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Abstract
During clonal selection of a T cell in response to infection of a host with an invasive pathogen, the host must
respond by producing at least two required and disparate cell populations - one that is responsible for
controlling the current infection and another that is required to retain the T cell clone for protection against
future insults. This diversity within the T cell response may be generated through the use of asymmetric cell
division. How T cells may use asymmetric division and to what extent this molecular process plays a role in
adaptive immunity is not well understood. Here we suggest that asymmetric division during the initial T cell
response segregates proteins by a unique mechanism that involves unequal degradation of a fate-determinate
secondary to polarized segregation of the protein degradation machinery. Furthermore, we provide data to
extend the principle of asymmetric division to the memory cell response, suggesting that certain antigen-
experienced lymphocytes can re-iteratively undergo this process to generate diversity when once again faced
with a pathogenic challenge. Together, these results suggest highly conserved principles of stem-cell biology
may be regulating the generation of diversity in the adaptive immune response both during primary and
recurrent infection.
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ABSTRACT 
 

Asymmetric T Cell Division and the Self-renewal of Specific Immunity 

Maria L. Ciocca 

Steven L. Reiner 

 

During clonal selection of a T cell in response to infection of a host with an 

invasive pathogen, the host must respond by producing at least two required and disparate 

cell populations – one that is responsible for controlling the current infection and another 

that is required to retain the T cell clone for protection against future insults. This 

diversity within the T cell response may be generated through the use of asymmetric cell 

division. How T cells may use asymmetric division and to what extent this molecular 

process plays a role in adaptive immunity is not well understood. Here we suggest that 

asymmetric division during the initial T cell response segregates proteins by a unique 

mechanism that involves unequal degradation of a fate-determinate secondary to 

polarized segregation of the protein degradation machinery. Furthermore, we provide 

data to extend the principle of asymmetric division to the memory cell response, 

suggesting that certain antigen-experienced lymphocytes can re-iteratively undergo this 

process to generate diversity when once again faced with a pathogenic challenge. 

Together, these results suggest highly conserved principles of stem-cell biology may be 

regulating the generation of diversity in the adaptive immune response both during 

primary and recurrent infection.  
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CHAPTER 1: Introduction  
 

Generation of a protective immune response 

 All living organisms encounter invasion by foreign pathogens on a daily basis. In 

higher organisms, two layers of protective immunity exist to respond to these external 

threats. In the initial, or early, phase of a reaction to a pathogen the innate immune 

response provides a broad, non-specific layer of protection against microbes. The 

recognition of highly-conserved fragments of foreign pathogens by clonally identical 

cells that express genetically encoded receptors allows for the rapid recognition of 

invasive microbes by the host (Medzhitov and Janeway, 2002). This genetic encoding of 

receptors that recognize commonly encountered threats allows for an immediate response 

by this arm of the immune system. If these mechanisms of early protection fail to clear 

the foreign microbe, however, the adaptive immune response becomes critical for 

protecting the host.  

 The adaptive immune response provides a unique specificity that allows for 

recognition of particular fragments of individual pathogens, not broad, highly-conserved 

fragments. Prior to infection, the host has a large and diverse set of T and B lymphocytes. 

Each lymphocyte harbors a unique receptor generated through V(D)J recombination and 

somatic hypermutation. Each lymphocyte, therefore, has the potential to recognize a 

distinct antigen corresponding to a fragment of microbe, or rather a fragment of non-self, 

that may be encountered during the host’s lifetime. This broad protection against such a 
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diverse array of potential pathogens comes at a cost to the host. Any given invading 

microbe will only be recognized by a very small number of lymphocytes (<0.01%) 

(Janeway, 2005). During the early course of an infection, therefore, a lymphocyte with a 

receptor that is able to uniquely recognize the invading microbe must be recruited into an 

immune response by presentation of a cognate antigen by an antigen-presenting cell to 

that unique lymphocyte. The recruited lymphocyte then must undergo a proliferative 

burst in order to generate millions of cells with the identical receptor to allow for efficient 

control of the microbe. This clonal selection and recruitment of the T or B cell that can 

recognize the pathogen is critical to the protection of the host. The generation of millions 

of cells harboring the specific receptor is what arms the host with the capacity to fight the 

impending infection. Coincident with amplification, the responding lymphocyte produces 

a diverse set of responding progeny.  

 

Heterogeneity and the T cell response 

 While a critical aspect of the adaptive immune response is the amplification and 

proliferation of the clonally selected cell, a hallmark of the adaptive immune response is 

also the generation of diverse populations of responding lymphocytes. This is highlighted 

by the heterogeneity generated during a T cell response, which will be the focus of the 

remainder of this chapter.  

In response to particular infections, CD4+ (helper) T cells recruited into an 

immune response can generate several cell populations: Th1, Th2, Th17, and iTreg cells 
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can all be generated from naïve CD4+ T cells, depending on the type of threat 

encountered. The diversity of these helper T cell subsets is controlled by a diverse 

network of extracellular signals and transcriptional programs (Zhu and Paul, 2008; 

Reiner, 2009).  

CD8+ (killer) T cells also must generate diversity during a primary immune 

response. During an initial response to pathogen, the host must produce at least two 

phenotypically and functionally distinct populations – those that are responsible for 

controlling the current threat (effector cells), as well as a population that will retain the 

host’s capacity to respond to that particular pathogen (memory cells), should it be re-

encountered. Whether these two populations arise from the same or different T cell 

clones has been difficult to establish. Recent data, however, suggests that indeed one T 

cell clone can give rise to both these effector and memory T cell populations (Schepers et 

al., 2008; Gerlach et al., 2010), and perhaps that even one cell can give rise to both CD8+ 

populations (Chang et al., 2007; Stemberger et al., 2007). This diversification results in at 

least two populations – the effector cells and memory cells.  The two populations have 

several distinctions, and can be distinguished by their cell surface profiles as well as their 

transcriptional profiles. The diversification between effector and memory appears to be 

regulated by several fate-determining transcription factors (Pearce et al., 2003; Intlekofer 

et al., 2005; Joshi et al., 2007; Kallies et al., 2009; Rutishauser et al., 2009; Shin et al., 

2009; Banerjee et al., 2010; Zhou et al., 2010), often in a dose dependent manor (Joshi et 

al., 2011). The mechanisms that aid in the generation of these two populations from a 

single cell are just beginning to be worked out. 
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As the immune response clears the pathogenic threat, the effector population is 

rapidly lost during the contraction phase. The cells that persist after the clearance of the 

infection are, by definition, memory T cells. This population provides protection to the 

host in the setting of secondary infections. It is likely, however, that these memory cells 

are present in small amounts before the contraction of the effector cell population (Kaech 

and Ahmed, 2001; Kaech et al., 2003). Re-encounter with pathogen results in activation 

of these long-lived memory cells. Memory cells, which are phenotypically distinct from 

naïve, or antigen inexperienced, cells can live for long periods of time in the absence of 

antigen, and are poised to respond should secondary infection occur. Analogous to their 

inexperienced predecessors, the long-lived memory cells must again produce two distinct 

cell populations – one to protect against the impending infection and another to 

perpetuate the maintenance of the T cell clone. This re-iterative nature of the T cell 

response is analogous to the function of an adult tissue stem cell, whereby a cell must, 

upon demand, produce a population of cells that will go on to become terminally 

differentiated progeny while simultaneously producing a population of cells to maintain 

the stem cell pool. 

 

Development of an Immune Response 

 Much work has been done to understand the diversity generated during an 

immune response, but how this diversity is generated is still poorly understood. At least 

two models have been proposed to explain the generation of memory cells during a 
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primary immune response; a linear differentiation model and a divergent development 

model (Figure 1.1) (Gerlach et al., 2011). A linear differentiation model predicts that all 

the initial cells that arise after T cell recruitment into a primary immune response are 

effector cells. While the overwhelming majority of effector cells are lost through 

apoptosis during contraction, a minority survive and persist as memory cells (Wherry et 

al., 2003; Bannard et al., 2009). This model may suggest that memory cells would 

therefore arise predominately during the contraction phase (Stemberger et al., 2009). It 

has been suggested, however, that heterogeneity can be observed very early within the 

immune response, as early as 3-5 days after infection, and that discernable populations at 

this time have different propensity to develop into memory cells (Kaech et al., 2003). 

During the early response to infection, the responding cells can be segregated based on 

their relative levels of CD127 (Kaech et al., 2003; Huster et al., 2004), KLRG1 (Joshi et 

al., 2007; Sarkar et al., 2008), and CD25 (Kalia et al., 2010). Upon transfer, the cells with 

higher levels of CD127, lower levels of KLRG1, or lower levels of CD25 have a higher 

probability of surviving to become long-live memory cells with protective capacity. This 

early heterogeneity is suggestive of a process whereby cells need not go through an 

effector cell stage to become long-lived memory cells, as memory cell formation appears 

to be an early feature of the immune response. This favors a divergent development 

model.  

 In order for two populations to arise during an immune response, it is possible 

that two different naïve T cell clones are activated. In this way, intrinsic differences 

between the T cells or the stimulus received could result in different propensities toward 
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effector or memory cell fates. Experiments using single cell transfer contest this theory. 

When a single naïve T cell is transferred to a naïve host that is subsequently infected with 

a pathogen, both effector and memory populations can be identified arising from that 

individual cell (Stemberger et al., 2007). Furthermore, barcoding experiments have also 

demonstrated that effector and memory cell populations can be derived from a single 

naïve T cell clone (Schepers et al., 2008; Gerlach et al., 2010). That a single naïve T 

lymphocyte can give rise to multiple T cell fates raises a fundamental question of how a 

single cell can yield two different daughter cell populations (Figure 1.2). Analogous to a 

nature versus nurture developmental pathway (Chang and Reiner, 2008), a naïve cell 

could divide and produce two daughter cells that are born equal but then go on to 

experience different environmental signals, either via proximity to a cellular niche, 

exposure to different inflammatory environments, or some other disparate set of signals; 

the cells could be nurtured to different fates in a stochastic manner. Alternatively, 

however, a cell could, during division, program the ensuing disparity by segregating key 

molecules across the plain of division, resulting in the production of two daughter cells 

that are distinct from one another from the moment of their generation (Figure 1.2). This 

process is referred to as asymmetric cell division. 

 

Asymmetric Cell Division 

 The process of mitosis is often described as an equal partitioning of all cellular 

components between the two incipient daughter cells. While this simple description is 
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often true, in many cases there is actually unequal distribution of one or more cellular 

components. Asymmetric distribution can refer to cell size, cell protein content, RNA, or 

even DNA. This process is highly conserved and frequently encountered throughout 

evolution. Even the single-cell yeast, Saccharomyces cerevisiae, divides in an 

asymmetric fashion, resulting in daughter organisms of different sizes, referred to as 

“budding” (Chant, 1999). Many of the molecular processes that govern polarity in these 

lower organisms are conserved throughout evolution and utilized during asymmetric 

division in mammalian systems.  

 Much of what is known about the molecular processes that govern asymmetric 

division has been learned from the study of Caenorhabditis elegans and Drosophila 

melanogaster, both of which utilize asymmetric cell division frequently during 

development. Exemplifying this, the initial discovery of several of the critical proteins 

that govern polarity was made through the study of the C. elegans embryo. In a genetic 

screen done in this system, the first “par” (partioning defective) proteins were identified; 

PAR-1 through PAR-5 (Kemphues et al., 1988). Another critical member of the par 

protein family, atypical Protein Kinase C (PKC3, aPKC), was identified later (Tabuse et 

al., 1998). All of these proteins, except PAR-2, are highly conserved throughout 

evolution (Levitan et al., 1994; Macara, 2004). Their role is polarity, and in many cases 

asymmetric division, is also conserved. 

 The functions of the Par proteins are quite diverse. PAR-1, PAR-4 (LGL in 

mammalian systems), and aPKC are all serine/threonine kinases. PAR-3 (Bazooka in D. 

melanogaster) and PAR-6 are PDZ-domain containing proteins. PAR-5 (also 14-3-3ε) 
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contains a phospho-serine binding domain (Macara, 2004). In addition, Cdc42, a GTP-

binding protein, has also been shown to be critical for asymmetric mitosis in budding 

yeast (Adams et al., 1990) and throughout evolution, in particular for spindle positioning 

(Johnson, 1999). Another set of polarity proteins was later identified; the tumor-

suppressors Scribble (Bilder and Perrimon, 2000), Dlg, and Lgl (Bilder et al., 2000). All 

were shown to be critical for the regulation of asymmetric division in Drosophila (Peng 

et al., 2000; Bellaïche et al., 2001; Albertson and Doe, 2003) and conserved in their 

organization of polarity from yeast through humans. 

 In the C. elegans embryo, one of the best-understood systems of asymmetric cell 

division, polarity is established within the single-cell embryo utilizing the proteins 

described above. The single cell embryo divides asymmetrically, setting up the patterning 

for the rest of the worm’s development, with one, larger, daughter cell destined to 

produce the ectodem, while the other, smaller, daughter cell produces the incipient 

germline as well as the mesoderm and endoderm. In this single-cell zygote, polarity is 

oriented based on the site of sperm entry at fertilization (Goldstein and Hird, 1996). 

Localization of the sperm centrosome within the oocyte results in exclusion of the 

proteins Par-3, Par-6 and aPKC (referred to as the Par or Par-3 complex) from 

surrounding cell cortex, which will become the posterior side of the developing larvae. 

The Par-3 complex becomes localized to the anterior side of the embryo, while Par-1 and 

Par-2 become enhanced on the posterior side, where the Par-3 complex is now absent 

(Cowan and Hyman, 2004). This establishment of polarity provides the groundwork for 

asymmetrical distribution of many critical fate determining cellular components.  For 
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example, the polarity of the Par-1 kinases leads to polarized phosphorylation, and 

therefore polarized retention, of the fate-determinant Mex-5 (Tenlen et al., 2008; Daniels 

et al., 2010). Other fate determinants, such as Pie-1, are polarized through their physical 

association with polarity proteins (Daniels et al., 2009) and differential protein stability in 

the resulting daughter cells (Reese et al., 2000). Polarization occurs in the developing 

Drosophila embryo as well, and provided the initial example of mRNA polarization 

during asymmetric division. The activity of the protein Oskar is localized by tethering of 

the mRNA to the posterior side of the embryo along with restricted translation (Johnstone 

and Lasko, 2001). In both model systems, the polarity family of proteins provides the 

groundwork for polarization of these, and several more, components to be 

asymmetrically inherited. The unequal inheritance eventually results in varied cell fates 

between the daughter cells of the fertilized embryo. 

 In Drosophila, asymmetric division has been well characterized during 

organogenesis, as well as embryogenesis. Development of the fly brain is a well-studied 

model of development that relies on asymmetric division. Both the neuroblasts that 

derive the central nervous system and the sensory organ precursors that generate the 

peripheral nervous system require asymmetric cell division for accurate development. 

While polarity establishment and organization relies on many of the same proteins as C. 

elegans, the fate-determinants themselves and the processes by which the proteins are 

localized are often distinct. Many polarized proteins during C. elegans embryo division 

are found in the cytoplasm, whereas in D. melanogaster, many are found in association 

with the cell cortex (Betschinger and Knoblich, 2004).  
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Through the study of development of the Drosophila nervous system, the first 

asymmetrically inherited fate-determinant was discovered. Numb was the first fate 

determining protein to be characterized during an asymmetric division, and shown to be 

responsible for the differential daughter cell fates (Rhyu et al., 1994; Spana et al., 1995). 

It was later demonstrated that polarization of Numb relied on the same family of proteins 

as asymmetric division in the C. elegans embryo (Schober et al., 1999; Wodarz et al., 

1999; 2000; Petronczki and Knoblich, 2001; Rolls et al., 2003). This highlighted the 

conservation of polarity across evolution.  

The role of asymmetric division in development has become increasingly clear. 

The relationship between developmental pathways and cancer has also started to be 

understood, and consequently, the link between regulation of asymmetric cell division 

and cancer is starting to be elucidated. The first indication for a role of asymmetric 

division in cancer was uncovered through the study of Drosophila neuroblast divisions 

and their relation to tumor formation. Proteins that were initially demonstrated to be 

tumor suppressors in Drosophila through genetic screens (Gateff, 1978; 1994), were later 

found to be regulators of asymmetric cell division, including the polarity regulators Lgl 

and Dlg (Ohshiro et al., 2000; Peng et al., 2000), and asymmetrically inherited fate 

determinants, such as the adaptor protein Brat (Betschinger et al., 2006). Mutations in 

polarity network members, such as those that result in overexpression of aPKC, lead to 

over proliferation and tumor formation (Lee et al., 2006). In these, and other polarity 

defects, the tumor formation appears to be driven by the defect in asymmetric cell 

division, with the simplest explanation being that the defect in polarity results in an 
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excess of stem cells that continuously proliferate (Knoblich, 2010), however the exact 

mechanisms linking defects in asymmetric division to tumor generation have not been 

worked out. The link between tumor formation and asymmetric cell division is possibly 

conserved, given that many of the tumor suppressors linked to asymmetry defects in 

Drosophila are also known tumor suppressors in mammalian cells. 

 

Asymmetric Cell Division in Vertebrates 

 Asymmetric cell division is a phenomenon that has also been observed in higher 

organisms, and particularly well studied in mouse. Asymmetric cell divisions have been 

identified in the gut (Quyn et al., 2010), mammary glands (Cicalese et al., 2009), muscle 

(Shinin et al., 2006),  skin (Lechler and Fuchs, 2005), and the hematopoietic system 

(Chang et al., 2007; Wu et al., 2007; Chang et al., 2011; Barnett et al., 2012). The best 

studied, however, is the developmental role for asymmetric division during vertebrate 

neurogenesis (Götz and Huttner, 2005). In early neurogenesis, several rounds of 

symmetric divisions are thought to expand the stem cell pool (McConnell, 1995). This 

expansion is followed by asymmetric divisions that result in the generation of one cell 

that will form go on to form a neuron, and another that remains in the progenitor cell pool 

(Kornack and Rakic, 1995). The unequal partitioning of a fate determinant in higher 

organisms was first demonstrated by the asymmetric inheritance of Notch1 (Chenn and 

McConnell, 1995). The molecular mechanisms that regulate this process is vertebrates 

have proved elusive to understand, and hard to translate directly from our understanding 
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in Drosophilla and C. elegans. Although many of the same proteins appear to be 

involved, the regulation in vertebrates appears to be unique. 

 The relationship between regulation of asymmetric cell division and tumor 

formation does appear to have a potential parallel to the findings in Drosopilla described 

above. The link between defects in asymmetric division and tumor formation in 

vertebrates was first assessed in mammary stem cells, which can be cultured in vitro 

allowing for the development of “mammospheres”; unique structures derived from a 

single stem cell. Normal mammary stem cells in this culture system divide 

asymmetrically, segregating Numb to one side of the plane of division during 

mammosphere formation (Cicalese et al., 2009). It has been observed, however, that in at 

least one transgenic mouse model of breast cancer, the ErbB2 model, the tumors contain 

a higher frequency of stem-cell phenotype cells, and that these cells are not able to 

partition Numb during division in mammosphere assays, resulting in two daughters that 

have higher levels of Numb signaling (Cicalese et al., 2009). Similar observations have 

been made in the hematopoietic system. It was observed that hematopoietic stem cells, 

when cultured in vitro were able to asymmetrically segregate Numb during mitosis. The 

addition of an oncogene fusion protein typically responsible for an aggressive, 

undifferentiated form of leukemia, resulted in an over-proliferation of the stem-cell 

phenotype cells as well as a loss of asymmetric mitosis. Introduction of an oncogene 

associated with a less-aggressive, more-differentiated form of leukemia, however, did not 

result in a defect in asymmetric mitosis, but rather appears to result in leukemia through 

promoting survival of the terminally differentiated population produced by asymmetric 
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division (Wu et al., 2007), suggesting that while a loss of asymmetric division may play a 

role in the formation of some tumors, it may not be a universal feature of oncogenesis. 

Finally, in the murine brain, oligodentrocytes have been demonstrated to undergo 

asymmetric inheritance of key fate determinants, and this property is lost in these cells in 

a mouse model of glioma (Sugiarto et al., 2011). Due to studies such as these, the 

relationship between adult tissue stem cells, “cancer stem cells”, and asymmetric division 

has been of particular interest in the last several years (Huntly and Gilliland, 2005; 

Morrison and Kimble, 2006). Taken together these studies highlight the potential clinical 

impact of further understanding the regulation of asymmetric cell division in vertebrates. 

Further understanding of the molecular processes that govern asymmetric decisions will 

help develop treatments and therapies for cancer and possibly other diseases in the future. 

 

Stem Cells and Adaptive Immunity 

 Adult tissue stem cells solve a potential paradox of long-lived organisms. Many 

of the cells that carry out the effector function of an organ are actually short-lived, 

terminally differentiated cells. This raises the issue of how to balance short-lived cell 

populations and homeostasis of a long-lived organism. Many tissues in mammalian 

systems solve this through the use of adult tissue stem cells. Unlike their functional cell 

counterparts in the given organ, these cells are few in number, divide infrequently, and 

function in maintaining homeostasis of that organ. Stem cells, therefore, are faced with 

the unique challenge of giving rise to two populations of cells – those that will continue 
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on to terminal differentiation and fulfill the effector function of the organ, and those that 

will repopulate the stem cell pool (Morrison and Kimble, 2006). In all the vertebrate 

systems discussed previously, it is the stem cell that is thought to be capable of 

undergoing polarized mitosis, resulting in two differentially fated daughter cells. What 

then, is the relation between adult tissue stem cells and the adaptive immune response? 

 Like other hematopoietic cells, many white blood cells have a finite life span and 

do not undergo proliferation in their most mature form. Rather, in response to stress, it is 

up-regulation of production of these cells, through mobilization of the hematopoietic 

stem cell, which results in expansion of their numbers. The evolutionarily youngest 

members of the immune response, however, are the B and T lymphocytes. These cells 

differ from their innate white cell counterparts in their inability to be regenerated from 

the hematopoietic stem cell after use. While lymphocytes are derived from HSCs, they 

are not clonally identical, like their innate cell counterparts. Each lymphocyte has a 

unique receptor that allows it to recognize a distinct piece of foreign antigen. This 

specificity is driven by random mutations derived during the process of maturation of the 

lymphocyte from the hematopoietic stem cell. Therefore, each adult lymphocyte is 

unique and cannot be regenerated from the hematopoietic stem cell if it were to be 

consumed or lost during an immune response. 

 Adult lymphocytes, therefore, face a similar challenge to adult-tissue stem cells 

(Figure 1.3). In the setting of pathogenic infection, a lymphocyte whose antigen receptor 

is specific for that microbe must respond by producing two populations of cells - those 

that will fight the current infection as well as those that will retain the memory of 



17 

 



18 

 

the lymphocyte clone. These long-lived memory cells, furthermore, must be able to re-

iteratively produce both effector cells in the setting of re-infection while maintaining their 

own population. The is reminiscent of how adult tissue stem cells must produce both the 

cells that will become terminally differentiated cells that carry out the function of the 

organ, while simultaneously repopulating their own stem cell pool. 

 Long-lived memory cells have been directly compared to hematopoietic stem 

cells, and many parallels have been recognized, including a shared transcriptional profile 

(Luckey et al., 2006). Within the memory T cell compartment, furthermore, cells with 

characteristic features of stem cells have been identified in mouse (Zhang et al., 2005), as 

well as in humans (Gattinoni et al., 2011).  

 The use of asymmetric cell division in the initiation of the adaptive immune 

response (Chang et al., 2007; Barnett et al., 2012), is also suggestive of a parallel between 

T and B lymphocytes and hematopoietic stem cells, which may use asymmetric cell 

division (Wu et al., 2007). Furthermore, the memory cell generated during an adaptive 

immune response, which shares traits with the hematopoietic stem cell, may undergo re-

iterative, self-renewing asymmetric divisions during pathogenic re-challenge.  

 

Purpose 

 The development of an adaptive immune response is starting to be understood. 

Here I have discussed what is known about how cell fate decisions are made during the 

initiation of an adaptive immune response, predominately in T lymphocytes, as well as 
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how cell fate decisions are made in other, perhaps analogous, systems. I endeavored to 

understand what the role and extent of asymmetric cell division is during the generation 

of the T cell response against foreign pathogen. First, using imaging, genetic, and 

molecular biochemistry techniques, I worked to understand how asymmetric cell division 

is utilized during a primary T cell response to pathogen to allow for the generation of fate 

disparity. Secondly, using genetic and imaging techniques, I worked to uncover a role of 

asymmetric cell division in the secondary encounter to pathogen, thereby extending the 

stem-cell hypothesis of adaptive immunity by elucidating another stem cell-like property 

of memory T lymphocytes. Collectively these studied highlight a novel role for 

asymmetric cell division in the generation and function of the adaptive immune response. 
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CHAPTER 2: Asymmetric Proteasome Segregation as a Mechanism for Unequal 
Partitioning of the Transcription Factor T-bet during T Lymphocyte Division1 

 

Introduction 

After the activation of T cells by antigen-presenting cells, the microtubule 

organizing center, as well as specific transmembrane and intracellular proteins, rapidly 

undergo reorganization toward the site of intercellular contact (Monks et al., 1998). This 

polarized reorganization of T cells has been characterized among naive and antigen-

experienced lymphocytes stimulated in vitro (Maldonado et al., 2004; Ludford-Menting 

et al., 2005; Huse et al., 2006; Stinchcombe et al., 2006) and in vivo (Reichert et al., 

2001; Barcia et al., 2006; Azar et al., 2010; Beuneu et al., 2010; Friedman et al., 2010). 

The acute polarization and redistribution of proteins subsequent to T cell activation has 

been suggested to regulate signal transduction and facilitate function, such as directed 

secretion of cytokines and cytolytic granules (Huse et al., 2006; Stinchcombe et al., 

2006). 

Polarized segregation of proteins may be evident several hours after activation of 

naive T cells (Yeh et al., 2008), and this coalescence may even persist through cell 

division (Chang et al., 2007). The polarized segregation of proteins during mitosis is 

reminiscent of an evolutionarily conserved phenomenon known as asymmetric cell 

division, which allows a single parent cell to give rise to two daughter cells with distinct 

fates (Betschinger and Knoblich, 2004; Lechler and Fuchs, 2005; Knoblich, 2008). 

During asymmetric division, key fate determinants are localized to one side of the plane 

of division, resulting in two daughter cells that inherit different amounts of critical 
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determinants. One such determinant in Drosophila neural stem cells is the transcription 

factor Prospero, which acts as a binary switch between terminal differentiation and self-

renewal (Betschinger and Knoblich, 2004). It has been suggested that a T cell may 

undergo asymmetric division to give rise to daughter cells that are differentially fated 

toward the effector and memory lineages (Chang et al., 2007). It remains unknown, 

however, what determinants are unequally partitioned into the daughter cells of a selected 

T cell and how their asymmetry is mediated. 

Several transcriptional regulators have been implicated in regulating fate 

decisions of effector and memory T cells (Intlekofer et al., 2005; Joshi et al., 2007; 

Kallies et al., 2009; Rutishauser et al., 2009; Shin et al., 2009). Genetic evidence suggests 

that the T-box transcription factor T-bet is a critical fate determinant in activated naive 

CD8+ T cells, promoting differentiation toward the effector fate while repressing 

development toward the memory fate (Intlekofer et al., 2005; Joshi et al., 2007). In 

activated CD4+ T cells, T-bet promotes the T helper 1 (Th1) cell fate while repressing the 

development of the Th2 and Th17 cell lineages (Szabo et al., 2000; 2002; Hwang et al., 

2005; Lazarevic et al., 2011). Small changes in the amount of these factors can have 

profound influences on T cell fate (Szabo et al., 2002; Intlekofer et al., 2005; Joshi et al., 

2007; Kallies et al., 2009; Rutishauser et al., 2009; Shin et al., 2009). 

We now provide evidence that in activated naive T cells undergoing division, T-

bet was asymmetrically partitioned between the daughter cells. Moreover, the mechanism 

by which T-bet asymmetry was mediated appeared to involve proteasome dependent 

degradation specifically during mitosis in the setting of asymmetric distribution of the 

degradation machinery, the proteasome. The localization of the proteasome was opposite 



22 

 

to that of T-bet, such that the daughter cell that received less proteasome acquired more 

T-bet. This reciprocal partitioning, along with the observation that T-bet asymmetry is 

prevented by inhibiting its proteasome-dependent degradation, indicates that the 

asymmetric localization of T-bet and proteasome may be related. Inhibiting the polarized 

segregation of the proteasome during mitosis, moreover, prevented the asymmetric 

partitioning of T-bet. Together, these findings suggest a mechanism of asymmetric cell 

division whereby asymmetric localization of the proteasome, and consequently unequal 

degradation of factors targeted for destruction during mitosis, yields unequal partitioning 

of key fate determinants to two daughter cells. 

  

Results 

Asymmetric partitioning of T-bet during T lymphocyte division 

 To examine the cellular distribution of T-bet, we employed a model system that 

has allowed us to examine T cells preparing for their first division in vivo in response to a 

microbe (Chang et al., 2007). Naive CD8+ T cells transgenic for the P14 T cell receptor 

were labeled with a fluorescent dye (CFSE) that allows determination of whether a cell 

has undergone division. Cells were then adoptively transferred into recipient mice that 

were infected 24 hr previously with recombinant Listeria monocytogenes bacteria 

expressing a specific gp33-41 peptide epitope (gp33-L. monocytogenes) recognized by 

the transgenic T cell receptor. Undivided donor T cells were isolated by flow cytometry 

at 36 hr after transfer and examined by confocal microscopy. Among activated cells in 

interphase and prophase, we observed that T-bet was localized in the nucleus (Figure 

2.1A). Among cells in metaphase, we observed a substantial reduction in T-bet signal 
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compared to those in interphase and prophase, suggesting the possibility that T-bet was 

undergoing degradation prior to cell division. We also observed that among cells in 

metaphase, T-bet was displaced from the chromatin and localized asymmetrically on one 

side of the cell. The asymmetry of T-bet persisted into cytokinesis, with unequal amounts 

of T-bet detected in the conjoined daughter cell pairs (Figure 2.1B). Based on the 

preferential partitioning of T-bet into the daughter cell receiving more of the proximal 

cell marker interferon-g receptor (IFN-gR) and less of the distal cell marker, Protein 

Kinase C-zeta (PKCz) (Chang et al., 2007), the greater share of T-bet appeared to be 

partitioned into the putative proximal daughter cell (Figure 2.1B). 

We next confirmed that the unequal amounts of T-bet protein acquired by the 

daughter cells during mitosis persisted after division. We have previously used flow 

cytometry to distinguish putative proximal and distal daughter populations on the basis of 

CD8 abundance (Chang et al., 2007). CFSE-labeled P14 transgenic CD8+ T cells were 

adoptively transferred into recipient mice that were infected 24 hr later with gp33-L. 

monocytogenes. At 48 hr postinfection, splenocytes were analyzed by flow cytometry. 

Examination of T-bet protein amounts revealed greater abundance of T-bet in the putative 

proximal daughter cells, which expressed higher amounts of CD8, compared to distal 

daughter cells (Figure 2.2A). Putative distal daughter cells had higher amounts of T-bet 

compared to naive cells and some undivided cells. The amounts of T-bet in the highest-

expressing undivided cells appeared to be less than that present in the proximal and distal 

daughter cells combined, suggesting that resynthesis of T-bet in the proximal and/or 

distal daughter cells may follow asymmetric partitioning of pre-existing parent cell T-bet 

protein during mitosis. Because genetic studies have suggested that T-bet drives terminal 
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differentiation of effector T cells while repressing self-renewal of memory CD8+ T cells 

(Intlekofer et al., 2007; Joshi et al., 2007), asymmetric partitioning of T-bet into the 

proximal daughter cell is consistent with prior evidence suggesting that the proximal 

daughter cell gives rise to the effector lineage while the distal daughter cell is the 

predecessor of the memory lineage (Chang et al., 2007). 

In addition to regulating fate decisions in CD8+ T cells, T-bet plays a critical role 

in the fate choice of CD4+ T cells (Szabo et al., 2000). In a quantitative manner, T-bet 

promotes Th1 cell differentiation while repressing the development of the Th2 and Th17 

cell lineages (Szabo et al., 2000; 2002; Hwang et al., 2005; Lazarevic et al., 2011). T-bet 

binds directly to GATA-3 and prevents it from binding to its target DNA (Hwang et al., 

2005); T-bet also cooperates with the transcription factor Runx1 to inhibit the 

transcription of RORgt (Lazarevic et al., 2011). As with CD8+ T cells, small changes in 

the amount of T-bet results in profound phenotypic changes. T-bet heterozygous mice, 

which exhibit only a 50% reduction in T-bet protein relative to wild-type mice (Szabo et 

al., 2002), exhibit early and dense defects in Th1 cell development and manifest a similar 

degree of Th2 cell-mediated airway hyperresponsiveness as homozygous T-bet-deficient 

mice (Finotto et al., 2002; Szabo et al., 2002).  

Because of the ability of small differences (50% or less) in the amount of T-bet to 

alter cell fate and function (Finotto et al., 2002; Szabo et al., 2002; Intlekofer et al., 2007; 

Joshi et al., 2007), we examined the first daughter cells of CD4+ T cells activated in vitro 

(Figure 2.3). We observed a 3.6-fold disparity in T-bet abundance between the T-bet-

higher and T-bet-lower daughter cells. The T-bet disparity in the two daughter 

populations positively correlated with a 3.3-fold greater likelihood to express IFN-g and a 
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4.2-fold more intense IFN-g signal per expressing cell (Figure 2.3). Minor disparity in the 

partitioning of T-bet during the first division of a CD4+ T cell could, thus, influence the 

subsequent fates of the daughter cells. 

 To examine the localization of T-bet in dividing CD4+ T cells, we developed a 

reductionist cell culture-based model system that recapitulated the key features of CD8+ 

T cell division in vivo. Naive CD4+ T cells were stimulated with immobilized anti-CD3 

and anti-CD28 along with immobilized ICAM1-Fc fusion protein. This approach was 

taken in order to mimic a polarizing stimulus plus integrin-mediated contact because 

ICAM1 dependence was one of the defining features of asymmetric T cell division in 

vivo (Chang et al., 2007) and because immobilized ICAM1-Fc was found to be critical 

for asymmetric division in vitro (Figure 2.4). We observed that T-bet was asymmetrically 

partitioned to the side of the cell that receives more CD3 (Figure 2.2B). Because CD3 is a 

marker of the immune synapse (Monks et al., 1998), T-bet was partitioned to the side of 

the cell that is presumed to have been in contact with the stimulus, consistent with the 

findings in CD8+ T cells activated in vivo (Figure 2.1B). 

To examine the steps leading up to T-bet asymmetry in real time, CD4+ T cells 

were activated and transduced with retroviruses encoding T-bet-GFP and cherry-alpha-

tubulin fusion proteins. Three days later, when the transduced lymphocytes expressing 

fluorescent fusion proteins were no longer dividing, they were restimulated with 

immobilized anti-CD3 and ICAM1-Fc fusion protein. Among CD4+ T cells in interphase 

and prophase, we observed that T-bet was localized in the nucleus, consistent with the 

staining of endogenous T-bet in CD8+ T cells responding to a microbe in vivo (Figure 

2.1A). During prometaphase, T-bet-GFP began to leak out of the disintegrating nuclear 
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envelope, eventually filling the cytoplasm as it became fully displaced from condensed 

chromatin in early metaphase (Figure 2.2C, top). The displacement of T-bet from mitotic 

chromatin is consistent with the reported behavior of other transcription factors during 

mitosis, which may be incapable of binding to highly condensed mitotic chromatin 

(Martínez-Balbás et al., 1995). As metaphase progressed, we observed a decrease in T-

bet-GFP fluorescence (Figure 2.2C, bottom), consistent with the reduction of endogenous 

T-bet during metaphase in T cells dividing in vivo. Because anaphase began and the 

mitotic spindle began to separate, T-bet-GFP appeared to localize asymmetrically toward 

one side of the cell, becoming unequally inherited by the incipient daughter cells (Figure 

2.2C, bottom). 

  

T-bet undergoes proteasome-dependent degradation during mitosis 

 The reduction in T-bet signal observed in cells during metaphase with both static 

and time-lapse imaging approaches suggested that T-bet might be undergoing 

degradation just prior to or during its asymmetric localization. Specifically, in 

experiments where interphase and metaphase blasts were imaged in the same field of 

view, quantitation of T-bet signal revealed a greater than 90% reduction in metaphase 

cells compared to interphase cells (Figure 2.5A). This reduction of T-bet signal was 

observed in all mitotic T cells, regardless of whether T-bet was partitioned 

asymmetrically. By using biochemical and flow cytometric approaches, we confirmed 

that T-bet underwent proteasome-dependent degradation during mitosis. CD4+ or CD8+ 

T cells were activated in vitro and synchronized with an inhibitor of microtubule 

polymerization, nocodazole, to enrich for cells reversibly arrested in G2-prometaphase. 
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Cells were then washed free of drug and allowed to progress into metaphase in the 

presence or absence of proteasome inhibitors. We observed that T-bet appeared to 

undergo degradation within 30 min of release from nocodazole (Figures 2.5B and 2.5C). 

Furthermore, the degradation of T-bet could be prevented by the addition of an inhibitor 

of proteasome activity (Figures 2.5B and 2.5C). Degradation of T-bet was cell cycle 

specific, as indicated by the fact that T-bet underwent degradation after drug washout in 

cells arrested in G2-M, but not in G1 or S phase (Figure 2.6). 

 

Asymmetric localization of the proteasome during mitosis 

 The finding that T-bet underwent degradation specifically during M phase raised 

the possibility that unequal degradation during mitosis might result in asymmetric 

partitioning of T-bet into the daughter cells. For asymmetric degradation to occur, 

however, some component of the destruction process would need to be asymmetrically 

localized. Consistent with this prediction, examination of activated T lymphocytes 

dividing in vivo (Figure 2.7A) and in vitro (Figure 2.7B) revealed evidence for 

asymmetry in the localization of the proteasome. During interphase and prophase, the 

proteasome was localized throughout the cell. During metaphase, however, we observed 

asymmetric segregation of the proteasome on one side of the lymphocyte and unequal 

segregation of the proteasome into daughter cells during cytokinesis. The asymmetric 

localization of the proteasome, moreover, was confirmed with antibodies to two distinct 

proteasomal epitopes (Figure 2.8). Proteasomal asymmetry is not a general feature of cell 

division, however, as shown by the fact that dividing HEK293T cells exhibited equal 
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segregation of the proteasome into the daughter cells (Figure 2.8). 

To determine whether asymmetric localization of the proteasome was associated 

with differential rates of degradation within a mitotic cell, we used the proteasome 

activity probe MVB003, which functions as a reporter for degradative activity (Florea et 

al., 2010). After 24 hr of activation in vitro, T lymphocytes were incubated with the 

proteasome activity probe and examined by immunofluorescence microscopy. Unequal 

proteasome activity was observed within mitotic T lymphocytes (Figure 2.7C), 

suggesting that both localization and degradative activity of the proteasome were unequal 

during cell division. In a model wherein asymmetry of T-bet results from unequal 

degradation by the proteasome, the greater share of T-bet would be predicted to be 

partitioned into the daughter cell that receives less proteasome. Costaining experiments 

with activated CD8+ T lymphocytes dividing in vivo in response to microbe (Figures 

2.7D and 2.7E) and activated CD4+ T lymphocytes dividing in vitro (Figure 2.7F) 

indicated that T-bet was partitioned asymmetrically into the daughter cell that received 

less proteasome. 

 

The polarity network regulates asymmetry of the proteasome 

The observation that a conserved network of polarity proteins is involved in T cell 

migration, polarity, and asymmetric division (Ludford-Menting et al., 2005; Chang et al., 

2007; Yeh et al., 2008) raised the possibility that this conserved network might also 

regulate asymmetry of the proteasome. In particular, the mammalian homolog of atypical 

PKC (PKCz), an essential component of a complex containing the partitioning-defective 

(PAR) proteins Par-3 and Par-6, has been implicated in T cell function (Martin et al., 
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2005). To determine whether PKCz might play a role in regulating proteasome 

asymmetry, we used a pharmacologic inhibitor of PKCz, the myristolated PKCz 

pseudosubstrate, which has been shown to inhibit its kinase activity (Sun et al., 2005). 

CD4+ T cells were activated in vitro and treated at 24 hr with vehicle or PKCz inhibitor. 

We observed that inhibition of PKCz kinase activity resulted in a loss of proteasomal 

asymmetry (Figure 2.9A). Consistent with these results, PKCz knockdown with a siRNA 

approach also resulted in a loss of proteasomal asymmetry (Figures 2.9B and 2.9C). 

Inhibition of PKCz, however, had no effect on PKCz localization in dividing T cells nor 

did it affect T-bet amounts (Figure 2.10). Together, these results suggest a role for the 

conserved polarity network in regulating asymmetry of the proteasome and consequently 

the asymmetry of T-bet. 

  

Phosphorylation of T-bet links its degradation with its asymmetric partitioning 

 To further explore whether the degradation of T-bet is related to its asymmetric 

localization, we examined the signals regulating the degradation of T-bet. Tyrosine 

phosphorylation is a post-translational modification of T-bet that is thought to be critical 

for mediating its ability to interact with other proteins (Hwang et al., 2005). The 

inducible T cell kinase ITK phosphorylates T-bet at a critical tyrosine residue 525 

(Hwang et al., 2005). ITK is activated and recruited to the T cell receptor by the adaptor 

protein SLP-76 (Hwang et al., 2005; Jordan et al., 2008). To determine whether tyrosine 

phosphorylation of T-bet might play a role in targeting it for mitotic degradation, we 

examined CD4+ and CD8+ T cells from ITK-deficient mice (Hwang et al., 2005) or from 

mice expressing a tyrosine-to-phenylalanine knockin mutation in SLP-76 at residue 145   
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(SLP-76 Y145F) that prevents the activation of ITK (Jordan et al., 2008). In mitotic T 

cells from SLP-76 Y145F or ITK-deficient mice, T-bet failed to undergo degradation  

(Figures 2.11A-D). We also examined cells expressing a mutation of T-bet with a 

tyrosine-to-phenylalanine substitution at residue 525 (Y525F-T-bet), which prevents it 

from undergoing phosphorylation (Hwang et al., 2005). CD4+ T cells from T-bet-

deficient mice were reconstituted with either wild-type T-bet-GFP or mutant Y525F-T-

bet-GFP. We observed that wild-type T-bet, but not mutant Y525F-T-bet, underwent 

proteasome-dependent degradation during mitosis (Figure 2.12A). Although both 

constructs are expressed under the control of retroviral regulatory elements, the general 

transcriptional inactivity of mitosis may allow us to observe T-bet protein degradation. 

Together these findings suggest that phosphorylation of T-bet is required for its 

degradation.  

If degradation of T-bet is critical for its asymmetry, then defects in 

phosphorylation that prevent its degradation would also be predicted to disrupt its 

asymmetry. Mutations that prevent the phosphorylation of T-bet affect its asymmetric 

partitioning in vivo and in vitro. In mice infected with gp33-L. monocytogenes, CD8+ T 

cells harboring the SLP-76 Y145F mutation were found to exhibit a loss of T-bet 

asymmetry compared to wild-type cells (Figure 2.12B). To further test this hypothesis, 

CD4+ T cells from wild-type, ITK-deficient, and SLP-76 Y145F mice were transduced 

with cherry-alpha-tubulin and either wild-type T-bet-GFP or Y525F-T-bet-GFP. In 

contrast to wild-type cells, dividing cells from ITK-deficient and SLP-76 Y145F mice, as 

well as those transduced with Y525F-T-bet-GFP, could not support asymmetric 

partitioning of T-bet (Figures 2.12C and 2.12D). These results suggest 
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that phosphorylation of T-bet, which appears to be required for its degradation, is also 

necessary for its asymmetric partitioning during mitosis. 

 

Asymmetric localization and function of the proteasome is required for T-bet  

asymmetry 

To further establish a mechanistic link between degradation and asymmetry of T-

bet, we treated mitotic T cells with the proteasome inhibitor MG-132. Inhibition of the 

proteasome resulted in a substantial defect in T-bet asymmetry (Figure 2.13A), 

suggesting that degradation of T-bet may be causally linked to its asymmetry. It remains 

possible, however, that preventing T-bet degradation pharmacologically or through the 

aforementioned genetic approaches might perturb the asymmetric partitioning of T-bet 

even if an alternative mechanism were responsible for T-bet asymmetry. To evaluate this 

possibility, CD4+ T cells from T-bet-deficient mice were simultaneously transduced with 

wild-type T-bet-cherry and mutant Y525F-T-bet-GFP fusions. We observed that wild-

type T-bet, but not Y525F-T-bet, was asymmetrically partitioned into the daughter cells 

(Figure 2.13B). This finding supports the hypothesis that unequal degradation underlies 

T-bet asymmetry: mutant T-bet lacking the ability to be degraded is mislocalized but 

does not disrupt the ability of wild-type T-bet to be localized unequally, presumably by 

asymmetric degradation, within the same dividing cell. 

If localized degradation owing to proteasomal asymmetry were responsible for T-

bet asymmetry, inhibiting proteasomal asymmetry would be predicted to disrupt the 

asymmetric partitioning of T-bet. We observed that loss of proteasomal asymmetry 

resulting from inhibition of PKCz was associated with a loss in T-bet asymmetry (Figure 
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2.13C). It remains possible that PKCz may have a direct effect on T-bet asymmetry, in 

addition to influencing T-bet localization indirectly through its effect on proteasome 

asymmetry. Inhibiting the activity or asymmetric localization of the proteasome thus 

prevents unequal partitioning of T-bet. Together these results support the hypothesis that 

localized degradation of T-bet by virtue of proteasome asymmetry may underlie the 

asymmetric partitioning of T-bet. 

 

Discussion 

When a lymphocyte is engaged in an immune response, it must undergo vigorous 

cell division to amplify its numbers. The progeny of a selected lymphocyte must also 

adopt new patterns of gene expression representing the spectrum of fates of antigen-

experienced cells. Whether the progeny of a single lymphocyte all adopt the same fate or 

whether the fates of clonally related cells differ has been difficult to establish. Recent 

studies with single-cell adoptive transfers and cellular barcoding have suggested the 

possibility that a single naive cell may give rise to progeny of heterogeneous fates 

(Stemberger et al., 2007; Schepers et al., 2008; Gerlach et al., 2010). Hypothetically, 

there are at least two different ways by which sibling cells could adopt dissimilar fates. 

Cells could be born identically and subsequently receive different signals from their 

environments, prompting them to diverge in fate. Alternatively, a single cell could 

unequally transmit information to its daughter cells, causing them to diverge in fate. The 

evolutionarily conserved process whereby two sibling cells acquire unequal shares of 

certain determinants is known as asymmetric cell division (Betschinger and Knoblich, 

2004; Knoblich, 2008). It has been suggested that a T lymphocyte selected for an immune 
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response undergoes asymmetric division, enabling it to produce progeny of 

heterogeneous fates (Chang et al., 2007; Oliaro et al., 2010a). 

In order for a lymphocyte to undergo an asymmetric division, it needs to 

apportion unequal shares of regulatory molecules to its daughter cells. The presence of 

such determinants at sufficiently high levels should promote the acquisition of one fate, 

whereas their relative paucity would favor adoption of an alternative fate. In activated 

CD8+ T cells, the transcription factor T-bet promotes the effector fate at the expense of 

the memory fate (Intlekofer et al., 2005; Chang et al., 2007; Joshi et al., 2007; Oliaro et 

al., 2010b; Pepper et al., 2011). In activated CD4+ T cells, T-bet promotes the Th1 cell 

fate while repressing the development of the Th2 and Th17 cell lineages (Szabo et al., 

2000; 2002; Hwang et al., 2005; Lazarevic et al., 2011). These effects of T-bet are highly 

dose dependent, as shown by the fact that small changes (50% or less) in the abundance 

of T-bet protein result in profound alterations in CD8+ and CD4+ T cell fate (Finotto et 

al., 2002; Szabo et al., 2002; Intlekofer et al., 2005; 2007; Joshi et al., 2007). These 

observations suggest that seemingly small differences in T-bet abundance between the 

daughter cells of a T cell selected for an immune response would be predicted to 

influence their subsequent fates. 

The present findings suggest that CD8+ and CD4+ daughter T cells that have 

completed their first division indeed exhibit differences in T-bet abundance. This 

disparity begins during the single cell stage; asymmetry of T-bet localization can be 

observed during mitosis and in the nascent daughter cells even prior to the completion of 

division. After division, asymmetric segregation of the IFN-g receptor (Chang et al., 

2007) could reinforce the pre-existing differences in the amount of T-bet protein between 
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the daughter cells, by virtue of differential IFN-g signaling resulting in unequal T-bet 

mRNA expression (Lighvani et al., 2001; Afkarian et al., 2002). Together these distinct 

mechanisms may function to promote differences in T-bet amounts in the daughter cells. 

What signals instruct a dividing cell to asymmetrically apportion T-bet to its daughter 

cells? Our findings suggest that the tyrosine kinase ITK may be one such critical signal. 

ITK participates in signaling events downstream of T cell receptor ligation and has a role 

in developmental and differentiation pathways in T cells (Siliciano et al., 1992; Atherly et 

al., 2006; Berg, 2007; Gomez-Rodriguez et al., 2009). The present results suggest that 

another critical function for ITK is to target T-bet for proteasome-dependent degradation 

during mitosis. In situations where asymmetric partitioning of T-bet is defective, as in 

ITK-deficient T cells, the failure to exclude T-bet from the distal daughter cell might be 

predicted to interfere with its ability to become a memory cell. Such a prediction is 

consistent with recent evidence that suggests a role for ITK in CD8+ memory cell 

development (Smith-Garvin et al., 2010). Similarly, in a CD4+ T cell, defective T-bet 

asymmetry by virtue of ITK deficiency might be predicted to result in excess T-bet 

partitioned to a daughter cell that otherwise would have been fated toward the Th2 cell 

lineage, thereby precluding it from developing into a Th2 cell. This is consistent with the 

defect in Th2 cell differentiation that has been observed in ITK-deficient mice (Fowell et 

al., 1999; Schaeffer et al., 2001). 

Signals that solely target T-bet for destruction might not be sufficient to mediate 

T-bet asymmetry. In order for T-bet to undergo asymmetric inheritance, the signals that 

target T-bet for proteasome-dependent degradation must seemingly be accompanied by 

signals that instruct the cell to segregate some component of the degradation machinery 
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asymmetrically during mitosis. Here we provide data suggesting that this segregated 

component may be the proteasome. Although the signals mediating this asymmetric 

segregation remain to be extensively evaluated, our initial experiments suggest that the 

conserved cell polarity network may be involved in mediating this effect; loss of function 

of a key member of this family appears to prevent the proteasome from being 

asymmetrically distributed. Such a mechanism could allow the polarity network, by 

regulating asymmetry of the degradation machinery, to influence the partitioning of fate 

determinants that have been targeted for destruction. 

The present findings indicate that regulated destruction controlled by distinct 

localization of the degradation machinery may be a mechanism to allow for the 

asymmetric partitioning of cell fate determinants. Recent evidence has suggested that 

regulated degradation can also occur by virtue of polarized segregation of other 

components of the degradation pathway, such as ubiquitin or even ubiquitinated proteins 

themselves (Fuentealba et al., 2008; Narimatsu et al., 2009). In this way, distinct 

mechanisms regulating degradation may function to render unique transcriptional 

programs between the daughter cells by unequally degrading key transcriptional 

regulators, such as T-bet or other transcription factors that regulate T cell fate decisions. 

In addition, it remains possible that other proteins targeted for destruction during mitosis, 

such as regulators of the cell cycle, proliferation, or homeostasis, could be unequally 

inherited by the daughter cells because of proteasome asymmetry. Although the full 

extent of the disparities mediated by unequal segregation of the proteasome remains to be 

determined, our findings suggest that proteasome asymmetry may be a mechanism to 
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allow for the unequal partitioning of determinants that can influence fate and function in 

sibling cells. 

 

 

1 Originally published in Immunity, 34, Chang, J.T., Ciocca, M.L., Kinjyo, I., Palanivel, 
V.R., McClurkin, C.E., Dejong, C.S., Mooney, E.C., Kim, J.S., Steinel, N.C., Oliaro, J., 
et al., Asymmetric proteasome segregation as a mechanism for unequal partitioning of the 
transcription factor T-bet during T lymphocyte division, 492–504, Copyright (2011), with 
permission from Elsevier. 
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CHAPTER 3: Asymmetric memory T cell division in response to re-challenge1 

 

Introduction 

Adaptive immune responses require the generation of both effector T cells, 

responsible for controlling acute infection, and memory T cells, which enable responses 

to recurrent infections. Whether these two cell populations arise from the same or 

different naïve T cells has been controversial. Recent evidence suggests that a single cell 

can beget heterogeneous daughter cell populations (Chang et al., 2007; Stemberger et al., 

2007; Schepers et al., 2008). Asymmetric cell division has been suggested as one 

potential mechanism to generate essential diversity among the progeny of a selected 

lymphocyte (Chang et al., 2007; Oliaro et al., 2010a; Barnett et al., 2012). Adult tissue 

stem cells divide asymmetrically to produce a daughter cell fated for differentiation and a 

daughter cell to maintain the stem cell pool (Morrison and Kimble, 2006). Here we 

present data to suggest that memory cells responding to re-challenge are capable of 

undergoing asymmetric cell division and producing two distinct populations of daughter 

cells that phenotypically resemble secondary effector cells versus self-renewal of the 

central memory cell pool. These findings further support a stem cell-like model of 

adaptive immunity. 

 

Results and Discussion 

Memory Cells Can Undergo Asymmetric Cell Divisions 

 We first generated mice containing a defined population of antigen-experienced 

CD8+ T cells. A small number of P14 Thy1.1+ T cells were transferred to naïve wild-type 
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mice, which were subsequently infected with LCMVarm. After >60 days, mice were 

infected with Listeria monocytogenes expressing gp33 (LMgp33) to specifically re-

challenge the GP33-specific memory CD8+ T cells in vivo. At 42-46 hrs after re-

challenge, Thy1.1+ memory CD8+ T cells were sorted for confocal microscopy.  

CD3 and the IFN-γ receptor (IFN-γR) polarize to the immunological synapse (Monks et 

al., 1998; Maldonado et al., 2004) and segregate asymmetrically in mitotic CD8+ T cells 

recruited into a primary immune response, hereafter referred to as primary responding T 

cells (Chang et al., 2007; 2011). Using confocal microscopy, we found both of these 

proteins co-localized with the microtubule-organizing center (MTOC) of blasting, pre-

mitotic memory cells (Figure 3.1A). In mitotic memory, CD3 and IFN-γR segregated to 

one side of the plane of division (Figure 3.1B). Cells with a central memory (CD62Lhigh) 

phenotype appeared more likely to exhibit mitotic asymmetry than cells with an effector 

memory (CD62Llow) phenotype (Figure 3.1C), which may be consistent with the 

suggested division of labor among memory subsets. Effector memory cells preferentially 

home to non-lymphoid tissues and exert immediate function at sites of pathogen re-entry 

without needing to divide. Central memory cells retain an intermediate state of 

differentiation, lymphoid migration, brisk mitotic potential and an apparent capacity to 

regenerate more memory cells while producing secondary effector cells (Sallusto et al., 

1999; Wherry et al., 2003). 
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Memory cells asymmetrically segregate CD25 and T-bet to the same side of the 

dividing cell  

IL-2 is thought to play a role in the re-expansion of memory CD8+ T cells during 

secondary infection (Williams et al., 2006; Bachmann et al., 2007). We found that the 

alpha chain of the IL-2 receptor, CD25 was polarized in blasting (Figure 3.1A) and 

mitotic (Figure 3.1B) memory CD8+ T cells, as had been suggested for CD4+ T cell 

blasts (Maldonado et al., 2004). We also found that the transcription factor T-bet was 

polarized during mitosis (Figure 3.1B), as suggested for primary responding cells 

(Maldonado et al., 2004; Chang et al., 2011). Eomes, however, was not asymmetrically 

partitioned (Figure 3.1B), suggesting the two homologous transcription factors are 

regulated differently. Thy1.1 was also evenly distributed during mitosis, suggesting 

asymmetry is not a feature of all proteins during division (Figure 3.1B). 

The ancestral polarity protein, protein kinase C-zeta (PKC-ζ), has been shown to 

have a role in T cell migration, activation, and asymmetric division of primary 

responding T cells (Ludford-Menting et al., 2005; Yeh et al., 2008; Chang et al., 2011), 

as well as T cell differentiation during an immune response (Martin et al., 2005). In pre-

mitotic memory cell blasts, we found PKC-ζ polarized to the same side of the cell as the 

MTOC (Figure 3.2A), opposite of what was observed in primary responding T cells 

(Chang et al., 2007). Moreover, PKC-ζ was localized to the same side of the cell as CD3 

in mitotic memory CD8+ T cells (Figure 3.2B), also opposite from its localization in 

primary responding T cells (Chang et al., 2007; Oliaro et al., 2010a; Chang et al., 2011). 

PKC-ζ localized to the same side of the cell as both CD25 and T-bet (Figure 3.2B), 
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suggesting one daughter cell could inherit more CD25 and T-bet than the other daughter 

cell.  

Why PKC-ζ localizes to the opposite side of a dividing memory CD8+ T cell than 

has been observed in primary responding CD8+ T cells is not yet clear.  It has been 

suggested that PKC-ζ is part of a transcriptional signature shared between memory T and 

B cells and hematopoietic stem cells (Luckey et al., 2006). It is possible that preformed 

PKC-ζ protein must be segregated to the putative memory daughter of a primary 

responding naïve T cell in order to catalyze establishment of the memory cell fate. In re-

activated memory cells, it may be unnecessary to donate greater PKC-ζ protein to 

maintain a less differentiated daughter if enhanced transcription of the gene encoding 

PKC-ζ is already an established, heritable trait of the memory parent cell. Other 

differences in the current model system, such as the primary challenge having been viral 

rather than bacterial may account for the difference in PKC-ζ localization. PKC-ζ 

function appeared critical for the asymmetry of T-bet (Chang et al., 2011), yet the present 

findings suggest that T-bet is still asymmetrically inherited in memory cells with PKC-ζ 

localized on the opposite side of the cell as it was in naïve cells. This suggests that the 

critical, T-bet-positioning activity of PKC-ζ is independent of the precise localization of 

PKC-ζ protein, another mammalian atypical PKC (probably PKC-λ/ι) may subserve this 

function, or that the mechanism for T-bet polarization is not analogous between naïve and 

memory T cells. 

  

 



56 

 

T cell division upon re-challenge yields two distinct phenotypic cell subsets 

 To further investigate the early phenotype of memory CD8+ T cell progeny, 

CFSE-labeled Thy1.1+ memory cells were transferred secondarily to naïve mice that were 

subsequently infected with LMgp33. In uninfected recipients, transferred memory cells 

displayed heterogeneity of CD62L expression but remained undivided, CD25low, and T-

betlow (Figure 3.3A). At the earliest point at which division could be detected, first 

generation memory daughter cells contained differing CD25, CD62L, and T-bet levels 

(Figure 3.3A). CD25high cells had higher levels of CD8, higher side scatter (SSC), and 

lower CD62L levels compared to CD25low cells (Figure 3.4A), as has been observed in 

primary responding CD8+ T cells (Chang et al., 2007). CD25high cells also contained 

higher amount of T-bet, (Figure 3.4A), which is consistent with the co-localization of 

CD25 and T-bet in mitotic memory cells (Figure 3.2). It is, therefore, possible that CD25 

and T-bet may be unequally inherited during memory cell mitosis.  

 At slightly later times, we still detected two distinct populations of daughter cells 

with differential CD25 levels in the spleen (Figure 3.3A). Generally, cells that had 

undergone more than two rounds of division were CD25high (Figure 3.3A), but a 

population of CD25low cells that had undergone fewer than three divisions remained 

detectable (Figure 3.3A). Later generation CD25high cells also contained higher T-bet, 

lower CD62L, and higher SSC than CD25low cells (Figure 3.4B,C). The observed 

heterogeneity in daughter cells was induced specifically by antigen-driven division since 

memory cells transferred into uninfected Rag1-/- and wild-type recipients remained 

CD25low daughter and parent cells, respectively (Figure 3.5). These data suggest that, 

within the spleen, antigenic activation of memory cells results in two populations. 
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CD25high, T-bethigh, CD62Llow cells, which may represent transit amplification and 

differentiation of secondary effector cells. CD25low, T-betlow, CD62Lhigh cells may 

represent renewal of a less-differentiated memory pool. The observed bias in the 

localization of CD25low, T-betlow, CD62Lhigh daughter cells in lymph nodes (Figure 3.3B) 

and bone marrow (Figure 3.3C) may be consistent with their role as a regenerated 

memory cell pool. 

The present data support a model wherein a resting memory CD8+ T cell may up-

regulate markers of effector differentiation, such as CD25 and T-bet, upon re-

encountering antigen. If the re-activated memory cell is capable of asymmetric, self-

renewing division, it might beget one daughter cell that contains higher levels of CD25 

and T-bet, divides more, and produces the majority of the secondary effector pool. The 

other, self-renewing daughter cell might inherit low levels of CD25 and T-bet, which 

facilitates less division and differentiation, thereby replenishing a central memory 

reservoir. The present data do not exclude conversion of CD25low to CD25high cells, 

which might even be necessitated if antigen or inflammation persists. The present 

findings provide a mechanistic basis for how the continual selection of validated 

clonotypes can accommodate the two mutually opposing demands of adult stem cells, 

terminal differentiation and self-renewal. Understanding how the process of self-renewal 

is maintained in infrequent re-challenges and stressed during chronic infection may offer 

new strategies for immunotherapy. 

1 Originally published in The Journal of Immunology. Ciocca, M.L, Barnett, B.E., 
Burkhardt, J.K., Chang, J.T., Reiner S.L. 2012. Cutting Edge: Asymmetric Memory T 
Cell Division in Response to Rechallenge. J. Immunol. 188. Copyright ©[2012] The 
AmericanAssociation of Immunologists, Inc. 
  



61 

 

CHAPTER 4: Discussion and Future Directions 
 

Introduction 

Infections, or invasion by foreign pathogens, are encountered by all living 

organisms. The ability to clear these infections is critical to the long-term survival of the 

host. The mechanisms used by the immune system to clear the body of foreign invaders 

include the use of genetically encoded receptors that recognize commonly encountered 

pathogen signatures (non-specific immunity), as well as the highly-specific recognition of 

unique foreign fragments by individualized non-germline encoded receptors (specific 

immunity). These two arms of the immune system recognize a threat, and then respond to 

help clear the host of the foreign microbe. The work presented here has focused on how 

the specific arm of the immune system responds when faced with a pathogenic threat.  

 When the adaptive immune system is recruited into a response, recognition of the 

foreign pathogen occurs through presentation of a fragment of that pathogen, by an 

antigen-presenting cell, to the rare, and highly specific lymphocyte that harbors the 

receptor cognate to that unique piece of microbe. In order to control the ensuing 

infection, that lymphocyte is faced with the task of undergoing vast proliferation to 

amplify its numbers. While proliferation and amplification of the number of pathogen 

specific lymphocytes is critical, simple expansion of the population is insufficient to 

mount a fully competent immune response. Diversity among the cellular progeny is also 

crucial. Heterogeneity among the responding lymphocytes is needed in all arms of the 

adaptive immune response; CD4+ T cells, CD8+ T cell, and B cells. The generation of 

this diversity has been the main focus of my work.  
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 Here I have provided evidence that asymmetric cell division may be utilized in 

the primary immune response to generate the disparate fates that are required of both 

CD4+ and CD8+ T cells. T-bet, a transcription factor with known roles in governing 

CD4+ and CD8+ fates during an immune response, is polarized during mitosis in both 

cell subtypes during an immune response. Furthermore, we have provided evidence of a 

novel mechanism of asymmetric inheritance. The degradative machinery of the cell, the 

proteasome, appears to be able to be polarized during mitosis, resulting in unequal 

capacity for degradation on one side of the plane of division. This, combined with the 

targeting of the putative fate determinant for destruction, results in asymmetric 

inheritance of the protein by virtue of it’s being retained on the side of the cell with less 

degradative capacity. This method of generating polarity provides insight into a novel 

mechanism by which cells may regulate the generation of diversity. Unequal inheritance 

of the proteasome could result in reciprocal, unequal inheritance of any protein targeted 

for degradation at the time of mitosis.  

 Furthermore, we have suggested that the role of asymmetric division in the 

generation of diversity may also be utilized during a secondary, or re-call, immune 

response. Previous work has suggested a role for stem-cell like properties in the memory 

cell response. The role of asymmetric divisions in the maintenance and function of adult 

tissue stem cells has been characterized in several vertebrate systems. Asymmetric 

division of memory lymphocytes further strengthens the hypothesis that many of the rules 

that govern adult tissue stem cells may be regulating immune memory and secondary 

responses.  The goal of many vaccine and other disease treatment strategies is to 

strengthen the quality and quantity of the memory cell response. Better understanding the 



63 

 

principles that govern memory cell maintenance and function will help to further the 

development of these technologies. 

 

Asymmetric division as a mechanism for generating diversity 

 Throughout evolution, asymmetric division is utilized to generate diverse 

populations of cells from a single parent cell (Betschinger and Knoblich, 2004). From C. 

elegans to Drosophila to vertebrates, asymmetric division is used to generate cellular 

diversity during the development of the embryo or organ, or to maintain homeostasis. 

Work in model organisms, worms and flies in particular, has elucidated many of the 

molecular pathways that govern mitotic polarity (Gönczy, 2008).  

 In vertebrates, the role of asymmetric division is starting to be elucidated in 

several systems. Asymmetric cell division has been demonstrated to occur in several 

vertebrate organ systems; gut (Quyn et al., 2010), brain (Götz and Huttner, 2005), skin 

(Lechler and Fuchs, 2005), mammary glands (Cicalese et al., 2009), muscle (Shinin et al., 

2006), and the hematopoietic system (Wu et al., 2007). In all these, the property of 

asymmetric division has been attributed to the stem cell compartment. Recently, a role 

for asymmetric division was proposed in the induction of the adaptive immune response 

in T cells (Chang et al., 2007), and B cells (Barnett et al., 2012). This parallel between 

adult tissue stem cells and mature lymphocytes highlights a common need in both 

populations – the necessity of generating cellular diversity within their cellular progeny. 

Asymmetric cell division is well suited to accomplish this task. 

 Generation of cellular diversity can occur through at least two mechanisms. 

Daughter cells can be born identical, and through their interaction with different 
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extracellular environments, they can stochastically become distinct from one another, 

resulting in different populations of cells. Alternatively, however, fate disparity can be 

deterministically organized during division, allowing for enhancement of cellular 

components to one side of the mitotic spindle, such that one incipient daughter cell 

inherits more or less of a fate-determining component than another. In this way, the result 

of the division is two daughter cells that are unique from the moment of their generation. 

Fate decisions of the daughter cells, therefore, are not stochastic – rather they are 

preprogramed, ensuring the generation of the specified cell fates. The role of extracellular 

signals and deterministic patterning is not mutually exclusive. The parent cell of an 

asymmetric division, frequently a stem cell, often exists in a specific location within the 

organ, referred to as a niche. The cell that remains in contact with the niche is often the 

one fated to retain the stem cell like fate (Losick et al., 2011). Often, however, the cell 

must remain in contact with the niche for this to be true, or re-initiation of contact with 

the niche can result in re-establishment of the stem-cell like fate (Kai and Spradling, 

2003), blurring the line between stochastic and deterministic cellular decisions. The role 

for asymmetric mitosis is still being understood, but it appears to be necessary for the 

generation of fate heterogeneity in many settings. 

 It has been suggested that the generation of immune memory and heterogeneity in 

the immune response may be stochastic. It was been postulated that a naïve lymphocyte 

clonally expands when faced with pathogen, resulting in a dramatic increase in the 

number of copies of that cell. Those cells all adopt an effector cell fate, in order to 

participate in clearing the present infection. Once the infection is cleared, however, the 

large proliferative burst must be reversed – many of the now un-needed effector cells die 
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through apoptosis. Some cells, however, survive. These cells, adopt the memory cell fate. 

The new environmental setting allows this to occur in the survivor cells. The process 

repeats itself during secondary infection.  

 The potential problem with a model that relies on a stochastic decision to make a 

long-lived memory cell is the risk to the host. Mature lymphocytes are generated during 

the host’s development in a manner that allows for the generation of unique, non-

germline encoded receptors in each cell such that no two cells are the same. The benefit 

of this is that it allows the host to express antigen receptors to a vast array of potential 

pathogens. This broad coverage comes at a risk to the host as well, as a given adult may 

have only a very small number of cells that are capable of responding to a particular 

infection. Since a host will often become infected with the same pathogen multiple times, 

the lymphocyte with the capacity to respond must be used but not lost during the 

generation of the immune response. It becomes critical to preserve a T cell clone that has 

been recruited into an immune response. If the stochastic determination of preserving a T 

cell after an immune response were to fail or preserve a T cell clone that had somehow 

become altered, this would mean loss of the recognition of that antigen for that host; a 

mistake that could prove deadly during subsequent infections. A deterministic model of 

cell fate, however, allows for the generation of memory cells early within the immune 

response. In this way, while the host is being protected from the current infection, it is 

simultaneously establishing the ability to be protected from its next infection.  
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Polarity in the immune system 

 The precursor for asymmetric division is the establishment of cellular polarity. In 

most systems of asymmetric cell division, the cell that is undergoing the division exists in 

a highly polarized structure. For example, the stem-cell often exists in a niche where it 

borders another cell that is frequently thought to be critical for its maintenance (Losick et 

al., 2011). The niche, however, provides more than just survival signals to the putative 

stem cell. The contact between the stem cell and the surrounding environment is often 

polarized, for example, as in the skin (Tumbar et al., 2004). This polarity provides an 

important framework for the establishment of an axis along which the cell can orient 

itself and position the mitotic spindle such that the gradient of cellular components is 

perpendicular to the plane of division.  

 Lymphocytes are highly motile cells that can exist almost ubiquitously around the 

body. Their lack of a defined home and their representation as free floating in the blood 

stream endorses a common misconception that lymphocytes are non-polarized, round, 

uniform cells. This, however, may not be true. Lymphocytes, while perhaps frequently 

isolated from cellular contact, floating in the blood stream, have a large capacity and 

propensity to become polarized.  

 This is particularly highlighted by the contact between the recruited T cell and the 

antigen-presenting cell. When an antigen-presenting cell encounters a T cell whose 

receptor recognizes the antigen the cell is presenting, the T cell establishes a firm and 

long-lasting connection with that antigen-presenting cell. This connection leads to the 

development of the highly polarized immunological synapse. The immune synapse is 

dense accumulation of proteins at the site of the T cell – presenting cell interface. Several 
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aspects of this engagement and polarity have been shown to be critical for the generation 

of an effective immune response. The initiation of contact between the T cell and the 

antigen-presenting cell is critical for triggering activation and eventual mitosis of the T 

cell. The nature of that contact is also critical beyond activation. For example, in settings 

where the integrin ICAM is missing on the antigen presenting cell, the contact is 

sufficient to result in stimulation and division of the selected T cell, however, the 

resulting immune response is defective in the memory population (Scholer et al., 2008). 

Furthermore, the length and quality of the T cell contact is also important. The interaction 

between the T cell and the antigen-presenting cell lasts several hours, and disruption of 

this ensuing T cell polarity, even at very late stages, can have deleterious consequences 

for the immune response. In mice that are defective for only late stage polarity, the 

responding T cells can divide and amplify their numbers appropriately, however, the 

resulting response to pathogen is misappropriated, resulting is specific signaling defects 

in daughter cells (Yeh et al., 2008).  

 These and other studies raise the possibility that the maintenance of polarity 

during a T cell response is required for more than just the coalescence of signaling 

molecules to the immunological synapse resulting in activation of the cell in order to lead 

to division and therefore amplification. The suggestion that disrupted polarity can result 

in seemingly acute activation and amplification, but consequently yield a defective 

response, raises the possibility that polarity is more than a simple activation requirement. 

Polarity during the interaction between a T cell and an antigen-presenting cell appears to 

be critical for the generation of cell fate later in the immune response. While this could be 

suggestive of a scenario in which the signals required for the various cell fates are 
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acquired during the initial cell contact, it is also suggestive of a role for the polarity itself 

– the regulation and maintenance of polarity could be critical to the initial responding cell 

because the early and late interphase polarity could be setting up mitotic polarity. In other 

words, the previously studied defects in T cell polarity that result in an aberrant immune 

response could be in part related to ensuing defects in T cell division. This hypothesis 

assumes that the polarity that allows a T cell to establish an asymmetric cell division 

comes from the site of contact between the T cell and the antigen-presenting cell. The 

suggestion that several T cell components that are polarized during mitosis are 

components of the immunological synapse (Chang et al., 2007) supports this. Induction 

of polarity in the previously uniform T cell by the interaction with a cognate antigen-

presenting cell would therefore be a critical step not only for activation of the T cell, but 

the nature of this contact would be critical for the eventual cell fate of the generated 

progeny.  

For asymmetric division to be a mechanism for the generation of fate disparity, 

however, there must be specific components that are polarized, and subsequently 

asymmetrically inherited, that then play a critical role in the regulation of cell fate in the 

daughter cells. Understanding what these fate determinants are, and how they are 

regulated during polarization of the cell, may be critical to our ability to manipulate the 

response for therapeutic benefit. 

 

Fate determinants in the T cell response 

 Several factors, both external and internal, have been found to be critical to the 

development of the heterogeneous fates of a T cell response. The finding that T cells may 
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undergo asymmetric cell division during the initiation of an immune response (Chang et 

al., 2007), predicts that during an asymmetric division critical fate-determinants would be 

segregated unequally between the two daughter cells. Identification of a fate determinant 

in T cells relied on educated hypotheses based on previous studies. An ideal fate 

determinant in asymmetric cell division regulates one fate at the expense of the other in a 

dose dependent manor. While there are many candidates for fate determinants in T cells, 

several transcription factors have been well studied for their role in both CD4+ and CD8+ 

T cell fates (Szabo et al., 2000; 2002; Pearce et al., 2003; Intlekofer et al., 2005; Joshi et 

al., 2007; Kallies et al., 2009; Shin et al., 2009; Banerjee et al., 2010). T-bet was of 

particular interest because of its dose-dependent effects (Joshi et al., 2007), and 

repressive role in memory formation (Intlekofer et al., 2007). T-bet, in way ways, 

resembled an idealized fate-determinant.  

 In both CD4+ and CD8+ T cell development during an immune response T-bet 

appears to play a formative role. It is a critical driver of the Th1 lineage (Szabo et al., 

2000), at the expense of other CD4+ lineages. In CD8+ cells, T-bet is critical for 

promoting the effector cell fate at the expense of the central memory CD8+ T cell fate 

(Intlekofer et al., 2007).  Now we have data that suggests that T-bet is unequally inherited 

between the two putative daughter cells of a CD4+ and CD8+ primary division. In this 

way, one daughter cell inherits more T-bet, and may be more likely to develop the Th1 or 

effector cell fate.  

In the setting of CD8+ T cells, furthermore, this unequal inheritance of T-bet 

appears to be reiterative. T-bet is polarized during the initial division to one daughter. 

The daughter that inherits less T-bet may be predicted to be more likely to adopt the 
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central memory cell fate. This central memory cell, when re-challenged with pathogen, 

again divides asymmetrically, and again polarizes T-bet to one side of the plane of 

division. Furthermore, the daughter cell populations can be discerned based on their 

levels of T-bet in both the primary and secondary responses, further suggesting that 

polarization during mitosis may generate two populations of daughter cells. 

In the secondary response, we also observed that, while T-bet is polarized during 

mitosis, the homologous transcription factor eomesodermin (Eomes) was not. Eomes 

contains a very high homology to T-bet (Pearce et al., 2003) and several aspects of their 

regulation overlap in CD8+ T cells. Eomes is critical to the development of the effector 

cell response (Pearce et al., 2003), but also appears to play a role in the regulation of 

CD8+ central memory development (Banerjee et al., 2010). Despite their similarities, 

these two transcription factors have disparate roles in the regulation of cell fate. These 

differences in cell fate may predict their different regulation during mitosis. Eomes, 

which appears to be required for the fates of both daughter cells, is equally inherited 

between the two resulting daughter cells. Due to its role in the development of both 

incipient fates, it cannot act as a molecular switch between the two. T-bet, however, does 

appear to act as a molecular switch, and is asymmetrically segregated between the two 

daughter cells.  

 

Asymmetric destruction as a mechanism of asymmetric inheritance 

Asymmetric division results in an unequal amount of a particular fate determinant 

distributed to two daughter cells. The mechanisms by which this can be achieved are 

widely varied. In C. elegans and Drosophila, there are several mechanisms that exist for 
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different fate determinants in different cells. Even during a single asymmetric cell 

division, several factors may be polarized to one side of the cell or the other, each with its 

own mechanism. One mechanism that is presented here is the unequal destruction of the 

fate determinant during mitosis. Unequal inheritance through unequal destruction, 

however, may not be a novel concept. In C. elegans, the fate-determining transcription 

factor, SKN-1, is polarized to one of the daughter cells resulting from the initial division 

of a fertilized embryo. The regulation of SKN-1 polarization was found to be dependent 

on the novel protein, EEL-1. Through homology, EEL-1 was predicted to be a HECT E3 

ligase. Indeed, further analysis revealed that EEL-1 interacts with the C-terminus of 

SKN-1 through its N terminus, as would be expected for an E3 ligase-substrate 

interaction. In addition, the ubiquitin-ligase domain for EEL-1 is critical for the 

degradation and localization of SKN-1 (Page et al., 2007). Taken together these results 

suggest that SKN-1 polarization is regulated, specifically at the one-to-two cell stage 

embryo, by ubiquitin-mediated degradation. Furthermore, the loss of SKN-1 degradation 

through knockdown of EEL-1 resulted in a highly specific defect – only the asymmetry 

of SKN-1 was disrupted in this system. Other known asymmetrically inherited proteins 

continued to be asymmetrically inherited. In many ways, this story is similar to our 

findings in T-cells. When the ability of the cell to degrade T-bet is disrupted, either 

through genetic manipulation of the signaling pathway that results in T-bet being 

susceptible for degradation, or through manipulation of the proteasome, T-bet asymmetry 

is specifically lost. The asymmetry of other markers, however, was preserved.  

 In addition to the role for degradation in C. elegans asymmetric cell division 

presented above, other examples of ubiquitin-mediated degradation playing a regulatory 
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role in cell polarity and asymmetric cell division have been discovered. For example, in 

mammalian systems it has recently been demonstrated that members of the Smurf family 

of HECT E3 ubiquitin ligases play critical roles in the establishment of planar cell 

polarity (Narimatsu et al., 2009). Furthermore, it has been suggested that several proteins 

marked for degradation by the presence of ubiquitination may be inherited 

asymmetrically in human embryonic stem cells undergoing self-renewing divisions in 

culture (Fuentealba et al., 2008). These are other examples of the potentially unexplored 

role for proteasome dependent degradation in asymmetric cell division. The hypothesis 

that proteasome-regulated degradation plays a conserved role in asymmetric inheritance 

of proteins during mitosis is an attractive one because of the potential for the cell to target 

several proteins to be distributed unequally between the two resulting daughters while 

only spending the energy to target and maintain one cellular entity in a polarized fashion.  

 The question they arises as to how the cell localizes the proteasome to only one 

side of the cell. Is the entire 26S entity moved to one pole? Is the 20S core ubiquitously 

expressed and only the 19S regulatory cap localized to one side? Is the proteasome 

formed on only one side of the cell? While all these possibilities are feasible, it seems 

unlikely that only one component of the 26S proteasome, the core or the cap, is being 

localized to one side, since staining for either component of the complex in T cells 

showed a polarized distribution. One hypothesis then, is that the proteasome is being 

nucleated on one side of the cell, and the presence of an enhanced amount of the proteins 

that lead to proteasome formation on one side of the cell results in the presence of more 

active proteasome on that side. This would allow for a more conventional regulation of 

the localization of the proteasome: perhaps a nucleating factor, a single protein, could be 
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polarized in a manor parallel to other asymmetrically inherited fate determinants, for 

example, through an association with one of the protein complexes that polarizes during 

an asymmetric division, such as the Par-complex (Par-3, Par-6 and aPKC).  

 Is the canonical Par complex conserved in T lymphocytes? While one of the 

human homologues to aPKC, PKC-has been show to localize to the putative distal 

daughter in primary responding T lymphocytes (Chang et al., 2007), neither Par-3 nor 

Par-6 localization has been studied. The polarity complex containing Scribble, however, 

which is frequently observed on the opposite side of the cell from the Par complex 

(Knoblich, 2001) has been preliminarily studied in T cells, with Scribble localizing to the 

opposite side of the cell from PKC- (Chang et al., 2007). Future work needs to be done 

to understand the function of the polarity network in T cells, as well the meachanistic link 

between the polarity network and the localization of the proteasome. 

 Regulation of proteasome localization during asymmetric cell division is a 

potentially attractive hypothesis for regulation of cell fate during division across multiple 

species and evolution. Polarization of the proteasome may regulate cell fate through 

unequal destruction of specific cell fate determinants (T-bet in T cells, Perhaps SKN-1 in 

C. elegans) in the two incipient daughter cells. The logic, however, that the entire 26S 

proteasome would be polarized to account for unequal inheritance of one fate-

determining factor is perhaps surprising. More logical may be that the polarization of the 

proteasome is set up to establish a broad switch in cell fate between the two resulting 

daughter cells. While only one target of proteasome dependent degradation during 

mitosis has been identified in these studies, the full effects of proteasome polarization 

have not been studied. For example, in T cells, large networks of transcription factors and 
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other proteins balance cell fate decisions. It is possible that T-bet is one of many factors 

targeted for degradation during mitosis, and the proteasome is regulating not one, but 

several fate-determinants at a time. By polarizing one component, therefore, the cell can 

generate large changes in daughter cell fate by targeting various proteins for degradation.   

 

Memory T cells and a Stem-cell model of immunity 

 The regulation and role of asymmetric cell division in the immune system is just 

beginning to be understood. The understanding of asymmetric cell division in the 

immune response started with observations of the phenomenon in T cells (Chang et al., 

2007) and B cells (Barnett et al., 2012). Here we’ve identified a possible mechanism by 

which asymmetric cell division may regulate fate disparity and fate decisions during the 

primary (Chapter II) and secondary (Chapter III) immune responses. The role of 

asymmetric cell division in the regulation of fate decisions is reminiscent of the role of 

polarized divisions in many adult tissue stem cell systems (Knoblich, 2001). Several 

groups have noted this parallel between adult tissue stem cells and the immune system. In 

particular, early work demonstrated the subsets of memory CD8+ T cells may function as 

stem cells in the immune system of mice (Zhang et al., 2005), a finding that was later 

duplicated in humans (Gattinoni et al., 2011), and perhaps applies to other T cell subsets 

(Muranski et al., 2011).  

 The hypothesis that the adaptive immune system functions under a stem-cell or 

stem-cell like model requires an understanding of the singular nature of the immune 

system. One of the adaptive immune systems greatest strengths is that it provides the host 

protection against a wide variety of foreign pathogens. The mechanism by which this 



75 

 

diversity is generated, however, comes at a price to the host. Since random genetic 

recombination and mutation are used to generate the wide diversity of receptors in 

lymphocytes, no single lymphocyte can be re-created in the host. Each T and B cell 

generated is highly specific and unique. The adaptive immune system, therefore, is well 

designed to protect the host against a broad array of potential pathogens, but only once 

per pathogen in each host’s lifetime. Hosts, however, often encounter the same pathogen 

multiple times. Lifelong protection, therefore, requires preservation of the singular, 

unique, and non re-creatable clone. In this way, the preserved clone will be able to 

respond in the chance of re-exposure to pathogen. 

 Adult tissue stem cells are filling similar demands as memory lymphocytes; they 

are preserving a particular genetic state of development in order to maintain an organ. 

They must maintain their population for the lifetime of the host in order to sustain the 

organ they supply. While most organs face a constant low-level demand for regeneration, 

the possibility of acute regeneration is also common. For example, in the hematopoietic 

system, there is a constant low-level of loss and repopulation of the blood lineages as 

terminally differentiated cells such as red blood cells and neutrophils die and need to be 

replaced to maintain homeostasis. Situations arise, however, when the production of these 

cells needs to be up regulated acutely, for example during an infection when the demand 

for neutrophils increases or during hemorrhage when the loss of blood results in a more 

global deficit. In these situations, signals are relayed to the hematopoietic stem cell that 

result in up-regulation of production of terminally differentiated progeny. This is similar 

to a situation when re-encounter with a pathogen might result in the need for mobilization 

and proliferation of a memory lymphocyte.  
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 The basic biological need is not the only similarity between adult tissue stem cells 

and lymphocytes. Genomic analysis has revealed shared transcriptional profiles of 

memory T and B cells with hematopoietic stem cells (Luckey et al., 2006), for example. 

Another parallel may be the use of asymmetric division to establish fate disparity among 

daughter cells. In several systems of adult-tissue organ homeostasis, asymmetric cell 

division has been described. Examples range from the Drosophila testes (Yamashita et 

al., 2005) to several vertebrate systems including skin (Lechler and Fuchs, 2005), muscle 

(Shinin et al., 2006), gut (Quyn et al., 2010), and the hematopoietic system (Wu et al., 

2007). The use of asymmetric cell division appears to be a critical feature of almost all 

known stem cell populations, highlighting a potential link between adult lymphocytes and 

stem cells. 

 Beyond the ability, and perhaps requirement, to divide asymmetrically, several 

other parallels between lymphocytes and stem cells exist. Stem cells frequently exist in 

highly specific regions of the organ they foster, referred to as stem cell niches (Losick et 

al., 2011). Similar properties may be true to memory lymphocytes. Memory cells, 

specifically central memory cells, have been proposed to preferentially localize to a niche 

within the bone marrow (Mazo et al., 2005). The various functional and phenotypic 

parallels between adult tissue stem cells, specifically hematopoietic stem cells, and long-

live memory cells highlight the logic behind a hypothesis for stem-cell properties 

governing aspects of the immune response. If the immune system is indeed governed by 

some of the same principles as adult tissue stem cells, this will provide novel mechanisms 

by which memory formation, maintenance, and function can potentially be modulated. 
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This opens up new avenues for therapeutic intervention in several fields from vaccine 

development to cancer therapies. 

 

Future Directions 

 The role of asymmetric cell division on fate and function in the immune system is 

just beginning to be understood. The data presented here represents advances in an 

understanding of how asymmetric cell division may be used to modulate fate of daughter 

cells (Chapter II) and how asymmetric cell division may be repeatedly utilized to ensure 

fate disparity and maintenance of a T cell clone (Chapter III). There is much left to 

understand regarding both the mechanisms of fate disparity and the generalizability of 

asymmetric cell division in the immune system. Future work will hopefully help expand 

the principles elucidated here and allow for a better understanding of how the immune 

system as a whole regulates cell fate decisions and maintains life-long protection of the 

host, which will help enhance technologies in many areas. 

 One area of continued investigation is the role of asymmetric division in the 

regulation of fate disparity in primary responding T cells. While studies presented here 

outline one potential mechanism by which asymmetric division may regulate cell fate in 

primary responding T cells (Chapter II), there are likely many more factors. While we 

have provided evidence that T-bet is asymmetrically inherited through its polarized 

destruction by the proteasome, the full repercussions of proteasomal asymmetry have not 

been studied. Future work may focus on understanding the complete role of proteasome 

polarity during primary T cell division. Large-scale protein analysis is a potentially useful 

mechanism for uncovering the multiple changes that ensue following polarized 
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proteasome inheritance. In primary CD8+ T cells responding to microbes in vivo, 

daughter cells can be sorted into CD8 high and low subsets (Chang et al., 2007), thought 

to represent the two daughters of an asymmetric division. As technologies allow more 

cells to be captured in these experiments and protein analysis can be performed on 

increasingly small numbers of cells, assays such as mass spectrometry can allow the 

content of these two populations to be compared to each other, and to activated naïve 

cells. Studies such as these will help to uncover protein signatures of these cells, 

providing further avenues of study regarding other factors that may be asymmetrically 

inherited during division. Furthermore, identification of ubiquitinated proteins in 

responding T cells, perhaps again through proteomics approaches, may also provide a 

mechanism by which determination of the molecular signature of proteasomal asymmetry 

could be understood. As mentioned above, proteasome asymmetry possibly regulates 

asymmetric destruction of several proteins, rather than just one. Identification of methods 

that allow for unbiased determination of which proteins are asymmetrically segregated 

will allow for rapid advances in understanding how fate disparity is regulated in T 

lymphocytes responding to a primary challenge. Also, if proteasome asymmetry is an 

evolutionarily conserved mechanism of generating fate disparity, these approaches will 

be able to be applied to areas of study beyond the immune system. 

 While we have provided evidence to suggest that asymmetric division does occur 

in the immune response both during primary and secondary responses, the biological 

importance of this phenomenon has been unexplored. Future studies should include 

perturbation of the molecular process of asymmetric cell division, either entirely or 

partially, and determination of the impact on the overall immune response. For example, 
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genetic manipulation of the polarity network of proteins through targeted deletion is 

possible. T cell specific, or perhaps activation specific deletion of one or several of these 

highly conserved proteins may lead to defect in cellular asymmetry, as is suggested by 

the siRNA and chemical inhibitor to PKC-ζ studies presented previously (Chapter II). 

The use of genetic deletions will allow for the study of these cells during an intact 

immune response. These studies may answer several questions: Is asymmetric cell 

division critical for generating cell fate during an immune response? Are the daughter 

cells of a response sufficiently plastic or exposed to a diverse set of signals such that the 

required cellular fates can be recapitulated even in the absence of cellular asymmetry? If 

global asymmetry is perturbed, can the responding cells be skewed toward one fate or 

another depending on the mechanism of perturbation? In other words, will manipulation 

of asymmetry allow for the ability to direct the immune response towards one particular 

cell fate over another? Can cells be forced to develop a memory cell fate or an effector 

cell fate? Can CD4+ T cells be skewed in vivo towards one particular subset? If 

manipulations like these are possible, they might allow for large advances in vaccine 

development and the treatment of a whole host of immune mediated diseases, from 

asthma to cancer.  

 

Summary 

 At the time this work began, the understanding of the role and impact of 

asymmetric cell division in the immune system was just beginning to be understood. It 

was known that asymmetric division was an observable phenomenon, but an 

understanding of how it contributed to fate disparity and its generality within the immune 
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response was not clear. Based on the findings presented here, the role of asymmetric 

division is becoming increasingly clear. A putative model for how protein disparity in 

daughters could regulate cell fate in the immune response through the unequal inheritance 

of at least one critical fate-determining protein, T-bet, is suggested. Furthermore, the role 

of asymmetric division is now extended to the memory cell response, highlighting the re-

iterative, stem-cell like nature of adaptive immunity. Manipulation of cellular asymmetry 

would have an impact on not only the development of a primary response, but perhaps 

also secondary responses. Furthermore, an enhanced understanding of the regulation of 

memory cells, and how they are similar and different from adult tissue stem cells, will 

help enhance our ability to develop technologies that permit enhanced memory cell 

generation. This could represent a major advance in the field of vaccine development. 

While there are many aspects of asymmetric division to still be explored within the 

immune response, these findings should help further future efforts at understanding the 

disparity of fate in the adaptive immune response. 
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APPENDIX: Experimental Proceedures 

 

Mice 

All animal work was done in accordance with Institutional Animal Care and Use 

Guidelines of the University of Pennsylvania. All mice were housed in specific- 

pathogen-free conditions prior to use. Wild-type C57BL/6 and P14 TCR transgenic mice 

recognizing LCMV peptide gp33-41/Db were used; generation of Tbx21-/- (T-bet-null) 

mice has been previously described (Intlekofer et al., 2005). The generation of mice 

expressing a tyrosine-to-phenylalanine knockin mutation in SLP-76 at residue 145 

(Y145F) has been described (Jordan et al., 2008). SLP-76 Y145F P14 TCR transgenic 

mice were generated by breeding P14 TCR transgenic mice with SLP-76 Y145F mice. 

Itk-/- mice have been described (Liu et al., 1998). Adoptive transfers and infectious 

challenges with gp33-Listeria monocytogenes were performed as previously reported 

(Chang et al., 2007). 

 

T Lymphocyte Confocal Microscopy 

Immunofluorescence of T cells was performed as previously described (Chang et 

al., 2007) with the following antibodies: anti-b-tubulin (Sigma); anti-T-bet, anti-CD3e, 

anti-Eomes (eBioscience); anti-a-tubulin, anti-PKCz, anti-proteasome 20S a1, anti-

proteasome 20S a5, anti-proteasome 19S (Abcam); anti-IFNgR-biotin (BD Bioscience); 

anti-CD25 (BioLegend); and anti-mouse and anti-rat Alexa Fluor 488, anti-mouse, anti-

rabbit, and anti-rat Alexa Fluor 568, anti-rat and anti-rabbit Alexa Fluor 647, and 

streptavidin-conjugated Alexa Fluor 647 (Invitrogen). Hoechst 33258 (Invitrogen) was 
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used to detect DNA, or ProLong Gold with DAPI (Invitrogen) was used to both label 

DNA and mount coverslips on glass slides.  The proteasome activity probe MVB003 has 

been previously described (Florea et al., 2010). 

 

Acquisition and Analysis of T Lymphocyte Confocal Microscopy 

Mitotic cells were selected for analysis based on the appearance of tubulin 

staining; cells undergoing cytokinesis were identified by dual nuclei and pronounced 

cytoplasmic cleft by brightfield, and then, secondarily, the morphology of the other 

fluorescence channels was revealed. Acquisition of image stacks was performed as 

previously reported (Chang et al., 2007). The volume of 3D pixels (voxels) containing the 

designated receptor fluorescence was quantified within each hemisphere of mitotic cells 

or within each nascent daughter in cytokinetic cells with Volocity (Improvision) 

software. In mitotic cells, the two hemispheres were delineated with the pattern of tubulin 

fluorescence to define the poles of the mitotic spindle, with the equator bisecting the line 

connecting the two poles. In cytokinetic cells, the two nascent daughters were delineated 

via the pattern of tubulin fluorescence to define the border of each daughter cell. 

Receptor enrichment in one hemisphere or in one nascent daughter cell greater than 1.5-

fold compared to the other hemisphere or daughter cell was considered polarized. All 

images are depicted with pseudo-colors. In cells labeled with CFSE, the ‘‘true’’ green 

channel occupied by CFSE fluorescence was not shown. In such cells, antitubulin 

staining was detected with Alexa Fluor 488, which could be resolved in the green channel 

because of its enhanced brightness relative to CFSE. 
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Cell Culture 

CD8+ or CD4+ T cells were purified with the CD8+ or CD4+ T Cell Isolation Kit 

(Miltenyi), respectively. For microscopy experiments, naive cells were activated in vitro 

with immobilized anti-CD3/anti-CD28 and immobilized recombinant ICAM1-Fc fusion 

protein (R&D Systems), and previously activated cells were restimulated in vitro with 

immobilized anti-CD3 and immobilized ICAM1-Fc. In certain experiments, cells from T-

bet-deficient mice were simultaneously transduced with both wild-type T-bet-cherry and 

Y525F-T-bet-GFP. In some experiments, after 28 hr of activation, cells were incubated 

with the proteasome activity probe MVB003 (5 mM) for 2 hr prior to harvesting cells for 

immunofluorescence studies. In certain experiments, an inhibitor of PKCz, the 

myristoylated PKCz pseudosubstrate (10 mM) (Invitrogen), was added to cells 28 hr after 

activation for 2 hr prior to harvesting cells for immunofluorescence studies. For 

biochemistry experiments, naive cells were activated in vitro with immobilized anti-CD3 

and anti-CD28, and previously activated cells were restimulated in vitro with 

immobilized anti-CD3. Nocodazole (1 mM) (Sigma) was added after 24 hr of stimulation 

to reversibly synchronize the cells in G2/prometaphase. After 12–16 hr of nocodazole 

arrest, cells were washed free of nocodazole and then cultured in media alone or with 

MG-132 (10 mM) (Calbiochem), calpain inhibitor I (100 nM), or lactacystin (100 nM) 

(Sigma). In other experiments, cells were activated in vitro with immobilized anti-CD3 

and anti-CD28 in the presence of mimosine (300 mM), hydroxyurea (200 mM) (Sigma), 

or nocodazole. After 40 hr, cells were washed free of drug and cultured in media for an 

additional 30 min. 
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Statistical Analysis 

For Chapter II, Asymmetry of cells was summarized as proportions and compared 

with chi-square or Fisher’s exact test, as appropriate. All statistical tests were two-tailed. 

p values of <0.05 were considered significant. For Chapter II, cells were divided in 

halves along the equatorial plane relative to the two poles of the mitotic spindle. 

Fluorescence of a specific protein was calculated for each half, and the ratio between 

halves was compared to the ratio of tubulin fluorescence.  Distribution of protein in a cell 

was designated asymmetric if its ratio was 2 standard deviations greater than the ratio for 

tubulin. Each cell was designated either asymmetric or symmetric, resulting in binary 

data. Chi-squared tests were used to compare the frequency of asymmetry between 

different experimental groups and/or molecules. P values <0.05 were considered 

significant.  

 

Retroviral Constructs 

The cherry-alpha-tubulin fusion construct has been previously described (Day et 

al., 2009). Generation of the MIGR and T-bet-MIGR construct has been described 

(Mullen et al., 2002). For T-bet-C-terminal-GFP or T-bet- C-terminal-cherry fusion 

constructs, PCR was performed with Pfx polymerase (Invitrogen) with a forward primer 

including a BglII site (50-ATGACAGATCTCC ACCATGGGCATCGTGGAGC-30). 

For T-bet-GFP, the reverse primer was designed by omitting the stop codon and adding 

an EcoRI site for in-frame fusion to GFP (50-ATGACAGAATTCTGTTGGGAAA 

ATAATTATAAAACTGGC CTTC-30 ). For T-bet-cherry, the reverse primer was 50 -

ATGACAGAATTCGTTGGGAAAATAATTATAAAACTGGCCTTC-30 . The PCR 



85 

 

product was digested by BglII and EcoRI (New England Biolabs) and fused in-frame 

with Cherry in the MIGR retrovirus vector (Shu et al., 2006). The Y525F mutation was 

introduced with the following primers: forward 50-ATGACAGATCTCCA 

CCATGGGCATCGTGGAGC-30 and reverse 50 –ATGACAGAATTCT 

GTTGGGAAAATAATTAA AAAACTGGCCTT-30.  

 

Immunoblotting and Immunoprecipitations 

Cell lysates were prepared in 1% NP40 lysis buffer with the following additives: 

0.1 M DTT (Roche), protease inhibitor cocktail, sodium vanadate (10 mM), NaF (10 

mM), and PMSF (10 mM) (Sigma). Protein was prepared for SDS-PAGE followed by 

transfer to nitrocellulose membrane. Immunoblotting was performed with the following 

antibodies: rabbit anti-PKCz, anti-tubulin-HRP (Abcam), mouse anti-T-bet 

(eBioscience), anti-mouse or anti-rabbit-HRP (Cell Signaling), and b-actin-HRP (Sigma).  

 

RNA Interference 

CD4+ T cells were purified and stimulated in vitro with immobilized anti-CD3/ 

anti-CD28 for 48 hr prior to electroporation with control or PKCz ON-TARGET 

SMARTpool siRNA (Thermo Scientific) with a ECM830 Squarewave Electropo- rator 

(BTX). Pulses were performed for 10 ms at 190 mV. 48 hr after electropo- ration, cells 

were analyzed by immunoblotting or restimulated for microscopy studies. 

 

Flow Cytometry 
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Adoptive transfers and infectious challenges with gp33-Listeria monocyto- genes 

were performed as previously reported (Chang et al., 2007). Splenocytes were stained 

with anti-T-bet-Alexa Fluor 647 (BD Bioscience) or T-bet-eFluor 660 (eBioscience) and 

anti-CD8 PE (BD Bioscience) and analyzed on a FACS Calibur (BD Bioscience). 

  

Adoptive transfers and infectious challenges 

Splenocytes (5x105) from naïve P14 TCR-transgenic mice harboring the Thy1.1+ 

allele were transferred intravenously (i.v.) into non-irradiated C57BL/6 (Thy1.2+) 

recipients that were subsequently infected intraperitoneally (i.p.) with 2x105 plaque-

forming units of LCMV Armstrong (LCMVarm) strain, which is cleared by d8 post 

infection (p.i.). For microscopy experiments, mice at day 60+ p.i. were infected i.v. with 

5x103 colony forming units of recombinant Listeria monocytogenes expressing gp33-41 

(LMgp33). At 44-46h p.i., P14 CD8+ memory cells were harvested from infected mice 

by sorting Thy1.1+ cells from the spleen. For flow cytometric analysis, spleens were 

harvested from mice day 60+ p.i. with LCMV. 2.5x107 carboxyfluorescein succinimidyl 

ester (CFSE) labeled splenocytes were transferred i.v. to naïve mice. One day after 

transfer, secondary recipients were infected i.v. with LMgp33. 42 – 52h after infection, 

single cell suspensions were stained with indicated antibodies. 
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