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Recent Developments in Reliability Analysis

Abstract
For many researchers, the literature of reliability coefficients seems bewildering although the methodological
problem in which they are embedded is reasonably clear: Since we can never know what it is that we claim to
see independent of our seeing it, or, translated into the language of science, since we can not test hypotheses
about reality without first generating the observations or data to talk about, the accuracy by which primary
data "represent" an unobserved nature remains unascertainable in principle (Krippendorff, 1991). Yet, to
assure that the data that go into scientific inquiries are not accidental, it is important to demonstrate that the
data-generating procedures are reproducible under varying circumstances and by several observers. All
reliability measures are intended to express the degree to which several observers, several measuring
instruments, or several interrogations of the same units of analysis yield the same descriptive accounts,
category assignments, quantitative measures or data for short.
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Introduction 

 For many researchers, the literature of reliability coefficients seems bewildering 
although the methodological problem in which they are embedded is reasonably clear: 

 Since we can never know what it is that we claim to see independent of our seeing 
it, or, translated into the language of science, since we can not test hypotheses about 
reality without first generating the observations or data to talk about, the accuracy by 
which primary data “represent” an unobserved nature remains unascertainable in 
principle (Krippendorff, 1991).  Yet, to assure that the data that go into scientific 
inquiries are not accidental, it is important to demonstrate that the data-generating 
procedures are reproducible under varying circumstances and by several observers.  All 
reliability measures are intended to express the degree to which several observers, several 
measuring instruments, or several interrogations of the same units of analysis yield the 
same descriptive accounts, category assignments, quantitative measures or data for short. 

 But,  

• Reliability coefficients are often specialized to different metrics (levels of 
measurement).  There are nominal scale coefficients, Scott’s (1955) pi, for 
example, and interval scale coefficients, Kuder and Richardson’s (1937) Formula 
#20, for example, that differ in the metric to which they claim applicability but 
moreover stem from incompatible analytical traditions. 

• Reliability coefficients have built-in assumptions that do not easily reveal 
themselves to their users, and the often yield vastly different results.  For nominal 
scales alone, there is % (percent) agreement, Bennett, Alpert and Goldstein’s 
(1954) S, Goodman and Kruskal’s (1954) family of lambda coefficients, Scott’s 
(1955) pi, Cohen’s (1960) kappa and Fleiss (1971) kappa, which are different, 
Perreault and Leigh’s (1989) Ir and many more, not to forget my own alpha 
(Krippendorff, 1980).  Researchers encounter difficulties in choosing among them 
without detailed examination of their assumptions.  Often this is not obvious.  For 
example, Cohen’s (1960) frequently used kappa turns out to be a hybrid that 
behaves like an agreement coefficient near its largest value of plus one, and like 
an association or correlation coefficient near its zero-value (Krippendorff, 1978).  
Where its values would matter most, kappa is not consistently interpretable. 



 

• Reliability coefficients often vary in their ranges of values.  Some range from zero 
to one, the notorious % agreement, for example, but also Kuder and Richardson’s 
(1937; Cronbach, 1951) proportion of systematic to total variance.  Some range 
from minus to plus one (Scott, 1955; Cohen, 1960).  Variations in their ranges 
make it virtually impossible to assign uniform meanings to the numbers they 
produce. 

While one can always find reasons for preferring one coefficient over another, 
when it is desirable to set data reliability standards for a class of scientific inquiries, or 
when one needs to compare and select among many different kinds of data whose 
reliabilities are crucial to a particular research undertaking, one needs a single coefficient 
that is adaptable to all or most situations of interest. 

 In pursuit of this aim, I have over the years developed the agreement coefficient 
alpha (Krippendorff, 1967, 1970, 1978, 1980), which takes this general form 

                                            
e

o
D
D

1−=α  .                                                  (1) 

Alpha is zero when the observed disagreement Do equals the disagreement De, which 
would be expected under conditions of chance, one when observed disagreement Do is 
absent, indicating the absence of reliability, and becomes negative when the observed 
exceeds the expected disagreement, which can arise only under conditions of consensual 
disagreement.  While the plus one and zero values of this coefficient make alpha easily 
interpretable, the general form of (1) is common to several other coefficients as well and 
not yet specific about the assumptions that go into the definitions of the observed and the 
expected disagreements. 

 As acknowledged above, we cannot state anything about reality until after data 
have been created.  Without a standard to compare the data to, this leaves us with 
reliability or reproducibility as the only measurable criterion.  Reproducibility becomes 
evident in substantial agreement among the results of applying a battery of the same 
observational, accounting or measuring procedures to the same set of units of analysis.  
Under these conditions – and without privileging any one observer over another – the 
only defensible statement one can make about the “true nature” of the data depends on 
what all observers concur they see, or on what all measuring devices agree.  From its 
beginning, this epistemological fact was built into alpha.  This is manifest in both, in how 
the observational accounts of the individual units are evaluated, and in how the statistical 
distribution of the data is characterized, to which all observers or measuring instruments 
jointly contribute.  The former leads to the observed disagreement Do, and the latter to the 
expected disagreement De.  Measures of agreement may estimate the nature of what is 
observed but must acknowledge its unknowability.  In this respect agreement measures 
that are suitable for reliability interpretations differ from measures of correlation or 
association, which make very different assumptions (Krippendorff, 1978). 

Let me jump a bit ahead of the developments of alpha and start with the canonical 
form of reliability data, an r-by-m matrix of up to rm single values, each generically 
denoted by b or c: 
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                              Units:      1      2           …        u          …        r 
                                      1                                       . 
                                      2                                       . 
                                      .                                       bu 
               Observers:      .                                       cu 
                                      .                                        . 
                                     m                                       . 

    Number of values in u:                                     mu 
 
Reliability data must provide the basis for comparing the values that observers assigned 
to units u.  As there may be missing data, the actual number of values in the reliability 
data matrix is less important than that they are comparable within units.  Let n be the 
number of values that contribute to pair comparisons within units.   

                                                        ∑ >=
u

uu 1m|mn                                                    (2) 

n excludes all units with “lone values,” mu≤1, which are the values that cannot be 
compared within units. rmn ≤ .   

 An important early decision was to correct alpha for small sample sizes (small 
numbers of either units of analysis or observers/instruments or both).  Many of the 
coefficients used in content analysis, Scott’s (1955) pi, for example, did not provide for 
this correction and systematically underestimated reliability when samples were small. 

In the above terms, the expected disagreement De, mentioned in (1), can be expressed as  

                                                ∑∑−
==

b c

2
bce d

)1n(n
1DD                                              (3) 

where dbc is a difference between any two values, observations, or data points, b and c.  
The nature of this difference will be addressed below.  By analogy to (3), the 
disagreement within any one unit u is 
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The observed disagreement Do, also mentioned in (1), is defined as the average 
disagreement observed within units u. 
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In these terms, (1) becomes: 
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(3) and (4) reveal measures of disagreement to be average differences.  The 
differences between all possible pairs of values within the whole reliability data matrix 
and within each unit respectively are enumerated, and divided by the number of possible 
differences.  (6) reveals alpha as one minus an error, the proportion of disagreement 
within units and the total disagreement. 

Before going into various forms of alpha, let me introduce with Figure 1 a kind of 
travel plan that shows in bold arrows how my thinking developed and how the space 
within which alpha is applicable came to be expanded.  This arrows indicate 
acknowledged sources and broken arrows reconstructed relationships.  The following 
describes some of the steps – in bold arrows – that I took. 

nominalα ordinalα intervalα ratioα polarα, etc. unordered setsα ordered arraysα
Difference functions (1967)
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                        Steps Taken to Create a Larger Space for the Agreement Coefficient Alpha 
                                                                           Figure 1 

 
 The generalization to any metric was accomplished in 1967 when I wrote a 
computer program for a large content analysis project (Brouwer, et al., 1969) using the 
first four of the following difference functions.  These four are shown also in Table 1, 
each associated with one metric or scale of measurement. 
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whereby nb, nk, and nc are the frequencies of values b, k, and c in all reliability data for 
that variable. 
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One can visualize the values of dbc by entering them into a difference matrix 
(Krippendorff, 1980), which is square, its rows and columns are defined by the values 
occurring in the data, and its diagonal entries are zero. 

0 

b c

b          dbb   dcb 
 

c          dbc   dcc     

0
 

 

 

 

 

 

In the literature, it is customary to conceptualize correlations and agreements 
largely between two variables or two observers, coders or measuring instruments and 
tabulate data in terms of contingency matrices, which contain one pair of values for each 
unit of analysis u, r in total number.  

 

b           rbb     rcb            r.b  

c           rbc     rcc            r.c =∑b bcr  

 
 
             rb.     rc.            r.. =∑ ∑ ∑=

c b c bcc r.r  

b c 

 

 

 

 

 
 For two observers and in the above contingency matrix notations, (1) or (6) can be 
restated as: 
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wherein the expected frequencies ebc are obtained by drawing pairs of values at random 
and without replacement from the n values available for comparisons  
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wherein                                                                          (14) bcnominalbc d1
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All versions of alpha can be obtained by inserting appropriate difference functions 
into (6) or (12).  They can be seen to serve as weights of the frequencies of pairs of 
observations.  Although alpha did not derive from any agreement coefficients that I knew 
at that time, the two-observer nominal scale version of alpha, with the difference nominaldbc 
taking the place of dbc in (12), turned out to be Scott’s (1955) pi, but corrected for small 
sample sizes, the relation between the alpha and pi being 

                                                             π+
π−

=α
..r2

1
.                                                       (15) 

When the sample size 2r.. (number of values generated by two observers) becomes large, 
the proportion (1-π)/2r.. converges to zero and alpha and pi then become 
indistinguishable.  The interval alpha, with intervaldbc inserted into (12), turned out to be 
Pearson’s (1901; Tildesley, 1921) intra-class correlation coefficient R.  For dichotomous 
decisions, i.e., for 2-by-2 contingency tables, all pairs of values are either same or 
different and all difference functions (7) through (11) produce the same alpha, as they 
should.  Thus, a comparison of the coefficients computed with unlike difference functions 
can reveal the information that a metric contributes to reliability and which metric most 
likely underlies the observers’ handling of the data.  The computer program used since 
1967 produced alphas for the four standard metrics: nominal, ordinal, interval, and ratio. 
 

 Generalization to m observers or measuring instruments.  This required a measure 
of agreement applicable to patterns of disagreements that are more complex than can be 
observed between two observers.  I opted for a disagreement functions that accounted for 
all pairwise differences within a set of values contributed by up to m observers, see (3) 
and (4).  This is by no means the only function possible.  Entropy measures would do 
much the same, at least for nominal data.  I tried them out (Krippendorff, 1971) but my 
preference was to conform to the conventions of the most common statistical techniques, 
particularly in the tradition of correlational statistics and analysis of variance, in which 
data are likely analyzed once reliability is established.  Indeed, one can argue that 
reliability should ideally reflect the disagreements that matter in subsequent analyses and 
these can often be reduced to pairwise differences. 

 In m-dimensional contingency matrices, the computation of chance agreement 
proved difficult.  I am suggesting that the customary representation of data in 

 7



 

contingency matrices, taken by both Scott’s (1955) pi and Cohen’s (1960) kappa, and 
leading to their common form 

                  
agreement) P(expected    -    1

agreement) P(expected  -  agreement) P(observed   Kappaor    Pi =                    (16) 

was a major conceptual obstacle for generalizations to more than two observers.  The 
way I solved this problem was by abandoning contingency matrix representations of 
reliability data altogether in favor of what I called coincidence matrix representations 
(Krippendorff, 1980) and by no longer counting matches or agreements in favor of 
enumerating differences as in (3) and (4) or disagreements as in (1), (6), or (12).  
Coincidence matrices do not tabulate units of observation but all pairable values that 
observers associate with these units, and they do not distinguish among the individual 
observer’s contributions to these data.  In fact, they take observers as interchangeable, as 
is required when an agreement measure is to be interpreted as reproducibility. 

b c

b           nbb   ncb          n.b  

c           nbc   ncc             n.c =∑b bcn  

 
 
             nb.    nc.             n.. =∑ ∑ ∑=

c b c bcc n.n  

 

 

 

 

 

 

 
When reliability data contain exactly rm values, which means that no data are missing 
from the reliability data matrix, the entries in a coincidence matrix are  

                                                ∑
=

ϑ−
−

=
r

1u
bccbbc )n(n

1m
1n

uu                                       (17) 

where is the number of values b in unit u and 
ubn bcϑ  is as in (14).  In coincidence 

matrix terms, alpha for single-valued data becomes 

                                             
∑ ∑
∑ ∑

−−=α

b c
2
bccb

b c
2
bcbc

d.n.n

dn
)1..n(1                                         (18) 

 I should mention that the developments presented up to now were incorporated in 
the above mentioned computer program for alpha.  Later, Cohen (1968) suggested a 
weighted kappa in which the frequencies in contingency tables were weighted in ways 
similar to how my difference functions weighted the frequencies in coincidence matrices.  
Cohen’s weights had different purposes, however.  Fleiss (1971) sought to generalize 
kappa to many “raters,” but as this proved difficult, he generalized Scott’s pi instead, 
maybe without recognizing it, in any case, without even citing Scott’s approach. 
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 Generalization to missing data.  This turned out to be a natural extension of the 
generalization to m observers.  Its key was the recognition that missing data prevented 
constructing coincidence matrices by (17).  Since missing data meant n.. ≤ rm, the 
generalization had to acknowledge that units could have been described by a variable 
number mu of observers.  If mu is the number of pairable values in unit u, then each unit u 
contributes mu(mu-1) differences.  In order to preserve the definition (18) of alpha, 
coincidence matrices have now to be constructed by 

                                                 ∑ = −

ϑ−
=

r
1u u

bccb
bc 1m

)n(n
n uu                                            (19) 

where  is as in (14).  This was the whole adjustment needed to accommodate missing 
data. 

bcϑ

 

 Generalization to multiple values.  Commonly, each unit of analysis is assigned 
exactly one value by each observer.  When this is the case, disagreements (3) and (4) are 
simple averages of the difference dbc between any pair of single values b and c.  
However, it may happen that observers are asked to represent each unit by an appropriate 
set of descriptors (keywords of articles, lists of relevant attributes, alternative 
descriptions, multiple categories).  Under these conditions, the differences within any one 
set of values that describes one unit must not contribute to unreliability.  What then 
matters are the differences between any two sets of values.  The problem therefore was to 
define one or more difference functions between two sets of values where differences 
within either set are ignored while differences across these sets are aggregated into one 
numerical difference between the two sets. 

 Multi-valued descriptions of units to be compared are of two kinds, two 
unordered sets B and C of potentially unequal numbers g or s of values 

                                                B = {b1, b2, …, bt, … bg} 

                                                C = {c1, c2, …, ct, … cs} 

and ordered arrays <b> and <c> of values with the same number z of values 

                                            <b> = <b1, b2, …, bt, … bz> 

                                            <c> = <c1, c2, …, ct, … cz> 

Concerning the multi-valued differences between B and C, I have come to distinguish 
between two kinds.  The core difference is the single-valued difference between the most 
representative elements of each set, acknowledging the metric of their values.  The core 
differences are defined in (20) through (23) in Table 1.  

• For nominal data, the core is the mode, the most frequent element in the set.  
Since there may be more than one value with the largest number of occurrences, 
the mode is the subset b&&& of values in B and c&&& in C with the same and highest 
number of occurrences in these sets.   

• For ordinal data, the core is the median rank b
(

and c( , the rank that occupies the 
midpoint when all values in either set are ranked.  Should that midpoint fall 
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between two different values, the median is the arithmetic mean between the two 
ranks.  The difference between the two core values is expressed relative to all 
available values in the variable, not just the two sets.    

• For interval data, the core is the arithmetic mean b and c of the values in the sets. 
• For ratio data, the core is the geometric mean b̂ and ĉ of the values in the sets.   

 Core differences ignore the variance with each set.  The second multi-valued 
difference between two sets is to account for how much the two sets have in common.  
The obvious candidate for this difference was the set theoretical one, the number of 
values that the two sets do not share, numerically, (#B + #C)/2 − )CB(# ∩ .  This form, 
however, would apply only to nominal data and ignore the shades of differences typical 
for data with ordinal, interval and ratio characteristics.  The difference function that I 
sought defied operationalization for a long time.  Finally, I succeeded in developing (25), 
which, as may not be obvious in Table 1, enumerates all single-valued differences 
between the values from the two sets, acknowledge their metric, and expresses the 
number of differences relative to the number of possible comparisons between them.  
(25) is not only intuitively correct, when applied to nominal data, it also reduced to (24), 
which resembles the set theoretical difference, and when applied to single-valued data it 
reduced to the single-valued difference dbc chosen.  As (24) and (25) express the lack of 
overlap between the two sets relative how large that overlap could be, I call it the average 
multi-valued difference function. 

For ordered arrays <b> and <c> of values, I found three multi-valued differences 
particularly useful.  Multi-valued arrays can be conceptualized as points in a multi-
dimensional space.  One attractive difference function is the hyper geometric difference 
between any two points in such a space.  I used the Mahalanobis (1936) distance as a 
starting point for this difference function as it corrects for unequal magnitudes of 
variation in the dimensions of the space.  In (26), this is accomplished by standardizing 
each of the z single-valued difference functions by the expected disagreement within the 
corresponding dimension  (component of the array, or variable).  In effect, (26) allots 
each variable or component of the arrays the same weight.  But it also allows analysts to 
override this equality by using a weight ωt that opens the possibility of considering 
potentially unequal contributions of variables or components to subsequent analyses and 
hence to reliability.  Finally, Mahalanobis’ conception of a multivariate distance made it 
possible to each dimension, variable or component to have its own metric.  For this 
attractive feature, I called (26) the multi-metric difference function. 

The second multi-valued difference function for ordered arrays is based on the 
Hamming distance between the two arrays.  This distance simply enumerates the number 
of positions in the two arrays whose values differ.  Whereas the multi-metric difference 
acknowledges that values in their respective positions may have different metrics, the 
Hamming difference treats them as nominal data.  It is defined in (27) of Table 1. 

Finally, I defined the absolute difference as any difference between two arrays, 
regardless of magnitude.  (28) essentially ignores the complexities of the available arrays 
and treats them as nominal differences.    
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 When applied to single-valued data, the first three multi-valued difference 
functions, (20) through (26) in Table 1, reduce to the single-valued differences of the 
chosen metric.  Under the same conditions, the Hamming and absolute differences reduce 
to nominaldbc.  The multi-metric difference, being standardized, yields single-valued 
differences that differ from the non-standardized ones, but standardization has no effect 
on the resulting alpha.   

The observed disagreements Do for multi-valued data do not differ from those for 
single-valued data, except for the difference functions entered.  In coincidence matrix 
notations 

                  2
bc

b c
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o d
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This seamless continuity is not true, however, for obtaining the corresponding expected 
disagreements De.   

 

The expected disagreements for multi-valued data must acknowledge how the values that 
do occur in unordered sets or in ordered arrays can be combined by chance.  For single-
valued data, De is as in (3) but now in coincidence matrix notations 
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In the case of unordered sets, consideration has to be given to the observed 
proportion P(q) of pairable q-valued sets of values in the reliability data, to the observed 
numbers nb of values b available for forming sets of size q, without duplications, and to 
the common metric of the values in unordered sets, which is reflected in the choice of the 
single-valued difference metricdbc.  With qB as the number of values in the set B, qB = 0, 1, 
2, …,  B(q) as a q-valued set B, and ∑

)q(B
as enumerating all sets B that contain exactly 

q values, for unordered sets, the expected disagreement De is: 
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The products essentially enumerate each q-valued set.  If there are w values to choose 
from, there are w single-valued sets, w(w-1)/2 two-valued sets, w(w-1)(w-2)/6 three-
valued sets, and w!/[(w-q)!q!] q-valued sets, for each of which, (31) computes the 
probability of being formed by chance times the appropriate difference function. 

In the case of ordered arrays of values, each value in any one position may 
cooccur with each value in any other position.  The expected disagreement De then is the 
average multi-valued difference of all arrays that are possible, given the numbers nbt of bs 
in each component t. 
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where is as in (14).   bcϑ

Generalizations to many variables.  Several variables may be aggregated to form a 
single one.  Aggregation amounts to adding the cell contents of the reliability data 
matrices from each variable to be aggregated, always yielding multi-valued data.  
Aggregated variables are approached with the multi-valued difference functions (20) 
through (28), as discussed above.  As far as the computation of alphas is concerned, no 
additional provision needs to be made. 

 A common reliability measure for aggregated variables is desirable when several 
variables subsequently are analyzed together, specifically, when the conclusion from one 
is dependent on the conclusion from another.  This is the case when a number of 
variables go into the definition of an index, when two or more variables enter the test for 
a hypothesis, or when computing regression equations and similar relations between 
variables.  Under these conditions, variables depend on each other and may not be able to 
afford an unreliable variable among them.  Without aggregate alpha-measures, it is 
recommended to take the lowest reliability among that set of jointly analyzed variables as 
the joint reliability of these variables.  This is consistent with the practice of dropping 
variables that do not achieve desirable levels of reliability.  The choice of the metric for 
the available multi-valued difference functions is determined by the nature of the data, 
whereby it is noteworthy, considering the power of these metrics – nominal < ordinal < 
interval < ratio – that difference functions must be of a power equal to or lower than that 
of the data.  The choice of an appropriate multi-valued difference functions depends on 
the kind of reliability needed, which is a function of how data are analyzed once they 
passed the reliability tests.  Here are some guidelines. 

• When, in subsequent analyses of the data, the values are averaged within 
variables, the variance within multi-valued descriptions of units might well be 
irrelevant to the conclusions drawn from such an analysis and a measure of 
reliability that does not discount this variance would overstate the unreliability in 
the data.  In this situation, the use of core differences is suggested. As stated 
above, core differences are single-valued differences between the most 
representative values of each set of values.  They, like averages, ignore the 
variance within multiple descriptions of the units of analysis. 

• When values are analyzed as unordered sets, then the average difference functions 
are suggested as an appropriate form for expressing the reliability of aggregated 
variables.  This family of difference functions looks for agreements across 
different sets and captures the variance that the core difference functions ignore. 

• When aggregated variables have no missing values and form, hence, arrays of the 
same number of components, multi-metric difference functions are recommended.  
By standardizing each single-valued difference with the expected disagreement 
within each variable, this function assures that each variable makes the same 
contribution to reliability.  This function also allows the researcher to weigh the 
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constituent variables differently, accommodating any unequal impact of variables 
on the conclusion drawn from the data. 

Multi-metric difference functions, as their name suggests, allow each 
variable to have their own (nominal, ordinal, interval, or ratio) metric.  By 
contrast, core and average differences require all values to have the same metric. 

Although it is tempting to use this form of aggregation to evaluate the 
reliability of a whole multi-variate measuring instrument, the results may well be 
deceptive as highly reliable variables can overshadow unreliable variables and 
may lead to global acceptance of locally unreliable data. 

• When reliable variables must not be allowed to compensate for unreliable 
variables in the data, the absolute difference function provides the most 
appropriate form of aggregation.  It provides for the toughest reliability test.  It 
counts any mismatch, large or small, as disagreement.  Just as the nominal metric 
difference ignores all shades of agreement when data are single-valued, the 
absolute difference ignores all shades of agreement when data are multi-valued. 

 

The work reported here is still in progress.  Computer implementation and testing 
is planned.  The hope is to create an extremely versatile analytical device for the analysis 
of the reliabilities in content analysis, survey research, and a variety of other data 
generating procedures. 
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