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Abstract
Platelet aggregation is an essential process in forming a stable clot to prevent blood loss. The response of
platelets to a complex signal of pro-clotting agonists determines the stability and size of the resulting clot. An
underdeveloped clot represents a bleeding risk, while an overdeveloped clot can cause vessel occlusion, which
can lead to heart attack or stroke. A multiscale model was developed to study the integration of platelet
signaling within the complex phenomena driven by flow. The model is built upon a lattice kinetic Monte Carlo
algorithm (LKMC) to track platelet motion and binding. First, a new method for including flow-driven
particle motion in LKMC was derived from a timescale analysis of particle motion. Simple methods for
simulating flow-driven motion were found to exhibit concentration dependent velocities violating the
assumptions in the model. The nature of the error was analyzed mathematically and resolved by considering
the chain length distribution on the lattice. The accuracy of the method was found to scale linearly with the
lattice spacing. Second, the LKMC method was extended to study particle aggregation in complex flows. The
LKMC results for simple flows were compared directly to a continuum population balance equation (PBE)
approach. A contact time model was introduced to capture nonideal collisions in the LKMC model and a
connection to the continuum collision efficiency was derived. The particle size distribution for a baffled
geometry with regions of standing vortices and squeezing flows was determined using the LKMC method for
varying baffle heights. Finally, the LKMC method was incorporated within a multiscale model to simulate
platelet aggregation including platelet signaling (neural network model), blood flow (lattice Boltzmann
method), and the release of soluble platelet agonists (finite element method). The neural network model for
platelet signaling was trained on patient-specific, experimental measurements of intracellular calcium enabling
patient-specific predictions of platelet function in flow. The model accurately predicted the order of potency
for three antiplatelet therapies, donor-specific aggregate size, and donor-specific response to antiplatelet
therapy as compared to microfluidic experiments of platelet aggregation.
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ABSTRACT

LATTICE KINETIC MONTE CARLO SIMULATIONS OF PLATELET

AGGREGATION AND DEPOSITION

Matthew H. Flamm

Advisors: Scott L. Diamond and Talid Sinno

Platelet aggregation is an essential process in forming a stable clot to prevent blood loss.

The response of platelets to a complex signal of pro-clotting agonists determines the sta-

bility and size of the resulting clot. An underdeveloped clot represents a bleeding risk,

while an overdeveloped clot can cause vessel occlusion, which can lead to heart attack

or stroke. A multiscale model was developed to study the integration of platelet signal-

ing within the complex phenomena driven by flow. The model is built upon a lattice

kinetic Monte Carlo algorithm (LKMC) to track platelet motion and binding. First,

a new method for including flow-driven particle motion in LKMC was derived from a

timescale analysis of particle motion. Simple methods for simulating flow-driven motion

were found to exhibit concentration dependent velocities violating the assumptions in the

model. The nature of the error was analyzed mathematically and resolved by considering

the chain length distribution on the lattice. The accuracy of the method was found to

scale linearly with the lattice spacing. Second, the LKMC method was extended to study

particle aggregation in complex flows. The LKMC results for simple flows were compared

directly to a continuum population balance equation (PBE) approach. A contact time

model was introduced to capture nonideal collisions in the LKMC model and a connec-

tion to the continuum collision efficiency was derived. The particle size distribution for

a baffled geometry with regions of standing vortices and squeezing flows was determined

v



using the LKMC method for varying baffle heights. Finally, the LKMC method was in-

corporated within a multiscale model to simulate platelet aggregation including platelet

signaling (neural network model), blood flow (lattice Boltzmann method), and the re-

lease of soluble platelet agonists (finite element method). The neural network model for

platelet signaling was trained on patient-specific, experimental measurements of intra-

cellular calcium enabling patient-specific predictions of platelet function in flow. The

model accurately predicted the order of potency for three antiplatelet therapies, donor-

specific aggregate size, and donor-specific response to antiplatelet therapy as compared

to microfluidic experiments of platelet aggregation.
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Chapter 1

Introduction

A major goal of systems biology is to integrate the complexity of signaling on the sin-

gle cell level to predict the emergent phenomena on the tissue to organ scale. From

an engineering perspective, the term systems represents the integration of the detailed

knowledge of the individual components. In multicellular biology, this approach spans

how cellular components combine to generate cellular phenotypes, how cells interact to

yield tissue and organ function, and how tissues and organs communicate to create a

unified organism. This analysis could even be extended to how organisms interact within

and outside of their species. A famous example of a model on the societal scale is the

Lotka-Volterra model (predator-prey equations). Even for single-celled organisms, the in-

teraction of individual cells is important to the function, survival, and proliferation of the

species and cannot be ignored. More specifically, systems biology models aim to gain in-

sight into disease mechanism to predict avenues of pharmacological development or, even

better, directly and quantitatively predict the efficacy of drug treatment. Computational

studies may provide a complementary route for drug discovery and development, which is

estimated to cost 800 million dollars per approved drug [1]. Computational models also

1



CHAPTER 1. INTRODUCTION 2

enable the creation of patient-based therapies that tune, for example, drug dosage based

on a patient’s individual phenotype to improve drug efficacy and lower the incidence of

undesirable side-effects.

Often multiple time and length scales are important for biological function including

quantum effects [2], genetic encoding in DNA, protein interactions, organization of intra-

cellular compartments, intracellular signaling, and tissue and organ function. Ideally, we

can build models at the smallest length scales that reproduce the macroscopic behaviors,

e.g. a full-scale molecular dynamics (MD) simulation of tissue function. State of the

art MD simulations are only able to reach microsecond to millisecond timescales for a

single protein in an explicit water solvent [3]. Therefore, higher level descriptions, e.g.

ordinary differential equation (ODE) models of signaling, are required to reach the time

and length scales of interest. Higher level models often require information from shorter

time and length scales, so a multiscale approach becomes the most efficient method [4].

On the molecular scale, all atom simulations by MD are used to investigate the affinity

of protein-ligand interactions [5] and the mechanism of protein folding [6]. Cellular

signaling, which is the result of the molecular interactions, is usually described using a

set of coupled ODEs. Each equation in the set of ODEs represents the rate of change

in the concentration of one component in the cell, for example the divalent calcium

ion, Ca2+, and is derived from the mechanistic reactions in the cellular network. ODEs

constructed using this approach conserve mass and predict the dynamic and steady state

responses of the network. For systems biology, there are several standardized methods for

describing models and performing numerical simulations including the Systems Biology

Markup Language (SBML) [7] and CellML [8]. ODEs can be solved deterministically or

stochastically depending on the scale of interest [9]. Another approach is to consider just
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the stoichiometric equations to predict the flux of mass within the cellular network [10].

Signaling models describe cellular response to extracellular stimuli [11] or the changes in

intracellular metabolism when pathways are created or destroyed [12, 13].

Cellular function is not determined solely from internal mechanisms but also extracel-

lular phenomena including biochemical signals. Physical interactions such as fluid shear

[14, 15], extracellular matrix stiffness [16, 17], and strain [18] also affect cellular pheno-

type. Cellular signaling can be coupled to produce more robust signaling within each cell

[19] and produce complex, emergent phenomena throughout the cellular network [20].

Biochemical signals are transported in tissue by diffusion and in the blood vessel by con-

vection and can be modeled by solution of the convection-diffusion-reaction equation, a

partial differential equation [21, 22].

Modeling biological systems becomes increasingly complicated as more mechanisms

and scales of interactions are included, and computational power quickly limits the scale

of problems that can be studied. Thus, one must limit models to the essential components

that give rise to biological function. A detailed knowledge and intuition of the biology is

crucial for choosing which mechanisms are important, and this knowledge comes largely

from experiment. However, models are useful beyond prediction of experimental results;

they provide a theoretical means to generate hypotheses to test experimentally. These

experiments may lead to new insights by validating or contradicting the model. Valida-

tion confirms the mechanisms contained in the model, while contradiction leads to the

search for new hypotheses. In either case, scientific knowledge is furthered.

The goal of this work is to build a multiscale model of platelet aggregation in flow-

ing blood. Platelet aggregation is a key component of the body’s hemostatic response

to a blood vessel injury, while malfunction of this process can lead to vessel occlusion



CHAPTER 1. INTRODUCTION 4

(overactivity) or excessive bleeding (underactivity). Platelets integrate several pro- and

anti-clotting stimuli to form a stable clot to prevent blood loss from a vessel. The platelet

agonists are transported by the fluid flow from the site of the injury, forming a bound-

ary layer around the clot surface. The fluid itself is perturbed as the platelet aggregate

grows into the lumen of the vessel. The model of platelet aggregation in this work in-

cludes the interactions between the fluid, the soluble agonists, platelet signaling, and

platelet bonding.

In the process of building the multiscale model, new algorithms were developed and

mathematically analyzed to enable platelet motion and aggregation in fluid flow. Specif-

ically, a method based on lattice kinetic Monte Carlo (LKMC) was developed for fol-

lowing particle motion in a flowing fluid [23], enabling the transport of platelets to the

injured surface (Chapter 3). In Chapter 4, the convective-LKMC algorithm is extended

to particle aggregation in bulk flows including platelet aggregation [24]. In Chapter 5,

the multiscale model, which is built upon the convective-LKMC algorithm, is developed

to predict patient-specific platelet function under flow. Chapter 2 provides a general

overview of the numerical methods that are used in the following chapters.

1.1 Models of convective particle motion

Flow driven particle motion is an important transport mechanism in many systems and

often leads to particle aggregation or particle deposition. Biological examples include

particle motion in the lung airways [25] and delivery of drugs in the blood stream [26].

Flow can also drive particle aggregation in the bulk fluid. Examples include aerosol

aggregation in the atmosphere [27], aggregation of particles in ocean currents [28], cluster

growth of paramagnetic particles in microchannels [29], and cell aggregation in blood flow
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[30, 31, 32].

Particle motion in a flowing fluid depends on the hydrodynamic interactions between

the particles. Strong coupling of particle motion can occur in systems such as sedi-

mentation [33]. Models that incorporate hydrodynamic interactions include dissipative

particle dynamics (DPD) [34], lattice Boltzmann (LB) [35], and direct solution of the

coupled fluid momentum and particle motion equations such as the arbitrary Eulerian-

Langrangian method [36]. DPD lumps packets of fluid into discrete particles that are

subjected to random and viscous forces. DPD effectively solves the Navier-Stokes equa-

tion [37]. Similarly, LB considers packets of fluid that are streamed and collided on a

lattice and effectively solves the Navier-Stokes equation [38]. The arbitrary Eulerian-

Langrangian method can also be extended to include Brownian fluctuations [39]. These

methods are well-suited for simulating particle motion in a fluid since they capture the

fluid-particle coupling. However, the scale of systems that can be studied is computa-

tionally limited by the two-way coupling of the fluid momentum and particle motion.

Another class of methods only considers one-way coupling of fluid momentum and

particle motion, i.e. particle motion is affected by the background flow field, but the fluid

flow is unperturbed by particle motion. Examples include integrating the equations of

motion for each particle [40], including a linear slip force in Brownian dynamics [41],

and the cellular Potts model [42]. Although these methods do not include hydrodynamic

interactions, they are computationally efficient compared to the fully coupled methods.

1.2 Models of particle aggregation

Much work has focused on mean-field approaches, i.e. the solution of the population bal-

ance (or Smoluchowski) equations [43]. Instead of following the trajectory of individual
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particles in the fluid, the classical population balance equation (PBE) approach consid-

ers the concentration of each particle size in the system, which yields continuum-scale

differential equations. The specifics of particle motion and interactions are lumped into

aggregation and fragmentation kernels that are usually derived from a combination of

kinetic theory, hydrodynamics, and problem-specific chemical, biological, or other phys-

ical interactions. However, mean-field representations of particle aggregation driven by

convection are limited to relatively simple cases. While the influences of hydrodynamic

and particle-particle interactions have been studied extensively for constant shear rate

[44, 45], PBE approaches do not address many common and realistic flows. In fact, a

mean-field approach has been shown to break down even for pressure driven tube flow

[46]. A direct simulation method is needed for modeling processes with complex flow

fields.

Monte Carlo models have been used to study particle aggregation driven by Brow-

nian motion [47] and have confirmed the Smoluchowski analysis at long times. Direct

simulations of particle aggregation also present the possibility of explicitly considering

size dependent particle diffusivities [48] and reaction control [49]. The emphasis of this

thesis is to develop a Monte Carlo algorithm for studying particle aggregation driven by

convection.

1.3 Platelet function in flow

1.3.1 Background

Platelet function is critical to maintaining hemostatis within the body. Overactivity of

platelet function can lead to stroke or heart attack. Underactivity of the platelet response
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to a vessel injury increases bleeding risk. Platelets act as the central agent in a clotting

episode, recognizing the exposed subendothelial matrix, releasing autocrine/paracrine

platelet agonists, and serving as a scaffold for the production of the enzyme thrombin.

Thombin itself is a potent platelet agonist that also creates a fibrous mesh within and

around the growing clot. Platelets respond to a combination of stimuli including collagen,

adenosine diphosphate (ADP), thromboxane (TXA2), thrombin, epinephrine, and sero-

tonin as well as endothelial cell derived inhibitors such as nitric oxide and prostacyclin.

Excessive clotting in response to cardiovascular disease, for example atherosclerotic

plaque rupture, causes over 1 million heart attacks and strokes in the US each year. The

risk of a vessel occlusion following plaque rupture can be linked to hyperactive platelet

function [50]. Consequently, anti-platelet therapies, including aspirin to inhibit platelet

COX-1 and clopidogrel to inhibit P2Y12, are widely used by patients with cardiovascular

risks. Although these therapies are successful at reducing the risk of clotting on the

population level, a segment of the population has a so-called resistance to aspirin [51]

and clopidogrel [52], which correlates with relatively worse clinical outcomes [53, 54].

Platelet function in vivo is dictated not only by receptor-ligand binding, calcium

mobilization, and inside-out signaling but also the flow of blood over the injured surface.

Blood flow dictates the rate of arrival of platelets and clotting factors while also acting to

remove platelet agonists and coagulation enzymes. Flow can also directly affect platelet

reactivity through an increased affinity to von Willebrand Factor at higher shear rates

(> 2000 s−1) [55] and direct activation of platelets at very high shear rates (> 10 000 s−1)

[56].

The coagulation cascade is also an essential component of the body’s response to

a blood vessel injury. The coagulation cascade consists of a series of enzymatic steps
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that cleave a zymogen to an active enzyme. Tissue factor exposure at the site of injury

starts the cascade to produce thrombin. Thrombin is a potent platelet activator and

also cleaves fibrinogen into fibrin, which polymerizes into a fibrous network throughout

the clot. Activated-platelet membrane serves as a scaffold for many of the steps in the

coagulation cascade serving to speed up the reactions by orders of magnitude. Although

thrombin generation is not considered in this work, avenues for including the coagulation

cascade are discussed in Section 6.1.

1.3.2 Experimental models of thrombosis in flow

The in vivo validation of computational models is difficult. Many inputs for the model

including vessel geometry, injury size and severity, and blood flow cannot be obtained

from the in vivo experiment with precision. Although special cases such as large human

carotid arteries can be directly imaged for vessel geometry and blood flow [57], large data

sets are needed to train models and confirm results over a wide range of conditions. The

simplest devices use a parallel plate flow chamber [58] or cone and plate viscometer to

flow platelets over a surface patterned with collagen or other proteins of interest [59].

These experiments neglect the focal nature of a blood vessel injury in situations such as

atherosclerotic plaque rupture.

Recently, microfluidic devices have been developed to create a focal injury [60, 61].

Strips of collagen are laid perpendicular to the microfluidic channels to create a well-

defined collagen patch. Direct imaging of platelet deposition can be done in the mi-

crofluidic channels with fluorescence microscopy, and cluster sizes can be obtained using

image analysis [62]. Microfluidic devices are also ideal for creating large data sets on

platelet function in flow. Many channels can be imaged on a single plate [63], and many
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plates can be run from a single donor’s blood draw allowing for the collection of a large

range of conditions or a large number of repeats within a single experiment. Tissue factor

can also be patterned on the surface to test coagulation function [64]

1.3.3 Computational models of thrombosis

Platelet signaling

Two types of models have been proposed for describing platelet signaling: a mechanistic

and a data-driven approach. Purvis et al. developed a mechanistic, ordinary differential

equation (ODE) model of platelet activation in response to ADP stimulation of P2Y1.

They found that both steady-state and dynamical information are important for describ-

ing platelet calcium signaling [65, 66]. Chatterjee et al. used high-throughput, combi-

natorial experiments to train a neural network for prediction of intracellular calcium in

response to multiple agonists. [67].

Coagulation cascade

Hockin et al. developed a well-mixed ODE model of the coagulation cascade with a tissue

factor stimulus capturing all phases of thrombin production [68]. Lo et al. simulated a

version of the Hockin model using a stochastic method [69]. Kuharsky and Fogelson

separated the reaction zone in a blood vessel from the blood flow to simulate the effect

of flow on thrombin generation [70]. Chatterjee et al. extended the Hockin model to

include platelet activation state and validated it against a combinatorial, high-throughput

experiment [71].
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Soluble agonist release

A prescribed platelet flux to an idealized geometry was used to enable solution of the

concentration profiles of the soluble agonists ADP, TXA2, and thrombin in the flowing

fluid by Hubbell and McIntire [21]. Later, Folie and McIntire solved for the concentration

profiles for several clot geometries using a similar method [72]. Sorensen et al. coupled

ADP, TXA2, and thrombin production to platelet deposition in a continuum model at

the surface [73, 74].

Hydrodynamic effects and red blood cell motion

Mody and King solved for the hydrodynamic interactions of flowing platelets near a wall

[75, 76]. Pivkin et al. used dissipative particle dynamics that captured hydrodynamic

effects to simulate platelets adhering to a wall with a simple activation distance function

[77]. Although hydrodynamics are important for the collisions between particles and

between a particle and the wall, the trajectories in blood flow are largely determined by

the motion of red blood cells in the fluid. Whole blood is comprised of approximately

40 % RBCs by volume. Several models of RBC motion have been proposed to describe

viscosity relationships [78] and platelet margination [79, 80]. These calculations are

computationally costly and would be difficult to directly integrate into a model for platelet

deposition that occurs over minutes.

Hemodynamics

Blood flow is non-Newtonian at low shear rates. In general, the viscosity of blood is well

characterized by the Casson equation, which relates the shear stress to the shear rate.

For a Newtonian fluid, τ = µγ, where τ is the shear stress, µ is the viscosity, and γ is



CHAPTER 1. INTRODUCTION 11

the shear rate. The Casson equation is

√
τ =
√
µγ +

√
τy, (1.1)

where τy is the yield stress. Above shear rates of approximately 100 s−1, blood is New-

tonian with an effectively viscosity of approximately 0.003 Pa s (3 times the viscosity of

water, 0.001 Pa s) [81]. For large arteries, a Newtonian approximation is accurate [82] al-

though for vessels with low shear, e.g. venous flow, the non-Newtonian behavior of blood

may become more important. Three dimensional models of blood flow are beginning to

predict large scale flow measurements in vessel geometries obtained from patient imaging

[83, 57].

Fully coupled models

More recent models have coupled platelet deposition to the flowing fluid, ADP release,

and thrombin production. Leiderman and Fogelson used a continuum method based on

Kuharsky and Fogelson that explicitly solves for the spatial and temporal variations [84].

Xu et al. used a cellular Potts model for platelet motion coupled to flow and a model

for thrombin generation based on Kuharsky and Fogelson [85]. Both models include

coupling between platelet deposition, blood flow, ADP release, and thrombin generation.

The major difference between the Leiderman and Fogelson model (hereafter referred to

as the LF model) and the Xu et al. model (hereafter referred to as the Xu model) is the

description of the platelet. The LF model treats platelets as a continuum species and

introduces additional equations to give platelets a tunable cohesion based on activation

state and a physical size. The Xu model treats platelets as discrete entities that can

bind together and move in the fluid using a cellular Potts model, where platelets occupy
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several lattice nodes on a grid.

The cellular Potts model describes the dynamics of a system on a lattice, where each

node is numbered according to which cell is occupying that lattice space. All the lattice

sites occupied by cell i are numbered i. All fluid nodes have a special number, e.g.

0, to distinguish from nodes occupied by cells. The main input into a cellular Potts

model is the Hamiltonian for any given system state. The Hamiltonian for a system

of cells in a fluid generally consists of a volume and an area conserving term for each

cell to establish particle size. Cellular bonding, cell motion, and other cellular processes

also contribute to the Hamiltonian. Once the Hamiltonian is specified, identity flips are

attempted where the identity of a single node is switched to the identity of another node.

The usual Metropolis Monte Carlo criterion is used to accept or reject the attempted

move according to the change in the Hamiltonian. Therefore, the key in any cellular

Potts model is to define the appropriate Hamiltonian and system temperature.

One advantage of the discrete method in the Xu model is that platelet size is very

straightforward to implement—the size of each platelet is determined by how many lat-

tice nodes it occupies. Events in the model that depend on platelet activation state,

e.g. ADP release and cellular bonding, can be directly obtained from the local activa-

tion states of platelets on the lattice. Furthermore, morphology and porosity are direct

outputs of the simulations. Discrete models are also amenable to introducing simulation

variables that have distributions, e.g. platelet size or platelet activation thresholds. How-

ever, the cellular Potts model does not inherently have a system clock. This prevents

direct comparison to dynamic quantities such as velocity and reaction rate. Directed

motion may be implemented by introducing a force in the direction of flow. However, the

resulting velocity of the particle will generally depend on the choice of the volume and
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area constraints as a move in the direction of flow generally changes both the volume and

area of a particle. A fitting parameter is needed to obtain the correct time scaling (the

relationship between a Monte Carlo step and time). Although the energies of cellular

bonding in the Hamiltonian may be compared to the energy of making receptor-ligand

bonds between cells, platelet deposition may not be close to equilibrium, and the kinetics

of cellular bonding may be important.

The continuum method in the LF model directly captures the motion of platelets and

the kinetics of cellular bonding. In a continuum framework without discrete particles,

each component of the system is treated as a chemical species being transported through

the fluid. To give platelets some physical size, the LF model introduces a new species,

η, that is constantly emitted from all bound platelets and diffuses away with some decay

rate. The choices of diffusivity, release rate, and decay rate of η determine the effective

size of the platelet. All quantities that depend on the location of bound platelets, e.g.

binding rate of unbound platelets to bound platelets, are determined through the local

concentration of η. Platelets in this model are fuzzy in the sense that the edges are not

well defined and platelets can overlap. Although this approach gives some coarse sense

of size to a platelet, morphology and fluid pore size cannot be captured directly captured

in this model.



Chapter 2

Numerical methods

This chapter includes a general description of the numerical methods used in this work.

More specific implementations are discussed within the following chapters. The kinetic

Monte Carlo (KMC) method is introduced in Section 2.1 and used in Chapters 3–5.

The finite element method is introduced in Section 2.2 and used in Chapter 5 . Finally,

the lattice Boltzmann method is presented in Section 2.3 and used in Chapter 5. Neural

networks are not presented in this section since the implementation was problem specific.

A description of the neural network model is given in Section 5.3.3.

14
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2.1 Kinetic Monte Carlo methods

The main input into the KMC simulation is a rate database for all possible events in the

system. The rates may be precomputed before the simulation [86] or computed on-the-fly

[87] according to the current system state. For a single event i out of N possible events,

let the rate of that event be Γi, where the rate depends on the current system state.

Given the set of rates (Γ1,Γ2 . . .Γi . . .ΓN−1,ΓN) at a particular system state, the KMC

algorithm chooses which event occurs next and at what time. In general, the state of the

system changes after every event requiring the rate database to be updated accordingly.

Thus, a KMC simulation has three major components:

• Choosing the next event that occurs

• Calculating the time at which that event fires

• Updating the rate database following event execution

At a system time t, the joint probability distribution of the next event being of

type µ and occurring at time t + τ is P (µ, τ). P (µ, τ) is constructed to satisfy the

assumption that all events are independent Poisson processes, and the KMC algorithm

samples trajectories from this distribution. The probability that an event i will occur

in the time interval (t, t+ δt) for a Poisson process is Pi = Γiδt. The probability that

none of the N events occurs in the time interval (t, t+ τ) is exponentially distributed,

P0 (τ) = exp (−Γtotτ), where Γtot =
∑N

i=1 Γi. The probability that the next event is of

type µ and occurs in the time interval (t+ τ, t+ τ + δt) is

P (µ, τ) δt = P0 (τ) Γµδt = exp (−Γtotτ) Γµδt. (2.1)
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In general, the waiting time at which the next event occurs according to the probability

distribution in Equation 2.1 with N independent Poisson processes is

τ = − ln(u)

Γtot

, (2.2)

where u is a uniform random number in the interval (0, 1], regardless of which event is

executed at that step. The average time step chosen is

〈τ〉 =
1

Γtot

(2.3)

An event i is chosen to be the next event with probability

Pi =
Γi

Γtot

. (2.4)

Several algorithms have been proposed to generate events and event times that obey

the probability distribution in Equation 2.1 [88, 89, 90, 91, 92]. Here, discussion is limited

to three common algorithms and the algorithmic complexity of each. Gillespie proposed

two methods: the direct method and the first reaction method [88]. Later, Gibson and

Bruck proposed the next reaction method [89].

2.1.1 Direct method

The direct method involves choosing a time for an event to occur in the system and then

choosing an event that fires at that time. The time step of the next event is calculated as

in Equation 2.2, and a specific event µ is chosen with the probability given in Equation
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2.4 with the following procedure

µ−1∑
i=1

Γi < u ∗ Γtot ≤
µ∑
i=1

Γi, (2.5)

where u is a uniform random number in the interval [0, 1]. The time step calculation

requires a sum over N rates, and event selection requires a sum over O(N) rates. From

these summations, the direct method is also known as the n-fold way [93]. Speedup is

obtained if the partial sums are kept from the time update for use in the event selection,

although the overall complexity of the algorithm is still O(N).

2.1.2 First reaction method

In the first reaction method, a ’test’ waiting time is generated for each event before each

step as

τi = − ln(u)

Γi
, (2.6)

which requires N random numbers per step. The event with the smallest waiting time is

executed, and the system time is updated with the waiting time of that event. Since the

events are independent Poisson processes with no memory, new event waiting times can

be generated for the next step in the algorithm using Equation 2.6 according to the new

rate database. The overall complexity of the first reaction method is O(N) and requires

O(N) random numbers per step.

2.1.3 Next reaction method

Gibson and Bruck modified the first reaction method by retaining the old waiting times

of events not affected by the previous step, taking advantage of the independent Poisson
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process assumption [89]. Here, the absolute time at which an event occurs is tracked

instead of the waiting time, i.e.

ti = t+ τi, (2.7)

where ti is the putative time at which event i will occur and will be referred to as the

event time. The event times are always sorted from lowest to highest, which allows for an

O(1) choice of event. The largest portion of computational overhead is now sorting the

event times after each step. Instead of sorting the list from scratch after each step, the

event times that change during a step, the ones whose rate is affected by the executed

step, are removed from the list, again leaving a sorted list. New event times are generated

for events whose rates change, and the corresponding event times are added back to the

queue.

Initialize rate database

Compute event time databases

Sort event times

Execute event with shortest waiting time

Update rate and event time databases

Re-sort waiting times

No

End
Yes

Figure 2.1: Schematic of next reaction method

In this work, a skip list [94] is used to sort the event times, which has O(ln(N))

insertion, deletion, and query complexity. To further speed up this method, the event
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time can be updated without the use of another random number as follows

ti = t+

(
Γold

Γnew

)
(t?i − t) , (2.8)

where t?i is the old event time. Equation 2.8 is not valid for events that do not have event

times, i.e. the events had zero rate at the previous step, and in this case, Equations 2.6

and 2.7 can be used to generate an event time. A summary of the next reaction method

is shown in Figure 2.1.

2.1.4 Comparison of KMC methods

A summary of the algorithm complexity is given in Table 2.1. Sorting time represents the

complexity in sorting a list with O (1) events updated at each step. Although the direct

method and the first reaction method do not require the extra sorting step, they have

overall O(N) complexity. The next reaction method has overall O(ln(N)) complexity.

For problems with long-range interactions that require O(N) rate updates at each step,

the direct method or first reaction method may prove to be more efficient. The systems

considered in this work consist of many particles having relatively short-range potentials,

so the next reaction method is the most efficient algorithm.

Event selection Time update Sorting
Direct Method O(N) O(N) —

First Reaction Method O(N) O(1) —
Next Reaction Method O(1) O(1) O(ln(N))

Table 2.1: Comparison of KMC event and time selection methods. Sorting step com-
plexity assumes O(1) rate updates.

Beyond optimization of the basic, exact KMC algorithm, many acceleration tech-

niques have been developed to achieve larger length and time scales. The τ -leaping
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method fires multiple events in a single time step [95], and more accurate methods based

on τ -leaping have been devised [96]. In lattice KMC, the single lattice site occupancy

can be coarse-grained into coarse cell occupancies [97]. Although these techniques are

not utilized in this work, in principle, some of the acceleration ideas could be adapted to

this specific implementation.
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2.2 Finite element methods

The following information is adapted from Comini, Del Giudice, and Nonino [98], and

Reddy and Gartling [99]. The concentration field, C, of a soluble species within a moving

fluid is given by the convection-diffusion-reaction equation, which is a type of partial

differential equation (PDE),

∂C

∂t
+ v · ∇C = D∇2C +R, (2.9)

where v is the velocity field of the fluid, D is the diffusion coefficient of the solute, and R

is a general bulk source/sink term resulting from generation or consumption of solute.

The finite element method solves for a solution of a PDE by approximating the depen-

dent variables with piecewise nodal approximations. The spatial domain is discretized

into well-defined and non-overlapping shapes, which are known as elements. Within each

element, e, local approximations are defined as linear combinations of interpolation func-

tions, φi, and nodal values, Ci that are approximations to the dependent variable C at

nodes. There are m elements and n total nodes. Over the entire domain, the approximate

representation of C is

C ≈ Ĉ =
n∑
i=1

φiCi. (2.10)

The interpolation functions are constructed such that they are nonzero only in the ele-

ments adjacent to the corresponding nodal value, i.e.

φi =


φei if node i is adjacent to element e

0 if node i is not adjacent to element e.

. (2.11)
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The interpolation functions themselves are piecewise across neighboring elements, so the

superscript refers to the form of the interpolation function within the element e. Linear

basis functions within rectangular elements are used in this work.

To solve the original PDE, a weighted-residual approach is employed where the equa-

tions are solved such that the integral residual error over the domain Ω is zero, i.e.

∫
Ω

Wi
∂C

∂t
dΩ +

∫
Ω

Wiv · ∇C dΩ

=

∫
Ω

WiD∇2C dΩ +

∫
Ω

WiR dΩ

(2.12)

with i = 1, n, which results in n equations for the n nodal values. In the Galerkin method,

the weighting functions, Wi, are chosen as the piecewise interpolation functions, φi. It is

convenient to reduce the order of the PDE by using Green’s theorem, which gives

∫
Ω

φi
∂C

∂t
dΩ +

∫
Ω

φiv · ∇C dΩ

= −
∫

Ω

D∇φi · ∇C dΩ−
∫
S

φiq dS +

∫
Ω

φiR dΩ,

(2.13)

where S is the boundary and q is the flux of mass normal to the boundary (−D∇C·n = q).

C is approximated by Equation 2.10, which results in

∫
Ω

φi

n∑
j=1

∂φjCj
∂t

dΩ +

∫
Ω

φiv · ∇
n∑
j=1

φjCj dΩ

= −
∫

Ω

D∇φi · ∇
n∑
j=1

φjCj dΩ−
∫
S

φiq dS +

∫
Ω

φiR dΩ.

(2.14)

The interpolation functions φi are spatially varying and time invariant while the nodal
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values Ci are specified at nodes and vary with time. Thus, Eq. 2.14 can be written

n∑
j=1

∂Cj
∂t

∫
Ω

φiφj dΩ +
n∑
j=1

Cj

∫
Ω

φiv · ∇φj dΩ

= −
n∑
j=1

Cj

∫
Ω

D∇φi · ∇φj dΩ−
∫
S

φiq dS +

∫
Ω

φiR dΩ,

(2.15)

where i is represents the ith weighting (interpolation) function. To simplify Eq. 2.15, we

define the following vector and matrix quantities

C = (C1, C2 . . . Ci . . . CN−1, CN) (2.16)

Ċ =

(
∂C1

∂t
,
∂C2

∂t
. . .

∂Ci
∂t

. . .
∂CN−1

∂t
,
∂CN
∂t

)
(2.17)

Mij =

∫
Ω

φiφj dΩ =
m∑
e=1

∫
Ωe

φeiφ
e
j dΩe (2.18)

Kij =

∫
Ω

D∇φi · ∇φj dΩ =
m∑
e=1

∫
Ωe

D∇φei · ∇φej dΩe (2.19)

Gij =

∫
Ω

φiv · ∇φj dΩ =
m∑
e=1

∫
Ωe

φeiv · ∇φej dΩe (2.20)

pi =

∫
S

φiq dS = −
m∑
e=1

∫
Se

φeiq dSe (2.21)

ri =

∫
Ω

φiR dΩ =
m∑
e=1

∫
Ωe

φeiR dΩe (2.22)

The elemental nature of the basis functions have been applied in Equations 2.16–2.22,

and Ωe is the domain of element e. The integrals are numerically evaluated by Gaussian

quadrature. In matrix form the final system of equations is

MĊ + AC = b, (2.23)
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where the following definitions are introduced

A = K + G (2.24)

b = p + r. (2.25)

The generalized Crank-Nicolson method uses a finite difference approximation for the

time derivative,

∂C

∂t
≈ Cn+1 −Cn

∆t
, (2.26)

using the known solution at time tn and the unknown solution at time tn+1, ∆t = tn+1−tn.

The contributions to A and b from time points n+1 and n are weighted with a parameter

α as

Ā = (1− α) An + αAn+1 (2.27)

b̄ = (1− α) bn + αbn+1. (2.28)

Eq. 2.23 becomes

HCn+1 = f , (2.29)

where H and f are defined as

H =
1

∆t
M + αAn+1 (2.30)

f =

(
1

∆t
M− (1− α) An

)
Cn + (1− α) bn + αbn+1 (2.31)

The choice of α leads to a variety of methods. For α = 0, the explicit Euler method is
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obtained. For α = 1, the implicit Euler method is obtained. The explicit method is con-

ditionally stable but very efficient to implement. The implicit method is unconditionally

stable but in general requires an iterative solution method. The Crank-Nicolson method

is obtained for a choice of α = 1
2
, which is second order accurate over a time interval com-

pared to the first order Euler methods. The Crank-Nicolson method is unconditionally

stable although it does exhibit oscillations for large time steps.
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2.3 Lattice Boltzmann

The Navier-Stokes (NS) and the continuity equations describe the flow of fluid, measured

by the velocity v, in response to a pressure gradient,∇P . The incompressible NS equation

is given by

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + µ∇2v, (2.32)

where ρ is the density and µ is the dynamic viscosity of the fluid. The incompressible

continuity equation is given by

∇ · v = 0. (2.33)

Lattice Boltzmann (LB) does not solve for Equations 2.32 and 2.33 directly. In LB,

packets of fluid stream from lattice nodes to neighboring nodes, where they undergo a

collision event. The process of streaming and collision results in the solution of the NS

and continuity equations [100].

1
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Figure 2.2: Lattice velocities. On left, the velocities on the lattice Boltzmann grid. On
right, the numbering of the velocities including the stationary velocity.

A square lattice with spacing δx is used where each node is connected to its eight

nearest neighbors (Figure 2.2). Fluid particles reside at the nodes and are streamed to
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nearest neighbor nodes in one time step, δt. There are three speeds of particles in this

system: particles at rest (i = 0), particles moving in the lattice directions (i = 1 . . . 4), and

particles moving along the diagonals (i = 5 . . . 8). It is common in the lattice Boltzmann

literature to rescale variables so that the particles moving in the lattice directions (i =

1 . . . 4) have unit velocity magnitudes defined as

e0 =

0

0


e1 =

1

0

 e2 =

 0

−1

 e3 =

−1

0

 e4 =

0

1


e5 =

1

1

 e6 =

 1

−1

 e7 =

−1

−1

 e8 =

−1

1

 .
(2.34)

The time step and the lattice spacing have been rescaled to lattice units (δx = 1 lattice

space, δt = 1 time step). The velocities have units of lattice space/time step. This

particular lattice is known as D2Q9 (2 dimensions, 9 velocities) [101].

The probability of finding a particle at a node with position x at time t with velocity

ei is given by fi (x, t). The density at a particular node is the zeroth moment of the

particle distribution function,

ρ =
∑
i

fi, (2.35)

and the velocity at a particular node is the first moment of the particle distribution

function,

ρv =
∑
i

eifi, (2.36)
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where the summation limits are assumed to be from i=0. . . 8. The second moment,

Π =
∑
i

eieifi, (2.37)

is related to the stress tensor, but is generally not needed to run a lattice Boltzmann

simulation.

The evolution of the distribution function at each node satisfies the lattice Boltzmann

equation,

fi (x + ei, t+ 1)− fi (x, t) = Ωi, (2.38)

where Ωi is the operator representing the rate of change of the particle distribution

function due to particle collisions. The simplest approach is to assume that the particle

distribution function relaxes to some equilibrium state f eq
i (ρ,v) with a single relaxation

time τ . This is known as the Bhatnagar, Gross and Krook (BGK) operator and the

resulting equation,

fi (x + ei, t+ 1)− fi (x, t) = −1

τ

(
fi (x, t)− f eq

i (x, t)
)
, (2.39)

is known as the lattice Boltzmann BGK (LBGK) equation. The equilibrium distribution

is

f eq
i = tiρ

(
1 + 3 (ei · v) +

9

2
(ei · v)2 − 3

2
|v|2
)
, (2.40)
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where the weights ti are

t0 =
4

9

t1 = t2 = t3 = t4 =
1

9

t5 = t6 = t7 = t8 =
1

36
.

(2.41)

τ is related to the kinematic lattice viscosity as

ν =
2τ − 1

6
(2.42)

The LBGK algorithm (Equation 2.39) is conceptually executed by two steps: propa-

gation and collision. During propagation, particle distributions are translated to nearest

neighbor nodes according to the equation

f ∗i (x + ei, t) = fi (x, t) , (2.43)

where the superscript ∗ denotes the post-propagation/pre-collision state. Before collision,

the values of ρ and v are calculated according to Equations 2.35 and 2.36, and then the

equilibrium distribution is calculated according to Equation 2.40. During collision, the

BGK operator is performed as

fi (x, t+ 1) =

(
1− 1

τ

)
f ∗i (x, t) +

1

τ
f eq∗
i (x, t) , (2.44)

where f eq∗
i is determined during the post-propagation/pre-collision state.
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2.3.1 Boundary conditions

1
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3
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67
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0

Figure 2.3: Bottom boundary node. Solid lines are known distributions after propagation.
Dotted lines are unknown distributions after propagation.

The boundary conditions can be handled in multiple ways. The Zou-He boundary

condition [102] is applicable for specifying velocity boundary conditions (including no

slip) and pressure (density) boundary conditions and is also one of the easiest to im-

plement. Consider the bottom boundary node shown in Figure 2.3. After propagation,

f0, f1, f2, f3, f6, f7 are specified. Suppose that we want to set the boundary condition

v =

vx
vy

 (2.45)

on this node. Note that no-slip
(
vx = vy = 0

)
is included in this boundary condition. The

zeroth (Equation 2.35) and first moment (Equation 2.36) of the particle distributions can

be used to determine the missing distributions, f4, f5, f8, with the form

f4 + f5 + f8 = ρ− (f0 + f1 + f2 + f3 + f6 + f7) (2.46)

f5 − f8 = ρvx − (f1 + f6 − f3 − f7) (2.47)

f4 + f5 + f8 = ρvy + (f2 + f6 + f7) . (2.48)
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There are four unknowns (ρ,f4,f5, and f8) and three equations, but Equations 2.46 and

2.48 give

ρ =
1

1− vy
[
f0 + f1 + f3 + 2 (f2 + f6 + f7)

]
, (2.49)

which leaves three unknowns and two equations. To obtain one more constraint, the

non-equilibrium part of the particle distribution in the normal direction is bounced-back

and can be written (in this case)

f2 − f eq2 = f4 − f eq4 . (2.50)

This is the Zou-He boundary condition. Since Equation 2.49 and the boundary condi-

tion in Equation 2.45 fully determine the equilibrium state for f2 and f4, all unknown

distributions can be found, thus

f4 = f2 +
2

3
vy

f5 = f7 −
1

2
(f1 − f3) +

1

2
ρvx +

1

6
ρvy

f8 = f6 +
1

2
(f1 − f3)− 1

2
ρvx +

1

6
ρvy.

(2.51)

The collision step is still performed on the boundary node after the unknown distribution

functions are set.

The pressure (density) boundary condition is formulated in the same manner. The

boundary condition is

ρ = ρ∗

vx = 0,

(2.52)
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where ρ∗ is the desired pressure to be set on the boundary. With the same node in Figure

2.3, the incoming velocity normal to the boundary is determined similar to Equation 2.49,

vy = 1−
[
f0 + f1 + f3 + 2 (f2 + f6 + f7)

]
ρ∗

. (2.53)

Again, the bounceback rule is used, and the remaining distributions are set as

f4 = f2 +
2

3
ρ∗vy

f5 = f7 −
1

2
(f1 − f3) +

1

6
ρ∗vy

f8 = f6 +
1

2
(f1 − f3) +

1

6
ρ∗vy.

(2.54)



Chapter 3

Including convection in lattice

kinetic Monte Carlo

The kinetic Monte Carlo (KMC) method has been applied to an extensive range of

nonequilibrium, stochastic systems in materials science, biology, and physics. Applica-

tions include dynamics of λ-phage infection of E. coli [103], multicomponent aggregation

and fragmentation [104, 105], defect diffusion in metals and semiconductors [106], and

crystal growth [107]. A common theme in these applications is that the system dynamics

are driven by stochastic events, e.g. molecular reaction or diffusion, that occur on time

scales much larger than the microscopic dynamics of individual atoms or molecules.

Although the KMC approach is well established for purely diffusive or reactive sys-

tems [88, 108], it has generally not been applicable to systems in which drift (from

convective fluid flow or another globally applied field) drives particle motion. Even for

a single particle, Gauthier and Slater have shown that to include drift in a Monte Carlo

simulation, the rates of motion (or probabilities) must be correctly specified [109, 110].

The inclusion of convective-diffusive transport in KMC offers the possibility of studying

33
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the stochastic behavior of particle aggregation in complex transport conditions.

Methods such as lattice Boltzmann [35] and dissipative particle dynamics [34] are well-

suited for simulating particle motion in a fluid since they capture fluid-particle coupling.

Another example is the direct numerical simulation of the momentum equations in which

multiple rigid or elastically deformable particles are present [36]. However, the scale of

systems that can be studied is computationally limited by the calculation of fluid-particle

coupling.

A lattice kinetic Monte Carlo (LKMC) algorithm is developed to follow the trajecto-

ries of tracer particles in the fluid where the fluid flow is not affected by the motion of

the particles. Rates of motion by diffusion and convection are derived using a timescale

analysis, but an unphysical evolution is observed using a simple convection bias. The

bias is corrected by analyzing particle blocking on the lattice. This algorithm enables

the simulation of convection-diffusion of particles by the LKMC method.

3.1 Taylor-Aris dispersion

Figure 3.1: Taylor Aris dispersion. Solute within a parallel plate channel with parabolic
flow profile spreads diffusively as it is convected downstream.
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The well-known phenomenon of Taylor-Aris dispersion (Figure 3.1) is used to develop

the convective KMC algorithm. In this classical problem, a collection of particles or a

solute is entrained in a fluid within a tube or channel. In this work, we focus on flow

between two parallel plates in two dimensions (2D). When applying a pressure gradient

along the x direction, the fully-developed, steady-state velocity profile is given by

vx (y) =
3

2
vavg

(
1− y2

H2

)
, (3.1)

where vavg is the average fluid velocity and 2H is the parallel plate separation distance.

The dimensionless parameter that governs the relative importance of diffusive and con-

vective transport is the Peclet number (Pe), which is defined as

Pe =
vavgH

D
. (3.2)

A pulse of solute is introduced in the channel with the particle distribution given by

a one-dimensional Gaussian distribution in the x-direction, with a height of Cmax and

standard deviation of σ. The continuum equation describing the evolution of the particle

distribution is generally given by

∂C

∂t
+∇ · (vC) = D∇2C (3.3)

where C (x, y) is the solute concentration and D is the solute diffusivity. The Aris analysis

shows that at long times the particle distribution is diffusive when averaged across the

channel width, i.e. C̄ = 1
H

∫ H
0
Cdy, and the x-coordinate is rescaled as x̄ = x − vavgt
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[111]. The effective transport equation is given by

∂C̄

∂t
= K

∂2C̄

∂x̄2
, (3.4)

where the dispersion coefficient for this geometry is given by

K = D

(
1 +

2

105
Pe2

)
. (3.5)

3.2 LKMC simulations of diffusion

As stated in Section 2.1, the main input into a KMC simulation is the rate database

for all possible events. Considering a particle moving by Brownian motion, there are

an infinite number of step directions and step lengths that need to be considered. To

constrain the number of possible events, the space is discretized with lattice spacings hx

and hy in the x- and y-directions respectively, so that a particle only moves to nearest

neighbor lattice sites in one step. In this section, each particle occupies a single lattice

site. Particles are considered to be tracers in the fluid and therefore follow the fluid

velocity. The particles only interact through site exclusion which prevents particles from

occupying the same lattice site.

When there is no pressure gradient applied to the channel
(
vavg = 0

)
, particles move

solely by diffusive motion. The timescale for a diffusive hop from one lattice site to an

adjacent lattice site is

τd =
h2

D
. (3.6)

The rate for an event is inversely proportional to the timescale, so the rate of a diffusive
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move on the lattice is

Γd =
D

h2
. (3.7)

The cross-sectional averages of the solute pulse diffusion profile from LKMC (vavg = 0,

D = 1) are compared to the solution of Equation 3.3 by COMSOL, a commercial finite

element software, with vavg = 0 at several times. Excellent agreement is observed at

timescales that are long with respect to individual hops on the lattice. This result is not

surprising since kinetic Monte Carlo has been used to study diffusive processes in many

systems [112, 113, 114].

Figure 3.2: Diffusion in KMC. Evolution of a 1D Gaussian pulse at t = 0 (red) with
maximum concentration of Cmax = 0.25 and standard deviation of σ = 0.25 with zero
convection (vavg = 0, D = 1) computed with COMSOL [Equation 3.3] (solid lines) and
LKMC (symbols). Red, t = 0; green, t = 1; blue, t = 10.
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3.3 Simplest Biasing Algorithm

Consider a single particle at a position (x, y) with a fluid velocity v (x, y) =

vx
vy

. For

the Taylor-Aris dispersion problem, the velocity field is unidirectional in the x-direction

(vy = 0), which is aligned with the lattice. The timescale for this particle to move one

lattice space in the direction of flow solely due to convection is given by

τc =
h

vx
. (3.8)

The rate of a convective move on the lattice is given by

Γc =
vx
h
. (3.9)

The simplest method to combine diffusive and convective motion is to add the rate of

convection to the rate of diffusion in the direction of flow, i.e

Γx+ = Γc + Γd, (3.10)

where the direction of flow is in the positive x-direction. In all other directions, the rates

of motion are unchanged. This method will be termed the simplest biasing algorithm, or

SBA-LKMC.

The evolution of the Gaussian solute pulse with the SBA-LKMC method for Pe = 100

(vavg = 1000, H = 0.1, D = 1) and a uniform LKMC grid (hx = 0.01, hy = 0.002) is

shown in Figure 3.3 (symbols). The particle evolution is clearly nondiffusive, whereby

the trailing edge of the particle distribution becomes steeper while the leading edge
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Figure 3.3: Particle blocking on the lattice causes a concentration dependent drift. Evo-
lution of a Gaussian pulse at t=0 (red) with maximum concentration of Cmax = 0.5 and
standard deviation of σ = 1 (vavg = 1000, D = 1, H = 0.1) computed with COMSOL
[Equation 3.3] (solid lines) and SBA-LKMC method (symbols) (hx = 0.01, hy = 0.002).
Red, t = 0; green, t = 0.01; blue, t = 0.02.

exhibits a long tail. Also shown in Figure 3.3 is the numerical solution of Equation 3.3

with the velocity profile in Equation 3.1, computed using COMSOL (solid line), which

demonstrates the expected diffusive spreading of the solute pulse. In the context of

Taylor-Aris dispersion, the Aris analysis gives a constant value of K = 191 at long times,

which is in excellent agreement with the numerically extracted value of K = 191 at t =

0.02 from the COMSOL solution of Equation 3.3. Not only is the SBA-LKMC prediction

of the pulse shape evolution incorrect, but it also underpredicts the average velocity of

the solute particles. With more dilute solute pulses, these discrepancies become smaller,
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but the SBA-LKMC method does not provide satisfactory results until the solute particle

concentration approaches zero everywhere.

Flow

Figure 3.4: Particle blocking on the lattice. Particles that are blocked on the lattice in
the direction of flow have zero convective rate.

The errors in the SBA-LKMC results arise from the combination of single-particle

moves inherent in the LKMC method and particle-particle blocking due to the site ex-

clusion interaction. Note that site exclusion is required if morphological information

(e.g. aggregate shape) is to be preserved. Particles that have nearest neighbors in the

direction of the flow are blocked and are subject to zero convective and diffusive hopping

rates (Figure 3.4). As a result of convective blocking, the sum of the rates in the system

at any given time is underestimated. Moreover, the fact that the probability of such an

occurrence increases with the solute concentration leads to a concentration-dependent

rate of convection.

3.4 Analysis of the Simplest Biasing Algorithm

Consider an isolated, diffusionless (D = 0) particle on a 1D lattice at position x. The

particle is entrained in a fluid with unidirectional fluid velocity v. The convective rate

in the positive direction is Γc = v
h
. The effective velocity of a particle, vparticle, is the

distance the particle travels by the time required to move that distance, or

vparticle =
Pparticleh

t
, (3.11)



CHAPTER 3. CONVECTION IN LKMC 41

where t = 1
Γtot

is the average time step for a single move and Pparticle is the probability

that a particle is chosen to move. In this case, there is only one event possible at any

time so Pparticle = 1 and the total rate of the system is Γtot = v
h

. The effective particle

velocity is then

vparticle = Γch = v. (3.12)

Therefore, this algorithm leads to the correct effective velocity for a single particle on

the lattice.

Now consider a collection of N diffusionless particles in a 1D system with the particle

number density given by C(x). Due to site exclusion, a particle at position xk is unable

to move in the direction of flow if another particle exists at position xk + h. This occurs

with probability C(xk + h). When a particle is unable to move, its convective rate is

0. The average convective rate of a particle is therefore the probability the particle is

available to move, 1− C (xk + h), times the convective rate, Γc, which gives

Γeff
c (xk) =

(
1− C (xk + h)

)
Γc. (3.13)

The probability that a particle k at position xk is chosen to move during a step out of

the N particles is

Pparticle (xk) =
Γeff
c (xk)

Γtot

, (3.14)

where Γtot =
∑N

i=1 Γeff
c (xk). Using Eq. 3.11, the effective velocity of a particle is

vparticle (xk) =
(
1− C (xk + h)

)
v. (3.15)



CHAPTER 3. CONVECTION IN LKMC 42

The effective velocity of a particle on the lattice is now a function of the local concentra-

tion of particles. If the change in particle concentration is small over one lattice spacing,

C (xk) ≈ C (xk + h), then Eq. 3.15 becomes

vparticle (xk) =
(
1− C (xk)

)
v. (3.16)

Using Equation 3.16 in the one-dimensional form of Equation 3.3, the corresponding

continuum equation that represents particle transport in the SBA-LKMC method is

∂C

∂t
+∇ ·

(
v(1− C)C

)
= D∇2C (3.17)

The comparison between the COMSOL solution of Equation 3.17 and the SBA-LKMC

method is shown in Figure 3.5. The nonlinear spreading of the concentration profile is

captured with the concentration-dependent drift with the form, (1 − C)v. From this

analysis, it is clear that particle blocking on the lattice causes a concentration-dependent

decrease in the rate of convective motion.

It is interesting to note that the one-dimensional version of Equation 3.17 is directly

related to the Burgers equation [115],

∂C

∂t
+ vC

∂C

∂x
= D

∂2C

∂x2
. (3.18)

The Burgers equation was originally proposed to study fluid turbulence and has been

applied to traffic flow [116], surface growth [117], sedimentation [33], and other traveling

shock phenomena. Although the Burgers equation describes particle motion in some
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Figure 3.5: Continuum transport equation with concentration-dependent drift matches
SBA-LKMC results. Evolution of a Gaussian pulse at t=0 (red) with maximum con-
centration of Cmax = 0.5 and standard deviation of σ = 1 (vavg = 1000, D = 1,
H = 0.1) computed with COMSOL [Equation 3.3 with concentration dependent ve-
locity from Equation 3.16] (solid lines) and SBA-LKMC method (symbols) (hx = 0.01,
hy = 0.002). Red, t = 0; green, t = 0.01; blue, t = 0.02.

specific situations such as sedimentation, the nonlinearity is caused by particle-fluid-

particle coupling, which is not considered in this system.

3.5 Pass Forward Algorithm

From Eq. 3.13, it can be seen that particle blocking causes a reduction in the effective

convective rate in the system. To correct for the reduction, the lost convective rate

in the system must be reintroduced in a physically consistent manner. The goal is to
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restore the effective rate to be the same as an isolated particle on the lattice, Γeff
c = v

h
.

Since a particle cannot move when blocked, the particle’s convective rate can only be

augmented when it is not blocked. The magnitude of this effect must depend on the local

concentration of particles to eliminate the concentration dependent drift.

Flow

Figure 3.6: Pass forward algorithm. Particles that are blocked on the lattice in the
direction of flow have zero convective rate; the convective rates of these particles are
passed forward (in the direction of flow) to the first non-blocked particle.

A pass forward algorithm (PFA-LKMC), which satisfies the conditions above, is used

to correct for particle blocking. Particles that are blocked from moving in the direction

of flow pass convective rate forward in a linearly connected chain to the first particle

that is available to move. For a linearly connected chain of s particles on the lattice,

s− 1 particles are blocked from moving in the direction of flow, and one particle, which

receives the convective rates of all s particles, is available to move. An example is shown

in Figure 3.6, where only 4 particles are available to move but the particles in front of

chains of particles have a higher convective rate. Isolated particles on the lattice are

unaffected by this algorithm. For the case where a uniform, uniaxial flow of magnitude v

is applied, the rate of convective motion of a particle at the front of a chain of s particles

is

Γc (s) = s
v

h
. (3.19)

The PFA-LKMC method preserves the total convective rate of the system, i.e.

Γtot = Γ′tot + Γblocked, (3.20)
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where Γ′tot is the total rate of the system in the SBA-LKMC method (from particles that

are not blocked) and Γblocked is the total rate of all blocked particles. The theoretical

basis for the PFA-LKMC method is presented in section 3.6

Figure 3.7: Pass forward algorithm corrects for particle blocking on the lattice. Evolution
of a Gaussian pulse at t=0 (red) with maximum concentration of Cmax = 0.5 and standard
deviation of σ = 1 (vavg = 1000, D = 1, H = 0.1) computed with COMSOL [Equation
3.3] (solid lines) and PFA-LKMC method (symbols) (hx = 0.01, hy = 0.002). Red, t = 0;
green, t = 0.01; blue, t = 0.02.

The temporal evolution of the Gaussian solute pulse with the PFA-LKMC method

for Pe = 100 (vavg = 1000, H = 0.1, D = 1) and a uniform LKMC grid (hx = 0.01,

hy = 0.002) is shown in Figure 3.7 (symbols). The cross-sectional averaged concentration

profile matches the expected evolution with the correct average velocity and diffusive

spreading. The measured dispersion coefficient averaged between t = 0.019 and t = 0.02
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is K = 202.0 ± 2.8, which is in agreement with the analytic and computed continuum

values. There is some additional dispersion that results from discretization (≈ 6 %), and

this effect is clearly shown in Figure 3.8. As the lattice spacing that is aligned with the

flow is decreased, the measured dispersion from the PFA-LKMC method approaches the

analytic result from Equation 3.5. Further, the PFA-LKMC method is accurate for a

wide range of Peclet numbers with the most relative error in the region of 1 ≤ Pe ≤ 100.

The origin of the additional dispersion is analyzed in detail in Section 3.8.

Figure 3.8: The PFA-LKMC method is valid over a wide range of Peclet number. The
dispersion coefficient, K, was averaged between t = 0.019 and t = 0.02 for a range of
Peclet numbers by varying vavg, while holding H = 0.1 and D = 1 constant. The lattice
spacing in the direction of flow was varied over an order of magnitude, 0.01 ≤ hx ≤ 0.1,
while the lattice spacing against the direction of flow was held constant (hy = 0.002)
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3.6 Analysis of Pass Forward Algorithm

The rate of convective motion for a particle k now depends on whether that particle is

part of chain of particles and where in the chain that particle is located. The probability

of a particle being a part of a chain of particles can be estimated using one dimensional

percolation theory [118]. Again considering a 1D system with velocity in the positive

direction with magnitude v, the probability of the particle k being the rightmost particle

in a linearly connected chain of s particles is the probability that there is an unoccupied

lattice space in the forward direction, 1 − C (xk), times the probability of s − 1 lattice

sites being occupied by particles in the reverse direction, C (xk)
s−1, times the probability

of an unoccupied lattice space at the reverse end of the chain, 1− C (xk), which gives

η (xk, s) =
(
1− C (xk)

)2
C (xk)

s−1 . (3.21)

η (xk, s) is the probability that a particle k is at the front of a chain of s particles. In

Equation 3.21, it is assumed that the average chain length is much smaller than the

distance over which the concentration changes, i.e. C (xk) ≈ C (xk − sh). Using the rate

of a particle at the front of a linearly connected chain of s particles from Equation 3.19,

the average rate of a particle k is given by the weighted average,

Γeff
c (xk) =

∞∑
s=1

Γc(s)η (xk, s) =
v

h

(
1− C (xk)

)2
∞∑
s=1

sC (xk)
s−1 . (3.22)

With the identity
∞∑
i=1

iai−1 =
1

(1− a)2 (3.23)
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for a < 1 [118], Equation 3.22 can be simplified as

Γeff
c (xk) =

v

h
. (3.24)

Thus, the average velocity of a particle in the PFA-LKMC method is (from Equation

3.11) v at any position and particle concentration.

The blocked convective rates are reintroduced to the system ina way that conserves

the local particle velocity. A particle on the lattice is blocked more often in areas of

higher concentration but has a higher rate of convection when it is available to move. On

average, each particle obtains the correct average convective rate and average particle

velocity over many moves. This mathematical analysis will generally break down when

the chain lengths in the system have the same length scale as the distance over which

the concentration changes. These length scales can become comparable when there are

sharp gradients in the concentration profile or when the chain lengths are long (C → 1).

3.7 Extension to two-dimensional flows

The PFA-LKMC method can be extended readily to situations with multidimensional

flows that are not necessarily aligned with the grid by simply decomposing the local

velocity vector into its components along the LKMC grid (Figure 3.9). Generally, a

velocity vector is given by v = vxex + vyey, where ei is the unit vector in the ith

direction. The convective rates for the ith lattice direction is given by

Γc (i) =
max (0,v · ei)

h
, (3.25)
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v

vx

vy

Figure 3.9: Extension of the PFA-LKMC method to two (or three) dimensional flows.
The generalized velocity for each particle is decomposed into velocity vectors along the
lattice directions. Then each velocity component is passed independently in the direction
of flow.

where convective rates are only non-zero in the direction of flow. In order to apply

the PFA-LKMC method to this two-dimensional velocity field, the convective rates for

each component are passed in the direction of flow independently in both the x- and y-

directions. For three-dimensional flows, the velocity is decomposed into the three lattice

components, and the convective rates are passed independently.

The two-dimensional version of the PFA-LKMC algorithm is tested using a parallel

plate, 3:1 expansion-flow geometry, which leads to the formation of vortices in the region

immediately following the expansion (Figure 3.10). The evolution of an initial Gaussian

solute pulse (in the flow-direction) as a function of time, computed by numerical solution

of Equation 3.3 and with the PFA-LKMC method, is shown in Figure 3.10. The velocity

field was determined by COMSOL in both cases. The vortices serve as reservoirs for the

solute and continue to leach solute out of the cell long after the primary pulse has been

convected out of the domain. Figure 3.11 shows the fraction of solute remaining in the

expansion-flow domain. There is a lag time before the primary pulse exits the domain,
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then a rapid loss of solute, and finally the solute leaches out of the vortices at long times.

For comparison, the remaining solute fraction as a function of time for a straight channel

is also shown in Figure 3.11. The straight channel geometry still exhibits a lag time, but

does not have the long-time leaching of solute. Virtually all solute has been removed by

a dimensionless time of 3. Excellent agreement is demonstrated in Figure 3.11 between

the continuum and the PFA-LKMC predictions for the fraction of solute remaining for

both expansion-flow and straight channel geometries.

3.8 Analysis of discretization error

While the PFA-LKMC algorithm effectively corrects for particle blocking on the lattice,

the algorithm does exhibit some discretization error (Figure 3.8). We analyze this effect

using a one-dimensional system of N diffusionless (D = 0) particles subject to a uniform

velocity of magnitude, v, on a uniform lattice (lattice spacing h). The particles move

according to PFA-LKMC method. The particle positions at time t are given by a dis-

tribution X(t) =
(
x1(t) . . . xN(t)

)
, which evolves from an initial Gaussian distribution,

X0 with mean of µ0 and variance of σ2
0. The distribution of particle positions given that

exactly m LKMC steps have occurred has mean µx|m +µ0 and variance σ2
x|m + σ2

o , where

µx|m and σ2
x|m are the change in the mean and variance, respectively. Given that a time t

has passed, the step number m is itself a random Poisson variable with equal mean and

variance,

µm = σ2
m = tΓtot, (3.26)

where Γtot = N v
h

for the diffusionless system under consideration. For tΓtot > 10, m can

be approximated by a normal distribution with the same mean and variance.
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Figure 3.10: Solute pulse evolution as
a function of time in a two-dimensional
laminar expansion flow. The narrow
channel width is 1 dimensionless unit
and the wide channel width is 3 units.
The lengths of the narrow and wide
channels are 2 and 7 units, respectively.
Each panel shows a comparison be-
tween numerical solution of Equation
3.3 (upper) and LKMC-PFA (lower)
with the color bar representing particle
number density for both the numerical
solution and LKMC-PFA. The veloc-
ity profile, denoted by streamlines, was
computed with COMSOL with Pe =
413 (vavg = 41.3, D = 0.1) and Re =
41.3 (ρ = 1, µ = 1) at the inlet. (a)
t = 0, (b) t = 0.1, and (c) t = 0.6.
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Figure 3.11: The PFA-LKMC method accurately captures two dimensional drift. Frac-
tion of solute remaining within the simulation domain from Figure 3.10 as a function
of dimensionless time. Lines: numerical solution of Equation 3.3 with COMSOL. Blue
line and symbols represent expansion flow geometry and red line and symbols represent
straight-channel geometry. Symbols: PFA-LKMC. The straight-channel geometry has
the same overall length of the expansion-flow domain shown in Figure 3.10 and the same
height as the wide region. The flow parameters are the same at the outlet of each channel.

The true mean of X(t), µx +µ0, is given by the conditional expectation formula [119]

µx =
〈
µx|m

〉
= µm∆x = tΓtot

h

N
= vt, (3.27)

where ∆x = h
N

is the change in µx|m due to one move and the expressions for µm and Γtot

were applied. µx is the mean of the particle positions at some time t, which accounts for

the distribution in m. The true variance of X(t), σ2
x + σ2

0, is derived in a similar fashion
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based on the conditional variance formula [119]

σ2
x =

〈
σ2
x|m

〉
+ var

(
µx|m

)
. (3.28)

The first term is the change in the variance if exactly m steps have occurred, and the

second term is the variance caused by the distribution of m steps at time t (see Figure

3.12). The variance of µx|m is

SingleParticleMotion

Variable#ofsteps

ConcertedMotion

SingleParticleMotion

Figure 3.12: Origins of discretization error in the PFA-LKMC method. The distribution
widens due to single particle motion on the lattice. This can be measured by the average

change in the variance after exactly m steps,
〈
σ2
x|m

〉
. The distribution also widens due

to the distribution in m, which can be measured by the variance in the mean position,
var
(
µx|m

)
.

var
(
µx|m

)
= σ2

m (∆x)2 = tvh/N (3.29)

To determine σ2
x|m, consider the change in the variance of the particle position distribution

due to a single move at position xk. The change in the variance of X(t) for a single move
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is given by

σ2
x|1 =

(〈
x2
〉
f
−
〈
x2
〉
i

)
−
(
〈x〉2f − 〈x〉

2
i

)
, (3.30)

where the indices f and i refer to the final and initial states, respectively. The change in

the squared first moment of the particle distribution (the second term in Equation 3.30)

is given by

〈x〉2f − 〈x〉
2
i =

(
〈x〉i +

h

N

)2

− 〈x〉2i =
h

N

(
2 〈x〉i +

h

N

)
. (3.31)

The contribution to the change in the second moment of the particle distribution (the

first term in Equation 3.30), which is only due to the particle at position xk, is given by

〈
x2
〉
f
−
〈
x2
〉
i

=
x2
k|f − x2

k|i
N

=
(xk + h)2 − x2

k

N
=

h

N
(2xk + h) . (3.32)

Equations 3.31 and 3.32 directly lead an expression for the change in the variance of X(t)

due to a particle at position xk moving,

σ2
x|1 (xk) =

2h

N

(
xk − 〈x〉i

)
+
h2 (N − 1)

N2
. (3.33)

Without particle blocking, the average of xk in a Gaussian distribution is the same as

〈x〉i. However, at finite concentration, particle blocking in the flow direction leads to a

systematic bias in the selection process—only particles at the leading edge of a chains

can be selected. For a single chain of length s, the front particle is 1
2

(s− 1) lattice units

away from the mean of that chain. Averaged over all possible chain lengths, the resulting

local systematic bias is given by

〈
xk − 〈x〉

〉
=
h

2

(〈
s (xk)

〉
− 1
)
, (3.34)
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where 〈s〉 is the mean chain length at the local concentration, C (xk), which is given by

〈
s (xk)

〉
=

∑
s s

2η (xk, s)∑
s sη (xk, s)

=
1 + C (xk)

1− C (xk)
, (3.35)

where the definition of the chain length probability, η (xk, s), from Equation 3.21 has

been applied [118]. Equation 3.33 can be expressed as

σ2
x|m (xk) = m

(
h2

N

1 + C (xk)

1− C (xk)
− h2

N2

)
, (3.36)

where the contributions of m steps are considered. Finally the probability that a site at

position xk is chosen at any given time is C (xk) /N , which leads to

〈
σ2
x|m

〉
= 〈m〉

(
h2

N
f (C)− h2

N2

)
,where (3.37)

f(C) =

∫ ∞
−∞

C (x)

N

1 + C (x)

1− C (x)
dx.

Note that N =
∫∞
−∞C (x) dx. Substituting Equations 3.29 and 3.37 into Equation 3.28

gives

σ2
x = tvhf(C). (3.38)

Because C(x) is approximately constant in time over a small number of steps, f(C) is

also constant, so Equation 3.38 is linear in time and therefore may be represented by a

numerical dispersion coefficient of the form

Kerr =
σ2
x

2t
=
vh

2
f(C). (3.39)

For any Gaussian concentration profile, the effective dispersion error that is incurred
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by the PFA-LKMC algorithm scales linearly with the velocity and the lattice spacing

and is an integral function of the concentration profile. This analysis was tested by

comparing the apparent dispersion coefficient obtained from a PFA-LKMC simulation of

a Gaussian solute pulse in straight-channel plug-flow with the result in Equation 3.39.

The apparent dispersion coefficient in the LKMC simulations was obtained by computing

the difference between the initial and final variance of the solute pulse concentration

over a short time interval. Two types of runs were performed. In the first, particles

were assumed to be nondiffusive, D = 0, and any measured dispersion therefore can

be attributed to algorithm discretization error. In the second case, particles with finite

diffusivity, D > 0, were simulated and the dispersive error was defined by the difference

between the apparent dispersivity and particle diffusivity,

Kerr =
σ2
x

2t
−D. (3.40)

Equation 3.40 is valid for both D = 0 and D > 0. As shown in Figure 3.13, the

simulated (Equation 3.40) and calculated (Equation 3.39) diffusive errors are in excellent

quantitative agreement for variations in concentration, velocity, grid spacing, and grid

Peclet number, vh/D. The error scales linearly with h, so it may be understood as a

discretization error that is amplified by the presence of connected chains of particles.

The fact that the calculated error in Equation 3.39 accounts for all excess algorithm

dispersion indicates that this is the dominant error in the algorithm.
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3.9 Conclusions

A new approach for incorporating convective transport of particles into LKMC was de-

veloped and validated. The method is applicable to systems of tracer solute particles

that do not affect the fluid flow and do not interact hydrodynamically. The only parti-

cle interaction is excluded volume (site exclusion). It was shown that a straightforward

addition of local convective rates to the diffusive rates of particles leads to shock-like

propagation behavior, along with an artificial reduction in the average particle transport

rate. Particle blocking on the lattice was found to cause a concentration-dependent drift

velocity. The concentration-dependent drift was corrected by passing convective rates of

blocked particles to the particles at the edge of the local chain of particles. The validity

of this approach was established mathematically for one dimensional systems. The PFA-

LKMC method was also shown to be accurate for two (or three) dimensional flows using

an expansion flow geometry.

Although the rates of motion in this work do not satisfy the probabilities of the first

passage problem [109, 120], the dispersion error analysis clearly demonstrates that the

dominant error in the system considered here arises from particle blocking on the lattice.

There also exists an inherent discretization error that scales as vh/2. No additional error

was observable that could be attributed to violating the first passage problem over a

single lattice move. The LKMC rates also do not satisfy detailed balance as the Peclet

number increases; however, satisfying detailed balance is generally not critical for the

highly nonequilibrium situations in flow-driven particle motion.

The PFA-LKMC method enables simulation of systems in which both convective and

diffusive transport modes are operational. In the following chapters, PFA-LKMC will

be utilized to study generalized bulk aggregation of particles in flow and as part of a
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multi-scale model of platelet deposition to a collagen surface. Beyond these specific ap-

plications, this approach enables stochastic simulation of diverse problems in systems

biology, microfluidics, and nanomaterials processing, which span molecular to macro-

scopic length scales and are driven by fluid flow.
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Figure 3.13: Dispersion error is proportional to the lattice spacing and velocity. Measured
with an initial Gaussian pulse (σ = 1) in a one dimensional plug flow velocity profile as
a function of the peak concentration, Cmax. The lines represent numerical evaluations
of Equation 3.39 and the corresponding symbols are the results from the PFA-LKMC
method over a short time interval, ∆t = 10−4. The blue triangles/line are with h = 0.002,
v = 100, and D = 0 (vh/2 = 0.1,Pe = ∞). The red circles/line are with h = 0.007,
v = 100, and D = 0 (vh/2 = 0.35, Pe =∞). The green squares/line are with h = 0.002,
v = 1000, and D = 0.4 (vh/2 = 1, Pe = 5). The Peclet number is defined with respect
to the lattice spacing, Pe = vh/D.



Chapter 4

Aggregation in bulk particulate flows

In the previous chapter, a convective LKMC algorithm was developed to track particle

motion in flow. In this chapter, the LKMC approach is extended to study particle

aggregation in a bulk fluid. Typically, a population balance equation (PBE) approach is

used to determined the dynamics of particle aggregation and fragmentation. However,

a more direct method for simulating particle aggregation is needed for situations with

complex flow. Simple cases that can be solved by the PBE are used to validate the

LKMC method for perfect (ideal) and imperfect (nonideal) collision. A collision model

for nonideal collisions is proposed, and a connection the mean-field PBE is derived. The

LKMC method is then used to study open systems with simple flows including constant

shear rate, parabolic velocity profile, and plug flow. The particle size distribution is

determined for a complex flow with baffles, sudden expansions, and sudden contractions.

60
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4.1 Population balance equation

Consider a two dimensional representation of a cone and plate geometry (constant shear

rate) into which circular particles of uniform radius R0 are initially placed with number

concentration C0. The initial volume fraction is given by φ = C0πR
2
0. The computational

domain that will be studied is represented by a rectangular box of size Lx×Ly. A uniform

shear rate, G, is applied in the the y dimension so that the velocity profile within the

domain is

vx (y) = Gy. (4.1)

Periodic boundaries are applied in the direction of flow and no flux boundaries are im-

posed perpendicular to the direction of flow. The particles in the fluid are assumed to

move along rectilinear paths until collision, i.e. no hydrodynamic or other long range

particle interactions are explicitly modeled here.

The population balance equation for aggregates of size i is found by considering

collisions that create and destroy particles of size i:

dCi
dt

=
1

2

i−1∑
j=1

εkj,i−jCjCi−j −
∞∑
j=1

εki,jCiCj, (4.2)

where εki,jCiCj is the rate of aggregation between clusters of size i (an ’i-mer’) and

clusters of size j to form a clusters of size i+ j. Ci and Cj are the number concentrations

of i-mers and j-mers, respectively, and ki,j is the collision kernel that depends on the fluid

flow. The first term, εkj,i−jCjCi−j, is the rate of collisions that create particles of size i.

The second term, εki,jCiCj, is the rate of collisions that destroy particles of size i. The

collision efficiency, ε, is the probability that a collision event results in an aggregation

event and can include hydrodynamic interactions and other interparticle interactions
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G
A

B
Aggregation

Figure 4.1: Particle collisions in constant shear flow. The flux of a particle j to a particle
i is determined by the relative velocity of the particles, which depends on the separation
distance perpendicular to the flow. The dotted lines represent the trajectories of the
particles (A). If a particle with radius Ri aggregates with a particle of radius Rj, the

resulting particle is immediately relaxed to a circular shape with radius Ri+j =
√
R2
i +R2

j

(B).

such as receptor capture efficiency between individual cells [44, 45, 121, 122]. Particles

that aggregate are assumed to immediate relax to circular particles, i.e. aggregation of

particles of radius Ri and Rj result in a new particle of radius
√
R2
i +R2

j . The collision

kernel can be derived from the flux of particles of size j to particles of size i, Ji,j, with

the following relation,

Ji,j = ki,jCiCj. (4.3)

Note that the total rate of aggregation is the flux, Ji,j, times the probability of a collision

event, ε. The flux of particles of size j to particles of size i whose trajectories are separated
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by a distance y (see Figure 4.1) is given by

ji,j = CiCjv(y)dy = CiCjGy dy, (4.4)

where v(y) is the relative velocity of the particles. The total flux over all possible trajec-

tories that lead to collision is given by

Ji,j = 2

∫ Ri+Rj

0

CiCjGy dy = CiCjG
(
Ri +Rj

)2
. (4.5)

Using Equation 4.3, the collision kernel for constant shear flow is given by

ki,j = G
(
Ri +Rj

)2
. (4.6)

For comparison, the collision kernel for spheres in a constant shear flow is given by

ki,j =
4

3
G
(
Ri +Rj

)3
(4.7)

For the constant shear kernel, the PBE has no known analytic solution. Analytic

solutions are only known for idealized kernels, e.g. the constant kernel, ki,j = c. Several

methods exist for solving a PBE numerically [123, 124]; a stochastic numerical solution

approach [105] based on the Gillespie method for chemical kinetics [88, 108] is employed

here. This approach is essentially a mean-field representation of the LKMC algorithm.
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4.2 Lattice kinetic Monte Carlo algorithm

The lattice kinetic Monte Carlo (LKMC) algorithm in this chapter is based on the one

in Chapter 3. However, particles are no longer restricted to occupying a single lattice

site. As particles aggregate on the lattice, it is essential to resolve the different particle

sizes to capture the size effects in the collision kernel (Equation 4.6). α is defined as the

radial resolution of a particle on the lattice:

α =
R

h
, (4.8)

where R is the radius of the particle and h is the lattice spacing. As shown in Figure 4.2,

a particle is centered on a lattice site and contains all lattice sites whose center is within

the area of the particle.

Figure 4.2: Discretization of particles on lattice. For a particle with radius R on a lattice
with lattice spacing h, the center of the particle is located at the center of a lattice site,
and the particle contains all lattice sites whose center is within the area of the particle.
The level of discretization is given by α = R/h.
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The rate of moving the entire particle one lattice space by diffusion is still given by

ΓD =
D

h2
, (4.9)

where D is the diffusion coefficient of the particle. The rate of convection along a lattice

direction, ei, with velocity, v, is given by

ΓC =
max (0,v · ei)

h
. (4.10)

For directions that have a negative or zero velocity magnitude, the particles only move by

diffusion. The particle velocity is given by the average velocity over all particle-occupied

lattice sites. The total rate of motion is

Γmotion = ΓC + ΓD. (4.11)

In this chapter, only particles driven by convective motion will be considered (D = 0).

Site exclusion is enforced by setting the rate of events causing overlap to 0. In the low

concentration limit, the algorithmic diffusive error that is introduced by discretizing the

system is

Derr =
vh

2
. (4.12)

An error Peclet number can be defined on the particle scale, i.e.

PeLKMC =
vR

Derr

=
vR

vh/2
= 2α. (4.13)
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Thus, for a purely convective situation (D = 0), PeLKMC remains finite because of al-

gorithm diffusion, but can be increased arbitrarily by increasing α (increasing the grid

resolution relative to a monomer radius). Increasing lattice resolution increases the num-

ber of moves required for a particle or aggregate to traverse a given distance, thereby

increasing the computational cost of the simulation. Note, however, that the number of

possible particle events at any time is unchanged as the lattice resolution is changed. It

should also be noted that as the particle size distribution coarsens during a simulation,

the effective value of PeLKMC actually increases (the relative contribution of spurious

diffusion to the dynamics is reduced).

In addition to particle move events, when two particles are in contact on the lattice,

an aggregation event occurs with a prescribed rate, Γagg, which is another input into

the LKMC model. To match the test case presented in the previous section, after an

aggregation event between particles of size Ri and Rj, the new particle of size
√
R2
i +R2

j

is placed at the nearest lattice site to the center of mass of the original particles. If the

new particle overlaps another particle on the lattice, the new particle is placed at the

nearest position that has no overlap. Other types of aggregate morphological relaxation

dynamics can be included into the LKMC framework by modeling the relaxation process

explicitly; the idealized choice used in the following calculations simplifies the comparison

to PBE model predictions. In the limit of perfect, or ideal, collision efficiency (ε = 1), as

soon as two particles come into contact an aggregation event occurs. This corresponds to

the limit where Γagg =∞, which is computationally realized by setting Γagg many orders

larger than the next largest rate in the system. For finite values of Γagg, the probability

that an aggregation event occurs after particle contact is less than unity (ε < 1). A

model for imperfect, or nonideal, collisions that establishes a connection between a given
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value of ε and the corresponding Γagg is described in Section 4.4.

In the previous chapter, particles only occupied one lattice site (α = 1) for all time.

Here, particles can occupy multiple lattice sites (α ≥ 1) and a particle can be blocked

by multiple other particles. The reverse situation is also possible, in which one particle

directly blocks several others; examples are shown in Figure 4.3. The pass forward

algorithm (PFA) is directly extended to these situations by evenly splitting the convective

rate between particles in the direction of flow. For example, a particle that is being

blocking by two particles (Figure 4.3A) passes its half rate to each particle in the direction

of flow. Conversely, when one particle blocks two others, the sum of the blocked particle

convective rates is passed forward to the blocking particle, as shown in Figure 4.3B.

A B

Figure 4.3: Rate passing scheme. (A) A particle can be blocked from moving in the
direction of flow by two (or more) particles. In this case, particle 1 has convective rate Γ1

and passes half this rate to particles 2 and 3. The total convective rates of particles 2 and
3 are 1

2
Γ1 + Γ2 and 1

2
Γ1 + Γ3, respectively. (B) A single particle can block two (or more)

particles in the direction of flow. In this case particles 2 and 3 pass their convective rates
to particle 1, which has a total convective rate of Γ1 + Γ2 + Γ3.

4.3 Ideal (ε = 1) aggregation in constant shear flow

The total concentration of particles in a constant-shearing fluid as a function of time is

shown in Figure 4.4 for both the LKMC and PBE methods when ε = 1 (Γagg =∞). The

rate at which particle coalesce decreases as the simulation progress due to the decreasing
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particle concentration. In fact, as shown in Equation 4.2, the aggregation rate is expected

to scale as the square of the particle concentration. The agreement between the LKMC

results and the PBE solution is strongly influenced by the resolution of the lattice. For

coarse lattices, particles tend to aggregate too rapidly, an error that arises from the

diffusive error (Equation 4.12), which creates additional collisions. This error decreases

as the lattice spacing decreases, and for values of α greater than approximately 10,

the LKMC results match the PBE for all simulated time. A more detailed comparison

between the two methods at a specific time is shown in Figure 4.5, where individual

components of the overall size distribution are shown. For α = 15 at t = 500 s, the

agreement is quantitative within the spread of the LKMC results. The temporal evolution

of the concentration of the first 4 particle sizes for the PBE and LKMC is compared in

Figure 4.6. For both the PBE and LKMC, the system starts with all monomers that

decay monotonically. All clusters come to a maximum and then decay, where the time

to maximum is shorter for smaller clusters. For all cluster sizes, the LKMC matches the

PBE over the simulated time.

4.4 Nonideal (ε < 1) aggregation in constant shear

flow

The lack of explicit hydrodynamic interparticle interactions in the present LKMC algo-

rithm can create artifacts in the nonideal collision case. Consider the situation where a

faster-moving particle approaches a slower-moving one and becomes blocked. In the ideal

collision case, instantaneous aggregation results, and a new, single particle is created. In
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Figure 4.4: Total particle concentration compared for LKMC and PBE for ideal aggre-
gation of particles at constant shear rate with φ = 0.005, G = 1 s−1, ε = 1, Lx = 40,
Ly = 0.3, and R0 = 0.01. The total particle concentration, Ctot =

∑
Ci, is normalized

by the initial monomer concentration, C1(0). Black, PBE; orange, LKMC α = 1; blue,
LKMC α = 5; red, LKMC α = 15.

the nonideal case (finite Γagg), however, the blocking cannot be resolved until the par-

ticles aggregate. In other words, an aggregation event will take place for every collision

even when Γagg is very small, because there is no mechanism for the colliding particles

to disentangle following the collision. In reality, lubrication forces allow particles to slide

around each other over a finite time interval.

This difficulty is resolved by introducing an additional event, namely the switching

of coordinates in the direction of flow of a pair of particles, as shown in Figure 4.7.
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Figure 4.5: Distribution of particle sizes at t = 500 s at constant shear with the same
conditions as Figure 4.4 for PBE (solid line) and LKMC (dotted line) with α = 15.

Consider two nearest-neighbor particles, i and j, colliding at an angle θ with respect to

the direction of flow (see Figure 4.7). The interaction time for this event is assumed to

be ∆t = 2r cos θ/∆v, where r is the magnitude of the vector pointing from one particle

center to the other particle center, and ∆v is the velocity difference between the two

particles. The timescale for switching as a function of contact angle and local shear rate,

G, is given by

∆t =
2

G
cot θ. (4.14)
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Figure 4.6: Temporal evolution of the concentration of the first four particle sizes at
constant shear rate with the same conditions as Figure 4.4 for PBE (solid lines) and
LKMC (dotted lines) with α = 15. Red, monomer; green, 2-mer; blue, 3-mer; cyan,
4-mer.

The corresponding rate expression for pair switching is given by

Γflip =
G

2
tan θ. (4.15)

To compare LKMC to the PBE, a quantitative connection between the collision ef-

ficiency parameter, ε, the switching rate, Γflip, and the aggregation rate, Γagg is needed.

Over the contact time interval, and for a given (constant) aggregation rate, the probability

that two particles have not aggregated is exponentially distributed P0 = exp
(
−Γagg∆t

)
.
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Figure 4.7: Particle switches create nonideal collisions in LKMC. The vector that points
from the center of the reference sphere to the center of the colliding sphere is r, which
makes an angle θ to the direction of flow and has a magnitude of r = Ri + Rj, where
i and j are the reference and colliding spheres. At a local shear rate G, the colliding
particle has a relative velocity of Gr sin θ. The colliding particle moves r cos θ and the
reference particle moves −r cos θ in the direction of flow during a particle switch event.
For a more complex flow, the velocity vector is decomposed in the lattice directions and
the switching rate is calculated independently for each direction.

Therefore, the probability that the particles have aggregated during a collision with a

specific angle of contact, θ is given by

P (θ) = 1− exp
(
−Γagg∆t

)
= 1− exp

(
−2

Γagg

G
cot θ

)
. (4.16)

The collision efficiency is the probability that any collision between two particles will pro-

duce a successful aggregation event. The collision efficiency within an LKMC simulation

is generally given by

ε =

∫ π/2
0

J(θ)P (θ) dθ∫ π/2
0

J(θ) dθ
, (4.17)

where J(θ) is the flux of particles arriving at a reference particle with collision angle θ.

In the case of rectilinear particle trajectories with locally constant shear rate, the arrival

flux is given by (compare to Equations 4.4 and 4.5 where the flux is defined in Cartesian
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coordinates)

J(θ) = CjG
(
Ri +Rj

)
sin θ. (4.18)

Note that the arrival flux is nonuniform and increases with increasing contact angle.

Inserting Equation 4.18 into Equation 4.17 provides an expression of the average sticking

probability based on LKMC parameters,

ε = 1−
∫ π/2

0

sin θ exp

(
−2

Γagg

G
cot θ

)
dθ. (4.19)

The collision efficiency is therefore explicitly dependent on the dimensionless ratio of the

aggregation rate to the shear rate, Γagg/G.

As shown in Figure 4.8, the integral expression in Equation 4.19 was evaluated nu-

merically for 10−3 < Γagg/G < 103. When the aggregation rate is large relative to the

shear rate, the ideal aggregation limit is obtained and ε ≈ 1. As the aggregation rate

becomes small relative to the shear rate, ε → 0. The crossover between ideal collisions

and non-ideal collisions appears naturally at Γagg/G ≈ 1, confirming the relevance of this

ratio in dictating the overall collision efficiency. Equation 4.19 and Figure 4.8 provide

the correspondence between the spatially resolved particle interactions, through the rate

of aggregation and the interaction time, and the spatially averaged collision efficiency in

the PBE. Since the interaction time depends only on the local flow characteristics in this

model, only one free parameter, Γagg, needs to be specified in LKMC.

LMKC simulations of aggregation in constant shear flow were performed for 10−2 <

Γagg/G < 102 and G = 1 s−1. The temporal evolution of the total concentration of

clusters for the different cases is compared to the corresponding PBE simulations in

Figure 4.9. In each PBE case, the corresponding value of ε was obtained from numerical
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Figure 4.8: Collision efficiency in LKMC simulation. Numerical integration of collision
efficiency varying with the ratio of the aggregation rate to the shear rate (Equation 4.19).

integration of Equation 4.19 (Figure 4.8), and agreement between the two simulation

approaches is observed over 4 orders of magnitude in the ratio Γagg/G. Note that for

coarse size distributions, the total number of clusters is small, and the corresponding

statistical fluctuations in the LKMC result become larger. To avoid this type of error in

numerical solutions of the PBE, the constant number Monte Carlo (CNMC) method [124]

aims to keep the number of clusters constant throughout the simulation by increasing the

size of the simulation domain considered. The CNMC method is a solution method for

the mean-field PBE. In principal the constant number principal could be applied to the

LKMC method, but would require replicating the system in the direction of flow, which
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Figure 4.9: Comparison between LKMC (dashed lines) for various ratios of aggrega-
tion rate to shear rate (red, Γagg/G = 0.01; blue, Γagg/G = 0.1; orange, Γagg/G = 1;
and purple, Γagg/G = 100) and PBE (solid lines) with corresponding collision efficiency
determined from numerical integration from Equation 4.19 (Figure 4.8). G = 1 s−1,
φ = 0.0005, α = 10, Lx = 20, Ly = 1, and R0 = 0.001 for all LKMC simulations.

may incur computational penalties or statistical errors.

4.5 Platelet aggregation in tubular channels

In this section, the contact time model is compared to the behavior of a physical system

with hydrodynamic interactions and cellular bonding. Bell et al. have measured size

distributions of adenosine diphosphate (ADP)-stimulated platelet aggregates at the outlet

of a tube at four average shear rates: 41.9, 168, 335, and 1000 s−1 [31]. By assuming
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a linear velocity profile at the average shear rate of the tube, it was possible to extract

an effective collision efficiency for platelets. Overall, the collision efficiency was found

to decrease with increasing shear rate, a result that is qualitatively consistent with the

particle interaction model used here.
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Figure 4.10: Comparison of contact time model with experimentally determined collision
efficiencies for ADP-stimulated platelet aggregation. Circles, Bell et al. data [31]. Solid
line, contact time model with a best-fit aggregation rate of 0.683 s−1; dotted lines, contact
time model with an aggregation rate of 0.683± 50 %.

To compare the results of Bell et al. and the contact time model, the single aggregation

rate parameter, Γagg, that best matches the experimentally derived collision efficiency at

each shear rate was found to be Γagg = 0.683 s−1. As shown in Figure 4.10, the contact

time model used in the LKMC method provides a good quantitative description of the
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shear-rate dependence on the collision efficiency for platelets. The dotted lines represent

±50 % of the regressed rate of aggregation, which captures some of the uncertainty due to

the approximations used to calculated the collision efficiency in Bell et al. The regressed

aggregation rate can be qualitatively interpreted in terms of the time required to form

bonds that are strong enough to hold platelets together. The value of Γagg = 0.683 s−1

is a net aggregation rate that characterizes the result of fast (but unstable) GPIb-von

Willebrand Factor bonds and slower (but stable) glycoprotein α2bβ3-fibrinogen bonds.

Multiple bonds between α2bβ3 on one platelet and bound fibrinogen molecules on another

platelet (and vice versa) are required for stable aggregation, and Γagg = 0.683 s−1 is

consistent with O(1 s) time for multiple high affinity α2bβ3-fibrinogen complexes to form

(a single α2bβ3-fibrinogen bond requires O(0.1 s) to form [125]).

4.6 Aggregation in nonperiodic, open systems

In an open system, the aggregation process takes place along a domain of finite length

with particles entering the domain and leaving the domain. Four types of flow are

considered here: plug flow, constant shear flow, parabolic (parallel-plate) flow, and a

more complex situation with baffles. In the following simulations, the inlet condition is a

fixed particle volume fraction of monomers with a uniform radius distribution, R0 = 0.01.

This inlet condition is implemented by defining a new event in the LKMC simulation

that inserts a particle into the domain such that the center of mass is R0/h lattice units

from the boundary, which allows for the insertion of the entire particle onto the lattice.

The rate for inserting a particle with center of mass located at a specific lattice site i is

proportional to the total flux of fluid through that lattice site, vih where vi is the velocity

magnitude normal to the boundary, and the concentration of monomer particles in the
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inlet, C0,

Γinlet(i) = vihC0. (4.20)

Only the overall inlet rate,
∑

Γinlet(j), where the summation is over valid inlet sites, is

used as an event in LKMC to determine when a new particle is inserted into the domain.

After that event is chosen to occur, the particle’s center of mass is placed at a specific

lattice site i with probability Γinlet(i)/
∑

Γinlet(j). If this causes particle-particle overlap,

this site is rejected and a new site is chosen until site exclusion is satisfied.
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Figure 4.11: Comparison of particle size for constant shear rate and parabolic velocity
profile in an open system. Flow is from left to right with dimensions Lx = 20 and Ly = 1.
The aspect ratio of each panel is enhanced to 10:1 for readability. α = 1, h = 0.001,
φ = 0.01, and R0 = 0.01. (a,c) constant shear rate with an average velocity of 2× 105.
(b,d) Parabolic velocity profile with an average velocity of 2 × 105. (a–b) Snapshot of
particles during an LKMC simulation. Radii of particles enhanced by a factor of 3. (c–d)

Colorbar represents the average particle size relative to the monomer size,
(
〈R〉 /R0

)2
.
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Figure 4.12: Comparison of aggregation rate for constant shear rate and parabolic velocity
profile in an open system. Colorbar is in units of aggregation events per unit area time.
Flow is from left to right with dimensions Lx = 20 and Ly = 1. The aspect ratio of each
panel is enhanced to 10:1 for readability. α = 10, h = 0.001, φ = 0.01, and R0 = 0.01.
(a) constant shear rate with an average velocity of 2× 105.(b) Parabolic velocity profile
with an average velocity of 2× 105.

In the following examples, a finite, rectangular domain with dimensions, Lx = 20,

Ly = 1 was employed. A uniformly distributed square lattice with h = 0.001 was used

in all cases. In the constant shear case, the prescribed velocity profile is given by

vx(y) = 2× 105y, (4.21)

while the parabolic velocity profile is given by

vx(y) = 3× 105
(
1− y2

)
. (4.22)

In the latter case, the y origin is defined at the centerline of the domain. The total flow

rate in both cases is the same. Steady-state quantities, averaged over sufficiently long

time intervals, are measured for open systems whereas time-dependent quantities were

measured in Figures 4.4–4.6 and 4.9. In Figure 4.11, the average particle sizes in a fluid
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with constant shear rate and with parabolic velocity profile are compared. As expected,

the largest particles were found in regions with the longest residence time; in both cases,

these regions were adjacent to the channel walls. In parabolic velocity profile, the region

near the wall also exhibits the highest shear rate. The aggregation rates at steady state

are compared in Figure 4.12. Note that although the shear rate was constant across the

height of the domain in constant shear flow (Figure 4.12A), the aggregation rate was

found to vary across the width of the channel. The reason for this apparently anomaly is

a direct consequence of the variation in residence time across the height of the channel.

Thus, more time for particle aggregation is available in the slower-moving streamlines

and the aggregation rate decreases more rapidly with distance along the length of the

channel (aggregation rate scales as GC2, see Equation 4.2). In the parabolic case, the y

locations with the highest aggregation rate along the channel occur near, but not at, the

plate surfaces. These regions present an optimal balance between high shear rate and

relatively low residence time.

The particle size distributions exiting the two channels are compared in Figure 4.13.

Although the total flow rate is the same in all three cases, the parabolic flow example leads

to the largest particles on average. The reason for this can be understood mathematically

by considering an approximate solution to the PBE in which all particles are assumed to

be the same size (Ri ≈ Rj = R∞) [43]. The PBE becomes

dC∞
dt

= −2GεR2
∞C

2
∞, (4.23)

where C∞ is the overall concentration of particles. Equation 4.23 can be simplified using
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Figure 4.13: Outlet particle size distribution at steady state for open systems. Squares,
constant shear rate; circles, parabolic velocity profile. The conditions are the same as in
Figures 4.12 and 4.11.

the definition of the volume fraction, which is constant,

φ = πR2
∞C∞. (4.24)

Thus

dC∞
dt

= −2φ

π
GC∞. (4.25)

Integrating over a particular streamline in unidirectional flow with a velocity magnitude,



CHAPTER 4. AGGREGATION IN BULK PARTICULATE FLOWS 82

Figure 4.14: Comparison of the mixing-cup averaged particle concentration from an
approximate analytic solution (Equations 4.30 and 4.31). Blue line, parabolic velocity
profile; red line, flow with constant shear rate. z is the ratio of the channel length to
width. The cross-over point occurs at z ≈ 65

v, gives

C∞ = C∞(0) exp

(
−2φ

π
G
x

v

)
, (4.26)

where x is the distance along the streamline (x/v is the residence time), and G is the local

shear rate [46]. The mixing-cup averaged concentration of particles exiting the channel

is then given by

C̄∞ =

∫
vC∞(y) dy∫

v dy
. (4.27)

For a parabolic velocity profile in a channel of half-height, 0.5, the concentration exiting
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Figure 4.15: Comparison of the particle concentration from an approximate analytic
solution (Equations 4.28 and 4.29). Blue line, parabolic velocity profile; red line, flow
with constant shear rate. z is the ratio of the channel length to width, and y is the
fractional distance width of the channel in constant shear rate and the fractional distance
to the half-height in parabolic velocity flow. The cross-over point occurs at z ≈ 65

at a particular streamline at a distance y from the center is

C∞ = C∞(0) exp

(
−8φz

π

y

1− y2

)
, (4.28)

where z is the ratio of the length of the channel to the height of the channel, 2H = 1.

For constant shear rate flow, the concentration exiting at a particular streamline at a
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distance y from the stationary wall with channel width 1 is

C∞ = C∞(0) exp

(
−2φz

π

1

y

)
, (4.29)

where z is the ratio of the length of the channel to the height of the channel, H = 1. The

mixing-cup averaged concentration for a parabolic velocity profile is

C̄∞ =

∫ 1

0

3

2

(
1− y2

)
exp

(
−8φz

π

y

1− y2

)
, (4.30)

The mixing-cup averaged concentration for flow with a constant shear rate is

C̄∞ =

∫ 1

0

2y exp

(
−2φz

π

1

y

)
, (4.31)

Note that the concentration and mixing-cup averaged concentration is only dependent

on the shape of the velocity profile and the length-to-width ratio of the channel. They

do not depend on the velocity magnitude. Numerical solution of Equations 4.30 and 4.31

(Figure 4.14) demonstrates that for short channels, slightly more aggregation takes place

in a parabolic velocity field, consistent with results in Figure 4.13 (lower concentration

or larger particles). However, as the channel length increases, the averaged aggregation

extent becomes greater in the constant shear rate case. The crossover occurs at a length-

to-height ratio of 65. To understand the differences at high and low shear rate, the

concentrations at several channel ratios are plotted in Figure 4.15. For any size channel

with parabolic velocity profile, the concentration of particles at the center (y = 1) is

unchanged, C∞ = C∞(0), since the shear rate is 0. For constant shear rate flow in long

channels, the concentration of particles throughout the channel is much lower than the
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initial value (C∞ < C∞(0)). So, for long channels, constant shear flow will produce

coarser particles in the outlet. However, for short channels (z < 65), the concentration

is lower in a larger region near the wall in parabolic velocity flow.
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Figure 4.16: Comparison of 1D Brownian aggregation kernel from Equation 4.36 (line) to
plug flow LKMC simulation (symbols). The radius of particles in LKMC is taken as the
average particle radius at that position. Lx = 20, Ly = 1, α = 10, h = 0.001, φ = 0.01,
R0 = 0.01, and v = 2× 105.

Plug flow also leads to measurable aggregation (Figure 4.16), even though the aggre-

gation kernel should be zero (G = 0). The aggregation is driven by algorithmic diffusion

in the LKMC simulation. The extent of aggregation can be determined from the time-

dependent aggregation kernel in 1D since the diffusion only occurs in the direction of flow.

Consider a set of particles at initial concentration C0 diffusing in one dimension. A fixed,
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reference particle is defined at the origin and the flux of particles from the positive x di-

rection are considered. The boundary condition at the surface of the reference particle is

C(0, t) = 0 for ideal collisions. To compare the results to the pseudo-steady aggregation

kernel, we assume that the far-field concentration does not change, i.e. C(∞, t) = C0.

The concentration profile around the reference sphere is given by the diffusion equation

∂C

∂t
= 2D

∂2C

∂x2
, (4.32)

where the factor of 2 arises from fixing the reference particle. The solution for this PDE

collapses onto a single solution with respect to a penetration length that grows as the

square root of time as

C(x, t) = C0erf

(
− x

g(t)

)
, where g(t) = 2

√
2Dt. (4.33)

The flux of particles to the reference particle surface at x = 0+ is

J+ = −2RcollisionD
∂C

∂x

∣∣∣∣
x=0+

= 2
(
Ri +Rj

)(2D

πt

) 1
2

C0, (4.34)

where ∂C/∂x|x=0+ = C0

√
2/πDt, Rcollision = Ri +Rj, and the subscript + indicates flux

of particles from the positive x direction. The total flux per unit area is

J =
1

2

(
|J−|+ |J+|

)
C0 = 2

(
Ri +Rj

)(2D

πt

) 1
2

C2
0 , (4.35)

where the factor of 1/2 arises from double counting collisions and the absolute value of
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the flux from the positive and negative directions are equal. The kernel is then given by

ki,j = 2
(
Ri +Rj

)(2D

πt

) 1
2

(4.36)

The Brownian kernel with the algorithmic diffusion coefficient (Equation 4.12) ex-

plains the aggregation seen in plug flow (Figure 4.16). The particle size increases slowly

along the channel relative to the shear driven processes in Figure 4.11, and the extent of

aggregation due to algorithmic diffusion can be controlled by increasing the grid resolu-

tion relative to the monomer size.

4.7 Aggregation in complex flows: Parallel plate re-

actor with baffles

Figure 4.17: Geometry of baffle reactors with flow from left to right. Overall dimensions
of Lx = 20 and Ly = 2. Inlet and outlet have length 1 and width 0.5. Baffles are 0.2
units thick and (a) 1.5 units, (b) 1 unit, (c) 0.5 units, and (d) 0 units long. α = 10,
h = 0.00133, φ = 0.02, R = 0.00133.
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The aggregation LKMC model was used to investigate particle aggregation in a sys-

tem with complex flow. A rectangular channel with sudden expansions and contractions

and varying baffle heights was considered. The choice of this type of flow geometry is ap-

plicable to realistic situations in which there are regions of high residence time (standing

vortices) and regions of high shear rate (squeezing flow), e.g. stenotic and valvular flows

in blood vessels or flow in shell-and-tube heat exchangers). Such geometries cannot be

considered in the mean-field PBE framework, necessitating the use of a spatially resolved

approach. The LKMC simulation domain considered here includes a total of eight baffles

that are equally spaced and originate from alternating channel walls, as shown in Figure

4.17. Four cases were considered in which the baffle height was varied from 0 to 0.75 of

the channel width. The resulting flow streamlines for each case are shown in Figure 4.17.

The fluid is incompressible, and the average normal velocity in the inlet is 20 (Re = 10).

The velocity field for each geometry was determined by a finite element solution of the

Navier-Stokes equation (COMSOL Multiphysics).

The particle aggregation rates are shown for all four cases in Figure 4.18. The effect of

the baffles is generally to locally increase the shear rate and therefore the aggregation rate,

an effect that increases with increasing baffle height. Note that as the particles coarsen,

the aggregation rate decreases down the channel due to lower particle concentration. In

the recirculation regions adjacent to each baffle, the aggregation rate is low corresponding

to the very low shear rate there. The corresponding average particle size distribution for

each case is shown in Figure 4.19. Most notably, extremely large particles were found in

the recirculation regions where the residence time is very long, leading to a broad size

distribution at the reactor exit. This often undesirable effect increases with increasing

baffle height, demonstrating how the present simulation tool could be used to optimize
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Figure 4.18: Aggregation rate at steady state in baffle reactors from Figure 4.17. Color
bar is in units of aggregation events per unit area time.

reactor geometries in the presence of competing objectives.

4.8 Conclusions

The convective LKMC method has been extended for simulating particle aggregation

in the presence of complex fluid flow. A contact time model was developed to account

for the finite time that particles are within some distance to aggregate. The contact

time model was necessary to overcome the lack of hydrodynamic interactions within this

implementation of the LKMC algorithm. The contact time model accounts for the local

shear rate and particle-particle contact angle and can be directly compared to the PBE.

The contact time model was further analyzed in the context of platelet aggregation using

regression to experimentally inferred sticking coefficients in a tubular microchannel. A
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Figure 4.19: Average dimensionless particle size in baffle reactors from Figure 4.17. Color

bar represents average particle size relative to monomer:
(
R/R0

)2
.

single extracted aggregation rate is able to adequately describe an experimentally inferred

platelet collision efficiency over a large range of averaged shear rates within tubular flows.

Moreover, the inferred aggregation rate is physiologically reasonable, which provides

further evidence for the validity of the interaction model.

The LKMC model was validated using a series of simple examples that can be de-

scribed with a population balance equation formulation. Although the LKMC simulations

were fully able to capture the spatiotemporal evolution in all tested cases, the resolu-

tion of the particle on the lattice is an important parameter in setting the accuracy of

the method. In general, coarser grids lead to an increase in numerical diffusion, which

alters the physics of the aggregation process. The LKMC model was then applied to

flow examples that are well beyond the scope of the PBE-based approaches. The LKMC
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approach was easily able to address baffled parallel-plate geometries with variable baffle

heights that produce a highly heterogeneous shear-rate distribution within the domain.



Chapter 5

Multiscale prediction of

patient-specific platelet deposition

under flow

A cartoon representation of the biological and physical mechanisms of platelet aggrega-

tion is shown in Figure 5.1. Initial adhesion is started by collagen exposure. GPIb-IX-V

on the platelet mediates transient adhesion to vWF that is bound to collagen. The main

collagen receptor responsible for signaling is GPVI. Intracellular calcium concentration

generally rises in response to an activating signal, and an increased level of calcium causes

activation of the platelet integrins. The integrin α2β1 mediates firm adhesion to collagen.

Activated platelets, shown as shaded in Figure 5.1, release soluble platelet agonists such

as ADP and TXA2, which also cause an increase in intracellular calcium. The soluble

agonists form a boundary layer in the blood flow, through which platelets from the bulk

fluid are recruited to the injury site. Activated platelets also display the active fibrinogen

92
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receptor α2bβ3. Two activated platelets can form α2bβ3-fibrinogen-α2bβ3 bonds that allow

propagation of the clot into the lumen of the vessel.

This simplified view of platelet aggregation neglects the effect of thrombin generation

and the release of other platelet agonists such as epinephrine and serotonin. Although

these molecules are clinically important for clotting function, a simplified representation

of platelet aggregation is considered here to enable patient-specific predictions under flow.

Addition of these factors is discussed in Chapter 6.

Figure 5.1: Cartoon representation of platelet aggregation.Exposure of collagen (orange
fibers) starts the platelet response. Platelets bind to collagen and become activated
through GPVI (color change: white to blue). Sufficiently activated platelets release
soluble platelet agonists, ADP and TXA2. The soluble agonists form a boundary layer
with the fluid flow (only ADP is shown in this figure). Platelets firmly adhere to collagen
through the α2β1 integrin. A platelet-platelet bond can form through α2bβ3-fibrinogen-
α2bβ3 binding.
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Figure 5.2: The multiscale model has four main components: fluid flow, transport of
soluble species, motion and binding of platelets, and the activation state of each platelet.
The fluid flow is perturbed by the growing clot and is determined using the lattice
Boltzmann method. The released soluble agonists form a boundary layer in the flow,
and this process is determined using the finite element method. Platelet motion and
bonding are simulated with lattice kinetic Monte Carlo. Platelet activation state is
estimated from the history of intracellular calcium concentration, which is determined
by a neural network model.

5.1 Multiscale model

The multiscale model is assembled according to Figure 5.2. The fluid flow is perturbed as

the clot grows into the lumen of the vessel (top-left). The lattice Boltzmann (LB) method

is used to solve for the velocity field of the fluid. Platelets in the growing aggregate release

ADP and TXA2 into the fluid, and a boundary layer is formed with the flow (top-right).

The dynamics of this process are determined with a finite element method solution of
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the convection-diffusion-reaction equation. Platelets move in the fluid by convection and

diffusion. They also bind to the collagen surface as well as previously bound platelets

(bottom-right). The motion and binding of platelets is simulated using the convective

LKMC algorithm developed in Chapters 3 and 4. The level of integrin activation for

each platelet is estimated through the intracellular calcium concentration (bottom-left).

The intracellular calcium concentration is determined using a neural network trained on

a specific patient’s platelet phenotyping experiment.

5.2 Experimental methods

5.2.1 Pairwise agonist scanning and neural network training

Platelet calcium measurements and neural network training were performed by Manash

Chatterjee. A 384-well agonist plate was assembled with varying concentrations of three

agonists—ADP, U46619, and convulxin (CVX) at 0.1×EC50, 1×EC50, 10×EC50 levels

(EC50 levels were 1 µM, 1 µM, and 5 nM for ADP, U46619, and CVX, respectively)—and

the inhibitor iloprost at a single concentration (1 µM). Platelet rich plasma (PRP) was

obtained from each of the three donors, incubated with Fluo4-NW dye, and assembled

onto a 384-well platelet plate. Pairwise combinations of agonists and inhibitors were

pipetted from the agonist plate onto the platelet plate and fluorescence was measured to

assess calcium mobilization. This procedure was named pairwise agonist scanning (PAS).

A neural network (NN) was trained to predict platelet calcium concentration for

any agonist dose and combination. The structure of the NN is given in more detail

in Section 5.3.3. The training set (experimental data) consisted of concentrations of

the 4 agonists or inhibitors (ADP, U46619, CVX, and iloprost) input to each well and
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corresponding measured calcium transient at each of the 74 conditions. The structure

of the NARX (Nonlinear AutoRegressive network with eXogenous inputs) model had

2 processing layers with 8 and 4 nodes and output feedback over 128 s to each layer.

The hyperbolic tangent transfer function was used in all processing layers, and a linear

transfer function was used in the output layer. Training was performed using Levenberg-

Marquardt backpropagation until the performance of the model (mean squared error) was

≈ 1×10−5. To prevent over-fitting, 10% of the experimental data was excluded from the

training set, and the weights and biases were adjusted only as long as the error decreased

in this testing-set in addition to continual decrease in training-set error. A unique NN

was trained for each donor’s PAS experiment and was input into the multiscale model.
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The trained NN accurately modeled the calcium responses within 5 % at all times. The

measured synergies for 63 conditions, containing two or three inputs (two agonists with

or without iloprost), provide a synergy vector, which is a measurement of an individual’s

phenotype. The synergy score for a condition with two agonists, A and B, is defined as

SAB =

∫
AB −

(∫
A+

∫
B
)

max
∣∣∫ A+

∫
B
∣∣ , (5.1)

where
∫
A is the integral of the intracellular calcium concentration minus baseline for a

condition with agonist A, i.e.
∫
A =

∫ (
[Ca2+]A(t′)− [Ca2+]0

)
dt′. The synergy vector is

a unique and repeatable fingerprint of the individual [67]. The NN training resulted in

accurate prediction of this measured synergy vector for each donor with the synergy scores

highly correlated between experiment and simulation. A summary of the experimental

data and NN training for 3 donors is shown in Figures 5.3 and 5.4.

5.2.2 Microfluidic models of platelet aggregation

The microfluidic experiments were performed by Tom Colace. In brief, a microfluidic

channel with cross sectional dimensions of 250 µm wide and 60 µm high was laid per-

pendicular to a strip of patterned equine collagen type 1, 250 µm wide. Whole PPACK-

treated blood was perfused over the collagen strip at a constant flow rate using a syringe

pump, and the platelet density on the collagen patch was measured by a fluorescent

anti-CD41 antibody (Alexafluor 647-conjugated anti-CD41). Blood was treated with 3

types of treatment: COX-1 inhibition (aspirin and indomethacin), P2Y1 inhibition (MRS-

2179), and IP receptor stimulation (iloprost). Fluorescence was measured for 500 s for

8 channels simultaneously on a single device. Multiple devices were run from a single
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donor’s blood draw to obtain a large number of repeats.

5.3 Multiscale model methods

5.3.1 Model domain and grid structures

Figure 5.5: The multiscale model domain is a slice from the center of a microfluidic
channel (cross-sectional dimensions: 250 µm×60 µm). The multiscale model domain is
500 µm long and 60 µm high.

As shown in Figure 5.5 the domain of the multiscale model is taken as a two-

dimensional slice of the microfluidic channel. The length of the domain in this work

is 500 µm, and the height is 60 µm. The collagen patch (250 µm long) starts 100 µm from

the inlet and ends 150 µm from the outlet. The slice is conceptually taken in the center

of the channel in the third dimension (125 µm from each wall).

For LKMC, a uniformly discretized grid with lattice spacing, hLKMC = 0.5 µm, was

chosen so that individual platelets would be resolved by multiple lattice sites (Figure 5.6).

Each platelet of radius, R = 1.5 µm [126], was centered on a lattice site and occupied all
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LKMC LB FEM

Figure 5.6: Each platelet (circle) is resolved by multiple lattice sites on the LKMC
grid with lattice spacing hLKMC. The LB grid has the same lattice spacing as LKMC,
hLB = hLKMC but is offset by half a lattice space. Each LKMC node is at the center
of 4 LB lattice nodes and vice versa. The FEM grid nodes are coincident with the LB
grid nodes every 2 LB lattice spaces, hFEM = 2hLB. Multiple LKMC and LB nodes and
FEM elements resolve each platelet. A single FEM element may contain parts of multiple
platelets and fluid at the same time.

lattice sites within the platelet radius. For LB, a uniformly discretized grid with the same

lattice spacing as LKMC, hLB = hLKMC = 0.5 µm, was chosen, and the lattice nodes were

offset from the LKMC nodes by half a lattice spacing. For FEM, a uniformly discretized

grid with a coarser lattice spacing, hFEM = 2hLB = 1 µm, was aligned with the LB grid

at every 2 LB nodes. A single platelet was described by multiple lattice nodes on the

LKMC and LB grids and multiple elements on the FEM grid. A single FEM element

was large enough to contain parts of multiple platelets and fluid at the same time. The

significance of the different levels of grid resolution is discussed within each method.
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5.3.2 LKMC model

The input into kinetic Monte Carlo is the rate for all possible events including convection,

diffusion, binding, and unbinding events. The rate of motion of a single platelet on the

lattice by diffusion in any of the 4 lattice directions is given by

ΓD =
D

h2
LKMC

, (5.2)

where D is the effective platelet diffusivity due to Brownian and red blood cell (RBC)

motion. The motion of RBCs augments the apparent platelet diffusivity to Dplatelet =

1.25× 10−7 cm2 s−1 [127]. For comparison, the Stokes-Einstein platelet diffusivity is ≈

2.2× 10−9 cm2 s−1. An excluded volume interaction is enforced by site exclusion where

the rate of any event that causes particle overlap on the lattice is set to zero. Along a

lattice direction, ei, the rate of motion of a single platelet on the lattice by convection is

given by

ΓC =
max (v · ei, 0)

hLKMC

, (5.3)

where the velocity of the platelet is taken as the area-average of the local fluid velocity,

v.

RBC motion, besides augmenting the apparent diffusivity of platelets, creates an in-

homogeneous radial platelet distribution, where the platelet concentration is highest near

the walls. Yeh, Calvez, and Eckstein experimentally measured the radial concentration

profile of platelets in whole blood [128]. They modeled the RBC effect as an effective

radial platelet drift velocity, which was derived from the measured concentration pro-

file. The drift velocity in the two dimensional channel used here is shown in Figure 5.7,

where a negative drift velocity is towards the wall. The resulting concentration profile
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Figure 5.7: Platelet drift velocity from Yeh, Calvez, and Eckstein due to RBC motion
[128]. The x-axis starts at the wall, so a positive height points into the channel. A
positive velocity points away from the wall, so the negative velocity within the center of
the channel pushes platelets towards the wall.

for a 60 µm channel is shown in Figure 5.8. The maximum radial drift is approximately

4 µm s−1, which results in a maximum platelet concentration of 3.75 times the bulk,

Cbulk = 1.5× 105 platelet µL−1. The concentration of platelets at the wall is slightly less

than the overall maximum and is approximately 3 times the bulk. Thus, the total effect

of RBC motion is an increased concentration of platelets near the wall and increased

platelet diffusivity.

During a move event, the chosen platelet is moved one lattice space in the direction
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Figure 5.8: Platelet concentration profile resulting from the drift velocity in Figure 5.7.
The bulk concentration of platelets is given by Cbulk = 1.5× 105 platelet µL−1.

chosen. The rates of all local platelets (other platelets that are nearest neighbors before or

after the event) and the current platelet are updated after the event is executed. Particle

blocking on the lattice is handled similar to Chapters 3 and 4, whereby convective rates

of blocked particles are passed in the direction of flow. Flipping rates as described in

Chapter 4 are also implemented. A platelet that is bound to collagen or another platelet

is defined to be immobile, and the motion rates for this platelet are set to 0.

Binding rates are dependent on the extent of inside-out signaling for α2β1 and α2bβ3.

The internal activation state, ξi(t), of the ith platelet was estimated from the integral of
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the intracellular calcium concentration above the baseline concentration,

ξi(t) =

∫ t

−∞

([
Ca2+

]
i

(
t′
)
−
[
Ca2+

]
0

)
dt′, (5.4)

where
[
Ca2+

]
0

was set to 100 nM [129], and the time-dependent calcium concentration

was computed using the donor-specific NN, which accounts for exposure to collagen,

ADP, and TXA2 along the platelet trajectory. The integrated calcium concentration,

ξi(t), for each platelet was then used to define a time-dependent extent of inside-out

signaling, F (ξi), for α2β1 and α2bβ3 integrin activation,

F (ξi) = α + (1− α)
ξni

ξni + ξn50

, (5.5)

where n controls the sharpness of the response, and ξ50 is the internal activation state

required for 50% activation. In the present work, the values of n = 0.75 and ξ50 = 9 µM s

were employed for both α2β1 and α2bβ3 integrin activation. Activation of calDAG-GEFI

downstream of calcium signaling and talin-1 binding causes a conformational change in

integrins to a high affinity state [130]. α2β1 and α2bβ3 are both activated through this

pathway, so it is expected that the activation dynamics will be similar. However, the

quantity of receptors and the affinity of the receptors for their ligands may differ. The

quantity α represents the basal level of integrin activation and was set to 0.001 in all

simulations so that 0.001 ≤ F ≤ 1.

The overall rate of attachment of a platelet to collagen is defined by

Γcollagen
att = kcollagen

att F (ξi), (5.6)
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where kcollagen
att is the attachment rate of a fully activated platelet (F = 1) and accounts for

receptor and ligand copy numbers, single bond kinetics, and the effects of von Willebrand

Factor. The attachment rate to collagen ranges from αkcollagen
att (F = 0) to kcollagen

att (F = 1).

Similarly, the rate of attachment between two platelets via fibrinogen, Γfibrinogen
att , depends

on the activation states of both platelets. To model the two-body interaction, the rate of

binding between platelets i and j is given by the geometric mean of integrin activation,

Γfibrinogen
att = kfibrinogen

att

√
F (ξi)F (ξj). (5.7)

The detachment rate of platelets from collagen, Γcollagen
det , is modeled using the Bell expo-

nential [131] to describe force-dependent breakage of receptor-ligand bonds,

Γcollagen
det = kcollagen

det F (ξi)
−1 exp

(
γi
γc

)
, (5.8)

where F (ξi)
−1 accounts for the increased number of bonds that must be broken as the

cell activates, γi is the local shear rate around platelet i, and γc is the characteristic

shear rate required to initiate accelerated bond breakage. The detachment rate between

platelets bound via fibrinogen is similarly given by

Γfibrinogen
det = kfibrinogen

det

(
F (ξi)F (ξj)

)−1/2
exp

(
γi
γc

)
. (5.9)

5.3.3 NN model

For a cell with local agonist concentrations,

c =
(
[ADP] , [U46619] , [CVX] , [iloprost]

)
, (5.10)
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the NN predicts the intracellular calcium concentration,
[
Ca2+

]
. U46619 is the experi-

mental analog of TXA2. U46619 and TXA2 may have separate affinities for TP, and this

effect is captured by calculating an effective U46619 concentration as

[U46619] = θ [TXA2] . (5.11)

θ modulates the ratio of potency between TXA2 and U46619, where a value of θ > 1

represents more potent TXA2. The platelet calcium measurements were performed with

convulxin (CVX) instead of collagen, so the effective potency of the collagen patch is de-

termined by the CVX concentration, which is an input into the simulation. The agonist

concentrations are mapped to the interval [−1, 1] from a log scale, where the concen-

trations at [0.01×EC50, 0.1×EC50, 1×EC50, 1×EC50] are mapped to [−1,−1/3, 1/3, 1].

Concentrations larger than 10×EC50 are mapped to the maximum, 1, and concentra-

tions smaller than 0.01×EC50 are mapped to the minimum, −1. The EC50values are

1 µM for ADP and 1 µM for U46619 [67]. The EC50of CVX is 5 nM [67]. The NN input

for iloprost was either −1 for platelets not treated with iloprost or 1 for platelets treated

with iloprost. The local concentrations of ADP and TXA2 are determined through the

average concentration over the platelet area.

The output of the NN model must be mapped to intracellular calcium concentration

for input into the platelet bonding model (calculation of ξ in Equation 5.4). The output of

the NN is linearly mapped from the interval [−1, 1] to [0.1 µM, 1 µM], where 0.1 µM is the

resting level of intracellular calcium and 1 µM represents maximal calcium mobilization

[129].

Figure 5.9 shows the structure of the NN with connectivity between the layers. The

mapped inputs, c(4×1), are fed into each node of the first layer of the NN with weights
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Figure 5.9: Neural network with 4 inputs (ADP, U46619, CVX, and iloprost) and 1 time-
dependent output (intracellular calcium concentration) with 2 processing layers (8 and
4 nodes) and output feedback into the processing layers. The transfer function at each
processing layer node is the hyperbolic tangent function.

IW (8×4). The time history of the NN output, z(8×1), at times [t− 1, t− 2, t− 4, t− 8, t−

16, t − 32, t − 64, t − 128] s, where t is the time of the next solution (t − 1 is the time

of the current solution), is weighted with A
(8×8)
1 and is also fed to the first layer. The

sum of the weighted inputs, the weighted time history, and a constant bias at each node,

b
(8×1)
1 , is transformed with the hyperbolic tangent function, tanh, and the outputs of all

nodes in the first layer are fed into each node of the second layer of the NN with weights
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LW
(4×8)
1 . The time history is also fed back to the second layer with weights A

(4×8)
2 . In

the second layer, the weighted inputs, time history, and a constant bias, b
(4×1)
2 , are again

transformed with the hyperbolic tangent function, and the output of each node is fed to

the output layer with weights LW
(1×4)
2 . The sum of the weighted inputs and constant

bias, b
(1×1)
3 , are linearly combined to obtain the solution at time t. The output from the

first layer is given by

l
(8×1)
1 = f

(
IW (8×4)c(4×1) + A

(8×8)
1 z(8×1) + b

(8×1)
1

)(8×1)

, (5.12)

where f() = tanh(). The output from the second layer is given by

l
(4×1)
2 = f

(
LW

(4×8)
1 l

(8×1)
1 + A

(4×8)
2 z(8×1) + b

(4×1)
2

)(4×1)

. (5.13)

The output from the NN is

y(t)(1×1) = LW
(1×4)
2 l

(4×1)
2 + b

(1×1)
3 (5.14)

The superscripts in Equations 5.12-5.14 represent the dimensionality of each matrix or

vector. The solution of a NN is simply a set of matrix-vector multiplications with trans-

formation functions. The initial time history of intracellular calcium concentration of a

platelet was set to 100 nM, the basal level.

The NN only solves for [Ca2+] at integer times, but we would like to be able to re-

solve the intracellular calcium concentration at a finer time resolution. An interpolation-

prediction scheme is used to accomplish this goal. If a solution of the NN is known at

time t1, the next solution is at time t2 = t1 + 1. For a multiscale model time, t∗ where
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t1 < t∗ < t2, the solution at time t2 is predicted with the current system state. The so-

lution at time t∗ is linearly interpolated from the known solution at t1 and the predicted

solution at time t2.

5.3.4 Lattice Boltzmann model

Lattice Boltzmann (LB) solves for the velocity field around the growing platelet deposit

by simulating the advection of and collisions between packets of fluid on a lattice. The

lattice spacing is the same as LKMC grid (hLB = hLKMC), and the lattice nodes are offset

from the LKMC nodes by half a lattice spacing (Figure 5.6). In two dimensions, each

node has 9 types of fluid velocities that stream to its 8 nearest neighbors and itself (D2Q9

lattice). The algorithm has two main steps: collision and streaming. During a streaming

step, fluid is streamed to neighboring lattice nodes, and during the collision step, fluid is

relaxed to an equilibrium configuration. The process of streaming and collision effectively

solves the Navier-Stokes and continuity equations [38]. The time step for streaming and

collision was set as ∆tLB = 1× 10−7 s.

The inlet condition is fully-developed flow at a flow rate Q, and the outlet condition is

a constant pressure, Po. The two walls have no-slip boundary conditions. Bound platelets

are also represented as no-slip surfaces. Since the LB grid is offset from the LKMC

grid, the no-slip boundary conditions are naturally defined at the interface between the

solid and liquid (Figure 5.6). Free flowing platelets are ignored in the LB model, but

the hydrodynamic effect of a bound platelet on the fluid is explicitly handled in this

model. Although the hydrodynamics between two free-flowing platelets are not captured,

a bound platelet will perturb the trajectories of the free-flowing platelets. See Section

2.3 for more detail on LB methods.
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5.3.5 Finite element model

The concentration fields, Cj(x, y, t) where j = ADP and TXA2, are determined by finite

element method (FEM) solution of the convection-diffusion-reaction equation,

∂Cj
∂t

+ v · ∇Cj = Dj∇2Cj +Rj, (5.15)

where Dj is the Brownian diffusion coefficient of ADP or TXA2 (augmentation effects for

small solutes in blood flow are relatively small [132]). Rj is the volumetric rate of release

or generation of ADP or TXA2, and v is the velocity field (obtained from LB). The

platelet release rate of soluble species ADP and TXA2 depends on the internal activation

state, ξi. It is assumed that each platelet only releases ADP and TXA2 if ξi(t) is larger

than the critical threshold, ξcrit = ξ50 = 9 µM s, where the critical threshold is defined

to be the same as the ξ50 value for the integrin activation function. The time at which

a platelet’s activation state reaches ξcrit is denoted as trelease. For t > trelease, the rate of

release of ADP and TXA2 is modeled by an exponential decay of the form

Rj(t) =


Mj

τj
exp

(
− t−trelease

τj

)
, for t ≥ trelease

0, for t < trelease

(5.16)

where Mj is the total amount of releasable ADP or TXA2 in a platelet and τj is the char-

acteristic time constant of release. Once activated, each platelet releases 1× 10−8 nmol

[133] of ADP with a time constant of 5 s [134] and 4× 10−10 nmol of TXA2 with a time

constant of 100 s [135].

In FEM, the system domain is split into discrete elements where the solution is

approximated within the elements by interpolation functions. Here, bilinear interpolation
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functions are used, and nodes are located at the corners of the quadrilateral elements.

The FEM nodes align with the LB grid every 2 LB nodes, so that each FEM element

contains 4 LKMC nodes (Figure 5.6). The velocity in an element is taken as the average

velocity of all LB nodes within that element. The release rate within an element is taken

as the area-weighted release rate of all platelets within the element. For example, if an

element contains 10% of a platelet’s area, the generation rate within that element is 10%

of that platelet’s release rate (Equation 5.16). The location of platelets are only used to

determine the generation rate in Equation 5.15, Rj, although the velocity field, which is

obtained from LB, depends on the location of the bound platelets. The soluble species

can be transported through platelets as if they were stagnant fluid. The weak form of

the original PDE is obtained by weighting each term with the interpolation functions

and integrating over each element, i.e.

∫
Ω

φi

(
∂Cj
∂t

+ v · ∇Cj −Dj∇2Cj −Rj

)
= 0, (5.17)

where Ω is the domain of a single element and φi is a single interpolation function within

that element. The time derivative was approximated using the Crank-Nicolson scheme

with a time step of ∆t = 1× 10−2 s. See Section 2.2 for more detail on FEM methods.

5.3.6 Multiscale model coupling

The flow of information between models is given in Figure 5.10. LKMC provides the

position of all platelets in the domain and the bonding state of each platelet. LKMC

requires the velocity field of the fluid (LB) to calculate convective rates of motion and the

activation state of each platelet (NN) to determine the bonding and unbonding rates. The



CHAPTER 5. MULTISCALE MODEL FOR PLATELET DEPOSITION 113

Figure 5.10: Multiscale model coupling. The LKMC method simulates platelet attach-
ment and detachment and platelet transport. The input for the LB method is the location
of all bound platelets and the output is the velocity field. The NN integrates the local
agonist histories of each platelet to obtain the intracellular calcium concentration. FEM
solves the reaction-diffusion-convection equation, where the platelet release rate depends
on the activation states of the platelets.

NN provides the activation state of each platelet, and the input into the NN is the local

concentration of platelet agonists, which requires both the platelet positions (LKMC) and

the concentration field of soluble agonists (FEM). The LB method provides the velocity

field and requires the location of all bonded platelets (LKMC) for the location of the

no-slip surfaces. FEM provides the concentration field and requires the release rate of

platelets, which depends on the location of platelets (LKMC) and the activation states

(NN), and the velocity field (LB).
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Figure 5.11: Multiscale model time stepping. ∆ti for each method (i = FEM,LB, orNN)
is the time step at which information is exchanged. ti for each method is the next time
at which information is exchanged. t is the overall system time, which is kept by LKMC,
and τ is the time step for a single LKMC move.

The coupling of the individual models only occurred at specified time intervals:

∆tLB = 5× 10−3 s, ∆tFEM = 1× 10−2 s, and ∆tNN = 1× 10−2 s. LKMC always ex-

changed information during updates, so in this case, LKMC simply had a coupling time

of ∆tLKMC = 5× 10−3 s. At the start of the simulation (t = 0 s) LKMC, LB, FEM, and

the NN were all specified by the initial condition for each method. The LKMC method

was stepped forward in time until the first coupling time was reached (t = 5× 10−3 s),

and then the appropriate methods were stepped forward in time with the current system
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state. During the first update, LB received the current configuration of bound platelets

from LKMC, and then LB was simulated until the system time current system time

(tLKMC = 5× 10−3 s). Then, the LKMC method with an updated velocity field resumed

stepping forward in time until the next coupling time (t = 1× 10−2 s) occurred. During

this update all models share information: LKMC updated the positions of all platelets

and the bound states of all platelets in FEM, LB, and NN; LB updated the velocity field

in LKMC and FEM; FEM updated the concentration field in NN; and NN updated the

activation state in FEM and LKMC. This process repeats until the end of the simulation

time (see Figure 5.11).

The time scale for velocity field relaxation was generally << 10−3 s, so the velocity

field reached a steady state in LB significantly before reaching the current system time. To

gain computational efficiency, LB was only simulated until steady-state was achieved as

determined by convergence of the velocity field. At the next coupling time, the boundary

condition only changed if a platelet underwent a bonding or unbonding event. If this

occurred, LB was again simulated until steady-state. If not, the steady-state solution

from the previous step was kept, and no LB simulation was needed. In this way, the

velocity field was only updated if a platelet had a bonding or nonbonding event.
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5.4 Results

5.4.1 Model parameters

The multiscale model contains 21 parameters (Table 5.1) held constant in all simulations.

Some parameters are known quantities derived from experiment including Cplatelet, ρblood,

µblood, Rplatelet, Dplatelet, DADP, DTXA2, MADP, MTXA2, τADP, and τTXA2. CCVX is the

potency of the collagen surface with respect to the agonist used in Pairwise Agonist

Scanning (PAS), CVX. The effective surface concentration of CVX depends on the type

of collagen used as well as surface density. θ is the relative potency of TXA2 to U46619,

which is a TXA2 analog used in PAS. The effective concentration of U46619 was defined

as [U46619] = θ[TXA2]. A value of θ > 1 represents the situation where TXA2 has

a higher affinity for TP. The remaining parameters (n, ξ50, kcollagen
att , kcollagen

det ,kfibrinogen
att ,

kfibrinogen
det ) were constrained using the temporal evolution of the platelet density for several

drug conditions (control, indomethacin, and iloprost) using one donor (Donor 1) (Section

5.4.3).



CHAPTER 5. MULTISCALE MODEL FOR PLATELET DEPOSITION 117

T
ab

le
5.

1:
P

ar
am

et
er

s
fo

r
m

u
lt

is
ca

le
m

o
d

el

S
y
m
b
o
l

N
a
m
e

V
a
lu
e

R
e
f.
/
C
o
m
m
e
n
t

C
p

la
te

le
t

B
u

lk
n
u

m
b

er
d

en
si

ty
of

p
la

te
le

ts
1
.5
×

10
5

p
la

te
le

t
µL
−

1
R

ef
.

[1
36

]

ρ
b

lo
o
d

D
en

si
ty

of
b

lo
o
d

1
g

cm
−

3
R

ef
.

[1
37

]

µ
b

lo
o
d

V
is

co
si

ty
of

b
lo

o
d

0
.0

3
g

cm
−

2
R

ef
.

[1
38

]

R
p

la
te

le
t

R
ad

iu
s

of
p

la
te

le
t

1
.5
×

10
−

4
cm

R
ef

.
[1

26
]

D
p

la
te

le
t

D
iff

u
si

on
(d

is
p

er
si

on
)

co
effi

ci
en

t
of

p
la

te
le

t
1
.2

5
×

10
−

7
cm

2
s−

1
R

ef
.

[1
27

]

D
A

D
P

D
iff

u
si

on
(d

is
p

er
si

on
)

co
effi

ci
en

t
of

A
D

P
2
.3

7
×

10
−

6
cm

2
s−

1
R

ef
.

[2
1]

D
T

X
A

2
D

iff
u

si
on

(d
is

p
er

si
on

)
co

effi
ci

en
t

of
T

X
A

2
2
.1

4
×

10
−

6
cm

2
s−

1
R

ef
.

[2
1]

M
A

D
P

T
ot

al
am

ou
n
t

of
re

le
as

ab
le

A
D

P
1
×

10
−

8
n

m
ol

p
la

te
le

t−
1

R
ef

.
[1

33
]

M
T

X
A

2
T

ot
al

am
ou

n
t

of
T

X
A

2
ge

n
er

at
ed

4
×

10
−

1
0

n
m

ol
p

la
te

le
t−

1
R

ef
.

[1
35

]

τ A
D

P
R

el
ea

se
ti

m
e

co
n

st
an

t
fo

r
A

D
P

5
s

R
ef

.
[1

34
]

τ T
X

A
2

R
el

ea
se

ti
m

e
co

n
st

an
t

fo
r

T
X

A
2

10
0

s
R

ef
.

[1
35

]

C
C

V
X

E
ff

ec
ti

ve
co

n
ce

n
tr

at
io

n
of

co
ll

ag
en

0
.5
×

E
C

5
0

of
C

V
X

so
lu

b
le

v
s.

su
rf

a
ce

li
g
a
n

d

θ
R

el
at

iv
e

p
ot

en
cy

of
T

X
A

2
/
U

46
61

9
15

R
el

at
iv

e
b

in
d

in
g

a
ffi

n
it

y
fo

r

T
P

re
ce

p
to

r

α
R

es
ti

n
g

le
v
el

of
in

te
gr

in
ac

ti
va

ti
on

0
.0

01
1

ac
ti

ve
in

te
g
ri

n
p

er
1
0
0
0

o
n

p
la

te
le

t
su

rf
a
ce

C
on

ti
n
u

ed
on

n
ex

t
p

ag
e



CHAPTER 5. MULTISCALE MODEL FOR PLATELET DEPOSITION 118

T
ab

le
5.

1
–

co
n
ti

n
u

ed
fr

om
p

re
v
io

u
s

p
ag

e

S
y
m
b
o
l

N
a
m
e

V
a
lu
e

R
e
f.
/
C
o
m
m
e
n
t

n
S

h
ar

p
n

es
s

of
ac

ti
va

ti
on

fu
n

ct
io

n
0
.7

5
E

x
p

ec
te

d
va

lu
e:

0.
5
<
n
<

2

ξ 5
0

C
ri

ti
ca

l
va

lu
e

fo
r

50
%

ac
ti

va
ti

on
an

d
p

la
te

le
t

re
le

as
e

9
µM

s
S

tr
on

g
ca

lc
iu

m
m

o
b

il
iz

a
ti

o
n

(1
µM

fo
r

1
0

s)

k
co

ll
a
g
en

a
tt

A
tt

ac
h

m
en

t
ra

te
co

n
st

an
t

fo
r

co
ll

ag
en

b
in

d
-

in
g

10
00

s−
1

In
cl

u
d

es
v
W

F
/
G

P
Ib

k
fi

b
ri

n
o
g
en

a
tt

A
tt

ac
h

m
en

t
ra

te
co

n
st

an
t

fo
r

fi
b

ri
n

og
en

-

m
ed

ia
te

d
b

in
d

in
g

50
s−

1

k
co

ll
a
g
en

d
et

D
et

ac
h

m
en

t
ra

te
co

n
st

an
t

fo
r

co
ll
ag

en
b

in
d

-

in
g

5
×

10
−

4
s−

1

k
fi

b
ri

n
o
g
en

d
et

D
et

ac
h

m
en

t
ra

te
co

n
st

an
t

fo
r

fi
b

ri
n

og
en

-

m
ed

ia
te

d
b

in
d

in
g

5
×

10
−

5
s−

1

γ
c

C
ri

ti
ca

l
sh

ea
r

ra
te

20
0

s−
1



CHAPTER 5. MULTISCALE MODEL FOR PLATELET DEPOSITION 119

5.4.2 Simulations of platelet function

Multiscale simulations predicted the density of platelets adherent to the surface, platelet ac-

tivation states, the spatiotemporal dynamics of ADP and TXA2 release, morphology of the

growing aggregate, and the distribution of shear along the solid-fluid boundary. The state

of a representative simulation at 500 s is shown in Figure 5.12, and more time points are

shown in Appendix A. Initially, platelets only adhered to the collagen surface until the ad-

herent platelets became sufficiently activated to release ADP and TXA2. The released ADP

and TXA2 formed a boundary layer extending up to 10 µm from the platelet deposit, which

was sufficient to recruit platelets in the near-wall region. Within the boundary layer, concen-

trations of up to 10 µM ADP and 0.1 µM TXA2 were observed. Concentrations of ADP and

TXA2 and the boundary layer thickness were consistent with earlier continuum models that

imposed a thrombus growth rate and geometry [21]. TXA2 concentrations were found to be

sub-physiological (< 0.0067 µM or < 0.1×EC50) until a sufficient platelet mass accumulated

at the surface after 250 s. Boundary layer ADP concentrations were within the effective dy-

namic range ([0.1 µM, 10 µM] or [0.1×EC50, 10×EC50]) throughout the simulation. The ADP

concentration profile had spatial and temporal fluctuations of 2 to 3 orders in magnitude, while

the TXA2 concentration profile had less than an order of magnitude of spatial fluctuations and

no temporal fluctuations. Spatial fluctuations in the TXA2 profile were created by an inho-

mogeneous distribution of platelet density along the surface. The strong temporal and spatial

fluctuations in the concentration of ADP were predominately driven by the short release time

(5 s), whereas the longer release time of TXA2 (100 s) smoothed fluctuations. Appendix B

contains representative snapshots at 500 s of the simulation for all 3 donors with the pharma-

cological mediators indomethacin (no TXA2), iloprost, and MRS-2179 (no ADP).

Platelets interacting with collagen became the most activated due to the sustained cal-

cium mobilization in collagen signaling, while platelets that were stimulated only by ADP and

TXA2 had only a transient increase in intracellular calcium. Figure 5.13 shows the internal
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Figure 5.12: Multiscale simulation of patient-specific platelet deposition under flow for
Donor 1. Platelet activation (black, unactivated; white, activated) and deposition at
500 s (inlet wall shear rate, 200 s−1) for Donor 1 in the presence of ADP (top) and
TXA2 (middle). Flow: left to right (streamlines, black lines); surface collagen (250 µm
long): red bar.
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activation state of all platelets bound to the surface at 500 s. Red lines show platelets bound to

collagen while blue lines show platelets bound only to other platelets. Platelets bound to colla-

gen have a sustained rise in intracellular calcium leading to higher levels of platelet activation

than platelets bound only to other platelets (stimulated only by ADP and TXA2). The history

of a single platelet that was not bound to collagen is shown in Figure 5.14. The intracellular

calcium concentration shows a transient increase above baseline, 100 µM, to almost 400 nM.

The internal activation state, ξ, eventually rises above ξ50, but does not see the steady increase

seen in cells exposed to collagen (Figure 5.13). Integrin activation reaches 70 % of maximum

by the end of the simulation time. Note that the platelet was only in the domain for less than

300 s.

The platelets participating in the initial platelet-collagen interactions (< 100 s) experienced

a fluid shear close to the initial wall shear rate of 200 s−1 (Figures A.1–A.2). The shear rate along

the solid-fluid boundary became highly heterogeneous during the simulation with areas of high

shear rate (5-10 fold increase above 200 s) at the projections into the flow geometry and areas

of near zero shear rate in the valleys between platelet aggregates by the end of the simulation

(Figure 5.12). Thus, within a single simulation (and the corresponding microfluidic experiment)

a large range of shear rates are sampled by platelets, even in the presence of a constant inlet

wall shear rate. Low shear recirculation regions of up to 10 µm were formed within the valleys

of the platelet deposit (Figure 5.15). At 500 s, the platelet deposit was characterized by platelet

clusters 20 to 30 µm in length, fully consistent with microfluidic measurements of platelet cluster

size on collagen at this shear rate [62].

5.4.3 Multiscale model predictions of donor-specific platelet de-

position under flow
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Figure 5.13: Platelet activation in multiscale model simulation for Donor 1. Each line
represents the time history of platelet activation, ξ, for each platelet bound to the surface
at 500s. Red lines are platelets that are bound to collagen, and possibly other platelets,
and blue lines are platelets that are not bound to collagen, but to other platelets. t = 0
for each platelet is defined as the time the platelet entered the simulation domain.
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Figure 5.14: Single platelet activation history. Intracellular calcium concentration (left)
in response to ADP and TXA2 stimulation over approximately 250 s transiently increased
to almost 400 nM from a basal level of 100 nM. The platelet activation state (middle),
ξ, which is related to the integral of intracellular calcium (Equation 5.4), reaches a value
above ξ50, but does not achieve a sustained increase. The value of integrin-activation,
F (ξ) from Equation 5.5, (right) reaches a maximum of 0.7.

Figure 5.15: Recirculation zones in multiscale simulation. Platelet activation (black,
unactivated; white, activated) and deposition at 500 s (inlet wall shear rate, 200 s−1) for
Donor 1 in the presence of ADP (top) and TXA2. Flow: left to right (streamlines, black
lines); surface collagen (250 µm long): red bar.
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Figure 5.17: Comparison of microfluidic experiment (left) and multiscale simulation
(right) at 500 s for Donors 1–3. Experiment: control, n=24, 22, and 22 for Donors
1, 2, and 3 respectively; aspirin, n=8; indomethacin, n=8; MRS-2719, n=8; iloprost,
n=14. Simulation: n=16 for all conditions and donors. * p < 0.01, relative to control for
each donor.

Using microfluidic devices, realtime platelet deposition from PPACK-treated whole blood

flowing over fibrillar collagen (250 µm× 250 µm patch) was measured for 500 s at an inlet wall

shear rate of 200 s−1 for 3 separate donors under untreated conditions or in the presence of

ASA (acetylsalicylic acid or aspirin), indomethacin, MRS-2179, or iloprost (Figure 5.16). In

the two dimensional simulations, the overall extent of platelet deposition was measured by the

number of platelets on a patch with surface area of 750 µm2 (a 250 µm × 3 µm slice) (Figure

5.16) over 500 s. In the simulations, a total of 100 to 300 platelets were deposited on the

collagen surface at 500 s for the control condition (corresponding to 8,000 to 25,000 platelets

on a 250 µm × 250 µm area), which compares very well with maximal deposition measured in

the microfluidic experiment (20,000 platelets at a fluorescence of 3000 in Figure 5.16). A wide

variety of platelet biology was examined using drug treatments. For both experiment and sim-

ulation, all donors were most sensitive to iloprost and least sensitive to removal of TXA2 via

indomethacin or aspirin treatment ([TXA2] = 0 in the simulation). The effect of removing

ADP induced calcium mobilization via MRS-2179 treatment ([ADP] = 0 in the simulation) was
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between that of iloprost and removing TXA2. Blood from Donor 1 was observed to produce

significantly larger clots at 500 s than blood from Donors 2 and 3 under control conditions

(p < 0.001) (Figure 5.17), a trait predicted in multiscale modeling. In both experiment and

simulation, Donors 1 and 2 exhibited significant sensitivity (p < 0.01) to COX-1 therapy (in-

domethacin or aspirin in the experiment; [TXA2] = 0 in the simulation) at 500 s, while Donor

3 was insensitive to indomethacin or aspirin in both simulation and experiment. For Donors 1

and 2, the effect of removing TXA2 via COX-1 inhibition occurred after approximately 250 s in

the experiment, which corresponded well to the time at which physiologically active levels of

TXA2 were predicted to occur in the boundary layer from the simulations. In both simulation

and experiment, the effect of ADP removal or iloprost treatment occurred after 100 s, the time

at which propagation of the platelet aggregate away from the clot surface began.

5.5 Discussion

Although some model parameters were fit to overall trends in the platelet density for Donor 1,

there were no parameter combinations that allowed for the fit of each individual output. For

example, there is no simple set of parameters that can be tuned to fit the dynamic response

of iloprost relative to control. This information is embedded in the NN. After choosing initial

guesses for each unknown parameter, individual parameters and sometimes sets of parameters,

generally two or three, were varied to find regions of parameter space that closely matched the

experimental trends for Donor 1. In general, it was found that the ranked order of pharmaco-

logical treatment was consistent for any parameter set but the overall potency could be varied

especially by changing the critical value for agonist release and integrin activation, ξ50. In gen-

eral, choosing a small value of ξ50 resulted in relatively uniform, large clots over all donors and

drug treatments, while choosing a large value of ξ50 resulted in relatively uniform, small clots

for all donors and drug treatments. The relative affinity of U46619 and TXA2 to TP, θ, can be
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used to tune the potency of COX-1 therapy, but only to a limited degree, i.e. a hundred-fold

change in θ did not drastically alter the results. This suggests that ADP signaling is the main

modulator of clot formation, and TXA2 plays a more minor role at the conditions explored.

This trend is also seen in the difference between the potencies of MRS-2179 and COX-1 ther-

apies. Iloprost was found to be the most potent therapy by damping the calcium signal to all

other agonists. The model was also found to be robust to changes in donor and other pharmaco-

logical therapy (MRS-2179 therapy was not used to train the model). Ideally, these parameters

should be verified from experimental values or more detailed models of platelet-platelet binding

[75, 76], but the parameters found in this model are physiologically reasonable. The model also

predicted donor-specific platelet aggregate densities.

The standard deviation in the platelet density of the simulation was comparable to that

observed with the microfluidic chamber replicates. The simulation results were expected to

have a larger spread from taking a small slice of the microfluidic chamber. Several assumptions

of homogeneity were made in the model that reduced the variability within the simulations as

compared to the microfluidic experiments. Platelets were assumed to have a uniform radius,

although in blood platelets have a size distribution. In the microfluidic chambers, the fibrillar

collagen is not likely to be uniformly deposited within each patch and when compared across

channels, while in the simulation the surface was assumed to be homogeneous. In the simula-

tions, platelets were assumed to have the same activation dynamics, although there is evidence

that subpopulations of platelets have different phenotypes [139, 140].

To bridge the gap between in vitro and in vivo prediction, more accurate vessel geometries

should be considered in the future, including stenotic vessels. Thrombin generation is also a

key component of clotting in vivo. The coagulation cascade was neglected in this model to

enable patient-specific predictions of platelet function but is necessary for predictions of clinical

value. Some challenges of including thrombin generation in a multiscale model are discussed in

Chapter 6. Another limitation is the lack of multicell fragmentation kernels and solid-mechanics
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calculations. For large clot structures that approach occlusion, platelet aggregates can begin

to fragment in clusters rather than a cell-by-cell erosion process. For small clusters, the erosion

process is expected to dominate the fragmentatin process. To account for stress-concentrating

geometry formation, Picioreanu et al. removed sections of cellular aggregates that exceeded

some critical stress threshold due to the surrounding fluid flow [141]. They also found that

small clusters tend to undergo cell erosion rather than multi-cell fragmentation (sloughing in

the biofilm literature).

5.6 Conclusions

The multiscale model represents the first computational model of thrombosis that includes a

patient-specific representation of platelet signaling with validation to patient-specific flow ex-

periments. This is a major step towards creating a comprehensive multiscale model to predict

clotting and bleeding risk in vivo. The key aspects of platelet aggregation captured by the

model are platelet signaling, platelet binding, platelet motion, transport of soluble agonists

(ADP and TXA2), and hemodynamics. Platelet signaling was obtained from high-throughput

experimental measures of intracellular calcium, which was the source of platelet-specific platelet

phenotype. The platelet calcium phenotype was previously shown to be repeatably patient-

specific [67]. A neural network trained on a specific donor’s experimental data was then used

in the multiscale model. An integration activation state was estimated from the integral of

the calcium concentration above the basal level. This allowed for direct comparison to mi-

crofluidic models of platelet aggregation to collagen in flow. The model accurately described

platelet aggregation for three donors and three pharmacological treatments (COX-1 therapy,

P2Y1 inhibition, and iloprost stimulation).

To further tailor the model to a specific donor, more detailed information can be included in

the model, e.g. platelet size distribution and receptor copy number. The addition of thrombin
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generation to this model will further the clinical predictive power. However, patient-specific

experimental coagulation phenotyping and models for describing these results will need to be

developed to truly make patient-specific predictions with thrombin generation.



Chapter 6

Future work

6.1 Thrombin generation

Thrombin generation is an essential process in stable clot formation. Thrombin is generated

through the coagulation cascade, a series of enzymatic steps that each convert a zymogen

to an active enzyme, e.g. the zymogen V is converted to the active enzyme Va by thrombin

(IIa). The cascade is started physiologically by the exposure of tissue factor (TF) at the

site of injury. TF binds VIIa to produce small amounts of Xa and IXa. Xa is capable of

cleaving prothrombin (II) to thrombin (IIa) initially but is much slower than the action of Xa

in conjunction with its cofactor Va, which is itself produced by thrombin. IXa along with its

cofactor VIIIa serve to generate large amounts of Xa. VIIIa is also produced by thrombin.

The intrinsic cascade including Factor XIa further amplify the procoagulant signal . There are

several layers of inhibition including antithrombin III (ATIII) and activated protein C (APC)

mediated deactivation of Factors Va and VIIIa. Thrombin is a potent platelet activator by

cleaving short peptides in the extracellular domain of the PAR receptors, and many of the steps

in the cascade are sped up when assembled on the platelet surface. Thrombin also converts

130
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fibrinogen to fibrin, which polymerizes to form a stabilizing meshwork within and around the

clot.

Thrombin generation is critical to include in clinically relevant models of thrombosis. Defi-

ciencies in Factors XIII or IX are known as Hemophilia, which presents a large risk of bleeding.

Factor V Leiden reduces the inhibitory actions of APC and results in a hypercoagulable dis-

order. Hockin et al. developed one of the first models of well-mixed thrombin generation with

a tissue factor stimulus [68]. Kuharsky and Fogelson described a coagulation model in flow

that accounted for the arrival and removal of species to the surrounding fluid flow [70]. Later,

Leiderman and Fogelson extended the previous model under flow by explicitly modeling the

transport processes coupled to platelet deposition [84]. Chatterjee et al. considered a well-

mixed system, but included the effects of platelet activation and the intrinsic pathway starting

with XIIa activation [71]. Xu et al. included a coagulation model in a cellular Potts model of

platelet deposition [85].

The multiscale model in Chapter 5 contains 2 partial differential equations (PDEs): one

for ADP and one for TXA2. These PDEs are uncoupled for a static platelet configuration

and are coupled only through the recruitment of new platelets. Coagulation models typically

contain on the order of 50 coupled PDEs with several time scales including fast binding and

unbinding of coagulation factors and slow generation of active enzymes. It is computationally

challenging to include a stiff system of PDEs for simulations of hundreds to thousands of

conditions needed to make patient-specific predictions with several pharmacological mediators.

For example, the simulations in Figure 5.16 required 192 simulations (16 repeats× 3 donors×

4 conditions). Including thrombin generation for prediction of a wide range of conditions will

require optimization of the finite element method (FEM) to achieve faster solution times. Some

avenues for reducing computational time are using a nonuniform grid or a moving grid for FEM

and simplifying the reaction network (reduce the stiffness and number of PDEs).
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6.2 Pressure driven flow within clot

A no-slip boundary condition was imposed on the interface of the bound platelets and the fluid.

For small, dense platelet deposits, the flow within the clot is likely to be small. For larger

structures, pressure driven flow through the porous clot can contribute to transport of soluble

species. The structure of a clot in vivo is not well understood as are the transport properties

within the clot. In principal, the pore size within the clot structure could be predicted from a

three dimensional simulation, and the flow through the structure could be resolved at the fluid

pore level. However, platelets may not maintain an idealized shape inside the clot structure,

which will change the pore size distribution. After approximately 10 minutes, platelets will also

spread out on the surface. Furthermore, resolving fluid flow on the pore level is computationally

costly, so a more coarse-grained approach may be more appropriate. Leiderman and Fogelson

used a Brinkman term within the Navier-Stokes equation for the porous flow through the clot

structure [84]. A similar scheme is easily adapted to simulations using lattice Boltzmann [142].

Xu et al. described flow within the clot using Darcy’s law which was coupled to the normal

Navier-Stokes equation in the rest of the domain [85]. However, with current experimental

data, it is unclear what the appropriate parameters are for these models or whether inter-clot

flow is important to the dynamics of clot growth for the conditions studied here.

6.2.1 Bleeding model

A situation in which inter-clot flow is likely to be important is in a bleeding model, where blood

is flowing through the clot itself into the surrounding tissue or air. The pressure drop between

the blood and the interstitial fluid (or air) can be much higher than the pressure drop across the

clot in the vessel itself. The increased pressure drop will increase the driving force for inter-clot

flow. In addition to describing inter-clot flow, another difficulty in modeling bleeding is defining

the boundary conditions at the injury not only for the flow but for transport of soluble species
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and the distribution of collagen.

A bleeding model is likely to drastically change the initial dynamics of platelet aggregation.

Platelets will directly flow into the injured surface instead of flowing over the surface, increasing

the deposition rate initially. Platelet aggregates will impede flow through the injured surface,

which will decrease platelet flux to regions with large aggregates. Regions that do not not have

large aggregates will have a relative increase in platelet flux. So bleeding may actually serve as

a mechanism to form a more uniform clot structure.

6.3 Detailed signaling model for each platelet

Platelet signaling in the multiscale model was predicted by neural networks trained on exper-

imental data. If we want to make a prediction about how a change in intracellular signaling

in the platelet, e.g. disruption of store operated calcium entry, affects clot growth, a high-

throughput experiment and training of a neural network is necessary. These experiments may

be feasible in animal models where knockouts can be produced, but for human platelets an in

silico approach is attractive. A platelet signaling model was developed by Purvis et al. to study

platelet calcium mobilization in response to ADP stimulation of P2Y1 [65]. In the multiscale

model in Chapter 5, platelets also signal through IP, TP, and GPVI (the receptors for iloprost,

TXA2, and collagen, respectively). Developing a detailed model with these receptors would

enable simulations where arbitrary changes are made to the signaling within platelets. Fur-

thermore, such a detailed description based on kinetic equations can be solved stochastically to

investigate how signal noise within individual platelets affects clot formation.
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6.4 Platelet heterogeneity

Heterogeneity of platelets can be manifested in distributions of platelet sizes, receptors on the

platelet surface, excitability of the platelets, amount of stored ADP in dense granules, etc. In

the multiscale model in this thesis, each platelet was the same size and considered to have the

same integrin activation dynamics. Flow cytometry could be used to quantify patient-specific

distributions in the model for platelet size and receptor number although the donors in this

work were found to have similar receptor number distributions. ADP content can be estimated

through a luciferase assay to measure ATP release. Although the ratio of ATP to ADP is known

inside the dense granules, it is not likely to be equivalent in all donors, so this measurement

may be more valuable to discover large defects in granule release.
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Figure A.1: Multiscale simulation of patient-specific platelet deposition under flow.
Platelet activation (black, unactivated; white, activated) and deposition at 0 s (inlet
wall shear rate, 200 s−1) for Donor 1 in the presence of ADP (top) and TXA2 (middle).
Flow: left to right (streamlines, black lines); surface collagen (250 µm long): red bar.
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Figure A.2: Multiscale simulation of patient-specific platelet deposition under flow.
Platelet activation (black, unactivated; white, activated) and deposition at 100 s (inlet
wall shear rate, 200 s−1) for Donor 1 in the presence of ADP (top) and TXA2 (middle).
Flow: left to right (streamlines, black lines); surface collagen (250 µm long): red bar.
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Figure A.3: Multiscale simulation of patient-specific platelet deposition under flow.
Platelet activation (black, unactivated; white, activated) and deposition at 200 s (inlet
wall shear rate, 200 s−1) for Donor 1 in the presence of ADP (top) and TXA2 (middle).
Flow: left to right (streamlines, black lines); surface collagen (250 µm long): red bar.
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Figure A.4: Multiscale simulation of patient-specific platelet deposition under flow.
Platelet activation (black, unactivated; white, activated) and deposition at 300 s (inlet
wall shear rate, 200 s−1) for Donor 1 in the presence of ADP (top) and TXA2 (middle).
Flow: left to right (streamlines, black lines); surface collagen (250 µm long): red bar.



APPENDIX A. TIME COURSE OF MULTISCALE SIMULATIONS 140

0.01 0.1 1 10

ADP
C

ADP
 [µM]

400 sec

0.00067 0.0067 0.067 0.67

TXA
2 C

TXA
 [µM]

50 500 5000

1 8 64

Shear Rate
γ [s

­1
]

ξ[µM­sec]

Platelet Activation10 µm Flow

Figure A.5: Multiscale simulation of patient-specific platelet deposition under flow.
Platelet activation (black, unactivated; white, activated) and deposition at 400 s (inlet
wall shear rate, 200 s−1) for Donor 1 in the presence of ADP (top) and TXA2 (middle).
Flow: left to right (streamlines, black lines); surface collagen (250 µm long): red bar.
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Figure A.6: Multiscale simulation of patient-specific platelet deposition under flow.
Platelet activation (black, unactivated; white, activated) and deposition at 500 s (inlet
wall shear rate, 200 s−1) for Donor 1 in the presence of ADP (top) and TXA2 (middle).
Flow: left to right (streamlines, black lines); surface collagen (250 µm long): red bar.
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Figure B.1: Donor 1: control (500 s). Platelet activation (black, unactivated; white,
activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP (top)
and TXA2 (middle) where local shear rate near the platelet deposit varies markedly from
< 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black lines);
surface collagen (250 µm long): red bar.
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Figure B.2: Donor 1: indomethacin treated (500 s). Platelet activation (black, unacti-
vated; white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of
ADP (top) and TXA2 (middle) where local shear rate near the platelet deposit varies
markedly from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (stream-
lines, black lines); surface collagen (250 µm long): red bar.
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Figure B.3: Donor 1: iloprost treated (500 s). Platelet activation (black, unactivated;
white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP
(top) and TXA2 (middle) where local shear rate near the platelet deposit varies markedly
from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black
lines); surface collagen (250 µm long): red bar.
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Figure B.4: Donor 1: MRS-2179 treated (500 s). Platelet activation (black, unactivated;
white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP
(top) and TXA2 (middle) where local shear rate near the platelet deposit varies markedly
from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black
lines); surface collagen (250 µm long): red bar.
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Figure B.5: Donor 2: control (500 s) Platelet activation (black, unactivated; white, acti-
vated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP (top) and
TXA2 (middle) where local shear rate near the platelet deposit varies markedly from
< 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black lines);
surface collagen (250 µm long): red bar.
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Figure B.6: Donor 2: indomethacin treated (500 s). Platelet activation (black, unacti-
vated; white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of
ADP (top) and TXA2 (middle) where local shear rate near the platelet deposit varies
markedly from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (stream-
lines, black lines); surface collagen (250 µm long): red bar.
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Figure B.7: Donor 2: iloprost treated (500 s). Platelet activation (black, unactivated;
white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP
(top) and TXA2 (middle) where local shear rate near the platelet deposit varies markedly
from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black
lines); surface collagen (250 µm long): red bar.
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Figure B.8: Donor 2: MRS 2179-treated (500 s). Platelet activation (black, unactivated;
white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP
(top) and TXA2 (middle) where local shear rate near the platelet deposit varies markedly
from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black
lines); surface collagen (250 µm long): red bar.
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Figure B.9: Donor 3: control (500 s). Platelet activation (black, unactivated; white,
activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP (top)
and TXA2 (middle) where local shear rate near the platelet deposit varies markedly from
< 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black lines);
surface collagen (250 µm long): red bar.
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Figure B.10: Donor 3: indomethacin treated (500 s). Platelet activation (black, unac-
tivated; white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence
of ADP (top) and TXA2 (middle) where local shear rate near the platelet deposit varies
markedly from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (stream-
lines, black lines); surface collagen (250 µm long): red bar.



APPENDIX B. PATIENT-SPECIFIC PREDICTIONS 153

2

Figure B.11: Donor 3: iloprost treated (500 s). Platelet activation (black, unactivated;
white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP
(top) and TXA2 (middle) where local shear rate near the platelet deposit varies markedly
from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black
lines); surface collagen (250 µm long): red bar.



APPENDIX B. PATIENT-SPECIFIC PREDICTIONS 154

2

Figure B.12: Donor 3: MRS-2179 treated (500 s). Platelet activation (black, unactivated;
white, activated) and deposition (inlet wall shear rate, 200 s−1) in the presence of ADP
(top) and TXA2 (middle) where local shear rate near the platelet deposit varies markedly
from < 50 s−1 to greater than 1000 s−1 (bottom). Flow: left to right (streamlines, black
lines); surface collagen (250 µm long): red bar.
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