, since there is a huge heterogeneity between projects and within bids in a 

project, we normalize the amount of the bids with respect to the rest of the bids received 

for the project as:  

            
           

    
 (3.3)

 

where set=S(i) is the set of bids received for project i,      denotes the median bid 

received for the bid request i and      denotes the standard deviation of the bids 

submitted to the bid request. In other words, we express bid amounts as the distance to 

the median bid received for the project, measured in number of standard deviations of 

the bids received for the project. We have tested alternative specifications for the 

normalization procedure, and the qualitative results do not change. We also include a 

dummy variable that indicates whether the submitted bid is the smallest, so that we can 

capture any additional premium that the buyer attributes to the cheapest offer. 

Therefore Xbid-set  contains two variables, BIDNbid-set and SMALLESTbid-set. 

Among the coder-specific variables Xcoder, we include the number of ratings that 

the coder has received in the past, the reputation score of the coder when the bid is 

awarded and a dummy variable to control for those cases in which the coder has 

received no ratings in the past. We also include region dummies (one for US/Canada, 

one for Eastern Europe, one for rest of Europe, one for India/Pakistan, one for rest of 

Asia and one for other location). Therefore Xcoder contains the variables NRATINGScoder-time, 

REPUTSCOREcoder-time, UNRATEDcoder-time, and the regional dummies. 

Finally, in this specification Xrelation includes a dummy variable that indicates 

whether coder and buyer are from the same country.  
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We estimate the model using maximum likelihood. Table 3.2 shows the estimates 

(column 1) and the marginal effects evaluated in the median values of the variables 

(column 2).  

We observe that the probability of choosing a bid decreases with the 

(normalized) bid amount, as we would expect from a buyer who has a positive utility 

for money. The probability of choosing a bid increases with the number of ratings that 

the coder has received, which is a proxy for experience.  

The smallest bid received in a bid request, and the bids received from coders 

who are from the same country as the buyer, have a higher probability of being selected. 

Coders from U.S or Canada (the baseline category) are preferred, all else being equal, 

although there is no statistical difference with the coders from Western Europe. Coders 

from India, Pakistan, and the rest of Asia are less preferred. 

The positive and significant coefficient for the reputation score allows us to 

validate Hypothesis 1: the probability of awarding an auction to a coder does increase 

with the reputation score of the coder. These results are consistent with both the 

signaling and the sanctioning role of reputation mechanisms. A buyer may prefer to 

work with a coder with higher reputation because this updates his beliefs on the skills of 

the worker (adverse selection story) or because he thinks that the coder will have more 

to lose if he does not perform well, because of the higher cost of a sanction for a coder 

with higher reputation (moral hazard story). 

Besides looking at the signs of the coefficients, it is interesting to analyze the 

comparative magnitude of their marginal effects, in particular the one of the reputation 

score. At the median values, one additional reputation point increases the probability of 

choosing a bid by 0.0054. This is approximately the same effect on success probability as 
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reducing the normalized bid value by one standard deviation. This implies that the 

reputational effects in this market are economically very important.  

We propose a more detailed model in Section 6.4, where we discuss the 

interactions of the reputation score with other variables, and we observe that the effects 

that we identify with this parsimonious model do not qualitatively change. 

3.6.3 Reputation and Bidding Behavior 

Having established the effect of reputation on bid choice by the buyer, we now 

turn our attention to how coders adjust their bidding behavior over time as their 

reputation varies. Our dataset is unique in that respect, because we can follow coders 

over time.  

If coders are aware of the fact that buyers are willing to pay a significant 

premium for bids coming from coders with high reputation, they may increase their 

relative bids as they obtain more reputation. We propose the following specification to 

estimate the magnitude of the effect: 

                                             (3.4)

 

where j denotes the coder C(b) and t denotes D(b), the time at which bid b is 

placed. The variables have been previously introduced. We include coder fixed-effects to 

control for time-invariant characteristics of the coder.  

If   >0 and significant, then our Hypothesis 2a (the bid amounts set by coders 

increase with their reputation score) is validated. If   <0 or if it is not significantly 

different from 0, our Hypothesis 2a is rejected. The expected effect of            on 

price is ambiguous: on one hand, the more projects a coder has won in the past, the 
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more knowledgeable he/she is expected to be. This is valued by the buyer and therefore 

coders with more previous ratings will be able to charge more while maintaining the 

probability of being chosen. On the other hand, experience can also reduce cost. If coders 

who have been awarded projects in the past have lower costs, they could charge lower 

prices while keeping their expected revenue constant. 

We estimate the coefficients by using a fixed-effects estimator (Least Squares 

Dummy Variable). Table 3.3 shows the estimates.  

Column 1 shows the results for the coefficients of the reputation score and the 

number of ratings. The results show that the bid amount does indeed increase with 

reputation, and therefore Hypothesis 2a is validated. However, we note that the impact 

of reputation on bid size for a given coder is significantly smaller than the premium that 

the buyers are willing to pay for additional reputation. For an additional reputation 

point, coders increase their bids by 1% of the standard deviation.  This suggests that 

coders could more aggressively try to appropriate the price premium that buyers seem 

to be willing to pay, which can be quantified as close to one standard deviation of the 

bids received for a project. In other words, coders receive most of the benefits of their 

additional reputation by an increase of the probability of being chosen, as opposed to 

through higher prices. Coders do not cash their reputation mainly through price but 

through volume. However, there is a slight effect on prices, which means that at least 

some of the reputation premium will reach the market in the form of higher transaction 

prices.  

Each additional rating also has the effect of increasing the bid slightly. This 

suggests that the demand-side benefits of an additional rating outweigh the potential 

cost reduction that could be passed to the bids, and the net effect is positive. One 

additional rating has a much lower impact than one additional reputation point, but it is 
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important to note that the range that the number of ratings can span is not limited to 10. 

Therefore, for very active coders, this can result in a significant price increase.  

Column 2 adds a dummy variable to control for situations in which the coder has 

no previous ratings, but this variable is not significant and adding it does not change the 

other coefficients. 

Hypothesis 2b (the probability of a coder winning a project increases with the 

reputation score of the coder) is tested using a linear probability model with the 

following specification: 

                                                        

                            (3.5)

 

where    =1 if the bid b submitted by coder j=C(b) for project i is accepted, and 0 

otherwise. Hypothesis 2b is supported if    >0. This model can be estimated with a fixed 

effects regression. The results of the estimation, shown in Table 3.4, give support for 

Hypothesis 2b. In other words, coder yield increases with reputation. Note also that 

these results give only a conservative estimate of the increase in volume that arises from 

higher reputation, since coders also submit more bids as they become more reputable. 

3.6.4 Moderators of the Effect of Reputation Score on Bid Choice 

The model estimated in section 6.1 was a parsimonious model that included only 

the main effects of the variables that were considered a priori more important. We now 

develop a richer model that includes additional variables and their interactions with the 

reputation score. By doing that, we can test the set of Hypotheses 3-1a, 3-1b, 3-2a, 3-2b, 

3-3a, 3-3b, 3-4a, 3-4b that we have developed regarding the impact of certification, 
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familiarity, similarity and anthropomorphism in the probability of awarding bids and 

their moderating effect on the reputation score.  

The main variables that we use in the different specifications are described in 

Table 3.5. We also use interactions between REPUTSCORE and FAMILIARITY, 

HASCERTS, HASPIC and LOCAL. 

Table 3.6 shows the results. The first column reproduces the results of Table 3.4 

for comparison purposes. Column 2 adds variables to the baseline specification: 

HASCERTS is a variable that indicates whether a coder has certified his skills taking an 

online test; HASPIC is a variable that indicates whether the coder has included a picture 

in his profile; FAMILIARITY is a variable that indicates whether the buyer has worked 

with the coder before. Adding these variables improves the fit of the models but does 

not significantly change the coefficients obtained with the parsimonious analysis 

presented in section 6.2. Columns 3-6 incorporate the interactions between 

REPUTSCORE and HASCERTS, LOCAL, HASPIC and FAMILIARITY, respectively, and 

column 7 presents the full model with all the interactions. All the columns include 

controls for coder region and an indicator of whether the coder has not been rated yet. 

The coefficient of the variable HASCERTS is positive and significant in all the 

specifications that include it (columns 2-7). This implies that the probability of awarding 

an auction to a coder is higher when the coder is certified, validating Hypothesis 3-1a. 

Furthermore, the interaction between HASCERTS and REPUTSCORE is negative and 

significant. This implies that the reputation score has a lower impact on buyer’s choice 

probability when the coder is certified, which validates Hypothesis 3-1b. In other words, 

reputation and certification work as substitutes. 
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The coefficient of the FAMILIARITY variable (which indicates whether buyer 

and coder have worked together before) is positive and significant in all the 

specifications that include it (columns 2-7). This implies that the probability of awarding 

an auction to a coder is higher when the buyer has worked with the coder before, which 

validates Hypothesis 3-2a. Furthermore, the interaction between FAMILIARITY and 

REPUTSCORE is negative and significant. This implies that the reputation score has a 

lower impact on buyer’s choice probability when the buyer has worked with the coder 

before, which validates Hypothesis 3-2b. Reputation and familiarity with the coder work 

as substitutes. 

The coefficient of the LOCAL variable is positive and significant in all the 

specifications that include it (columns 1-7). This implies that the probability of awarding 

an auction to a coder is higher when the coder is local, validating Hypothesis 3-3a. 

Furthermore, the interaction between LOCAL and REPUTSCORE is negative and 

significant. This implies that the reputation score has a lower impact on buyer’s choice 

probability when the coder is local. This validates Hypothesis 3-3b and suggests that 

reputation and similarity with the coder work as substitutes. 

Finally, the coefficient of the variable HASPIC is positive and significant in all 

the specifications that include it (columns 2-7). This implies that the probability of 

awarding an auction to a coder is higher when the coder has a picture on the site, 

validating Hypothesis 3-4a. Furthermore, the interaction between HASPIC and 

REPUTSCORE is negative and significant. This implies that the reputation score has a 

lower impact on buyer’s choice probability when the coder has a picture. This validates 

Hypothesis 3-4b and suggests that reputation and the interpersonal trust enabled by 

anthropomorphism work as substitutes. 
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We note that the direction and magnitude of the coefficients of the parsimonious 

model presented in Section 6.2 do not qualitatively change when we add more variables, 

suggesting that the parsimonious model is not subject to significant omitted variable 

bias. 

3.7. Conclusions and Future Work 

Our results allow us to draw important conclusions regarding the effect of 

reputation on market outcomes in online service marketplaces.  We find that buyers 

react to coder reputation and are willing to pay a significant premium to award a project 

to a more reputable bidder. On a representative bid, one additional point in the 

reputation score has the same effect on the probability of being chosen as a reduction of 

the bid amount of one standard deviation of the bids posted for that project.  

Sellers also take into account their reputation when submitting their bids, and 

they adjust their bidding strategy as they accumulate reputation. However, they 

increase their prices more conservatively than what it seems that buyers would be 

willing to support. This can be interpreted as coders reaping most of the benefits of their 

reputation through higher volumes, rather than through higher prices. 

The reputation score does not live in a vacuum, and buyers do not react to 

reputation in an absolute way. The context of the transaction is important to 

determining the impact that reputation will have on choices. We have shown that coder 

certification reduces the value of reputation, and the same happens with situations that 

prompt interpersonal trustworthiness, such as familiarity between buyer and coder, 

common origin of buyer and coder, and coder anthropomorphism. The reputation score 

happens to be more meaningful in situations where there is no information about the 
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coder, there are limited external sanctioning mechanisms, or in situations where 

interpersonal trustworthiness is less likely to arise. These results have a broader 

applicability beyond the setting we study, and suggest that reputation and third-party 

certification can operate as substitutes. The same phenomenon is observed between 

interpersonal trust and reputation.  

The reputation system is not the only mechanism in place to control moral 

hazard in online service marketplaces. Most of the online service marketplaces, 

including vWorker.com, use an escrow system that only releases the funds after the 

work has been approved. In contrast to a pre-payment scheme, an escrow scheme 

reduces the likelihood that the coder would want to engage in post-contractual 

opportunism, because the buyer can threaten not releasing the funds if the coder fails to 

perform to the specifications of the work. Similarly, the reputation system is not the only 

mechanism in place to signal quality. Increasingly, platforms like vWorker offer coders 

the possibility of certifying their skills. Our results on the interplay of reputation score, 

third-party certification and interpersonal trust are relevant for the design of 

mechanisms that combine a reputation score with other features to reduce transaction 

risk. 

We conclude by discussing some limitations and areas of ongoing and future 

work. Our results presented here are based on a descriptive analysis in a reduced form 

setting. On the buyer side, one limitation of our approach is that we have not considered 

buyer heterogeneity. Our analysis can be interpreted as revealing the preferences of a 

representative buyer in this marketplace. We have experimented with random 

coefficient models that allow for some heterogeneity and our qualitative results do not 

seem to change, but we believe that fully accounting for buyer heterogeneity could 

result in additional insights. On the coder side, our model of bid setting estimates the 
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average effect of reputation and number of previous ratings on bid prices. However, 

there can be important non-linearities. These non-linearities, and more broadly the 

complex dynamics of coder behavior, could be better captured by using a structural 

model that endogeneizes the coder’s decision to bid for a given project. Such model 

could also explicitly incorporate forward-looking considerations about pricing and 

reputation accumulation. There is very little previous work in this space. To our 

knowledge, only Jofre-Bonet and Pesendorfer (2000) and Jofre-Bonet and Pesendorfer 

(2003) have modeled repeated participation in auctions, which requires the use of 

dynamic models. By developing such a structural model, we would be able to run 

counterfactual simulations to understand how the reputation system affects the market 

outcomes over time.  

Besides incorporating complementary methodologies, there are other questions 

related to the design of reputation systems for online service marketplaces that could be 

addressed in future related work. For example, understanding the effect of the amount 

of information that is shown to participants in the marketplace could lead to managerial 

insights regarding the design of better reputation systems. If buyers only see a 

reputation score and number of ratings, then coders can quickly obtain reputation points 

by bidding for and winning cheap projects and then using the accumulated reputation 

to obtain better prices in more expensive projects. In order to account for that, vWorker 

now shows the total dollar amount that has been awarded to a coder to date. Given that 

some of the online service marketplaces have existed for a few years now, there have 

been several policy changes like this one. Research on these policy changes could reveal 

the effect of some decisions in the market outcomes.  

With the increasing economic importance of online marketplaces, we believe that 

these and other related questions will receive more attention in the future.  
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3.9. Tables 

Table 3.1: Summary Statistics for Project Variables 

DESCRIPTION mean sd MED min max count 

Project-level summary statistics       

 Minimum bid in the bid request 97.83 259.95 30 1 17000 273837 

 Maximum bid in the bid request 1247.68 230800.8 71.25 1 9.00E+07 273837 

 Amount of the winning bid 126.53 349.97 50 1 30000 273837 

 Mean bid 227.47 18413.25 50 1 8333460 273837 

 Median bid 141.47 1953.34 50 1 1000000 273837 

 Standard deviation of bids 611.76 83294.5 25.57 0 2.36e+07 139750 

 Number of bids in bid request 6.67 10.74 2 1 248 273837 

 Rating to coder 9.78 0.78 10 0 10 128888 

Bid-level summary statistics       

 Bid amount 192.66 1430.35 70 1 1000000 1822705 

 Average coder rating 9.34 1.21 9.78 0 10 1256105 

 Minimum coder rating 6.23 3.73 8 0 10 1256105 

 Number of previously won  projects  33.68 84.40 6 0 1870 1812695 

 Number of ratings 23.81 62.67 4 0 1697 1812695 

Coder-level summary statistics       

 # of bids submitted by a coder 14.93 60.77 3 1 2795 122102 

 # of projects won by a coder 2.25 11.98 0 0 795 122102 

 # of bid requests posted by buyer  6.11 18.51 2 1 2075 45666 
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Table 3.2: Bid Choice 

 

 

 

 

 

 

 

 

 

 

 

 

 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

(1) (2) 

 

 

 VARIABLES SUCCESS MFX 

      

BIDNN -0.457*** -0.00508*** 

 

(0.00486) (0.000262) 

NRATINGS 0.00278*** 3.10e-05*** 

 

(4.95e-05) (1.65e-06) 

REPUTSCORE 0.487*** 0.00543*** 

 

(0.00563) (0.000211) 

UNRATED 3.439*** 0.0109*** 

 

(0.0546) (0.000536) 

SMALLEST 0.185*** 0.00189*** 

 

(0.0102) (0.000134) 

LOCAL 0.362*** 0.00339*** 

 

(0.0143) (0.000204) 

EASTERN_EUROPE -0.100*** -0.00117*** 

 

(0.0131) (0.000171) 

INDIA_PAK -0.532*** -0.00776*** 

 

(0.0126) (0.000467) 

OTHER_ASIA -0.390*** -0.00528*** 

 

(0.0152) (0.000367) 

OTHER_EUROPE -0.0104 -0.000116 

 

(0.0149) (0.000168) 

OTHER_LOCATION -0.238*** -0.00298*** 

 

(0.0169) (0.000284) 

   Observations 1,595,257 1,595,257 

Pseudo R2 0.119 

 LL -243323   
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Table 3.3: Bid Setting 

 

 

 

 

 

 

 

  

  (1) (2) 

 

  

VARIABLES BIDN BIDN 

      

REPUTSCORE 0.0102*** 0.0112*** 

 

(0.000153) (0.000676) 

UNRATED 

 

0.00941 

  

(0.00635) 

NRATINGS 0.000868*** 0.000868*** 

 

(1.47e-05) (1.47e-05) 

Constant -0.0164*** -0.0256*** 

 

(0.00109) (0.00631) 

   Observations 1,799,520 1,799,520 

R-squared 0.246 0.246 
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Table 3.4: Coder Yield 

 

 

 

 

 

 

 

 

 

 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1  

 

(1) 

VARIABLES Coder Yield 

    

BIDNN -0.00881*** 

 

(0.000353) 

SMALLEST 0.301*** 

 

(0.000802) 

LOCAL 0.0322*** 

 

(0.00126) 

REPUTSCORE 0.0113*** 

 

(0.000267) 

NRATINGS 0.000370*** 

 

(8.41e-06) 

UNRATED 0.0546*** 

 

(0.00234) 

NBIDS -0.00308*** 

 

(1.12e-05) 

Constant 0.0536*** 

 

(0.00245) 

  Observations 1,799,520 

R-squared 0.372 
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Table 3.5: Main Variables Used in the Analysis 

 Variable Description Belongs to set… 

NBIDS Number of bids submitted to the project Xproject 

BIDNN Normalized bid amount Xbid-set 

SMALLEST Indicates that the bid is the smallest received for a project Xbid-set 

NRATINGS Number of ratings received by the coder Xcoder   

REPUTSCORE Average rating received by coder in previous projects Xcoder 

UNRATED Indicates that the coder has not received previous ratings Xcoder 

HASCERTS Indicates whether a coder has been certified on the site Xcoder 

HASPIC Indicates whether the coder has a picture on the site Xcoder 

FAMILIARITY Indicates whether buyer and coder have worked together before Xrelation 

LOCAL Indicates that buyer and coder are from the same country Xrelation 
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Table 3.6: Moderators of Reputation (2001-2010). 

 

 

 

 

  

  (1) (2) (3) (4) (5) (6) (7) 

 

       

VARIABLES        

                
BIDNN -0.457*** -0.457*** -0.456*** -0.457*** -0.456*** -0.456*** -0.456*** 

 

(0.00486) (0.00496) (0.00496) (0.00496) (0.00496) (0.00495) (0.00495) 

NRATINGS 0.00278*** 0.00220*** 0.00222*** 0.00220*** 0.00221*** 0.00221*** 0.00223*** 

 

(4.95e-05) (4.99e-05) (5.00e-05) (4.98e-05) (4.99e-05) (4.99e-05) (4.99e-05) 

REPUTSCORE 0.487*** 0.487*** 0.490*** 0.492*** 0.492*** 0.491*** 0.503*** 

 
(0.00563) (0.00588) (0.00591) (0.00591) (0.00594) (0.00591) (0.00601) 

HASCERTS 

 

0.154*** 0.439*** 0.157*** 0.154*** 0.153*** 0.424*** 

  

(0.0140) (0.0505) (0.0140) (0.0140) (0.0140) (0.0509) 

HASPIC 
 

0.125*** 0.125*** 0.125*** 0.220*** 0.125*** 0.222*** 

  

(0.00687) (0.00687) (0.00687) (0.0158) (0.00687) (0.0159) 

FAMILIARITY 
 

1.308*** 1.308*** 1.308*** 1.308*** 1.428*** 1.430*** 

  

(0.00876) (0.00876) (0.00876) (0.00876) (0.0201) (0.0202) 

LOCAL 0.362*** 0.362*** 0.363*** 0.573*** 0.363*** 0.362*** 0.578*** 

 
(0.0143) (0.0146) (0.0146) (0.0228) (0.0146) (0.0146) (0.0229) 

SMALLEST 0.185*** 0.205*** 0.205*** 0.206*** 0.206*** 0.206*** 0.207*** 

 

(0.0102) (0.0106) (0.0106) (0.0106) (0.0106) (0.0106) (0.0106) 

REPUT_HAS_CERTS 
  

-0.0314*** 
   

-0.0295*** 

   

(0.00539) 

   

(0.00543) 

REPUT_LOCAL 

   

-0.0289*** 

  

-0.0295*** 

    
(0.00242) 

  
(0.00243) 

REPUT_PIC 

    

-0.0120*** 

 

-0.0122*** 

     

(0.00181) 

 

(0.00182) 

REPUT_FAM 
     

-0.0150*** -0.0153*** 

      

(0.00226) (0.00227) 

        

Observations 1,595,257 1,595,257 1,595,257 1,595,257 1,595,257 1,595,257 1,595,257 
Pseudo R2 0.119 0.163 0.163 0.163 0.163 0.163 0.163 

LL -243323 -231115 -231099 -231045 -231094 -231092 -230982 

df 11 14 15 15 15 15 18 

AIC 486668.8 462258.6 462227.6 462120 462217.3 462213.3 462000.4 
BIC 486803.9 462430.6 462411.9 462304.3 462401.5 462397.6 462221.5 

% suc predicted 0.338256 0.386362 0.386301 0.386955 0.386355 0.38667 0.386939 

% fail predicted 0.938365 0.94203 0.942026 0.942112 0.942004 0.941928 0.942 
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Chapter 4 

The Effects of Product Line Breadth 

Abstract 

 

Using a detailed dataset from the U.S. automotive industry in 2002-2009, we 

study the effects of product line breadth on market shares and costs. Consistent with 

theoretical predictions, we find a positive association between product line breadth and 

market share (0.1% per additional product) and unit production costs ($175 per 

additional product). Average unit production costs decrease with the use of platform 

families (on average, for every 100,000 vehicles produced for other models based on the 

same platform, unit production costs are reduced by $55). Besides production costs, we 

study the effect of product line breadth on mismatch costs arising from demand 

uncertainty, manifested through discounts and additional inventories. An additional 

product in the line is associated with an increase of around $100 in average discounts 

and with carrying three additional days of supply in the average inventory of all the 

models of the line. We propose an additional measure of product line breadth based on 

the range of fuel economy levels offered by an automaker. We find that automakers who 

offer a broader range of fuel economy levels increase their market share and reduce their 

average discounts as gas prices increase, suggesting that product line breadth can work 

as a hedge against changes in demand conditions. 
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4.1.  Introduction 

Product proliferation is pervasive in many industries. Consumers willing to buy 

a car in 2002 in the United States could choose among some 192 models, each of which 

had multiple configuration options. Certainly, that is a broader choice set than the black 

Ford T available to consumers in 1908, but not very impressive if we compare it with the 

234 models that were available in 2007, only five years later. On average, individual 

automakers have been broadening their products lines over the last few years. This 

paper studies the effects of product line breadth in the U.S. automotive industry. 

Previous theoretical and empirical literature has been concerned with the drivers 

and effects of product line breadth. Theoretical models (e.g., Lancaster 1990) suggest that 

broader product lines should result in higher firm market share, since customers are 

more likely to find products that are closer to their taste, and in higher production costs, 

due to the loss of economies of scale. However, as noted by Netessine and Taylor (2007), 

“empirical researchers have analyzed linkages between variety and production costs, 

but have arrived at contradicting conclusions.” For example, Kekre and Srinavasan 

(1990) find that broader product lines are associated with lower production and 

inventory costs, while Bayus and Putsis (1999) find a positive association between 

product line breadth and production costs.  

Besides this lack of consensus in the empirical findings, the empirical literature 

on the effects of product line breadth presents some opportunities for new work. Some 

important notions developed in the operations management and product development 

communities have been largely ignored by the empirical literature that studies the effect 

of product line breadth on costs. For example, Fisher (1997) discusses the two types of 

functions performed by supply chains: a physical function and a market mediation 

function, each of which incur in a different type of cost. Physical costs are the costs of 
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production, transportation and inventory storage, while market mediation costs arise 

“when supply exceeds demand and a product has to be marked down and sold at a loss 

or when supply falls short of demand, resulting in lost sales opportunities and 

dissatisfied customers”(Fisher, 1997). The literature on product line breadth has focused 

on the first type of cost, but has not considered the second type, which we generically 

label as mismatch costs. Mismatch costs are largely a consequence of demand 

uncertainty. Other notions such as delayed differentiation (Swaminathan and Tayur 

1998) or component commonality and product platforms (Robertson and Ulrich 1998) 

have been theoretically shown to allow offering a broad product line while controlling 

production and development costs. However, to the best of our knowledge, the effects of 

component sharing and platform strategies on production costs have not been 

empirically studied.  

In this paper, we attempt to bridge the gap between these theoretical notions that 

have been developed in the operations management and product development 

communities and the existing empirical literature on the effects of product line breadth. 

In order to do that, we use a detailed dataset of the U.S. automotive industry during the 

period 2002-2009. Besides being a very important industry, the automotive industry 

provides a very suitable setting to study the effects of product line breadth and, in 

particular, some of the aforementioned issues. It is an industry in which product 

platforms are used extensively, and it has a very particular pricing structure (firms set 

list prices before demand is realized and offer discounts when demand is realized) that 

allows us to measure supply-demand mismatch costs separately from production costs. 

In addition to this, firm entry and exit is not very important (at least in the period of 

study) and models are typically marketed over several years, which allows us to observe 

the same models in different contexts of product line breadth.  
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Using a rich dataset of the U.S. automotive industry and drawing from the 

results of some previous empirical and analytical research, we make the following main 

contributions: 

First, we study the effect of product line breadth on market share, and find that a 

broader product line is associated with a higher market share. Carrying one additional 

product in the line is associated with an increase of 0.1% in the market share of an 

automaker. This is consistent with findings of previous empirical papers in other 

settings (e.g., Kekre and Srinivasan 1990, Bayus and Putsis 1999). Using a consumer 

demand model, we also find that customers experience higher utility when product lines 

are broader. These findings illustrate the main benefit of having a broader product line. 

Second, we study the effect of product line breadth on production costs, and find 

that a broader product line is associated with higher average production costs, in 

contrast to Kekre and Srinivasan (1990). One additional product is associated with an 

increase of around $175 on the average unit production cost. These results are 

directionally consistent with the results of Bayus and Putsis (1999). An important 

difference is that Bayus and Putsis (1999) proxy production costs with prices. In the case 

of the automotive industry, different products might have different markups, and this 

approach could lead to bias. In contrast, we assume that the observed prices are the 

result of a pure strategy Nash equilibrium in prices, and use a consumer demand model 

to recover the markup of each model, which allows us to estimate the production costs.  

Third, we study the effect of platform families on production costs. We find that, 

consistent with the theoretical literature on platforms, using platform families decreases 

the production costs. On average, for every 100,000 vehicles produced for other models 

based on the same platform, unit production costs are reduced by $55. To our 

knowledge, no previous work has empirically examined the effects of platform families 

on production costs.  
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Fourth, we study the effect of product line breadth on mismatch costs. Mismatch 

costs are a consequence of demand uncertainty. Broader product lines are subject to 

higher demand fragmentation and, following an inverse pooling argument, are more 

exposed to the consequences of demand uncertainty. In the automotive industry, we 

observe mismatch costs in the form of discounts and inventories. We find that an 

additional product in the line is associated with an increase of around $100 in average 

discounts and with carrying three additional days of supply in their average model 

inventories. 

Finally, we propose a complementary attribute-based measure of product line 

breadth, capturing the range of fuel economy levels offered by an automaker, and we 

study how breadth in this measure helps hedge against changes in demand. We find 

that, for the same median fuel economy, automakers who offer a broader range of fuel 

economy levels increase their market share and reduce their average discounts as gas 

prices increase. This suggests that choosing the right type of product breadth can offer a 

hedge against changes in demand arising, in this case, from changes in gas prices.  

The remainder of the chapter is organized as follows. Section 2 describes related 

literature. Section 3 discusses the underlying theoretical models and develops the main 

hypotheses. Section 4 describes the data and the variables used in this study. Section 5 

presents the econometric specification and the results of the estimation of the models. 

Finally, Section 6 concludes by discussing some limitations of our study and some 

implications of our findings. 

4.2. Literature Review 

Previous work in the operations management and marketing communities has 

studied product line strategies and their effects on revenues and costs, both empirically 

and theoretically. Among the empirical papers, one of the first papers to study product 
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line breadth was Kekre and Srinivasan (1990). They use self-reported survey data across 

industries to study the market benefits and cost disadvantages of broader product lines. 

They find that broader product lines are associated with higher market shares, but they 

do not find a positive association between broader product lines and production costs. 

In contrast, Bayus and Putsis (1999) analyze the personal computer industry and find an 

association between product line breadth and market shares and prices, which they 

assume to proxy for production costs. In the same industry, Putsis and Bayus (2001) 

study the determinants of product line decisions and suggest that firms expand their 

product lines when there are low industry barriers or when there are perceived market 

opportunities.3 The first contribution of our work to the literature is to revisit the linkage 

between variety and market share and production cost in the context of U.S. automotive 

manufacturers. We find a positive association between product line breadth and both 

market shares and production costs.  

The operations management community has studied the challenges associated 

with managing product variety. Ramdas (2003) provides a review of this literature. 

Some empirical work has studied the effects of product variety in automotive plants. For 

example, Fisher and Ittner (1999) and MacDuffie et al. (1996) analyze the effect of 

product variety on work-in-process inventory, productivity and customer-perceived 

quality. Both papers deal with the effects of variety at the plant level. Our work is 

complementary to those papers, because we study the effects of product line breadth on 

market share and on production and mismatch costs.  

Some work has looked at product line strategies and their relationship with 

supply chain and product development decisions. Randall and Ulrich (2001) consider 

two types of variety: production-dominant variety and mediation-dominant variety (in 

                                                      

3
 Other papers have studied the competitive dimensions of product line length (Draganska and 

Jain, 2005), but these competitive aspects are beyond the scope of this paper. 
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the spirit of market mediation costs described in Fisher 1997); the former is associated 

with higher production costs (such as direct materials, labor, manufacturing overhead, 

and process technology investments) and the latter is associated with higher market 

mediation costs, such as inventory holding costs, product mark-down costs occurring 

when supply exceeds demand, and the costs of lost sales when demand exceeds supply. 

They study the association between these types of variety and certain characteristics of a 

supply chain, such as the production volume and the location of production. They find 

an association between scale-efficient production and production-dominant variety, and 

between local production and mediation-dominant variety. Our work is related to their 

paper, in the sense that we study the empirical relationship between product line 

strategies and what Randall and Ulrich call market mediation costs, which we label as 

mismatch costs. To our knowledge, no previous work has empirically studied the effects 

of product line breadth on mismatch costs. In a related paper, Randall et al. (1998) study 

how the presence of premium products in a product line enhances brand equity, 

analyzing the U.S. mountain bicycle industry. Their analysis supports the hypothesis 

that firms with high-quality products in their lines have higher brand premiums. In 

other words, they find spillovers from the highest-quality models in the product line. 

Like them, we also study product line attributes that go beyond the mere number of 

products in the product line. In our case, we study how the range of fuel economy levels 

offered by a firm’s product line affects the firm’s ability to cope with uncertain demand.  

Our work also builds on the literature on component sharing and product 

platforms. Automotive manufacturers use product platforms to share intellectual and 

material assets across a family of products (Robertson and Ulrich 1998, Krishnan and 

Gupta 2001). Fisher et al. (1999) study the drivers of component sharing. In our work, we 

measure the effects of platform affiliation on average production costs.  

Some theoretical papers that have studied product line strategies provide context 

to our work and to the hypotheses that we test with our data. For example, 
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Swaminathan and Tayur (1998) study delayed differentiation, Van Mieghem and Dada 

(1999) study production postponement, Desai et al. (2001) study the trade-off between 

component commonality and product differentiation, Hopp and Xu (2005) study the 

impact of design modularity on the optimal length and price of a differentiated product 

line, and Netessine and Taylor (2007) study the impact of production technology on the 

optimal product line design. 

A few empirical papers in operations management have studied other aspects of 

the automobile industry that are related to our work. Cachon and Olivares (2010) study 

the drivers of finished-goods inventory in the U.S. automobile industry. Among other 

results, they find that the option content of a model is associated to the inventory of the 

model. Cachon, Gallino and Olivares (2012) study how inventory affects demand, and 

they consider the role of the number of options of a given model. Unlike these two 

papers, our approach to variety is based on the number of products in the product line 

of an automaker, as opposed to number of options within a model. Moreno and 

Terwiesch (2011) study the effect of production flexibility on discounts. In this paper, we 

consider the effect of another strategic decision -- product line breath -- on mismatch 

costs. 

Finally, the unprecedented increase in gas prices has generated a renewed 

interest in the effects of gas prices on market outcomes in the automotive industry. Our 

work is particularly related to two papers in this stream. Busse et al. (2011) study the 

effect of gas prices on prices and market shares of new and old vehicles. Langer and 

Miller (2012) study how gas prices affect automakers’ short-run responses. Our work 

shows how the range of fuel economy levels covered by a firm’s product line affects the 

ability of firms to cope with uncertain demand, and how manufacturers’ reactions to 

changing gas prices depend on attributes of their entire product line. 
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4.3. Theoretical Foundations and Hypotheses Development 

We build on existing theory to develop the hypotheses that we test with our 

data. In order to relate our work to earlier studies of product line breadth, we use a 

measure of product line breadth that is consistent with previous work (e.g., Bayus and 

Putsis 1999). We define product line breadth as the number of different products 

(vehicle models, in our empirical setting) that a firm (an automaker, in our empirical 

setting) offers at a given time. We start our analysis by developing two hypotheses that 

have been tested in the literature, dealing with the effect of product line breadth on 

market shares and the effect of product line breadth on production costs.  

The view that product variety brings increases in market share is generally 

accepted and described in marketing textbooks (Kotler and Keller, 2011). Consumers 

have heterogeneous preferences and, using a spatial analogy where products are 

represented in a space where each dimension corresponds to a product attribute, the 

broader the product line, the more likely consumers are to find products that are close to 

their individual preferences. As firms broaden their product line, they increase their 

relative appeal versus their competition. Thus, we hypothesize: 

Hypothesis H1. An increase in product line breadth is associated with an increase in 

market share 

This hypothesis has received support in the previous empirical literature (Kekre 

and Srinavasan 1990, Bayus and Putsis 1999). Beyond just validating that the effect goes 

in the same direction in the automotive industry, we are interested in quantifying the 

magnitude of the increase in market share. 

Product variety comes at a cost. As noted by Lancaster (1990), greater product 

variety brings decreased economies of scale. Higher product variety results in lower 
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demand per model, which generates diseconomies of scale, higher overhead and, in 

short, higher average unit production costs. Thus, we hypothesize: 

Hypothesis H2. An increase in product line breadth is associated with an increase in 

average production costs 

This hypothesis has also been studied in previous empirical literature with 

somewhat contradictory conclusions. By testing it in our data, we can provide additional 

evidence in one or the other direction, and we can quantify the effect of the cost increase 

that can be attributed to variety in the U.S. automotive industry.  

Component commonality and platform strategies have been suggested to reduce 

the diseconomies of scale associated with offering broad product lines (Ulrich and 

Robertson 1998).  Economies of scale can be achieved by producing higher volumes of 

common parts. We hypothesize that: 

Hypothesis H3. Average production costs for a model decrease with the production 

volume of other models based on the same platform 

There is empirical literature that has studied component commonality but has 

mostly focused on understanding the drivers of it (e.g., Fisher et al. 1999) or the effects of 

commonality on aspects other than costs, such as reliability (e.g., Ramdas and Randall 

2008). To our knowledge, empirical work has not studied the effects of product 

platforms on reducing diseconomies of scale and lowering average unit production 

costs. 

The existing literature that has empirically studied the cost consequences of 

product line breadth has largely focused on its impact on production costs. However, as 

noted by Fisher (1997), it is important to differentiate between the physical costs (costs of 

production, transportation and inventory storage) and market mediation costs that arise 

as a consequence of supply-demand mismatches, such as markdowns, excess inventories 



 

111 

 

and shortages. Depending on which type of cost dominates, firms might want to choose 

between physically-efficient and market-responsive supply chains. Randall and Ulrich 

(2001) examine the association between supply chain structures and the type of product 

variety that firms pursue. In an empirical context, it is interesting to understand if one of 

the types of cost dominates and how variety affects the two types of costs. For example, 

if variety affects mainly mismatch costs, firms willing to offer broad product lines 

should adopt market responsive supply chains, whereas if variety affects mainly 

production costs, firms offering broad product lines should adopt physically-efficient 

supply chains. As noted by Ramdas (2003), higher variety can increase demand 

variability and forecast errors, thereby increasing mismatch costs. This is an 

“unpooling” argument, since fragmentation exacerbates the uncertainty faced by the 

firm. We formulate the following general hypothesis:  

Hypothesis H4. An increase in product line breadth is associated with an increase in 

mismatch costs 

Our empirical setting -- the automotive industry -- provides two pieces of 

information that are directly related to mismatch costs: discounts and inventories. 

Automotive manufacturers set list prices before demand is realized, and they use 

discounts to correct supply demand mismatches. Higher product variety will result in 

higher demand uncertainty and in more significant supply-demand mismatches. 

Similarly, higher demand uncertainty will result in higher average inventories. Thus, we 

can formulate the following two hypotheses that we test to validate Hypotheses H4: 

Hypothesis H4a. An increase in product line breadth is associated with an increase in 

average discounts 

Hypothesis H4b. An increase in product line breadth is associated with an increase in 

average inventories 
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Figure 1 summarizes graphically our Hypotheses 1 to 4.  

If we find support for Hypothesis 4 -- that is, if we find evidence that product 

line breadth results in higher mismatch costs arising from demand uncertainty -- a 

related issue is whether breadth can be added to a product line in a manner that 

mitigates the effect of this demand uncertainty. So far, our discussion has considered 

product line breadth as the number of products offered by a firm. We now propose a 

complementary attribute-based measure of product line breadth. Since we are interested 

in understanding how product line breadth interacts with demand uncertainty, we 

measure breadth along a dimension in which we know there is substantial uncertainty 

in our empirical context: gas prices. Gas prices are a big source of demand uncertainty in 

the automotive industry. If gas prices are high, customers prefer fuel-efficient vehicles 

(e.g., compact cars). If gas prices are low, the same customers might prefer other types of 

cars (e.g., sport utility vehicles).  Our complementary measure of product line breadth is 

based on the range of fuel economy offered by an automaker, relative to the range of 

fuel economy offered by the entire industry. Firms that offer a broader product line in 

terms of fuel economy might benefit from internal substitution when gas prices change. 

We formulate the following hypothesis: 

Hypothesis H5. A broader product line can provide a hedge against changes in demand 

We break down Hypothesis H5 into two complementary hypotheses that give a 

more precise definition of what we mean by “hedging against changes in demand”: 

Hypothesis H5a. When gas prices increase, product lines that cover a broader range of 

fuel economy levels increase market share 

Hypothesis H5b. When gas prices increase, product lines that cover a broader range of 

fuel economy decrease discounts 
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This analysis is related to Busse et al. (2011), which studies the effect of gas prices 

on prices and market shares of new and old vehicles, and to Langer and Miller (2012), 

which studies how gas prices affect automakers’ short-run responses. Our focus is to 

study how product line breadth affects the changes in market shares and discounts for a 

given average level of fuel economy. 

4.4. Data and Variables 

The empirical setting for this project is given by the U.S. automotive industry in 

the period between 2002 and 2009. The U.S. automotive industry is very important on its 

own (it accounts for 5% of the total U.S. GDP, see Ramey and Vine 2006) and it is 

especially appealing for the type of analysis considered in this paper. In particular, its 

pricing structure allows us to create separate measures of average production costs and 

mismatch costs. In the automotive industry, manufacturers set list prices for a model 

year before demand is realized. When they set list prices, they take into account their 

expected production costs, among other considerations. During the year, when demand 

is realized, manufacturers use discounts (incentives, as they are usually referred to in the 

industry) to dealers or final customers for those vehicles that are selling worse than 

expected. Therefore, observed discounts provide an indication of supply-demand 

mismatch. In other words, each of the two pricing levers that the manufacturer has -- list 

prices and discounts -- is associated with a different source of costs. List prices are 

related to production costs (Section 5.2 describes how production costs can be estimated 

from list prices) and discounts are related to mismatch costs. In addition, other aspects 

also make the automotive industry appealing for our analysis. In the automotive 

industry, product platforms, another of our constructs of interest, are used extensively. 

Also, it is an industry with a limited number of automakers who market vehicles that 

are comparable with each other using a reduced set of attributes. Firm entry and exit is 

not very important during our period of study, and models are typically marketed 
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during several years, which allows us to observe the same models in different contexts 

of product line breadth. 

For this analysis, we have obtained the gas prices during the period of interest 

from the Energy Information Administration, and we have combined three types of 

automotive data from different sources: market data, vehicle-level data and production 

data. Our market data comes from TrueCar (www.truecar.com), an online automotive 

information and communications platform that provides information to consumers and 

dealers. Through collaboration with TrueCar, we have obtained access to some of their 

historical proprietary data, including U.S.-wide monthly data on sales, end-of-month 

inventory, and average discounts at the model level. Average discounts are calculated 

by adding all the amounts spent by the manufacturer to incentivize sales of a particular 

model in one month (including the cost of financial incentives such as favorable credit 

terms) and dividing it by the amount of vehicles of that particular model sold in the 

month. We also have access to the same information at the make-month level.  

We obtain vehicle-level data and production data from WARDS Automotive. 

Vehicle-level data contains information about vehicle attributes (including weight, 

horsepower, fuel economy, length, height, wheel base, and manufacturer’s suggested 

retail price) that is available at the model-year level. Vehicle attributes are available at a 

more granular level (e.g., Chevrolet Malibu LS 4dr Sedan vs. Chevrolet Malibu). We 

match every model with the median of the attributes across the different versions in 

which a model is available. Production data indicates the amounts produced for each 

model and month for the models manufactured (at least partially) in the U.S., and it 

includes information about the plant where they are produced and the platform on 

which the model is based. We compute total production for each of the platforms.  

Our main measure of product breadth, PLBit is constructed by counting the 

number of different models (e.g., Chevrolet Malibu) marketed by a make (e.g., 

http://www.truecar.com/
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Chevrolet) in a given month. This variable changes when models are introduced or 

phased out. We generate an alternative measure of product line breadth, 

MPGBREADTH it, based on the range of fuel economy levels offered by a make, relative 

to the industry. This measure is calculated as the interquartile range of the fuel economy 

offered by the models of make i in month t over the interquartile range of the fuel 

economy offered by the entire industry in month t. These interquartile ranges are based 

on model availability, regardless of sales. For example, for a make who only offers one 

level of fuel economy, the interquartile range would be 0. For a make who has the same 

interquartile fuel economy as the entire industry, this range would be 1. We have 

experimented with alternative measures of the range of fuel economy level offered by a 

make and found no substantial qualitative differences in our results. For reference 

purposes, Table 4.1 shows all the variables used in the analysis, along with a short 

description and some summary statistics. 

Our dataset contains 18,166 model-month observations corresponding to 328 

models. Note that some of our specifications in Section 5 are estimated at the make-

month level, while other specifications are estimated at the model-month or model-year 

levels.  

4.5. Econometric Analysis and Results 

4.5.1 Effect of Product Line Breadth on Market Share 

We start by examining the effect of product line breadth on make market shares. 

We propose the following specification: 

 

                                    (4.1) 
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where i denotes a make (e.g., Chevrolet, Toyota, etc.) and t denotes the month 

and year of the observation. The specification includes make fixed effects that control for 

any omitted make-level time-invariant factors. For example, the fact that Chevrolet is an 

American company is accounted for by the corresponding make fixed effects.  

Table 4.2 shows the effect of product line breadth on make market shares. All 

columns include make fixed effects and time controls. Column 1 provides the baseline 

specification with no additional controls. The estimate of the product line coefficient    

is 0.00106 and it is statistically significant, which gives support to our hypothesis H1. 

One additional product in the product line is associated with an average increase of 0.1% 

in the make market share. Column 2 adds the complementary measure of product line 

breadth based on the range of fuel economy levels covered by the make, which has been 

described above, and its interaction with gas prices. The coefficient    remains 

essentially unaltered after including the additional measure, and the coefficients for the 

fuel-economy-based measure and its interaction with gas prices suggest that automakers 

who offer a broader range of fuel economy levels increase their market shares as gas 

prices increase. This supports our Hypothesis H5a. For representative values of gas 

prices, the net effect of the fuel-economy-based measure is positive, although when gas 

prices are very low a broader range of fuel economy levels can be associated with lower 

market shares. Column 3 includes two additional control variables: the median fuel 

economy of the make and its interaction with gas prices, to make sure that the range 

variable included in Column 2 is not merely capturing differences in the average fuel 

economy offering. Adding these controls does not change the results of Columns 1 and 

2. Firms with higher median fuel economy have a smaller market share on average, but 

their market share increases as gas prices go up, as we could expect.  

Overall, the results shown in Table 4.2 suggest that an increase in the number of 

products carried by a make is associated with an increase in the make market share 

(relating to the role of product lines as a tool for market expansion), and that a product 
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line that covers a broader range of fuel economy levels increases its market share as gas 

prices increase (thus supporting the hedging role of a broader product line that we have 

discussed above). 

We can draw complementary conclusions about the effect of product line 

breadth on market share using a model of consumer demand. We propose a nested 

multinomial logit model of consumer demand (McFadden 1978, Cardell 1997). Each 

vehicle model is defined as a bundle of attributes. We define a nest as a combination of 

vehicle segment and luxury level (e.g., luxury SUVs). Consumers choose first the nest in 

which they want to purchase (or the outside option of not buying any vehicle), and then 

choose the vehicle in the nest that gives them the highest utility. The advantage of this 

model is that it avoids the problem of independence of irrelevant alternatives of 

conventional multinomial logit models, without adding too much computational 

burden. For the model estimation, we follow Berry (1994), which proposes the following 

transformation:  

 

     0 |ln ln lnjt t jt jt jt g jts s x p s         (4.2) 

 

where sjt, s0t and sjt|g are, respectively, the market shares of model j in time t, the 

share of the outside good (no purchase) in time t and the share of model j in its nest g at 

time t; xjt are the product characteristics, and jt is a shock unobserved to the 

econometrician. We estimate this model with annual data. For the price pjt  , we subtract 

from the manufacturer’s suggested retail price (MSRP) of the vehicle the average 

discount offered by the manufacturer during the year. The product characteristics that 

we consider include vehicle size variables, a proxy for acceleration given by 

horsepower/weight, and the miles per gallon. We also include our product line variables 
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and segment-time controls. We account for price endogeneity using instrumental 

variables along the lines of the variables described in Berry et al. (1995), including the 

characteristics of the other models of the same manufacturer and the characteristics of 

the rest of the vehicles on the market (for more details, see Berry et al. 1995). Note that 

the log of the within group share, ln(sjt|g) is also endogenous, and therefore additional 

instruments, such as the number of vehicles in the nest and the characteristics of other 

models in the nest, are necessary. In summary, we use variation in the market shares, 

choice set (introduction and removal of models), vehicle attributes, and make product 

line breadth to identify the coefficients of the demand model.  

The results, shown in Table 4.A1, suggest that consumers attribute a positive 

utility to models offered by automakers who have a broader product line. A possible 

interpretation of these results is that the benefits of a broader product line in terms of 

market share do not come exclusively from the market share of the new models. With a 

broader product line, customers are more likely to find products that are closer to their 

ideal bundle of characteristics, they derive utility from that, and are more likely to 

choose them.   

4.5.2 Effect of Product Line Breadth on Costs 

According to our model, product line breadth affects the costs faced by a firm 

through two different channels: production costs and mismatch costs. None of those 

types of costs are directly observable to the researchers, but we can estimate them from 

the available data.  

We start by studying the effect of product line breadth on production costs. We 

describe two different analysis strategies to recover cost-related information for the 

available data. The first one is to simply proxy the unobserved production costs by using 

the observed vehicle list prices. This is what Bayus and Putsis (1999) do. We expect list 

prices to be correlated with production costs, because firms are informed about their 
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costs and use their cost information when setting the list prices. On the other hand, list 

prices are determined before actual demand is observed and they typically remain 

constant during the entire vehicle year – in other words, they are not affected by 

mismatch costs. Using list prices as a proxy for unobserved costs has some potential 

problems. Most important, list prices are affected by the market power of the firm. A 

firm can choose a high price point for a vehicle not because production costs are high, 

but because the firm enjoys market power. However, given that the existing empirical 

literature on product variety has used prices to proxy for costs in the past (e.g., Bayus 

and Putsis 1999), we include this model as a baseline for reference purposes. 

We use the following specification: 

 

                                  (4.3) 

 

where i denotes the make (e.g., Chevrolet),  j denotes the model (e.g., Chevrolet 

Malibu) and t denotes the vehicle year. Adding model fixed effects controls for any 

omitted model-level time invariant factor.  

Table 4.3 shows the effect of product line breadth on list prices. All columns 

include model-fixed effects and segment-year controls. Column 1 provides the baseline 

specification with no additional controls. The estimate of the product line coefficient    

is 297.5 and it is statistically significant, which gives support to our hypothesis H2. One 

additional product in the product line of an automaker is associated with an average 

increase of around $300 in the list prices of the models of that automaker, reflecting a 

potential change in production costs. Column 2 adds a set of controls that account for 

vehicle characteristics that can have an impact on production costs (SIZE, HPWT, MPG), 

and Column 3 includes an additional set of controls that account for situations that can 
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have an impact in the firm’s list price setting strategies, such as the number of years 

since the model was introduced and, whether a model is just being launched, is about to 

be phased out, or has experienced changes in its design. In both cases, the product line 

coefficient does not change substantially. Column 4 includes an additional variable with 

the volume produced for the rest of vehicles that are based on the same platform as the 

model under consideration. The estimate for this variable is negative and statistically 

and economically significant. This supports our hypothesis H3. A production of 100,000 

vehicles of other models based on the same platform is associated with an average cost 

reduction of $83.3 on the production costs of a model. Note that the results exclude 

models that are exclusively exported, since we do not have platform data for vehicles 

that do not have any production in the United States. 

As discussed, list prices are likely to be correlated with production costs, but 

they are also affected by market power and other considerations that might generate 

bias in the results. Our second approach to estimating production costs and the effects of 

product line decisions on them is based on an equilibrium pricing model that arises from 

the demand model introduced in Section 5.1. Following Berry (1994), we assume that 

observed list prices are the result of an interior, pure strategy Nash equilibrium in 

prices. For the nested logit demand model, it is possible to characterize the equilibrium 

markup for a given model. It can be shown (see Berry 1994) that, for model j and time t, 

this markup is: 

 

         

   
 

         (   )   
 

(4.4) 

 

That is, the markup of a model depends on the market share, the within nest 

market share, the substitution parameter   and the price elasticity . The market share 
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and the within-nest market share are observed in our data. The other two parameters are 

estimated using the model described in Section 5.1 (0.291 and -5.94e-05, respectively).  

Each model has a different markup that takes into account the market power 

considerations that were ignored in the model that proxies production costs with list 

prices. Using the estimated markup and price for a particular model, we can recover the 

production costs as COSTjt=PRICEjt-MARKUPjt. Instead of using list prices, we use the 

list price minus the average discounts in the cost calculation, since that is the price 

information that enters the demand model used to calculate the markup (our robustness 

checks indicate that our qualitative results do not depend on this).  

Once we have estimated the production costs, we can conduct an analogous 

analysis to the one we have presented using list prices. This is the specification: 

 

                                  (4.5) 

 

where i denotes the make (e.g., Chevrolet),  j denotes the model (e.g., Chevrolet 

Malibu) and t denotes the vehicle year.  

Table 4.4 shows the effect of product line breadth on estimated production costs. 

All columns include model fixed effects and segment-year controls. As in Table 4.3, 

Column 1 is the baseline specification without additional control variables, Column 2 

adds a set of controls that account for vehicle characteristics, Column 3 includes an 

additional set of controls that account for situations that can have an impact on 

production costs, and Column 4 includes the volume produced for the rest of vehicles 

that are based on the same platform. The results are qualitatively similar to the ones 

obtained using list prices as a proxy for costs displayed in Table 3, but the effect of the 

product line breadth variable seems to be lower, in the $150-200 range. Platform volume 
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is also associated with lower costs, but the magnitude is again smaller (reduction of 

$54.70 for a platform producing 100,000 vehicles per year).  

Overall, the results presented in Tables 4.3 and 4.4 provide evidence that 

supports our Hypotheses H2 and H3. On one hand, product line breadth is associated to 

an increase in average production costs. On the other hand, component sharing across 

multiple vehicles is associated to a reduction in the production costs that increases with 

the production volume of the other models based on the same platform.  

We now turn our attention to the effect of product line breadth on mismatch 

costs. As with production costs, mismatch costs are not directly observable. But there are 

two elements in our data that indicate the presence of mismatches: discounts and 

inventory. Mismatches in the auto industry are typically a consequence of short-run (i.e., 

within a model year) changes in demand. Although list prices are fixed for the entire 

model year, firms can react to a negative shock in demand (e.g., a slow-selling vehicle) 

by offering discounts (dealer or customer incentives, as they are known in the industry). 

A positive demand shock does not typically have consequences in terms of pricing 

because firms rarely sell cars above list price (i.e., there are no “negative discounts”). 

Changes in inventory can also denote mismatches: inventory builds up when supply is 

higher than demand and depletes when demand is higher than supply.  

In order to examine the effects of product line breadth on discounts, we use the 

following specification:  

 

                                         (4.6) 

 

where i denotes a make, t denotes a month and AVGDISCit is the average 

discount given by make i in month t (i.e., the sum of all the money spent on discounts in 
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month t by make i over the number of vehicles sold by make i in month t).  Table 4.5 

shows the effect of product line breadth on average incentives given by brands, which 

measure one type of mismatch cost. All columns include make fixed effects that account 

for any time-invariant make-level omitted variables. All columns also include time 

controls (year-month interactions) that account for industry-level temporal patterns in 

discount behavior. Column 1 is the baseline specification and does not include any 

additional controls. The estimate of the product line coefficient    is 57.72 and it is 

statistically significant, which gives support to our Hypothesis H4a. One additional 

product in the product line is associated with an average increase $57.72 in the average 

discounts given by the make. Column 2 adds the complementary measure of product 

line breadth -- based on the range of fuel economy levels covered by the make -- and the 

interaction of this measure with gas prices. The coefficient     does not change 

substantially after including the additional measure. The coefficients for the fuel-

economy-based measure and its interaction with gas prices suggest that auto makes that 

offer a broader range of fuel economy levels reduce their average discounts as gas prices 

increase. This supports our hypothesis H5b. For representative values of gas prices, the 

net effect of the fuel-economy-based measure on discounts is negative, although when 

gas prices are very low a broader range of fuel economy levels can be associated with 

higher discounts. Column 3 includes two additional control variables: the median fuel 

economy of the make and the interaction of the median fuel economy of the make with 

gas prices, to make sure that the range variable included in Column 2 is not merely 

capturing differences in the average fuel economy offering. Adding these controls does 

not change the results of Columns 1 and 2. Firms with higher median fuel economy offer 

lower average discounts as gas prices increase, compared to firms with lower median 

fuel economy.  

The previous specification analyzes the effect of make product line breadth at the 

make level. One could argue that by performing the analysis at the make level, there 
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could be confounding factors that might affect discounts and that could potentially be 

correlated with product line breadth. If that was the case, our estimates could be biased. 

In order to understand whether that is a concern, we complement the make-level model 

with a model-level model with the following specification: 

 

                                          (4.7) 

 

where i denotes a model, t denotes a month and AVGDISCMODELit is the 

average discount given by model i in month t (i.e., the sum of all the money spent on 

discounts in month t for model i over the number of model i vehicles sold in month t). In 

the model-level specification, a richer set of controls can be used. For example, we can 

include time-segment controls that account for different discount patterns for vehicles 

that belong to different segments. Table 4.6 shows the effect of product line breadth on 

average incentives at the model level. All columns include model fixed effects that 

account for any time-invariant model-level omitted variables. All columns also include 

controls for segment, time and segment-time interactions. Column 1 is the baseline 

specification and does not include any of the additional controls. The estimate of the 

product line coefficient    is 106.1 and it is statistically significant. One additional 

product in the product line of the make that produces one model is associated with an 

average increase of around $100 in the average discounts given for that model. The sign 

is consistent with the results at the make level, which gives additional evidence 

supporting our Hypothesis H4a. The magnitude is slightly higher than the effect 

estimated at the make level (around $75). Column 2 adds a set of controls that account 

for model attributes that can have an impact on discounts and that could be correlated 

with product line breadth, such as the flexibility with which a model is manufactured, 

the discounts given by the competitors, whether the product is being launched or 
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phased out, the time since the model was introduced, the list price, and whether a model 

has gone through a redesign.  The product line coefficient does not change substantially 

even after introducing these controls.  Column 3 adds the complementary measure of 

product line breadth based on the range of fuel economy levels covered by the make and 

the measure’s interaction with gas prices. Again, the coefficients for the fuel-economy-

based measure and its interaction with gas prices suggest that models marketed by 

makes that offer a broader range of fuel economy levels reduce their average discounts 

as gas prices increase. This is despite the fact that this column is also controlling for the 

fuel economy of the model and its interaction with gas prices (i.e., models with a higher 

fuel economy give lower discounts as gas prices increase). This shows additional 

support for our hypothesis H5b, also at the model level.  

Overall, Tables 4.5 and 4.6 suggest that an increase in the number of products 

carried by an automaker is associated with an increase in mismatch costs. At the same 

time, the tables also show that a product line that covers a broader range of fuel 

economy levels can provide a useful hedge against potential changes in demand arising 

from changes in gas prices.  

In order to examine the effects of product line breadth on inventories, we use the 

following specification:  

 

                                     (4.8) 

 

where i denotes a make, t denotes a month and           is the average 

number of days of supply in month t for the models marketed by make i.  Table 4.7 

shows the effect of product line breadth on average make inventory. All columns 

include make fixed effects that account for any time-invariant make-level omitted 
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variables. All columns also include time controls (year-month interactions) that account 

for industry-level temporal patterns in inventories. Column 1 is the baseline 

specification and does not include any additional controls. The estimate of the product 

line coefficient    is 3.116 and it is statistically significant, which gives support to our 

Hypothesis H4b. One additional product in the product line is associated with an 

increase of three days of supply in the average inventory of the models of the make. 

Column 2 adds the complementary measure of product line breadth based on the range 

of fuel economy levels covered by the make and its interaction with gas prices. The 

coefficient     does not change substantially after including the additional measure. A 

broader range of fuel economy levels is associated with lower inventories, but the 

interaction of this variable with gas prices is not statistically significant. Column 3 

includes two additional control variables: the median fuel economy of the make and the 

measure’s interaction with gas. Makes with higher median fuel economy carry lower 

inventories as gas prices increase, compared to firms with lower median fuel economy.  

In any case, adding them as controls does not change the results of Columns 1 and 2. 

Finally, Column 4 includes the average discount provided by the make as an additional 

control. The coefficient of the product line breadth variable is still around 3 after 

including it. 

Overall, results shown in Table 4.7 suggest that an increase in the number of 

products carried by a make is associated with carrying about three additional days of 

supply in the average inventory of the models of the make. 

4.6. Conclusions 

Our analysis shows evidence from the U.S. automotive industry that supports 

the hypothesis of positive association between product line breadth and market share, 

which is consistent with some results found by other papers using data from different 
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industries (e.g., Kekre and Srinivasan 1990, Bayus and Putsis 1999). Our estimates 

suggest that during the period of analysis (2002-2009) carrying one additional product in 

the line was associated with an increase of 0.1% in the market share of a make. 

We also find evidence of positive association between product line breadth and 

production costs, which we estimate using an equilibrium model of pricing. Previous 

research addressing this issue had reached somewhat contradictory conclusions. Our 

estimates suggest that during the period of analysis (2002-2009) carrying one additional 

product in the line was associated with an average increase of $175 in production costs 

per vehicle.  

Besides contributing new evidence from the automotive industry to the research 

that has studied the effects of product line breadth on market share and production 

costs, we also address some important issues that have been unexplored by previous 

research. In particular, we find that product line breadth also has a substantial impact on 

supply-demand mismatch costs. Mismatch costs arise from the fact that demand is 

uncertain. Carrying a broader product line leads to higher demand fragmentation and 

higher uncertainty in the demand of each of the products in the line, which increases the 

chances of mismatch. Mismatch costs arise in the form of discounts and inventories, 

among others. We find that an additional product in the line is associated with an 

increase of around $100 in average discounts and with carrying three additional days of 

supply in the average model inventories for this make. 

Overall, our results indicate that the costs of product line breadth can be very 

substantial (one additional product in the line is associated to an average increase of 

$175 in production costs, $100 in discounts arising from more frequent supply-demand 

mismatches, and three additional days of supply for the models of the make). Firms 

have developed strategies, such as delayed differentiation and platform-based 

development, that allow them to offer variety with lower costs. Using our data, we 
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study how platform families help to control production costs. We find that the 

production costs for a model decrease with the volume of other models that share the 

same platform. In particular, for each 100,000 vehicles produced for other models based 

on the same platform, production costs are reduced by $55.  

Our results also show that product line breath can provide a useful hedge against 

changes in demand. Changes in gas prices provide an exogenous shock to consumer 

preferences and are an important source of demand uncertainty in the automotive 

industry. We propose an attribute-based measure of product line breadth that captures 

the range of fuel economy levels offered by a make and we find that auto makes that 

offer a broader range of fuel economy levels increase their market share and reduce their 

average discounts as gas prices increase. In other words, choosing a product line that 

covers a broader range of fuel economy levels can offer a hedge against changes in 

demand arising from changes in gas prices. 

As with any empirical work, our analysis is not exempt of limitations, some of 

which are opportunities for future research. Product line breadth is obviously an 

endogenous decision. Our models include controls for make and model fixed effects that 

account for time-invariant sources of endogeneity, but our dependent variables can be 

affected by time-variant situations that might be correlated with extensions of product 

line breadth. The fact that our results are consistent for different specifications at the 

make and model level that include a rich and diverse set of controls suggests that this 

might not be a significant problem, but future research could examine the availability of 

exogenous instruments for product line breadth. Changes in regulation (for example, 

environmental regulation such as the Corporate Average Fuel Economy regulations) 

might be good candidates, since they can prompt firms to extend their product lines.  

Some other limitations of our work and opportunities for further research are 

dictated by data availability. We have been able to obtain valuable insight from our 
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measures of mismatch costs measured with discounts and inventories, but there are 

additional sources of mismatch costs that could be studied if the appropriate data were 

available. For example, future research could evaluate the effect of product line breadth 

on lost sales and stockouts. Similarly, we have studied product line breadth at the model 

level, but it could be interesting to understand the effects of more granular variety 

measures, such as option content. On the other hand, we do not have reliable direct 

measures of production costs, and we have to estimate them using a demand and 

pricing equilibrium model. Direct measures of production costs could provide 

additional dimensions that cannot be captured from indirect measures. As more data 

becomes available, we think that more research opportunities will open in this space. 

Finally, we think that some of our empirical findings can motivate modeling 

research in related topics. For example, our results suggesting that product line breadth 

can provide a hedge against changes in demand could be further explored using 

analytical models.  
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4.8. Tables 

Table 4.1. Variable Description and Summary Statistics 

 

Mean SD Median Count Description 

PLB 8.21 4.22 7 18166 Product line breadth (number of products)  

GASPRICE 240.78 65.24 231.6 18166 Gas price 

MKTSHR 0.05 0.057 0.02 18166 Make market share 

MPGBREADTH 0.94 0.465 0.89 18134 Range of fuel economy levels offered by make, relative to market 

MEDMPGMAKE 20.68 2.28 20.59 18134 Median fuel economy level offered by make 

PLATVOLUME 35564.25 80271.36 10206.5 9289 Monthly production of vehicles of the same platform 

LAUNCHED 0.08 0.27 0 18166 1 if model just launched 

PHASEDOUT 0.027 0.16 0 18166 1 if model to be phased out 

NEW_DESIGN 0.34 0.48 0 18166 1 if model has changed attributes substantially 

AGE 3.15 2.18 3 18166 Number of years since model introduction 

SIZE 13879.81 1756.78 13757.14 18166 Size of vehicle 

HPWT 0.059 0.01 0.057 17803 Horse power / weight 

MPG 21.05 4.72 20.59 18046 Miles per gallon 

FLEX 0.25 0.43 0 17167 1 if model produced with flexibility (see Moreno and Terwiesch, 2011) 

COMPINCENT~E 2697.63 956.12 2806.09 18162 Average incentive given by competing models (same segment) 

MSRP 32795.28 13500.12 29780 18166 List price 

AVGDISCMODEL 2822.524 2080.08 2499 18166 Average discount for model 

AVGDISCMAKE 2848.116 1464.605 2760 18160 Average discount for make 

MAKE_DS 86.76911 35.6747 84.78492 18166 Average days of supply for models of make 

      N 18166 
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Table 4.2. Effect of Product Line Breadth on Market Shares 

 (1) (2) (3) 

    

VARIABLES    

    

PLB 0.00106*** 0.000947*** 0.000996*** 

 (0.000187) (0.000198) (0.000194) 

GASPRICE  9.25e-05 -2.50e-05 

  (0.000522) (0.000517) 

MPGBREADTH  -0.00706*** -0.00741*** 

  (0.00174) (0.00169) 

MPGBREADTH X GAS  2.88e-05*** 3.11e-05*** 

  (7.15e-06) (6.94e-06) 

MEDMPGMAKE   -0.00202*** 

   (0.000214) 

MEDMPGMAKE X GAS   5.65e-06*** 

   (5.71e-07) 

FIXED EFFECTS Make Make Make 

    

TIME CONTROLS Month-Year Month-Year Month-Year 

    

Observations 2,994 2,962 2,962 

R-squared 0.966 0.967 0.967 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4.3. Effect of Product Line Breadth on List Prices 

  (1) (2) (3) (4) 

 

    

VARIABLES     

          

PLB 297.5*** 270.8*** 257.5*** 286.5*** 

 

(53.60) (53.40) (53.14) (55.31) 

PLATVOLUME 

   

-0.000833*** 

    

(0.000321) 

LAUNCHED 

  

389.4 290.4 

   

(319.4) (313.8) 

PHASEDOUT 

  

-557.9** -543.2** 

   

(255.9) (251.0) 

NEW_DESIGN 

  

-287.4 -277.4 

   

(189.7) (187.2) 

AGE 

  

131.8** 90.20 

   

(58.97) (62.67) 

SIZE 

 

0.369* 0.385* 0.457** 

  

(0.209) (0.210) (0.215) 

HPWT 

 

41,286*** 41,741** 38,942** 

  

(15,968) (16,317) (15,660) 

MPG 

 

-197.1*** -189.5*** -203.3*** 

  

(71.48) (71.44) (70.93) 

     

FIXED EFFECTS Model Model Model Model 

     

TIME CONTROLS Segment x 

Year 

Segment x 

Year 

Segment x 

Year 

Segment x 

Year 

     Observations 997 968 968 968 

R-squared 0.979 0.979 0.979 0.980 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4.4. Effect of Product Line Breadth on Estimated Production Costs 

  (1) (2) (3) (4) 

 

    

VARIABLES     

          

PLB 204.8*** 180.8*** 156.4*** 175.4*** 

 

(52.35) (51.96) (52.43) (54.38) 

PLATVOLUME 

   

-0.000547* 

    

(0.000297) 

LAUNCHED 

  

1,021*** 956.5*** 

   

(307.7) (304.6) 

PHASEDOUT 

  

-887.4*** -877.7*** 

   

(281.8) (282.3) 

NEW_DESIGN 

  

49.00 55.55 

   

(174.0) (172.2) 

AGE 

  

196.1*** 168.8** 

   

(70.27) (73.72) 

SIZE 

 

0.420* 0.339 0.387* 

  

(0.221) (0.212) (0.220) 

HPWT 

 

29,371** 30,073* 28,236* 

  

(14,586) (16,062) (15,707) 

MPG 

 

-133.1* -137.8* -146.8** 

  

(72.59) (72.57) (72.18) 

     

FIXED  EFFECTS Model Model Model Model 

     

TIME CONTROLS Segment x 

Year 

Segment x 

Year 

Segment x 

Year 

Segment x 

Year 

Observations 997 968 968 968 

R-squared 0.976 0.975 0.975 0.976 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4.5. Effect of Product Line Breadth on Average Make Incentives 

  (1) (2) (3) 

 

   

VARIABLES    

        

PLB 57.72*** 74.71*** 74.81*** 

 

(17.54) (17.15) (17.20) 

GASPRICE 

 

4.334 14.55 

  

(68.55) (67.19) 

MPGBREADTH 

 

430.2*** 409.6*** 

  

(139.8) (137.0) 

MPGBREADTH X GAS 

 

-2.973*** -2.748*** 

  

(0.628) (0.612) 

MEDMPGMAKE 

  

53.54** 

   

(25.69) 

MEDMPGMAKE X GAS 

  

-0.493*** 

   

(0.0839) 

FIXED EFFECTS Make Make Make 

    

TIME CONTROLS Month-Year Month-Year Month-Year 

    

Observations 2,988 2,956 2,956 

R-squared 0.735 0.757 0.761 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4.6. Effect of Product Line Breadth on Average Model Incentives 

VARIABLES (1) (2) (3) 

        

PLB 106.1*** 122.6*** 119.8*** 

 

(10.30) (10.63) (10.60) 

FLEX 

 

-337.3*** -344.7*** 

  

(42.87) (42.65) 

COMPINCENTIVE 

 

0.316*** 0.259*** 

  

(0.0298) (0.0302) 

LAUNCHED 

 

-376.0*** -347.0*** 

  

(38.60) (38.12) 

PHASEDOUT 

 

567.0*** 580.9*** 

  

(177.6) (178.3) 

AGE 

 

-21.88* 32.10** 

  

(12.79) (14.27) 

MSRP 

 

0.0972*** 0.0876*** 

  

(0.00685) (0.00677) 

NEW_DESIGN 

 

-451.5*** -459.0*** 

  

(23.34) (22.93) 

GASPRICE 

  

9.787*** 

   

(0.933) 

MPGBREADTH 

  

61.10 

   

(79.28) 

MPGBREADTH X GAS 

  

-1.687*** 

   

(0.338) 

MPG 

  

76.44*** 

   

(11.68) 

MPG X GAS 

  

-0.429*** 

   

(0.0379) 

    

FIXED EFFECTS Model Model Model 

    

OTHER CONTROLS 

Time, Segment, 

Segment x Time 

Time, Segment, 

Segment x Time 

Time, Segment, 

Segment x Time 

    Observations 18,166 17,166 17,052 

R-squared 0.686 0.708 0.714 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4.7. Effect of Product Line Breadth on Average Make Inventories 

  (1) (2) (3) (4) 

 

    

VARIABLES     

          

PLB 3.116*** 3.080*** 3.079*** 3.165*** 

 

(0.448) (0.454) (0.454) (0.452) 

MAKEINCENTIVESPEND 

   

-0.00133*** 

    

(0.000493) 

GASPRICE 

 

5.596*** 5.677*** 6.479*** 

  

(1.710) (1.720) (1.682) 

MPGBREADTH 

 

-5.063* -5.159* -4.718 

  

(3.012) (3.001) (3.018) 

MPGBREADTH X GAS 

 

0.0118 0.0133 0.0102 

  

(0.0124) (0.0124) (0.0126) 

MEDMPGMAKE 

  

0.491 0.600 

   

(0.616) (0.613) 

MEDMPGMAKE X GAS 

  

-0.00408** -0.00495** 

   

(0.00196) (0.00196) 

FIXED EFFECTS Make Make Make Make 

     

TIME CONTROLS Month-Year Month-Year Month-Year Month-Year 

 

    

Observations 2,962 2,930 2,930 2,925 

R-squared 0.687 0.697 0.697 0.699 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4.A1. Demand Estimates 

  (1) 

 

 

VARIABLES  

    

MPRICEVY -5.94e-05*** 

 

(6.69e-06) 

L_MKSHINSEGVY 0.291*** 

 

(0.0920) 

SIZE 0.000234*** 

 

(2.24e-05) 

HPWT 12.34*** 

 

(2.837) 

MPG 0.0263** 

 (0.0105) 

PLB 0.0550*** 

 (0.00812) 

Constant -8.185*** 

 

(0.829) 

  Observations 1,403 

R-squared 0.658 
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4.9. Figures 

 

 

 

Figure 4.1. Hypotheses about the Effects of Product Line Breadth 
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