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This paper estimates a height production function using data from a ran-
domized nutrition intervention conducted in rural Guatemala from 1969 - 1977.
Using the experimental intervention as an instrument, the IV estimates of the
effect of calories on height are an order of magnitude larger than the OLS es-
timates. Information from a unique measurement error process in the calorie
data, counterfactuals results from the estimated model and external evidence
from migration studies suggest that the divergence between the OLS and IV
estimates is driven by the LATE interpretation of IV. Attenuation bias cor-
rected OLS estimates of the height production function imply that calories
gaps in early childhood can explain at most 16% of the height gap between
Guatemalan children and the US born children of Guatemalan immigrants.
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I. Introduction

The formation of human height has been the subject of interest by economists in recent
years because of its importance as a predictor of wages (Persico et al., 2004; Case and Pax-
son, 2008), health (Deaton, 2007), cognitive skills (Case and Paxson, 2008), and longevity
(Fogel and Costa, 1997). The causal mechanisms behind these associations are complex
but the economics profession has adopted the “nutritionist view” on human height as an
easily measured indicator of general health status (Steckel, 1995). Understanding the for-
mation of height can be an important guide for programs that attempt to improve health,
especially in developing countries. Although sibling and twin research suggests that envi-
ronmental factors explain only 20% of the variation in human height (Silventoinen, 2003),
the role of the potentially policy specific environmental factors is disputed.2 Some re-
search finds strong correlations between per capita GDP during childhood (as a proxy for
nutrition) and subsequent average adult population heights (Steckel, 1995) while others
argue that cross population differences in averages heights are driven more by selective
survival of taller children (Bozzoli et al., 2009; Gørgens et al., 2012) than by nutritional
differences in early childhood (Deaton, 2007). Silventoinen (2003) states that one diffi-
cultly with much auxology (human growth) research is that it tends to use aggregate or
cross-sectional data, which makes causal conclusions difficult.3

The formation of human height involves a complex interplay between polygenetic
markers for height, the use of energy inputs by cells to divide, and how disease and de-
privation causes feedback from the endocrine system to actually pause or suspend cellular
division and growth (Tanner, 1990). Essentially theory points to genetics, nutrition and
disease as all playing roles in the formation of height (Silventoinen, 2003) and a succinct
characterization given by Deaton (2007), who states that “[h]eight is determined by genetic
potential and by net nutrition,” is a useful starting point for empirical work. A variety of
observational, quasi-experimental and experimental evidence are all consistent with this
biological theory of height formation and further suggest the importance of early environ-
mental factors. Studies have examined the co-movement of secular trends in height and
living standards (Fogel and Costa, 1997) and used heights to measure variation in stan-
dards of living by socioeconomic class (Komlos, 1994). Quasi-experimental evidence has

2Silventoinen (2003) also speculates that the effect of environment explain more of the variation in height
in developming countries.

3An exception is work in public health studying inputs into stunting and child mortality that uses meta
analyses of cross country RCTs as inputs into a simulation model to predict child mortality in developing
countries (Bhutta et al., 2008, 2013). Although less attention is paid to the behavioral interpretation of
parameters and the focus of that work is more on child mortality, the conclusions from my preferred OLS
model are, broadly speaking, of a similar magnitude to their findings and the IV models presented in my
paper are inconsistent with their work.
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found impact on average population heights from famines (Meng and Qian, 2009), neona-
tal mortality (Bozzoli et al., 2009), and income shocks (Banerjee et al., 2010), and nutrition
experiments, such as the Institute of Nutrition of Central America and Panama (INCAP)
Longitudinal Study 1969 - 1977, provide strong evidence that nutrient intake during early
childhood has both short and long term impacts on many anthropometric measures and
other kinds of human capital (Martorell, 1995b; Hoddinott et al., 2008; Behrman et al.,
2009). Heckman (2007) argues that, while the health economics has focused on docu-
menting sensitive periods of development, more work should investigate the possibility
of remediation following the production function literature on cognitive and noncogni-
tive skills. Some studies strongly imply the possibility of such remediation; a study of the
Dutch Hunger Winter 1944-45 (Stein et al., 1975) did not find impacts on adult height from
famine exposure. A production function is the appropriate tool to answer many questions
about hypothetical inputs interventions (Rosenzweig and Schultz, 1983). Furthermore, the
parallels between the production process for skills and for height are actually quite strong
and a common framework (Todd and Wolpin, 2003, 2007; Cunha and Heckman, 2007) can
be brought to bear on both problems. A drawback relative to quasi-experimental methods
for investigating height formation is the often strong modeling assumptions and the exten-
sive panel data requirements on height, nutrition and disease.

To that end, this paper estimates a height production function using data from the IN-
CAP Longitudinal Study, a randomized nutrition intervention conducted in rural Guatemala
from 1969 - 1977, that collected extensive longitudinal data on calorie intake, disease mea-
sures and height.4 I begin by presenting a general theoretical framework motivated by the
theory of human growth and then proceed to impose a series of assumptions on the model
to derive an empirically estimable function. This approach both clarifies the assumptions
needed to estimate econometric models of height production and suggests a series of spec-
ification tests for the nested models. Using the INCAP experimental intervention and
distance to the calorie distribution center in the INCAP experiment as instrumental vari-
ables for calorie inputs, the IV estimates of the production function suggest that the effect
of calories on height is an order of magnitude larger than the OLS estimates. To explore
the divergence between the OLS and IV estimates, I investigate the role of measurement
error in attenuating the OLS estimates and the plausibility of the model counterfactuals us-

4In addition to height, the INCAP data have extensive measurement of other anthropometric outcomes.
The basic pattern of regression results in the paper also hold for weight, head circumference, arm circum-
ference, calf circumference, tricep skinfold, bicondylar breadth, arm length, subscapular skinfold and calf
skinfold as outcome measures. The consistency across outcomes is perhaps not surprising given their corre-
lation with height. Of the different anthropometric outcomes, I chose height as the outcome of interest given
the focus on height in the economics literature as well as height information from Guatemalan migration
studies.
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ing both the OLS and IV estimates. Information from a unique measurement error process
in the collected INCAP calorie data collection allows me to bound the effects of atten-
uation bias. The size of this attenuation bias cannot explain the divergence between the
OLS and IV estimates. Furthermore, comparing calorie differences between the US and
Guatemala during the same period as the INCAP experiment, I use the estimated produc-
tion function to investigate the role of the US-Guatemala “calorie gap” in increasing the
height of Guatemalan children. The difference between the OLS and IV estimates implies
large differences in the counterfactual height gaps. Comparing these counterfactual height
gap estimates from the production function to height gap estimates from migration stud-
ies of Guatemalan families to the US suggests that the IV estimates produce extremely
unrealistic counterfactual estimates. Failing this out of sample validation test, the failure
of traditional over-identification tests, and the variation in the IV estimates across instru-
ments, despite the prima facie validity of the instruments, suggest that the IV estimates are
not identifying policy relevant production function parameters (Heckman, 1997; Heckman
et al., 2006). The attenuation adjusted, change in height OLS estimates imply that the av-
erage difference in calories between the US and Guatemala can explain at most 16% of
the average difference in height between the INCAP children and height of the US born
children from a sample of Guatemalan immigrants to the US. These results are consistent
with (Deaton, 2007) who questions the specific role of nutrition in explaining population
differences in height. In the conclusion, I discuss several other policy relevant inputs of
interest and the interpretation of these findings.

The related literature on height is truly towering and spans the biomedical, public
health and social sciences with sometimes seemingly little interaction between the fields.
In economics, Behrman and Deolalikar (1988) and Strauss and Thomas (1998) both review
a large literature on nutrition and health. Early height research in economics focused on
whether there were causal links between maternal education and child height (Wolfe and
Behrman, 1987; Behrman and Wolfe, 1987) and unpacking those mechanisms (Thomas
et al., 1991). Martorell and Habicht (1986) provide a review of growth in childhood specif-
ically in developing countries from an auxology perspective and Bhutta et al. (2008, 2013)
provide an extensive meta-analyses from RCT public health interventions in developing
countries. Even the literature on the INCAP experiment itself is quite extensive with much
early work on the experimental impacts and subsequent analyses examining longer term
impacts for each of the follow-up data collections during adolescence and adulthood (Mar-
torell, 1995b). This paper builds on earlier work estimating models of height formation
using these data by Schroeder et al. (1992) through incorporating instrumental variables
estimation into the estimation of the effects of calories on height, developing the notion
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of a height production function more closely with the estimation equation, addressing
the role of measurement error in calories, conducting extensive specification testing and
using and validating the estimated models with out of sample forecasts. An additional
broader contribution is the use of instrumental variables in auxology research, which is
apparently rare. The instrumental variable strategy in this paper follows several second
generation papers using the INCAP data that have used the initial experimental variation
as an instrumental variable to understand how early childhood nutrition effects educa-
tional outcomes (Maluccio et al., 2009), cognitive skills (Behrman et al., 2014) and wages
(Calderon, 2009).

The remainder of the paper proceeds as follows. Section II develops a model of height
production and section III describes the INCAP experiment and data collection. Section
IV presents the results about the INCAP measurement error process and discusses the
LATE interpretation of the IV estimates. Finally, section V presents the estimation results,
section VI describes the counterfactuals and section VII concludes.

II. A Production Function for Height

Following theoretical notions about height formation, I model height as a function of ge-
netic potential, disease and nutrition. In particular, I focus on diarrhea as a measure of the
disease input and calories as a measure of the nutrition input. The use of both measures
is motivated by theoretical and empirical evidence. Martorell and Habicht (1986) state
that “[o]f all the problems of infection affecting young children in developing countries
none is as important as diarrheal diseases.”5 Furthermore, cells actually use caloric energy
during division and will suspend or halt growth during periods of low energy intake (Tan-
ner, 1990). Energy, measured in the form of calories, are actually an aggregated measure
of protein, carbohydrates and fats all of which are potentially individually important for
growth.6 However, as Pitt et al. (1990) point out, calories in developing countries often

5In addition to number of days sick with diarrhea, the data also contain parental reported number of days
their child was sick with infectious disease symptoms, had ears/eyes/nose disease symptoms, had disease
skin/hair symptoms, had a lack of appetite, was apathetic or irritable, spent in bed with illness, experienced
fever and was with serious illness. I tried combining the disease measures using principal-components
analysis and treating the first predict component as the disease input in the production function. None of the
empirical patterns in the estimated model were affected.

6The question of whether protein deficiencies are important for height growth in developing countries
has a long history and the effect of closing the “protein gap” was an important research and policy issue
in nutrition field in the 1950s, 60s and 70s (Campbell et al., 2007). Interestingly, the original INCAP
experiment was designed and funded to contribute exactly to that debate (Read and Habicht, 1993) although
the INCAP researchers subsequently concluded from the experimental effects that energy intake (calories)
and not its particular form (e.g., protein) mattered for growth in the INCAP context. However, it seems the
literature has not entirely reached a consensus. Tanner (1990) writes that “[p]rotein seems less important
than was once thought” while Silventoinen (2003) states that “[i]n developing countries ... [t]he lack of
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come from one or two food sources so that even if data existed with individual consump-
tion measures of protein, carbohydrates and fats, the measures would be highly collinear
and it would be difficult to identify the effects of each component separately. The same
argument also applies to questions about identifying the effects of diet diversity and mi-
cronutrients. More direct evidence on micronutrients from an extensive meta analysis by
Bhutta et al. (2008) suggests only small impacts on height growth from micronutrient in-
terventions. Essentially the subsequent model and empirical results can be interpreted as
the effect of calories conditional on a particular aggregation of calories, diet diversity and
micronutrients.

Consider the following general model of height production:

Hia = Ha(Cia, ...,Ci0,Dia, ...,Di0,Xi,µi,εia) (1)

where Hia is the height of child i at age a. Cia, ...,Ci0 are the complete history of calories
chosen for that child in periods before the measurement of height, Dia, ...,Di0 is the history
of disease, Xi is an individual specific, time invariant determinant of height such as gender,
µi is an unobserved (to the researcher) child specific determinant of height, and εia repre-
sents a shock to height production. In this most general specification the entire history of
inputs can affect current period height. The subscript a in (1) indicates that the effects of
inputs on height can vary by age. For example, the marginal impact of calories on child
height could be larger when the child is younger. There are many econometric challenges
to estimating (1). The functional form is unknown, the inputs are chosen by children or
family members with knowledge of the unobserved heterogeneity µi, reverse causality is
potentially important (growing children consume more calories but more calories do not
make children grow), and calorie data are noisy. Moreover, optimizing behavior can make
the problem even more difficult. Parents can respond to previously low inputs if a child is
“lagging behind” or can give more calories to make-up for a period of poor growth. That
type of behavior would cause correlation between any observed current inputs and unob-
served lagged inputs. To estimate (1), the researcher needs to make a series of assumptions
about its functional form and about the information available to parents and children when
choosing inputs. Because the estimated parameter from a production function gives a ce-
teris paribus impact of an input, one can, conditional on the maintained assumptions of the

protein is a particularly important factor explaining the slow (height) growth rate.” The latter statement
seems to be not supported by the INCAP data itself. However, Read and Habicht (1993) propose that protein
may be limiting in certain environments but not in others, which in effect calls for a production function with
complementaries in the sources of calories as inputs. Although in this case researchers would likely need
cross country or cross region data to have sufficient variation in calorie composition and even then there
would arise questions of omitted variables.
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model, use the estimates to perform counterfactual analyses, such as what would be the
impact of increases in specific inputs on height outcomes.

To derive an empirically implementable strategy, I make the following assumptions.
The spirit of the exercise follows (Todd and Wolpin, 2003, 2007) in making explicit the
assumptions needed for different estimators to be consistent.7

Assumption I: The height production function is linear

Hia =β
a
a Cia +β

a
a−1Cia−1 + ...+β

a
0 Ci0 (2)

+α
a
a Dai +α

a
a−1Dia−1 + ...+α

a
0 Di0+

+γaXi +λaµi + εai

The parameters in (2) have both subscripts and superscripts. This allows the marginal
effect of inputs applied in the period indicated by the subscript to have different effects
on height in the period denoted by the superscript. Because the data will be measured
in discrete time intervals, I assume that an input with subscript a refers to inputs applied
between a and a− 1. In addition, both the time invariant inputs and the child-specific
endowment can have different effects on height by age as γa and λa have age-specific
subscripts. Without further assumptions, it would be necessary to estimate a different
equation by each age, which both limits the options to control for endogeneity and reduces
statistical power. Consider the following additional assumption:

Assumption II: Lagged inputs have constant effects by age

In terms of the coefficients, assumption II can be expressed as β a′
a−t = β

a′−1
a−t , αa′

a−t =

α
a′−1
a−t ∀a′, t ≥ 1 and helps to simplify the model by canceling the effects of lagged inputs.

To see this, consider differencing (2) by age under assumption II:

∆Hia = Hia−Hia−1 = β
a
a Cia +(β a

a−1−β
a−1
a−1 )Ca−1i + ...+(β a

0 −β
a−1
0 )Ci0

α
a
a Dia +(αa

a−1−α
a−1
a−1 )Dia−1 + ...+(αa

0 −α
a−1
0 )Di0+

(γa
a − γ

a
a−1)Xi +(λa−λa−1)µi + εia− εia−1

∆Hia = β
a
a Cia +α

a
a Dia + γ̃

a
a Xi +(λa−λa−1)µi + εia− εa−1i︸ ︷︷ ︸

Unobserved

(3)

where the second equality follows from assumption II. Notice that Xi does not cancel be-
cause the effect of the parameter is time varying in the full model. Now the coefficient

7De Cao (2011) also adapts the Todd-Wolpin framework to study height using data from the Cebu Lon-
gitudinal Health and Nutrition Survey. Her results are not directly comparable to mine given that the Cebu
data is missing data on children from age 2 to 8.
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has an added tilde and a different interpretation as the effect of the time invariant variable
on changes in height. Although the model is much simplified in terms of parameters to
estimate, there are still several difficulties. First, changes in the productivity of the endow-
ment, λa−λa−1, representing growth, could be correlated with inputs. Second, parents or
children may respond to lagged shocks, which would produce correlation between inputs
and εa−1i. Third, the model would need to be estimated separately by each age. Instru-
mental variables can in principle solve problems one and two while the ability to estimate
age specific heterogeneity becomes a statistical power issue. The following assumption
allows the model to be simplified further even further:

Assumption III: Contemporary inputs have constant effects

In terms of the coefficients, assumption IV assumes that β a
a = β

a−1
a−1 , αa

a = α
a−1
a−1 and γa

a =

γ
a−1
a−1 ∀a. One important consequence of III is that the data can be pooled over ages so that

the change in height model becomes simply:

∆Hia = βCia +αDia + γ̃Xi +(λa−λa−1)µi + εia− εa−1i (4)

An additional consequences of assumptions II and III is that the height model (2) becomes:

Hia = β

a

∑
t=1

Cti +α

a

∑
t=1

Dti + γXt +λaµi + εia (5)

so that only total inputs matter up age a, which is a cumulative specification for inputs.
Several of the assumptions can be tested directly with the data. Assumption I can be tested
by including squared terms and interactions. Assumption II can be tested by including
lagged inputs into the change in height production function and testing their joint signif-
icance. Assumption III can be tested by estimating models separately by age. Finally,
comparing estimates from the height model and the change in height model and compar-
ing estimates with and without instruments can inform about the likelihood of correlation
between inputs and unobserved determinants of growth.

III. Data

To estimate the different variants of the height production function, I use data from the
INCAP Longitudinal Study 1969 - 1977, a village-wide randomized nutrition intervention
and data collection in rural Guatemala.8 Researchers selected four villages to participate

8See Habicht and Martorell (1992) for an in-depth description and discussion of the experimental design.
One important feature of the experiment is that some children were treated only for parts of their life because
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in the study. In both treatment and control villages, a centralized feeding center was set
up that offered supplements that were fortified with micronutrients and offered twice-
daily. All villagers could consume the supplements and more supplement was given upon
request. Following a matched pair design, two treatment villages received the offer to
consume atole, which was a high-calorie, high protein vegetable porridge, and two control
villages received the offer to consume fresco, which was a slightly sweet, cool drink with
less calories and no protein per serving.

Daily supplement intake data was recorded for all children and pregnant and lactating
mothers. In addition, researchers collected anthropometric measures, such as height and
weight, on all children under the age of seven, and data on home calorie consumption at
three, six and twelve month intervals with the frequency of data collecting depending on
the child’s age. Data on number of days sick with diarrhea and other illnesses was also
collected in three, six and twelve months intervals. Given the theoretical discussion given
above that height depends on net nutrient intake (calories net of disease) and genetic en-
dowments, all of the ingredients are available to estimate the height production function.9

There are three sources of variability in the frequency of data collection. The first
source comes from the design of the data collection for anthropometric measures and home
calories intake. Children between ages 0 and 2 were purposively measured at 3 month
intervals, children between 2 to 4 years old at 6 month intervals and children from 4 to 7
years old at 12 month intervals. The second source comes from the different frequency
of measurement of home and supplement calories. The third source of variability arises
because the actual age of the children at each data collection did not correspond exactly to

of the beginning and ending of the experiment and data collection. For example, children born prior to 1969
only entered the sample after 1969 and children born after 1971 and onwards only have data collection until
at most age 6. This created some natural variation in exposure to the experiment that has been examined in
previous work using longer term follow-up data. In the current work, because the data collection ends when
children exit the sample I cannot make use of the timing of exposure. The data collection also changes the
samples used to estimate the height and the change in height models. In the height model, the necessity of an
entire history of calorie inputs limits the sample because of the sample truncation from the beginning of the
experiment and data collection. The change in height model, like other value-added models, essentially only
needs two data points so the model is less demanding of the data and the estimation sample is subsequently
larger. In addition, under the maintained modeling assumptions, the truncation of the data collection as a
result of the beginning and ending of the experiment becomes less important in the change in height model.

9This is not the first estimate of the effect of calories on height using these data. The closest paper is
Schroeder et al. (1992). However, in their paper many specification tests are not performed and reverse
causality is a source of bias. Moreover, the focus in this paper is different because I develop the assumptions
embedded in the estimating equation closely with the notion of a height production function and use the
production function to perform out of sample forecasts. In addition, their estimates condition on a measure
of socioeconomic status, which potentially changes the interpretation of the coefficients on the nutrition
inputs (Wolpin, 1997). It is also unclear what the socioeconomic status variable proxies because under the
assumptions listed above the INCAP data contains all of the necessary inputs. Finally, this paper also adds
the use of instrumental variables, which was not performed in the initial analyses.
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the 3, 6 or 12 month intervals. For example, at the 24 month data collection, some children
might be 23 months old and some children might be 25 months old.

To address these forms of data frequency variability, I treat the data in the following
way. First, to keep the timing consistent across data collection rounds, I use the data at a
twelve month frequency. That is, I use the height and home calories measures at 1 year
old, 2 years old, etc. In this way, when taking the model to the data, the interpretation of
the model coefficient of interest becomes the effect on height of a one calorie increase in
average daily caloric intake over the course of a year. Second, for the supplement calorie
inputs, I use the exact amount of average supplement intake recording from the previous
year, and for the home calorie inputs, I use the measured amount of home calories at
each yearly data collection round as the measure of home calories for the previous year. I
simply sum the measures to get a variable for average daily total calorie intake for the year.
Combining the measures in this way obviously induces difference sources of measurement
error given the way calories are measured. I address the role of measurement error in the
next section and incorporate the theoretical results into the estimation. Third, to address
the variation in the age at measurement conditional on the data collection round, I linearly
interpolate between data rounds so that I have an estimate of the child’s height at the exact
age corresponding to 1 year old, 2 years old, etc. In practice, the correlation coefficient
between interpolated height and the measured height is above 0.99 at all ages so using
the interpolated height or the measured height makes no quantitative difference for the
magnitude of the model estimates.

The data contain two sources of potentially exogenous variation. The first source is
the experimental variation across villages itself. Although clustering bias is a potential
issue, Martorell (1995a) report that “the anthropometric characteristics of both children
and adults were strikingly similar in the different villages before 1969 [when the exper-
iment began],” which reflects the matched pair nature of the experimental design. The
second source of exogenous variation is the measured distance from each house to the
feeding center. In contrast to the experimental variation, the distance instrument utilizes
child specific, within village variation. As I will show, both the experimental and dis-
tance instruments are very strong predictors of individual total calorie intake and are both
plausibly exogenous to unobserved determinants of child growth.10

10Maluccio et al. (2009) also use the experimental variation as instrument for supplement intake to exam-
ine the effect on educational outcomes but elect not to use the distance variation. This, however, is because
schools were actually also located in the center of the villages so that there may have been a direct impact
of distance on educational outcomes. In my case, the distance instrument may be inappropriate in levels
because perhaps the location of the feeding center was not exogenous to unobserved child characteristics
however it seems that in differences that the criticism would be less likely to hold. In addition, the IV and
OLS divergence is greatest when using the experimental variation only so the point holds a fortiori using the
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Table 1 displays summary statistics from the data. The data are disaggregated by atole

and fresco villages and pooled over age and time. The children in the atole villages were
significantly taller and also consumed significantly more total calories. For each kind
of village, the increase in supplement calories outweighed the decrease in home calo-
ries, which is evidence of the so-called “fly-paper” effect where a transfer “sticks” to the
child.11 Because the modeling assumptions impose different requirements on the data and
the sample size changes depending on the model being estimated I display atole and fresco
differences both by the height estimation sample and by the change in height estimation
sample. The basic pattern of differences holds across both samples, however, notably, the
children in the height sample are shorter on average than children in the change in height
sample.

IV. Measurement Error, IV and LATE

Data on calories are typically collected from 24-hour recall surveys. Families or individ-
uals are asked to recall everything they ate in the previous 24 hours. Researchers then
use conversion factors to convert the types and quantities of food reported into calories,
proteins, and other nutrients. 24-hour food recall surveys have test-retest reliability on
the order of 0.5 (Lechtig et al., 1976), where the test-retest reliability is the correlation
coefficient between two repeated measures.12 If calories are measured with classical mea-
surement error, then the OLS coefficient is attenuated according to:13

E[β̂OLS] = β
σ2

c
σ2

c +σ2
u

more plausibly exogenous instrument.
11Using the INCAP data Islam and Hoddinott (2009) rigorously document this effect.
12Test-retest reliability may be affected by conversion error in converting recorded calories into actual

calories consumed, recall error on the part of individuals and actual variability in consumption by individuals
across days. In my model, I use average calorie intake over a period, which implicitly assumes perfect
substitutability across time within a period. Clearly variation in calorie intake may be an important issue
in how calories affect growth. However, given the difficulty in collecting accurate individual level calorie
intake at a specific point in time, the possibility of collecting an accurate, high frequency panel of calorie
intake is very remote.

13The formula for attenuation bias is more complicated in the presence of multiple regressors but the
pattern of empirical results in this paper are not sensitive to excluding the additional regressors. Another
source of concern may be measurement error in diarrhea measures, which are self-reported. In addition, days
sick with diarrhea may also be correlated with unobserved healthiness or tendency to grow. Unfortunately
neither the experimental nor the distance instruments are strong predictors of days sick with diarrhea, which
mitigates the possibility to control for endogeneity or measurement error using IV. However, the results
from calories in this paper suggest some caution in estimating a biological production function with IV.
In addition, the calorie results are similar when excluding days sick with diarrhea which suggests linearly
independent effects.
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where σ2
u is the variance of measurement error in calories and σ2

c is the variance in calories.
The formula for the test-retest reliability is also exactly equal to the attenuation bias, which
shows an attenuation adjusted estimate can be backed out by dividing the OLS estimate by
the a priori known test-retest reliability of 0.5 according to:

β̂Adjusted OLS =
β̂OLS

.5

This analysis suggests that OLS estimates of the marginal impact of calories will be ap-
proximately half of the true coefficient. As is well-known, instrumental variables can re-
move attenuating effects of measurement error so one estimation strategy available in the
INCAP data is to use the experimental and distance variables to purge the attenuation bias.
The expected finding would be for the OLS coefficient to double in magnitude. However,
one unique feature of the INCAP data is that the calorie intake data collected at the feeding
center do not contain measurement error because the amount of supplement calories that
each particular child consumed was measured precisely.14 This means that the degree of
measurement error for each child is related to the proportion of calories consumed at the
feeding center. If the child ate entirely at the feeding center then their calorie input would
be measured without error whereas if the child ate entirely at home then their calorie input
would be measured with the traditional amount of error.

One way to model this type of measurement error is to consider that the observed total
calories is a mixture of a correctly measured calorie input and an incorrectly measured
calorie input with the mixing proportion determined by the amount consumed at the feed-
ing center. Let Ch be the amount of calories consumed if the child ate only at home and let
Cc be the amount of calories that would be consumed if the child ate only at the feeding
center. Assume also that observed home calories in the absence of a feeding center would
still be measured with classical measurement error according to: Ch,o =Ch+U . Both Ch,o

and Ch are hypothetical quantities because in reality the child will eat some amount at both
home and at the feeding center. Now the observed total calories CT,o is:

CT,o = PCh,o +(1−P)Cc

where P is the fraction of calories consumed at home. In the data, I observe PCh,o, (1−
P)Cc and CT,o but not P, Ch,o or Cc. Under this kind of measurement error, it can be shown

14For each child and each visit to the feeding center, the staff measured both the precise amount of atole
and fresco dispensed and the amount leftover. Daily leftovers were totaled and cross-checked against the
recorded total amount consumed and dispensed.
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(Appendix B) that the OLS estimate is attenuated according to:

E[β̂OLS] = β
σ2

c
σ2

c +E[P2]σ2
u

Because the percentage of calories consumed at home P∈ [0,1] then E[P2]σ2
u <σ2

u and the
attenuation bias is smaller than in the case of classical measurement error. Therefore, the
estimated value of β from the INCAP measurement error lies between the OLS estimate
and the attenuated adjusted OLS estimate. The intuition behind the result is that observing
some calorie data without measurement error lowers the variance of the measurement
error relative to the variance in calories, which decreases the attenuation bias. Notice that
as the P becomes degenerate at 1 (calories are measured with error) then E[P2] = 1 and the
standard attenuation bias result holds. Whereas if P becomes degenerate at 0 (calories are
measured without error) then E[P2] = 0 and the OLS estimate correctly identifies β under
the maintained assumptions. This analysis suggests that correction for the standard OLS
attenuation bias result can serve as an upper bound on attenuation bias in the INCAP data.
Another interesting result is this kind of mixture of a mismeasured and correctly measured
variable can also be removed with an instrumental variable provided that the instrument is
uncorrelated with the measurement error U (see Appendix B).

A final issue that arises in using IV to estimate a production function is the interpreta-
tion of IV when there are random coefficients and individuals select into treatment based
on the value of their random coefficient. For example, suppose that equation (3) is enriched
so that each child has a different marginal productivity of calories, which is denoted by
adding an i subscript to β a

i,a:

∆Hia = β
a
i,aCia +α

a
a Dia + γ̃

a
a Xi +(λa−λa−1)µi + εia− εa−1i

This is a fairly realistic assumption and says that for certain children at certain time pe-
riods that increasing calories is more productive than at other time periods and for other
children. The question that arises is what does IV estimate in such a model? A series of
papers (Heckman, 1997; Heckman et al., 2006) argues that in this case of “essential hetero-
geneity” that IV can estimate a parameter that is uninterpretable for economic policy. The
basic concern is that even if the instrumental variable has strong first stage explanatory
power and even if the instrument is plausibly exogenous to with respect to unobserved
determinants of height, which seems reasonable in the current context given the experi-
mental and distance variation, if the children still select into treatments (calorie intake)
based on the value of their child specific βi,a, then Heckman et al. (2006) demonstrate that
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IV in this case can be larger, smaller or even the opposite sign to the true causal effect.
Although Heckman et al. (2006) develop statistical tests to test for the case of essential het-
erogeneity, a perhaps simpler way to test the validity of the models is simply to test their
predictive ability, which is one of the aims of the current paper. One interesting indicator
of essentially heterogeneity is the failure of overidentification tests, which in their model
does not indicate a lack of exogeneity but rather picks up effect heterogeneity coming from
different instrument sets identifying and weighting individuals with different effects and
different margins of choice (Heckman et al., 2006).

IV. Results

I first present the empirical results without age specific heterogeneity and then proceed to
the model with age specific effects. The baseline empirical results are given in Tables 2 and
3. Tables 2a and 2b report the first and second stage regression estimates of the cumulative
height production function, treating calories as an endogenous variable and using a dummy
variable for whether the child lived in an atole village and the distance from the child’s
house to the feeding center within each village as instruments. I consider three different
instrument sets: IV-1 uses only the atole dummy, IV-2 uses the atole dummy and distance
as instruments and IV-3 uses only distance as an instrument. In Table 2a, the instrument
sets all have strong explanatory power with the first stage F-tests ranging from 22.9 to
27.8, which exceeds the recommended thresholds (Staiger and Stock, 1997). Moreover
the signs are all in the expected direction with the treatment village dummy associated
with higher total calorie intake and being farther from the feeding center associated with
lower total calorie intake.

In Table 2b, I present both the OLS results and the second stage IV regressions. Regres-
sion (1) displays estimates of the height production function using OLS. The coefficients
have the expected signs with cumulative calories having a positive association with height
and cumulative diarrhea a negative association. Regressions (2), (3) and (4) in Table 2b
show model estimates with the different instrument sets treating calories as an endogenous
variable. The most important and salient difference between the OLS and IV estimates is
that the magnitude of the coefficient of calories increases by 2.7 to 11-fold. The difference
between the size of OLS and IV coefficients is statistical significant in regressions (2) and
(3), reflected in failing to reject the hypothesis of equality of the OLS and IV estimators
using the Durbin-Wu-Hausman (DWH) test in regressions (2) and (3). Regression (4)
does not reject the equality of the OLS and IV estimates. Also in Table 2b, regression (3)
has an overidentified instrument set and the regression fails the Sargan overidentification
test, which suggests either a lack of exogeneity of the instruments or that the different
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instrument sets are picking up effect heterogeneity.
Table 3a and 3b report the first and second stages estimates of equation (5) with change

in height as the dependent variable, calories as the endogenous variable of interest and
using the same instrument sets as previously. The instruments are again powerful with the
first stage F-tests in Table 3a ranging from 10.7 to 22.1 and the signs of the coefficients
both intuitive and seemingly large in magnitude. In Table 3b, regression (1) estimates the
technology by OLS. The coefficients again have the expected sign. Calories have a positive
effect, diarrhea has a negative effect, and age has a negative effect, which is picking up
the falling velocity of growth throughout childhood (Tanner, 1990). Columns (2), (3) and
(4) in Table 3b estimate the change in height specification using the same instrument sets
described above. The pattern is similar to Table 2b. Compared to the OLS estimates in
(1), the IV-estimates in (2), (3) and (4) show a large increase in the magnitude of the
coefficient on calories by 4 to 19 fold. Given that maximum attenuation factor is 0.5, the
adjusted OLS estimates would be twice the estimated effect in column (1), which suggests
that the OLS attenuation adjusted estimate is at the lower end of the range of IV estimates.
A DWH test rejects the equality of the OLS and IV estimates in specification (2) and (3)
but again not in specification (4).

Comparing the estimates across Table 2b and 3b, the change in height specification
lowers the marginal effect of calories on height in all specifications. This is consistent with
the idea that children who are taller receive more calories. A formal statistical test of this
hypothesis rejects the null of the equality of height and change in height specifications,
which indicates perhaps bias from not addressing unobserved heterogeneity in growth
across children.15

In Table 4a and 4b, I use the same estimation strategy as above except I allow for
parameter heterogeneity in calories by age by interacting age dummies with the calorie
inputs. Table 4a displays the OLS and second stage IV regression results for the height
model and Table 4b shows the OLS and second stage IV regression results for the change
in height model. In both of these models, because of the added heterogeneity, the F-stats
are much lower and below the recommended thresholds, ranging between 1.88 and 4.48 in

15Two other potential sources of bias are (1) a non-linear calorie input relationship and (2) reverse causal-
ity between increases in calories and change in height. To check bias (1), in results not presented here, I
considered a quadratic calorie input and used both instruments in the IV estimation. The large OLS vs. IV
patterns continue to hold. Although I find some evidence for a non-linear calorie effect in the t-test for the
squared calorie term, the effect does not appear quantitatively important in the counterfactuals. For bias
(2), reverse causality between increases in calories and change in height would actually suggest the OLS
estimates would be biased upwards because faster growing children begin to eat more but eating more does
not cause faster growth. In that case an instrument that exogenously varies calories should find a smaller
effect than OLS estimates. The opposite pattern is found in the empirical results.
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the height model and between 0.0438 and 4.42 in the change in height model. Although it
seems important to understand heterogeneity in effects by age, evidently considering this
amount of heterogeneity stretches the statistical power of the data so the added realism of
the model should be balanced against any potential statistical issues.

Reflecting previous work (Schroeder et al., 1992), I replicate that the OLS results show
decreasing marginal productivity of calories by age.16 This decline by age is much more
pronounced in the change in height model with essentially zero marginal productivity of
calories after 48 months in the change in height model. The IV results again display
the same pattern being much larger in magnitude than the OLS results. In addition, they
also display the same decreasing productivity by age. The effect is especially pronounced
for the change in height model. A Durbin-Wu-Hausman test rejects the equality of the
OLS and IV models with age heterogeneity in most specifications and a statistical test
of the equality of calorie productivity by age also rejects the null in most specifications.
Although the falling productivity by age is well-known and consistent with much other
work (Schroeder et al., 1992), the main finding of the large difference between the OLS
and IV results continues to hold to the model with additional heterogeneity.

V. Counterfactual

To both understand the validity of the estimated models and to predict increases in height
from policy relevant, out of sample increases in calorie intake, this paper next considers
a counterfactual policy where the Guatemalan children are fed on “first-world” diet. To
implement such a counterfactual, I need an estimate of the “calorie gap” between children
in the U.S. and Guatamalan children in the INCAP data. Data on calories in the U.S.
comes from the National Health and Nutrition Examination Survey I (NHANES I). The
NHANES I is a nationally representative survey of 32,000 people age 1-74 from 1971 to
1975. In addition to height and age information, the survey collects information on calorie
intake from a 24-hour food consumption intake survey. I chose the NHANES I study
because the sampling period 1971 to 1975 overlaps the INCAP study from 1969 to 1977.
In addition, there were less problems with overeating and obesity in the 1970s. I restrict
the sample to children aged 1-7 in the NHANES I data to match the ages of children in the
INCAP data.

Pooling the INCAP and NHANES I data, Table 5 displays a series of regressions with
calories as the dependent variable. “US” is a variable that equals one if the observation
comes from the NHANES I survey. Regression (1) shows the unadjusted calorie-gap;

16This is conceptually different than decreasing velocity of growth although decreasing productivity by
age and their co-movement by child’s age certainly suggests a close relationship.
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the average difference in calories between a child in the INCAP data and the NHANES I
study. The difference is approximately 600 calories. However, the difference overstates
the magnitude of the calorie gap because the US children are taller and taller children
receive more calories, even in Guatemala. Adding controls for height and age lowers the
calorie gap to, averaging across the estimates, approximately 430 calories. One interesting
feature is that the interaction between the US indicator and age is statistically insignificant,
which implies that the calorie gap is constant at 430 calories across ages.

Prior to exploring the predicted impacts of closing the calorie gap using the model
estimates, I first need a benchmark for the counterfactual results. A interesting study by
Bogin et al. (2002) provides exactly such a benchmark. Their paper compares the heights
of two populations of children. The first is a group of Maya children living in Guatemala
and the second is a group of American children born to Maya immigrants to the US.
In Table 6, I reproduce the relevant comparison between the American Maya children
and the Guatemalan Maya children in the Bogin et al. (2002) study. I also add average
height by age from the Guatemalan INCAP children and average height by age from the
NHANES I. Averaging across the Bogin et al. (2002) results, the average differences be-
tween Guatemalan Maya children and US Maya children is 9.8 cm at 7 years old, which
suggests a sizable gap in average height between these two groups. Also note that despite
the large height differences between the two groups of Maya children, the US Maya chil-
dren are still substantially shorter than children in the NHANES I; the gap between an
average US child and the US Maya children of Guatemalan immigrants is 6.4 centimeters
at age 7.

Before comparing the results of Bogin to the current study, several caveats are in order.
First, the children in the INCAP study were ladino and not Maya, where the ladinos are
a Spanish speaking population of mixed European and Maya descent, which potentially
implies a different genetic makeup for height potential in the two populations. Second,
both the Bogin samples and the INCAP experiment are samples of convenience and po-
tentially non-representative. However, interestingly for both caveats is that the heights of
the Guatemalan children in the Bogin et al. (2002) paper and INCAP study are not quan-
titatively different. Third, there is the possibility that migration to the US is related to the
height of either potential migrants or the height of their children. However, Bogin et al.
(2002) argue that the migration decisions were exogenous and driven by factors such as
“civil war, economic crisis and a cholera epidemic.”17 Setting aside the issues regarding

17It is also not clear that even if those events are random with respect to parents’ height that they would
not affect the height of their children through health and income shocks. It would have been interesting to
compare the heights of the parents of the children in the study who decided to immigrate or not. It seems they
did not collect those data. However, a previous study (Bogin, 1988) did not find evidence of “phenotypic
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the validity of the height gap as benchmark, I use the 9.8 cm average difference in heights
to gauge the plausibility of the magnitude of the subsequent counterfactuals.

Table 7 displays results from increasing the diet of the Guatemala children by 430
calories over a period of 6 years.18 Because the unit of time in the production func-
tion is one year, the interpretation on the calorie coefficient is the marginal impact on
height in centimeters of a one calorie increase in average daily calories over the course
of a year. Then for each possible coefficient the counterfactual is computed according to
6years x 430 calories

day x β

cm
year

calories
day

where the units of the model coefficient β are centimeters

per year per average daily calorie. The ‘Height’ column in Table 7 uses estimates of the
technology in Table 2b, where each row corresponds to the appropriate estimate in Table
2b. The ‘Change in Height’ column uses the parameter estimates from Table 3b.

The differences in the height and change in height specifications estimates and the
difference in OLS and IV estimates translates into large differences in the counterfactuals.
For the height production function specification, the counterfactual results in an increase
in between 2.69 cm to 28.27 cm of height. This within specification variation is driven
both by the divergence between the OLS and IV estimates and variation among the IV
estimates.

The height and change in height specification also generate substantial differences in
the counterfactuals, with the change in height counterfactuals all below the height coun-
terfactuals. For the change in height specification, OLS estimate gives a counterfactual of
is 0.77 cm while the IV estimates range from 3.34 to 14.71. Finally, I add an “Adjusted
OLS” counterfactual, which uses as the parameter estimate the attenuation adjusted OLS
estimate. Recall that this estimate serves as an upper bound for the attenuating effects of
measurement error in the INCAP data.19 Those counterfactual results are 5.37 cm for the
height specification and 1.53 cm for the change in height specification.

Also, in Table 7, the column ‘% of Height Gap’ shows the computed counterfactual
as a percentage of 9.8 cm difference report in Bogin et al. (2002). Again, the differences
in the OLS and IV estimates translate into large differences in magnitude between the
counterfactual height impacts of the calorie intervention. As the preferred model, I focus
on the counterfactuals from the change in height specification. While the OLS estimate
suggests that only 8% of the height gap would be closed by closing the calorie gap, the IV

selective migration” from Central America to the US, which suggests that this may not be a source of bias.
18The INCAP data do not have “home calories” for children less than one year old because the children

are primarily breastfeeding. Therefore the production function is estimated from 1 - 7 years of age in the
INCAP data so I consider a counterfactual of 6 years.

19The “Adjusted OLS” is actually a soft upper bound because OLS estimate is attenuated according to the
INCAP measurement error and not classical measurement error.
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estimates range from closing 34% to 150% of the height gap between Guatemalan children
and Guatemalan children born in the US.

In Tables 8a and 8b, I perform the same counterfactual exercise using the production
functions age specific heterogeneity in the marginal impact of calories and again bench-
marking with the 9.8cm difference.20 This time, instead of closing the calorie gap for
all of early childhood, I consider closing the calorie gap for different durations in early
childhood: between ages 1 - 2, between ages 1 - 3, etc. The results parallel the baseline
model with very large differences in counterfactuals between the OLS and IV and substan-
tial differences across IV counterfactuals. The main difference from the baseline model is
that the falling impact of calories by age indicates that the height gap counterfactuals are
finished by age 3. Finally, the unrealistic predictions of the counterfactuals using the IV
estimates continue to hold or are exacerbated in the age heterogeneity models.

The large differences between the IV estimates and the implication of one of the
IV estimates that the height gap would not only be overturned, but that the height of
Guatemalans would increase by 50% of the height gap only through calories, suggests
indirectly that the IV estimates are not identifying the policy relevant average marginal
impact of calories. The OLS estimate counterfactual is an order of magnitude smaller.
In fact, using the attenuation bias result, an upper bound on the impacts of measurement
error in the INCAP data is given by the attenuation adjusted change in height counterfac-
tual, which suggests that at most 16% of the height gap can be explained by closing the
US-Guatemalan calorie gap during early childhood. Age specific effects give essentially
the same pattern of results but that the effects would occur at earlier ages.

VI. Conclusion

This paper uses an extremely rich longitudinal data set on calorie intake, disease and height
to estimate a height production function on a sample of rural Guatemalan children born
between 1962 to 1977. The econometric model is consistent with theoretical notions of
human growth and the richness of the micro data allows me to perform several specifica-
tion tests for different biases. The results suggest biases from unobserved difference in
growth, substantial measurement error in calories and policy biased estimates arising from
the LATE characterization of IV. Using the estimated height production functions, I com-
pute a counterfactual effect on height of closing the “calorie gap” and giving Guatemalan
children the average diet of a child in the United States during the 1970s. The idea of the
counterfactual is to understand how important calories in early childhood are in explaining

20Because of noise in the estimates, I impose in the counterfactuals that statistically insignificant and
negative calorie coefficients have zero impact on height or changes in height.
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differences in average heights across populations. The attenuation adjusted OLS estimate
shows that equalizing the calorie gap would close at most 16% of the height gap. Although
this estimate is approximately twice the effect implied by estimates from OLS, the results
still suggest that 84% of the height gap is unexplained by calorie inputs. These results
are consistent with recent evidence by Deaton (2007) questioning the role of nutrition in
explaining average differences in heights across populations. Although the results show
that increased calorie consumption will clearly improve height outcomes, other potential
inputs such as the composition of calories, micronutrients, diet diversity, prenatal care, the
disease environment, medical inputs, intergenerational linkages in height (Behrman et al.,
2009), and work requirements that affect net nutrition are all potentially important chan-
nels, either directly as inputs or indirectly by affecting the productivity of other inputs, in
explaining group level differences in average heights. Finally, the results suggest caution
in using instrumental variables to estimate biological processes. Even in the current ideal
case of an extensive panel data collection with exogenous, experimental variation in avail-
ability of calories, the IV estimates produce unrealistic and misleading estimates of the
productivity of calorie inputs.
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Appendix A: Tables

Table 1
Descriptive Statistics By Treatment (atole) vs. Control (fresco)

Height Sample Change in Height Sample
atole fresco Difference atole fresco Difference

Children’s Height (cm) 90.74 88.66 2.08‡ 94.02 92.19 1.83‡

(10.34) (10.2) (10.52) (10.47)
Average Daily Total Calories 1013.84 970.69 43.15‡ 1032.48 993.78 38.7‡

(348.12) (387.66) (346.92) (361.22)
Average Daily Home Calories 860.83 925.82 -64.99‡ 884.29 941.25 -56.96‡

326.37 372.08 331.14 347.66
Average Daily Supplement Calories 153.01 44.86 108.15‡ 148.18 52.53 95.65‡

(120.16) (40.15) (114.06) (43.97)
Days Sick with Diarrhea (per month) 6.56 6.43 0.13 5.46 6.46 -1.0†

(9.74) (9.57) (10.4) (11.03)
Child’s Age (months) 44.27 44.08 0.19‡ 49.92 49.85 .07

(16.72) (16.26) (17.13) (16.87)
Percent male .52 .57 -.05 .53 .57 -.04†

(.5) (.5) (.5) (.5)
N 842 777 1,404 1,301
Notes: Standard deviations are reported in parentheses. “Height Sample” are the observations used for
estimation in Table 2. “Change in Height Sample” are the observations used for estimation in Table 3. The
models estimated using instrument sets IV-2 and IV-3 (see below) have slightly less observations because
of missing distance data but the patterns of differences across the samples is similar in the slightly smaller
sample.
‡ p<0.01, † p<0.05, ∗ p<0.1
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Table 2a
First-stage regression
Dependent Variable: Cumulative calories

IV-1 IV-2 IV-3
(2) (3) (4)

Atole 184.1‡ 159.8‡ -
(34.9) (35.6)

Distance to Feeding Center - -70.3‡ -80.8‡

(16.1) (16.0)
Cumulative Days with Diarrhea -2.71‡ -2.78‡ -2.78‡

(0.71) (0.71) (0.72)
Age 91.9‡ 91.9‡ 91.9‡

(1.1) (1.1) (1.1)
Sex 210.3‡ 219.9‡ 212.2‡

(35.5) (35.8) (35.9)
Constant -1751.7‡ -1572.6‡ -1460.3‡

(57.0) (72.0) (67.9)

N 1,619 1,590 1,590
R2 0.82 0.82 0.82
First stage F-test 27.8 22.9 25.36
Notes: First-stage regressions corresponding to the height IV regres-
sions in Table 2b. For the excluded exogenous variables, IV-1 uses
exposure to atole, IV-2 uses both distance to the feeding center and
atole as instruments and IV-3 uses distance to the feeding center as
an instrument.
‡ p<0.01, † p<0.05, ∗ p<0.1
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Table 2b
Dependent Variable: Height

OLS IV-1 IV-2 IV-3
(1) (2) (3) (4)

Cumulative calories 0.0010‡ 0.011‡ 0.0071‡ 0.0027†

(0.000) (0.002) (0.001) (0.001)
Cumulative days with diarrhea -0.0166‡ 0.0101 -0.0021 -0.0135†

(0.004) (0.010) (0.007) (0.005)
Age 0.4858‡ -0.4254† -0.0673 0.3339‡

(0.016) (0.202) (0.114) (0.109)
Sex 0.7216‡ -1.2741† -0.6116 0.3164

(0.205) (0.601) (0.397) (0.330)
Constant 65.82‡ 82.21‡ 75.93‡ 68.67‡

(0.379) (3.669) (2.102) (1.992)

N 1,619 1,619 1,590 1,590
R2 0.85 0.39 0.68 0.84
Durbin-Wu-Hausman - 0.00 0.00 0.15
Sargan - - 0.0001 -
IV/OLS - 11 7.1 2.7
Notes: Huber-White standard errors are reported in parentheses. IV-1 uses
exposure to atole as an instrument, IV-2 uses distance to the feeding cen-
ter and atole as instruments and IV-3 uses distance as an instrument. First
stage F-test is the p-value from test of the joint significance of the first stage
regressors. Durbin-Wu-Hausman is the p-value from a test of the null hy-
pothesis of the equality of the calorie OLS and IV estimates. Sargan test
reports the p-value from an overidentification test.
‡ p<0.01, † p<0.05, ∗ p<0.1
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Table 3a
First-stage regressions
Dependent Variable: Calories

IV-1 IV-2 IV-3
(2) (3) (4)

Atole 39.9‡ 29.1†

(12.2) (14.8) -
Distance to Feeding Center - -29.3‡ -31.1‡

(6.7) (6.6)
Days with Diarrhea -0.99∗ -1.10 -1.12‡

(0.58) (0.67) (0.67)
Age 9.0 ‡ 11.0‡ 11.0‡

(0.36) (0.44) (0.44)
Sex 75.3‡ 98.4‡ 96.7‡

(12.3) (14.8) (14.8)
Constant 508.1‡ 499.6‡ 520.3‡

(22.2) (31.2) (29.4)

N 2,705 1,811 1,811
R2 0.20 0.28 0.28
First stage F-test 10.7 13.0 22.1
Notes: First-stage regressions corresponding to the change in
height IV regressions in Table 3b. For the excluded exoge-
nous variables, IV-1 uses exposure to atole, IV-2 uses both
distance to the feeding center and atole as instruments and
IV-3 uses distance to the feeding center as an instrument.
‡ p<0.01, † p<0.05, ∗ p<0.1

28



Table 3b
Dependent Variable: Change in Height

OLS IV-1 IV-2 IV-3
(1) (2) (3) (4)

Calories 0.0003‡ 0.0057† 0.0026† 0.0013
(0.000) (0.002) (0.001) (0.001)

Days with Diarrhea -0.0127‡ -0.0069 -0.0124‡ -0.0137‡

(0.003) (0.005) (0.004) (0.004)
Age -0.0682‡ -0.1169‡ -0.0971‡ -0.0825‡

(0.002) (0.021) (0.013) (0.013)
Sex -0.26‡ -0.66‡ -0.50‡ -0.38‡

(0.067) (0.196) (0.139) (0.139)
Constant 10.55‡ 7.69‡ 9.65‡ 10.24‡

(0.14) (1.25) (0.53) (0.53)

N 2,705 2,705 1,811 1,811
R2 0.298 -0.416 0.218 0.303
Durbin-Wu-Hausman - 0.001 0.054 0.53
Sargan - - 0.006 -
Test βh = βch 0.000 0.025 0.001 0.240
IV/OLS 19 8.66 4.33
Notes: Huber-White standard errors are reported in parentheses. IV-
1 uses exposure to atole as an instrument, IV-2 uses distance to the
feeding center and atole as instruments and IV-3 uses distance as an
instrument. First stage F-test is an omnibus test of the joint signifi-
cance of the first stage regressors. Test βh = βch gives the p-values
for a null hypothesis of the equality of the coefficient on calories in
the height specification versus the change in height specification for
each of OLS, IV1, IV2 and IV3. Durbin-Wu-Hausman is a test of
the difference between the IV estimates and the OLS estimate. Sar-
gan tests the exogeneity of overidenifying instruments in regression
(3) only.
‡ p<0.01, † p<0.05, ∗ p<0.1
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Table 4a
Dependent variable: Height, parameter heterogeneity by age

OLS IV-1 IV-2 IV-3
(1) (2) (3) (4)

Cumulative calories 0-24 month 0.0030*** 0.0120 0.0204*** 0.0106
(0.001) (0.009) (0.005) (0.008)

Cumulative calories 0-36 months 0.0024*** 0.0123*** 0.0099*** 0.0052**
(0.000) (0.002) (0.001) (0.002)

Cumulative calories 0-48 months 0.0017*** 0.0112*** 0.0062*** 0.0031***
(0.000) (0.003) (0.001) (0.001)

Cumulative calories 0-60 months 0.0011*** 0.0104*** 0.0043*** 0.0019*
(0.000) (0.003) (0.001) (0.001)

Cumulative calories 0-72 months 0.0006*** 0.0099*** 0.0031*** 0.0011
(0.000) (0.004) (0.001) (0.001)

Cumulative calories 0-84 months 0.0002 0.0094** 0.0021* 0.0005
(0.000) (0.004) (0.001) (0.001)

Cummulative Days with Diarrhea -0.0161*** 0.0088 -0.0067 -0.0142***
(0.004) (0.011) (0.006) (0.005)

Age 0.5598*** -0.2884 0.5526*** 0.6186***
(0.023) (0.479) (0.157) (0.218)

Sex 0.6181*** -1.2943** -0.4544 0.2272
(0.197) (0.644) (0.331) (0.320)

Constant 76.3845*** 50.0723*** 55.1441***
(17.061) (6.523) (10.347)

Observations 1,619 1,619 1,590 1,590
R-squared 0.859 0.448 0.750 0.846
First stage F-test 1.88 4.48 2.10
Durbin-Wu-Hausman 0.00 0.00 0.90
βa = β 0.00 0.00 0.00 0.00
Notes: IV-1 uses exposure to atole as an instrument, IV-2 uses distance to the feeding center
and atole as instruments and IV-3 uses distance as an instrument. First stage F-test is an
omnibus test of the joint significance of the first stage regressors. Durbin-Wu-Hausman is
a test of the difference between the IV estimates and the OLS estimate. Test βa = β reports
the p-values for a joint test of the equality of the marginal impacts of calories by age.
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Table 4b
Change in height, parameter heterogeneity by age

OLS IV-1 IV-2 IV-3
(1) (2) (3) (4)

Calories 12-24 months 0.0013*** 0.0170 0.0098*** 0.0077**
(0.000) (0.015) (0.002) (0.003)

Calories 24-36 months 0.0010*** 0.0060** 0.0055*** 0.0039**
(0.000) (0.003) (0.001) (0.002)

Calories 36-48 months 0.0003** -0.0013 0.0024*** 0.0010
(0.000) (0.012) (0.001) (0.001)

Calories 48-60 months 0.0000 -0.0073 0.0003 -0.0011
(0.000) (0.022) (0.001) (0.001)

Calories 60-72 months -0.0002 -0.0126 -0.0015 -0.0028*
(0.000) (0.031) (0.001) (0.002)

Calories 72-84 months -0.0003 -0.0171 -0.0027* -0.0040*
(0.000) (0.038) (0.002) (0.002)

Days with Diarrhea -0.0126*** -0.0023 -0.0081* -0.0091*
(0.003) (0.014) (0.005) (0.005)

Age -0.0386*** 0.4947 0.1138** 0.1182
(0.007) (0.967) (0.050) (0.074)

Sex -0.2667*** -0.1390 -0.5168*** -0.3772**
(0.066) (0.913) (0.130) (0.155)

Constant -14.9357 -0.4300 0.8000
(34.553) (2.403) (3.906)

Observations 2,705 2,705 1,811 1,811
R-squared 0.308 -1.988 -0.000 0.114
First stage F-test 0.0438 4.4197 2.7454
Durbin-Wu-Hausman 0.00 0.00 0.091
βa = β 0.0000 0.14 0.0001 0.0027
Notes: IV-1 uses exposure to atole as an instrument, IV-2 uses distance to
the feeding center and atole as instruments and IV-3 uses distance as an in-
strument. First stage F-test is an omnibus test of the joint significance of the
first stage regressors. Test βh = βch gives the p-values for a null hypothesis
of the equality of the coefficient on calories in the height specification ver-
sus the change in height specification for each of OLS, IV1, IV2 and IV3.
Durbin-Wu-Hausman is a test of the difference between the IV estimates
and the OLS estimates. Test βa = β reports the p-values for a joint test of
the equality of the marginal impacts of calories by age.
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Table 5
Calorie Gap: US vs. Guatemala

Dependent Variable: Daily Calorie Intake
(1) (2) (3) (4) (5) (6)

US 592‡ 430‡ 442‡ 462‡ 471‡ 348†

(12) (12) (19) (21) (32) (169)
Height 16‡ 15‡ 15‡ 15‡ 13‡

(0) (1) (1) (1) (1)
Age 7 66‡ 68‡ 75‡

(10) (21) (22) (22)
Age-Squared -7‡ -7‡ -7‡

(2) (2) (2)
US x Age -2 -15

(6) (18)
US x Height 2

(2)

N 6,838 6,838 6,838 6,838 6,838 6,838
R-squared 0.25 0.38 0.38 0.38 0.38 0.38
Notes: Robust standard errors are reported in parentheses.
US is an indicator variable that equals 1 if the observation
comes from the NHANES-I and 0 from the INCAP.
‡ p<0.01, † p<0.05, ∗ p<0.1

Table 6
Cross Study Average Heights (cm): USA vs. Guatamala

Bogin et al. (2002)
USA-1992 USA-2000 Guate-1998 INCAP 1969-77 NHANES I 1971-75

Age 5 111.3 111.5 102.2 99.1 112.8
Age 6 113.2 115.8 105.0 104.9 118.9
Age 7 118.5 119.7 109.3 110.5 124.9
Note: Average population height reported in centimeters. The Bogin et al. (2002) samples
are USA-1992 and USA-2000, from the children of Maya immigrants born and living in the
U.S., and Guate-1998, a sample of Maya Guatemala school children. The Bogin samples
were collected in 1992, 2000 and 1998, respectively. INCAP 1969-77 is from a sample of
four ladino villages in the INCAP Longitudinal Study 1969 - 1977. NHANES I 1971-1975
is a nationally representative sample from the USA.
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Table 7
Production Function Counterfactuals: Baseline Model

Height Change in Height
∆ Average Height % Height Gap ∆ Average Height % Height Gap

OLS 2.69 27% 0.77 8%
Adjusted OLS 5.37 55% 1.53 16%
IV1 28.27 288% 14.71 150%
IV2 18.20 186% 6.75 69%
IV3 6.94 71% 3.34 34%
Note: Statistics reported in centimeters. Height refers to the height technology estimate
using height as a dependent variable. Change in height refers to using change in height as
a dependent variable. Adjusted OLS refers to the OLS estimates adjusted for attenuation
bias. ∆ Average Height refers to the change in average height at 7 years old and % Height
Gap refers to the percent of the 9.8cm height gap.
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Table 8a
Production Function Counterfactuals: Height model with parameter heterogeneity by age

OLS IV1 IV2 IV3
Intervention ∆ Average ∆ Average ∆ Average ∆ Average
timing Height % Height Gap Height % Height Gap IV/OLS Height % Height Gap IV/OLS Height % Height Gap IV/OLS

1-2 years 1.3 13.2% 5.18 52.9% 4 8.75 89.3% 6.7 4.54 46.4% 3.5
1-3 years 2.32 23.6% 10.48 107% 4.5 12.99 132.5% 5.6 6.76 69% 2.9
1-4 years 3.04 31% 15.3 156.1% 5 15.65 159.7% 5.1 8.09 82.6% 2.7
1-5 years 3.5 35.8% 19.79 201.9% 5.6 17.49 178.4% 5 8.91 90.9% 2.5
1-6 years 3.77 38.5% 24.04 245.3% 6.4 18.8 191.9% 5 9.37 95.6% 2.5
1-7 years 3.86 39.4% 28.06 286.3% 7.3 19.7 201% 5.1 9.58 97.7% 2.5

Notes: ∆ Average Height refers to the change in average height in centimeters given the length of the intervention in the far left column. % Height
Gap refers to the percent of the 9.8cm height gap and IV/OLS divides each IV counterfactual by the OLS counterfactual result.
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Table 8b
Production Function Counterfactuals: Change in height model with parameter heterogeneity by age

OLS IV1 IV2 IV3
Intervention ∆ Average ∆ Average ∆ Average ∆ Average
timing Height % Height Gap Height % of 9.8cm IV/OLS Height % Height Gap IV/OLS Height % Height Gap IV/OLS

1-2 years .56 5.7% 7.29 74.4% 13.1 4.21 43% 7.6 3.33 33.9% 6
1-3 years .99 10.1% 9.88 100.8% 10 6.56 67% 5 5 51.1% 5
1-4 years 1.12 11.5% 9.88 100.8% 8.8 7.62 77.7% 6.8 5.45 55.7% 4.9
1-5 years 1.13 11.5% 9.88 100.8% 8.7 7.74 79% 6.8 5.45 55.7% 4.8
1-6 years 1.13 11.5% 9.88 100.8% 8.7 7.74 79% 6.8 5.45 55.7% 4.8
1-7 years 1.13 11.5% 9.88 100.8% 8.7 7.74 79% 6.8 5.45 55.7% 4.8

Notes: ∆ Average Height refers to the change in average height in centimeters given the length of the intervention in the far left column. % Height
Gap refers to the percent of the 9.8cm height gap and IV/OLS divides each IV counterfactual by the OLS counterfactual result.
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Appendix B

Let Y be the outcome of interest (either height, H, or change in height, ∆H, depending on
the maintained modeling assumptions). For calories, following the notation in the paper,
let total observed calories be given by CT,o =CT +U where CT is total calories and U is a
random variable with E[U ] = E[(Y −E[Y ])U ] = E[(CT −E[CT ])U ] = 0 and E[U2] = σ2

u .
The OLS estimate of the true marginal impact of calories, β0, is attenuated according to:

E[β̂OLS] =
Cov(Y,CT,o)

Var(CT,o)

=
Cov(Y,CT +U)

Var(CT +U)

=
Cov(Y,CT )+Cov(H,U)

Var(CT )+Var(U)

=
Cov(Y,CT )

Var(CT )

Var(CT )

Var(CT )+Var(U)

= β0
σ2

c
σ2

c +σ2
u

Instrumental variables can remove the attenuating effects of measurement error. If the
instrument Z is exogenous, correlated with total calories and uncorrelated with the mea-
surement error U according to E[(Z−E[Z])U ] = 0, then:

E[β̂IV ] =
Cov(Y,Z)

Cov(CT,o,Z)

=
Cov(Y,Z)

Cov(CT +U,Z)

=
Cov(Y,Z)

Cov(CT ,Z)+Cov(U,Z)

=
Cov(Y,Z)

Cov(CT ,Z)
= β0

In the INCAP experiment, instead of observing CT,o =CT +U , we actually observe CT,o =
PCh,o +(1−P)Cc with potential observed home calories given by Ch,o =Ch +U , where
I assume U has the same properties as previously. P is a random variable that takes values
in [0,1] and if I assume that U and P are independent, then the attenuation bias is given
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by:

E[β̂OLS] =
Cov(H,CT,o)

Var(CT,o)

=
Cov(H,PCh,o +(1−P)Cc)

Var(PCh,o +(1−P)Cc)

=
Cov(H,P(Ch +U)+(1−P)Cc)

Var(P(Ch +U)+(1−P)Cc)

=
Cov(H,CT +PU)

Var(CT +PU)

=
Cov(H,CT )+Cov(H,PU)

Var(CT )+2Cov(CT ,PU)+E[P2U2]

=
Cov(H,CT )

Var(CT )+E[P2]σ2
u

=
Cov(H,CT )

Var(CT )

Var(CT )

Var(CT )+E[P2]σ2
u

= β0
σ2

c
σ2

c +E[P2]σ2
u

Because the range of P is [0,1] then 0≤ P2 ≤ 1 and so:

0≤
∫

P2
φ(P)dP = E[P2]≤ 1

In the INCAP measurement error, the attenuation bias is less severe than the attenuation
bias in the classical measurement error case:

E[P2]σ2
u ≤ σ

2
u

σ
2
c +E[P2]σ2

u ≤ σ
2
c +σ

2
u

1
σ2

c +σ2
u
≤ 1

σ2
c +E[P2]σ2

u

σ2
c

σ2
c +σ2

u
≤ σ2

c
σ2

c +E[P2]σ2
u

The inequality holds with equality if P is distributed degenerately at 1, which is exactly
the case where all calories are measured with error. Notice also that if P is distributed
degenerately at 0, which is the case of no measurement error in calories, then the right-
hand side equals 1 so that there is no attenuation bias. Essentially the INCAP attenuation
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bias is bounded between the traditional measurement error case and the true coefficient:

β0
σ2

c
σ2

c +σ2
u
≤ β0

σ2
c

σ2
c +E[P2]σ2

u
≤ β0

In the measurement error process given above, an instrumental variable that decontam-
inates classical measurement error also decontaminates the INCAP measurement error:

E[β̂IV ] =
Cov(H,Z)

Cov(CT,o,Z)

=
Cov(H,Z)

Cov(PCh,o +(1−P)Cc,Z)

=
Cov(H,Z)

Cov(P(Ch +U)+(1−P)Cc,Z)

=
Cov(H,Z)

Cov(CT +PU,Z)

=
Cov(H,Z)

Cov(CT ,Z)+Cov(PU,Z)

=
Cov(H,Z)
Cov(CT ,Z)

= β0
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