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Content Matters: Neuroimaging Investigation of Brain and Behavioral
Impact of Televised Anti-Tobacco Public Service Announcements

Abstract
Televised public service announcements are video ads that are a key component of public health campaigns
against smoking. Understanding the neurophysiological correlates of anti-tobacco ads is an important step
toward novel objective methods of their evaluation and design. In the present study, we used functional
magnetic resonance imaging (fMRI) to investigate the brain and behavioral effects of the interaction between
content ("argument strength," AS) and format ("message sensation value," MSV) of anti-smoking ads in
humans. Seventy-one nontreatment-seeking smokers viewed a sequence of 16 high or 16 low AS ads during
an fMRI scan. Dependent variables were brain fMRI signal, the immediate recall of the ads, the immediate
change in intentions to quit smoking, and the urine levels of a major nicotine metabolite cotinine at a 1 month
follow-up. Whole-brain ANOVA revealed that AS and MSV interacted in the inferior frontal, inferior parietal,
and fusiform gyri; the precuneus; and the dorsomedial prefrontal cortex (dMPFC). Regression analysis
showed that the activation in the dMPFC predicted the urine cotinine levels 1 month later. These results
characterize the key brain regions engaged in the processing of persuasive communications and suggest that
brain fMRI response to anti-smoking ads could predict subsequent smoking severity in nontreatment-seeking
smokers. Our findings demonstrate the importance of the quality of content for objective ad outcomes and
suggest that fMRI investigation may aid the prerelease evaluation of televised public health ads.
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Behavioral/Cognitive

Content Matters: Neuroimaging Investigation of Brain and
Behavioral Impact of Televised Anti-Tobacco Public Service
Announcements

An-Li Wang,1 Kosha Ruparel,2 James W. Loughead,2 Andrew A. Strasser,1,2 Shira J. Blady,2 Kevin G. Lynch,2

Dan Romer,1,2 Joseph N. Cappella,3 Caryn Lerman,1,2 and Daniel D. Langleben1,2

1Annenberg Public Policy Center, 2Department of Psychiatry, and 3Annenberg School for Communication, University of Pennsylvania, Philadelphia,
Pennsylvania 19104

Televised public service announcements are video ads that are a key component of public health campaigns against smoking. Under-
standing the neurophysiological correlates of anti-tobacco ads is an important step toward novel objective methods of their evaluation
and design. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the brain and behavioral effects of
the interaction between content (“argument strength,” AS) and format (“message sensation value,” MSV) of anti-smoking ads in hu-
mans. Seventy-one nontreatment-seeking smokers viewed a sequence of 16 high or 16 low AS ads during an fMRI scan. Dependent
variables were brain fMRI signal, the immediate recall of the ads, the immediate change in intentions to quit smoking, and the urine levels
of a major nicotine metabolite cotinine at a 1 month follow-up. Whole-brain ANOVA revealed that AS and MSV interacted in the inferior
frontal, inferior parietal, and fusiform gyri; the precuneus; and the dorsomedial prefrontal cortex (dMPFC). Regression analysis showed
that the activation in the dMPFC predicted the urine cotinine levels 1 month later. These results characterize the key brain regions
engaged in the processing of persuasive communications and suggest that brain fMRI response to anti-smoking ads could predict
subsequent smoking severity in nontreatment-seeking smokers. Our findings demonstrate the importance of the quality of content for
objective ad outcomes and suggest that fMRI investigation may aid the prerelease evaluation of televised public health ads.

Introduction
Smoking is the most common preventable cause of death world-
wide (WHO, 2012). Televised public service announcements
(PSAs) are film ads that are the key component of anti-smoking
public health campaigns. Such campaigns have had variable out-
comes suggesting the need to improve methods of ad evaluation
(Cummings, 1999; Sly et al., 2001; Hersey et al., 2005; Wakefield
et al., 2005; Durkin et al., 2012; Emery et al., 2012). Functional
magnetic resonance imaging (fMRI) has been highly informative
in the study of the brain mechanisms underlying the processing
of audiovisual stimuli, such as encoding of information (Gabrieli
et al., 1998), feature films (Rao et al., 2007; Hasson et al., 2010;
Whittingstall et al., 2010), and televised commercials (Morris et
al., 2008). Recently, fMRI has been applied to the study of per-
suasive health messages and video ads (Langleben et al., 2009;
Falk et al., 2010; Chua et al., 2011; Falk et al., 2011). In commu-
nication theories, content and format of ads are considered crit-

ical to change intentions and consequently behavior (Fishbein
and Cappella, 2006). Content has been operationalized as argu-
ment strength (AS) and format as message sensation value (MSV)
(Petty and Cacioppo, 1986; Kang et al., 2006; Park et al., 2007; Lee
et al., 2011; Zhao et al., 2011). AS is a measure of an audience’s
perception of the quality and persuasiveness of ad arguments
(Strasser et al., 2009; Zhao et al., 2011) and MSV is a standard
aggregate measure of audio and visual features of ads, such as
cuts, special effects, intense images, and music (Morgan, 2003).

Our previous study (Langleben et al., 2009) focused on format
and found that ads low in MSV were better recalled, and associ-
ated with greater brain activation in the superior, middle, and
orbital frontal and middle temporal gyri, and less activation in the
occipitoparietal cortex, than high MSV ads. Since that study did
not manipulate the AS of ads and contained no long-term behav-
ior outcome, it could not determine the effect of content on the
brain or long-term behavioral correlates of ad processing. Com-
munication research shows that ad content is no less important to
outcomes than format (Fishbein et al., 2002a; Lee et al., 2011).
Indeed, communication theories (Petty and Cacioppo, 1986;
Donohew et al., 1998) concur that it is the interaction between
content and format that ultimately affects outcomes, but differ
on whether high MSV facilitates or impedes the processing of ad
content (Strasser et al., 2009). Behavioral experimental studies
report content by format interactions on attention to televised
ads (Geiger and Reeves, 1993), as well as smokers’ attitudes and
intentions toward quitting (Strasser et al., 2009). The present
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study investigated the brain and behavioral effects of content and
format interactions in nontreatment-seeking smokers. We hy-
pothesized that the brain regions mediating cognitive processing
will be activated by the content and format interaction and that
this activation will predict cognitive and behavioral measures of
smoking, indexed by intention to quit and delayed urinary levels
of the nicotine metabolite cotinine.

Materials and Methods
Subjects
Seventy-one (37 female, 38 Caucasian, 27 African American, 4 Asian, and
2 Hispanic, 4 left-handed) nontreatment-seeking participants who re-
ported smoking an average of 14.4 � 7 cigarettes per day, aged from 18 to
49 years (30.21 � 9.69 year, mean � SD), with an average of 14 � 2 years
of education, were recruited by advertising. Participants gave written
informed consent to participate in the protocol approved by the Univer-
sity of Pennsylvania Institutional Review Board. Screening exclusion cri-
teria were (1) presence of DSM-4-TR Axis 1 psychiatric disorder (First,
2002); (2) urine drug screen (UDS) positive for illicit opioids, benzodi-
azepines, cannabinoids, cocaine, or methamphetamine; (3) baseline uri-
nary cotinine levels �50 ng/ml (SRNT Subcommittee on Biochemical
Verification, 2002); (4) presence of medical or neurological disorder or
treatment that may affect the cerebrovascular system; and (5) safety-
related contraindications for MRI scanning. Once enrolled in the study,
participants were randomly assigned to either high AS or low AS group.

Materials and design
One hundred ninety-nine 30 s long filmed anti-smoking PSAs targeting
adult smokers were obtained from the Annenberg School of Communi-
cations collection (Strasser et al., 2009; Lee et al., 2011; Zhao et al., 2011).
The argument quality and format of the PSAs were evaluated using per-
ceived AS and MSV measures, respectively, (Fishbein et al., 2002b; Mor-
gan, 2003; Strasser et al., 2009; Zhao et al., 2011). The study followed a
2 � 2 design, with AS as a between-subjects variable and MSV as a
within-subject variable, to enable collecting the behavioral correlates (re-
call, intention to quit smoking, and cotinine levels) as functions of high
and low AS separately.

The AS score for each PSA was generated following a previously re-
ported procedure (Strasser et al., 2009). Briefly, explicit and implicit
messages in each ad were transcribed independently by two trained rat-
ers. These transcripts were then reviewed by two different raters who
chose a single statement (central argument) that best reflected the argu-
ments in each ad (Strasser et al., 2009; Lee et al., 2011; Zhao et al., 2011).
These central arguments were then rated in a survey of 387 current smok-
ers, who were asked to rate between 8 and 12 PSAs using a questionnaire
with 11 questions (5-point scale, 1 � strongly disagree, 5 � strongly
agree). A balanced design was used so that each ad was rated by an
average of 38 smokers. The AS scores for each ad were created by sum-
ming each rater’s responses to the 11 questions, then an overall AS score
for each ad was created by taking the mean of the individual ratings for
that ad (Strasser et al., 2009; Zhao et al., 2011).

MSV is a validated aggregate measure of audio and visual format fea-
tures of PSAs. MSV variables are visual (cuts, edits, special effects, motion
change, vivid coloring), audio (sound saturation, sound level, music and
voices), and narrative (cuts, edits, and surprise endings). (Morgan, 2003;
Langleben et al., 2009; Strasser et al., 2009). Three trained raters indepen-
dently viewed and rated each ad for MSV parameters. Inter-rater reliabil-
ity of MSV scoring between pairs of raters was high (Kendall’s tau �
0.906, p � 0.001).

Finally, from the available 199 ads rated for MSV and AS, we selected
32 ads exceeding one SD from the mean on each of the two dimensions
(AS and MSV), thus yielding four ad categories: High AS/High MSV,
High AS/Low MSV, Low AS/High MSV, and Low AS/Low MSV. Each
category comprised eight videos. Participants were randomly assigned to
either the high AS group, which viewed 16 high AS PSAs (8 High AS/High
MSV and 8 High AS/Low MSV), or the low AS group, which viewed the
16 low AS PSAs (8 Low AS/High MSV and 8 Low AS/Low MSV). The
topics of the central arguments of the 32 PSAs were: “Smoking causes

disease and/or death” (15), “Smoking is aversive to others” (9), “Smok-
ing will harm your baby or child” (6), “Smoking harms others” (1), “Not
smoking has health or other benefits” (5), and “There are ways to help
you quit” (2). Six ads had two topics. The number of ads that contained
smoking cues was balanced between the groups: Six of 16 PSAs in the
high AS group and 6 of 16 PSAs in the low AS group contained images of
smoking.

PSA video task. Sixteen PSAs were presented in a random order and
separated by 16 s interstimulus intervals (ISI; gray cross-hair on a ho-
mogenous black background). An additional 16 s baseline period with
the same fixation point was presented at the beginning of the task. Each
PSA was 30 s long and was presented only once. The task duration was 12
min and 36 s.

Frame recognition task. This task tested the memorability of the PSAs
(Rossiter and Silberstein, 2001; Langleben et al., 2009) by measuring the
correct recognition of frames extracted from PSAs viewed in the video
task. Participants were asked to respond with a “Yes” or “No” to the
question “Have you seen this ad?” displayed on top of each frame, using
a single axis scroll wheel (FORP; Current Design). Frame recognition
task (FRT) contained a total of 96 still frames, 48 were targets that were
extracted from 16 PSAs used in the PSA video task (three frames from
each PSA, one from each 10 s segment of each 30 s PSA), and 48 were foils
that were drawn from comparable anti-tobacco PSAs not shown in this
study. All frames were presented in a pseudorandom order (Dale, 1999)
with variable ISIs ranging from 1.5 to 9.5 s in duration. Each frame was
displayed once, for 2.5 s. The task duration was 10 min and 6 s.

Both tasks were programmed in the Presentation (Neurobehavioral
Systems) stimulus presentation package. Stimuli were delivered
through a rear projector system (Epson American) that was viewed
through a mirror mounted on the MRI scanner head coil. The video
soundtrack was delivered through Silent Scan 2100 MRI-compatible
headphones (Avotec).

Procedure
Baseline assessments. Participants were screened for eligibility for fMRI,
demographics, and handedness (Oldfield, 1971). One hour before the
fMRI session, participants provided urine samples for baseline cotinine
levels and UDS (Reditest; Redwood Toxicology Labs), and completed the
Fagerstrom Test of Nicotine Dependence (FTND), the average number
of cigarettes per day (Sobell and Sobell, 1992), and baseline Intention to
Quit Smoking (IQS) assessment (Gibbons et al., 1998; Fishbein et al.,
2001a). Cotinine levels were measured using the HPLC tandem mass
spectrometry system (Agilent Technologies) with a limit of detection of 2
ng/ml. FTND is a six-item, self-report measure with a range of 0 –10,
where higher scores reflect greater nicotine dependence (Heatherton et
al., 1991). The FTND has good internal consistency and high test–retest
reliability (Pomerleau et al., 1994). IQS is a two-item self-report measure
of likelihood and certainty of one’s quitting smoking in the next 12
months, ranging from 1 (not likely) to 4 (very likely).

The study was comprised of an MRI session and a follow-up session 1
month later. Participants were randomly assigned to either the high AS
group who watched High AS/High MSV and High AS/Low MSV PSAs, or
the low AS group who watched Low AS/High MSV and Low AS/Low
MSV PSAs. After completion of the baseline assessments and 30 – 45 min
before the onset of the fMRI session, participants were escorted outdoors
to smoke one of their own cigarettes under observation. All participants
took the opportunity to smoke and consumed no more than one ciga-
rette. Before the FRT task started, participants were instructed to attend
to the video ads, and were told that the video task will be followed by a
memory test of how well they remembered the ads. IQS was repeated
immediately after the MRI session. At the follow-up session approxi-
mately 1 month later (33 � 12 d, mean � SD), a repeat urine sample for
cotinine level was collected, and self-reported average number of ciga-
rettes per day was recorded.

Image acquisition
Siemens Tim Trio 3 T (Erlangen) system and 32-channel head coil were
used for the MRI imaging. blood oxygenation level-dependent (BOLD)
fMRI (Bandettini et al., 1992; Kwong et al., 1992) was performed, using a
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whole-brain, single-shot gradient-echo echoplanar sequence with the
following parameters: TR/TE � 2000/30 ms, FOV � 220 mm, matrix �
64 � 64, slice thickness/gap � 3.4/0 mm, 32 slices, effective voxel reso-
lution of 3.4 � 3.4 � 3.4 mm. After BOLD fMRI, 5 min MPRAGE
T1-weighted image (TR/TE � 1630/3.87 ms, FOV � 250 mm, matrix �
256 � 192, effective voxel resolution of 1 � 1 � 1 mm) was acquired for
anatomic overlays of functional data and spatial normalization (Lan-
caster et al., 2000). An oblique acquisition, oriented along the anterior
commissure–posterior commissure line allowed coverage of the entire
brain with the exception of the lower cerebellum.

Behavioral and imaging data attrition and quality assessment
A total of eight datasets were excluded from the final analysis: three
participants whose baseline cotinine levels were �50 ng/ml (SRNT Sub-
committee on Biochemical Verification, 2002); two participants whose
performance on the FRT task was poor (Pr � 0); three participants whose
BOLD fMRI signal-to-noise ratio (SNR) was poor and/or had excessive
(�0.23 mm, �2 SDs from the mean) head motion, expressed in tempo-
ral SNR (tSNR), and the relative volume-to-volume displacement for all
subjects. Thus, data from 33 subjects in the high AS group and 30 subjects
in the low AS group were included in the final analyses. The follow-up
urine sample for cotinine level was obtained from 52 participants (28 in
high and 24 in the low AS group) who returned for the follow-up session.

Behavioral data analysis
Statistical analyses were performed using the IBM Statistical Pack-
age of the Social Science (IBM SPSS version19). Subjects’ perfor-
mance on the FRT was evaluated using the Discrimination Index,
Pr � ZCorrect target recognition � ZFalse alarms, which reflects how well one could
correctly distinguish targets from foils (Snodgrass and Corwin, 1988). Par-
ticipants whose Pr was �0 may have been responding at a chance level and
were excluded from further analysis. Subjects’ tendency to respond “Yes” or
“No” under uncertainty was evaluated using the Response Bias measure,
Br � �0.5 (ZCorrect target recognition � ZFalse alarm). Br � 0 indicates no
bias, Br � 0 indicates liberal bias (i.e., tendency of saying “Yes” when uncer-
tain), Br � 0 indicates conservative bias (i.e., tendency of saying “No” when
uncertain). Change scores for IQS were calculated as the difference in scores
before and after fMRI session (�IQS). Independent-sample t tests were used
to compare baseline parameters of the high and low AS groups, including
FTND, IQS scores, average number of cigarettes per day, cotinine levels, ages
and educational levels. A two-way repeated-measures ANOVA was applied
to Pr, to assess the main effects of the within-subject variable “MSV” (two
levels: high MSV vs low MSV) and the between-subject variable
“AS group” (two levels: high AS vs low AS), as well as their possible inter-
action. Partial correlation was applied to examine the relation between �IQS
and cotinine levels at follow-up, controlling for baseline.

Functional imaging data analysis
BOLD time series data were preprocessed and analyzed by standard pro-
cedures using the fMRI Expert Analysis Tool (FEAT; version 5.98) of FSL
(FMRIB’s Software Library). Single-subject preprocessing included non-
brain removal using BET (Smith, 2002) slice time correction, motion
correction to the median image using MCFLIRT (Jenkinson et al., 2002),
high-pass temporal filtering (138 s), spatial smoothing using a Gaussian
kernel (6 mm full-width at half-maximum, isotropic), and mean-based
intensity normalization of all volumes using the same multiplicative fac-
tor. The median functional volume was coregistered to the anatomical
T1-weighted structural volume and then transformed into the standard
anatomical space (Montreal Neurological Institute (MNI) T1 template)
using FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). Trans-
formation parameters were later applied to all statistical contrast maps
for group-level analyses.

The primary variable was mean percentage BOLD signal change.
Subject-level statistical analyses were performed voxelwise using FILM
(FMRIB’s Improved General Linear Model) with local autocorrelation
correction (Woolrich et al., 2001). Two condition events (high MSV, low
MSV) were modeled using a canonical hemodynamic response function.
Six rigid body motion correction parameters were included as nuisance
covariates and the rest periods (fixation point) were treated as the base-
line. Image analysis was completed for each individual in subject space,

and resulting contrast maps of parameter estimates were spatially nor-
malized as described above.

Voxelwise whole-brain analysis
Parameter estimates were entered into an AS (high AS vs low AS) by MSV
(high MSV vs low MSV) ANOVA treating subjects as random effects
variable. Resulting Z (Gaussianized F ) statistic maps of AS group by MSV
interaction, as well as main effects of AS and MSV, were cluster corrected
at Z � 3.1 using theory of Gaussian Random Fields (Beckmann and
Smith, 2004). Anatomic assignment of clusters was based on the peak
z-score within the cluster using the Talairach Daemon Database con-
firmed by visual inspection. Mean scaled � coefficients ( percentage

Figure 1. Performance of the Frame Recognition Task. y-axis: discrimination index (Pr).
x-axis: High AS and Low AS group. AS by MSV interaction is significant ( p � 0.05). Error bars
indicate SEM.

Table 1. Summary of behavioral measures

High AS group Low AS group

Baseline
Race 20 Cau, 10 AA, 3 Asian 17 Cau, 12 AA, 1 Asian
Gender 15M, 18F 16M, 14F
Age (years) 29.03 � 1.56 30.20 � 1.89
Education level (years) 14.03 � 0.33 14.32 � 0.35
Cotinine (ng/ml) 1517.82 � 378.91 1392.90 � 216.11
IQS 2.45 � 0.13 2.60 � 0.13
FTND 4.48 � 0.43 4.43 � 0.44
Cigarettes per day 16.15 � 1.01 14.97 � 1.03

Immediately after MRI
IQS 2.74 � 0.14 2.63 � 0.12

One month later
Cotinine (ng/ml) 1100.89 � 216.89 1565.50 � 290.82
Cigarettes per day 13.93 � 1.19 14.17 � 1.69

Cau, Caucasian; AA, African American.

Table 2. Brain regions associated with AS by MSV interaction

Region a Hemisphere BA b Size c Z-MAX d X e Y e Z e

Inferior parietal lobule L 40 4637 7.6 36 �44 50
Inferior parietal lobule R 40 3975 7.37 34 �41 42
Fusiform gyrus L 37 922 5.68 �55 �65 �9
Inferior frontal gyrus L 44 3101 6.09 �38 3 20
Precuneus R 7 1458 4.36 8 �46 50
Medial frontal gyrus R 8 1055 5.24 22 31 48

Location of the clusters and the local maxima of BOLD fMRI signal change.
aZ � 3.1 cluster corrected at p � 0.001.
bBrodmann’s area.
cVoxels.
dZ-MAX values represent peak activation for the cluster.
eTalairach (1988) coordinates.
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BOLD signal change) from each significant cluster in the interaction map
were extracted for graphic examination and further statistical testing.

Correlation analysis
Linear regression analysis was applied to examine whether the neural
response to PSAs ( percentage BOLD signal change) in brain regions
associated with the AS by MSV interaction predicted IQS change imme-
diately after the fMRI session, controlling for baseline IQS scores and
group (high/low AS). Also, linear regression analysis was applied to ex-
amine whether the neural response to PSAs ( percentage BOLD signal
change) in brain regions associated with AS by MSV interaction pre-
dicted urinary cotinine levels at the 1 month follow-up, controlling for
baseline levels for group (high/low AS). To test the relationship between
cotinine levels and brain response, we used percentage BOLD signal
change extracted from the regions of interest (ROIs) identified by the
preceding whole-brain analysis. Such “off-line” correlation analysis has
been used in the prior fMRI studies of PSA (Chua et al., 2009, 2011;
Langleben et al., 2009). By limiting the number of statistical tests to the
few ROIs defined by the preceding whole-brain analysis, this approach
offers a more appropriate level of control for Type 1 errors than the whole
brain correlation (Poldrack, 2007).

Results
Behavioral results
Participants’ behavioral measures at baseline, immediately after
MRI and at 1 month follow-up were summarized in Table 1.
Baseline FTND score was 4.46 � 2.40, baseline cotinine levels
were 1458.33 � 1762 ng/ml, and baseline IQS was 2.52 � 0.73.
The high and low AS groups did not differ in age (t(61) � �0.48,
p � 0.63), educational level (t(61) � �0.59, p � 0.56), baseline
smoking severity (FTND t(61) � 0.08, p � 0.93, cotinine levels
t(61) � 0.28, p � 0.78, average number of cigarettes per day t(61) �
0.82, p � 0.41) or IQS scores (t(61) � �0.079, p � 0.44).

Two-way repeated-measures ANOVA revealed a significant in-
teraction between MSV and AS group (F(1,61) � 3.90, p � 0.05) on
ad frame recognition performance (Fig. 1), but no main effect of

MSV (F(1,61) � 1.16, p � 0.29) or AS group (F(1,61) � 1.36, p �
0.25). High MSV better facilitated frame recognition than low MSV
(t(32) � 2.31, p � 0.03) if the PSA AS was strong, while MSV strength
had no differential effect on frame recognition (t(29) � �0.594, p �
0.557) if the PSA AS was weak. Subjects tended to respond liberally
when they recalled frames from the Low AS/Low MSV PSAs (Br �
�0.133), and conservatively to the frames extracted from other AS/
MSV combinations (Br � 0.068, 0.004, 0.089).

The IQS immediately after PSA exposure was significantly
higher than baseline (t(62) � �2.390, p � 0.020). The change in
the IQS (�IQS) after the PSA video task was marginally larger in
the high AS group (0.288 � 0.097) than in the low AS group
(0.033 � 0.096), (t(61) � 1.858, p � 0.068). Furthermore, partial
correlation revealed that �IQS was negatively correlated with
cotinine levels at follow-up (r � �0.342, p � 0.014).

Functional imaging results
A whole-brain 2 � 2 ANOVA revealed a significant interaction
between AS and MSV (Z � 3.1, corrected for multiple compari-
son at p � 0.001) (Table 2). The interaction of AS and MSV was
observed in the bilateral inferior parietal lobule (IPL), left inferior
frontal gyrus (IFG; peak in Brodmann area (BA) 44 – 47, extend-
ing to BA 10 and 13), left fusiform gyrus (FG), the right dorso-
medial prefrontal cortex (dMPFC; peak in BA 8, extending to BA
9 and 32), and the precuneus (peak in BA 7, extending to BA 32
and 31) (Fig. 2). There were also significant main effects of AS and
MSV (Z � 3.1, corrected for multiple comparisons at p � 0.001)
(Table 3).

Correlation results
Greater activation in the precuneus during PSA viewing margin-
ally predicted greater IQS (� � 0.167, p � 0.061). In addition, a
linear regression analysis showed that follow-up cotinine levels

Figure 2. Brain regions associated with AS by MSV interaction and percentage BOLD signal change in these regions. Images: brain fMRI activation maps associated with AS by MSV interaction in
the bilateral IPL (left IPL, x � 36, y � �44, z � 50; right IPL, x � 34, y � �41, z � 42), the left IFG (x � �38, y � 3, z � 20), left FG (x � �55, y � �65, z � �9), right dMPFC (x � 22,
y ��31, z � 48), and right precuneus (x � 8, y ��46, z � 50). Surface visualization (CARET; http://brainvis.wustl.edu) represents voxelwise z-statistical maps thresholded at z � 3.1 (cluster
corrected p � 0.001). Bar charts: BOLD signal change in the brain regions associated with AS by MSV interaction. y-axis: percentage BOLD signal change. x-axis (from left to right): high AS and low
AS groups. Error bars indicate SEM. Significant AS by MSV interactions ( p � 0.05) in each brain region are represented by asterisks.
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were significantly lower in the high AS group than the low AS
group (� � 0.227, p � 0.021), and among the subjects with
greater dMPFC activation (�� �0.201, p � 0.043) (Fig. 3, right;
r � �0.55).

To determine whether the dMPFC mediated the relationship
between the AS and cotinine levels, we performed a mediation
analysis with dMPFC activation as an intervening variable be-
tween AS and the follow-up cotinine level and with baseline co-
tinine level as a covariate. The coefficient for the total effect of AS
on cotinine, ignoring dMPFC activation, was 0.21 (p � 0.03).
When dMPFC activation was included in the model, the regres-
sion coefficient for AS was 0.23 (p � 0.02), so the effect remained
about the same. This was due to the fact that AS did not have a
significant effect on dMPFC activation (p � 0.32). Thus, though
both AS and dMPFC activation affected the cotinine outcome,
the AS effect on cotinine outcome was not explained by the
dMPFC activation.

Discussion
This is the first longitudinal investigation of the cognitive, behav-
ioral, and neurophysiological response to the content and format
of televised anti-smoking ads. At the cognitive level, we found
that the effect of MSV on immediate recall depended on the AS of
the ad. Higher MSV in ads with strong arguments produced bet-
ter frame recognition, but made no difference when combined
with a weak argument. In addition, greater changes in intention
to quit smoking were associated with lower urine cotinine levels
at follow-up. At the brain level, we characterized regions acti-
vated by the interaction of content and format and thus criti-
cal to the processing of persuasive messages. These included
the bilateral IPL, left FG, IFG, right dMPFC, and the precu-
neus (Fig. 2). Of these regions, the activation in the dMPFC
predicted sustained reduction in urinary cotinine levels at a 1
month follow-up.

The bilateral occipitoparietal clusters showed symmetrical ac-
tivations (Fig. 2), largest in the High AS/High MSV condition and
no difference between high and low MSV in the low AS group.
This pattern mirrored the short-term recognition of the ads (Fig.
1), consistent with the role of the occipitoparietal cortex in sus-
tained stimulus-driven (exogenous) attention (Johnson and Za-
torre, 2006; Indovina and Macaluso, 2007). This finding extends
our prior observation (Langleben et al., 2009) that the strength of
the audiovisual format of an ad is the primary driver of occipito-
parietal (IPL and FG) activation. The fact that occipitoparietal
regions were not sensitive to MSV under the low AS condition
fine-tunes this earlier observation and suggests that strong audio-
visual format is only effective in attracting visual attention in ads
with strong arguments.

The left-sided inferior prefrontal activation encompassed the
IFG (Fig. 2) and extended to the prefrontal associative cortices
and the anterior insula. Inferior frontal activation is associated
with behavioral regulation and control processes (Aron, 2007) as
well as cognitive processing. Specifically, the left inferior prefron-
tal cortex contains language and association areas that are in-
volved in semantic (“deep”) processing (Gabrieli et al., 1998),
integration, and sentence comprehension (Meltzer et al., 2010;
Zhu et al., 2012). Thus left inferior frontal activation could be
interpreted as an indicator of intensity of processing (Demb et al.,
1995; Stephenson et al., 2001).

The dMPFC was less active than baseline (“deactivated”) in all
ad categories, with greatest deactivation associated with the High
AS/High MSV ads. An influential review and meta-analysis de-
scribes dMPFC as a region operating in a “dynamic functional

Table 3. Brain regions associated with main effects of AS and MSV

Region a Hemisphere BA b Size c Z-MAX d X e Y e Z e

Main effect of AS
Lingual G. R 18 15246 8.59 23 �71 �10

Precuneus L 7 8.25 �5 �57 47
Precuneus R 7 8.35 14 �64 39
Cuneus R 7 8.26 25 �77 31
Middle Occipital G. R 19 5.90 29 �94 21
Superior Temporal G. L 42 8.37 �62 �22 11
Middle Temporal G. R 21 6267 7.47 58 7 �14
Middle Temporal G. R 22 8.45 48 �39 �1
Parahippocampal G. R 19 8.40 42 �41 �1
Precuneus L 7 7.69 �20 �58 30
Superior Temporal G. R 42 7.22 63 �31 16

Precentral G. R 4 5900 7.52 37 �16 48
Cingulate G. L 24 6.85 1 0 45
Precentral G. R 6 6.52 21 �15 64

Superior Frontal G. R 10 1977 6.52 22 51 27
Middle Frontal G. R 8 6.10 33 38 40
Superior Frontal G. R 9 4.97 29 56 34

Supramarginal G. R 40 1498 7.54 48 �45 30
Inferior Parietal Lobule R 40 7.40 52 �47 26
Inferior Temporal G. R 20 6.87 57 �60 �11
Insula R 13 6.78 37 �37 21
Middle Temporal G. R 39 6.20 59 �57 13
Superior Temporal G. R 22 5.98 35 �48 24

Parahippocampal G. R N/A 1269 5.56 22 �6 �10
Inferior Frontal G. R 47 5.34 24 34 �7
Hypothalamus R N/A 5.18 5 �6 �4
Parahippocampal G. R 34 4.19 12 �13 �19
Lentiform Nucleus R N/A 4.17 18 11 �7

Inferior Frontal G. R 9 1088 5.91 52 5 27
Inferior Frontal G. R 44 5.73 58 17 16
Middle Frontal G. R 6 5.54 42 �3 50
Precentral G. R 6 5.43 46 �3 51
Inferior Frontal G. R 46 4.68 56 29 9

Precentral G. L 6 1024 7.16 �33 0 25
Middle Frontal G. L 6 6.34 �41 4 43
Precentral G. L 9 5.87 �35 5 40
Middle Frontal G. L 6 5.65 �41 6 52
Middle Frontal G. L 9 5.15 �52 22 33

Main effect of MSV
Fusiform G. R 37 39321 8.21 29 �42 �16

Cuneus L 18 8.15 �22 �82 29
Middle Occipital G. L 18 8.18 �18 �89 15
Middle Occipital G. L 19 8.15 �24 �81 5
Cuneus L 17 8.21 16 �83 5
Lingual G. L N/A 8.21 �32 �73 4

Medial Frontal G. L 6 2973 6.04 �1 �12 59
Superior Frontal G. L 6 5.99 �5 �1 63
Medial Frontal G. L 6 5.45 �7 3 56
Cingulate G. L 32 4.57 �9 12 42
Precentral G. L 4 4.56 21 �24 67
Cingulate G. L 24 4.56 �7 �6 48

Middle Temporal G. L 21 2403 7.17 �54 �28 �8
Parahippocampal G. L 19 5.98 �41 �38 �1
Caudate L N/A 4.23 �18 �36 15

Inferior Parietal Lobule L 40 1505 6.96 �56 �28 23
Inferior Frontal G. L 44 1147 5.69 �50 16 11

Location of the clusters and the local maxima of BOLD fMRI signal change.
aZ � 3.1 cluster corrected at p � 0.001.
bBrodmann’s area.
cVoxels.
dZ-MAX values represent peak activation for the cluster.
eTalairach (1988) coordinates.
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range,” activated during tasks that involve self-referential cogni-
tion and internally focused attention (Buckner and Carroll,
2007), and deactivated during tasks that involve externally fo-
cused attention (Gusnard and Raichle, 2001). Fox et al. (2005)
described MPFC as a task-negative region that is “anti-
correlated” to the “task-positive” regions such as the IPL, which
actively mediate focused attention (Gusnard et al., 2001; Buckner
and Carroll, 2007; Toro et al., 2008; Vincent et al., 2008). Specif-
ically, concurrent deactivation of dMPFC and activation of IPL
has been reported during processing of self-relevant speech
(Jardri et al., 2007). In addition to deactivation during exogenous
attention, MPFC is activated by thinking about one’s intention
and consequential actions (den Ouden et al., 2005; Buckner and
Carroll, 2007). Burgess et al. (2003) propose that dMPFC plays a
role in maintaining an intention to act while performing a con-
current task, which requires withdrawing cognitive resources
from the ongoing stimuli. Thus, the fMRI signal changes we ob-
served in the dMPFC could well result from the two anti-correlated
processes concurrently engaged by ad viewing: deactivation due to
exogenous attention and activation due to self-referential processes
such as thinking about one’s intentions. Indeed, we found that while
the greatest dMPFC deactivation was during viewing of the High
AS/High MSV ads, it was dMPFC activation that predicted
the long-term reduction in urine cotinine. This suggests that of the
four ad categories, the High AS/High MSV ads engaged exoge-
nous attention most but the self-referential cognition and inten-
tion formation least.

Precuneus was also deactivated, with the greatest deactivation
in the Low AS/Low MSV category. Similarly to dMPFC, precu-
neus is engaged in a range of cognitive functions, including deac-
tivation during increased exogenous attention demands
(Cavanna and Trimble, 2006; Zhang and Li, 2012). Although
both precuneus and MPFC are parts of the resting state network
(Gusnard et al., 2001; Raichle et al., 2001; Northoff and Berm-
pohl, 2004), incongruence in the direction of activation between
these two regions is not uncommon (Laird et al., 2009; Dastjerdi
et al., 2011; Gilbert et al., 2012). dMPFC activation without cor-

responding precuneus activation was
present in up to half of 72 fMRI and PET
studies of emotion and cognition (Phan et
al., 2002) and a dissociation between pre-
cuneus and dMPFC activation was ob-
served during active self-referential
activities (Whitfield-Gabrieli et al., 2011).
Thus, inconsistency in the direction of ac-
tivation of dMPFC and precuneus could
be expected with complex, emotionally
charged, self-referential stimuli such as
our anti-smoking ads.

At the behavioral level, we found that
the intensity of ad format (MSV) only in-
fluenced recognition when paired with
the more persuasive ads. Intensity of ad
format made no difference on recognition
when presenting a weak argument. Also,
we found an increase in the intention to
quit smoking (	IQS) immediately after
ad exposure, which is in agreement with
prior studies (Park et al., 2007; Updegraff
et al., 2007; Strasser et al., 2009; Lee et al.,
2011). According to the theory of rea-
soned action (Fishbein, 2000, 2001a,b), a
change in intentions is important for

change in behavior. In the context of smoking prevention re-
search, Norman et al. (1999) confirmed that IQS (	IQS) pre-
dicted the number of quit attempts and length of abstinence at 6
month follow-up. Similarly, we found a significant negative cor-
relation between 	IQS and cotinine levels at follow-up.

Our data show that dMPFC, IPL, and left IFG are the brain
areas integrating the content and format of persuasive ads. The
finding that dMPFC activation predicted a positive behavioral
outcome (i.e., lower cotinine levels a month later) has potential
translational significance. Cotinine levels are considered the gold
standard measure of nicotine intake for the preceding 3–5 d and
are an objective measure of sustained smoking behavior in
nontreatment-seeking smokers (SRNT Subcommittee on Bio-
chemical Verification, 2002). Our findings are consistent with
previous reports showing that dMPFC activation associated with
the level of personal relatedness (tailoring) of anti-tobacco mes-
sages predicts smoking cessation treatment outcomes (Chua et
al., 2009, 2011). Despite the use of different populations of smok-
ers (treatment seeking vs nontreatment seeking) and different
stimuli (persuasive statements vs videos), Chua et al. (2009, 2011)
and the current study point to a similar conclusion: dMPFC ac-
tivation predicts long-term behavior. This suggests that the pre-
dictive value of dMPFC could generalize to all smokers and
formats of persuasive communications.

Our findings should be interpreted with several caveats. First,
we evaluated average brain response over the entire length of
real-life ads. Future research is required to investigate the frame-
by-frame brain response to the changes in ad content and format
(Hasson et al., 2010). Second, MSV was a within-subject variable,
allowing us to assess its brain effects but not the delayed behav-
ioral outcomes. A four-cell design, with both content and format
as between-group variables could be used in the future to eluci-
date the behavioral impact of simultaneously manipulating for-
mat and content. Third, the experimental exposure to ads in our
study differs from real life, where it is usually repeated over time.
Further studies are required to evaluate the brain and behavioral
effects of anti-smoking ads in a naturalistic setting. Finally, we did

Figure 3. Left, dMPFC activation associated with AS by MSV interaction. Statistical map (yellow-red scale) is displayed over the
MNI brain template and thresholded at z � 3.1 (cluster corrected at p � 0.001). Right, Correlation between percentage BOLD
signal change in dMPFC and predicted cotinine levels at 1 month follow-up, adjusting for the baseline cotinine levels and AS
groups.
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not control the emotional tone of ad arguments. Therefore ex-
trapolating our findings to emotionally positive or negative ads
would require further experimental validation.

Together, our findings have three immediate theoretical and
practical public health implications. First, the strength of ad ar-
guments matters more than its audiovisual presentation: Merely
increasing ads’ sensory impact may not improve outcomes. Since
sensory effects are usually more costly to produce than well
thought-through arguments, our observation may be of imme-
diate utility to producers contemplating how to allocate their
budgets. Second, since prefrontal BOLD fMRI response to ads
may predict their effectiveness, it may have applications in the
prerelease evaluation of mass-media video advertising. Finally,
by demonstrating the neurophysiological basis of the key con-
cepts in health communication theory, our study sets the stage for
science-based evaluation and design of persuasive public health
advertising.
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