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Impact of HAART on T Cell activation in HIV-Infected Adolescents

Abstract
Every year, HIV-positive adolescents add to the growing number of HIV-infected individuals. In fact, as of
2005, 50% of newly diagnosed persons with HIV worldwide were youth with an estimated 10.3 million
between the ages of 15 and 24. Adolescents will live with HIV 20 years longer than their adult counterparts,
but disease progression in them is less understood. It is well known that immune activation is prognostic of
chronic disease progression in adults and is often reduced when subjects go on therapy. It is unclear whether
immune activation is entirely eliminated in adolescents on therapy. To date, studies of HIV-positive
adolescents have been limited by design and methodology, resulting in a lack of research addressing the
relationship between outcome of antiretroviral therapy in adolescents and immune activation. To this end, we
designed a study to examine the relationship between therapeutic outcomes and immune activation in HIV-
positive adolescents. We assembled a cohort of 35 HIV-infected and 12 healthy adolescents and measured
immune activation (CD38,CD38/HLA-DR, Ki67) in both baseline and longitudinal data. As expected, cell
turnover was greatly increased in memory CD4 T cells over time. We found that levels of immune activation
in both CD8 and CD4 T cell subsets was elevated in viremic subjects at baseline and after long-term therapy.
One clear distinguishing factor of pathogenic HIV-infection is increased microbial translocation, which can be
measured by CD14 release by activated monocytes. We report sustained elevation of sCD14 in viremic
adolescents, which directly correlated to immune activation. Our results show that adolescents who are not
therapy compliant have elevated immune activation and turnover. Collectively, our results show that in the
presence of suboptimal therapy measures associated with disease progression are elevated. Therefore, it is
necessary to reconsider current treatment guidelines in adolescents to promote optimal adherence and
virologic control in this growing population of HIV-infected individuals.
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ABSTRACT 

IMPACT OF HARRT ON T CELL ACTIVATION IN HIV-INFECTED 

ADOLESCENTS  

Danielle Haney 

Michael R. Betts 

Every year, HIV-positive adolescents add to the growing number of HIV-infected 

individuals. In fact, as of 2005, 50% of newly diagnosed persons with HIV worldwide 

were youth with an estimated 10.3 million between the ages of 15 and 24.  Adolescents 

will live with HIV 20 years longer than their adult counterparts, but disease progression 

in them is less understood. It is well known that immune activation is prognostic of 

chronic disease progression in adults and is often reduced when subjects go on therapy. 

It is unclear whether immune activation is entirely eliminated in adolescents on therapy. 

To date, studies of HIV-positive adolescents have been limited by design and 

methodology, resulting in a lack of research addressing the relationship between 

outcome of antiretroviral therapy in adolescents and immune activation.  To this end, we 

designed a study to examine the relationship between therapeutic outcomes and immune 

activation in HIV-positive adolescents. We assembled a cohort of 35 HIV-infected and 12 

healthy adolescents and measured immune activation (CD38,CD38/HLA-DR, Ki67) in 

both baseline and longitudinal data. As expected, cell turnover was greatly increased in 

memory CD4 T cells over time. We found that levels of immune activation in both CD8 

and CD4 T cell subsets was elevated in viremic subjects at baseline and after long-term 

therapy. One clear distinguishing factor of pathogenic HIV-infection is increased 

microbial translocation, which can be measured by CD14 release by activated monocytes. 

We report sustained elevation of sCD14 in viremic adolescents, which directly correlated 
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to immune activation. Our results show that adolescents who are not therapy compliant 

have elevated immune activation and turnover. Collectively, our results show that in the 

presence of suboptimal therapy measures associated with disease progression are 

elevated. Therefore, it is necessary to reconsider current treatment guidelines in 

adolescents to promote optimal adherence and virologic control in this growing 

population of HIV-infected individuals. 
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Chapter 1: Introduction 

Overview 

 

Although the immune system is efficient at recognizing and clearing pathogens, 

certain microorganisms can evade the immune response and ultimately cause death. One 

such pathogen is Human Immunodeficiency Virus (HIV), which primarily infects and 

replicates in CD4 T helper cells (Klatzmann et al., 1984b; Douek et al., 2002). HIV 

replication results in host cell death, latent infection or further infection of surrounding 

CD4 T cells. To combat infection, CD8 T cells identify and kill target cells by releasing 

cytotoxic molecules and secreting cytokines (Millard et al., 1984; Podack and 

Konigsberg, 1984; Podack et al., 1985; Badovinac and Harty, 2006). While CD8 T cells 

can impact viral replication during acute HIV infection, it is clear from primate studies 

that HIV/SIV is able to elude the immune system and escape detection from CD8 T cells 

(Brenchley et al., 2010). As a result of chronic exposure to antigen, CD8 T cells become 

hyper activated, dysfunctional (Betts et al., 2006; Betts and Harari, 2008), and 

ultimately exhausted (Day et al., 2006; Yamamoto et al., 2011). As such, the diminished 

functional capacity of HIV-specific CD8 T cells, coupled with the massive depletion of 

CD4 T cells renders the HIV-infected host unable to clear HIV infection and combat 

otherwise benign pathogens. 

 Over the last thirty years, there have been significant advancements in the design 

and development of antiretroviral therapies that have allowed HIV-infected patients to 

gain control of their disease and live relatively normal lives.  The most standard course of 

treatment is highly active retroviral therapy (HAART), a cocktail of drugs that inhibits 

multiple steps of HIV viral replication.  When used effectively, HAART decreases viral 
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replication and results in partial immune recovery and long term survival. However, in 

patients on therapy, virus persists in long-lived reservoirs, which are a source of viral 

replication (Blankson, 2006). Treatment interruption and lapses in adherence allow viral 

recrudescence that can result in renewed T cell depletion and the appearance of drug 

resistance mutations that contribute to therapy failure. Thus, HAART ultimately 

increases the duration of time a patient can survive with the virus, but is incapable of 

eliminating the viral reservoir within the lifetime of an infected individual (Finzi et al., 

1997; Blankson et al., 1999; Finzi et al., 1999). While it is fairly well established how 

HAART affects viral course in adult HIV-positive subjects, several unanswered questions 

remain as to how HAART may affect other subject groups, like adolescents and young 

adults. Some of these questions include: Does HAART effectively reduce levels of 

immune activation and viral load? If so, are these levels sufficiently reduced to dictate a 

better disease course? A goal of this thesis is to determine the effectiveness of HAART on 

viral load and immune activation reduction in adolescents. 

Currently, 50% of new incident HIV infections occur in adolescents aged 13-24. 

Treatment of these subjects is more complex because they are less likely to comply with 

therapy regimens. Poor adherence to therapy results in increased viral replication, drug 

mutations and ultimately virologic failure. A large body of work has addressed the effects 

of HAART in adults, but thus far research in HIV-positive adolescents is limited.  

Because adolescents will live longer with the disease those infected in adulthood, it is of 

the utmost importance to understand how their immune systems respond to the virus 

and how reduced adherence to HAART will impact viral dynamics. The goal of my thesis 

is to elucidate the effects of HIV on T cell activation and function in HIV+ adolescents.  
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HIV History, Biology and Pathogenesis 

In 1981, an increased incidence of Kaposi Sarcoma (KS), a rare form of benign 

cancer, appeared in homosexual men in New York (Hymes et al., 1981). Coincident with 

this increase in KS was the emergence of a rare lung infection, Pneumocystis carinii, 

which appeared in IV drug users and homosexual men (Masur et al., 1981). In addition 

to pneumonia, infection was associated with substantial depletion of CD4 T cells from 

the peripheral blood of infected patients. Researchers isolated the infectious agent from 

the inflamed lymph nodes of individuals and found the agent to possess characteristics 

common to retroviruses (Barre-Sinoussi et al., 1983; Klatzmann et al., 1984a). Further 

study revealed that the virus was cytopathic to CD4 T cells (Klatzmann et al., 1984a). 

This virus is now known as the Human Immunodeficiency Virus (HIV), the virus that 

causes AIDS (Acquired Immunodeficiency Syndrome). As of 2009, an estimated 33.3 

million people are living with HIV/AIDS and 2.6 million people were newly infected. A 

staggering 1.8 million deaths are attributed to HIV each year (Cohen et al., 2011). 

Although we know much about the disease and its impact on the body, a successful 

vaccine has yet to be developed. 

 In adults, HIV is typically acquired from exposure at mucosal surfaces through 

unprotected sexual contact or through intravenous or percutaneous inoculations (Cohen 

et al., 2011). Adolescents acquire HIV through high risk sexual behavior but a large 

number acquired HIV as infants through mother to child transmission (Catallozzi and 

Futterman, 2005). Upon exposure, HIV targets and primarily infects CD4 T helper cells, 

but can also infect macrophages and other antigen presenting cells.  In the case of CD4 

infection, the HIV envelope protein, gp120 fuses with the CD4 cell surface receptor and 

either chemokine receptor type 5 (CCR5) (Berson et al., 1996; Deng et al., 1996; Rucker 

et al., 1996) or CXC chemokine receptor type 4(CXCR4) (Feng et al., 1996). Once inside 
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the cell, the virus utilizes the host’s cellular machinery to replicate and produce new 

virions, which bud from the host cell and further propagate in surrounding cells and 

tissues, including the mucosa and draining lymphoid tissues (Cohen et al., 2011).  

The acute phase of infection occurs a few weeks post-transmission and is 

characterized by high levels of viral replication. Concomitant with massive viral 

replication is the depletion of mucosal (Brenchley, 2004) and peripheral blood CD4+ T 

cells (Daar and Ho, 1991).  After the initial peak in viremia, HIV viral load decreases to a 

“set point” of 103 to 104 copies of viral RNA per milliliter of plasma and typically remains 

at this level for 5-10 years (Cohen et al., 2011). It was initially thought that set point was 

directly correlated with progression to AIDS, wherein subjects with high set points 

progressed to AIDS more quickly than those individuals with lower set points (Mellors et 

al., 1995). However, it is now known that plasma HIV RNA level is not an independent 

marker of disease progression (Rodriguez et al., 2006). Although subjects are 

asymptomatic during chronic infection, there is continuous viral replication and CD4 T 

cell attrition during this phase. As a result of CD4 T cell depletion, CD4 mediated help to 

both CD8 T cells and B cells is impaired resulting in decreased killing ability and 

antibody production, respectively (Rowland-Jones, 2003). 

Because the virus is continually present, there is constant pressure on both the 

innate and adaptive immune systems to produce cytokines, which results in immune 

hyperactivation. Over time, hyperactivation of CD8 T cells leads to a state of exhaustion, 

which causes desensitization to antigen (Moir et al., 2011). CD4+ T cell attrition and 

impaired CD8 T cell function contributes to a dysfunctional immune state. The 

combination of these factors results in acquisition of opportunistic infections that 

characterize AIDS and result in death of the host.  
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Immune Response to HIV 

Humoral Immunity 

B cells produce antibodies to combat invading pathogens. These antibodies can 

induce antibody-dependent cell-mediated cytotoxicity (ADCC) or sterically hinder the 

interaction of the pathogen with an uninfected cell in a process called neutralization. 

Most vaccines are antibody-based and rely on these antibodies to neutralize the 

infectious agent.  It has recently been suggested that future vaccine design should focus 

on targeting HIV neutralizing antibodies at mucosal sites in order to block HIV entry 

(McMichael et al., 2010); however, due to the variability and structure of the HIV 

envelope, these antibodies would need to be broadly neutralizing to protect against a 

wide variety of HIV strains. There have been several studies in monkeys where the 

administration of broadly neutralizing antibodies at mucosal sites has led to protection 

against subsequent simian immunodeficiency virus-HIV chimera (SHIV) challenge 

(Hessell et al., 2009); however, similar results have yet to be achieved with humans. In 

fact, there are several limitations in protections from broadly neutralizing antibodies 

including rapid escape mutations (Richman et al., 2003; Wei et al., 2003; McElrath and 

Haynes, 2010) induction of non-neutralizing or neutralizing strain-specific antibodies 

(Kwong et al., 2002) and antibody binding-induced confirmation changes (Kwong et al., 

2002). There have, however, been recent studies showing that some HIV infected 

individuals can develop a range of neutralizing antibodies, a function that was previously 

thought to be difficult (McElrath et al., 2008; Stamatatos et al., 2009; Mikell et al., 

2011). Therefore, future studies should continue to address ways to overcome structural 

and biological impediments on the effectiveness of broadly neutralizing antibodies for 

use in an HIV vaccine. 
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Innate Immunity 

Natural Killer (NK) cells, characterized by their large granular structure, are a 

major arm of the innate immune system. NK cells are multifunctional and make up 

~10% of the circulating blood population (Herberman et al., 1975; West et al., 1977). 

Unlike T and B cells, these cells do not express antigen receptors but do express multiple 

activating and inhibitory receptors, such as killer cell immunoglobulin like receptors 

KIRs (Vilches and Parham, 2002) in response to pro-inflammatory stimuli, NK cells 

migrate to the site of infection where, much like CD8 T cells, they release cytolytic 

molecules including perforin, granzymes, and granulysin (Timonen et al., 1981). NK cells 

also produce IFN-γ which activates macrophages, promotes CD4 Th1 differentiation and 

has several anti-viral effects (Cooper et al., 2001). 

Recently, it has been shown that NK cells play a role in the defense against HIV.  

Expression of KIR3DS1, an activating KIR gene, and its ligand, Bw4 is associated with 

slower HIV-1 disease progression (Martin et al., 2007). NK cells lyse infected target T 

cells during HIV infection, although this lysis effect is somewhat weak and dependent on 

the presence of NK surface inhibitory receptors (De Maria et al., 2003; Mavilio et al., 

2003) Furthermore, chemokines secreted by NK cells can block viral entry in vitro 

(Costa et al., 2003). Additionally, elevated antibody dependent cellular toxicity, an 

important function of NK cells, is correlated with lower risk of death when controlling for 

outside factors like CD4 T cell count and viral load (Forthal et al., 2001a; Forthal et al., 

2001b; Bernstein et al., 2004) 

HIV-specific CD4 T cells 

CD4 T cells are an integral part of an effective immune response and are often 

referred to as T helper cells.  They promote immune control by providing help to CD8 T 

cells and B cells. However, HIV-specific CD4 T cells are preferentially infected and killed 
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by the virus (Douek et al., 2002).  Severe depletion of CD4 T cells during HIV infection 

is tightly linked to opportunistic infections in AIDS patients and increased dysfunction in 

the CD8 T cell compartment (Kalams et al., 1999a; Altfeld and Rosenberg, 2000). 

Therefore, several groups have sought to determine the relationship between HIV-

specific CD4 T cell responses and viral load control. 

HIV subjects can be segmented into two separate groups, those who control viral 

replication and individuals who do not (progressors)(Pereyra et al., 2010). Several 

researchers have attempted to understand qualitative and quantitative differences in 

CD4+ T cell responses between progressors and controllers.  The frequency of CD4 T 

cells is inversely correlated to viral load but the ability for HIV-specific CD4 T cells to 

proliferate has been identified as one of the key factors in viral control (Rosenberg et al., 

1997; Pitcher et al., 1999; Wilson et al., 2000). Indeed, CD4 T cell proliferative capacity 

is diminished in patients with high viral load (Gea-Banacloche et al., 2000; Iyasere et al., 

2003) and is often restored upon initiation of HAART (Autran et al., 1997a; Emu et al., 

2005). In addition to proliferative capacity, HIV-specific CD4 cells also secrete cytokines 

in response to virus; therefore, several studies have focused on identifying cytokine 

expression patterns that may correlate to protection. Thus far, it has been established 

that long-term non-progressors (LTNP) possess HIV-specific CD4 T cells that produce 

both IL-2 and IFN-γ whereas subjects who cannot control the disease do not (Boaz et al., 

2002; Harari et al., 2004). It is unclear if diminished functionality observed in HIV-

specific CD4 T cells from progressors actually causes AIDS.  More than likely low 

functionality could be a consequence of the immune state during progression.  

HIV-specific CD8 T cells 

In 1986, HIV-specific CD8 T cells were identified in sereopositive individuals but 

their potential role in combating HIV disease progression was not known (Walker et al., 
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1986). Two separate groups reported initial evidence for HIV-specific CD8 T cell 

mediated control (Borrow et al., 1994; Koup et al., 1994). These studies showed a 

temporal association between HIV-specific CD8 T cell expansion and the resolution of 

acute viremia. Individuals with persistent viremia and lower CD4 T cell counts were less 

likely to have high HIV-specific CD8 T cell counts, suggesting a direct role for HIV-

specific CD8 T cells in disease progression. To extend these findings and directly test the 

hypothesis that CD8 T cells were necessary for viral control, researchers carried out 

experiments in rhesus macaques using the simian immunodeficiency virus (SIV) model. 

Using anti-CD8 monoclonal antibodies to deplete CD8 T cells in vivo, they showed that 

CD8-depleted primates were unable to control viremia, but upon restoration of CD8 T 

cell numbers the ability to control SIV replication was re-established (Jin et al., 1999; 

Schmitz et al., 1999). This initial work in humans and monkeys demonstrated a potential 

role for T cell based vaccines and motivated the field to determine potential mechanisms 

of control mediated by these cells. 

Further evidence for HIV-specific CD8 T cell control in HIV infection is the link 

between MHC Class I allele expression and HIV disease progression. Expression of 

certain MHC Class I alleles can often predict disease outcome. Subjects who are 

homozygous at any of the 3 HLA Class I loci (HLA-A, HLA-B, HLA-C) typically progress 

more rapidly to AIDS than those who are heterozygous (Goulder et al., 1997; Carrington 

et al., 1999). This heterozygosity is thought to increase the breadth of recognized viral 

epitopes resulting in better CD8 T cell-mediated control than subjects who are 

homozygous. However, in certain examples a narrowly directed HIV-specific CD8 T cell 

response can be effective at controlling viremia over time (Goulder et al., 1997). Subjects 

who maintain superior control of virus in the absence of therapy express HLA-B27 and 

B57 alleles (Kaslow et al., 1996; Migueles et al., 2000; Emu et al., 2008). CD8 T cells 
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recognize peptides presented by MHC Class I molecules therefore the association 

between certain MHC alleles and viral control further implicates CD8 T cells in the 

control of viremia.  

 CD8 T cell-mediated recognition of virus-infected cells induces rapid selection for 

viral escape mutants. The first evidence for CD8-mediated escape was shown in 1997 by 

several groups (Borrow et al., 1997; Goulder et al., 1997; Price et al., 1997). In two of 

these studies, escape was shown to occur during acute infection. Additionally, CD8 T cell 

escape was also shown to occur late in infection even after effective long-term control of 

virus and was associated with progression to AIDS. Subsequent studies in the SIV model 

have supported that CD8 escape occurs in the chronic (Allen et al., 2000; O'Connor et 

al., 2002) and acute (Evans et al., 1994; Evans et al., 1999) phase of infection. Therefore 

the evidence that HIV escapes from CD8 T cell mediated pressure is vast. Interestingly, 

escape mutations often confer negative fitness cost to the virus and may precede effective 

suppression of viremia.  

The expansion of HIV-specific CD8+ T cells and the concomitant decline of 

viremia has been one of the most convincing arguments for CD8 T cell control of viral 

replication. Several groups chose to determine if the control induced by HIV-specific 

CD8 T cells was the result of quantitative or qualitative events. MHC Class I tetramer- 

based studies demonstrated that the frequency of HIV-specific CD8+ T cells inversely 

correlated with viral load (Ogg et al., 1998). These results were limited to A2-restricted 

Gag and Pol-specific CD8 T cell responses and therefore were not reflective of the entire 

response to HIV. A more comprehensive study went on to establish that there was a 

positive correlation between viral load and the total HIV-, Env- and Nef-specific CD8 T 

cell frequency (Betts et al., 2001a). Conversely, other studies reported certain responses 

to viral proteins inversely correlated to viral load (Edwards et al., 2002). Therefore, it 
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can be seen that early studies involving a link between frequency and function of CD8 

T cells and plasma load were inconclusive. Moreover, the total frequency of HIV-specific 

CD8 T cells did not explain differential control of viral load in controllers versus 

progressors.  

In 2006, Betts et al. employed the use of polychromatic flow cytometry to 

characterize the CD8 T cell response in non-progressors. They found that subjects 

maintaining low viral loads possessed highly functional HIV-specific CD8 T cells. 

Conversely, the frequency and proportion of HIV-specific CD8 T cell response with the 

highest functionality inversely correlated with viral load in the progressors (Betts et al., 

2006). Furthermore, HIV-specific CD8 T cells in non-progressors were superior in their 

ability to proliferate and degranulate upon antigen encounter. This study was the first to 

determine that the quality of the functional response was a better correlate of HIV 

disease progression (Betts et al., 2006). Although a single correlation factor has yet to be 

identified, perforin-mediated killing and proliferative capacity is enriched in patients 

who control viral load (Migueles et al., 2002; Migueles et al., 2008; Hersperger et al., 

2010a) suggesting that HIV-specific CD8 T cells from subjects who maintain killing 

function are most effective at suppressing viral replication.  

Finally, when cellular functionality is altered, the importance of CD8 T cells 

becomes evident. In studies using LCMV, a murine model of acute and chronic viral 

infection, it was revealed that CD8 T cells become exhausted after prolonged antigen 

exposure (Blackburn et al., 2009). Exhaustion is characterized by diminished function, 

proliferation of CD8 T cells and the expression of exhaustion markers like PD-1, a 

negative regulator of activated T cells. Recently, studies in HIV-positive humans have 

shown that HIV-specific CD8 T cells expressing higher levels of PD-1 also have impaired 

effector function and correlate with higher viral loads (Day et al., 2006; Petrovas et al., 
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2006; Younes et al., 2007). However, it is becoming increasingly clear that expression 

of multiple inhibitory receptors indicates an exhausted phenotype (Yamamoto et al., 

2011) in chronically infected humans. Future studies are necessary to determine the 

contribution of immune exhaustion to HIV disease progression. 

The role HIV-specific T cell responses in adolescents 

HIV-specific CD4 and CD8 T cells play an integral part in the reduction in viral 

replication and progression to HIV (Rosenberg et al., 1997; Betts et al., 2001a; Boaz et 

al., 2002; Pantaleo and Koup, 2004; Betts et al., 2006; Duvall et al., 2006). In HIV-

positive adults, it is known that the presence of polyfunctional CD8 T cell responses are 

correlated with reduced viral load (Betts et al., 2006). Adults who have a higher viral 

load and progress to AIDS are more likely to have a less polyfunctional CD8 T cell 

response (Betts et al., 2006). While HIV-specific T cell responses have been fairly well 

characterized in adults, the role of these responses in adolescents remains unclear. 

The degree of T cell functionality or the ability of the T cell to respond to 

antigenic stimulation is related to age (Buseyne et al., 2005a; Prendergast et al., 2011). 

For HIV-positive newborns, an immature immune system combined with poor antigen 

presentation impairs the generation of HIV-specific T cells during the first months of life 

(Buseyne et al., 1998).  As a consequence, untreated children have high levels of 

persistent viremia, which promotes immune activation and decreases the chance for 

recovery post-therapy initiation. For children on therapy, as well as adults, viral 

suppression is often associated with a decreased frequency of HIV-specific IFN-γ 

producing CD8 T cells (Buseyne et al., 2005a). When responses are detected, it is the 

frequency of gag-specific CD4 and CD8 T cell responses that are associated with virologic 

control in infants and children (Prendergast et al., 2011). In HIV-positive adolescents 

antigen-specific CD8 T cell functional responses are even less studied than in children. 
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When the functionality of CD8 T cells in adolescents has been examined, it is often 

studied and analyzed in conjunction with T cell functionality in children from 0-9 years 

of age making it difficult to draw conclusions about the contribution of these responses 

to viral control  

Immune Activation 

A hallmark of HIV infection is severe cellular depletion in the CD4 T cell 

compartment (Hunt et al., 2008). Initially, it was believed that CD4 T cell depletion was 

due to direct killing of infected CD4 T cells, but the widespread immune damage was far 

too severe to be solely attributed to HIV-induced CD4 T cell destruction. For this reason, 

several groups sought to determine the non-antigen specific mechanisms that caused 

CD4 T cell attrition. In the early 90s, several groups showed that HIV induced immune 

activation primarily impacted uninfected bystander cells leading to apoptotic cell death 

(Groux et al., 1992; Finkel et al., 1995). It is now understood that chronic widespread 

immune activation is the distinguishing characteristic of pathogenic HIV infection 

(Giorgi et al., 1993; Liu et al., 1997). Immune activation is the key difference between 

pathogenic and non-pathogenic infection. For example, non-progressive infection is 

characterized by high viral load, controlled immune activation and a lack of progression 

to AIDS.  In contrast, progressive infection is characterized by uncontrolled immune 

activation and disease progression (Van Rompay et al., 2004). Immune activation is 

characterized by accelerated proliferation, exhaustion, and T cell depletion that results in 

reduced regenerative capacity of the immune system. Administration of antiretroviral 

therapy reduces immune activation through direct inhibition of HIV viral replication. 

Importantly, reducing immune activation results in a more favorable disease outcome 

(Kalams et al., 1999b; Hunt et al., 2003a). 
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There are several markers that have been used to identify T cell activation in 

vitro, including CD38, HLA-DR, CD25, CD69, CD70, tumor necrosis factor receptor type 

II and Beta2-microglobulin (Liu et al., 1997). CD38/HLA-DR co-expression was one of 

the earliest combinations of activation markers identified to directly correlate with 

increased viral loads (Giorgi et al., 1993). Elevated levels of CD38 have been directly 

associated with a higher propensity to develop AIDS than those with lower CD38 levels 

(Liu et al., 1997). Moreover, elevated levels of CD38+CD8+ T cells were found to be 

better predictors of disease progression than viral load or CD4 T cell count (Wilson et al., 

2004). Further, upon therapy initiation, the levels of CD38 in the blood and lymph node 

decreased coincident with plasma viremia albeit not to levels similar to those at baseline 

(Benito et al., 2004; Yang et al., 2005).  

Increased T cell turnover is now known to be a consequence of increased immune 

activation during HIV infection. However, it was previously debated whether the rapid 

rise in CD4 counts in the blood after HAART initiation was	
  due to this process. Some 

groups postulated that the rise in CD4 T cell counts was largely due to lymphocyte 

redistribution and not a result of increased turnover (Sprent and Tough, 1995). 

Supporting this hypothesis, CD4 T cell telomere length in HIV infected persons was not 

found to be significantly shorter than that of their uninfected counterparts suggesting 

that these cells were not undergoing rapid turnover (Wolthers et al., 1996). To directly 

address if T cell turnover occurs during HIV infection, several groups employed the SIV-

rhesus macaque model (Mohri et al., 1998; Rosenzweig et al., 1998). Using 

Bromodeoxyuridine (BRDU), a dye that incorporates into the DNA of proliferating cells, 

T cell turnover was quantified in living tissues. Animals with high viral loads had 

increased BRDU incorporation as well as higher rates of decay in CD3+CD4+, 

CD3+CD4-, CD3-CD8+CD16+ and CD3-CD20 cells, suggesting that increased turnover 
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occurs in each lymphocyte population. These results were further supported by the 

observation that CD4 and CD8 T cell turnover rates were 2-3 fold higher in infected 

primates (Mohri et al., 1998; Rosenzweig et al., 1998).  Taken together, these data 

showed that there was, in fact, increased turnover during HIV-like infection in each 

lymphocyte subset.   

Studies were extended to humans using deuterated glucose (D-glucose) to 

determine relative rates of turnover in vivo. Similar to findings in rhesus macaques, CD4 

and CD8 turnover rates in HIV-infected subjects decreased over time with therapy 

(Hellerstein et al., 1999; Mohri et al., 2001). These results were further confirmed in 

human in vitro studies using Ki67, a marker of proliferation and cell cycle entry. The 

percentage and absolute number of Ki67+ CD4 and CD8 T cells was elevated in infected 

subjects compared to uninfected counterparts (Hazenberg et al., 2000c). After HAART 

therapy, proliferation of CD8 and CD4 T cells decreased, as did viral loads. Theoretically, 

increased T cell turnover could be a reflection of homeostatic proliferation driven by cell 

losses induced by the virus. In this study however there was an initial decrease in CD4 T 

cell count after therapy despite the relative low initial numbers. This suggests that 

proliferation is a result of immune activation and not homeostasis. 

Causes of Immune Activation 

To date, the underlying cause of immune activation in HIV-positive humans 

remains unclear, however, a combination of factors have been implicated as contributing 

to activation. Firstly, the virus itself is thought to promote immune activation through 

the binding of gp120 to CD4 or CCR5 (Decrion et al., 2005). This binding event results in 

increased intracellular signaling thus promoting cellular activation and further infection. 

Indeed, studies have shown that the addition of CCR5 antagonists result in decreased 

immune activation (Ahuja et al., 2008) and that elevated CCR5 surface density is linked 



 15 
to reduced CD4 T cell restoration (Vincent et al., 2006). Additionally, host innate 

immune responses have been implicated. Macrophages, DCs, and NK cells release pro-

inflammatory cytokines like TNF, IL-6, and IL1-β during infection. These cytokines 

activate adaptive immune responses resulting in HIV-specific and bystander cell 

activation (Engram et al., 2010). Furthermore, massive CD4 T cell depletion during HIV 

leads to suboptimal control of persistent viruses like CMV and EBV. Reactivation of 

these viruses exacerbates the immune response and the inflammatory environment 

(Bafica et al., 2004). Finally, CD4 T cell depletion during HIV infection occurs primarily 

in the gut associated lymphoid tissues (GALT) and is associated with the disruption of 

the mucosal barrier (Brenchley et al., 2004). This causes the translocation of microbial 

products from the intestinal tract, resulting in detection by the immune system. These 

by-products, including LPS and CpG, activate immune cells through TLR ligation and 

contribute to chronic immune activation (Brenchley et al., 2006). Taken together, these 

studies suggest that one single factor does not contribute to the activated environment 

during HIV infection but it is most likely a combination of factors that contributes to 

overall activation.  

HAART: Highly Active Antiretroviral Therapy  

Presently, the most effective therapy for HIV infection is HAART, a cocktail of 

different viral inhibitors that each prevent specific steps in viral replication from 

occurring. These drug classes are: Entry Inhibitors, Nucleoside/Nucleotide Reverse 

Transcriptase Inhibitors (NRTI), Non-Nucleoside Reverse Transcriptase Inhibitors 

(NNRTI), Protease Inhibitors (PI), and Integrase Inhibitors (II). Entry inhibitors bind to 

the cell surface receptor, CCR5, and block the fusion of HIV GP120 with the host cell 

membrane (Lalezari et al., 2003; Root and Hamer, 2003; Liu et al., 2007). The second 

class of inhibitors (NRTIs) interferes with the reverse transcription step of HIV (St Clair 
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et al., 1987; Roberts et al., 1988).  Non-nucleoside Reverse Transcriptase Inhibitors 

(NNRTIs) are analogues of deoxynucleotides that are needed to synthesize DNA, but lack 

the 3’hydroxyl chain, and when incorporated into the growing cDNA genome, result in 

termination of replication (Jeffries, 1989; Merluzzi et al., 1990; Richman et al., 1991; 

Hsiou et al., 1998). The third class of viral inhibitors target HIV Protease. Protease 

inhibitors prevent the cleavage of viral proteins, which are translated as polyproteins, 

and thus interfere with replication within the host cell (Billich et al., 1995; Reedijk et al., 

1995). The final class of inhibitors target HIV integrase.  These inhibitors prevent the 

action of HIV integrase which functions to integrate the viral genome into the host 

genome allowing production of new viruses (Hazuda et al., 2000; Hazuda et al., 2004; 

Steigbigel et al., 2008). 

While HAART is efficient at inducing low to undetectable viral loads, it is 

essential that individuals are compliant with their therapy regimens. Without a rigid 

schedule of medication, HIV viral load is able to rebound, resulting in increased immune 

activation and decreased CD4 T cell counts and disease progression (Karlsson et al., 

2004; Hunt et al., 2006; Agwu et al., 2008). Additionally, while HAART intervention 

contributes to overall quality and duration of life, it is not a cure and should not be 

viewed as a perfect solution. When compared to both HIV-negative and long-term non-

progressor controls, CD4 T cell counts and T cell activation remain abnormal after 

therapy intervention (Benito et al., 2004; Gandhi et al., 2010). In fact, while HAART 

does control viral load, it does not eliminate the virus completely, for the viral reservoir 

does not appear to decay effectively during therapy (Chun et al., 1997; Finzi et al., 1997; 

Finzi et al., 1999; Lassen et al., 2006). Residual viremia affects immune recovery by 

causing elevated immune activation even while patients are on therapy (Karlsson et al., 

2004).  For these reasons, future studies are needed to determine the cause of prolonged 
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immune activation and its lasting impact on immune recovery even after therapy 

intervention. 

Adolescents and Immune Activation  

Overview 

  Compared to adults, adolescents will live with HIV on average 20 years longer 

than infected adults, but disease progression in them is less understood. While 

adolescents are commonly infected as infants via vertical transmission (mother-child) or 

through breast milk, new advances in therapy have reduced the rate of transmission 

from mother to child. In recent years, an increasing number of adolescents are also 

acquiring infection through behavioral routes, such as risky sexual acts and drug use. In 

fact, as of 2005, 50% of newly diagnosed persons with HIV worldwide are youth with an 

estimated 10.3 million between the ages of 15 and 24 infected. While antiretroviral 

therapies have proven successful at increasing lifespan, effective treatment of 

adolescents is particularly challenging because of their unique psychosocial issues, 

including gender power imbalance in sexual relationships, lack of safe sex education, 

perceived HIV disease stigma, and limited access to healthcare (Futterman, 2005). These 

factors can have a significant impact on the efficacy of therapeutic strategies to target the 

virus in adolescents, and thus must be carefully considered, because of the link between 

adherence to therapy and drug resistance in HIV infection. 

T cell turnover and Immune Activation in Adolescents 

Maintenance of adequate T cell numbers and diversity of the T cell repertoire are 

primary requirements for a functional immune system. During HIV infection, T cells are 

constantly being destroyed causing an imbalance in the T cell population, which leads to 

immune dysfunction and increased susceptibility to opportunistic infections. The 

thymus generates new cells which helps to replenish the T cell repertoire. For individuals 
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infected with HIV, this feature of the immune system can help restore the cellular 

compartments that were destroyed by the virus. This regenerative capacity is most 

robust in children and continually declines as the individual ages (Mackall et al., 1995; 

Douek et al., 1998; Vigano et al., 2000b). 

During the typical HIV disease course, the percentage and number of CD4 T cells 

declines over time whereas CD8 T cell counts either remain stable or rise (Ibegbu et al., 

1994; Rabin et al., 1995). When individuals initiate HAART, memory and naïve CD4 T 

cell counts increase and CD8 T cell numbers normalize. In HIV-infected adults, CD4 T 

cell levels do not return to pre-infection levels even if viral replication is controlled with 

therapy (Autran et al., 1997a; Surh and Sprent, 2008). Compared to adults on therapy, 

HAART-treated adolescents have higher recovery rates in naïve and memory T cell 

populations, suggesting that increased thymic capabilities in younger subjects promote 

immune restoration (Cohen Stuart et al., 1998a; Sleasman et al., 1999).  

To date there are few definitive studies on the effects of HAART on turnover in 

HIV-positive adolescents. Using Ki67 as a marker of proliferation to determine relative 

turnover, studies have shown that HIV-positive adolescents have higher Ki67-expressing 

naïve and memory T cell subsets than healthy controls, with the highest levels of Ki67 

being in the naïve CD8 T compartment (Flynn et al., 2007). Additionally, HIV-infected 

adolescents have significantly lower numbers of CD4 T cells than controls (Rudy et al., 

2002). In one report, increased Ki67 expression correlated with CD38/HLA-DR co-

expression on CD8 T cells suggesting that increased rates of proliferation were driven by 

increased immune activation (Starr et al., 2002b). There was no correlation or 

relationship found between Ki67 expression and therapy initiation. A possible 

explanation of this relationship is that therapy in adolescents is ineffective at decreasing 

turnover. Findings resulting from well defined cohorts, accurately defined activation 
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parameters, and T cell subsets will prove beneficial in determining therapeutic effects 

on the adolescent immune system.  

Although lymphocytes rebound following therapy in HIV infected adolescents, 

continued immune activation may negatively impact lymphocyte recovery. A link 

between immune activation and T cell recovery following HAART in HIV-positive 

adolescents can be found in a study designed to evaluate predictors of CD4 T cell loss. In 

this study they measured CD4 T cell counts and markers of immune activation (CD38, 

Ki67) at baseline and up to week 60 following therapy initiation (Rudy et al., 2006b). A 

subset of individuals with CD4 counts over 300 cells/µl reached viral suppression by 

week 24.  After 24 weeks on therapy, adolescents showed significant increases in CD4 T 

cell counts and decreases in CD8 T cell counts. However, these individuals were less 

likely to sustain this suppression if they had elevated levels of activated CD38/HLA-DR 

expressing CD8 T cells (Rudy et al., 2006a), suggesting that the advantage of higher CD4 

counts prior to therapy (Perez et al., 2001) is lost in the presence of immune activation. 

Indeed, children with lower levels of CD38/HLA-DR CD8 T cells have moderate 

increases in CD4 T cell counts and lower viral loads (Borkowsky et al., 2000; Starr et al., 

2002a). Taken together these studies demonstrate the impact of T cell activation on T 

cell recovery rates and virologic control in youth. They also suggest that it is necessary to 

reduce immune activation while on therapy to maintain viral suppression and recover 

CD4 T cell counts. 

Antiretroviral Treatment in Adolescents 

Antiretroviral treatment failure and subsequent drug resistance are major 

obstacles in long-term management of disease in HIV-infected youth. Adolescents who 

receive HAART have low adherence to therapy with rates ranging from 29-50% (Douglas 

et al., 2000; Rudy et al., 2001; Agwu et al., 2008a).  These rates are substantially lower 
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than the 90-95% adherence rates necessary for successful long-term viral control and 

prevention of drug resistance. Consequently, only 58% of youth reach viral suppression 

on therapy at week 24 of treatment compared to 80-90% of adults (Rudy et al., 2006b).  

As a result, a growing number of HIV-positive adolescents on HAART will likely undergo 

viral breakthrough and subsequent drug resistance. 

Effective strategies aimed at adolescents must preserve immunity, have a low 

dosing frequency, a low risk for therapy-associated toxicity, and a minimal risk for drug 

resistant viruses. As discussed previously, two major drug regimens are NNRTI or PI 

based. Both of these regimens are equally effective in early therapy, however, these 

regimens are not perfect. For example, increased drug resistance during NNRTI 

treatment results in persistent viral variants that can be detrimental in long-term 

patients (Cohen Stuart et al., 1998; Agwu et al., 2008a). Even after subjects are found to 

be resistant to therapy, they often continue on the same regimen (Gortmaker et al., 

2001). The addition of PI to the NNRTI regimen has been successful at reducing drug 

mutations in adults, so several groups turned their attention to investigating the effects 

of different combination therapy in children and adolescents (Hammer et al., 1997; 

Palella et al., 1998). A three-year prospective study in children (age birth-20) showed a 

67% reduction in risk of death when protease inhibitors were used (Gortmaker et al., 

2001).  Adolescents undergoing NNRTI treatment were more prone to drug resistance 

mutations than adolescents on protease inhibitors alone (Agwu et al., 2008b). 

Furthermore, since adolescents usually remain on NNRTI therapy, more mutations are 

likely to occur. However, while protease inhibitor therapy may be less prone to drug 

resistance, there are long-term metabolic side effects that should not be ignored. 

Therefore, careful consideration must be made when choosing therapeutic regimens for 

adolescents. Future studies should carefully examine the effect of different drug 
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combinations on immune activation, which is the strongest predictor of disease 

progression. 

Microbial Translocation in HIV+ Adolescents 

As discussed previously, microbial translocation is thought to be the driving force 

of immune activation in adults, but the role of microbial translocation has been 

understudied in HIV-positive adolescents. In HIV-positive infants other markers of 

microbial translocation such as sCD14, LBP and Endocab are increased in infants who 

delay treatment during the first six months of life compared to their HIV-exposed 

counterparts (Papasavvas et al., 2011). Soluble CD14, a marker of macrophage activation 

and increased microbial translocation, has been cited as the strongest predictor of death 

in adult HIV studies (Sandler et al., 2011). Therefore, increased levels of sCD14 even in 

the absence of immune activation could signify poor disease outcome. A recent study in 

children aged 0-17 years cited increased LPS and sCD14 levels in infected subjects 

compared to controls (Wallet et al., 2010) and, in contrast to adult reports, neither of the 

studies discussed found an association between immune activation and microbial 

translocation (Brenchley et al., 2006). Due to the long-term nature of the disease in 

adolescents and children, future studies should work to elucidate the association of 

sCD14 with HIV disease progression.  

Thesis Goals 

  Adolescents comprise an alarming portion of new HIV cases yearly. Moreover, 

the duration of their disease will be much longer than that of their adult counterparts. 

They will also be exposed to the effects of immune activation for the duration of their 

lifetime.  It is unclear whether this immune activation is entirely eliminated even in 

adolescents that strictly adhere to therapy let alone in the large number of adolescents 

who do not adhere. To date, studies of HIV-positive adolescents have been limited by 
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design and methodology resulting in a lack of research addressing the relationship 

between outcome of antiretroviral therapy in adolescents and immune activation in this 

patient group.  

In order to address this deficit in research of HIV-infected adolescents and to 

examine the relationship between therapeutic outcomes and immune activation in 

adolescents, we assembled a cohort of HIV-infected HAART-treated subjects and 

measured common markers of immune activation on lymphocytes from these subjects. 

We first chose to investigate the affects of HAART therapy on the activation levels of CD4 

T cells and CD8 T cells. To this end, we took a novel approach by examining the 

simultaneous expression of CD38, HLA-DR and Ki67 in the cohort. To date, most studies 

have been defined using naïve versus memory analysis and have been limited to 3-color 

flow cytometry. In my studies, we have taken advantage of polychromatic flow 

cytometry, which allows the examination of up to 18 colors simultaneously.  Using this 

technology, we investigated the expression of activation markers on multiple memory T 

cell subsets with the goal of determining if viral load preferentially correlates with 

activation, as well as, memory T cell definition, and microbial translocation. In addition 

to studying the effects of HAART on activation in adolescents this body of work also 

addresses the CD8 T cell response to HIV in adolescents. The goal of this thesis is to 

increase the understanding of the capacity of the adolescent immune system and its 

response to therapy, with the ultimate goal of informing future therapy regimens in this 

long-term patient population. 
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Chapter 2: An examination of Increased CD8+ T 

cell Activation in HIV+ adolescents on HAART 

Abstract 

 In 2006, 50% of new HIV infections occurred in adolescents aged 13-24.  In 

adults, immune activation directly correlates to HIV disease progression; however, 

immune activation in adolescents is not completely understood. We characterized 

immune activation markers on CD8 T cells from a cohort of adolescent subjects 

including 15 viremic (>50 copies RNA/ml), 17 aviremic (<50 copies RNA/ml), and 12 

HIV uninfected subjects. We used polychromatic flow cytometry to define the immune 

activation profile of CD8+ T cells by measuring simultaneous expression of CD38, HLA-

DR, Ki67 and Bcl-2. We observed increased immune activation on total memory, effector 

(CCR7-CD45RO-), effector memory (CCR7-CD45RO+) and central memory 

(CCR7+CD45RO+) CD8 T cell subsets. The frequency of CD38+CD8+ effector T cells 

directly correlated with viral load (p=.0366).  However, we did not find a correlation 

between viral load and CD4 T cell counts. Compared to aviremic subjects, sCD14 levels 

were higher in viremic subjects and were correlated with CD38 expression on central 

memory, effector and effector memory populations. Taken together, these results show 

that there is preferential activation across memory subsets and a direct relationship 

between viremia, activation and sCD14 levels in HIV+ adolescents. 

Introduction 

Adolescents and young adults comprise roughly 50% of new HIV infections in the 

United States (Futterman, 2005)  yet current therapy guidelines for this population are 

based on adult standards. Psychosocial issues in young adults make it difficult for this  
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Table II: Overview of Adolescent Cohort 

!

 Viremic 
 

Aviremic Healthy Healthy Donors 
for sCD14 
measurement 

# of Subjects 15 
 

17 12 43 

Plasma RNA 
(median) 

6,790 copies RNA 
per/ml  

< 50 
copies/RNA/ml 

N/A N/A 

CD4 T cell count 
(mean) 

505 cells/ml 732 cells/ml Not determined Not determined 

CD8 T cell count 
(mean) 

985 cells/ml 886 cell/ml Not determined Not determined 

Sex 6 males 
13 females 

10 males 
6 females 

6 male 
6 female 

28-male 
15-female 
 

Mode of 
Transmission 

4 Behavior 
11 Perinatal 

2 Behavior 
15 Perinatal 

N/A N/A 
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population to adhere to therapy guidelines (Futterman, 2005) Despite the numerous 

reports in children and adults, few studies have addressed the successful control of HIV 

by HAART therapy in adolescents. It has been suggested that adolescents have more 

thymic capacity than adults (Douek et al., 1998; Douglas et al., 2000). For example, 

adolescents have higher naïve CD8 and CD4 T cells counts, which may allow for 

favorable response to therapy (Douglas et al., 2000; Starr et al., 2002a). In fact, it has 

been shown that individuals with higher pre-treatment CD4 T cell counts are likely to 

rebound cell numbers close to that of aviremic controls (Perez et al., 2001). Adolescents 

will be lifelong carriers of the disease; therefore, it is of the utmost importance to 

understand the effectiveness of current therapies in this expanding population to 

determine if it is necessary to restructure their treatment regimens. 

Immune activation has been identified as a better predictor of disease 

progression than viral load (Rodriguez et al., 2006) or CD4 T cells counts in HIV-

infected adults (Giorgi et al., 1993; Liu et al., 1997; Giorgi et al., 2002; Rodriguez et al., 

2006). Immune activation is commonly assessed by measuring expression of Ki67, CD38 

or co-expression of CD38/HLA-DR (Giorgi et al., 1993; Sachsenberg et al., 1998a; 

Hazenberg et al., 2000c). Higher CD38 and HLA-DR memory CD8 T cells in HIV-

infected adults is predictive of slower CD4 T cell recovery rates during HAART 

(Hazenberg et al., 2000c). Long-term therapy reduces the absolute number of CD38+ 

CD8 T cells; conversely, an increase in CD38 expressing CD8+ cells correlates with 

progression to AIDS (Giorgi et al., 1993; Liu et al., 1997). Studies in adolescents have 

revealed analogous results (Starr et al., 2002a; Rudy et al., 2006a). However, these 

previous adolescent studies have been limited to single activation parameters and 

examination of total memory (RO+) cells.  Qualitative or quantitative differences in  
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Figure 1: Gating Scheme for Activation Markers A) CD8 or CD4 cells were gated 

into naïve (CCR7+CD27+CD45RO-) and bulk memory subsets B) memory subsets were 

then further subdivided to assess expression of the markers Ki67, HLA-DR, CD38, Bcl-2 
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immune activation between memory subsets could have important implications for 

disease mediated by HIV in adolescents.   

While the definitive causes of chronic immune activation remain unclear, 

decreased integrity of the intestinal wall during chronic HIV infection in adults has been 

associated with higher levels of circulating bacterial products such as lipoplysaccharide 

(LPS) (Brenchley et al., 2006; Papasavvas et al., 2009b; Nixon and Landay, 2010) . One 

means to detect the effect of LPS induced activation is to measure circulating levels of 

soluble CD14 (sCD14) (Lien et al., 1998). It has been shown that increased LPS directly 

correlate to increased CD38 expression (Brenchley et al., 2006; Nixon and Landay, 

2010). Furthermore, increased sCD14 has been directly correlated to an increased risk of 

mortality in adult clinical studies (Sandler et al., 2011). To date an examination of the 

interplay of immune activation, CD4 T cell depletion, CD8 T cell activation and sCD14 

has yet to be carried out in adolescent subjects.  

Here we examined the link between immune activation and viral control in HIV-

infected, HAART treated adolescents by analyzing Ki67, HLA-DR, CD38 and Bcl-2 

expression on well-defined CD8+ T memory cell subsets. Our data show that as a 

consequence of inadequate therapy adherence adolescents sustain increased viral load 

and immune activation. This work enhances our understanding of the effectiveness of 

current therapy and informs regimen design in HIV-positive adolescents. 

Materials and Methods 

2.1 Cells: The cohort consisted of 44 HIV-infected adolescents in the following groups: 15 

viremic (>50 copies RNA/ml), 17 aviremic (<50 copies RNA/ml), and 12 HIV uninfected 

subjects (Table I and Table II: Appendix). 43 additional Healthy subjects were acquired  
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Figure 2: Activation levels in Bulk memory and Naïve populations of CD8+ 

T cells. Human PBMCs were thawed and stained for lineage markers (CD3, CD4, CD8, 

CD19, CD16, CD14) memory markers(CD27,CD45RO,CCR7) and activation markers 

(CD38,HLA-DR,Ki67,Bcl-2) A) CD38 B) Ki67 C) CD38+HLA-DR+ expression was 

assessed on non-naïve CD8+ T and naïve (D-F) cells using non-parametric t-tests
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for soluble CD14 titers in healthy adolescents. Patients acquired HIV from either 

mother-to-child transmission or high-risk behavior. Healthy, age-matched subjects were  

collected at two different study sites. The University of South Florida and University of 

Pennsylvania Institutional Internal Review Boards approved the protocol for collection.   

PBMC were isolated by standard Hypaque-Ficoll separation and cryopreserved in fetal 

bovine serum (FBS; ICS Hyclone, Logan, Utah) containing 10% dimethyl sulfoxide 

(DMSO; Fisher Scientific, Pittsburgh, Pennsylvania).  

2.2 Antibodies:  Monoclonal antibodies (mAbs) for surface staining included: (i) anti-

CD4 PECy5-5, anti-CD27 APC Alexa-750, anti-CD38 APC, and anti-HLA-DR Pacific blue 

, anti-CD8 605 (Invitrogen, Carlsbad, California); (ii) anti-CD19 Pecy5 and anti-CD16 

Pecy5 (Biolegend, San Diego, California); and (iii) anti-CD45RO Qdot 705 (custom). For 

intracellular staining, mAbs included anti-Ki67 FITC and anti-Bcl-2  PE (BD 

Pharmingen, San Diego, California) and anti-CD3 TRPE (Beckman Coulter, Fullerton, 

California). Custom conjugations to quantum dot (Qdot) nanocrystals were performed in 

our laboratory as described previously (Chattopadhyay et al., 2006) with reagents 

purchased from Invitrogen.  

2.3 Flow cytometry staining assay:  Cryopreserved PBMC were thawed and rested 

overnight at 37oC, 5% CO2 in cRPMI medium at a concentration of 2x106 cells/ml. 

Subsequently, the cells were washed with cRPMI and resuspended at a concentration of 

1x106 cells/ml. The cells were washed once with PBS and stained with Aqua Blue amine-

reactive viability dye (Invitrogen) for 10 minutes in the dark at room temperature; a mAb 

cocktail was used to stain surface markers for an additional 20 minutes. The cells were 

washed with PBS containing 1% bovine serum albumin (BSA; Fisher Scientific) and 0.1% 

sodium azide (Fisher Scientific) and either fixed in paraformaldehyde (Sigma-Aldrich) or 

fixed/permeabilized using the Cytofix/Cytoperm kit (BD Biosciences) according to the  
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Figure 3: Immune Activation is elevated in some T cell subsets  (A) Ki67 (B) 

CD38 (C) CD38+HLA-DR+ expression were assessed on memory  (Effector, Effector 

Memory, Central Memory) populations across the viremic, aviremic and HIV- subjects. 
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 manufacturer's instructions. A cocktail of mAbs against intracellular markers was 

added to the fixed/permeabilized cells, which were incubated for 1 hour in the dark at 

room temperature. These cells were washed once with Perm Wash buffer (BD 

Biosciences) and fixed in PBS containing 1% paraformaldehyde (Sigma-Aldrich). Fixed 

cells were stored in the dark at 4°C until the time of collection. 

2.4 Flow cytometric analysis:  For each specimen, between 0.5 and 1x106  total events 

were acquired on a modified LSRII flow cytometer (BD Immunocytometry Systems, San 

Jose, California) equipped for the detection of 18 fluorescent parameters.  Anti-mouse 

Igk antibody capture beads (BD Biosciences) were used to prepare individual 

compensation tubes for each mAb used in the experiment. Data analysis was performed 

using FlowJo version 9.1 (TreeStar, Ashland, Oregon).  

2.5 sCD14 measurement: Previously frozen (-80°C) plasma and serum samples were 

thawed at room temperature.  Plasma samples were diluted 1:400 and serum samples 

were diluted 1:100 in calibrator diluent.  The samples were analyzed for sCD14 with R & 

D Systems ELISA kit per kit instructions. 

2.6 Statistical Analysis: Initial analyses were restricted to baseline observations. Analysis 

of variance (ANOVA) or Kruskal-Wallis tests were used to compare the activation levels 

between the 3 groups, with Tukey adjustment for multiple comparisons. Soluble CD14 

levels were compared between two groups using non-parametric tests. Correlation 

coefficients assessed the association between activation and viral load. Longitudinal 

analyses were conducted using generalized estimating equations (GEEs) with either a 

Poisson or normal distribution, as appropriate, and a log-link. Partial correlation 

coefficients were calculated to assess associations longitudinally.  All analyses were 

conducted using Stata/MP 11 . 
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Figure 4: Longitudinal assessment of Immune Activation and Turnover. 

(A) CD38+HLA-DR-(B) CD38+HLA-DR+(C)Ki67+BCL- expression in effector (gray 

squares), effector memory (black circles), and central memory CD8 T cells (gray dash 

diamond) and viral load (black dash triangle) overtime (visit days). %Activation 

expressed on the primary y-axis, viral load plotted on secondary y-axis. 
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Results 

Examination of Immune Activation in bulk memory T cell populations 

To assess T cell activation and makers of chronic immune activation, we 

assembled a cohort comprised of 15 viremic (>50 copies RNA/ml), 17 aviremic (<50 

copies RNA/ml), and 12 HIV uninfected subjects (Table I, Table II:appendix). The gating 

scheme used for activation marker discrimination Figure 1. All HIV positive subjects 

were on HAART. 9 subjects had developed drug resistance and at least two subjects were 

non-compliant with therapy after the initial time point. Subjects were assessed for 

expression of common prognostic markers of HIV disease progression and activation: 

CD38, HLA-DR, Ki67, Bcl-2. 

Previous studies in immune activation assessed marker expression on bulk 

memory and naïve cell subsets in cross-sectional samples. Therefore, we first determined 

activation levels in the naïve and memory CD8 T cell populations. CD38 expression in 

memory cells was elevated in viremic compared to both aviremic subjects (p= 0.009) 

and healthy controls (p= 0.004) (Figure 2A). Co-expression of CD38 and HLA-DR was 

elevated in memory cells but did not reach significance (Figure 2B).  We found no 

significant difference in Ki67 expression on memory cells (Figure 2C) though the viremic 

group displayed almost 3-fold higher levels than the aviremic group (p= 0.075) (Figure 

2C). We analyzed CD38, CD38/HLA-DR and Ki67 expression in the memory CD8 T cell 

population and found no correlation between levels of activation and viral load. Although 

there were no significant differences in activation in the naïve cell population (Figure 

2D-F) we did observe a bimodal distribution of CD38 levels. 

Increased Turnover in HIV+ individuals on HAART 

Next we subdivided the memory population into central memory 

CCR7+CD45RO+), effector memory (CCR7-CD45RO+) and effector (CCR7-CD45RO-)  



 34 
Table III: Assessment of CD38 expression in CD8 Effector Cells (CCR7-

CD45RO-) 

Subject Group N      Mean           Standard 
Deviation 

Fold Change of 
Viremic compared 
to subject group  

Aviremic 28    24.99          18.54 1.9 
Viremic 32    48.81          20.96 1 
Healthy 12    22.42          14.94 2.1 
!
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phenotypes in order to determine whether there was differential activation between 

these subsets. We assessed Bcl-2 expression to delineate cells undergoing turnover 

because studies have demonstrated activated T cells are pro-apoptotic. We found 

increased expression of Ki67 in the central memory subset (CCR7+CD45RO+), of 

viremic adolescents compared to aviremic (p= 0.001) and healthy subject groups (p= 

0.001) (Figure 3A). We did not find turnover in either the effector memory (CCR7-

CD45RO+), effector (CCR7-CD45RO-) ( Figure 3A). Thus in agreement with previous  

findings in adults, the central memory CD8+ T cells are more likely to be actively 

dividing in viremic adolescents compared to other memory phenotypes.  

Immune Activation in Memory Subsets 

We next examined CD38 expression in the different memory subsets. CD38 

expression on central memory CD8 T cells of aviremic adolescents was significantly 

lower than viremic (p= 0.001) and healthy controls (p= 0.046). CD38 expression was 

also increased on effector and effector memory CD8+ T cells of viremic adolescents when 

compared to aviremic (p= 0.001) and healthy controls (p= 0.001) (Figure 3B). Elevated 

CD38/HLA-DR co-expression was not observed in memory subsets (Figure 3C). Of note, 

we observed a much lower frequency of CD38/HLA-DR CD8 T cells than has been 

previously reported in adults (Giorgi et al., 1993; Hunt et al., 2003b). While we do find a 

correlation between CD8+ T cell expression of CD38 and viral load in efffector CD8 T 

cells, we do not see a correlation in total memory or other cell subsets.  

Longitudinal Changes in Activation 

 We assessed longitudinal changes in activation levels on CD8+ T cells in relation 

to changes in viral load due to poor adherence or escape. Figure 4 shows representative  

data from subjects with the largest changes in viral load and drug resistance mutations. 

CD38, CD38/HLA-DR and Ki67 expression per CD8 memory subset tracked closely with  
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Table IV: Assessment of Ki67 expression in CD8 Central Memory Cells 

(CCR7+CD45R0+)  

Subject Group N      mean              Standard 
Deviation 

Fold Change 
of Viremic 
compared to 
subject 
group 

Aviremic 28    3.32 4.06 3.8 
Viremic 32    10.20 9.14 1.0 
Healthy 12    2.40 1.29 4.5 
!
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changes in viral load. In subject ZBQ 86, as the viral load increases, the percent of 

CD38, CD38/HLA-DR, Ki67 expression on total memory CD8+ T cells increases as well 

(Figure 4A, right graphs).  A notable exception to this trend was seen in donor ZAM 90.  

The level of activation increases in subject ZAM 90 as does viral load but when the viral 

load becomes undetectable at time point C, the percentage of CD38 expressing T cells 

continues to increase (Figure 4, left graph). Additionally, within each individual, specific 

memory subsets appear to be differentially affected by changes in viral load. For 

example, in subject ZBQ 86, immune activation on effector CD8 T cells does not increase  

in the presence of high viral load. The central memory subset of this donor demonstrates 

a marked increase in Ki67 levels following the viral load increase.  

  We next analyzed the data longitudinally for the entire cohort using generalized 

estimating equations (GEE) for the entire cohort. CD38 expression is 1.9 and 2.1 fold 

greater on effector cells in viremic compared to aviremic subjects (p< 0.001) and 

uninfected subjects (p= 0.004), respectively (Table III). Similarly, Ki67 expression is 3.8 

fold higher on central memory cells from viremic subjects compared to aviremics (p= 

0.001) and 4.5 fold higher than on cells in this subset found in healthy controls (p= 

0.059) (Table IV). There significant differences between groups in the effector cell subset 

with the viremic group having 1.6 fold higher expression than the aviremic group (p= 

0.002).  However, once the data are adjusted for differences in age, the changes do not 

reach statistical significance. Therefore, we find that despite therapy intervention 

activation levels remain elevated in viremic adolescent subjects. 

CD4 T cell counts and Immune Activation 

Increased immune activation is highly predictive of CD4 T cell decline; therefore, 

we sought to determine if there was a correlation between cell count and activation. We  
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Figure 5: CD4 T cell counts are inversely correlated to viral load. (A) CD4 T 

cell counts/ml of blood (B) CD4 T cell percentage in viremic (n=20) and aviremic (n=16) 

subject (C) ZBQ86 (D) ZAM 90 longitudinal assessment of CD4 T cell count and viral 

load in subjects over time  
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found negative correlations between CD4 T cell count and Ki67 (r=-0.40 p= 0.049) 

and CD38 expression (r=-0.5425, p= 0.005) on CD8 memory T cells. CD38 expressing 

central memory cells (r=-0.4776,p= 0.016) and CD4 T cell count were also negatively 

correlated. Similar to other studies we also so higher levels of CD4 T cell counts and 

percentages in aviremics. Therefore, immune activation and CD4 counts correlate 

negatively. 

Because adolescents have increased thymic output we sought to determine if this 

advantage would allow them to maintain high counts even in the presence of increased 

viral loads. We observed that at baseline CD4 T cell counts (Figure 5A) and percentages 

(Figure 5B) are higher in aviremic subjects. We next examined changes in CD4 T cell  

numbers in combination with viral load in two patients over time. In Figure 5C, the CD4 

count in subject ZBQ 86 rapidly declines from time point the first time point to the 

second in direct correlation to an increase in viral load. The steady increase in viral load 

observed in subject ZBQ 86 this subject coincides with the decline of CD4 T cell counts. 

In ZAM 90, a subject with a steady decline in viral load, the CD4 T cell count rebounds 

(Figure 5D). Overall, CD4 T cell counts track with viral load both in the subjects shown 

here and in the majority of our cohort.  Indeed, when looking at the entire cohort we 

found aviremic subjects to have higher CD4 T cell counts than viremic subjects. 

Therefore, increased thymic output may not compensate for increased viral load in the 

presence of increased activation in adolescents.  

A characteristic of HIV disease progression is increased microbial translocation 

resulting in increased levels of serum sCD14. We therefore measured sCD14 levels to 

determine if there is an association with high viral load, immune activation and CD4 T 

cell count in the adolescent cohort. Higher levels of sCD14 would indicate a similar  
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Figure 6: Soluble CD14 expression correlates with biological markers of 

disease progression. Previously frozen plasma and serum samples were thawed and 

analyzed for soluble CD14 (sCD14) with the R and D systems ELISA kit (A) sCD14 levels 

in aviremic, viremic and healthy subjects (B) correlation between viral load and sCD14 

levels in viremic subjects (C) correlation between CD4 T cell count and sCD14 levels in 

aviremic and viremic patients 

!"#$%&'
!"#$(()'

*"#&)+,'

-#'.#'

/#'

0"'#%+(&'

1,"#$)))2'

34*5647' .84*5647' 95:;<=>'

!"$#$$)%'

!?$#$$%'



 41 

mechanism for immune activation exists in both HIV-infected adolescents and adults.   

As shown in Figure 6A, similar to previous findings in HIV-infected adults, sCD14 levels  

in viremic adolescents are significantly higher than in aviremic subjects (p= 0.0061) and 

healthy controls (p<.0001). There is a positive correlation between viral load and sCD14 

levels (r=.569, p= 0.034) (Figure 6B), and a trend towards lower CD4 T cell counts as 

sCD14 increases (Figure 6C). When examining representative subjects, we see a direct 

relationship between sCD14 levels and viral load (Figure 7 A-B); as viral load increases, 

so does sCD14. Similarly, as activation levels change, sCD14 levels remain directly 

associated. We also see a direct relationship when levels of activation are plotted against 

sCD14 levels (Figure 7C-D). These data are confirmed when analyzing the entire cohort. 

In fact, sCD14 is directly correlated to immune activation, as defined by CD38 

expression, in each memory subset. Therefore, these data indicate that, similar to HIV-

infected adults, chronic immune activation and viral load are directly associated with 

markers of microbial translocation within HIV-infected adolescents. 

Discussion 

 In the present study, we examined activation levels (CD38+, HLA-DR+ and 

Ki67+) on CD8 T cells in infected adolescents.  This is the first report in adolescents to 

simultaneously examine each respective immune activation marker and to do so on 

defined memory subsets. We also take the first step to identify factors related to 

microbial translocation (sCD14) in adolescents. We found that in the presence of 

suboptimal therapy adolescents do not control immune activation, viral load or 

microbial translocation. Several studies suggest that CD38 is a less optimal activation 

marker in younger population but it is the most consistent in our study. Our data  
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Figure 7: Biomarkers of microbial translocation are associated with viral 

load and immune activation. Previously frozen plasma and serum samples were 

thawed and analyzed for soluble CD14 (sCD14) with the R and D systems ELISA kit. 

Soluble CD14 (sCD14) expression coincides with (A-B) viral load (dashed diamond line) 

sCD14 (solid triangle line) (C-D) and CD38 expression (black squares) sCD14 (gray 

diamond) in donors ZBQ 86 and ZAM 90. 
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demonstrates, CD38 appears to be a pan-activation marker whereas Ki67 activation is 

limited to the central memory subset in CD8 cells. Unlike other studies in adults and  

adolescents we do not see elevated CD38/HLA-DR expression in viremic adolescents nor 

do the levels of this activation pattern correlate with viral load.  

In HIV infection, CD38 remains upregulated on T cells and associates with HIV 

disease progression. This association holds true for HIV+ adults, adolescents and 

children. We confirm these findings and extend the analysis to distinctly defined 

memory subsets and show that CD38 is elevated across the effector, central memory and 

effector memory subsets. Adolescents and children are expected to have higher numbers 

of CD38 due to its role as a marker of immature T cells. Indeed we observe levels of 

almost 90% in the naïve cell population, a stark contrast between the 10% expression 

reported in adults (Giorgi et al., 1993; Emu et al., 2005). We believe that these cells are 

likely to be recent thymic emigrants and therefore express more CD38. Because there is 

increased CD38 expression in the memory compartment in infected subjects compared 

to the healthy subjects it is most likely a consequence of viral load and not age 

differences. 

CD38/HLA-DR co-expression marks immune activation and higher levels of 

expression on CD8 T cells of HIV-infected adults and children predict disease 

progression (Giorgi et al., 1993; Giorgi et al., 2002; Rudy et al., 2006a). Contrary to what 

has previously been shown in adults and adolescents we do not observe significantly 

higher levels of CD38/HLA-DR expressing cells in our cohort. Furthermore, the 

percentages we report are quite low compared to those observed in previous studies in 

adults (Giorgi et al., 1999). Globally, we see lower levels of HLA-DR in our experiments 

and attribute this to our highly stringent flow cytometric gating strategy. We exclude 
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monocytes, B cells and NK cells from the final analysis to prevent false positives and 

reduce background. We have noted that a large portion of HLA-DR is found on  

macrophages and once these cells are excluded from the analysis the levels of apparent 

HLA-DR on CD8 T cells can be reduced in some instances.  Together, these results may 

suggest that CD38/HLA-DR expression may not be the best marker of activation in 

HIV+ adolescents.  

Several previous studies have conclusively indicated that T cell turnover is 

increased in HIV-infected individuals. In HIV-positive adults, Ki67 expression is 

elevated indicating increased turnover. In adolescents, Ki67 expression has been 

reported to be 5.1 fold and 2.8 fold higher in memory and naïve CD8 T cells respectively 

(Starr et al., 2002a). Conversely, we observed no significant differences in Ki67 

expression levels or fold change in total memory and naïve CD8 T cells.  

To date, studies have not addressed immune activation in distinct memory 

subsets in adolescents, although a significant body of work exists for adult cohorts. In 

1999, Hazenberg et al, delineated CD8 memory subsets on the basis of CD27 expression 

in adults to determine if turnover rates were different in memory population (Hazenberg 

et al., 2000c).  The percentage of Ki67 expressing cells was increased in the CD27- and 

CD27+ memory subsets as well as within the naïve compartment of HIV infected 

individuals. Ki67 expression was elevated up to 20-fold in the naive CD8 T cell 

population and 7-fold in the CD27- and CD27+ memory populations. We observed 

significantly higher percentages of Ki67 in the central memory compartment but report 

no differences in other subsets.  Our smaller sample size may account for the lack of 

difference. We found a lower percentage of Ki67+ cells than reported in some studies but 

our data is consistent with the numbers in a recent report (Lederman et al., 2011). 

Another differentiating factor in our study was the use of Bcl-2 , an apoptotic marker. By 
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using Bcl-2  we are able to identify not just cells undergoing increased turnover but 

also those that are most likely activated and therefore more susceptible to apoptosis. 

We also examined other predictors of disease progression like viral load and CD8 

T cell percentages. Similar to previous studies, we reported a positive correlation 

between viral load and CD8/CD4 T cell percentage. This direct relationship may easily 

reflect increased turnover in the presence of viremia. Immune activation in the total 

memory population correlates with viral load in adults, but we saw no correlation with 

CD38/CD38+HLA-DR+ and viral load in the adolescent cohort. We do observe a 

correlation between viral load and the effector T cell subset. A lack of correlation 

between CD38 and viral load may reflect the small sample size and viral load variation in 

our cohort. Nonetheless, performing correlations studies in defined memory subsets 

gives a picture of immune activation and T cell depletion patterns. 

Recent studies have suggested that initial CD4 T cell counts above 300 cells/µl 

before therapy equate to faster cell count rebound (Perez et al., 2001). Additionally, 

adolescents have increased thymic output and higher absolute T cell counts than their 

adult counterparts, even while infected. With this in mind several clinical trials are 

incorporating early therapy initiation to increase favorable therapy outcomes. While this 

strategy may prove useful, conflicting results (El-Sadr et al., 2006)suggest early therapy 

initiation will not be the only key to the successful therapy intervention. Nonetheless, 

increased numbers of naïve CD4 and CD8 T cells in adolescents may allow for better cell 

rebound than their adult counterparts.  Importantly, activation is not elevated in naïve 

CD8 T cell subsets in our study. This may prove beneficial for adolescents who are long-

term carriers of the disease.  

Microbial translocation defined by increased LPS circulation in the plasma has 

been directly correlated to increased immune activation (Brenchley et al., 2006). LPS 
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levels directly correlate with soluble CD14 detectable in the plasma (Papasavvas et al., 

2009b). Thus, we used sCD14 as an indirect marker of microbial translocation. Similar to 

what has been observed in adults, we found elevated levels of sCD14 in viremic subjects. 

These levels of sCD14 are lower in our cohort than those in adults but are relatively 

similar to those reported in children (Wallet et al., 2010). Furthermore, sCD14 levels 

were directly correlated to immune activation in each memory subset. It is important to 

note that even in HAART treated subjects levels of sCD14 do not return to baseline. 

Indeed, increased levels of microbial translocation persist even in the presence of 

decreased viral load and increased CD4 T cell counts in treated individuals (Brenchley et 

al., 2006; Jiang et al., 2009; Papasavvas et al., 2009b; Wallet et al., 2010; Sandler et al., 

2011). Recently, sCD14 has been associated with T cell activation and mortality in HIV 

infected adults (Sandler et al., 2011). This data suggests that increased baseline levels of 

sCD14 in adolescents, even in the presence of therapy can increase the risk of death. 

Given what we know about immune activation and maintenance of microbial 

translocation, it is necessary to rethink how successful therapy outcomes are evaluated. 

Presently, successful therapy is defined by CD4 T cell count rebound, lower CD8 T cell 

numbers after treatment and reduced immune activation. These are all proven factors 

involved in HIV disease progression. Yet, as we expand our understanding of immune 

activation it is necessary to include factors that may better predict disease mortality. It is 

important to reduce immune activation and viral load in order to promote immune 

restoration but simultaneous reduction of microbial translocation may prove to be a key 

factor in maintaining this immune state.       

 Adolescents are life-long carriers HIV and are subject to life-long therapy. 

Without compliance, success levels dramatically decrease and drug resistance 

susceptibility increases. Adolescents, who are less likely to adhere to therapy, were 
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recently reported to have increased percentages of circulating CD38 T cells and to 

have had virologic failure regardless of CD4 T cell count number (Flynn et al., 2004; 

Rudy et al., 2006a). In support of this data, the majority of the subject pool in our 

adolescent cohort has been on therapy for a number of years and has yet to control viral 

load or activation while on therapy. Adolescents must remain adherent or else activation 

levels will remain high and drug resistance will occur.  

These data indicate that increased immune activation in adolescents is not solely 

due to viral load or CD4 T cell counts but rather results from a combination of complex 

interactions in the gut lumen and peripheral blood. Most of our cohort was on long-term 

therapy but the majority of these subjects still maintain high levels of immune activation. 

This is likely caused by incomplete therapy compliance, a key hindrance in successful 

treatment in adolescents. Our current study was not designed to address improvement 

strategies in therapy adherence for adolescents but this is a key point. Therapy guidelines 

must be streamlined to promote maximal adherence without jeopardizing protection. We 

believe this study will inform current therapy strategies and approaches in adolescent 

HIV research. 
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Chapter 3: Elevated Immune Activation and 

Turnover in CD4+ T cells of HIV+ Adolescents 

Abstract 

 During HIV infection massive CD4 T cell depletion occurs as a result of direct 

viral killing, bystander killing, and activation-induced cell death. Depletion and 

prolonged immune activation leads to severe immune dysfunction. In adults, immune 

activation directly correlates to HIV disease progression; however, immune activation in 

adolescents is not completely understood. Here, we characterized markers of immune 

activation on CD4 T cells in a cohort of adolescent subjects including 15 viremic (>50 

copies HIV RNA/ml), 17 aviremic (<50 copies HIV RNA/ml), and 12 HIV uninfected 

subjects. We used polychromatic flow cytometry to define the immune activation profile 

of CD4+ T cells by measuring simultaneous expression of CD38, HLA-DR, Ki67 and Bcl-

2. We observed increased immune activation on total memory, effector (CCR7-CD45RO-

), effector memory (CCR7-CD45RO+) and central memory (CCR7+CD45RO+) CD4 T cell 

subsets. Increased expression of CD38+ in each memory compartment negatively 

correlated with CD4 T cell counts. CD38 expression in non-naïve (r=0.5797 p=0.002), 

central memory(r=0.4246 p=0.034) and effector memory (r=0.5339 p=0.0060) 

correlated directly to levels of soluble CD14, a marker of microbial translocation. Taken 

together, these results show that there is preferential activation across memory subsets 

and a direct relationship between viremia, activation and soluble CD14 levels in HIV+ 

adolescents. 
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Figure 8: Immune Turnover CD4 T cells memory subsets. Human PBMCs were 

thawed and stained for lineage markers (CD3, CD4, CD8, CD19, CD16, CD14) memory 

markers (CD27,CD45RO,CCR7) and activation markers (CD38,HLA-DR,Ki67,Bcl-2) 

Ki67 expression was assessed on CD4+ T memory subsets using non-parametric t-tests 
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Introduction  

 Immune activation is now known to be a major underlying cause of CD4 T cell 

depletion during HIV infection and the strongest known predictor of HIV disease 

progression. Immune activation is commonly measured by elevated expression of Ki67, 

CD38 and HLA-DR. Specifically, increased Ki67 indicates entry into cell cycle, a 

characteristic of HIV infection (Sachsenberg et al., 1998a; Douek et al., 2001), and higher 

levels of circulating CD38 and CD38/HLADR expressing CD8 and CD4 T cells are 

directly associated with high viral loads and decreased CD4 T cell counts (Giorgi et al., 

1993; Liu et al., 1997; Lien et al., 1998; Hazenberg et al., 2000b; Vigano et al., 2000a). 

Persistent immune activation can severely depletes CD4 T cells and result in impaired 

immune responses.  

During acute HIV infection, and persisting into chronic infection, severe CD4 T 

cell depletion occurs in gut associated lymphoid tissues (GALT) compromising the 

integrity of the mucosal membrane (Brenchley 2004). This results in microbial 

translocation, a process that has been implicated as a key driver of immune activation 

(Brenchley 2006). In clinical studies, soluble CD14 (sCD14), a measure of LPS-induced 

activation (Lien et al., 1998) has been directly correlated to increased risk of mortality in 

adults (Sandler et al., 2011). Although levels of microbial translocation may be reduced 

after therapy administration, injury to the gut is irreversible. As a result, repopulation of 

gut memory T cells is impaired (Papasavvas et al., 2009a). These factors contribute to 

disease progression even in the presence of HAART-suppressed viral control and 

ultimately lead to immune failure (Lederman et al., 2011). 
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Table V: Assessment of Ki67 Expression in CD4 T cell memory Subsets 

* N=28 aviremics and 32 viremics 



 52 
Although HIV research has progressed greatly over the past 20 years, there are still 

understudied areas. For example, HIV disease progression is understudied in 

adolescents, a group that makes up a large number of new infections. Unique biological 

and psychological parameters in adolescents have the potential to greatly influence 

subsequent HIV disease progression.  For example, adolescents are less likely to adhere 

to strict therapy guidelines and may therefore be more susceptible to drug resistance and 

viral rebound (Futterman, 2005).  In contrast, the heightened regenerative capacity of 

the immune system is more robust in young children and adolescents (Vigano et al., 

2000b) due in part to increased thymic output in adolescents compared to their adult 

counterparts. Young adults have been shown to rebound CD4 T cell counts more 

efficiently than adults after therapy initiation (Cohen Stuart et al., 1998a; Sleasman et al., 

1999). Unfortunately, this advantage may be lost due to increased immune activation 

caused by incomplete therapy compliance. Furthermore, increased microbial 

translocation as a result of reduced gut integrity in adolescents may mark this subject 

group for immune failure even in the presence of optimal therapy. 

The response to therapy is understudied in adolescents; here we designed a study 

to address several resulting concerns. Firstly, we examined the activation levels on 

memory and naïve CD4 T cells in adolescents on HAART. We assessed activation in 

central memory, effector memory and effector T cell populations. Determining if certain 

CD4 T cell memory subsets are selectively activated could lead to a better understanding 

of HIV disease progression in adolescents. Unlike other studies, which are mostly cross-

sectional in nature, we assessed activation from baseline on longitudinal samples. Lastly, 

we assessed the relationship between sCD14 and CD4 T cell activation to determine if 

microbial translocation contributes to disease progression in HIV positive adolescents. 
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Figure 9: Expression of CD38 in Bulk memory and Naïve populations of 

CD4+ T cells. Human PBMCs were thawed and stained for lineage markers (CD3, 

CD4,CD8,CD19,CD16,CD14) memory markers(CD27,CD45RO,CCR7) and activation 

markers (CD38,HLA-DR,Ki67,Bcl-2) CD38 expression is shown on A) Naïve (B) Bulk 

memory cells p values calculated using non-parametric t-tests. 
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 Materials and Methods 

3.1 Cells: The cohort consisted of PBMCS from 44 HIV-infected adolescents 15 viremic, 

17 aviremic and 12 HIV uninfected subjects (appendix). Subjects and cells were acquired 

as detailed in Chapter 2.  

3.2 Antibodies: Antibody-staining panel was employed as described in Chapter  2               

3.3 Flow cytometry staining assay: See chapter 2 

3.4 Flow cytometric analysis:  For each specimen, between 0.5 and 1x106 total events 

were acquired on a modified LSRII flow cytometer (BD Immunocytometry Systems, San 

Jose, California) equipped for the detection of 18 fluorescent parameters. Data analysis 

was performed using FlowJo version 9.1 (TreeStar, Ashland, Oregon).  

3.5 sCD14 measurement: Previously frozen (-80) plasma and serum samples were 

thawed at room temperature and analyzed for sCD14 with R&D Systems Elisa kit per 

instructions.  

2.6 Statistical Analysis: See Chapter 2 

Results 

Turnover and activation in naïve and memory CD4 T cells 

To assess T cell activation and markers of chronic immune activation, we 

assembled a cohort comprised of 15 viremic (>50 copies RNA/ml), 17 aviremic (<50 

copies RNA/ml), and 12 HIV uninfected subjects (Appendix: Table I). The gating scheme 

of this study is shown in Figure 1. Subjects were assessed for expression of the common 

prognostic markers of HIV disease progression and activation: CD38, HLA-DR and Ki67.  

Increased Ki67 expression is a characteristic of heightened immune activation in 

both adults and adolescents. Because activated T cells are more prone to apoptosis we 

further delineated cells by lower BCL-2 expression. We observed no differences in Ki67  
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Figure 10: Expression of CD38 in Memory of CD4 T cell subsets. Human 

PBMCs were thawed and stained for lineage markers (CD3, CD4,CD8,CD19,CD16,CD14) 

memory markers(CD27,CD45RO,CCR7) and activation markers (CD38,HLA-

DR,Ki67,Bcl-2). Cells were then gated on memory phenotype and then further gated on 

CD38 expression, p-values calculated using non-parametric t-tests. 
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expression in the bulk memory, naïve or other cell subsets in cross-sectional data 

(Figure 8); however, we found significant differences in Ki67 expression in all CD4 T cell 

subsets over time. We see 2.7-fold higher expression of Ki67 in CD4 naïve cells compared 

to aviremics (p=0.005). In bulk memory cells, we observe a 1.9 fold difference between 

viremics and aviremics (P<0.001). CD4 subsets were divided into central memory 

(CCR7+CD45RO+), effector memory (CCR7-CD45RO+) and effector phenotypes. We 

saw a 3.7-fold increase in the central memory (p=0.001) and a 1.7-fold increase in the 

effector memory (p=0.038) subset compared to aviremics (Table V). Thus, unlike 

previous studies in adolescents and adults, we did not observe a difference in CD4 T cell 

turnover at baseline. However, when data was analyzed longitudinally, we identified 

increased T cell turnover in each subset with the exception of effector CD4 T cells. 

Ultimately, increased turnover in the CD4 compartment could lead to increased 

apoptosis and immune senescence.  

 Increased expression of CD38 or CD38/HLA-DR on T cells is a hallmark of 

immune activation and is often associated with high viral loads (Giorgi et al., 1993; 

Giorgi et al., 1999). We first looked at baseline levels of CD38 in each CD4 T cell subset. 

We did not observe a significant increase in CD38 expression on naïve CD4 T cells but 

we did find a biomodal distribution of CD38 expression in this cell type (Figure 9A). 

There higher CD38 expression in viremic subjects compared to aviremic in the bulk 

memory group (p=.0476) (Figure 9B). We next examined expression of CD38 on 

memory subsets at baseline. Expression of CD38 was increased on effector memory 

(p<0.001) and effector (p=0.011) cell subsets in viremic subjects compared to the 

aviremics (Figure 10). We did not find a difference in the percentage of CD38/HLA-DR 

expressed in naïve (Figure 11A), central memory (Figure 11C), effector memory (Figure 

11D) or effector cells (Figure 11E), but observed a 2-fold increase in the percentage of  
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Table VI: Assessment of CD38+/HLA-DR- expression on CD4+ T cell 

subsets 
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CD38/HLA-DR expressing bulk memory cells in viremic compared to aviremic at 

baseline (p=0.027) (Figure 11B). Thus, it can be seen that activation levels remain 

elevated in viremic adolescents on therapy. 

We next assessed longitudinal changes in activation levels on CD4+ T cells in 

relation to changes in viral load due to poor adherence or escape. Figure 5 shows 

representative data from subjects with large changes in viral load and drug resistance 

mutations. CD38 expression (Figure 12), CD38/HLA-DR (Figure 13) and Ki67+Bcl-2 

(Figure 14) expression per CD8 memory subset tracked closely with changes in viral load 

in subjects ZAN89 and ZBQ86. The pattern of activation was not as uniform in subject 

ZAM 90, who had intermittent therapy compliance and consequent drug resistance. The 

level of CD38 expressing cells increased in ZAM 90 with viral load but expression of the 

other activation markers was inconsistent. When we examined the entire cohort using 

GEE, CD38 expression was 6.9-fold higher in effector cells of viremics compared to 

aviremics (p=0.025). The effector memory compartment in the viremic group has 1.8 

fold higher levels of CD38 than the aviremic group (p<0.001). In the central memory 

compartment, aviremics had 7.4-fold lower CD38 levels than the viremic group 

(p=0.062). We found no significant differences in CD38/HLA-DR expression in CD4 T 

cells. 

Increased CD4 T cell activation and turnover correlates with lower CD4 T 

cell counts and higher CD8 T cell counts 

 Several studies have shown a correlation between activated CD4 T cells, viral load 

and CD4 T cell count, but none have determined this difference in memory subsets.  We 

chose to examine the expression of all activation markers and their relationship to cell 

count. CD38 expression was negatively correlated to lower CD4 T cell counts in each 

memory subset: central memory (p=0.0216, r=0.440), effector memory (p=0.0014 r=- 
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Figure 11: CD38+HLA-DR+ expression is elevated in some T cell subsets. 

CD38+HLA-DR+ expression were assessed on memory (A) Naive (B) Bulk memory (C) 

Central Memory (D) Effector Memory (E) Effector populations across the viremic, 

aviremic and healthy subjects. 
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0.5826) and effector (p=0.0064, r=-0.5111). Lower absolute CD4 T cell counts also 

correlated with increased turnover in the central memory and effector cell 

compartments. In contrast to other studies, we did not observe correlations between 

increased activation and viral load.    

During HIV infection, CD8 T cell counts and percentages typically increase 

dramatically as a result of increasing HIV viral load (Koup et al., 1994; Rudy et al., 

2006a). After successful HARRT therapy however, the CD8 T cell count declines 

coincident with both decreased viral load and immune activation. However, these initial 

studies were primarily performed on total memory and naïve T cell population 

(Hazenberg et al., 2000c; Flynn et al., 2004; Rudy et al., 2006a). We therefore examined 

the association between the CD8 T cell count and immune activation in CD4 T cells. We 

found a direct correlation between Ki67+CD4 T cells and the percentage of CD8 T cells 

(r=0.467 p=0.0163). We next assessed the association between CD8 T cell count and 

activation. The CD8 T cell count positively correlated with CD38 expression in the total 

memory (p=0.0378 r=0.4094) and effector memory (r=0.446 p=0.022). CD4 T cell 

compartments. Thus CD8 T cell counts are directly associated with increased Ki67 

expression and immune activation in the CD4 T cell compartment. 

A characteristic of HIV-induced immune activation and disease progression is 

decreased integrity of the intestinal wall, which can be measured by increased levels of 

sCD14 in the plasma. In Chapter 2, we have shown that the percentage of total 

CD38+CD8 and viral load directly correlate to sCD14 in adolescents and that CD4 T cell 

percentage inversely correlates with sCD14. Here, we examined how sCD14 levels 

correlated to CD4 T cell activation in the adolescent subjects.  We found that CD38+ 

levels in non-naïve (r=0.5797 p=0.002), central memory(r=0.4246 p=0.034) and 

effector memory (r=0.5339 p=0.0060). CD4 T cells positively correlated with sCD14  
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Figure 12: Longitudinal assessment of CD38+HLA-DR- expression in CD4 T 

cells.(A-C) Changes in immune activation in effector (gray squares), effector memory 

(black circles), and central memory cells (gray dash diamond)and viral load (black dash 

triangle) overtime (visit days). %Activation expressed on the primary y-axis, viral load 

plotted on secondary y-axis 
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levels in the plasma. Thus, microbial translocation may be a factor driving immune 

activation in adolescents. 

Discussion 

Immune activation is the strongest predictor of disease progression in adults, 

however; the global impact of HIV-induced immune activation is understudied in 

adolescents. In the present study we assessed the activation status of CD4+ T cells in 

HIV-infected adolescents in order to define the CD4 T cell activation signature in this 

group. In an effort to understand the dynamics of T cell turnover and immune activation 

in CD4 T cells, we used both cross-sectional and longitudinal data. Similar to our 

findings in CD8 T cells (CHAPTER 2) we find that in the presence therapy adolescents 

do not control viral replication or immune activation. We believe this result reflects the 

consequence of suboptimal therapy compliance common in adolescent subjects. Unlike 

our CD8 data, we find increased T cell activation is more prevalent in the CD4 T cell 

naïve, total memory, effector memory and central memory compartments, which is 

consistent with several studies (Orendi et al., 1998; Hazenberg et al., 2000c; Flynn et al., 

2004).  

Increased T cell turnover is a hallmark of immune activation in HIV infection. In 

adolescents, it has been shown that CD4 turnover (as measured by Ki67 expression) is 

increased in the memory and naïve T cell compartments (Cohen Stuart et al., 1998a; 

Sleasman et al., 1999; Rudy et al., 2006b). Moreover, untreated HIV-infected adults with 

increased turnover have lower CD4 T cell counts, suggesting that neither homeostatic 

nor viral induced proliferation are sufficient to sustain CD4 T cell counts (Hazenberg et 

al., 2000b; Hunt et al., 2003b). In our adolescent cohort, we did not find an increase in 

CD4 T cell turnover at baseline but observed increased expression of Ki67 in all memory  
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Figure 13: Longitudinal assessment of CD38+HLA-DR+ expression in CD4 T 

cells.(A-C) Changes in immune activation in effector (gray squares), effector memory 

(black circles), and central memory cells (gray dash diamond)and viral load (black dash 

triangle) overtime (visit days). %Activation expressed on the primary y-axis, viral load 

plotted on secondary y-axis. 
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compartments longitudinally. Of note, increased turnover in the central and effector 

memory compartment was associated with lower CD4 T cell counts over time. These 

findings are similar to a recent study in HIV-infected adults (Lederman et al., 2011) 

where cell cycling was increased in these compartments. These reports imply that 

increased turnover of central memory and effector memory cells contribute to decreased 

CD4 T cell counts. Further evidence suggests that failure to replenish memory T cell 

numbers in the central or effector memory compartment will result in immune failure 

(Teixeira et al., 2001; Robbins et al., 2009; Lederman et al., 2011). Our data shows 

increased turnover in the CD4 memory and naïve T cell compartment of adolescents. 

This suggests that CD4 T cells will either be severely depleted or exhausted before 

therapy-noncompliant adolescents reach mid-adulthood making them more prone to 

rapid disease progression. 

 In HIV infection, CD38 remains upregulated on T cells and associates with HIV 

disease progression (Vigano et al., 2000a; Wilson et al., 2004). This association holds 

true for HIV positive adults, adolescents and children. Our work has confirmed these 

findings and extended them to well defined memory subsets. We observe increased 

CD38 expression in effector, central memory, and effector memory subsets. Similar to 

our findings in naïve CD8 T cells, there appears to be a bimodal distribution of CD38 in 

naïve CD4 T cells. This expression pattern is most closely associated with age in that 

younger subjects express more CD38 and is seen regardless of HIV infection status. The 

addition of CD31, a marker of recent thymic emigrants, may help determine if these 

CD38+ naïve CD4 cells are immature T cells or truly activated.  

Many studies use HLA-DR in addition to CD38 to determine the activated state 

of T cells. We see a significant difference in CD38-HLA-DR expression on bulk memory 

CD4 T cells at baseline. This is similar to published studies in adults, which report  
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Figure 14: Longitudinal assessment of Ki67+Bcl- expression in CD4 T 

cells.(A-C)  Changes in immune activation in effector (gray squares), effector memory 

(black circles), and central memory cells (gray dash diamond)and viral load (black dash 

triangle) overtime (visit days). %Activation expressed on the primary y-axis, viral load 

plotted on secondary y-axis 
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elevated expression in treatment failures or HIV-infected (Orendi et al., 1998; Hunt et 

al., 2006) subjects compared to controls. The levels we report are much lower than that 

of 10-30% CD38/HLA-DR co-expression shown in other studies. Furthermore we do not 

observe differences in CD38/HLA-DR expression levels in any CD4 memory subset. We 

believe both lower expression and lack of statistical significance with CD38/HLA-DR 

expression may be attributed to the rigorous manner of our flow cytometric gating 

technique.  

 Microbial translocation defined by increased LPS circulation in the plasma has 

been directly correlated to increased immune activation (Brenchley 2006). LPS levels 

directly correlate with soluble CD14 detectable in the plasma. Thus, we used sCD14 as a 

surrogate marker of microbial translocation. We showed previously (CHAPTER 2) that 

sCD14 was heightened in the viremic subjects compared to aviremic. Therefore similar to 

published studies in adults and our study in adolescents sCD14 is directly correlated with 

immune activation. Being that sCD14 is correlated to increased mortality, future studies 

in adolescents should address the effects of sCD14 in the rate of disease progression. 

 In this study we identified that a subset of HIV+ adolescents on therapy do not 

control immune activation. When therapy adherence is between 90 and 95% viral 

replication is controlled and immune activation is reduced. Unfortunately, adolescents 

are less likely to adhere to therapy guidelines than their adult counterparts. As a result 

they often possess higher numbers of circulating CD38+ T cells and undergo virologic 

failure even in the presence of high CD4 T cell counts. Our data demonstrate that viremic 

adolescents on HARRT have increased activation and turnover in the majority of CD4 T 

cell subsets compared to aviremic and HIV-negative counterparts. A few questions 

remain like, what other factors account for differences in activation and viral control in 

HIV-positive adolescents? Are aviremic subjects more adherent to therapy or do they 
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possess certain biological determinants that allow them to effectively control viral 

replication in the absence of adherence? If both the HIV epidemic and potential burden 

of disease in adolescents is to be reduced, future studies must be designed to properly 

address these questions. 
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Chapter 4: Gag and Nef- specific CD8 T cell 

responses in adolescents on HAART  

Abstract 

Defining correlates of immune protection is a key factor in informing effective 

vaccine design. Robust HIV-specific CD8 T cell responses have been observed in adult 

subjects who control viral load; responses in HIV-positive adolescents, however, are less 

understood. Here, we examined HIV-specific CD8 T cell responses to Gag and Nef in 26 

HIV-positive adolescents who were intermittently compliant to HAART.  While we could 

identify Gag-and Nef specific responses in many of these subjects, we found no 

significant differences in the magnitude or proportion of cytokine producing nef or gag 

specific CD8 T cells between aviremic or viremic subjects. There was also no relationship 

observed between age and the magnitude of the total HIV-specific CD8 T cell response in 

our cohort. Our data show that adolescents on intermittent therapy produce functional 

responses.  

Introduction 

Since the identification of a temporal correlation between HIV-specific CD8 T cell 

expansion and acute viral resolution (Borrow et al., 1994; Koup et al., 1994), several 

groups have sought to identify the role of HIV-specific CD8 T cells in disease 

progression.  Multiple independent reports have demonstrated an inverse correlation 

between the magnitude of the Gag-specific CD8+ T cell response and viremia (Riviere et 

al., 1995; Ogg et al., 1998; Kiepiela et al., 2007; Rolland et al., 2008). Moreover, subjects 

who control viral load in the absence of therapy have HIV-specific CD8 T cell responses 

directed against multiple epitopes and enriched for perforin-mediated killing ability 
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(Betts et al., 2001a; Migueles et al., 2002; Betts et al., 2006; Emu et al., 2008; 

Hersperger et al., 2010a). Together these findings suggest that HIV-specific CD8+ T cells 

play an important role in controlling HIV infection. Evidence for the importance of CD8 

mediated control has motivated the field to develop T cell based vaccines against HIV, 

although this strategy has not yet yielded an efficacious vaccine (Watanabe, 2003; 

McElrath et al., 2008). 

The majority of work on HIV-specific CD8 T cell responses has been performed 

in adults, and little is known about the protective role of these responses in adolescents, 

a population that makes up 50% of new HIV cases yearly (Futterman, 2005). Because 

these subjects will be lifelong carriers of HIV, it is important to understand the 

protective capacity of HIV-specific CD8+ T cells in adolescents. Whether the quality of 

the HIV-specific CD8+ T cell response is associated with disease control in adolescents 

understudied. Most reports have focused primarily on identifying antigen specificity 

through cytolytic function or IFN-γ responses (Luzuriaga et al., 1995; Buseyne et al., 

1998; Spiegel et al., 2000; Scott-Algara et al., 2001; Buseyne et al., 2005b), but a more 

detailed assessment of total HIV-specific CD8 T cell response has not been performed. 

Here, we used polychromatic flow cytometry to examine Gag and Nef-specific 

CD8 T cell responses in viremic and aviremic adolescents on therapy, focusing on 

defining the polyfunctional and cytolytic marker expression capacity of HIV-specific CD8 

T cells from these individuals. Because higher CD4 T cells counts are indicative of 

stronger CD8 responses in adults and children (Sandberg et al., 2003), we additionally 

performed analysis to determine if this trend was also apparent in adolescents. Our 

preliminary findings are not significant but show a dichotomy in the functional response: 

viremic subjects appear to have a higher percentage of Nef-responding CD8 T cell than 

their aviremic counterparts; conversely, aviremic subjects mount a more robust  
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Figure 15: HIV-specific CD8 T cell response in adolescents. Cryoperserved 

PBMCs were stimulated with Gag or Nef peptide for 6 hours in the presence of BFA. Cells 

were then stained for linage markers (CD3, CD4,CD8,CD19,CD16,CD14) memory 

markers(CD27,CD45RO,CCR7)and cytokines (IL-2,IFN-g,TNF, Perforin, MIP-1a). 

CD27+CD45RO- (naïve) cells were excluded from the analysis for the memory 

population. (A) SEB- stimulated memory CD8 T cell responses from an aviremic and 

viremic subject.  (B) The % total cytokine producing (Gag+Nef responding) populations 

were graphed for viremic (blue) and aviremic (red) subjects. (C) The average expression 

profile for the memory CD8 T cell response is graphed for IL-2,IFN-g,TNF, Perforin, 

MIP-1a 
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polyfunctional response to Gag. These results suggest that CD8 T cells in HIV-positive 

adolescents are functional and may respond differently based on specificity. 

Materials and Methods 

4.1 Subjects: Donor peripheral blood mononuclear cells were obtained from the 

laboratory of Dr. John Sleasman at the University of South Florida in compliance with 

the guidelines set by the internal review boards of both institutions. 

4.2 Staining and Stimulation Assay: Cryopreserved human PBMCs were thawed and 

subsequently rested overnight @ 37°, 5% CO2 in complete medium supplemented with 

10% FBS, 1% L-glutamine. Cells were then washed with complete medium and 

resuspended at a concentration of 1 x106 cells/mL if sufficient numbers were available. 

Brefeldin A and co-stimulatory molecules CD28 and CD49d were added at a final 

concentration of 1µg/ml. PBMCs were incubated at 37°C, 5% CO2 with overlapping 15-

mer peptide pools encompassing HIV-1 (Clade B) Gag and Nef proteins. At the 

conclusion of the incubation period conventional surface staining and intracellular 

cytokine staining was done as described in CHAPTER 2 and published previously (Betts 

et al., 2001b; Betts et al., 2006; Chattopadhyay et al., 2006). 

4.3 Antibodies: To determine cell viability, we used Aqua Blue viability dye (Invitrogen, 

Carlsbad, California). Monoclonal antibodies (mAbs) for surface staining included: (i) 

anti-CD8 Qdot 605, anti-CD19 APC-Alexa-750 and anti-CD16 APC-Alexa-750 

(Invitrogen, Carlsbad, California);  (ii) anti-CD45RO TRPE and anti-CD27 PeCy5 

(Beckman Coulter, Fullerton, California); and (iii) anti-CD4 PeCy5-5 (eBioscience) For 

intracellular staining, mAbs included anti-CD3 Q-dot 655 (Invitrogen, Carlsbad, 

California) anti-TNF PeCy7, anti-IL-2 APC, anti-Mip-1a FITC (eBioscience) and anti-

IFN-γ Alexa 700 (Invitrogen, Carlsbad, California); Perforin-Pacific Blue (Custom). 
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Figure 16: Gag-specific CD8 T cell response in adolescents. Cryopreserved 

PBMCs were stimulated with Gag for 6 hours in the presence of BFA. Cells were then 

stained for linage markers (CD3, CD4,CD8,CD19,CD16,CD14) memory 

markers(CD27,CD45RO,CCR7)and cytokines (IL-2,IFN-g,TNF, Perforin, MIP-1a). 

CD27+CD45RO- (naïve) cells were excluded from the analysis for the memory 

population. (A) The % Gag-specific responding populations were graphed for viremic 

(blue) and aviremic (red) subjects. (B) The average expression profile for the HIV-Gag-

specific CD8 T cell response is graphed for IL-2, IFN-g, TNF, Perforin, MIP-1a 
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4.4 Flow cytometric analysis:  Analysis was performed as discussed in Chapter 2. 

Briefly, for each specimen, between 300,000 and one million total events were acquired 

on a modified LSRII flow cytometer (BD Immunocytometry Systems, San Jose, 

California) equipped for the detection of 18 fluorescent parameters.  Anti-mouse Igk 

antibody capture beads (BD Biosciences) were used to prepare individual compensation 

tubes for each mAb used in the experiment. Data analysis was performed using FlowJo 

version 9.1 (TreeStar, Ashland, Oregon) and SPICE version 5.21. Boolean gating analysis 

was performed for each functional parameter. This analysis resulted in 32 possible 

permutations of the 5 measured functions.  Events measured negative for all functional 

parameters and perforin single positive cells were ignored for analysis. By excluding 

perforin single positive cells it can be assured that perforin examined within the analysis 

is HIV-specific and present in activated memory CD8 T cells expressing at least one 

other function. Naïve CD8 T cells (CD27+CD45Ro+) were excluded from the analysis 

4.5 Statistics: Graphing and Statistical analysis was performed using GraphPad Prism 

software (version 5.0a). Total magnitude and functionality were compared between the 

two subject groups using non-parameteric t-tests (Mann-Whitney). Correlations were 

based on Spearman correlation coefficients.  

Results 

Studies in HIV elite controllers have shown that two types of CD8+ T cell 

responses correlate with control of viremia:  highly polyfunctional cells characterized by 

simultaneous production of IL2, IFN-γ, TNF, MIP1-β, and CD107a, and also CD8+ T cells 

producing perforin in combination with other measured functions (Zimmerli et al., 

2005; Betts et al., 2006; Saez-Cirion et al., 2007; Migueles et al., 2009; Hersperger et al., 

2010b). As shown in Figure 15A, our panel was able to detect polyfunctional CD8+ T cell 

responses after stimulation with SEB, indicating that both viremic and aviremic  
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Figure 17: Nef-specific CD8 T cell response in adolescents. Cryoperserved 

PBMCs were stimulated with Nef for 6 hours in the presence of BFA. Cells were then 

stained for linage markers (CD3, CD4,CD8, CD19 ,CD16, CD14) memory markers 

(CD27,CD45RO,CCR7) and cytokines (IL-2,IFN-γ,TNF, Perforin, MIP-1α). 

CD27+CD45RO- (naïve) cells were excluded from the analysis for the memory 

population. (A) The Gag-specific responding populations were graphed for viremic (blue) 

and aviremic (red) subjects. (B) The average expression profile for the HIV-Nef-specific 

CD8 T cell response is graphed for IL-2,IFN-γ,TNF, Perforin, MIP-1α  
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adolescents were capable of eliciting polyfunctional T cell responses. Although the 

aviremic subjects appeared to have higher responses, we found no statistical difference 

in the total CD8+ T cell response frequency in the two subject groups (Figure 15B). We 

next examined the polyfunctional profile of the HIV-specific CD8 T cells in aviremic and 

viremic subjects. The aviremic group appeared to have a higher proportion of 3-function 

producers (IFN-g +MIP+TNF+) but this difference was not significant (Figure 15C). We 

next assessed the total response (Gag+Nef) in viremic and aviremic subjects. Therefore, 

we do not see a difference in total magnitude or polyfunctionality between viremic and 

aviremic subjects on therapy.  

We next examined the relative contribution of Gag and Nef peptide pools to the 

HIV-specific CD8 T cell response. Aviremics appear to have a higher Gag-specific CD8 T 

cell response than their viremic counterparts (Figure 16A) but this difference was not 

significant. Furthermore, the response was dominated by 3- (IFN-γ +MIP-1α +TNF+), 2- 

(IFN-γ +MIP−1α +), and 1-function producers (MIP-1α) (Figure 16B). These same 

functional combinations were also dominant within viremic subjects. When we 

examined the Nef-specific response, it appears as if a higher proportion of CD8 T cells in 

viremics responded compared to the aviremics, but this difference was not significant 

(Figure 17A). Unlike the aviremic Gag-specific response, single function cells dominated 

the viremic Nef-specific CD8 T cell response.  

We therefore specifically examined the relative contribution of these two 

different populations to the CD8 response in the viremic and aviremic subjects.  First we 

assessed the presence of the most highly polyfunctional cells, measured here as those 

cells producing IFN-γ, TNF, IL-2, and MIP1-α with or without perforin (CD107a was not 

measured in our panel). As shown in Figure 18A, very few highly polyfunctional HIV-

specific CD8+ T cell responses were detected in the viremics and aviremics. Interestingly,  
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Figure 18: Perforin upregulation and polyfunctionality in the total HIV-

Specific CD8 T cell response. (A) The magnitude and  (B) proportion of the HIV-

specific CD8 T cell response to Gag and Nef peptide pools was calculated for viremic 

(blue) and aviremic (red) subjects and plotted.  
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viremic subjects had a larger proportion of perforin-producing CD8 T cells than their 

aviremic counterparts (Figure 18B).  Therefore, this suggests that even though viremic 

subjects have cytolytic function they may be less likely to control viral load in the absence 

of robust polyfunctional responses.  

	
  	
   We next looked at the proportion of cells producing perforin in response to Gag 

or Nef peptide. A higher proportion of Nef-and Gag specific CD8 T cells from viremic 

subjects produce perforin compared to their aviremic counterparts (Figure 19A-B). It is 

of note that a smaller proportion of Nef and Gag responding CD8 T cells in viremics are 

polyfunctional compared to those in aviremics (19A-B). As shown in Figure 19C, the 

magnitude of the Nef response is low in both subject groups but the viremics display a 

more robust and polyfunctional response. Conversely, Gag-specific CD8 T cells respond 

with higher magnitude than the aviremics (Figure 19D).  Similar to studies in adults 

(Betts et al., 2006; Hersperger et al., 2010b; Hersperger et al., 2011), these data suggest 

that a more polyfunctional response to HIV proteins is a characteristic of subjects with 

low viral loads. Unlike these previous studies we show subjects with higher viral load 

trend towards a higher proportion of perforin producing cells. 	
  

 In children and young adults, age is often a strong correlate with functional 

responses and disease parameters (Buseyne et al., 1998). However, these studies were 

limited to IFN-γ ELIspot assays that do not accurately depict the complexity of an 

immune response. Therefore, we examined whether age was related to total T cell 

functionality. We found no significant correlation between age and HIV-specific CD8 T 

cell responses when including multiple functional outputs (20A-C). We next assessed the 

relationship between CD4 T cell percentage and the HIV-specific CD8 T cell response.  

We found a trend towards an inverse relationship between the CD4 T cell percentage and 

CD8+ T cell responses to the HIV peptides (Gag, Gag+Nef) (Figure 21A-B). We observed  
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Figure 19: Perforin upregulation versus polyfunctionality of Gag and Nef-

Specific CD8 T cell responses. (A-B) The proportion and  (C-D) magnitude of the 

HIV-specific CD8 T cell response to Gag and Nef peptide in viremic (blue) and aviremic 

(red) subjects. Where (+) indicates the proportion of the response belonging to perforin 

production and (-) is calculated by summing across all functional combinations with the 

exclusion of perforin 
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a trend towards a direct relationship between CD4 T cell percentage and the Nef 

response (Figure 21C). We did not find a relationship between CD4 T cell count and 

antigen response (Figure 22A-C). Together these results indicate that HIV-specific CD8 

T cell functionality is not directly influenced by subject age or CD4 T cell count.   

Discussion 

 HIV-specific CD8 T cell responses are extensively studied and are a likely 

correlate of immune protection in HIV-positive adults. While studies have advanced over 

the past few years in our understanding of the CD8 T cell response, there is a paucity of 

similar studies in adolescents. Being that adolescents will be long term carriers of the 

disease, it is therefore important to establish what key factors in the CD8 T cell response 

correspond to viral control. Determining these factors will help tailor future vaccine 

design by exposing what specific responses are necessary for efficient viral control.  In 

this study, we measured Gag and Nef-specific responses in HIV-positive adolescents on 

therapy. We find that adolescents on therapy are capable of making functional responses 

to both Gag and Nef peptides. 

Gag-specific CD8 T cell responses have been shown to be a correlate of viral 

control in HIV-positive adults and infants. These responses are enriched in slow 

progressors who maintain low viral loads (Klein et al., 1995; Riviere et al., 1995; Edwards 

et al., 2002). We did not observe a difference between Gag-specific responses across 

subject groups. The reasons for this lack of significance were likely low subject number 

or the high variability in response patterns. We did however observe that the aviremic 

subjects appeared to exhibit a more robust and polyfunctional response to Gag. This is 

supported by previous reports in elite controllers where subjects with lower viral loads 

demonstrate responses with higher magnitude and polyfunctionality (Betts et al., 2006; 

Hersperger et al., 2010a). 
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Figure 20: There is no relationship between age and CD8 T cell parameters. 

(A) The average proportion of cytokine producing HIV-specific CD8 T cells (B) CD8 T 

cell count within each subject was plotted against each subjects age. 
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Nef-specific CD8+ T cell responses as detected by IFN-γ ELIspot have been shown to 

be robust in HIV-positive children on therapy (Sandberg et al., 2003). We therefore 

chose to examine the Nef-specific response in HIV-positive adolescents. We did not find 

any significant differences in Nef-specific responses between the viremic and aviremic 

groups. Unlike the Sandberg study, which used ELIspot analysis, we determined Nef-

specific CD8 responses using multiparameter flow cytometry. As such, accounting for 

non-IFN-γ producing HIV-specific CD8+ T cells in HIV infected adolescents may change 

our understanding of the association between HIV-specific CD8+ T cells and viral 

control in HIV infected adolescents. 

Adolescents have higher thymic output of naïve T cells, which allows for better 

naïve CD4 T cell recovery while adherent to therapy (Cohen Stuart et al., 1998b; Douek 

et al., 1998; Sleasman et al., 1999; Vigano et al., 2000b). This advantage can often 

correlate to decreased viral load and improved CD8 T cell responses. Indeed subjects 

with CD4 T cell counts ranging 400-1500 cells/µl have increased breadth and magnitude 

of HIV-CD8 T specific T cell responses as determined by ELIspot (Sandberg et al., 2003). 

The results of this report are not surprising in that higher circulating CD4 T cells often 

correlate to a more polyfunctional CD8 T cell response in adults (Klein et al., 1995; 

Pantaleo et al., 1995; Betts et al., 2006). Although the subjects in our cohort had CD4 T 

cell counts ranging from 136-1383 cells/µl and a mean CD4 T cell count of 577 cells/µl, 

we did not observe robust responses as seen in previous reports. A key difference 

between our study and studies in adults is that the subjects in our cohort were on 

therapy- and notably were often only intermittently compliant. It has been shown that 

functional responses decay after therapy initiation, providing the subjects are compliant 

(Casazza et al., 2001). Therefore, the presence of healthy CD4 count levels may only 

predict polyfunctionality in the absence of therapy. This area should be investigated  
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Figure 21: There is no relationship between CD4 T cell percentage and HIV-

specific CD8 T cell response. (A) The average proportion of cytokine producing HIV-

specific CD8 T cells (B) Gag-specific (C) Nef-specific are plotted versus the CD4 T cell 

percentage from each respective subject
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further to determine if higher CD4 T cell counts correlate to a more functional HIV-

specific CD8 T cell population in HIV-positive adolescents.  

As stated previously, CD8 T cells in subjects on HAART retain functionality but 

have reduced response magnitude to HIV peptides. Aviremic subjects within our study 

have robust CD8 T cell responses. Additionally, a large proportion of these responses are 

polyfunctional. It is possible that the functional responses we see in aviremics are due to 

intermittent rounds of replication due to non-compliance. However, we do not have a 

pre-therapy time point available to compare pre-treatment functionality, which would 

allow us to determine if aviremics initially had higher responses that are now steadily 

decreasing as expected.  

A growing body of literature supports the hypothesis that cytolytic killing ability 

is a correlate of immune control in HIV-positive subjects (Migueles et al., 2002; 

Hersperger et al., 2010a; Hersperger et al., 2011). A subset of individuals termed elite 

controllers sustain viral control and have superior ability to upregulate cytolytic 

molecules like perforin in response to HIV stimulation. Here, we identified a higher 

proportion of perforin production in the viremic adolescents compared to aviremic 

subjects in response to both Gag and Nef. In fact, the proportion of perforin production 

in the viremics for both peptides is similar to that of the perforin proportion in elite 

contorollers (Hersperger et al., 2010a). Moreover, the proportion of the response that is 

perforin positive in aviremic subjects is similar to that of chronic progressors. Further 

study of additional adolescents, particularly ones compliant to therapy, will be necessary 

to determine the relationship between perforin and viral load, and whether the 

associations observed in adults are different than those found in adolescents. 

CD8 T cell mediated control is thought to be a potential factor in controlling viral 

replication and dictating disease outcome. Although we do not see any significant 
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associations of polyfunctionality in HIV-positive adolescents, this area should 

continue to be researched. A larger study population should be used to address the 

potential impact of HIV-specific CD8 T cells in HIV-positive adolescents. Future studies 

should be longitudinal in design and include assessment of several factors that 

correspond to CD8 T cell mediated control like HLA types, escape mutations and virus 

specific responses to determine if certain adolescents are more prone to disease 

progression than others.  
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Figure 22: There is no relationship between CD4 T cell count 

and antigen-specific CD8 T cell response. (A) The average 

proportion of cytokine producing HIV-specific CD8 T cells (B) Gag-specific (C) Nef-

specific are plotted against the CD4 T cell count from each respective subject.
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Chapter 5: Discussion and Implications 

Immune Activation and Turnover in adolescents  

In HIV infection, increased immune activation as indicated by elevated 

expression of CD38 and CD38/HLA-DR co-expression in memory CD4 and CD8 T cells 

is a key driver of disease progression in adults (Giorgi et al., 1993; Liu et al., 1997; Orendi 

et al., 1998; Giorgi et al., 2002; Emu et al., 2005; Hunt et al., 2008). Here, we assessed 

immune activation in memory T cell subsets of HIV positive adolescents in order to 

assess how differential therapy adherence coupled with enhanced thymic output may 

influence HIV-induced immune activation. Our results show increased expression of 

CD38 in all memory subsets of viremic adolescents that does not decrease over time in 

the presence or absence of effective antiretroviral therapy. Unlike other reports, 

activation defined by CD38/HLA-DR is less pronounced in our study and confined to the 

bulk memory CD4 T cell subset. 

In addition to chronic immune activation in adolescents, we observed increased 

cell cycling (Ki67) in central memory CD8 T cells and all CD4 T cell subsets. Increased T 

cell turnover or cycling as indicated by Ki67 expression is a hallmark of HIV infection 

and subsequent disease progression (Mohri, 1998; Sachsenberg et al., 1998b; Cohen 

Stuart et al., 2000). T cell cycling typically normalizes after therapy initiation 

(Hazenberg et al., 2000c); however, in our study, the subjects were poorly adherent to 

therapy and therefore maintain elevated levels of Ki67 expressing CD8 T cells. This 

suggests that suboptimal therapy compliance impairs T cell turnover normalization. 

These results are similar to previous works by Rudy, et al, where continued activation 

and turnover were characteristics of adolescents who were not adherent to HAART 

(Rudy et al., 2006a; ATN 061 B.Rudy, J. Sleasman, C. Wilson). It is important to note 
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that despite high CD4 T cell counts and viral suppression, subjects with high Ki67 

expression are characteristically more prone to immune failure.   

As a result of increased activation and turnover in HIV infected adults, CD4 and 

CD8+ T cells are driven to immune senescence which impairs the immune response (Sieg 

et al., 2008).  It is unclear, however, whether immune senescence occurs similarly in 

HIV-infected adolescents. In future studies, we could assess immune senescence through 

the assessment of CD57 and CD28 expression, as well as telomere length and telomerase 

activity in HIV infected adolescents (Effros et al., 1996; Brenchley et al., 2003; Appay et 

al., 2007). 

 In the setting of HIV infection, a large number of CD4+ T cells are depleted due to 

a number of reasons including direct killing by virus, bystander cell death, activation 

induced cell death, and CD8 T cell mediated killing (Hazenberg et al., 2000a; Douek et 

al., 2002; Silvestri and Feinberg, 2003). However, because adolescents have increased 

thymic output, heightened production of naïve CD4+ and CD8+ T cells (Smith et al., 

2000; Vigano et al., 2000b; Rudy et al., 2001) they may be able to better compensate for 

HIV-induced depletion. Indeed, while on therapy HIV-infected adolescents recover their 

CD4+ T cell counts more effectively and to slightly higher levels than their adult 

counterparts. Moreover, in the presence of controlled viral replication and decreased 

immune activation, adolescent subjects experience decreased instances of viral 

recrudescence (Douglas et al., 2000; Starr et al., 2002a; Rudy et al., 2006a). However, 

when activation is not controlled, the advantage of increased thymic output is lost and 

virus rebounds.  These findings highlight the immunological importance of maintaining 

effective antiretroviral therapy in HIV infected adolescents. 
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De-intensification: A means to promote adherence 

HIV-infected adolescents are less likely to adhere to therapy guidelines compared 

to HIV-infected adults (Futterman, 2005). Suboptimal therapy compliance can lead to 

drug resistance, viral breakthrough and increased immune activation. Our data in 

CHAPTERS 2 and 3 confirm increased immune activation in adolescents on suboptimal 

therapy.  Importantly, our results further highlight the critical need to ensure that HIV-

infected adolescents maintain effective therapy. These results suggest that poor 

adherence in adolescents subjects them to continuous rounds of virologic failure, making 

them more prone to rapid disease progression than therapy adherent adults. Therefore, 

one of the key short-term factors to successful treatment of adolescents is increasing 

adherence.  

De-intensification strategies are being explored in order to promote adherence in 

adolescents (ATN 061, B. Rudy, J.Sleasman, C. Wilson study PIs). The goal of de-

intensification is to identify the minimum optimal drug combination and dosage strategy 

needed to establish and sustain viral control. Once virologic control is established, drugs 

are removed from the regimen to decrease side effects and promote adherence. A goal of 

this thesis was to determine the levels of immune activation in adolescent subjects 

currently on therapy in order to serve as a baseline comparison for de-intensification 

studies. However, one must consider whether the results from carefully controlled de-

intensification studies will translate to success in the clinic.  As such, to ensure success, 

de-intensification strategies should be introduced coincident with both adolescent health 

counseling to ensure adherence and careful monitoring of the immunologic and virologic 

status of individuals receiving de-intensified therapy. 
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Is adherence the ultimate answer? 

Adherence to medication has been shown to be the only factor that predicts viral 

control in adolescents (Sleasman et al., 1999; Starr et al., 2002a; Rudy et al., 2006a). 

Collectively, our data support the need to improve therapy adherence in HIV-positive 

adolescents. However, if adherence is achieved, it may not produce the same benefits as 

seen in chronically infected adult counterparts long-term.  

The factors contributing to long-term success in HAART-treated adults are 

unknown and fairly understudied.  A recent report in HAART-suppressed subjects 

showed that increased CD4 T cell depletion, microbial translocation and immune 

activation were linked to immune failure in therapy adherent adult subjects. Not only 

were these studies conducted 7 years post therapy initiation, but all subjects durably 

suppressed viral replication (Lederman et al., 2011). This suggests that therapy 

adherence may not be the only key to long-term survival. Considering that virologic 

control may need to be maintained in adolescents for over 20 years (and throughout 

adulthood), it is premature to assume that adherence alone will equate to long-term 

protection.  

Functional Responses 

Although polyfunctional HIV-specific CD8 T cell responses have been shown to 

correlate with viral control in infected adults (Betts et al., 1999; Emu et al., 2005; Betts et 

al., 2006), we did not find this relationship in our adolescent cohort. There was no 

significant difference between Gag or Nef-specific CD8 T cell responses in adolescents 

who controlled virus versus those who did not. This could be for several reasons; (i) 

adolescents have less robust functional responses than adults (Buseyne et al., 2005a); 

(ii) HIV exposure may cause some basic T cell functions like proliferation and cytokine 

production to be impaired (Autran et al., 1997b; Connick et al., 2000); (iii) our study 
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power was too low to properly access differences in function. To determine if there is a 

correlation between function and viral control future studies should be of the 

appropriate power. Functional responses to other HIV viral proteins, CMV and EBV 

should be determined to understand the breadth of the CD8 response in HIV-positive 

adolescents. Viral control is not solely dictated by functional responses. Indeed, HLA 

types have been shown to confer protection against disease progression (Carrington et 

al., 1999; Altfeld et al., 2006; Emu et al., 2008). Therefore, future studies should also 

involve HLA typing to determine if the presence of certain MHC loci equate to superior 

viral control.  

Microbial Translocation  

 This body of work is the first to define the relationship between immune 

activation, viral load and microbial translocation in adolescents. Similar to results in 

adults, my findings indicate elevated sCD14 levels in viremic adolescent subjects and 

direct correlations between sCD14 and viral load. Contrary to what has been seen in 

other reports concerning adolescents (Papasavvas et al., 2009b; Wallet et al., 2010), we 

see a correlation between sCD14 and CD38 expression in T cell memory subsets. This 

thesis has thus laid the groundwork for future studies looking to determine a 

relationship between microbial translocation and disease progression in adolescents. 

Soluble CD14 has been associated with increased risk of mortality in adults, but it 

is not the only marker of microbial translocation (Nixon and Landay, 2010). LPS, a 

potent immunostimulatory toxin, is the most direct indicator of microbial translocation. 

Several studies have reported elevated levels of LPS in chronically infected subjects and 

those with AIDS. In the few studies concerning microbial translocation in HIV-positive 

children and infants, levels of LPS and sCD14 are elevated (Wallet et al., 2010; 

Papasavvas et al., 2011). These levels often persist in the presence of suppressed viremia, 
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increased CD4 T cell counts and decreased immune activation. This suggests that gut 

injury during HIV-infection promotes ongoing translocation of microbial products even 

under conditions of relative viral control (Nixon and Landay, 2010). Inflammatory 

factors like IL-6 and hs-CRP are associated with disease progression (El-Sadr et al., 

2006) and increased risk of opportunistic infections in HIV infected-adults (Rodger et 

al., 2009). Long-term studies in adolescents are needed to determine the overall effects 

these factors may have on HIV disease prognosis. 

The secondary lymphatic tissue plays a pivotal role in immune system 

homeostasis (Kaldjian et al., 2001). It is estimated that ~90 % of CD4 T cell reside in 

secondary lymphoid tissue, poised to respond to immunological threats. During HIV 

infection massive CD4 T cell depletion occurs in the intestinal mucosal tissue and 

lymphoid tissue resulting in impaired adaptive immune responses and the disruption of 

lymph node architecture (Brenchley et al., 2004; Zeng et al., 2011). Widespread damage 

to the gut is thought to be the driving force behind microbial translocation, a hallmark of 

pathogenic infection (Brenchley et al., 2006). The mucosal CD4 T cell compartment is 

not restored effectively by HAART and will greatly impact subjects longitudinally even if 

they are adherent to therapy.  The impact of prolonged gut damage is an issue in 

understanding adolescent HIV disease progression.  

Our cohort consisted of individuals who acquired HIV either at birth or through 

risky sexual behaviors. Key differences in the routes of infection in these subjects may 

warrant independent studies in each population. It has been shown that early cycles of 

viremia during infancy may destroy collagen networks needed for normal development 

of the human gut (Schacker et al., 2002; Neu, 2007; Estes et al., 2008). This suggests 

that early on the immune response in perinatally infected youth may be impaired due to 

insufficient development of the intestinal microenvironment. Therefore, studies should 
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be designed to specifically address the competence of the immune system in 

behaviorally infected adolescents compared to perinatally infected adolescents to 

determine the long-term effects resulting from gut damage. It is possible that the 

immunodepletion that takes place in the gut will have differential affects on immune 

responses and disease progression in these two subject groups.  

Prolonged sCD14 production induced by microbial translocation has been linked 

to deficient CD4 T cell reconstitution (Marchetti et al., 2008) and HIV associated 

inflammatory disorders (Ancuta et al., 2008; Nixon and Landay, 2010). As stated 

previously, injury to the intestinal epithelium is not reversed by therapy. Being that 

microbial translocation is one of the underlying causes of immune activation, the 

strongest predictor of disease progression, future studies should address ways to repair 

intestinal damage incurred by HIV infection. Probiotics may be the first step to repairing 

injured gut and have been used in individuals with gastrointestinal disorders to restore 

an effective gut barrier. Researchers are presently examining the use of probiotics as a 

means to reconstitute immune cells in the gut. A recent study showed that probiotic 

consumption boosted CD4 T cell recovery (Irvine et al., 2010). Extension of these 

probiotic studies could help with immune reconstitution and minimize extended damage 

to the gut.  

Conclusion 

This body of work has shown that increased immune activation is present in 

adolescents undergoing suboptimal therapy. Follow up studies should involve larger 

populations of subjects to allow for increased statistical power and inter-cohort 

comparisons between immune capabilities of behavioral and perinatally infected 

subjects. This study highlights the importance of finding alternate strategies for the 

control of HIV replication in HIV-positive adolescents.  Improving adherence, 
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identifying alternative treatments and understanding gut dynamics in HIV-positive 

adolescents is pivotal if we hope to reduce disease progression and improve the health 

quality of the growing HIV-positive population. 
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Appendix 

Table I: Detailed information of HIV+ Adolescent Subjects  

 
Subject Date Age Gender

Ethnici
ty Transmission Mode CD8%

Absolute 
CD8 CD4%

Absolute 
CD4 Virus RNA

Date of 
Initial ART

ZAB90 06/01/10 16 F B perinatal 55 1001 24 481 82,600 2003

06/22/11 15 65 1938 10 11/04 838

11/29/11 15 ND ND ND ND 15,100

08/24/10 17 52 805 26 399 1,820

03/30/11 18 46 274 32 189 55,889

04/18/12 19 46 511 38 426 39618

ZAJ90 07/13/10 16 F W perinatal 51 895 36 631 <50 2004

ZAL88 06/28/11 19 F B perinatal 49 908 26 487 <50 2005

09/27/09 15 50 751 19 280 2,150

04/18/10 16 57 679 16 191 6,556

05/16/10 16 52 587 17 192 6,550

07/11/10 16 49 610 21 261 <50

11/06/11 17 53 1082 22 436 96

03/07/10 17 58 742 19 243 54,300

05/16/10 17 62 768 16 198 167,000

01/09/11 18 59 797 14 194 407,000

03/11/12 19 49 1165 18 416 <50

03/10/13 20 38 1522 26 1,044 <48

11/10/13 20 ND ND 33 837 <48

05/23/10 13 63 2762 17 745 <50

12/05/10 13 62 2012 19 621 1,690

03/03/13 16 57 1920 21 708 <48

02/06/11 16 42 521 40 495 6,450

08/19/12 17 35 470 31 419 <48

09/19/10 13 36 523 28 401 <50

08/19/12 15 37 552 28 415 <48

ZAG89 M B perinatal 2003

ZAF92 F B perinatal 2003

ZAN89 F B perinatal 2005?

ZAM90 F B behavioral 2003

ZAQ91 F B perinatal 1992

ZAO93 F B perinatal ND

ZAR93 M B perinatal 2002
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06/26/11 21 29 273 14 136 <50

02/05/12 22 44 763 11 186 4,422

03/11/12 22 45 383 13 112 25,716

08/12/12 22 50 618 10 122 15,134

11/18/12 22 41 392 9 91 15,300

ZBS93 12/14/11 14 M B perinatal 45 579 26 571 <50 1994

ZBV93 10/11/11 14 M W perinatal 30 425 33 469 <50 1997

ZBW88 11/01/11 19 M H perinatal 35 857 36 891 69 1998

ZBX87 12/11/11 20 M W perinatal 38 1346 31 1,110 <50 ND

01/17/12 22 38 1167 27 831 169

09/12/12 22 ND ND 29 1,207 <50

ZCA92 12/14/11 15 F W perinatal 64 1882 15 435 26,100 1998

ZCB91 12/20/11 16 F B perinatal ND ND 17 677 13,800 2007

03/08/12 13 55 842 18 274 3,789 1995

08/12/12 13 49 716 26 371 <48

09/09/12 13 48 698 21 307 <400

02/26/12 12 28 825 29 848 <400

04/15/12 12 27 766 32 901 <50

02/10/13 13 28 665 31 731 <48

ZCL86 08/15/12 22 M B behavioral ND ND 22 240 3,984 N/A

ZCM88 02/13/13 21 M B perinatal 26 464 30 522 <48 1995

ZCN95 09/01/13 14 F H perinatal 24 408 36 620 <48 ND

ZCR91 03/13/13 18 F B behavioral 48 1112 21 497 29,800 N/A

ZDA92 09/29/13 17 F W behavioral 44 893 20 407 31,800 N/A

09/29/13 19 45 901 35 713 >750,000

01/12/14 20 34 460 43 587 1,130

ZBQ86 F B perinatal 2002

ZCE95 M B perinatal

ZBY86 F B perinatal 1996

ZDE90 M B behavioral N/A

ZCG96 M W perinatal 1996
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03/14/10 13 22 608 50 1,383 <50

09/18/11 14 20 484 54 1,284 <50

ZAU93 05/09/10 13 M B perinatal 41 (4/3/06)
689 

(4/3/06)
31 

(4/3/06)
521 

(4/3/06) <50 1998

02/23/10 14 54 976 16 289 2,310

08/02/11 15 52 894 18 313 2,460

10/19/11 45 1061 16 388 <50

11/08/09 10 35 1312 35 1,304 5,730

01/23/11 12 30 700 46 1,079 10,300

02/05/12 13 43 1172 33 907 574

11/22/09 18 37 579 22 340 55,400

08/15/10 19 16 264 30 499 <50

ZAZ86 01/31/10 20 M B perinatal 29 976 26 875 <50 2002

ZBA86 08/24/10 20 F B behavioral 61 530 17 149 7,130 2006

02/23/10 21 ND ND 24 226 111,033

07/13/10 21 43 663 26 401 1,410

ZBC90 06/08/10 16 F B behavioral 29 1079 43 1,600 <50 2006

05/07/10 21 53 1340 30 759 <50

08/07/10 21 55 1485 27 749 <50

11/21/10 21 55 1445 27 701 <50

06/15/10 15 48 1214 25 633 1,340

10/11/11 16 48 898 23 428 8,720

ZBG97 07/31/11 10 M B perinatal 41 971 32 769 <50 2007

ZBI89 09/07/10 17 F W behavioral ND ND 14 690 48,130 2006

08/09/11 8 52 792 27 419 1,420

08/23/11 8 49 689 ND ND <50

ZBL91 02/01/11 16 F B perinatal 53 851 28 462 1,310 1996

ZAS93 F B perinatal 1994

ZAW95 M B perinatal 1996

ZAV92 F B perinatal 1994

ZBB85 F B perinatal 2006

ZAX87 M B behavioral 2006

ZBF91 M B perinatal 1997

ZBE85 M W behavioral 2003

2007ZBJ99 F H perinatal
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