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Chemical Genetic Approaches for Elucidating Protease Function and
Drug-Target Potential in Plasmodium Falciparum

Abstract
Plasmodium falciparum is a protozoan parasite and the causative agent of malaria, which kills upwards of 1
million people annually. With the increasing prevalence of drug-resistant parasites, considerable interest now
exists in the identification of new biological targets for the development of new malaria chemotherapeutics.
However, given the genetic intractability inherent in studying P. falciparum, it is imperative that novel
approaches be developed if we are to understand the role of essential enzymes. My work presented here
focuses on the development and use of chemical tools to study malarial proteases, a class of enzymes that have
been shown to play essential roles throughout the parasite lifecycle, but the majority of which though are still
uncharacterized. In Chapter 2 I develop a novel set of activity-based probes (ABPs) based on the natural
product metallo-aminopeptidase (MAP) inhibitor bestatin. I show the bestatin-based ABP allows the
functional characterization of MAP activity within a complex proteome. In Chapter 3, I utilize an extended
library of bestatin-based ABPs to define the function of two essential malarial MAPs, PfA-M1 and Pf-LAP. I
find that PfA-M1 is necessary in the proteolysis of hemoglobin and that lethal inhibition starves parasites of
amino acids. I also show that Pf-LAP has a role other than hemoglobin digestion, as parasites are susceptible
to its inhibition prior to the onset of this process. In Chapter 4, I use a suite of specific small molecules to
validate the P. falciparum signal peptide peptidase (PfSPP) as a drug target. This work shows that PfSPP is a
druggable enzyme and that parasites are extremely vulnerable to its inhibition. Evidence is also presented that
suggests this enzyme may play an important role in the parasite's endoplasmic reticulum stress-response.
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CHEMICAL GENETIC APPROACHES FOR ELUCIDATING PROTEASE 

FUNCTION AND DRUG-TARGET POTENTIAL IN PLASMODIUM 
FALCIPARUM 

 
 

Michael B. Harbut 
 

Advisor: Doron C. Greenbaum, PhD 
 
Plasmodium falciparum is a protozoan parasite and the causative agent of 

malaria, which kills upwards of 1 million people annually. With the increasing 

prevalence of drug-resistant parasites, considerable interest now exists in the 

identification of new biological targets for the development of new malaria 

chemotherapeutics. However, given the genetic intractability inherent in studying 

P. falciparum, it is imperative that novel approaches be developed if we are to 

understand the role of essential enzymes. My work presented here focuses on 

the development and use of chemical tools to study malarial proteases, a class of 

enzymes that have been shown to play essential roles throughout the parasite 

lifecycle, but the majority of which though are still uncharacterized. In Chapter 2 I 

develop a novel set of activity-based probes (ABPs) based on the natural product 

metallo-aminopeptidase (MAP) inhibitor bestatin. I show the bestatin-based ABP 

allows the functional characterization of MAP activity within a complex proteome. 

In Chapter 3, I utilize an extended library of bestatin-based ABPs to define the 

function of two essential malarial MAPs, PfA-M1 and Pf-LAP. I find that PfA-M1 is 

necessary in the proteolysis of hemoglobin and that lethal inhibition starves 

parasites of amino acids. I also show that Pf-LAP has a role other than 

hemoglobin digestion, as parasites are susceptible to its inhibition prior to the 

onset of this process. In Chapter 4, I use a suite of specific small molecules to 

validate the P. falciparum signal peptide peptidase (PfSPP) as a drug target. This 

work shows that PfSPP is a druggable enzyme and that parasites are extremely 

vulnerable to its inhibition. Evidence is also presented that suggests this enzyme 
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may play an important role in the parasite’s endoplasmic reticulum stress-

response. 
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Chapter 1: Introduction 

1.1 The burden of malaria 

 Plasmodium is the etiological agent of malaria, a devastating global public 

health burden that each year leaves over 400 million people infected and up to 1 

million dead, over 75% of them African children [1]. The disease manifests itself 

as a serious illness characterized by recurrent fevers, metabolic acidosis, 

respiratory distress, and anemia, and fatal cases occur disproportionately in 

young children [2]. Four species of Plasmodium infect humans and all are 

transmitted through the bite of the female Anopheles mosquito. The species 

Plasmodium falciparum is the most severe, accounting for the vast majority of 

malaria-associated deaths. This is largely the result of its propensity to produce 

surface changes upon the infected erythrocyte that cause cytoadherence and 

disruption of the microvasculature in organs such as the lungs, kidneys, and 

brain. [3]. While over 50% of the world’s population is exposed to malaria, the 

African continent shows the greatest burden from this disease and accounts for 

more than 90% of all malaria deaths. This, along with the compounding burdens 

of tuberculosis and HIV/AIDS within these populations, has had catastrophic 

socio-economic consequences for sub-Saharan South Africa [4]. 

 While malaria is today perceived as a tropical disease, it is only in the last 

century that malaria has been eliminated from most developed Western nations. 

Elimination of malaria from North Africa and Europe was achieved primarily 

through the systematic control or elimination of the mosquito vector, such as 

through the use of anti-insecticidal agents (mainly DDT) and the elimination of 
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breeding habitats [5]. The World Health Organization launched the Global 

Malaria Eradication Program in 1955, was key to this accomplishment in Europe, 

but similar success was not shared in sub-Saharan Arica [6].  In the second half 

of the nineteenth century eradication efforts were largely abandoned due to 

diminishing resources, strife, concern about DDT, insecticide resistance, and the 

growing thought that eradication in Africa was virtually impossible. 

 Today, where it is endemic, malaria is managed by two primary methods: 

1) vector control (indoor residual spraying, insecticide treated nets) and 2) 

treatment. While a significant effort has been put towards the development of a 

malaria vaccine, the most advanced candidate (RTS,S) has shown only modest 

success in clinical trials and is not likely to see widespread use until 2015 [7]. In 

addition, almost complete vector coverage will still necessitate the use of drug 

administration to help eliminate malaria in high transmission areas.  

Quinine, derived from the bark of the tree Cinchona calisaya, has been 

used to treat malaria since the 17th Century. Due to its low cost and ease of use, 

the quinine-related drug chloroquine remained a constant in the control of acute 

uncomplicated malaria for over 40 years since the discovery of its antimalarial 

properties in 1946 [8]. Chloroquine inhibits the parasite’s mechanism for heme 

detoxification, likely resulting in lethal lysis of the lysosome-like organelle where 

this occurs. Other frequently used antimalarials target parasite-essential 

metabolic pathways, such as the tetrahydrofolic acid synthesis (sulfadoxine-

pyrimethamine).  
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Unfortunately, P. falciparum resistance to chloroquine arose within 20 

years of its introduction and by the 1980s widespread resistance was reported in 

most high-transmission areas, virtually nullifying the effectiveness this drug. 

Resistance to drugs with specific enzyme targets such as sufadoxine-

pyrimethamine arose at an even quicker pace [9]. 

Modern malaria chemotherapy relies on the active ingredient of the 

Qinghao plant, a sesquiterpene lactone called artemisinin, and its use in 

combinations with other antimalarials. The mechanism of action of artemisinin 

and artemisinin derivatives is still debated, but its properties have facilitated its 

use as a frontline defense, including rapid activity against existing drug-resistant 

strains and blood stages of the parasite, in addition to mature sexual stage 

gametocytes, which helps reduce transmission. By using artemisinin in 

combination therapy (ACT), that is, two medicines with different mechanisms of 

action, the probability for the emergence of parasite resistance is drastically 

reduced. Indeed, in areas where artemisinin monotherepy has predominated, 

reports of resistance are beginning to emerge [10]. 

The global spread of resistance to current antimalarial standards has 

spurred an innovation in malaria research over the last 20 years. The current 

antimalarial drug-development pipeline is mostly devoid of newly defined 

molecular targets, being dominated by alternative artemisinin-based combination 

therapies or new generations of validated inhibitors (www.mmv.org). Thus, it is 

essential that more information is gathered on the parasite’s essential biological 
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pathways and enzymes. This way, a more rational approach to the validation of 

novel targets may be achieved to further the development of new antimalarials. 

 

1.2 The Plasmodium falciparum life cycle 

Plasmodium spp are obligate intracellular protozoan parasites, and 

progress through a complicated life cycle both in a mosquito vector and human 

host. The asexual erythrocytic cycle, which in P. falciparum is synchronous and 

lasts 48 hrs, is the cause of morbidity and mortality associated with malaria [11].  

Transmission occurs via the bite of an Anopheles mosquito, which injects 

sporozoite forms that migrate to the liver. After multiple rounds of replication in 

hepatocytes, merozoites are released into the blood stream and the erythrocytic 

life cycle of the parasite begins. This cycle is initiated by the invasion of host red 

blood cells by the merozoites and the formation of a parasitophorous vacuole 

inside the erythrocyte within which the new ring stage parasite resides. Parasites 

progress through the ring stage for approximately 20 hrs. This is followed by a 

highly metabolically active growth stage, the trophozoite stage, which is 

accompanied by the uptake and degradation of host hemoglobin. At about 36 hrs 

post invasion, parasites begin a process of asexual reproduction leading to the 

formation of 16-32 daughter merozoites. Finally, the merozoite-containing red 

blood cells are lysed around 48 hrs post infection, releasing the parasites, and 

the process begins anew upon invasion of erythrocytes by merozoites.  
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Catabolic processes are known to mediate a number of events during the 

parasite’s life cycle. Essential to those processes are protease enzymes, both 

derived from the parasite and human host.  
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Figure 1.1: The malaria parasite erythrocytic pathway. Merozoite parasites invade the erythrocyte 

(RBC) and develop into ring stage parasites within the parasitophorous vacuole (PV). The peak of 

the parasite’s metabolic activity occurs during the growing trophozoite stage, during which host 

cell cytoplasm is endocytosed and large-scale hemoglobin proteolysis in carried out within the 

digestive vacuole (DV). In addition, the parasite sets up a complex secretory pathway during this 

stage for delivering proteins to the PV and host cell. During the schizont stage multiple rounds of 

nuclear division occur, which results in the formation of daughter merozoites. At roughly 48 hrs post 

infection (for P. falciparum), the parasite ruptures from the host cell.  
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1.3 Proteolytic enzymes and their roles during the erythrocytic stage of P. 

falciparum 

 Proteolytic enzymes, or proteases, catalyze the degradation of proteins or 

peptides and have wide-ranging and important roles from single-cell prokaryotes 

to metazoans. There are approximately 100 predicted proteases in the 

Plasmodium genome that span all classes and several proteases are thought to 

participate in critical pathways during the life cycle of P. falciparum [12]. As such, 

proteases and the biological events they mediate have been considered potential 

anti-malarial drug targets. Specifically, three events during the erythrocytic life 

cycle have been extensively studied so as to uncover the proteolytic events 

necessary: 1) merozoite invasion of the erythrocyte, 2) hemoglobin degradation, 

and 3) egress from the erythrocyte [13-15]. 

 Early evidence for the importance of proteolysis during invasion was 

uncovered using purified P. knowlesi merozoites. Pre-treatment of the 

merozoites with a variety of protease inhibitors significantly decreased the 

invasion capacity of the parasite [16]. Follow-up work in P. falciparum has 

focused on primarily on the role of proteases that process merozoite-associated 

proteins. During invasion, sets of adhesin molecules are released from the 

parasite apical secretory organelles, the micronemes, which facilitate high affinity 

binding of the host cell and parasite. The most abundant of these is a glycosyl 

phosphatidylinositol (GPI)-anchored protein named merozoite surface protein-1 

(MSP1) [17]. MSP1 is synthesized during development of intracellular merozoites 
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and at the end of schizogony is proteolytically processed by a serine protease 

called PfSUB1, resulting in a non-covalent complex of several polypeptides. Two 

other proteins are also part of this complex (MSP6 and MSP7) and are 

processed as well. The importance of this primary processing event is still 

unclear, but it is possible that it allows a conformational change that enables the 

complex to function on the free merozoite at the time of invasion.  During 

subsequent invasion events, the N-terminus is shed from the merozoite surface 

by a membrane-bound subtilisin-like protease, PfSUB2 [18]. 

 Apical membrane antigen 1 (AMA-1) is another important adhesin whose 

function depends on proteolytic processing [19,20]. Like MSP1, AMA-1 is 

synthesized in the apical complex of the merozoite and undergoes multiple 

rounds of proteolytic maturation prior to circumferential redistribution on the 

merozoite surface. In addition, once it is translocated from the apical complex to 

the parasite surface it is then shed from the membrane by PfSUB2. Additional 

cleavage is carried out by an intramembrane serine protease, rhomboid 1 

(PfROM1), the biological relevance of which is still being assessed [21]. 

 Once established inside the erythrocyte, the parasite begins to 

endocytose host hemoglobin (Hb) and proteolytically digests it into its constituent 

amino acids within a lysosome-like organelle called the digestive vacuole (DV) 

[15]. This process peaks during the parasite’s most active metabolic stage, 

between 20-36 hours post infection, and is likely carried out to relieve osmotic 

pressure for the growing parasite and for utilization of individual amino acids 

derived from Hb [22,23]. Hb degradation is necessary for the survival of the 
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parasite, and has long been considered an “Achilles heel” of the parasite. Thus 

the putative proteases involved have been focus of intense study for their drug 

target potential.  

The upstream endoproteases that catalyze the initial cleavage of the Hb 

molecule are the aspartyl protease plasmepsins (I-IV) and the cysteine protease 

falcipains (2, 2’, 3) [24,25]. The roles for cysteine and aspartyl protease activity 

were originally identified by biochemical characterization of whole DVs and 

purified enzymes, where the hydrolysis of native and denatured hemoglobin was 

analyzed under assumed physiologic conditions [26-28]. The discovery of 

additional proteases was facilitated by the P. falciparum genome sequencing 

project. The active roles of the individual enzymes are still uncertain. Some have 

described it as an ordered process, initiated by the plasmepsins at the αPhe33-

Leu34 conserved hinge region of Hb, whereas others have suggested that the 

falcipains initially cleave rapidly at multiple sites in intact hemoglobin [15,29]. A 

striking functional redundancy exists amongst these proteases, suggesting the 

importance of this process to the parasite. For instance, the falcipains appear to 

be able to compensate for the loss of all four DV plasmepsins [30]. A 

metalloprotease, falcilysin, has also been localized to the DV and is capable of 

cleaving small Hb peptides 11-15 residues in length, suggesting it has a role 

downstream of the plasmepsins and falcipains [31]. Finally, exopeptidases 

release individual amino acids from the N-terminus of Hb, and their roles are 

discussed in depth in Chapter 3. 
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 At the end of its erythrocytic life cycle, the parasite disrupts both the 

membrane to the parasitophorous vacuole and the host erythrocytes to allow 

egress from the cell. That protease inhibitors can block egress tells us that 

rupture is indeed an active process and not a passive consequence of parasite 

growth [32]. The SERA family of proteins have been a primary focus of protease-

mediated rupture in P. falciparum based on the evidence that the P. berghei 

ortholog to SERA8 is essential for egress from the oocyst wall of the mosquito 

midgut [33]. The gene products of all the SERA family members have been 

detected in the asexual blood stage during late schizogony. In addition, SERA5, 

an essential gene product, is proteolytically processed during rupture. Processed 

products of SERA5 precursor are found in culture supernatants, and only the 

precursor could be detected in unruptured schizonts [34,35]. Mechanical 

disruption of parasites releases unprocessed SERA5, suggesting that a specific 

pathway of events is necessary during rupture for SERA processing.  The 

mechanistic importance of this processing has yet to be uncovered. Intriguingly, 

the SERA proteins all share a conserved papain-like cysteine protease domain, 

suggesting that proteolytic processing of the respective SERAs may represent an 

activation event of a non-catalytic zymogen precursor. While a refolded papain 

domain of SERA5 has show weak chymotrypsin-like activity, the role of SERAs 

during egress remain to be elucidated [36].  

 Even with our current limited understanding of protease function in P. 

falciparum biology, the critical role these enzymes have in the biology of the 

parasite is clear. Further characterization of malarial proteases will likely uncover 
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novel essential functions, the results of which may lead to putative drug target 

candidates. To facilitate these discoveries, tools beyond classical genetic 

approaches, which remain burdensome in P. falciparum, must be developed and 

utilized. 

 

1.4 Understanding protein function in P. falciparum: a chemical-genetics 

approach 

 Significant biochemical and biological work has helped to elucidate 

essential protease-mediated events during the P. falciparum life cycle. Yet, of the 

approximately 100 proteases encoded by the parasite genome, fewer than 15 

have been fully characterized, making this biological system ripe for study. 

Unfortunately, the systematic approaches used today to study gene function in 

other organisms, such as RNAi, are not available in P. falciparum, leaving 

classical gene disruption, via homologous recombination, the main genetic 

technique [37]. Additionally, the procedure for targeted gene disruption is 

inherently labor-intensive, slow, and inefficient, due to difficulties in the culturing 

of the parasite and extremely low transfection rates. These technical limitations 

and the fact that the parasite is grown as a haploid renders it currently difficult to 

genetically disrupt essential genes. The development of a tetracycline-based 

conditional gene expression system in the related apicomplexan organism 

Toxoplasma gondii has not been successfully applied for functional studies in P. 

falciparum [38].  

 One approach to circumvent these problems is through the use of small 
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molecules to modulate the activity of protein families or individual proteins to 

provide insight into protein function and validate potential therapeutic targets. 

This assemblage of techniques is broadly called “chemical-genetics” [39]. As 

opposed to manipulation of DNA, as in classical chemical genetics, small 

molecules usually modulate protein function, such as by active site binding or 

preventing protein-protein interactions. In addition, small molecules offer greater 

temporal control, allowing for the discrimination of effects at restricted stages.  

 Two approaches to chemical-genetics can be undertaken to discover 

small molecules that modify protein function. The first approach is analogous to 

classical reverse genetics, in which a gene of interest is permanently or 

conditionally disrupted or modified in such a way that protein it codes for ceases 

to function. The knockout or knockdown of the gene can give functional insights 

as to its role in the system under study. Reverse chemical genetic strategies aim 

to identify small molecules that target a specific protein. These are often carried 

out through traditional medicinal chemistry efforts with significant underlying 

knowledge about the protein of interest. Recently, the Wandless lab developed a 

novel reverse chemical genetics strategy, that allows for the regulatable control 

of protein stability [40]. The approach relies on FK506-binding protein (FKBP) 

mutants that contain a degron that normally destabilizes the protein, but is 

stabilized by a small molecule. This degron can be appended to a protein of 

interest and will destabilize the protein in the absence of the small molecule. 

Application or removal of the small molecule allows for the conditional expression 

of the targeted protein. This approach has recently been used with success in P. 
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falciparum to validate the role of a calcium dependent kinase (PfCDPK5) in 

egress [41]. Parasites expressing the kinase with the destabilization domain 

failed to rupture from the host erythrocyte when the stabilizing small molecule 

was removed from culture. This phenotype was rescued upon application of the 

small molecule and subsequent stabilization of the kinase. 

 The second chemical genetics approach is known as forward chemical 

genetics. This technique seeks to identify a protein responsible for a phenotype 

or pathology under study. This is often done through the use of small molecule 

libraries in phenotypic screens. Upon the small molecule-mediated production of 

a phenotype of interest, the target(s) of the small molecule that produces the 

phenotype is identified. High throughput screens in P. falciparum are still 

primarily focused on parasite replication, and informative assays such as protein 

export to the erythrocyte surface are complex and not as amenable to high 

throughput screening. As such, phenotypic screens are rare for P. falciparum. 

 

1.5 Using chemical genetics to study protease function in P. falciparum 

Small-molecule based approaches have been critical to the understanding 

of protease function in P. falciparum. In a study to assess the role of proteases 

during invasion, Dluzewski and colleagues uncovered the first evidence for the 

proteolytic breakdown of hemoglobin within the digestive vacuole (DV) after 

discovering the accumulation of undegraded hemoglobin within the swollen DV of 

parasites treated with leupeptin (a general cysteine and serine protease inhibitor) 

[42]. Following up on this, the Leech group confirmed the necessity of cysteine 
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protease activity by inhibiting Hb degradation in parasites with cysteine protease 

inhibitors [28]. Biochemical characterization of Hb digestion from purified DVs 

also facilitated the discovery of aspartyl protease activity in this process [26]. 

These studies, using inhibitors with broad selectivity, could at best suggest a role 

for a specific class of proteases involved in Hb degradation. Only with extensive 

studies, including expression analysis, immunofluorescence localization, 

biochemical purification and characterization, and finally genetic knockout, could 

the individual roles of the endoproteases involved in Hb catabolism be ascribed 

to particular proteins. Further study of the putative downstream exopeptidases in 

the Hb catabolic pathway has been hindered because they are genetically 

essential and refractory to knockout [31,43,44]. 

 More recently, much progress has been made in identifying the proteases 

required for rupture from the host erythrocyte, using specific inhibitors and both 

reverse and forward chemical genetic approaches. The Bogyo lab recently 

undertook a forward chemical genetics screen that utilized a facile and rapid 

method for the assessment of parasite staging by flow cytometry [45]. This 

allowed the authors to screen a library of over 1,200 covalent serine and cysteine 

protease inhibitors that blocked parasite egress. Upon identification of a serine 

protease inhibitor that blocked egress (JCP-104), they then undertook a 

chemical-genetics approach known as activity–based protein profiling (ABPP). 

ABPP is a chemical strategy that utilizes mechanism-based, tagged small 

molecule inhibitors. Appending a reporter tag such as a biotin or fluorophore to 

the mechanism-based inhibitor allows for the profiling of activity via avidin blot (or 
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fluorescent scanning) and the identification of the inhibitor target(s) by biotin-

(strept)avidin chromatography capture, gel separation, and mass spectrometry 

analysis. Using JCP-104 as an ABP allowed the identification of the protein 

target of the inhibitor, PfSUB1. In addition, it was shown that JCP-104 inhibited 

the processing of SERA5, the blocking of which prevented egress. 

 In this same study, a cysteine protease capable of blocking rupture was 

also identified. Again, the suitability of ABPP in P. falciparum was illustrated 

when the authors were able to identify the target of the inhibitor, JCP-405, by 

utilizing the inhibitor as an ABP, and showed that it targeted two cysteine 

proteases, dipeptidyl-aminopeptidases 1 and 3 (DPAP3). DPAP1 was previously 

implicated as a hemoglobinase, while the function of DPAP3 was unknown. 

Using a forward chemical genetics strategy, the authors screened a focused 

library of dipeptide vinylsulfone inhibitors similar to JCP-405 to identify selective 

inhibitors of DPAP1 and DPAP3. Upon identification of specific inhibitors, they 

showed that selective inhibition of DPA3 resulted in a block of parasite rupture, 

prior to PfSUB1 processing of SERA5. 

The treatment of late-stage parasites with the cysteine protease inhibitor 

E64 results in the accumulation of merozoites locked in the erythrocyte. E64 is a 

general cysteine protease inhibitor and thus targets multiple cysteine proteases 

[46]. The Greenbaum lab recently utilized chemical genetics combined with 

biochemical and cell-biological approaches to reveal a role for the host-

erythrocyte calpain protease in rupture [47].  Using an activity-based probe (ABP) 

based on E64 they showed that human calpain 1 was active during late 
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schizogony and localized that the host cell membrane upon activation. Using an 

endogenous inhibitor specific for calpain 1, calpastatin, along with 

immunodepletion of calpain 1 the authors showed that human calpain 1 activity 

was coopted by the parasite and necessary for degradation of the host cell.  

Proteases that mediate invasion have also been uncovered using 

chemical genetic approaches. Using a chemical screen, the Bogyo lab showed 

that falcipain 1 was the only active parasite cysteine protease during the invasive 

merozoite stage [48]. In a reverse chemical genetics approach, they identified a 

specific inhibitor of falcipain 1 by screening a small chemical library. Use of this 

specific inhibitor showed that inhibition falcipain 1 had no effect on parasite 

growth or hemoglobin degradation, but did result in unruptured schizonts, 

illustrating that falcipain 1 was indeed necessary for egress. 

 These studies demonstrate the promise and feasibility of using chemical 

tools in forwarding the understanding of protease roles in P. falciparum biology. 

Furthermore, they also help to provide proof of principle in the druggability of 

protease targets and identify putative starting points for drug development 

initiatives. 

  

1.6 Proteases as drug targets in P. falciparum 

 The validity of targeting proteases to alleviate a pathology as a therapeutic 

strategy is illustrated by the clinical success of a number of protease inhibitor 

drugs, including inhibitors of HIV aspartyl protease, dipeptidyl peptidase IV 

(diabetes), and angiotensin converting enzyme (ACE) inhibitors (hypertension) 
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[49]. As the roles of many proteases in P. falciparum are essential for the 

parasite’s life cycle, it is not unreasonable to consider the parasite proteases as 

potential drug targets. Moreover, extensive biochemical knowledge of protease 

mechanism and structure in addition to the existence of focused inhibitor libraries 

allows for a rational approach to the design of potential drugs.  

 Though the sequencing of the P. falciparum genome has led to the 

identification of at least 100 putative proteases, viewing proteases of P. 

falciparum as drug targets is a strategy that predates that long predates the 

genome-sequencing effort [50]. Two of the most significant efforts were directed 

towards the hemoglobin-catabolizing proteases, the cysteine protease falcipains 

and aspartyl protease plasmepsin. Efforts to identify optimal inhibitors to these 

enzymes were facilitated through screening of existing cysteine and aspartyl 

protease inhibitor libraries and through the development of novel inhibitors based 

on scaffolds known to inhibit the respective protease families [24,51]. Genetic 

approaches were also utilized, and numerous labs showed through the knockout 

of the individual genes that exceptional functional redundancy existed amongst 

all four plasmepsins and also falcipains (only falcipain-3 was shown to be 

essential) [30,52,53]. Unfortunately, plasmepsin inhibitors with high potency 

towards the recombinant enzyme often showed limited potency against cultured 

parasites [24]. In addition, inhibitors for both the falcipains and plasmepsins 

showed problems with bioavailability, undermining their effectiveness [54]. The 

combination of these issues has recently limited enthusiasm for these enzymes 

as therapeutic targets.  
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 Multiple other proteases are expected to have a role in hemoglobin 

degradation, working downstream on the peptide products of Hb produced by 

plasmepsin, and may represent improved drug targets over falcipains or 

plasmepsins. These proteases include falcilysin, a metallo-aminopeptidases 

(PfA-M1), a proline aminopeptidase (PfAPP), and a cathepsin C-like cysteine 

protease DPAP1. All four have been validated as genetically essential during the 

erythrocytic stage. DPAP1 and PfA-M1 are the only proteases of the group 

shown to be amenable to chemical inhibition. A recent study utilizing ABPs to 

characterize DPAP1 activity identified nonpeptidic covalent inhibitors of DPAP1 

lethal to parasites at low nanomolar concentrations. Unfortunately, the most 

potent inhibitors of DPAP1 were toxic in mice, while a less potent but non-toxic 

inhibitor did decrease parasite levels in a mouse model. 

 Given the parasite-essential nature, proteases involved in rupture and 

invasion may also represent attractive drug targets. DPAP3, SERA5, PfSUB1, 

and PfSUB2 have each been shown to be genetically essential. In addition, 

DPAP3 and PfSUB1 are amenable to chemical inhibition in live parasites. 

PfSUB2 has not been targeted by small molecules, but a PfSUB2 propeptide 

inhibits PfSUB2 sheddase activity in parasites. SERA5 represents an unusual 

cysteine protease in that a cysteine-to-serine replacement has occurred within its 

putative canonical catalytic site. Its protease-like domain has been expressed 

and, upon renaturing, shown to have weak chymotrypsin-like protease activity 

that was reversible with a serine protease inhibitor, although the biological 

relevance of these activities remains unclear. Furthermore, recent structural 
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characterization of SERA5 revealed a number of anomalies in addition to the 

non-canonical active site, further complicating any rational drug discovery efforts 

centering on SERA5. 

 Proteases represent a highly druggable class of parasite enzymes, based 

both on our present knowledge of their enzymology and keys to inhibition as well 

as their importance in numerous biological processes during the P. falciparum life 

cycle. With the increase of data from analysis of the P. falciparum genome 

project our awareness of putative protease targets is great. At the same time, 

translating these potential targets into validated targets requires not just 

knowledge of the enzyme’s existence, but a better foundational understanding of 

the biology and biochemistry of the protease within the context of the parasite’s 

life cycle, which will allow us to fully exploit this class of enzymes. This 

understanding will only come about with the development of novel technologies, 

such as activity-based protein profiling, coupled with classical cell biological, 

biochemical, and genetic techniques. Herein, work is presented that exploits 

these and other approaches in an attempt to forward our knowledge of P. 

falciparum protease biology while testing potential as drug-target. In Chapter 2 I 

present work on the development of a novel activity-based probe based on the 

metallo-aminopeptidase inhibitor, bestatin, as published in Harbut et al., (2008). 

This novel chemical reagent is then utilized in a study on metallo-

aminopeptidases in P. falciparum, in which we identify the protease parasite 

targets of bestatin.  Upon identification of bestatin-based specific inhibitors to two 

P. falciparum aminopeptidases, PfA-M1 and Pf-LAP, I show that inhibition of PfA-
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M1 results in a block of hemoglobin peptide degradation, implicating this PfA-M1 

in this process. Inhibition of Pf-LAP is lethal to parasites prior to the onset of bulk 

hemoglobin degradation, suggesting a role beyond the release of Hb amino 

acids. The latter observations are presented in Chapter 3 and were published in 

Harbut et al., (2011). In Chapter 4, I present work that chemically validates the 

malarial signal peptide peptidase (PfSPP) as a drug target along with data that 

indicates the P. falciparum endoplasmic-reticulum associated degradation 

(ERAD) pathway represents an untapped parasite vulnerability. Parasites are 

sensitive to SPP inhibitors, and utilizing a variety of approaches I show that the 

PfSPP protein is indeed targetable by small molecules. Data is also presented 

that parasites are sensitized to SPP inhibitors under conditions that produce 

endoplasmic reticulum stress and that SPP inhibitors combined with inhibitors of 

other ERAD pathway components may represent a new antimalarial chemotype. 
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Chapter 2: Development of bestatin-based activity-based 

probes for metallo-aminopeptidases* 
 

2.1 Introduction 

Metallo-aminopeptidases (MAPs) are exopeptidases that catalyze the 

hydrolysis and cleavage of a single N-terminal amino acid from a peptide or 

protein substrate. The families of MAPs are a large and diverse set of peptidases 

and comprise the M1, M17, and M18 families, which in humans totals 16 

potential enzymes (www.merops.org). MAPs are widely distributed in organisms 

from bacteria to humans and play essential roles in protein maturation and 

regulation of the metabolism of bioactive peptides [55-57]. In addition, MAPs 

have been linked to several pathophysiological states including cancer and 

hypertension [58,59].  

A major challenge in elucidating the function of peptidases during normal 

or pathological processes lies in their complex post-translational regulation. 

Petidase activity is usually tightly controlled post-translationally, with mRNA 

levels frequently showing little correlation to active protein levels. In addition, 

peptidases can be localized to any part of a cell and are frequently found in 

multiple locations with different functions. A targeted proteomics approach 

whereby only active proteins are enriched by the use of activity-based probes 

(ABPs) can address these complicating issues and provide complementary data 

to more traditional genetic and biochemical approaches. These ABPs typically 

                                                        
* The text of this chapter has been published (Harbut et al. Development of bestatin-based 
activity-based probes for metallo-aminopeptidases. Bioorg Med Chem Lett. 2008 Nov 
15;18(22)5932-6). It is printed here with permission. 
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possess three main structural components: (i) a mechanism-based inhibitor 

scaffold to covalently or non-covalently target catalytic residues or the active site 

of peptidases, (ii) a linker, and (iii) a reporter tag, such as a fluorophore or biotin, 

for the visualization and characterization of labeling events, and eventual affinity 

purification of target proteins. The mechanism-based inhibitor scaffold ensures 

that the ABP binds to the peptidase in an activity-dependent manner. Therefore 

these ABPs can identify peptidases with differential levels of activity during a 

biological process and potentially identify candidate enzymes that regulate the 

specific phenotype under study. In addition, ABPs allow for screening of small 

molecule libraries and identification of specific inhibitors that can be used to 

validate the role of the target enzyme. To date, ABPs have been developed for 

more than a dozen enzyme classes including: peptidases, kinases, 

phosphatases, glycosidases  and oxidoreductases [60-64].  

Although the MAP superfamily is quite large and divergent, MAPs utilize a 

common catalytic mechanism by the coordination of one or two Zn atoms in the 

active site to activate water for nucleophilic attack of a peptide or protein 

substrate. To exploit this mechanism several classic inhibitor scaffolds have been 

developed to target the MAP family including, most prominently, phosphinic 

acids, hydroxamic acids  and the bestatin family [65-69]. Both phosphinic acids 

and hydroxamic acids have the capacity to inhibit metallo-endopeptidases and 

peptide deformylase while the bestatin scaffold appears specific for MAPs.  

We have thus chosen to explore the bestatin scaffold to develop ABPs to 

specifically target the MAP superfamily. Bestatin is a natural product of 
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Actinomycetes that inhibits most MAP families, including the M1, M17, and M18 

families. Bestatin was originally found to be a potent aminopeptidase B and  

leucine aminopeptidase inhibitor and has been crystallized with leucine 

aminopeptidase, leukotriene A4 hydrolase, and aminopeptidase N [70-72]. 

Bestatin is thought to modulate many biological pathways, including the  

induction of apoptosis in tumors [73,74].  It is also known to possess anti-

inflammatory properties [75]. Therefore a MAP-specific ABP would be a powerful 

tool to tease apart the functions of multiple MAP pathways. In the present study, 

we set out to develop the first MAP-specific ABP, exploiting bestatin for use as 

the inhibitor scaffold. 

Bestatin resembles a Phe-Leu dipeptide substrate. However, the first 

residue contains a α-hydroxy group that, along with the neighboring carbonyl, co-

ordinates the catalytic zinc atom resulting in a competitive active site-directed 

inhibitor (Fig. 2.1). In addition, the free amine of bestatin is coordinated by one or 

more glutamate residues in the MAP active site [72]. Bestatin family members 

are slow- and tight-binding inhibitorswith well-defined interactions with the S1 and 

S1’ active site pockets [69]. Thus bestatin represents an ideal candidate for ABP 

development for MAPs due to its family specificity, potency in the low nanomolar 

to micromolar range, synthetic tractability and potential for expansion through 

variation of the amino acid side chains in its core structure.  
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Figure 2.1: General model of interactions of bestatin 

in the active site of metallo-aminopeptidases. 
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2.2 Results and Discussion 
 

To design an ABP family for MAPs, we chose to derivatize the core 

bestatin inhibitor scaffold using a solid-phase synthetic strategy (Scheme 2.1). 

Bestatin has a free carboxyl group available for functionalization and previous x-

ray crystal structures of MAP-bestatin complexes indicated that extension at this 

carboxylate was unlikely to perturb inhibitor binding [72]. Thus we attached the 

inhibitor scaffold to solid-phase resin at the carboxyl end of the molecule. Our 

first attempt to develop a MAP-directed ABP probe involved the addition of a 

spacer, a UV crosslinker, and a biotin affinity tag to the C-terminus of the core 

bestatin scaffold (Scheme 2.1). We included a benzophenone UV crosslinker 

since this is a non-covalent, reversible inhibitor scaffold. Synthesis was 

accomplished on solid-phase using Rink amide resin and, to our knowledge, 

represents the first reported solid-phase synthesis of this class of molecules. 

 We initially explored the placement of the spacer and UV crosslinker 

relative to the core bestatin scaffold (MH01 and MH02, Fig. 2.2) and found that 

there was little difference in labeling efficiency of a model enzyme, purified 

porcine aminopeptidase N (Fig. 2.2A). We then assessed the ability of MH01 to 

label the model aminopeptidase in an activity-dependent manner (Fig. 2.2B). Our 

results show that, indeed, the bestatin-based probe is an activity-dependent 

probe of MAPs. Firstly, competition with the unbiotinylated parental compound, 

bestatin, blocked all labeling seen in lane 1, indicating that the probe was 
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competitive and therefore binding at the active site (Fig. 2.2C, lane 2). Preheating 

of the sample, a process that denatures all protein targets, abrogated labeling 

(Fig. 2.2C, lane 3), indicating that this labeling was dependent on properly folded, 

active enzyme. Lastly, UV exposure was necessary for labeling owing to the fact 

that bestatin is a non-covalent, reversible inhibitor (Fig. 2.2C, lane 4).  
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Scheme 2.1: Synthesis of bestatin-based ABPs. Reagents and conditions: a) i) 20% 

Piperidine/DMF; ii) FmocLys(Biotin)OH, HBTU, HOBt, DIEA; iii) 20% Piperidine/DMF; iv) 

FmocBpaOH, HBTU, HOBt, DIEA; v) 20% Piperidine/DMF; vi) FmocNHPEGOH (20 atoms), HBTU, 

HOBt, DIEA; vii) 20% Piperidine/DMF; viii) FmocLeuOH, HBTU, HOBt, DIEA; ix) 20% 

Piperidine/DMF; x) N-Boc-(2S,3R)-3-amino-2-hydroxy-4-phenyl butyric acid, HATU, DIEA; xi) 

95%TFA:2.5%TIS:2.5%H2O. 
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Figure 2.2: Anatomy of ABPs and labeling of aminopeptidase N. (a) Structure of ABPs MH01 and 

MH02. (b) Aminopeptidase N (0.13 U) was treated with 10, 1, or 0.5 µM of either MH01 or MH02 

for 1 hr in 50mM Tris-HCl, pH 7.8, 0.5 µM ZnCl2 (buffer A). Certain reaction mixtures were UV 

crosslinked for 1 hr on ice. Reactions were quenched with SDS-PAGE buffer, and labeled protein 

was visualized via SDS-PAGE and western blotting for biotin. (c) Aminopeptidase N was treated 

with 100 µM of the aminopeptidase inhibitor bestatin or DMSO for 1 hr in buffer A followed by 

labeling with MH01 for 1 hr. Reactions were UV crosslinked (or not) for 1 hr on ice, and labeled 

protein was visualized as in Fig. 2.2B. 
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While a biotin tag is ideal for affinity tagging purposes, its use is not 

optimal for higher throughput activity-based profiling due to the time and labor 

involved in producing western blots. Additionally, many cells and tissues contain 

endogenously biotinylated proteins that complicate analysis of biotinylated probe-

based western blots. To circumvent these shortcomings we synthesized a 

fluorophore-tagged version of the bestatin-based probe, which would allow for 

direct detection of labeled targets in a gel-based read-out. For the fluorescent 

bestatin-based probe we added a TAMRA group in addition to the biotin, creating 

a dual function ABP, MH03, making it suitable for both affinity purification and 

fluorescence applications (Fig. 2.3). Labeling of purified porcine aminopeptidase 

N with the dual label probe was performed under the same conditions as with the 

original biotinylated MH01 (Fig. 2.3B). Labeled proteins were analyzed by SDS-

PAGE coupled with in-gel fluorescent scanning (Typhoon, GE). MH03 showed 

similar activity-dependent labeling as MH01 (Fig. 3B) demonstrating the 

robustness of this ABP scaffold. Some residual labeling was observed (Fig 2.3B, 

lane 2), which is normal in ABP labeling experiments, although this may have 

been enhanced since bestatin is a slow- and tight-binding inhibitor.  
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Figure 2.3: Aminopeptidase N labeling by fluorophore-containing bestatin-based ABP. (a) 

Structure of MH03 probe. (b) Labeling of aminopeptidase N was performed as described in 

Figure 2.2, but using MH03 and visualized using SDS-PAGE and in-gel fluorescent scanning. 

(c) Aminopeptidase N was pretreated with multiple concentrations of bestatin for 1 hr and 

then labeled with 10 µM fluorescent MH03. After in-gel fluorescent scanning labeling was 

quantified using ImageQuant software (GE). 
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Next, we wanted to demonstrate that utility of the fluorescent MH03 for 

relative quantification of enzyme labeling. To do this, porcine aminopeptidase N 

was preincubated with increasing concentrations of bestatin followed by the 

addition of a single concentration of the fluorescent MH03. The densities of each 

labeled band, representing active enzyme, were quantified using a Typhoon 

flatbed fluorescent scanner (GE). In-gel fluorescent scanning of the labeled 

peptidase band showed a decrease in aminopeptidase N labeling by MH03 

relative to increasing concentration of bestatin preincubation (insert in Fig. 2.3C). 

Percent competition values were calculated by dividing the density of the bestatin 

preincubated aminopeptidase N band relative to the untreated band in lane 1 

(Fig. 2.3C). We demonstrate a dose dependent relationship that is amenable to 

relative quantification with a dynamic range of several orders of magnitude and 

will allow future screening efforts of derivative libraries.  

One of the technical challenges facing the development and use of ABPs 

with biotin or fluorophore tags is limited or biased uptake by live cells. In some 

cases, ABPs have been used to label enzymes in living cells, but a more 

universal system for labeling would employ a small, hydrophobic tag. We 

therefore chose to add a small alkyne tag to our MAP probe in order to utilize the 

popular “click” bio-orthogonal chemistry, which employs a 1,3-dipolar 

azide/alkyne cycloaddition [76,77]. We thus replaced the biotin of MH01 with a C-

terminal alkyne resulting in a click probe, MH04 (Scheme 2.2 and Fig. 2.4). We 

observed facile “click” addition of a biotinylated azide following labeling of porcine 

aminopeptidase N with MH04. Importantly the activity-dependent labeling of the 
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enzyme was not affected by this procedure, as illustrated by bestatin 

preincubation, UV, and preheat controls. 
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Figure 2.4: “Click” chemistry-based ABP labeling of aminopeptidase N. (a) Structure of 

MH04 probe. (b) Aminopeptidase N labeling was performed as described in Figure 2.2C 

using MH04. The ligation of the biotin-azide reporter tag was performed by adding 100 µM 

of the biotin-azide tag, followed by 1 mM TCEP (tris(2-carboxyethyl) phosphine 

hydrochloride), 100 mM ligand (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) (17x stock 

in DMSO:t-butanol 1:4), and 1 mM CuSO4. Reactions were allowed to proceed for 1 h at 

room temperature, then quenched with equal volume of SDS-PAGE loading buffer. 

Labeled protein was visualized as in Fig. 2.2B. 

 

 

 

 

Scheme 2.2: Synthesis of a clickable bestatin ABP. Reagents and conditions: a) i) 20% 

Piperidine/DMF; ii) FmocLys(Aloc)OH, HBTU, HOBt, DIEA; iii) 20% Piperidine/DMF; iv) 

FmocBpaOH, HBTU, HOBt, DIEA; v) 20% Piperidine/DMF; vi) FmocNHPEGOH (9 atoms), HBTU, 

HOBt, DIEA; vii) 20% Piperidine/DMF; viii) FmocLeuOH, HBTU, HOBt, DIEA; ix) 20% 

Piperidine/DMF; x) N-Boc-(2S,3R)-3-amino-2-hydroxy-4-phenyl butyric acid, HATU, DIEA; b) i) 

Pd(PPh3)4, PhSiH3, DCM; ii) hexynoic acid, HBTU, HOBt, DIEA; iii) 95%TFA:2.5%TIS:2.5%H2O. 
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Finally, to validate the utility of the probe as an ABP for MAPs in the 

context of a complex proteome, we assessed labeling of an aminopeptidase N 

homolog from the malarial parasite (PfA-M1) from whole cell lysates. To facilitate 

the identification of PfA-M1 from P. falciparum we utilized a parasite line that 

expresses the endogenous PfA-M1 as a YFP C-terminal fusion. Homogenized 

whole cell lysates from P. falciparum were labeled with MH01. The resulting 

proteome was separated by SDS-PAGE and western blot analysis was 

performed to first visualize biotinylated proteins. A 150 kD protein was labeled by 

MH01, which corresponds to the approximate weight of the PfA-M1-YFP fusion 

protein (Fig. 2.5A).  Preincubation of the protein lysate with unbiotinylated 

bestatin (Fig. 2.5A, lane 2) resulted in loss of labeling of the 150 kD band 

illustrating that bestatin was competitive with MH01 for this protein target. 

Additionally, the target was labeled in an activity-dependent manner, as 

preheating of the proteome prior to labeling abrogated any labeling (Fig. 2.5A, 

lane 3). Finally, to identify this target the blot was stripped and reprobed using an 

anti-YFP antibody (Fig. 2.5B). The anti-YFP revealed the presence of the 

expected 150kD fusion protein in all lanes and this band overlaid the exact 

position where the biotinylated protein appeared. It should be noted that PFA-

M1-YFP fusion appeared in all lanes with the anti-YFP antibody, whereas the 

biotinylated species only appeared when the active peptidase was labeled. This 

data thus confirmed the specific activity-based labeling of the PFA-M1 

aminopeptidase by MH01 within a complex malarial parasite proteome.  
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Figure 2.5: ABP labeling of the malarial M1 metallo-aminopeptidase in cell lysates. (a) P. 

falciparum cells (in buffer A) were freeze/thawed 3x on dry ice. Cell debris was removed 

by centrifugation, and the lysate was retained for labeling. MH01 was incubated with 

parasite lysate for 1 hr and then UV crosslinked for 1 hr. In one reaction, 100 µM 

unbiotinylated bestatin was preincubated with the lysate prior to probe addition. Labeled 

protein was visualized via a western blot for biotin. (b) The same blot was then stripped 

and reprobed using anti-YFP. 
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In conclusion, we have developed a novel activity-based probe class, with 

specificity for MAPs, based on the bestatin inhibitor scaffold. The use of a biotin, 

fluorophore, or alkyne moiety did not alter the activity-dependent labeling profile 

for the scaffold and, thus, the suite of ABPs presented in this manuscript should 

allow for a variety of labeling methodologies. We therefore believe that this ABP 

may prove to be a valuable tool for future characterization of MAP activity in a 

wide variety of biological systems. We are now currently pursuing the expansion 

and application of these probes for use against the malarial parasite. 

 

2.3 Experimental Procedures 

 General method for solid-phase peptide synthesis of ABPs: Standard solid-

phase peptide synthesis was performed on Rink amide resin, using 

HBTU/HOBt/DIEA in an equimolar ratio in DMF for 30 min at RT. Coupling of the 

α-hydroxy-β-amino acid required HATU for 1 hr. Each amino acid was double 

coupled.  Fmoc protecting groups were  removed with 20% piperidine/DMF for 

30 min. To cleave products from resin, a solution of 95%TFA:2.5%TIS:2.5%H2O 

was added to the resin.  After standing for 2 hrs, the cleavage mixture was 

collected, and the resin was washed with fresh cleavage solution. The combined 

fractions were evaporated to dryness and the product was purified by reverse 

phase-HPLC. Fractions containing product were pooled and lyophilized. Reverse 

phase HPLC was conducted on a C18 column using an Agilent 1200 HPLC.  

Purifications were performed at room temperature and compounds were eluted 
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with a concentration gradient 0-70% of acetonitrile (0.1% Formic acid). LC/MS 

data were acquired using LC/MSD SL system (Agilent). Solid-phase peptide 

chemistry was conducted in polypropylene cartridges, with 2-way Nylon 

stopcocks (Biotage, VA). The cartridges were connected to a 20 port vacuum 

manifold (Biotage, VA) that was used to drain excess solvent and reagents from 

the cartridge. MH01:  C62H90N10O14S, predicted mass 1230.64, observed  [M+H] 

1231.4. MH02: C57H81N9O12S, predicted mass 1115.57, observed [M+H] 1116.3. 

 The synthesis of the dual function ABP MH03 was accomplished using 

standard solid phase peptide synthesis as detailed above, However, the TAMRA 

was added after product cleavage from resin due to the instability of TAMRA to 

TFA. This was accomplished using a Boc protected lysine and addition of 

TAMRA using HBTU/HOBt/DIEA in DMF after resin cleavage for 3 h. MH03: 

C85H107N13O16S, predicted mass 1597.77, observed [M+2H] 799.8. 

 Synthesis of MH04 was accomplished as depicted in Scheme 2.2. The 

deprotection of the Aloc group was conducted under a positive flow of argon.  

The resin was solvated with dichloromethane for 5 min.  The  solvent was 

drained, and PhSiH3 (24 eq.) in CH2Cl2 was added to the resin followed by 

Pd(PPh3)4 (0.25 eq.) in CH2Cl2.  After agitating the resin for 1 hr by bubbling with 

argon, the solution was drained, and the resin was washed with CH2Cl2 (3x). 

Synthesis of the biotin-azide was accomplished using standard solid-phase 

synthesis using a bromo-acetic acid as the final group. The replacement of the 

bromo group by the azide was achieved by heating with NaN3 at 60oC. MH04: 

C50H67N7O10, predicted mass 925.49, observed [M+H]  926.5. 
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Chapter 3: A bestatin-based chemical biology strategy reveals 
distinct roles for malarial M1 and M17 family aminopeptidases† 

 
 

3.1 Introduction 

Malaria is a global disease causing at least 500 million clinical cases and 

more than 1 million deaths each year [78]. While significant efforts to control 

malaria via insect vector elimination have been pursued, chemotherapy remains 

the principal means of malaria control. Moreover, the emergence of drug 

resistance in Plasmodium falciparum, the causative agent of most malaria-

associated deaths, necessitates the discovery of novel antimalarials.  

P. falciparum has a complex life cycle involving mosquito and human 

hosts. This life cycle involves both sexual and asexual stages of growth, wherein 

the human asexual erythrocytic phase (blood stage) is the cause of malaria-

associated pathology. The erythrocytic stage begins when extracellular parasites, 

initially released from the liver, invade red blood cells. Once established in a 

specialized vacuole inside the host erythrocyte, parasites grow from the initial 

ring stage to the trophozoite stage, wherein much of the host hemoglobin (Hb) is 

proteolyzed. Parasites then replicate during the schizont stage to produce 

expanded populations of invasive merozoites that then rupture from the host cell 

approximately 48 hours post-invasion and go on to recapitulate the life cycle [79]. 

                                                        
† The text of this chapter has been published (Harbut et al. A bestatin-based chemical biology 
strategy reveals distinct roles for malarial M1 and M17 aminopeptidases. Proc Natl Acad Sci 
USA. 2011 Aug 21;108(234)E526-34. Epub 2011 Aug 15). It is republished here with permission. 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Peptidases are critical to parasite development throughout the life cycle and 

therefore are considered to be potential antimalarial drug targets [45,80,81]. 

One proteolytic pathway that has received significant attention is the multi-

step degradation of host Hb [15]. While residing inside the host red blood cell, 

malaria parasites endocytose and proteolytically digest host Hb in a specialized 

lysosomal-like digestive vacuole (DV). This process liberates amino acids that 

the parasite can utilize for protein synthesis and general metabolism [22] and 

may reduce pressure on the host cell produced by the growing parasite [23]. 

Multiple endoproteases make initial cuts in full-length Hb; however, genetic 

knockout studies of these enzymes, plasmepsins 1-4 and falcipain 2/2’, have 

revealed that all are non-essential and functionally redundant [52,53,82]. While 

falcipain 3 has not been shown to be dispensable, it is expressed later in the 

parasite lifecycle and may have roles beyond Hb degradation. On the other hand, 

several exopeptidases, some of which may have roles in Hb degradation, are 

likely genetically essential [43,44]. Among these non-redundant enzymes are 

cysteine dipeptidyl aminopeptidase 1 (DPAP1) and three metallo-

aminopeptidases (MAPs): aminopeptidase N (PfA-M1), aminopeptidase P 

(PfAPP), and leucyl aminopeptidase, (Pf-LAP) [44]. 

MAPs have been postulated to be important for the parasite life cycle. 

Early studies suggested that MAP activities were absent from the DV lumen, 

leading to the proposal that Hb peptides are exported to the cytosol for further 

degradation by MAPs [83-85]. However, more recent localization and 

biochemical evidence suggest that PfA-M1 and PfAPP are located inside the DV, 
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while Pf-LAP is located in the parasite cytosol and has been proposed to act on 

exported globin peptides [86-88]. A cytosolic aspartyl MAP, PfDAP, has been 

shown to hydrolyze substrates with an amino-terminal Asp or Glu residue, but its 

contribution to blood-stage peptide catabolism appears to be dispensable as 

genetic disruption causes no overt phenotype [44]. Importantly, none of these 

studies provide any biological evidence, most importantly in live parasites, for a 

direct role for MAPs during Hb peptide catabolism. 

Unfortunately in P. falciparum, genetic approaches to study essential 

genes are limited and thus direct evidence for the biological roles of these MAPs 

is still lacking [37]. As a complementary approach, we have developed a MAP-

specific chemical genetics platform that utilizes activity-based protein profiling 

(ABPP) based on the natural product inhibitor bestatin to study the roles of MAPs 

[89]. ABPP is a chemical strategy that utilizes mechanism-based, tagged small 

molecule inhibitors to discover new enzymes, profile their activity state in 

complex proteomes, and identify potential functions for these enzymes during a 

specific biological process [90]. ABPP has been utilized for a variety of enzyme 

classes, including serine hydrolases, peptidases, histone deacetylases and 

kinases [60,61,91,92].  

(-)-Bestatin is a natural product dipeptide analog of actinomycetes that 

potently inhibits multiple families of MAPs including the M1 and M17 families [70-

72,93] (Fig. 3.1A). Importantly, bestatin has been shown to inhibit growth of P. 

falciparum parasites in culture and in mouse models of malaria [94-96]. In 

addition, a recent study has indirectly implicated aminopeptidases in hemoglobin 
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catabolism showing that parasites treated with bestatin had decreased levels of 

hemazoin formation, the detoxified biomineral byproduct of Hb digestion [97]; 

likewise, isoleucine uptake was decreased in these bestatin treated parasites. 

However, the MAP(s) targeted by bestatin, which are responsible for these 

processes, were not identified. 

Herein, we report on a multidisciplinary effort combining bestatin-based, 

small molecule ABPs with biochemical and peptidomic approaches to functionally 

analyze two essential aminopeptidases, PfA-M1 and Pf-LAP.  

 

3.2 Results 

Identification of bestatin targets in P. falciparum 

Because of the paucity of genetic tools for analysis of essential proteins in 

P. falciparum and a lack of highly specific inhibitors with which to probe the 

individual roles of MAPs, we chose to study the functions of these essential 

parasite MAPs through the development and application of a MAP specific ABPP 

platform. ABPP utilizes tagged mechanism-based inhibitors, or activity-based 

probes (ABPs), to characterize families or individual active peptidases within 

complex proteomes. ABPs typically possess two main structural components that 

contribute to their target specificity: (i) a mechanism-based inhibitor scaffold to 

covalently or noncovalently target catalytic residues or the active site of 

peptidases and (ii) a reporter tag, such as a fluorophore or biotin, for the 

visualization, characterization of labeling events, and eventual affinity purification 
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of target proteins. The mechanism-based inhibitor scaffold ensures that ABPs 

bind to the enzyme(s) in an activity-dependent manner.  

We decided to use the natural product, bestatin, as the scaffold for the 

development of ABPs for MAPs since it is a general MAP inhibitor, kills 

Plasmodium parasites, and is synthetically tractable using both solution and 

solid-phase chemistry [69,89,98]. To identify the target(s) of bestatin in P. 

falciparum, we utilized a previously published bestatin-based ABP, MH01 

(Fig.3.1B) [89]. MH01 contains a biotin moiety to allow for monitoring of protein 

binding and affinity purification for target identification and also utilizes a 

benzophenone for irreversible UV crosslinking to protein targets, as the inhibition 

of MAPs with bestatin is noncovalent [89]. Asynchronous cultures of 3D7 

parasites were treated with saponin to lyse the erythrocyte and parasitophorous 

vacuole membranes and isolated whole parasites were harvested by 

centrifugation. Crude parasite lysates, including both soluble and membrane 

proteins, were treated with 5 µM MH01, exposed to UV light, and analyzed by 

western blot using streptavidin-HRP to detect biotinylated proteins. The observed 

labeling pattern consisted of four bands at approximately 100 kDa, 70 kDa, 55 

kDa, and 25 kDa (Fig. 3.1C). Western blot analysis with PfA-M1 or Pf-LAP 

antibodies of parasite lysates labeled with MH01 showed that all four labeled 

species could be accounted for with these two antibodies: three bands 

corresponded to different species of PfA-M1 and one to Pf-LAP (Fig. 3.1C). PfA-

M1 is known to be proteolytically processed from a 120 kDa proform to a 115 

kDa intermediate yielding the p96 and p68 forms, both of which contain the 
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catalytic domains and are labeled by MH01 [85]. The labeled p25 band is likely a 

secondary proteolytic breakdown product. We further confirmed that MH01 

bound PfA-M1 and Pf-LAP using individual parasite lines expressing YFP-tagged 

versions of these proteins [44]. After incubation of each YFP-tagged transgenic 

line with MH01, immunoprecipitation using streptavidin and western blotting for 

YFP revealed that both PfA-M1-YFP and Pf-LAP-YFP were targeted by MH01 

(Fig. 3.1D and E). Likewise, the reciprocal experiment involving the 

immunoprecipitation of YFP and western blotting for biotin revealed that each 

YFP-tagged peptidase protein was biotinylated by MH01 (Fig. 3.1D and E). 

Specificity of the interaction was confirmed by pretreatment with unlabeled 

bestatin, which blocked labeling. These results indicate that PfA-M1 and Pf-LAP 

are likely the only targets of bestatin in P. falciparum parasites. In addition, they 

highlight the difficulty in understanding the mechanism of bestatin toxicity, which 

could be due to the inhibition of either PfA-M1 or Pf-LAP or both. 
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Figure 3.1: Identification of PfA-M1 and Pf-LAP as the targets of the anti-parasitic MAP 

inhibitor bestatin. (a) Structure of bestatin. (b) Structure of MH01. (d) Identification of PfA-M1 

and Pf-LAP as the parasite targets of bestatin. Parasite lysates were prepared by freeze-

thaw lysis and subsequently labeled with 5 µM MH01, UV crosslinked, and analyzed by 

western blot for biotin. Four proteins were labeled by MH01. The same blot was stripped and 

reprobed sequentially with antibodies for PfA-M1 and Pf-LAP; three MH01 labeled proteins 

were accounted for by anti-PfA-M1 and fourth by anti-Pf-LAP. (d) A parasite line expressing 

a YFP-tagged PfA-M1 protein was incubated with MH01 followed by immunoprecipitation 

for biotin (MH01) and western blot analysis for YFP, which confirmed that PfA-M1 is targeted 

by MH01 (first panel). The reciprocal experiment involving the immunoprecipitation of PfA-

M1-YFP (after incubation of parasites with MH01) using a YFP-specific antibody confirmed 

PfA-M1-YFP is biotinylated and thus labeled by MH01 (second panel). (e) Likewise, the same 

analysis was performed using a parasite line expressing a YFP-tagged Pf-LAP protein; 

incubation of these parasites with MH01, followed by immunoprecipitation of biotin (MH01) 

and western blot analysis for YFP confirmed that MH01 labels PF-LAP. The reciprocal 

experiment involving immunoprecipitation of Pf-LAP-YFP and analysis by western blot for 

biotin confirmed that Pf-LAP-YFP is biotinylated by MH01. Lastly, MH01 labeling of YFP-

tagged MAPs, in both cases, is blocked by pretreatment with unbiotinylated bestatin as 

seen as a lack of labeling. Input lanes below each panel show western blot analysis using 

anti-YFP of total parasite lysate just before immunoprecipitation. 
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MAP ABP library design and in vitro analysis against PfA-M1 and Pf-LAP 

To investigate the individual functions of the two MAP targets of bestatin 

and to gain insight into the mechanism of how bestatin kills parasites, we 

synthesized several libraries of bestatin-based ABPs with the intention of 

generating specific ABPs for both PfA-M1 and Pf-LAP. Bestatin has two side 

chains that can be diversified, which are derived from the constituent α-hydroxy-

β-amino acid and a natural α-amino acid (Fig. 3.1A). These side chains straddle 

the active sites of MAPs where the α-hydroxy-β-amino acid side chain (termed 

P1) fits into the S1 pocket of the enzyme (N-terminal to the scissile bond) and the 

adjacent natural amino acid side chain (P1’) interacts with the S1’ pocket (C-

terminal to the scissile bond) [99,100]. In our initial library, the P1’ leucine residue 

in bestatin was replaced with a series of natural amino acids (except cysteine 

and methionine which are prone to oxidation; norleucine was included as an 

isostere for methionine) and a limited number of non-natural amino acids (Fig. 

3.2A). Each library member was designed to incorporate a benzophenone to 

enable covalent attachment of the ABP to its targets and a terminal alkyne at the 

C-terminus, to allow for the later addition of a variety of reporter tags using the 

bio-orthogonal copper(I)-catalyzed [3+2] azide/alkyne cycloaddition (‘click 

reaction’) [101-103]. This library construction strategy increases the flexibility of 

downstream applications as each member has a “taggable” arm; thus, they can 

be used to directly treat live cells (as well as cellular lysates or recombinant 

enzymes) for target identification and activity profiling using a reporter tag, 

without any necessity for re-synthesis or troubleshooting of tag placement. 
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We initially screened a P1’ diverse library against both recombinant PfA-

M1 and Pf-LAP via standard fluorescence protease activity assays. Results of 

this experiment are presented as a heat map based on percent inhibition of PfA-

M1 and Pf-LAP for each ABP (Fig. 3.2A). The S1’ pocket of Pf-LAP tended to 

favor aromatic side chains such as Phe, Tyr, and Naphthyl. One probe, Phe-

Naphthyl (PNAP), showed strong specificity for Pf-LAP over PfA-M1. In addition, 

several sidechains favored binding towards PfA-M1 over Pf-LAP, which tended to 

be either small (Ser, Ala) or positively charged (Lys, Arg). The probes Phe-Ala, 

Phe-Lys and Phe-Arg showed moderate specificity for PfA-M1; however we 

decided not to pursue further studies with the positively charged probes because 

of potential issues with cell permeability. Although the Phe-Ala ABP was 

somewhat specific for PfA-M1, we felt it was not yet suitably specific for further 

biological studies; thus we investigated modifications to the P1 sidechain to 

achieve higher specificity. 

To increase specificity for PfA-M1, we synthesized a second bestatin-

based library that diversified the α-hydroxy-β-amino acid side chain (P1 position) 

using a fixed alanine at the P1’ position. Given structural information indicating 

that the S1 pocket of the PfA-M1 enzyme was hydrophobic the P1 library was 

synthesized with a variety of natural and non-natural hydrophobic P1 side chains 

including: Ala, Leu, Diphenyl, Naphthyl, Biphenyl, and (Benzyl)Tyr; (Fig. 3.2B) 

[100]. Again each library member had a clickable alkyne C-terminal to the 

benzophenone. This secondary ABP library was profiled against recombinant 
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PfA-M1 and Pf-LAP and from the initial heat map analysis, the (Benzyl)Tyr-Ala 

ABP (BTA) gave the highest specificity of PfA-M1 over Pf-LAP. 

 To determine the morphological effects of inhibition using the probe 

libraries, parasite development was monitored throughout the entire lifecycle by 

Giemsa staining of thin blood smears (Fig. 3.2C). Three chemotypes (small 

molecule-induced morphological changes) were observed from this analysis: i) 

no overt effect, ii) early parasite death at the ring/trophozoite transition marked by 

pyknotic bodies, and iii) swelling of the DV with parasite death occurring at the 

trophozoite/schizont transition. Importantly, the swollen DV as observed with 

these bestatin-based ABPs appeared translucent in Giemsa-stained smears, 

which distinguishes them from the dark swollen DV containing undigested Hb 

seen after treating parasites with papain family cysteine protease inhibitors such 

as E64 that target DV falcipains 2 and 3 [28].  

Correlating the in vitro results with the live cell morphological screening 

results revealed that ABPs that produced the swollen DV chemotype displayed a 

high degree of specificity for PfA-M1 while ABPs more specific for Pf-LAP 

produced the early death/pyknosis chemotype. Compounds that failed to inhibit 

both MAPs, such as Phe-Asp (P1’-Asp) showed no chemotypes and were useful 

as negative control compounds (Fig. 3.2C). The contrasting chemotypes 

displayed by parasites treated with the most specific compounds, BTA or PNAP, 

suggested that PfA-M1 and Pf-LAP have essential yet distinct roles in the 

parasite.  
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Figure 3.2: Bestatin-based ABP libraries reveal distinct chemotypes produced by ABPs with 

increased specificity for either PfA-M1 or Pf-LAP. (a) Representative structure of the bestatin-

based ABP scaffold showing the point of diversification at the P1' position. This ABP library was 

screened against recombinant PfA-M1 and Pf-LAP in single fixed concentrations. Results of the 

assay are displayed as a heat map: red indicates higher potency; blue indicates lower 

potency. The Phe-Naph ABP showed high specificity for Pf-LAP. (BES* indicates parental 

bestatin) (b) A library of ABPs was synthesized to identify a probe with increased specificity for 

PfA-M1. Representative structure of the bestatin-based ABP scaffold showing the point of 

diversification at the P1 position. All compounds had an Ala at the P1’ position. Results of the 

assay are displayed as a heat map: red indicates higher potency; blue indicates lower 

potency.  The (Benzyl)Tyr-Ala ABP showed high specificity for PfA-M1. (c) Synchronized parasites 

were treated with each compound at 1 µM and assayed for morphological changes by light 

microscopy of Giemsa stained blood smears through the erythrocytic lifecycle. Bar, 5 µm. ABPs 

more specific for PfA-M1 showed swelling of the DV, while probes more specific for Pf-LAP 

showed an early death chemotype. In collaboration with Seema Dalal and Mike Klemba. 
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Evaluation of BTA and PNAP potency and specificity  

To quantitatively assess the relative specificity of BTA and PNAP, 

inhibition constants against recombinant PfA-M1 and Pf-LAP were determined 

(Fig. 3.3A). All ABPs bound rapidly to PfA-M1; in contrast, binding to Pf-LAP was 

slow, as has been reported for bestatin [69]. Analysis of BTA inhibition revealed 

that the substitution of the P1’ Leu for Ala shifted the specificity moderately 

towards PfA-M1. With the substitution of the P1 Phe with (Benzyl)Tyr in BTA, the 

affinity of the ABP was only moderately changed for PfA-M1 (Fig. 3.3A), while the 

inhibition constant for Pf-LAP radically dropped nearly 100-fold resulting in an 

ABP with an estimated micromolar Ki* (an estimate was necessary due to 

insolubility at high micromolar concentrations). Thus the overall change in the 

ratio of inhibition constants of PfA-M1 over Pf-LAP from bestatin to BTA was 

approximately 75-fold and the absolute specificity difference for PfA-M1 over Pf-

LAP was at least 15-fold making BTA a useful biological tool to study PfA-M1 

function. Likewise, the substitution of a naphthyl group for the P1’ leucine of 

PNAP increased the affinity of PNAP for Pf-LAP, resulting in a 170-fold change in 

the specificity of PNAP for Pf-LAP relative to BTA and approximately a 12-fold 

difference in absolute specificity, creating a relatively specific inhibitors for both 

enzymes.  

 Although in vitro data suggested that BTA and PNAP were quite specific 

for PfA-M1 and Pf-LAP, respectively, these data do not rule out the possibility 

that the ABPs have other targets in parasites. To confirm the specificity of each 

probe in parasites, we utilized the alkyne on each ABP to ‘click’ on a fluorophore 
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(BODIPY) tag, to identify target(s) of BTA and PNAP in crude P. falciparum 

proteomes. The fluorescent ABPs were incubated with parasite lysates, UV-

crosslinked and targets analyzed via in-gel fluorescent scanning. As predicted 

from the in vitro kinetic assays, BTA exclusively labeled bands identical in 

migration on gels to those recognized by antibodies to PfA-M1 in this complex 

proteome, while PNAP was specific for a band that correlated in migration with 

Pf-LAP (Fig. 3.3B).  

To investigate the structural basis for the specificity of BTA for PfA-M1 we 

solved the X-ray co-crystal structure of PfA-M1 bound to the BTA probe. The co-

crystal structure was solved to 1.8 Å and electron density clearly resolved the 

BTA probe and linker but lacked any visible density for the “clickable” alkyne C-

terminal tag (Fig. 3.3C, left panel; see Table 3.1 for statistics). The BTA ABP 

bound to the essential active site zinc ion via the hydroxyl and carbonyl groups 

(O2/O3) and central nitrogen of the bestatin scaffold. The S1 pocket showed a 

slight movement (~1.2 Å between c-α atoms between the key S1 residue, 

Glu572, of the two structures) to accommodate the (Benzyl)Tyr at the P1 

position.  The P1’ Ala moiety did not reach far into the S1’ pocket of PfA-M1 as 

the remaining probe positioned itself close to the S1 pocket (Fig. 3.3C, left 

panel). We also modeled BTA into the X-ray crystal structure of Pf-LAP bound to 

bestatin (PDB ID 3KR4). Superposition of BTA onto the bestatin core showed 

that the large (Benzyl)Tyr residue at the P1 position clashed with the narrow S1 

pocket of the active site in Pf-LAP (Fig 3.3C, right panel). 
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We also solved the co-crystal structure of Pf-LAP bound to PNAP (Fig. 

3D, right panel). The 2.0 Å X-ray structure resolved the structural basis for the 

PNAP specificity and potency for Pf-LAP. As expected the PNAP ABP bound in a 

similar manner to the parent bestatin dominated by coordination of two Zn2+ ions 

of the active site [104]. The P1-Phe ring of PNAP fit neatly into the small 

hydrophobic S1 pocket of Pf-LAP and the P1’ naphthyl group also formed a 

series of hydrophobic interactions in the S1’ cleft. The only alteration noted to 

accommodate the P1’ naphthyl group was the movement of Ser550 (~2.9 Å 

between c-α atoms of the Pf-LAP-PNAP structure versus the Pf-LAP-bestatin 

structure).  This residue is located in a loop that lines the S1’ cleft and the 

movement noted in the Pf-LAP-PNAP structure effectively flips the serine residue 

away from the naphthyl group, dragging the loop and preventing any close 

contacts with the P1’ residue. It was also possible to model PNAP into the X-ray 

crystal structure of Pf-LAP bound to bestatin (PDB ID 3EBH). Superposition of 

PNAP onto the bestatin core showed that the naphthyl side chain at the P1’ 

position clashed with the wall of the S1’ pocket of the active site in Pf-LAP (Fig. 

3.3D, left panel). 

Although we saw no evidence of labeling of any other peptidase in 

parasite proteomes (Figs. 3.1 and 3.3), we wanted to further confirm that the 

BTA-derived DV chemotype was not caused by inhibition of other proteases; thus 

we assayed for inhibition of other DV peptidases: DPAP1, PfAPP and falcipain 2. 

No inhibition of any enzyme was seen at a concentration up to 30 µM BTA, 
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indicating that there is likely no cross-reactivity of BTA with these enzymes in live 

parasites and that the DV swelling is caused solely by inhibition of PfA-M1 
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Figure 3.3: Biochemical and structural characterization of BTA and PNAP specificity against PfA-

M1 and Pf-LAP. (a) Kinetic evaluation of inhibition for  PNAP and BTA on recombinant PfA-M1 

and Pf-LAP reveal over 15-fold specificity for PfA-M1 over Pf-LAP by BTA; PNAP showed greater 

than 10 fold specificity for Pf-LAP over PfA-M1. Ki* for BTA for Pf-LAP was estimated due to 

solubility issues. (b) Activity-based probe profiling using “click” fluorescent versions of BTA or 

PNAP show that each probe specifically targets PfA-M1 or Pf-LAP, respectively (as indicated by 

an asterisk). (The superscript “C” in lane 4 of both panels indicates pretreatment with 10x of the 

non-fluorescent version of the respective ABP). (c) The electrostatic potential surface of the co-

crystal of PfA-M1 with BTA (left panel) and model of Pf-LAP with BTA bound in active site (right 

panel). (d) The electrostatic potential surface of the model of PfA-M1 with PNAP (left panel) 

and surface of the co-crystal of Pf-LAP with PNAP (right panel). The zinc ion is shown as black 

sphere, the carbon atoms of inhibitors in green. Residues 755-1090 of PfA-M1 are excluded for 

clarity and a single monomer active site is shown for Pf-LAP. Surfaces were color coded 

according to electrostatic potential. Arrows show points at which either PNAP or BTA sterically 

clash with the enzyme. In collaboration with Seema Dalal, Mike Klemba, Sheena McGowan, 

and James Whistock. 
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Figure 3.4: DV-localised endoproteases are not inhibited by BTA. Activity assays for falciparin 

2/2’, DPAP1 and PfAPP show that no inhibition occurs at 30 µM BTA.In collaboration with Seema 

Dalal and Mike Klemba. 
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Inhibition of PfA-M1 kills parasites via disruption of Hb digestion whereas Pf-LAP 

kills via a distinct mechanism  

After confirming the specificities of BTA and PNAP, we next wanted to 

more fully characterize the effects of these ABPs on parasites through their life 

cycle. To do this, synchronized parasites were treated at the ring stage and 

followed by light microscopy evaluation of Giemsa stained thin blood smears 

(Fig. 3.5A).  We found that treating parasites with BTA at its IC99 caused a delay 

in the life cycle and swelling of the DV at the trophozoite stage with eventual 

parasite death around 60 hours post-treatment. As a comparison, parasites 

treated with E64-d, a cysteine protease inhibitor that blocks DV falcipains (and 

initial endoproteolytic cleavage of Hb) had a similar delay and swollen DV (darkly 

stained rather than translucent), but remained alive at the 60-hour timepoint. In 

contrast, PNAP-treated parasites were arrested at the transition to the 

trophozoite stage; therefore it appeared that PNAP exerted its effect on parasites 

significantly earlier than the time of major Hb digestion. PNAP treatment caused 

no prominent morphological features (other than death), thus complicating 

hypothesis generation as to its mechanism of action. To our knowledge the only 

other inhibitor that kills rings is artesunate and the other members of the 

artemisinin family (also shown in Fig. 3.5A for comparative purposes); although 

the mechanism of action for artesunate may be different than PNAP it is 

intriguing that there could be overlap amongst these two structurally divergent 

inhibitor classes [105].  
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Inhibition of PfA-M1 by BTA treatment of parasites caused a novel swollen 

DV chemotype. To investigate this phenomenon more closely we visualized the 

swelling of the DV in live parasites using a parasite line expressing YFP-tagged 

plasmepsin II that serves as a DV marker [106]. Transgenic parasites were 

treated with increasing concentrations of BTA and evaluated by fluorescent 

microscopy (Fig. 3.5B). From these images, we estimated the relative average 

DV size (measuring 10 DVs) after each treatment. Parasites treated with as little 

as 250 nM BTA (the Ki of BTA for PfA-M1) showed a statistically significant 

increase in DV size relative to untreated parasites, with saturation of this swelling 

at 1µM (Fig. 3.5B and C). The observation that the degree of DV swelling is 

dose-dependent and saturable is consistent with the hypothesis that, within this 

concentration range, PfA-M1 is likely the sole target and performs a key function 

in the DV. In contrast, parasites treated with PNAP at a concentration over 8 fold 

greater than its Ki against Pf-LAP did not show any significant DV swelling (Fig. 

3.4B).  

Since disruption in the endocytosis or subsequent catabolic breakdown of 

Hb is thought to be lethal to parasites we hypothesized that PfA-M1 inhibition by 

BTA leads to starvation of the parasite via blockage of proteolysis of Hb peptides 

[82]. To test this idea, we assayed whether parasites forced to rely only on Hb 

catabolism are more sensitive to BTA than parasites cultured with exogenous 

amino acids, by assaying the potency of BTA on parasites cultured in media 

lacking all amino acids except isoleucine (the only amino acid not present in Hb). 

Indeed, parasites were sensitized by approximately 2.4-fold to inhibition by BTA 
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in media with only isoleucine (Fig. 3.5D). In contrast, parasites treated with PNAP 

or the antimalarial artesunate, which kills ring stage parasites prior to initiation of 

large-scale Hb degradation and thus acts as a negative control, showed 

statistically insignificant differences in sensitization to either compound in the 

isoleucine media. This evidence suggests a role for PfA-M1 in the Hb digestion 

pathway and also provides further evidence that the primary role of Pf-LAP is not 

within the Hb digestion pathway.  

Initial proteolytic events are thought to be carried out by the redundant 

endopeptidases falcipains 2/2’/3, plasmepsins I, II, IV, and HAP [107]. Hb-

derived oligopeptides are then broken down by exopeptidases. Considering that 

PfA-M1 is an aminopeptidase, its likely role in the DV would occur after initial Hb 

proteolysis by the endopeptidases. To confirm this, we treated synchronous 

cultures of parasites during the trophozoite stage, in which the majority of Hb 

degradation takes place. Figure 3.6 shows that parasites treated with E64-d 

leads to an accumulation of full-length Hb and causes the swelling of the DV with 

undigested Hb [28,108]. Conversely, parasites treated with BTA showed no 

inhibition of proteolysis of full-length Hb but still caused the DV to swell. 

Treatment of parasites with PNAP was similar to DMSO. 
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Figure 3.5: Inhibition of PfA-M1 kills parasites via disruption of Hb digestion whereas Pf-LAP kills 

via a distinct mechanism. (a) Parasites were treated with BTA (10 mM), E64-d (10 µM), PNAP (3 

µM), bestatin (10 µM), and artesunate (10 nM) at concentrations roughly equivalent to their IC99, 

and followed by Giemsa staining and light microscopy throughout the lifecycle. Bar, 5 µm. (b) 

DV swelling was confirmed by the dose-dependent enlargement of the average DV area. 

Parasites expressing YFP-tagged plasmepsin II (PMII-YFP), which localizes to the DV, were 

treated with increasing concentrations of BTA (and 250 nM PNAP) and imaged by fluorescence 

microscopy. (c) DV swelling was determined to be saturable and quantified by treating the 

PMII-YFP parasites with increasing concentrations of BTA (PNAP was also used at 250 nM) at mid-

ring stage and measuring fluorescent DV area 20 hrs later using a minimum of 10 parasites (+/- 

standard deviation). (d) Treatment of parasites with BTA in media lacking exogenous amino 

acids, except for isoleucine, results in more than two-fold decrease in the IC50 of BTA, while 

parasites treated with PNAP or artesunate show a non-significant difference. Shown are 

representative IC50 plots for each compound in both I-Media (lacking exogenous amino acids 

except for isoleucine), and AA-Media (containing all natural amino acids). The inlay bar graphs 

show differences of the mean IC50 of three experiments carried out in triplicate (*P <0.05, 

Student’s t test). 
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Inhibition of PfA-M1 blocks proteolysis of specific Hb-derived oligopeptides  
 

To obtain direct evidence for the role of PfA-M1 in the proteolysis of Hb-

derived oligopeptides, we endeavored to find peptide substrates for this enzyme. 

We used a mass spectrometry-based peptidomics approach to assay the relative 

abundance of peptides (<10 kDa) in parasites either untreated or treated with the 

specific PfA-M1 inhibitor BTA. To do this, trophozoite stage parasites were 

treated with BTA or DMSO for 24 hr. Whole parasite extracts were prepared and 

peptides were enriched by an acid extraction followed by a filtration through a 10 

kDa filter column. Resulting peptide extracts were analyzed by nano LC-MS/MS. 

Mass spectrometry analysis of the peptide peaks against both Hb α and 

β sequences revealed that the great majority of these oligopeptides showed no 

difference between the treated and untreated samples; however, several 

oligopeptides, from both the α and β chains of Hb, appeared to accumulate after 

treatment of parasites with BTA (Fig. 3.7A and B).  

Further sequence analysis of the accumulated Hb-derived oligopeptides 

revealed that the majority were likely poor substrates for DPAP1, the other 

essential aminopeptidase with broad substrate specificity found in the DV [108]. 

We thus hypothesized that PfA-M1 was necessary for proteolysis of these 

oligopeptides. To test this idea, a highly enriched peptide that was identified from 

the peptidomics study of BTA-treated samples was re-synthesized and shown to 

be resistant to cleavage by DPAP1, yet efficiently cleaved by PfA-M1 (Fig. 3.7C). 

This data provides the first direct evidence of a role for the genetically essential 
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enzyme, PfA-M1, in the digestion of small Hb-derived oligopeptides in P. 

falciparum. 
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hemoglobin

loading control

DMSO BTA E-64dPNAP

Figure 3.6: Inhibition of PfA-M1 causes DV swelling but does not prevent  proteoytic cleavage of 

full length Hb. Parasites treated with BTA (1 µM) and PNAP (0.25 µM) are capable of initiating Hb 

degradation, as shown by an absence of full length Hb subunits (17 kDa) in both untreated and 

BTA-treated parasites, in contrast to parasites treated with E-64d, which disrupts the initial 

endoproteolytic cleavage of Hb. 
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Figure 3.7: Inhibition of PfA-M1 blocks proteolysis of specific Hb oligopeptides. (a) Global 

peptide profiling of treated parasites identifies a subset of peptides that accumulate in BTA-

treated parasites relative to DMSO. Peptides were extracted from either DMSO or BTA-treated 

parasites and peptides analyzed by LC-MS/MS.  Peptides identified are displayed according to 

elution time, intensity, and M/Z. Area of the peptide peak corresponds to relative abundance 

(b) LC-MS/MS sequencing of the peptides reveals accumulated peptides are derived from Hb. 

Ratio of peptide abundance was calculated by determining the area of peptide intensity of 

BTA-treated vs untreated (c) A synthesized version of an abundantly accumulated peptide, 

identified in the prior LC-MS/MS analysis, was efficiently proteolyzed at the N-terminal valine by 

PfA-M1; while DPAP1, the other likely essential DV aminopeptidase, failed to catalyze any 

proteolysis. Shown are HPLC traces displaying the synthetic peptide without enzyme (top trace), 

with PfA-M1 (middle trace), or with DPAP1 (lower trace). Insets show peptide sequences 

corresponding to HPLC peaks. 
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Figure 3.8: Small dipeptide species accumulate in BTA-treated parasites. (a) The LC trace 

identifies a peak that increases in the lysates of BTA-treated parasites. (b) The MS profile 

identifies the species with a molecular weight of 282 Da, which may corresponds to a Thr-Tyr 

dipeptide from Hb. Another MS trace identifies a putative Hb-derived His-Lys dipeptide, with a 

molecular weight of 283. (c) A table of the putative dipeptides species identified in BTA-treated 

parasites. 
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3.3: Discussion 

Peptidases likely have many essential functions in P. falciparum, yet the 

biological roles of the majority of putative proteases encoded by the parasite 

genome remain to be characterized. One reason for this rests in the difficulty in 

genetically manipulating essential parasite genes. To circumvent this deficit in 

genetic tools, a small molecule approach may be used to perturb and thus 

investigate essential protein functions in the parasite. Several issues arise from 

the use of small molecule probes, including i) target identification, ii) specificity, 

and iii) permeability in live cells. To address some of these issues, we generated 

a library of MAP-specific, ‘clickable’ ABPs. Replacement of a bulky reporter tag 

with an alkyne group resulted in smaller, more versatile ABPs that allowed for 

their use in live cells for phenotypic analysis along with more tradition lysate-

based ABPP.  

Using this set of chemical tools, we first identified the targets of bestatin in 

P. falciparum to be PfA-M1 and Pf-LAP; although there are limitations to this 

ABPP approach, i.e., it is hard to determine with absolute certainty that there are 

no low abundance targets, further diversification of the MAP inhibitor scaffold to 

generate structure-activity relationship (SAR) trends can strengthen functional 

conclusions. Thus, through diversification of the bestatin scaffold, we were able 

to create a suite of ABPs with increasing specificity for both PfA-M1 and Pf-LAP 

and used these ABPs to further understand the functions of these essential 

enzymes.  
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The aggregate data using the BTA ABP strongly suggests that PfA-M1 

plays a key role in oliogopeptide proteolysis in the DV. The most prominent 

morphological feature of PfA-M1 inhibition was the novel swollen, translucent DV 

chemotype, which was likely due to the accumulation of oligopeptides that 

created hyperosmotic conditions. DV swelling also occurs after E64-d inhibition 

of DV falcipains; yet these parasites do not die until they attempt to egress, which 

suggests that swelling alone is not lethal to parasites, and that there must be 

enough amino acids generated (perhaps by plasmepsins) or obtained from the 

medium in the presence of this inhibitor to allow life cycle progression. We 

therefore propose that the likely cause of death upon PfA-M1 inhibition is a 

severe deprivation of the DV production of amino acids in the parasite. (Although 

we cannot rule out that killing may be due to indirect effects distinct to PfA-M1 

inhibition, such as the accumulation of small peptides in the DV, which could 

potentially be toxic). To support the hypothesis that inhibition of PfA-M1 disrupts 

Hb degradation, we demonstrated that the effects of BTA were enhanced when 

parasites were forced to rely solely on Hb degradation. Why the amino acids 

present in complete media do not allow for the parasite to completely 

complement for the genetic or pharmacological loss of PfA-M1 via the utilization 

of exogenous amino acids is an interesting question. This sensitivity may be 

explained by the fact that the parasite is particularly dependent on leucine 

generated in the DV from Hb, which is thought to be exchanged for isoleucine via 

an antiport mechanism [109].  
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From our peptidomics experiments we showed that Hb oligopeptides were 

substrates for PfA-M1 proteolysis. One issue with this analysis is that small 

peptides were not found using our mass spectrometry method, which was limited 

to the identification of peptides greater than four amino acids in length. It is likely 

that the concerted action of DV endo- and exoproteases also produced smaller 

tri- and di-peptides, which are substrates for PfA-M1 in the DV. In support of this 

idea, we also attempted to identify small peptide species using a single Quad 

LC/MS (which allows for profiling peptides between 200 and 400 Da) that 

accumulated in BTA-treated parasites (Fig. 3.8). These low molecular weight 

species all matched to predicted dipeptide molecular weights, and more than half 

were the molecular weight of dipeptides found in Hb. This method precluded the 

definitive identification of these molecules as peptides (as opposed to 

metabolites) and their origin (i.e., Hb). However, we believe these data are 

suggestive that several dipeptides, in addition to oligopeptides, are likely 

important substrates for the PfA-M1 enzyme. 

Our data using the PNAP ABP for Pf-LAP indicated that this enzyme has 

an important role quite early in the intra-erythrocytic life cycle rather than during 

the major period of Hb digestion. Formulating a testable hypothesis about a 

specific role for Pf-LAP is complicated by the fact that its inhibition did not yield 

any overt morphological change in the parasite other than death. However, we 

suspect Pf-LAP may have an essential housekeeping function in the cytosolic 

turnover of dipeptides [110], and perhaps acts in concert with the parasite 

proteasome, as has been shown for other neutral cytosolic leucine 
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aminopeptidases pathways [111]. Like PNAP, lethal amounts of proteasome 

inhibitors exert their effect in the ring-trophozoite transition and parasites do not 

progress into the later trophozoite stage [112].  Our data does not completely rule 

out the possibility of a minor role for Pf-LAP in the Hb degradation pathway via 

proteolysis of Hb-derived dipeptides that have been transported from the DV into 

the cytoplasm. However, the fact that PNAP-treated parasites die prior to the 

major period of Hb degradation suggests that the essential role for Pf-LAP is not 

within the Hb digestion pathway.  

Our collective data suggest that these two MAPs are both potential anti-

parasitic drug targets. In fact, PNAP is, to our knowledge, the most potent 

parasite MAP inhibitor with an IC50 in the 200 nM range which gives us hope that 

these types of inhibitors could be further developed into more drug-like 

therapeutics. In addition, P. falciparum MAPs share little homology with their 

human counterparts; less than 35% in the case of the M1 family proteases. It is 

therefore reasonable to suggest that potent, specific inhibitors of P. falciparum 

MAPs can be designed over human MAPs. In addition, information gleaned from 

our preliminary SAR and crystallography efforts may provide a jumping off point 

for future medicinal chemistry efforts against both enzymes. Our data here 

suggest that combination therapy involving endopeptidase inhibitors, such as 

those for falcipains, and PfA-M1-specific inhibitors might provide an opportunity 

for a synergistic drug combination [113]. Ultimately, this strategy may represent a 

good way to reduce the chance of parasite resistance.  
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3.4: Experimental procedures 

Parasite culture and IC50 determination for bestatin-based ABPs. 

Briefly, 3D7 parasites were cultured in RPMI 1640 (Invitrogen) 

supplemented with Albumax II (Invitrogen). For synchronization, schizont stage 

parasites were magnet purified using a SuperMACS™ II Cell Separation Unit 

(Miltenyi Biotech). For IC50 determinations, synchronized parasites were plated at 

1% parasitemia and 6% hematocrit in 96-well plates at a total volume of 50 µL. 

Serial dilutions of 2x concentration of the respective compound were added to 

the wells to bring the total volume up to 100 µL and 0.5% parasitemia and 3% 

hematocrit. Compounds were assayed for a 72 h period, after which 2x Vybrant 

DyeCycle Green DNA (Invitrogen) in PBS was added for a final concentration of 

10 µM and incubated at 37 °C for 30 min. DNA content, as an indicator of 

parasitemia, was analyzed on an Accuri C6 Flow Cytometer with C-Sampler. IC50 

curves were generated using GraphPad Prism (GraphPad Software). 

 

Labeling of parasite MAPs with activity based probes. 

For parasite labeling, mixed stage parasites were harvested and released 

from erythrocytes with 1% saponin followed by centrifugation at 1,500xg for 5 min 

and 3 washes in cold PBS. Parasite lysates were prepared by freeze-thaw in 50 

mM Tris-HCl pH 7.0, 50 mM NaCl, 10 µM ZnCl, and protease inhibitor cocktail 

(EDTA-free) (Roche) and extracts were clarified by centrifugation at 1,100 x g for 

10 min at 4 °C. Labeling was performed with indicated concentrations of the ABP 

for 1 hr at 37 °C followed by UV crosslinking (365 nm) for 1 hr on ice. 
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Competition of labeling was carried out by preincubating lysates for 1 hr at 37 °C. 

For immunoprecipitation, lysates were passed through 7K MWCO desalting 

columns (Pierce) after UV crosslinking then incubated overnight with streptavidin 

Ultralink Resin (Pierce). Proteins were visualized by standard western blotting 

and VECTASTAIN ABC kit (Vector Labs) or rabbit anti-GFP (ab6556, Abcam). 

For fluorescent probes, labeled proteins were visualized in-gel using a Typhoon 

flatbed scanner (GE Healthcare). 

 

Fluorescence imaging 

Trophozoite state parasites were treated for 12 hr with the compounds 

and concentrations as shown in the figure. Images were obtained using a Leica 

DMI6000 B microscope and Leica LAS AF software. Parasite and DV sizes were 

quantified using ImageJ. 

 

Synthesis of bestatin-based ABP libraries. 

Standard solid-phase peptide synthesis was performed on Rink amide 

resin, using HBTU/HOBt/DIEA in an equimolar ratio in DMF for 30 min at RT.  

Coupling of the α-hydroxy-β-amino acid required HATU for 1 hr. Each amino acid 

was double coupled.  Fmoc protecting groups were removed with 20% 

piperidine/DMF (30 min).  The deprotection of the Aloc group was conducted 

under a positive flow of argon.  The resin was solvated with dichloromethane for 

5 min.  The solvent was drained, and PhSiH3 (24 eq.) in CH2Cl2 was added to the 

resin followed by Pd(PPh3)4 (0.25 eq.) in CH2Cl2.  After agitating the resin for 1 h 
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by bubbling with argon, the solution was drained, and the resin was washed with 

CH2Cl2 (3x). To cleave products from resin, a solution of 

95%TFA:2.5%TIS:2.5%H2O was added to the resin.  After standing for 2 h, the 

cleavage mixture was collected, and the resin was washed with fresh cleavage 

solution. The combined fractions were evaporated to dryness and the product 

was purified by reverse phase-HPLC.  Fractions containing product were pooled 

and lyophilized. Reverse phase HPLC was conducted on a C18 column using an 

Agilent 1200 HPLC.  Purifications were performed at room temperature and 

compounds were eluted with a concentration gradient 0-70% of acetonitrile (0.1% 

Formic acid). LC/MS data were acquired using LC/MSD SL system (Agilent). 

HRMS was recorded at the UCRiverside mass spectrometry facility. Solid-phase 

peptide chemistry was conducted in polypropylene cartridges, with 2-way Nylon 

stopcocks (Biotage, VA). The cartridges were connected to a 20 port vacuum 

manifold (Biotage, VA) that was used to drain excess solvent and reagents from 

the cartridge.  The scheme for the synthesis of ABPs of bestatin may be depicted 

as follows. 

 

Recombinant proteins 

Details of the expression in E. coli and purification of recombinant PfA-M1 

(residues 192 to 1085) are described in [114]. Pf-LAP lacking the N-terminal Asn-

rich region (residues 79 - 605) was expressed with a C-terminal hexahistidine tag 

in E. coli and purified as previously described [104].The estimated molecular 

mass of the purified species from size exclusion chromatography (343 kDa) was 
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in good agreement with the predicted mass for the hexameric enzyme (357 kDa). 

The purification of recombinant DPAP1 has been published [108]. 

 

X-ray Crystallography 

PfA-M1 and Pf_LAP enzymes were purified and crystallized as previously 

described [100]. Crystals of the PfA-M1-BTA complex were obtained by 

cocrystallisation of BTA with PfA-M1 in mother liquor containing 1 mM ligand. 

Crystals of the Pf-LAP-PNAP complex were obtained by cocrystallisation of 

PNAP with Pf-LAP in mother liquor containing 1 mM ligand.  Prior to data 

collection, Pf-LAP-PNAP co-crystals were soaked in mother liquor containing 1 

mM ligand and 1 mM ZnSO4. Data were collected at 100K using synchrotron 

radiation at the Australian synchrotron micro crystallography beamline 3ID1. A 

summary of statistics is provided in Table 3.1. The coordinates and structure 

factors will be available from the Protein Data Bank (3T8V and 3T8W).  Raw data 

and images will be available from TARDIS [115]. 

The inhibitor complex was initially solved and refined against the unbound 

PfA-M1 and Pf-LAP structure (protein atoms only) as described previously [100] 

and clearly showed unbiased features in the active site for both structures. After 

placement of inhibitors into unbiased density, CNS composite omit maps were 

calculated using all atoms.  Supplementary Figure S3 shows inhibitor density 

contoured at 1.0 σ.  Supplementary Figure S3 was generated using MacPymol 

and uses a 2.0 carve value around each inhibitor and zinc ion for clarity. 

Superposition of BTA into the Pf-LAP active site was performed using the X-ray 
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crystal structure of Pf-LAP-bestatin (3KR4) where the bestatin scaffold was used 

to superpose BTA.  
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Table 3.1 | Data Collection and refinement statistics 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aValues in parentheses  refer to the highest resolution shell. 

Data collection rPfA-M1_BTA Pf-LAP-PNAP 
Space Group P212121 P212121 

Cell dimensions (Å) a=75.5, b=108.8, 
c=118.3, 
b=90.0° 

 

a=173.8, b=177.1, 
c=231.2, 
b=90.0° 

 
Resolution (Å) 46.57 – 1.8 (1.90‐ 

1.80) 
88.64 – 2.0 (2.11 – 

2.0) 
Total number of 

observations 
1109709 5836680 

Number of unique 
observations 

90083 477295 

Multiplicity 12.3 (11.4) 12.2 (12.2) 
Data Completeness (%) 99.1 (96.6) 100.0 (100.0) 

<I/σI> 14.7 (2.3) 6.3 (2.1) 

Rpim (%)
b 

4.2 (30.5) 10.9 (43.4) 

 
  

Structure refinement 
  

Non hydrogen atoms 
  

Protein 7233 47062 

Solvent 1006 4536 
Ligand 40 876 

Zn2+ ions 1 24 

PEG/SO4 - 512 

Rfree (%) 19.8 20.0 

Rcryst (%) 16.0 16.4 

Bond lengths (Å) 0.01  0.01 
Bond angles (°) 0.99  1.09 

Ramachandran plot 
Favoured (%) 
Allowed (%) 

 
98.4 

100.0 

 
98.3 
99.9 

B factors (Å2)   
Mean main chain 16.6 16.3 
Mean side chain 21.8 22.4 

Mean ligand 42.4 53.0 
Mean water molecule 32.2 28.2 

r.m.s.d. bonded Bs 
Main chain 
Side chain 

 
1.61 
3.94 

 
1.80 
4.47 
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bAgreement between intensities of repeated measurements of the same reflections and can be defined as: 
∑(Ih,i  – <Ih>)/∑ Ih,i, where Ih,i  are individual values and < Ih > is the mean value of the intensity of reflection 
h. 

Anti-PfA-M1 sera 

Details of the production of rabbit anti-sera against recombinant PfA-M1 

have been previously described [114]. 

 

Screening of P1 and P1’ ABP libraries 

Screens of relative ABP potencies were conducted at single fixed ABP 

concentrations for the P1 (PfA-M1- 250 nM; Pf-LAP- 750 nM), P1’ natural (PfA-

M1- 1 µM; Pf-LAP- 250 nM) P1’ non-natural (0.37 µM for both enzymes) libraries.  

PfA-M1 assays contained 50 mM HEPES pH 7.5, 100 mM NaCl, 25 mM leucyl-7-

amido-4-methylcoumarin (Leu-AMC) and 0.1% Triton X-100; Pf-LAP assays 

contained 50 mM HEPES pH 7.5, 100 µM ZnCl2, 50 - 250 µM Leu-AMC and 

0.1% Triton X-100.  For Pf-LAP, steady-state rates were approximated by linear 

fits to the progress curves after a one hour equilibration period in the presence of 

substrate and inhibitor. 

 

Determination of Ki and Ki
* values 

Bestatin has been shown to be a slow-binding inhibitor of leucine 

aminopeptidases, including Pf-LAP, with the slow step involving a conformational 

change of the initially-formed low affinity enzyme-inhibitor complex (EI) to form a 

tight complex (EI*; Ki is the dissociation constant for the initial enzyme-inhibitor 

complex whereas Ki* is the overall inhibition constant and is defined as 

[E][I]/([EI]+[EI*]). Ki* values were determined for the di-Zn form of Pf-LAP[116] in 
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50 mM Tris-HCl pH 8.0 containing 50 mM ZnCl2, 250 mM Leu-AMC, 0.1% Triton 

X-100, 180 ng/mL Pf-LAP and inhibitor at 25 °C. Changes in fluorescence upon 

mixing of substrate and inhibitor with enzyme were monitored in 96 well plates 

using a Victor3 microplate fluorometer. Progress curves were followed for 160 

minutes and fit to the equation for slow-binding inhibition [P] = vst + (vo – vs)(1 – 

e(-k
obs

t)/kobs, where vo is the initial rate, vs is the steady-state rate and kobs is an 

apparent first-order rate constant for the formation of the high affinity enzyme-

inhibitor complex, EI*. At the inhibitor concentrations necessary to produce well-

defined progress curves (at least two half-times), vs was typically < 5% of the 

uninhibited velocity making steady-state approaches to determining Ki
* (i.e. Dixon 

plot) unfeasible. Instead Ki
* was determined from plots of kobs vs. [I]. In the case 

of bestatin, the data defined a  hyperbolic curve. k6 was determined from the 

relationship k6 = vs/vo*kobs and was added to the data set (kobs = k6 when [I] = 0) 

to better define the hyperbolic curve. Data were fit by non-linear regression to the 

equation kobs = k6 + k5[I]/(Ki
app + [I]), where Ki

app = Ki(1 + [S]/Km). Under our assay 

conditions the Km for Leu-AMC was 1.1 mM. Ki
* was calculated from the 

relationship Ki
*  = k6Ki/(k5 + k6) where Ki and (k5 + k6) were determined from curve 

fits and k6 was determined as described above. For bestatin probe, Phe-Ala 

probe and BTA probe, plots of kobs vs. [I] were linear, a situation that can arise if 

Ki is much greater than the inhibitor concentrations used in the assay. In these 

cases kobs vs. [I] plots were fit by linear regression yielding a slope of k6/Ki*app; 

determination of k6 as described above enabled calculation of Ki*app and thus Ki*. 

With BTA probe, the combination of low affinity for Pf-LAP and insolubility at high 
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micromolar concentrations restricted the range of kobs values that could be 

determined compared to those for bestatin and Phe-Ala probes. However, 

sufficient Ki values for inhibition of PfA-M1 were determined by Dixon plots and a 

detailed protocol for determining Pf-LAP K1* values may be found in Supporting 

Information. 

 

Mass spectrometry-based peptide profiling 

Briefly, parasites were treated with 2 µM BTA or DMSO at the mid-ring 

stage. Parasites were treated for 24 hr at which point they were harvested by 

saponin treatment, centrifuged, and stored at -80 °C in the presence of protease 

inhibitors. To isolate peptides, parasite samples were boiled in water for 10 

minutes and then centrifuged for 10 min at 18,000 x g. The supernatant was 

saved, and the pellet was resuspended in 0.25% acetic acid and disrupted by 

freeze-thaw and microsonicated. All fractions were combined and centrifuged at 

20,000 x g at 4 °C for 20 min. The supernatant was passed through a 10 kDa 

molecular weight cutoff filter (Millipore).  

The retention times and m/z values of the peptides identified were used to 

map corresponding peptide peaks in the chromatograms generated from nano-

HPLC–ESI-MS (LCQ-DecaXP Plus). These peptide peaks were manually aligned 

and then for semi-quantitative assessment of the abundances of individual 

peptides, the total peak areas were determined using the Bioworks algorithm 

PepQuan (the Area/Height Calculation) with parameters set to area, mass 

tolerance of 1.5, minimum threshold of 5,000, five smoothing points, and 
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including all proteins. The alignment was based on retention times, m/z values, 

and patterns of peaks in close proximity.  

 

Peptide Synthesis 

The peptide VDPENF was synthesized on an Argonaut synthesizer using 

standard Fmoc solid phase peptide synthesis on Rink-amide resin. Peptides 

were purchased from Bachem (Switzerland). Rink-amide resin (0.69 mmol/g) 

was purchased from Novabiochem (San Diego, CA). All other chemicals and 

reagents were purchased from Fisher Scientific (Pittsbrugh, PA). Peptide 

assembly was performed using HBTU (2-(1H—benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate) activation (5 and 10 equivalents 

respectively) of amino acids (5 eq) in DIEA (N,N’-diisopropylethylamine) and 

NMP (N-methylpyrrolidone). The Fmoc protecting group was removed with 20% 

piperidine in DMF, for 5 min. After deprotection and again after amino acid 

coupling, the reaction vessel was rinsed 3 times with NMP followed by 3 rinses 

with DMF. The N-terminus of the peptide was not capped. The peptide was 

cleaved from the resin using 93% TFA (trifluoroacetic acid), 2%  TIPS 

(triisopropylsilane), and 5% water. The peptide was precipitated twice in 40 mL 

cold diethyl ether and dried overnight. To purify, the peptide was dissolved in 

95% water, 5% acetonitrile and 0.1% formic acid (Solvent A) and run on a semi-

preparative C18 column on an Agilent HPLC (15% to 35%, Solvent B) (Agilent 

Technologies). Pure fractions were confirmed by ES-API (calculated m/z 719.31, 

found m/z 719.2). 



  78 

Chapter 4: Chemical validation of signal peptide peptidase 
as a potential anti-protozoan drug target‡ 

 

4.1 Introduction 

Protozoan pathogens cause significant disease worldwide and constitute 

one of the most substantial global public health problems faced today. 

Toxoplasma gondii has a widespread throughout the world, chronically infecting 

an estimated 30% of the world’s population [117]. Treatment options are limited, 

especially for congenital disease and those who may require chronic therapy 

(e.g. immune-compromised patients). The related Plasmodium parasites that 

cause malaria are collectively responsible for >400 million clinical cases and up 

to 1 million deaths each year [1]. While vector control may reduce parasite 

transmission, and extensive effort is being devoted to vaccine development, 

chemotherapy remains the principal means of disease treatment. The 

emergence and spread of drug resistant parasites has rendered many of the 

traditional antimalarials (e.g. chloroquine and sulfadoxine-pyrimethamine) 

clinically ineffective in many cases. Infection by Trypanosoma brucei is 

potentially lethal to both humans  (trypanosomaisis) and livestock, and treatment 

relies on antiquated drugs that are difficult to administer and potentially toxic 

[118]. Like Plasmodium, Trypanosoma brucei utilizes complicated immune 

avoidance strategies that have thus far hampered effective vaccine development 

[119]. Therefore, the validation of novel anti-protozoan drug targets is of an 
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This chapter is currently in preparation for publication. 
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urgent need, and efforts that synergize a strategy towards target identification in 

multiple parasite classes may be particularly beneficial. 

Proteases are known to participate in several critical pathways during the 

life cycle of protozoan parasites, including host-protein degradation, rupture from 

the host cell, and invasion of new cells, and thus have been considered a protein 

family of therapeutic interest [120]. Signal peptide peptidase (SPP) is a recently 

identified aspartyl protease family that performs proteolytic cleavage within the 

cell membrane (intramembrane proteolysis) [121]. SPP (or SPP1), the prototypic 

member of this family, is a ~40 kDa presenilin-like aspartyl protease found in the 

ER membrane with protease active site motifs (YD and LGLGD) located within 

opposing transmembrane regions. The orientation of the transmembrane 

domains that contain the catalytic aspartates in SPP family members is opposite 

that found in the intramembrane aspartyl protease gamma-secretase/presenilin 

(GS/PS) [122]. This topological difference provides a structural basis for the 

observation that SPP cleaves type II transmembrane domains, while PSs cleave 

type I transmembrane domains.  

There are five human genes encoding SPPs (SPP1, SPPL3, SPPL2a,b,c), 

which have been referred to as presenilin homologs (PSH), intramembrane 

proteases (IMPAS) and signal peptide peptidase like (SPPL) [123].  Although 

there are no major human diseases associated with SPPs, recent work suggests 

that SPPs may play important developmental roles in C. elegans, D. 

melanogaster, and D. rerio [124-126]. Originally it was hypothesized SPPs 

provided housekeeping role in processing residual signal peptide nubs in the 
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endoplasmic reticulum (ER) membrane left after signal peptide cleavage. More 

recently, it has been demonstrated that SPP participates in a virus-induced 

ERAD pathway and can bind misfolded proteins [127-130]. Thus, from the 

aggregate literature, it appears that SPPs play several roles in the secretory 

system including: i) cleaving residual signal peptides and ii) binding and possibly 

cleaving misfolded transmembrane domains for ERAD-based destruction and iii) 

regulated proteolysis of select type II secretory substrates. 

A recent search by our lab of the available pathogenic protozoan 

genomes, including the P. falciparum, T. gondii, E. histolytica, G. lamblia, and C. 

parvum, has identified a single, conserved SPP homologue in each organism.  

The P. falciparum SPP (PfSPP) is most closely related to the human SPP and 

SPPL3 proteins, though the homology it shares with them is less than 50%.  The 

protein is most conserved in its C-terminal region, which includes the aspartyl 

active site motifs and a highly conserved PAL domain. Importantly, these 

parasites lack PS orthologs and thus SPP is their sole aspartyl iCLIP.  The 

observation that the pathogenic protozoans contain a single copy of this gene, 

while humans have five copies, offers a compelling reason to hypothesize that 

inhibition of SPP in these organisms would be lethal and therefore an attractive 

therapeutic target for a broad range of pathogenic protozoans. Indeed, recent 

efforts by the Chishti group have concluded the P. falciparum copy of SPP is an 

essential gene [131].  

Here, in a multidisciplinary effort, we validate SPP as a suitable pan-

protozoan therapeutic target. We show SPP inhibitors of multiple chemical 
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scaffolds are lethal to protozoan parasites and confirm their SPPs are active and 

druggable enzymes using in vitro assays. Focusing on the malarial parasite P. 

falciparum, we are able to generate in vitro resistant parasites to SPP inhibitors, 

and show that resistance is conferred by a mutation in the SPP gene, confirming 

that SPP inhibitors target SPP in live parasites. Finally, we show that PfSPP is 

vital in coping with ER-stress in malarial parasites, and that the heightened 

protozoan sensitivity to SPP inhibition is likely due to a greatly streamlined 

unfolded protein response/degradation pathways in these parasites. 

 

4.2 Results 
PS/SPP inhibitors kill multiple protozoan parasites  

Small molecular inhibitors have been useful tools in the understanding the 

role and mechanism of the intramembrane aspartyl proteases SPP and gamma-

secretase/presenilin (PS) [132,133]. In addition, because of its central role in the 

pathology of Alzheimer's disease, a large number of inhibitors from several 

different classes have been developed towards PS, with varying degrees of 

potency and selectivity towards SPP [134,135].  We took advantage of this 

pharmacological abundance to chemically validate the requirements of SPP in 

protozoan parasites. 

P. falciparum cultures were treated with several SPP inhibitors including: 

(Z-LL)2, helical peptide mimics, and LY411,575 [132,135,136]. (Z-LL)2 is an SPP-

specific transition-state analog inhibitor and binds to the active site. Helical 

peptide-based inhibitors (denoted as the ES and AK inhibitors) mimic the 

transmembrane structure of a putative substrate and bind to a substrate docking 
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site distinct from the active site. The benzodiazepine-like inhibitor LY411,575 

inhibits both SPP and PS in a manner distinct from transition-state analogues 

and helical peptides. (DAPT is specific for PS and represents a negative control). 

As a means of comparison and robustness of inhibitor effects we show data from 

inhibitor screening against other protozoan parasites, T. gondii and T. brucei. 

Initial testing with these SPP inhibitors on P. falciparum, T. gondii, and T. brucei 

revealed that the SPP inhibitors killed parasites with potent IC50s (Fig. 4.1A). The 

PS-specific inhibitor, DAPT, showed no activity. Importantly, these inhibitors 

represent unique chemical scaffolds with a single common target of SPP. This 

raises our confidence that the parasite killing effects were not due to off-target 

events, but rather from the specific inhibition of the respective parasite SPP. In 

addition, the potency of the compounds suggests that SPP is indeed an essential 

protease in each of the protozoan parasites tested.   

To help link parasite death due to the administration of SPP inhibitors to 

SPP, we synthesized an activity-based probe (ABP) based on the SPP inhibitor 

(Z-LL)2. A similar ABP was originally used by the Martoglio group to discover the 

SPP class of proteases [121]. The (Z-LL)2  ABP contains a benzophenone 

moiety to allow covalent crosslinking of the probe to its target as well as a biotin 

moiety to allow purification by streptavidin. Our (Z-LL)2 probe to confirmed that 

PfSPP is the target of (Z-LL)2 (Fig. 4.1B). 10 µM of the (Z-LL)2-based ABP was 

incubated with CHAPSO-extracts of mixed stage P. falciparum parasite lysates at 

37 °C for 1 hr. Inhibitors such as (Z-LL)2, LY411,575, AK8, and DAPT were 

preincubated with the lysates for 1 hr at 37 °C before addition of the probe to 
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compete for labeling. After labeling, samples were immunoprecipitated using 

streptavidin-agarose and western blot analysis was performed using an antibody 

to a cytosolic domain of PfSPP. Importantly the first lane of the blot shows 

successful IP-western of PfSPP indicating that PfSPP is targeted by (Z-LL)2. 

Unbiotinylated (Z-LL)2 effectively competes for labeling of PfSPP against the 

biotinlyated (Z-LL)2 probe providing further confirmation that (Z-LL)2 is not non-

specifically labeling PfSPP but likely binding to the active site. LY411,575 and 

AK8 do not compete for labeling which is commensurate with the published 

studies indicating that they bind at the substrate docking site rather than the 

active site where (Z-LL)2 is thought to bind [133]. 
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Figure 4.1: SPP/PS Inhibitor pharmacology against protozoan parasites and photolabeling of PfSPP 

with a (Z-LL)2-based probe. (a) Structures and names of key SPP/Ps inhibitors are shown. 

(U=aminoisobutyric acid, L=Leucine, S=Serine, N=Asparagine, A=Alanine, Ac=Acetyl). (b) 

CHAPSO solubilized-membrane proteins were incubated with 10 µM of (Z-LL)2-biotin for 1 hr, 

then irradiated with UV-light. Labeled proteins were identified via IP-Western analysis using 

streptavidin agarose and anti-PfSPP for western blotting.  Treatment of membrane proteins with 

10 fold excess of non-biotinylated (Z-LL)2 prevented labeling. No effect was observed with 

preincubation with non-active site-directed inhibitors (AK8, LY411,575) or with the gamma-

secretase specific inhibitor DAPT. In collaboration with Dany Shanmugam and Jeremy Mallari. 
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Design of a heterologous SPP assay 

A cell-based SPP assay would be a powerful pharmacological tool to 

functionally characterize various SPPs as well as evaluate potential SPP 

inhibitors. Therefore, we endeavored to design a robust cell-based heterologous 

SPP reporter activity assay (Fig. 4.2A).  We designed the assay in the budding 

yeast S. cerevisiae because of the genetic tractability in this system.  

Additionally, S. cerevisiae lacks the gene for PS, therefore SPP activity is the 

direct result of any exogenously expressed SPP.  Despite previous claims that 

there is no SPP in yeast, there exists an SPP-like protein (YKL100c; scSPP) in 

the yeast genome that is homologous to SPP. An scSPP knockout strain was 

made in the ∆pdr1,3 strain, which lacks multidrug resistance pumps.  ∆spp is 

viable and has no gross phenotypic differences when compared to the wildtype 

strain.  Next the ∆pdr1,3-∆spp strain was transformed with the following 

plasmids:  a reporter consisting of glucocorticoid response element (GRE) fused 

to LacZ, a truncated glucocorticoid receptor fused to the transmembrane of 

human cytomegalovirus glycoprotein UL-40 (gpUL-40) on the N-terminus (a 

canonical SPP substrate) induced with galactose, and the recombinant parasite 

SPP.  The fused substrate is membrane bound with the glucocorticoid receptor in 

the cytosol (Fig. 4.2A).  Upon cleavage of the transmembrane domain by SPP, 

the glucocorticoid receptor is no longer anchored by the substrate and is 

released. It translocates into the nucleus where it binds the GRE and expresses 

LacZ which encodes β–galactosidase.  SPP activity is determined by the addition 

of a chemiluminescent substrate which detects β–galactosidase (Fig. 4.2A).    
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To test the activity of other SPPs we used the ∆pdr1,3-∆spp strain 

containing the reporter and substrate plasmids and overexpressed PfSPP, 

TgSPP, TbSPP and human SPP. The expression of various SPPs (~40-50kDa) 

and GR526-gpUL40 (~70kDa) was detected using a western blot with anti-myc 

and anti-HA tag antibody, respectively (Fig. 4.2B and C).  The activity of 

endogenous scSPP was measured by the assay described above by 

overexpression of the reporter and GR526 substrate vectors in wt and Δspp 

background. Luminescence data showed 4.5x activity of endogenous scSPP 

while the activity was abolished in the knockout of scSPP.  The fold activity is a 

ratio of induced, induced + 50µM LY411,575 or induced + 50µM DAPT to 

uninduced. The results in Figure 4.2C show that all overexpressed SPPs are 

active aspartyl proteases that cleave the GR526-gpUL40 substrate with various 

activities. Differences in activity may be reflective of expression levels as well as 

activity towards the GR526-gpUL40 substrate. To further confirm that protease 

activity is due to SPP and not another protease, the SPP inhibitor LY411,575 

was added at the time of induction and cells were incubated overnight (~16hrs). 

Each SPP was inhibited by LY411,575 and the SPP activities were reduced from 

2.7- to 25-fold, illustrating that protozoan SPPs are indeed targetable by specific 

drug-like compounds. Under the same conditions, the PS-specific inhibitor DAPT 

showed no inhibition of SPP activity, confirming that our assay replicates the 

sensitivities to SPP inhibitors seen in parasite assays.  
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Figure 4.2: Yeast-based SPP assay. (a) Yeast strain (∆pdr1,3-∆spp) was transformed with three 

overexpression plasmids: a reporter with the glucocorticoid response element fused to LacZ, 

inducible glucocorticoid receptor 526 fused N-terminally to type II transmembrane domain of 

the model SPP substrate gpUL40 and signal peptide peptidase protease from various parasites. 

The SPP cleaves the substrate and releases GR526 which goes to the nucleus where it binds the 

GRE and the expression of LacZ is detected via a luminescent substrate (measures β–

galactosidase activity). (b) Expression of HA-tagged human, P. falciparum, T. gondii, and T. 

brucei SPP in the ∆pdr1,3-∆SPP yeast strain as detected by western blotting for HA. (c) gp-UL40 is 

detected only upon induction of galactose, as detected by anti-myc western blotting. 

(d)∆pdr1,3 ∆SPP, in the absence of endogenous scSPP or protease, shows modest activity when 

the substrate is induced or in presence of LY411,575/DAPT. ∆pdr1,3 with the endogenous scSPP 

shows 4.5x activity. ∆pdr1,3 ∆SPP with an overexpressed protease shows successful cleavage, 

inhibition by 50µM LY 411,575 and no change under presenilin specific DAPT 50µM inhibitor. The 

fold activity is a ratio of induced, induced + 50µM LY411,575 or induced + 50µM DAPT to 

uninduced.  The activity of SPPs are hSPP (5.8x), PfSPP (9,4x), TgSPP (3.7x) and TbSPP (56x).           

* = Statistically significant with a p-value <0.05. SPP activities were reduced to wt-scSPP (2.7x), 

hSPP (3.5x), PfSPP (5.8x), TgSPP (1.8x) and TbSPP (25x). In collaboration with Bhumit Patel. 
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SPP inhibitors target PfSPP in live Plasmodium falciparum parasites 

To identify the target(s) of SPP inhibitors in live parasites, we attempted to 

generate resistant parasites to the compound. Identification of genetic changes in 

the resistant parasite lines may provide details as to the molecular target of the 

compounds in culture [137]. For this, we focused our effort on P. falciparum, 

which has recently proven amenable to this methodology [138,139]. In 

collaboration with the Novartis Institute for Tropical Diseases (NITD) we identified 

a series of small molecules based on the drug-like LY411,575 scaffold which 

were potent antimalarials, with IC50s ranging from 20 nM to 160 nM. In addition, 

we assessed each inhibitor against PfSPP in our yeast assay and found they 

each inhibited the enzyme with varying potencies (data not shown). To elucidate 

the biological targets of the NITD series and LY411,575 compounds we selected 

for parasite resistance to each compound. Drug-resistant parasites were selected 

by the application of sub-lethal amounts of each inhibitor over a period of 

months, with drug concentration increasing concomitantly as parasite resistance 

increased. Resistant lines were generated for each drug and the resulting lines 

found to be more than 10-fold resistant to than the parental Dd2 clone. Analysis 

of this resistant line to antimalarials atovaquone, chloroquine, and artemisinin 

showed no significant differences in sensitivities to these compounds. 

To identify the mutation, cDNA transcribed from RNA of resistant parasites 

was subjected to PCR, cloned and sequenced. Strikingly, sequencing analysis of 

the PfSPP coding sequence for each parasite line revealed a single non-

synonymous mutation, L333F. From the PfSPP coding sequence we know that 
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the L333 residue resides in transmembrane domain 8, just upstream of the highly 

conserved PAL motif, a hydrophobic region necessary for activity in both SPP 

and PS. Unfortunately, no crystal structural yet exists for PfSPP, hindering 

predictions on the role of the L333 residue to catalytic activity of PfSPP [140].  

To confirm the role of the L333F mutation in conferring resistance, we 

expressed the mutant PfSPP (L333F) in our yeast assay and analyzed the 

potency of NITD-731, our most potent antimalarial. The IC50 in the mutant L333F 

PfSPP showed a more than 2-fold increase to that of wild-type PfSPP (Fig. 4.3A).  

This change was not due to different expression levels of either protein as the 

total luminescence of PfSPP and PfSPP L333F was unchanged (data not 

shown). Unfortunately, issues with cell permeability of the other inhibitors in the 

yeast assay precluded analysis of the L333F mutation in conferring resistance to 

these inhibitors. 

We also wished to confirm the importance of this mutation in generating 

resistance in live parasites. To do this, the L333F PfSPP gene was amplified 

from cDNA of a resistant parasite line and ligated into an expression vector that 

would allow for transposase-mediated recombination into a parasite genome 

[141]. Transgenic parasites were then assayed for growth while in the presence 

of increasing drug concentration. Parasites expressing the L333F PfSPP showed 

statistically significant increased resistance to NITD-731 relative to those 

expressing solely a wild type allele (Fig. 4.3D). In both our heterologous assay 

and transgenic parasites we observed a decreased level of resistance conferred 

by L333F relative to the original drug-selected resistant parasite lines. This is 
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potentially due to the existence of other mutations in multi-drug resistance 

transporters in the resistant lines that synergize resistance to the drug to a level 

beyond what the isolated mutation provides. It is also likely a product of the 

coexpression of the mutant PfSPP and endogenous wild-type allele in our 

transgenic parasite lines. Together, the resistance conferred by the expression of 

L333F PfSPP suggests that the target of the inhibitors used to generate resistant 

parasites is PfSPP. 
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Figure 4.3: Generation of parasites resistant to potent PfSPP inhibitors (a) Parasites grown in sub-

lethal concentrations of LY411,575 and three NITD inhibitors developed resistance to the 

compound, resulting in multi-fold increase in sensitivity (note log scale). The resistant parasites 

showed no concomitant resistance to other common anti-malarials (CQ=chlorquine, ART=artesunate. 

Only a single resistant line, NITD731r, is shown in the tests with resistance to CQ and ART). (b) Sequencing of 

the PfSPP gene in each resistant line revealed a G to A base mutation resulting in the non-

synonymous amino acid change, L333F. (c) The location of the L333 amino acid maps to 

transmembrane domain 8, close to the highly conserved PAL motif. (d) The L333F PfSPP mutant 

was generated for use in the yeast activity assay and showed a greater than two-fold resistance 

to NITD731. (e) Introduction of the L333F transgene into Dd2 parental parasites confers slight 

resistance to inhibition of NITD731. The wild-type gene was also introduced as a control. (** 

Statistically significant with a p-value <0.01) 
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PfSPP has heightened function in the parasite ER during the trophozoite stage 

Our results thus far suggested the importance for SPP in the biology of 

protozoan parasites and established its suitability as targetable protease. Beyond 

its necessity, information on the role of SPP in protozoans is lacking. To 

characterize PfSPP further, we assessed its endogenous localization by indirect 

immunofluorescence (IFA) utilizing our PfSPP antibody. Throughout the parasite 

life cycle, we observed strict perinuclear localization of PfSPP throughout the 

parasite's lifecycle, likely in the endoplasmic reticulum/golgi (ER/golgi) complex 

(Fig. 4.4A). Co-IFA performed with resident ER protease plasmepsin V confirmed 

this organellar localization (Fig. 4.4B) [142]. We observed no localization to the 

micronemes of merozoites, as had been previously suggested [131]. These 

results recapitulate previous findings in other organisms that show SPP is an 

ER/gogi-localized protease [121].  

Expression levels of PfSPP increase throughout the ring and trophozoite 

stages and peak at late trophozoite, followed by a decline during schizogony. 

Gene expression in P. falciparum is tightly temporally coupled to protein function, 

which suggests the key functions for PfSPP are likely during the trophozoite 

stage [143]. To assess this we evaluated the sensitivities of parasites to SPP 

inhibitors during different stages of the erythrocytic cycle. Individual cultures of 

parasites were treated at ring, trophozoite, or schizont stages for 6 hrs prior to 

drug removal and continuation of culture until the next cycle in non-drug media. 

PfSPP inhibition was most potent against trophozoite stage parasites, with some 

sensitivity seen schizonts as well. The ER is the hub of protein synthesis for the 
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secretory pathway and is likely most active during the metabolically dynamic 

trophozoite stage [144]. Therefore, PfSPP inhibition may compromise the 

function of the ER, the effects of which are most profound during this stage.  
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Figure 4.4: PfSPP localizes to the parasite ER and is important during the trophozoite stage. (a) 

Indirect immunofluorescence assays using an antibody raised to PfSPP shows localization of 

PfSPP in the ER throughout the lifecycle. Nuclei were visualized with Hoechst 3342. (b) PfSPP ER 

localization was confirmed by perfoming a co-IFA with plasmepsin V, an ER-resident protease, 

and PfSPP, and showed that staining overlapped for the two proteins. (c) Parasites were 

treated with SPP inhibitors for a 6 hour duration during the ring, trophozoite, or schizont stages 

with 6x the IC50 of the drug indicated. Parasites show the most sensitivity to SPP inhibition during 

the trophozoite stage. 
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Inhibition of PfSPP sensitizes parasites to ER-stress  

Recent work in mammalian cells has suggested a role for SPP in 

dislocation during ER-associated degradation (ERAD), a coordinated multi-

component process by which terminally misfolded proteins within the ER are 

recruited to the ER membrane, dislocated through the lipid bilayer, and degraded 

by the ubiquitin-proteasome system in the cytosol [127,145]. To investigate a 

potential role for PfSPP in P. falciparum ERAD, we treated parasites 

simultaneously with both thapsigargin and SPP inhibitors and analyzed the 

effects of the drug combinations for evidence of synergy. Thapsigargin causes 

the release of calcium from the ER, compromising the ER's ability to produce 

properly folded proteins. The combination treatment of thapsigargin with the SPP 

inhibitors (Z-LL)2, LY-411,575, and NITD731 produced synergistic parasiticidal 

effects beyond what would be expected by simply adding the effects of the 

individual compounds together. The results are presented as an isobologram of 

the varying ratios of the two compounds, where points below the line of additivity 

indicate synergy. No synergy was seen with atovaquone (Fig. 4.5A), an anti-

malarial ubiquinone analogue whose mechanism of action involves the 

mitochondria. This suggests that the synergy between SPP inhibitors and 

thapsigargin is due to the disruption of the parasite’s ability to respond to stress 

in the ER. 

If PfSPP is involved in a parasite ERAD pathway, we reasoned that 

parasites would also see synergy between PfSPP inhibition and another protein 

within the ERAD network. Recently, the AAA (ATPase associated with diverse 
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cellular activities) ATPase p97 (or Cdc48; VCP, valosin-containing protein) was 

shown to be involved in the ERAD-mediated extraction of proteins from the ER 

and was necessary for their release as polyubiquitinated substrates into the 

cytosol [146]. To facilitate functional studies of mammalian p97, two groups 

identified small molecule inhibitors of p97 through high-throughput screening 

efforts: DBeQ, which reversibly inhibits p97 in an ATP-competitive fashion, and 

Eeyarestin 1 (Eey 1), an irreversible p97 inhibitor [147,148]. P. falciparum  

contains two putative p97 homologues, PF07_0047 and PFF0940c. PF07_0047 

is targeted to the apicoplast where it possibly mediates translocation of nuclear-

encoded proteins into the apicoplast, but the function of PFF0940c has not been 

investigated [149]. We reasoned that DBeQ may be a suitable inhibitor of 

PFF0940c because of the high level of identity between PFF0940c and 

mammalian p97 (66.7%). Treatment of the parasites showed that DBeQ is a 

potent antimalarial, with an IC50 in the nanomolar range (225 nM). We next 

investigated the simultaneous inhibition of PfSPP and p97 in parasites. The 

combined treatment with both SPP inhibitors and DBeQ showed that the SPP 

inhibitors potentiated the effectiveness of DBeQ, while DBeQ had little effect on 

the efficacy of SPP inhibitors, as illustrated on the downward and rightward 

grouping of the fractional inhibitory concentration (FIC) points in the 

isobolograms (Fig. 4.5B). Similar effects were seen with Eey1, suggesting the 

DBeQ and Eey 1 worked through a similar mechanism (Fig. 4.5B). This evidence 

suggests PfSPP and p97 may function in a parasite ERAD pathway, with PfSPP 

working upstream of p97. 
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Figure 4.5: Inhibition of PfSPP synergizes with ER stress in P. falciparum and potentiates antimalarial 

effect of an inhibitor of the ERAD pathway. (a) Individual IC50 values were determined for each 

SPP inhibitor and thapsigargin singly and for each inhibitor in combination with thapsigargin at 

four different fixed ratios. The fractional IC50 (FIC; IC50 of drug in combination/ IC50 of drug alone) 

value was determined for each drug in each combination, and plotted on the isobologram. The x 

axis indicates the FIC of the SPP inhibitors. All three SPP inhibitors showed synergistic combinations 

with thapsigargin. The average ΣFIC for the SPP inhibitors with thatpsigargin were 0.80, 0.72, and 

0.79 for LY411,575, (Z-LL)2, and NITD731, respectively, while the same inhibitors paired with 

atovaquone averaged ΣFICs of 1.3, 0.95, and 1.0. The diagonal line represents a ΣFIC of 1, 

indicating additivity between the two drugs. Below the line (ΣFIC of <1) indicates a synergistic 

combination. (b) Isobolograms of the in vitro combinations between SPP inhibitors and the p97 

inhibitors DBeQ and Eey 1. The isobolograms show that SPP inhibitors strongly potentiate the p97 

inhibitors. The average FIC for DBeQ was 0.30, 0.65, and 0.36 and for Eeyarestin was 0.12, 0.25, and 

0.21 with LY411,575, (Z-LL)2, and NITD731, respectively. 
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4.3 Discussion 

 Here we provide chemical-genetic evidence that protozoans SPPs are 

druggable anti-protozoan targets. We also show that in P. falciparum, inhibition of 

PfSPP leads to disruption of the parasite’s ability to maintain ER homeostatic 

equilibrium, and that this may represent a potential exploitable vulnerability in 

protozoan parasites. 

 That an enzyme is essential to a pathological organism does not 

guarantee it is a suitable drug target, but we believe PfSPP is attractive for a 

variety of reasons, including: 1) an extensive drug-discovery “piggy-back” 

opportunity for potential inhibitors in already existing chemical libraries, 2) the 

availability of experimental tools such as activity assays, and 3) the extreme 

sensitivity of SPP-inhibition in protozoan parasites in contrast to human cells. 

The demonstration that Abeta cleavage, an essential initiating event in the 

pathogenesis of Alzheimer’s disease, is carried out by an intramembrane 

aspartyl protease spurred intense pharmaceutical medicinal chemistry efforts to 

develop inhibitors for this novel protease. Both PS and SPPs are part of the A22-

family integral membrane aspartyl proteases; thus it is likely that there exist 

numerous potent PfSPP inhibitors in PS inhibitor-directed chemical libraries. 

Indeed, LY411,575 was a byproduct of a previous PS drug-discovery effort.  

Because these PS inhibitor libraries were developed with a prospective potential 

therapeutic use, they would potentially already have drug-like characteristics and 

known pharmacology, reducing costs barriers for development.  
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Worries about host toxicity for PfSPP inhibitors are mitigated by the fact 

that knockdown of SPP in non-lethal in human cell lines. Furthermore, (Z-LL)2 

showed little toxicity in non-cancer human cell lines, indicating the potential for 

high therapeutic indexes for SPP inhibitors [150].  

How the L333 residue in PfSPP confers resistance to an LY-based 

inhibitor is difficult to answer because of a lack of knowledge regarding SPP 

structure and catalytic activity. The L333 residue lies at the end transmembrane 

domain 8 (TMD8) of PfSPP. In chemical crosslinking studies in PS, a nine 

transmembrane protease like PfSPP, the N-terminus of TMD8 has been show to 

be able to interact with residues within the active site [151]. In addition, 

LY411,575 represents a class of inhibitors that are thought to bind a region of 

SPP that partially overlaps with the active site. This suggests the region that the 

L333F residue resides in contributes to or allosterically interacts with the active 

site. 

 Finally, our data also suggest PfSPP may have a role in the parasite’s 

ERAD pathway and that the enzymatic machinery involved in ERAD may serve 

as a novel antimalarial chemotype. ERAD is activated in response to ER 

stressors that cause the accumulation of terminally misfolded proteins in the ER 

and is orchestrated by a number of proteins in a process involving transcriptional 

and translational regulation. The transcription factors that initiate the 

transcriptional up-regulation of the components of protein folding, trafficking, and 

degradation machinery during the initial unfolded protein response have not been 

identified in P. falciparum, suggesting that these parasites have limited, if any, 
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transcriptional regulatory mechanisms in response to ER stress [152]. In addition, 

the make-up of the ERAD pathway in P. falciparum is reduced in complexity 

compared to metazoans, where the network topology of ERAD is extensive and 

partially redundant; multiple members of the pathway found in yeast and humans 

are absent in P. falciparum, such as the TRAP and Bap31 proteins, which 

associate with Sec61.  This lack of complexity and redundancy may help to 

explain the sensitivity of parasites to ER-stressors such as thapsigargin and to 

SPP and p97 inhibition.  

 During combined treatment with SPP and p97 inhibitors we observed 

directional effects of the inhibitors on each other; while SPP inhibitors potentiated 

the efficacy of p97 inhibitors, p97 inhibition on masked SPP inhibitor potency. 

This may suggest that p97 functions downstream of PfSPP and that inhibition of 

p97 has a negligible effect on upstream PfSPP inhibition. This sequential action 

would be expected based on the localization of SPP in the parasite ER 

membrane and p97 in the cytosol. Other potential ERAD-based inhibitors, such 

as for protein disulfide isomerase, which has been show to associate with SPP 

during ERAD in mammalian cells and which may act in a parallel pathway with 

SPP, may allow for synergistic pairings [129]. 

 Our collective data here suggest that SPP may be a valid anti-protozoan 

drug target, in addition to the parasite’s ERAD pathway at large. Our most potent 

SPP inhibitor is lethal to CQ-resistant parasites, and has an IC50 in the range of 

currently used antimalarials such as artemisinin and atovaquone. The recent 

emergence of artemisinin resistant parasites has exacerbated the need to 
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identify new anti-malarials. Inhibition of PfSPP alone or in combination with 

another ERAD-focused anti-malarial may represent a valid strategy both for drug 

treatment and to combat resistance. 

 

4.4 Experimental Procedures 

Parasite culture  

Briefly, 3D7 parasites were cultured in RPMI 1640 (Invitrogen) 

supplemented with Albumax II (Invitrogen). For synchronization, schizont stage 

parasites were magnet purified using a SuperMACS™ II Cell Separation Unit 

(Miltenyi Biotech). 

 

IC50 determination 

For IC50 determinations, synchronized parasites were plated at 1% 

parasitemia and 6% hematocrit in 96-well plates at a total volume of 50 mL. 

Serial dilutions of 2x concentration of the respective compound were added to 

the wells to bring the total volume up to 100 mL and 0.5% parasitemia and 3% 

hematocrit. Compounds were assayed for a 72 h period, after which 2x Vybrant 

DyeCycle Green DNA (Invitrogen) in PBS was added for a final concentration of 

10 mM and incubated at 37 °C for 30 min. DNA content, as an indicator of 

parasitemia, was analyzed on an Accuri C6 Flow Cytometer with C-Sampler. IC50 

curves were generated using GraphPad Prism (GraphPad Software). 

 

Labeling of parasite lysates with (Z-LL)2 activity-based probe 
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For parasite labeling, mixed stage parasites were harvested and released 

from erythrocytes with 1% saponin followed by centrifugation at 1,500xg for 5 min 

and 3 washes in cold PBS. Parasite lysates were prepared by freeze-thaw in the 

presence of 1% CHAPSO in 25 mM HEPES-KOH, pH 7.6, 100 mM KOAc, 2 mM 

Mg(OAc)2, 1 mM DTT, and protease inhibitor cocktail (EDTA-free) (Roche). 

Membrane and cell debris was clarified by centrifugation at 16,000 x g for 30 min 

at 4 °C. Labeling was performed with indicated concentrations of the ABP for 1 hr 

at 37 °C followed by UV crosslinking (365 nm) for 1 hr on ice. Competition of 

labeling was carried out by preincubating lysates for 1 hr at 37 °C. For 

immunoprecipitation, lysates were passed through 7K MWCO desalting columns 

(Pierce) after UV crosslinking then incubated overnight with streptavidin Ultralink 

Resin (Pierce). Proteins were visualized by standard western blotting and 

VECTASTAIN ABC kit (Vector Labs).  

 

Yeast strains 

w303 pump mutants (MATa can1-100, his3-11, 15, leu2-3,112, trp1-1, 

ura3-1, ade2-1, pdr1::kanMX, pdr3::hygMX) was used to make a ∆spp by 

recombination using a pAG304ccdb under a Trp selection. pLZGreLacZ was 

used as the reporter strain containing the glucocorticoid receptor with a leu 

marker.   GR526-gpUL40 was made using glucocorticoid receptor amino acids 1-

526 fused to the TMD domain of Human cytomegalovirus glycoprotein UL40 

(NKFSNTRIGFTCAVMAPRTLILTVGLLCMTITSLL) by 2xmyc tag and inserted 

into pAG426GALccdb.  The pLZGrelacZ and GR526-gpUL40 were transformed 
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in both wildtype w303 and w303, ∆spp pump mutant strains to determine 

endogenous scSPP and ∆spp activities.  Parasite SPPs (PfSPP (recodonized for 

yeast expression), TbSPP, TgSPP) were cloned into pAG423GALccdbHA (his 

marker) and human SPP was cloned into pAG423GPDccdbHA vectors using 

recombination.  The vectors were transformed into yeast using standard Li/Ac 

protocol and selected on appropriate (-leu, -ura or –leu, -ura, -his) plates. 

Briefly, yeast cells were grown overnight in S-raffinose (-leu,-ura or –leu,-

ura,-his) media to prevent expression of the substrate.  They were then diluted to 

OD ~0.2 and induced with 2% galactose overnight (~16hrs).  A sample of 

uninduced cell served as a control. Appropriate amounts of chemical compounds 

were diluted in 500ul of yeast cells at the time of induction.  Due to solubility 

issues, each compound was diluted into 1:1 DMSO:water solution and added to 

cells at a nonlethal DMSO concentration of 4.25ul/500ul - 0.8%.  Cells were then 

adjusted to OD ~0.3 and 100µl of cells were incubated with 100µlGAL-Screen 

reagent (Applied Biosystems) for 1 hour at 27°C on a 96well plate.  The 

luminescence was read using Berthold microplate luminometer.  The fold activity 

was calculated as induced/uninduced luminescence count and each experiment 

was done in triplicates. 

 

Resistant parasite generation 

Parasites were treated with sub-lethal concentration of inhibitor, increasing 

as resistance increased. Inhibitor resistance was generated for a period of 4 

months. Resistant parasites were cloned by limiting dilution. Parasites were 
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saponin treated, spun down, RNA extracted using RNEasy Kit (Qiagen), 

converted to cDNA using Superscript I Reverse Transcriptase Kit, and cloned 

into pAG423ccdbHA using Spe and Xho restriction sites.  The cDNA from 

parasites the parasite lines were subjected to three independent PCR reactions. 

PfSPP L333F was made by standard site directed mutagenesis techniques using 

the wildtype recodonzied PfSPP as a template. 

 

Parasite transfections 

P. falciparum vectors expressing PfSPP-HA and PfSPP L333F-HA were 

cloned in the piggyBacII vector via NotI and XhoI restriction sites. For 

transfections, 100 µg of the piggyBacII PfSPP vector and 50 µg in 50 µl of water 

and 50 µl of 2x cytomix were combined with 250 µl of packed red blood cells, that 

had been previously was 3x in 1 mL of cytomix. The solution was brought up to 

400 µl with 1x cytomix (120 mM KCl, 0.15 mM CaCl2, 2 mM EGTA, 5 mM MgCl2, 

10 mM K2HPO4, 25 mM HEPES, adjusted to pH 7.6 with KOH). The solution was 

electroporated using a Bio-Rad GenePulser Xcell II, with settings 0.31 kV and 

950 µF, in 0.2 mm cuvettes. Electroporated cells were washed 2x in complete 

media and added to magnet purified schizonts in a total of 5 mL complete media. 

Selection for transgenic parasites was carried out by application of 2.5 nM 

WR99210 to cultures. 
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Chapter 5: Conclusions and Future Directions 

  

 In this work, I have characterized the biological function and drug target 

potential of three essential proteases in P. falciparum. In the first two sections of 

this work I developed and utilized novel chemical tools to provide the first 

conclusive evidence for the role of an exopeptidase, PfA-M1, in hemoglobin 

metabolism. Inhibition of this enzyme is lethal to parasites, possibly by depriving 

them of essential amino acids normally acquired from PfA-M1-mediated Hb 

digestion. I also find that the Pf-LAP aminopeptidase likely has a significant role 

outside of hemoglobin degradation. In the third part of this work, I chemically 

validate SPP as a novel protozoan drug target. I also present the first evidence 

that inhibiting the parasites’ limited ERAD pathway may represent a therapeutic 

opportunity, and that inhibition of PfSPP likely interferes with the function of this 

pathway. In the following section these results will be explored in greater depth 

along with suggestions on experiments to expand this work. 

 

5.1 A bestatin-based chemical biology strategy reveals distinct roles for M1 

and M17 family aminopeptidases 

Characterization of Pf-LAP 

In Chapter 3 I utilized a suite of inhibitors to characterize MAP activity in P. 

falciparum. In addition to presenting evidence that PfA-M1 is a DV-localized 

hemoglobinase, the data also suggested that Pf-LAP has functions other than 

hemoglobin digestion. This is based on the cytosolic localization of Pf-LAP and 
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the fact that parasites are susceptible to Pf-LAP inhibition prior to the initiation of 

this process. One possible function of Pf-LAP could be in the final trimming of 

various short peptides generated by the proteasome into free amino acids. 

Involvement of leucyl aminopeptidases in non-lysosomal protein turnover has 

been demonstrated in human cells [110]. In addition, proteasome inhibitors block 

parasite development at the same stage in the erythrocytic cycle as PNAP. One 

facile method to examine the potential interconnectedness of Pf-LAP and the 

proteasome would be via fixed-ratio isobologram analysis, as presented in 

Chapter 4. If Pf-LAP and the proteasome cooperate in cytosolic protein turnover, 

I predict that dual inhibition of the two components should produce additive or 

synergistic killing of parasites.   

Another approach to answer whether Pf-LAP has functional homology to 

mammalian LAPs would be by a mass-spectrometry-based method, similar to 

that used in Chapter 3. In this instance, we would compare changes in the 

amount of small peptides (2 to 6 amino acids) between untreated and PNAP-

treated samples. Peptides that increase in abundance in the treated samples 

would potentially be Pf-LAP substrates. To characterize whether these peptides 

are derived from the proteasome, we could analyze an additional sample in 

which parasites are concomitantly treated with both proteasome inhibitor and 

PNAP. If peptides identified in the PNAP-only treated condition are products of 

the proteasome, they should not appear in samples treated with a proteasome 

inhibitor.  
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Malarial aminopeptidases as putative drug targets 

Previous work on the development of aminopeptidase inhibitors has 

produced compounds with only modest effectiveness against parasites in 

cultures and in mouse models, and until recently, bestatin remained the most 

potent aminopeptidase inhibitor against parasites in culture. As presented in 

Chapter 3, the identification of aminopeptidase-directed inhibitors that are lethal 

to parasites in nanomolar concentrations represents a major advance in the 

targeting of these enzymes in parasites, and confirms the attractiveness of PfA-

M1 and Pf-LAP as drug targets. 

One potentially efficacious antimalarial strategy could be to simultaneously 

target other hemoglobin proteases, such as the plasmepsins, falcipains, or 

DPAP1 along with PfA-M1. Targeting enzymes functioning in series within a 

given catabolic pathway may result in a synergistic combination, resulting in the 

need for less of each drug when used in combination than individually to achieve 

the same effects. Indeed, previous work by the Bell group has shown the bestatin 

is synergistic when used in combination with aspartyl protease inhibitors [113]. Of 

course, previous issues encountered with falcipain and plasmepsin protease 

inhibition would still be relevant (genetic redundancy, poor in vitro potency), but 

these complications may be less problematic when coupled with the inhibition of 

essential downstream proteases. Intriguingly, the Bogyo and Klemba groups 

have recently provided evidence that the DV-localized essential protease DPAP1 

is targetable by small molecule drug-like inhibitors that are highly potent in 

culture [153]. Unfortunately the inhibitors were toxic in a mouse model, but less 
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potent DPAP1 inhibitors with better toxicity profiles did show promise in slowing 

parasite growth in the animals. In addition, DPAP1 inhibitors produce the same 

DV morphology as PfA-M1 inhibition does, indicating hemoglobin degradation as 

the likely role for DPAP1 (M. Klemba, personal communication). Thus, a viable 

strategy may be to target PfA-M1 and DPAP1, which would overcome issues of 

functional redundancy encountered with plasmepsin and falcipain inhibition; both 

DPAP1 and PfA-M1 are single copy essential enzymes. This dual targeting 

strategy would inhibit almost all exopeptidase activity in the DV. In addition, the 

application of combined therapy would to minimize the chances for the 

emergence of resistant parasites. 

Peptides are often not ideal therapeutics due to their rapid inactivation by 

serum or gastrointestinal proteases. The besatin-based MAP inhibitors PNAP 

and BTA are more suitable as drugs because they are beta-peptides, and as 

such, are resistant to proteolytic cleavage. Further modification to the inhibitor 

scaffold to increase hydrophobicity, such as C-terminal esterification, which 

removes the charge on the C-terminus, may help to increase its permeability. 

The suitability of bestatin-based MAP inhibitors as drugs is demonstrated by the 

fact that bestatin is approved for oral administration in Japan for patients with 

nonlymphocytic leukemia [154].  

Specificity studies may be complicated by the existence of 13 M1 and 3 

LAP family MAPs in humans. However, none of the human M1 or LAP 

aminopeptidases share more than 30% identity with the parasite orthologs. 

Studies on various other mammalian MAP orthologs show significant variation in 
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inhibitor activity, giving an indication that achieving selectivity is possible. The 

human aminopeptidase ortholog most similar to PfA-M1 has extensive variation 

at the N- and C-terminal domains, indicating that inhibitor access to the active 

site may be quite altered. Unfortunately, no structural information yet exists for 

the human M1 or LAP enzymes. The relative lack of toxicity associated with 

bestatin use and paucity of identity between the malarial and human enzymes 

give hope that cross-targeting may be negligible. 

 

5.2 Chemical validation of signal peptide peptidases as potential anti-

protozoan targets     

The protozoan signal peptide peptidase represents a novel drug target 

 Protozoan pathogens, including T. brucei, T. gondii, and P. falciparum, 

express only one copy of the signal peptide peptidase gene. In Chapter 4, I 

present data that shows that the gene products from each organism encode 

active proteases that when expressed in yeast are amenable to inhibition by 

small molecules that are also lethal to parasites in a dose-dependent manner. 

Furthermore, continuous cultivation of these parasites in the presence of a sub-

lethal concentration of the inhibitor produces P. falciparum parasites with 

mutations in its PfSPP gene. This resulting amino acid change confers resistance 

to the inhibitors both in vitro and in culture, indicating the inhibitor target in live 

parasites is indeed PfSPP. Collectively, this data indicates the suitability of SPP 

as an anti-protozoan target. 

 Recent work by the Mota lab assessed the suitability of SPP inhibition for 
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prevention of Plasmodium development in the liver in vitro and in vivo. 

Prevention of liver stage development would lead to true causal prophylaxis and 

would interrupt transmission because development of the proceeding infectious 

blood stage gametocytes would be blocked. The inhibitor LY411,575 was shown 

to block hepatic cell development of P. berghei in a dose-dependent fashion, and 

led to a statistically significant decrease in cerebral malaria in mice with a 55% 

higher mortality in the control group of animals compared to the LY411,575-

treated ones [155]. A statistically significant difference in development in cerebral 

malaria was also observed in LY411,575-treated animals versus the controls. 

LY411,575 is limited in the concentrations that can be used because of 

complications caused by its concomitant inhibition of GS activity, mainly the 

blocking of GS processing of  NOTCH protein, which leads to severe gut toxicity 

(a major shortcoming of GS inhibitor-mediated Alzheimer’s therapies). Therefore, 

inhibitors that show better specificity for SPP of GS will be vital. While the 

effectiveness of SPP inhibition in killing erythrocytic stages in vivo is still 

unknown, a dual inhibitor with potency against the exo-erythrocytic and 

erythrocytic stages would represent a valuable tool in the antimalarial arsenal.  

 That it was possible to generate parasites resistant to the inhibitors in vitro 

should not disqualify PfSPP as a drug target.  Selection of resistance was 

accomplished via the continuous application of the SPP drugs to cultures over a 

period of months. In theory, this type of exposure would likely guarantee the 

development of resistance to most single-target compounds due to the natural 

mutation frequency in P. falciparum [137]. Today, single agent therapy for 
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malaria is highly recommended against, and the introduction of any new 

antimalarial agent, regardless of target, would surely be in combination with 

another therapeutic to prevent the emergence of resistance. 

 

The function of PfSPP in the parasite endoplasmic reticulum 

 The work presented in Chapter 4 suggests that PfSPP may be necessary 

for the maintenance of protein homeostasis, potentially in the parasite’s ERAD 

pathway. Parasites show extreme sensitivity to SPP inhibition when combined 

with a compound (thapsigargin) that induces ER protein misfolding. In addition, 

this also corroborates evidence in mammalian cells that has shown SPP is 

required for protein dislocation from the ER during ERAD, although no precise 

role has been hypothesized [127,129].  

 As a multipass transmembrane protein, it is tempting to think of SPP as 

the channel through which ERAD substrates translocate into the cytosol, which 

has not yet been conclusively identified [156]. However this scenario is 

complicated by the aspartyl protease active site that fills the hydrophilic 

intramembrane cavity of SPP. ERAD substrates that pass through the pore 

would likely result in one of two fates: proteolytically cleavage by SPP or 

otherwise clogging of the pore by ERAD substrates not cleaved by SPP. There is 

of yet no evidence for proteolytic processing of ERAD substrates prior to 

dislocation. 

 It may be possible that a particular domain exists within SPP to recognize 

destabilized and unfolded transmembrane peptide ERAD substrates independent 
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of its protease activity. SPP preferentially associates with truncated 

transmembrane peptides, and this interaction is abrogated by (Z-LL)2 [130,157]. 

Intriguingly, although the active site inhibitor blocks the interaction, the 

stabilization was reproduced with an active site “dead” mutant of SPP and 

therefore independent of catalytic activity. In this scenario, SPP may play a key 

intermediate in the hand-off of transmembrane ERAD substrates to, potentially to 

p97. This is analogous to rhomboid mitochondria intramembrane protease PcP1, 

which cooperates with the AAA ATPase mAAA to dislocate and degrade Ccp1 

from the mitochondrial inner-membrane [158]. ERAD substrates destined for the 

proteasome emerge from the ER polyubiquitinated. Assessing ubiquitination 

levels in the absence and presence of SPP inhibitors may help to narrow down 

SPP’s role in the temporal scheme of the ERAD network.  

 The development of an ERAD cell-based assay may aide in the 

elucidation of the role of PfSPP and other putative members of this pathway. I 

am currently attempting to generate T. gondii-based ERAD assays using 

unstable GFP-tagged proteins as reporters for ERAD function. One assay will 

utilize the P30 protein of T. gondii fused to a destabilization domain (DD). P30 is 

a surface antigen in T. gondii that is trafficked via the ER. Upon destabilization by 

removal of the small ligand Shield 1, the P30-DD-GFP should be removed from 

the ER and degraded by the ERAD pathway. Another, strategy would be to utilize 

a known unstable protein that upon synthesis in the ER membrane undergoes 

ERAD. Many of these proteins have been well characterized (e.g.TCR-α, null-

Hong Kong α1-antitrypsin) and have been used as model substrates to assess 
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the integrity of ERAD in vivo [159,160]. In this reporter system impairment of 

ERAD function is indicated by an accumulation of the GFP substrate within the 

ER. A working functional assay such as this would allow the analysis of ERAD in 

real-time by light microscopy, or a quantifiable static assessment by western blot 

or flow cytometry. We will use this assay to assess whether PfSPP (and p97) 

inhibition disrupts ERAD activity in parasites. 

 Clues to the biological function of PfSPP may also be obtained by the 

identification of its downstream proteolytic substrates. Proteomics-based 

substrate identification has proven beneficial in the identification of substrates for 

numerous proteases, and has helped to advance understanding of their roles. At 

least two potential methods exist that may be utilized for enabling substrate 

identification of substrates [161]. The first is a comparative gel-based approach, 

in which proteins whose 1D-SDS-PAGE migration patterns differ significantly 

between two samples are subjected to LC-MS/MS analysis. In this case, the 

comparison would be between parasites treated with SPP inhibitors and those 

left untreated. Another method involves the use of tagged inactive protease with 

active site mutation that allows trapping of the substrate with the inactive 

protease, which allows for purification of the protease and substrate together. 

The Golde lab has validated this methodology for SPP in mammalian cells, but 

its feasibility P. falciparum has not been tested. Validation of putative substrates 

could be carried out by analysis in our heterologous yeast assay. 

 

Inhibiting the protozoan ERAD pathway as an antimalarial strategy 
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 While residing in the host erythrocyte P. falciparum establishes a 

complicated protein secretory network to facilitate protein trafficking to 

destinations both inside and outside the parasite. This specialized secretory 

system is likely highly dependent fully functional ER to facilitate high rates of 

protein folding and secretion. Therefore, protein quality control in the ER and the 

mechanisms that relieve the ER of misfolded proteins is an essential component 

of a high-functioning ER. Combined results in Chapter 4 for suggest that 

parasites are highly susceptible to perturbations in ER function and the ERAD 

pathway specifically, and that targeting components therein may serve as a 

therapeutic strategy. Inhibitors of p97, an ATPase chaperone involved in protein 

folding and unfolding, are potent against P. falciparum in nanomolar 

concentrations, are potentiated by PfSPP inhibitors, and have no toxicity to non-

cancerous human cell lines [147,162]. This family of proteins has two 

representatives in P. falciparum, PF07_0047 and PFF0940c. The gene encoding 

PF07_0047 contains a transit peptide that localizes GFP to the apicoplast. It has 

been hypothesized the certain components of the P. falciparum protein ERAD 

machinery have been duplicated and are used for protein import into the 

apicoplast, a relic plastid gained by a secondary endosymbiotic event [149]. The 

coding region of PFF0940c contains no identifiable localization sequences, and 

is likely cytosolic. Parasites treated with the p97 inhibitors die within one 48 hr 

lifecycle, as opposed the delayed death phenotype observed with apicoplast-

targeting inhibitors [163]. Thus it is likely the effects produced by the p97 

inhibitors are derived from inhibition of the cytosolic p97 ATPase, likely 
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PFF0904c. 

 Parasites show remarkable sensitivity to non-optimized inhibitors of p97, 

but the high homology between human and parasite p97 makes it of therapeutic 

interest to develop specific inhibitors to the parasite enzyme. One approach to 

discover selective inhibitors would be through the development of an in vitro p97 

assay amenable to high-throughput screening methods. The Deshaies lab 

recently developed a p97 ATPase assay that relies on using luciferase to 

measure the amount of ATP that remained after incubation with p97. This assay 

would likely be suitable for testing recombinant Plasmodium p97 as well, allowing 

for the facile comparison of cross-targeting of inhibitors. 
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