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Structural Features for Predicting

the Linguistic Quality of Text

Applications to Machine Translation, Automatic
Summarization and Human-Authored Text

Ani Nenkova, Jieun Chae, Annie Louis, and Emily Pitler

University of Pennsylvania
{nenkova,chaeji,lannie,epitler}@seas.upenn.edu

Abstract. Sentence structure is considered to be an important compo-
nent of the overall linguistic quality of text. Yet few empirical studies
have sought to characterize how and to what extent structural features
determine fluency and linguistic quality. We report the results of ex-
periments on the predictive power of syntactic phrasing statistics and
other structural features for these aspects of text. Manual assessments
of sentence fluency for machine translation evaluation and text quality
for summarization evaluation are used as gold-standard. We find that
many structural features related to phrase length are weakly but signif-
icantly correlated with fluency and classifiers based on the entire suite
of structural features can achieve high accuracy in pairwise comparison
of sentence fluency and in distinguishing machine translations from hu-
man translations. We also test the hypothesis that the learned models
capture general fluency properties applicable to human-authored text.
The results from our experiments do not support the hypothesis. At the
same time structural features and models based on them prove to be ro-
bust for automatic evaluation of the linguistic quality of multi-document
summaries.

1 Introduction

Numerous natural language applications involve the task of producing fluent
text. This is a core problem for surface realization in natural language genera-
tion [29,2], as well as an important step in machine translation (MT). Consid-
erations of sentence fluency are also key in sentence simplification [42], sentence
compression [24,28,11,34,46,18], text re-generation for summarization [6,48] and
headline generation [4,49,43]. Despite the popularity of these applications, the
factors contributing to sentence fluency have not been researched in depth. Much
more attention has been devoted to discourse-level constraints on adjacent sen-
tences indicative of coherence and good text flow [30,5,27]. But the development
of fully automatic measures of fluency will make it possible to evaluate system
output without the involvement of human assessors, which in turn will facilitate
system development.

E. Krahmer, M. Theune (Eds.): Empirical Methods in NLG, LNAI 5790, pp. 222–241, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In many applications fluency is assessed in combination with other qualities
and the assessment is performed in comparison with a human model. For ex-
ample, in machine translation evaluation, automatic evaluation methods such as
BLEU [37] use n-gram overlap comparisons with a model to judge the overall
translation quality, with higher n-grams meant to capture fluency considerations.
More sophisticated ways to compare a system production and a model involve
the use of syntax, but even in these cases fluency is only indirectly assessed and
the main advantage of the use of syntax is better estimation of the semantic
overlap between a model and an output. Similarly, the metrics proposed for text
generation by [3] (simple accuracy, generation accuracy) are based on string-edit
distance from an ideal output.

In contrast, the work of [48] and [35] directly sets as a goal the assessment
of sentence-level fluency, regardless of content and without any human gold-
standard. In [48] the main premise is that syntactic information from a parser
can more robustly capture fluency than language models, giving more direct in-
dications of the degree of ungrammaticality of a sentence. The idea is extended
in [35], where features derived from four different parsers are shown to lead to
impressive success in the assessment of fluency of artificially generated sentences
with varying level of fluency. Their fluency models hold promise for actual im-
provements in machine translation output quality [50].

Syntactic tree features that capture common parse configurations and that are
used in discriminative parsing [12,9,23] are expected to be beneficial for predict-
ing sentence fluency as well. Indeed, early work has demonstrated that syntactic
features, and branching properties in particular, are helpful features for auto-
matically distinguishing human translations from machine translations [15]. The
exploration of branching properties of human and machine translations was mo-
tivated by the observations during failure analysis that MT system output tends
to favor right-branching structures over noun compounding. Branching prefer-
ence mismatches manifest themselves in the English output when translating
from languages whose branching properties are radically different from English.
Accuracy close to 80% was achieved for distinguishing human translations from
machine translations.

Structural features have also been used for ranking different surface realiza-
tions corresponding to the same input semantics, for example in the work of
[47] and [8]. In these prior studies, a corpus of English and German sentences
respectively are parsed into HPSG/LFG structures. Then all possible surface
realizations for the structures are generated and a log-linear model ranker is
trained to recognize the original sentence which is considered to be the best re-
alization. Structural features lead to better models than n-gram language model
features for both languages. In a follow-up work on human assessment of surface
realization variability, Cahill and Forst [7] (this volume) present findings that
further motivate the need for automatic objective metric for sentence fluency
evaluation. In their experiments, they found that subjects agreed with their own
ranking of surface realizations only 70% of the time. A suitable automatic model
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of fluency will not only be cheaper than manual evaluation but will also remove
noise due to human judgement variability.

In our work we continue the investigation of sentence level fluency based on
features that capture surface statistics of the syntactic structure in a sentence.
We define the features in Sect. 2.1. We revisit the task of distinguishing machine
translations from human translations (Sect. 2.3) , but also further our under-
standing of fluency by providing a comprehensive analysis of the association
between fluency assessments of translations and structural features (Sect. 2.2
and Sect. 2.5). We also demonstrate that based on the same class of features,
it is possible to distinguish fluent machine translations from non-fluent machine
translations (Sect. 2.4). Finally, we test the models on human written text in
order to verify if the classifiers trained on data coming from machine transla-
tion evaluations can be used for general predictions of fluency and readability
(Sect. 3.1 and Sect. 3.2). The results indicate that the models do not generalize
well for the different type of data.

Given the findings that fluency models trained on machine translation data do
not perform well on human-authored text, we conducted a study where training
in testing is performed over the same domain. Specifically, we test the feasibil-
ity of performing automatic evaluation of linguistic quality of multi-document
summaries using the same structural features (Sect. 4). To ensure that findings
are not specific to a given dataset, we train and test the model on consecutive
years of evaluations of summarization systems.

2 Sentence Fluency and Machine Translation

For our experiments we use the evaluations of Chinese to English translations
distributed by the Linguistic Data Consortium (catalog number LDC2003T17),
for which both machine and human translations are available. Machine trans-
lations have been assessed by evaluators for fluency on a five point scale (5:
flawless English; 4: good English; 3: non-native English; 2: disfluent English;
1: incomprehensible). Assessments by different annotators were averaged to as-
sign overall fluency assessment for each machine-translated sentence. For each
segment (sentence), there are four human and three machine translations.

In this setting we address four tasks with increasing difficulty:

– Distinguish human and machine translations.
– Distinguish fluent machine translations from poor machine translations.
– Distinguish the better (in terms of fluency) translation among two transla-

tions of the same input segment. This task corresponds to input-level auto-
matic evaluation of fluency.1

– Use the models trained on data from MT evaluations to predict potential
fluency problems of human-written texts from the Wall Street Journal.

1 Our data is not suitable for experiments with system-level evaluation where the task
is to predict which system is better than others over an entire test suite because there
are only three systems. We will address this task for multi-document summarization,
where we have summaries produced by 30 or more participating systems.
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It is important to note that the purpose of our study is not evaluation of ma-
chine translation per se. Our goal is more general and the interest is in finding
predictors of sentence fluency. There are no corpora with fluency assessments col-
lected for human-authored text, so it seems advantageous to use the assessments
done in the context of machine translation for preliminary investigations of flu-
ency. Nevertheless, our findings are also potentially beneficial for sentence-level
evaluation of machine translation.

2.1 Features

Perceived sentence fluency is influenced by many factors. The way the sentence
fits in the context of surrounding sentences is one obvious factor [5]. Another
well-known factor is vocabulary use: the presence of uncommon difficult words is
known to pose problems to readers and to render text less readable [13,41]. But
these discourse- and vocabulary-level features measure properties at granularities
different from the sentence level.

Structural sentence level features have not been investigated as a stand-alone
class, as has been done for the other types of features. This is why we constrain
our study to syntactic features alone, and do not initially discuss discourse and
language model features in our experiments with machine translation data. For
our experiments on evaluation of the linguistic quality of multi-sentential sum-
maries, we do compare several classes of features.

In our work, instead of looking at the syntactic structures present in the
sentences, e.g. the syntactic rules used, we use surface statistics of phrase length
and types of modification. The sentences were parsed with Charniak’s parser
[10] in order to calculate these features.

In order to facilitate later reference to features that turn out to be significant in
correlation analysis with fluency ratings, we denote some of the Feature Classes
by fcn.

Sentence length is the number of words in a sentence. Evaluation metrics such
as BLEU [37] have a built-in preference for shorter translations. In general one
would expect that shorter sentences are easier to read and thus are perceived as
more fluent. We added this feature in order to test directly the hypothesis for
brevity preference.

Parse tree depth and the number of subordinating conjunctions (SBAR count)
are considered to be a measure of sentence complexity, as well as the number
of noun phrases, verb phrases and prepositional phrases [38]. Generally, longer
sentences are syntactically more complex but when sentences are approximately
the same length parse tree depth can be indicative of increased complexity that
can slow processing and lead to lower perceived fluency of the sentence.

Number of fragment tags in the sentence parse. Fragments occur without nec-
essarily causing fluency problems in headlines (e.g. “Cheney willing to hold bi-
lateral talks if Arafat observes U.S. cease-fire arrangement”) but in machine
translation the presence of fragments can signal a more serious problem.
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Phrase type proportion was computed for prepositional phrases (PP), noun
phrases (NP) and verb phrases (VP). The length in number of words of each
phrase type was counted, then divided by the sentence length. Embedded phrases
were also included in the calculation: for example a noun phrase (NP1 ... (NP2))
would contribute length(NP1) + length(NP2) to the phrase length count.

Average phrase length is the number of words comprising a given type of
phrase, divided by the number of phrases of this type. It was computed for PP,
NP, VP, ADJP, ADVP. Two versions of the features were computed— (FC1)
one with embedded phrases included in the calculation and (FC2) one just for
the largest phrases of a given type; the average length of any phrase type in a
sentence was also calculated. Normalized average phrase length (FC3) is com-
puted for PP, NP and VP and is equal to the average phrase length of given
type divided by the sentence length. These were computed only for the largest
phrases.

Phrase type rate was also computed for PPs, VPs and NPs and is equal to
the number of phrases of the given type that appeared in the sentence, divided
by the sentence length. For example, the sentence “The boy caught a huge fish
this morning” will have NP phrase number equal to 3/8 and VP phrase number
equal to 1/8.

Phrase length. (FC4) The number of words in a PP, NP, VP, without any nor-
malization; it is computed only for the largest phrases. Normalized phrase length
is the average phrase length (for VPs, NPs, PPs) divided by the sentence length.
This was computed both for (FC5) longest phrase where embedded phrases of
the same type were counted only once and (FC6) for each phrase regardless of
embedding.

Length of NPs/PPs contained in a VP. The average number of words that con-
stitute a NP or PP within a verb phrase, divided by the length of the verb
phrase. Similarly, the length of PP in NP was computed.

Head noun modifiers. Noun phrases can be very complex, and the head noun can
be modified in a variety of ways—pre-modifiers, prepositional phrase modifiers,
apposition. The length in words of these modifiers was calculated. Each feature
also had a variant in which the modifier length was divided by the sentence
length. Finally, two more features on total modification were computed: one was
the sum of all modifier lengths, the other the sum of normalized modifier length.

2.2 Feature Analysis

In this section, we analyze the association of the features that we described above
and fluency. Note that the purpose of the analysis is not feature selection—all
features will be used in the later experiments. Rather, the analysis is performed
in order to better understand which factors are predictive of good fluency.

The distribution of fluency scores in the dataset is rather skewed, with the
majority of the sentences rated as being of average fluency 3 as can be seen in
Table 1.
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Table 1. Distribution of fluency scores

Fluency score Number of sentences

1 ≤ fluency < 2 7
1 ≤ fluency < 2 295
2 ≤ fluency < 3 1789
3 ≤ fluency < 4 521
4 ≤ fluency < 5 22

Table 2 lists the features for which Pearson’s correlation coefficient between
the fluency ratings and the values of features was highest.

First of all, fluency and adequacy as given by MT evaluators are highly corre-
lated (0.7). This is surprisingly high, given that separate fluency and adequacy
assessments were elicited with the idea that these are qualities of the translations
that are independent of each other. Fluency was judged directly by the assessors,
while adequacy was meant to assess the content of the sentence compared to a
human gold-standard. Yet, the assessments of the two aspects were often the
same—readability/fluency of the sentence is important for understanding the
sentence. Only after the assessor has understood the sentence can (s)he judge
how it compares to the human model. One can conclude then that a model
of fluency/readability that will allow systems to produce fluent text is key for
developing a successful machine translation system.

The next feature most strongly associated with fluency is sentence length.
Shorter sentences are easier and perceived as more fluent than longer ones, which
is not surprising. Such preference for brevity has been empirically validated in
computational linguistics work both for written text [39] and for utterances in
dialog [40] (this volume). Note though that the correlation is actually rather
weak. It is only one of various fluency factors and has to be accommodated
alongside the possibly conflicting requirements shown by the other features. Still,
length considerations reappear at sub-sentential (phrasal) levels as well.

Noun phrase length for example has almost the same correlation with flu-
ency as sentence length does. The longer the noun phrases, the less fluent the
sentence is. Long noun phrases take longer to interpret and reduce sentence
fluency/readability.

Consider the following example:

– [The dog] jumped over the fence and fetched the ball.
– [The big dog in the corner] fetched the ball.

The long noun phrase is more difficult to read, especially in subject position.
Similarly the length of the verb phrases signals potential fluency problems as
can be seen from the examples of human translation in our corpus:2

2 Human translations were not rated for fluency and were considered ideal, as if rated
5. Such assumptions might be too strong. As we will see later, summaries written by
people were occasionally rated as being of poor quality by assessors different from
the original writer.
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– Most of the US allies in Europe publicly [object to invading Iraq]V P .
– But this [is dealing against some recent remarks of Japanese financial minister,

Masajuro Shiokawa]V P .

VP distance (the average number of words separating two verb phrases) is also
negatively correlated with sentence fluency. In machine translations there is the
obvious problem that they might not include a verb for long stretches of text.
But even in human written text, the presence of more verbs can make a difference
in fluency [1]. Consider the following two sentences:

– In his state of the Union address, Putin also talked about the national development
plan for this fiscal year and the domestic and foreign policies.

– Inside the courtyard of the television station, a reception team of 25 people was
formed to attend to those who came to make donations in person.

The next strongest correlation is with unnormalized verb phrase length. In fact in
terms of correlations, in turned out that it was best not to normalize the phrase
length features at all. The normalized versions were also correlated with fluency,
but the association was lower than for the direct count without normalization.

Parse tree depth is the final feature correlated with fluency with correlation
above 0.1.

Table 2. Pearson’s correlation coefficient between fluency and different features. P-
values are given in parenthesis.

adequacy sentence length FC4 for NP
0.701 (0.00) -0.132 (0.00) -0.124 (0.00)

VP distance FC4 for VP max tree depth
-0.116 (0.00) -0.109 (0.00) -0.106 (0.00)

FC2 any phrase FC1 for NP FC1 for VP
-0.105 (0.00) -0.097 (0.00) -0.094 (0.00)

SBAR length FC2 for NP FC4 for PP
-0.086 (0.00) -0.084 (0.00) -0.082 (0.00)

FC1 for PP SBAR count PP length in VP
-0.070 (0.00) -0.069 (0.001) -0.066 (0.001)

FC5 for PP NP length in VP FC6 PP
0.065 (0.001) -0.058 (0.003) -0.054 (0.006)

FC6 for VP PP length in NP Fragment
0.054 (0.005) 0.053 (0.006) -0.049(0.011)

None of the features related to noun modification—apposition length, number
of appositions, number of pre-modifiers, etc—were significantly correlated with
fluency at the 0.95 confidence level.

2.3 Distinguishing Human from Machine Translations

In this section we use all the features introduced in Section 2.1 for several classi-
fication tasks. Note that while we discussed the high correlation between fluency
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and adequacy, we do not use adequacy in the experiments that we report from
here on.

For all experiments we used four of the classifiers in the WEKA machine
learning toolkit [22]: decision tree (J48), logistic regression, support vector ma-
chines (SMO), and multi-layer perceptron. All results are for 10-fold cross
validation.

We extracted the 300 sentences with highest fluency scores, 300 sentences with
lowest fluency scores among machine translations and 300 randomly chosen hu-
man translations. We then tried the classification task of distinguishing human
and machine translations with different fluency quality (highest and lowest flu-
ency score). We expect that low fluency MT will be more easily distinguished
from human translation in comparison with machine translations rated as hav-
ing high fluency. We also ran experiments with the entire dataset, including all
human translations and all machine translations regardless of fluency level.

Results are shown in Table 3. Overall the best classifier is the multi-layer
perceptron. On the task using all available data of machine and human trans-
lations, the classification accuracy is 86.99%. We expected that distinguishing
the machine translations from the human ones will be harder when the best
translations are used, compared to the worse translations, but this expectation
is fulfilled only for the support vector machine classifier.

The high accuracies shown in Table 3 give convincing evidence that the sur-
face structural statistics can distinguish very well between fluent and non-fluent
sentences when the examples come from human and machine-produced text re-
spectively. If this is the case, will it be possible to distinguish between good and
bad machine translations as well? In order to answer this question, we ran one
more binary classification task. The two classes were the 300 machine transla-
tions with highest and lowest fluency respectively. The results are not as good
as those for distinguishing machine and human translation, but still significantly
outperform a random baseline. All classifiers performed similarly on the task,
and achieved accuracy close to 61%.

Table 3. Accuracy for the task of distinguishing machine and human translations

Classifier worst 300 MT best 300 MT all MT

SMO 86.00% 78.33% 82.68%
Logistic reg. 77.16% 79.33% 82.68%

MLP 78.00% 82% 86.99%
Decision Tree(J48) 71.67 % 81.33% 86.11%

2.4 Pairwise Fluency Comparisons

We also considered the possibility of pairwise comparisons for fluency: given two
sentences, can we distinguish which is the one scored more highly for fluency.
The feature vector for each pair of sentences is obtained as the difference of
features of the individual sentences.
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There are two ways this task can be set up. First, we can use all assessed
translations and make pairings for every two sentences with different fluency
assessment. In this setting, the question being addressed is Can sentences with
differing fluency be distinguished?, without regard to the sources of the sentence.
The harder question is Can a more fluent translation be distinguished from a less
fluent translation of the same sentence?

The results from these experiments can be seen in Table 4. When any two
sentences with different fluency assessments are paired, the prediction accuracy
is very high: 91.34% for the multi-layer perceptron classifier. In fact all classifiers
have accuracy higher than 80% for this task. The surface statistics of syntactic
form are powerful enough to distinguishing sentences of varying fluency.

The task of pairwise comparison for translations of the same input is more
difficult: doing well on this task would be equivalent to having a reliable measure
for ranking different possible translation variants.

Table 4. Accuracy for pairwise fluency comparison. “Same sentence” are comparisons
constrained between different translations of the same sentences, “Any pair” contains
comparisons of sentences with different fluency over the entire dataset.

Task J48 Logistic Regression SMO MLP

Any pair 89.73% 82.35% 82.38% 91.34%
Same Sentence 67.11% 70.91% 71.23% 69.18%

In fact, the problem is much more difficult as can be seen in the second row
of Table 4, and the performance for all classifiers is more than 10% lower than
those for comparisons not constrained to be translations of the same sentence.
Logistic regression, support vector machines and multi-layer perceptron perform
similarly, with support vector machine giving the best accuracy of 71.23%. This
number is still impressively high, and significantly higher than baseline perfor-
mance.

2.5 Feature Analysis: Differences among Tasks

In the previous sections we presented three variations involving fluency predic-
tions based on syntactic phrasing features: distinguishing human from machine
translations, distinguishing good machine translations from bad machine trans-
lations, and pairwise ranking of sentences with different fluency. The results differ
considerably and it is interesting to know whether the same kind of features are
useful in making the three distinctions.

In Table 5 we show the five features with largest weight in the support vec-
tor machine model for each task. In many cases, certain features appear to be
important only for particular tasks. For example the number of prepositional
phrases is an important feature only for ranking different versions of the same
sentence but is not important for other distinctions. The number of appositions
is helpful in distinguishing human translations from machine translations, but is
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Table 5. The five features with highest weights in the support vector machine model
for the different tasks

MT vs HT good MT vs Bad MT Ranking Same sentence Ranking

FC4 for PP # of SBARs FC2 for NP FC5 for NP
PP length in VP FC4 for VP FC3 for PP # of PP

FC2 for NP post modification length # of NP FC6 for NP
# of appositions # of VP FC3 for NP max tree depth

SBAR length sentence length FC3 for VP FC2 any

not that useful in the other tasks. So the predictive power of the features is very
directly related to the variant of fluency distinctions one is interested in making.

3 Applications to Human-Authored Text

3.1 Identifying Hard-to-Read Sentences in Wall Street Journal
Texts

The goal we set out in the beginning of this paper was to derive a predictive
model of sentence fluency from data coming from MT evaluations. In the previ-
ous sections, we demonstrated that indeed structural features can enable us to
perform this task very accurately in the context of machine translation. But will
the models conveniently trained on data from MT evaluation be at all capable
to identify sentences in human-written text that are not fluent and are difficult
to understand?

To answer this question, we performed an additional experiment on 30 Wall
Street Journal articles from the Penn Treebank that were previously used in
experiments for assessing overall text quality [39]. The articles were chosen at
random and comprised a total of 290 sentences. One human assessor was asked
to read each sentence and mark the ones that seemed disfluent because they were
hard to comprehend. These were sentences that needed to be read more than
once in order to fully understand the information conveyed in them. There were
52 such sentences. The assessments served as a gold-standard against which the
predictions of the fluency models were compared.

Two models trained on machine translation data were used to predict the
status of each sentence in the WSJ articles. One of the models was that for
distinguishing human translations from machine translations (human vs. MT),
the other was the model for distinguishing the 300 best from the 300 worst
machine translations (good MT vs. bad MT). The classifiers used were decision
trees for human vs. machine distinction and support vector machines for good
MT vs. bad MT. For the first model sentences predicted to belong to the “human
translation” class are considered fluent; for the second model fluent sentences are
the ones predicted to be in the “good MT” class.

The results are shown in Table 6. The two models differ in performance
considerably. The model for distinguishing machine translations from human
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translations is the better one, with accuracy of 57%. For both, prediction ac-
curacy is much lower than when tested on data from MT evaluations. These
findings indicate that building a new corpus for the finer fluency distinctions
present in human-written text is likely to be more beneficial than trying to
leverage data from existing MT evaluations.

Table 6. Accuracy, precision and recall (for fluent class) for each model when test on
WSJ sentences

Model Accuracy Precision Recall

human vs machine trans. 57% 0.79 0.58
good MT vs bad MT 44% 0.57 0.44

Below, we show several example sentences on which the assessor and the model
for distinguishing human and machine translations (dis)agreed.

1. Model and assessor agree that sentence is problematic.
(a) The Soviet legislature approved a 1990 budget yesterday that halves its huge

deficit with cuts in defense spending and capital outlays while striving to
improve supplies to frustrated consumers.

(b) Officials proposed a cut in the defense budget this year to 70.9 billion rubles
(US$114.3 billion) from 77.3 billion rubles (US$125 billion) as well as large
cuts in outlays for new factories and equipment.

(c) Rather, the two closely linked exchanges have been drifting apart for some

years, with a nearly five-year-old moratorium on new dual listings, separate

and different listing requirements, differing trading and settlement guidelines

and diverging national-policy aims.

2. The model predicts the sentence is good, but the assessor finds it problematic.

(a) Moody’s Investors Service Inc. said it lowered the ratings of some $145 million
of Pinnacle debt because of ”accelerating deficiency in liquidity,” which it said
was evidenced by Pinnacle’s elimination of dividend payments.

(b) Sales were higher in all of the company’s business categories, with the biggest
growth coming in sales of foodstuffs such as margarine, coffee and frozen food,
which rose 6.3%.

(c) Ajinomoto predicted sales in the current fiscal year ending next March 31 of

480 billion yen, compared with 460.05 billion yen in fiscal 1989.

3. The model predicts the sentences are bad, but the assessor considered them
fluent.
(a) The sense grows that modern public bureaucracies simply don’t perform their

assigned functions well.

(b) Amstrad PLC, a British maker of computer hardware and communications
equipment, posted a 52% plunge in pretax profit for the latest year.

(c) At current allocations, that means EPA will be spending $300 billion on itself.
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3.2 Correlation with Overall Text Quality

Here we focus on the relationship between sentence fluency and overall text
quality. We would expect that the presence of disfluent sentences in text will
make it appear less well written. Five annotators had previously assessed the
overall text quality of each of the WSJ articles on a scale from 1 to 5 [39]. The
average of the assessments was taken as a single number describing the linguistic
quality article. The correlation between this number and the percentage of fluent
sentences in the article according to the different models is shown in Table 7.

The correlation between the percentage of fluent sentences in the article as
given by the human assessor and the overall text quality is rather low, 0.127.
Correlation with the percentage of fluent sentences predicted by the two au-
tomatic models are even closer to zero. Note that none of the correlations are
actually significant for the small dataset of 30 points.

Table 7. Correlations between text quality assessment of the articles and the percent-
age of fluent sentences according to different models

Fluency given by Correlation p-value

human 0.127 0.504
human vs machine trans. model -0.055 0.772

good MT vs bad MT model 0.076 0.69

The low correlations indicate that binary decisions on sentence level fluency
are not likely to be helpful for determining the overall quality of text. A ques-
tion that remains unanswered from the experiments presented so far is whether
structural features can be used to predict overall text quality directly. A dataset
larger than the 30 WSJ documents is necessary for this purpose. So, in the next
section we turn to a large collection of multi-document summaries evaluated for
linguistic quality.

4 Predicting Linguistic Quality for Multi-document
Summarization

Efforts for the development of automatic text summarizers have focused almost
exclusively on improving content selection capabilities of systems, ignoring the
linguistic quality of the system output. Part of the reason for this imbalance is
the existence of ROUGE [32,33], the system for automatic evaluation of content
selection, which allows for frequent system evaluation during system development
and for reporting results of experiments performed outside of the annual NIST-
led evaluations (DUC3 and TAC4). Few metrics, however, have been proposed

3 http://duc.nist.gov/
4 http://www.nist.gov/tac/

http://duc.nist.gov/
http://www.nist.gov/tac/
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[31] for evaluating linguistic quality and none have been tested for correlation
with the manual metrics used by NIST.

So here we use the same structural features described in the experiments
on sentence level fluency in order to directly predict the linguistic quality of
summaries. We compare their performance with that of several other metrics of
text quality. We evaluate the predictive power of the linguistic quality metrics by
training and testing models on consecutive years of NIST evaluations, showing
the robustness of each class and their abilities to reproduce human rankings of
systems and summaries with high accuracy.

4.1 Summarization Data

We use a large corpus of system- and human-authored summaries from the
Document Understanding Conference (DUC) workshops [36] from years 2006
and 2007. These summaries were produced for inputs consisting of a set of 25
related documents on a topic. The length of the summary was constrained to
be 250 or fewer words. In DUC 2006, there were 50 inputs to be summarized
and 35 summarization systems which participated in the evaluation. In DUC
2007, there were 45 inputs and 32 different summarization systems. Four human
summaries are also available for each input.

All summaries were manually evaluated for several aspects of linguistic quality,
including (a) referential clarify, (b) focus and (c) structure and coherence. For
each of the questions, Summaries were rated on a scale from 1 to 5, in which 5
is the best separately for each of these aspects.

Judging from the 2006 scores, systems are currently the worst at structure
(mean=2.4, median=2), middling at referential clarity (mean=3.1, median=3),
and relatively better at focus (mean=3.6, median=4). Structure is the aspect
of linguistic quality where there is the most room for improvement. Excluding
the baseline system, which simply extracts the leading sentences from the most
recent article in the input and therefore has well-formed summaries, all of the
other systems have average structure scores below 3.5 in DUC 2006. Human
summaries were predominantly scored 5, but some scores of 4 and 3 also occur.

4.2 Predictors of Linguistic Quality

Structural features. The structural features we described in Sect. 2.1 apply
for individual sentences. In order to apply they to summaries which consist of
more than one sentence, we simply take the average value of features for the
sentences in the summary.

Coh-Metrix. The Coh-Metrix tool5 provides an implementation of 54 fea-
tures known in the psycholinguistic literature to correlate with the coherence of
human-written texts [19]. These include for example commonly used readability
metrics based on sentence length and number of syllables in constituent words.
5 http://cohmetrix.memphis.edu/

http://cohmetrix.memphis.edu/
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Other measures implemented in the system are surface text properties known to
contribute to text processing difficulty such as the number of words before the
main verb, the prevalence of pronouns and low frequency content words. Also
included are measures of cohesion between adjacent sentences such as similarity
under a latent semantic analysis model [16], stem and content word overlap,
and syntactic similarity between adjacent sentences. In addition, the presence in
a text of different types of discourse connectives such as causal (e.g. ‘because’,
‘consequently’) and temporal (e.g. ‘after’, ’until’) are also recorded. Coh-Metrix
has been designed with the goal of capturing properties of coherent text and has
been used for grade level assessment, predicting student essay grades, identify-
ing differences between spoken and written texts, authorship identification, and
various other tasks.

Vocabulary: language models. Psycholinguistic studies have shown that peo-
ple read frequent words and phrases more quickly [26,21], so the words that
appear in a text might influence people’s perception of its quality. Language
models are a way of computing how familiar the words in a text are to readers
by using the distribution of words and phrases from a large background cor-
pus. We built unigram, bigram, and trigram language models with Good-Turing
smoothing over the New York Times section of the English GigaWord corpus
(over 900 million words). We used the SRI Language Modeling Toolkit [45] for
this purpose. For each of the three n-gram language models, we include the min,
max, and average log probability of the sentences contained in a summary, as
well as the overall log probability of the entire summary.

Word coherence. Word co-occurrence patterns across adjacent sentences pro-
vide a way of measuring local coherence which can be easily computed using
large amounts of unannotated text [30,44]. Specifically, we used the two features
introduced by [44]. [44] make an analogy to machine translation: in translation,
two words are likely to be translations of each other if they often appear in
parallel sentences (a sentence and its translation); in texts, two words are likely
to signal local coherence if they often appear in adjacent sentences. The two
features of word coherence are the forward likelihood, the likelihood of observing
the words in sentence si conditioned on si−1, and the backward likelihood, the
likelihood of observing the words in sentence si conditioned on sentence si+1.
“Parallel texts” of 5 million adjacent sentences were extracted from the New
York Times section of the English GigaWord corpus. We used the GIZA++6

implementation of IBM Model 1 to align the words in adjacent sentences and
obtain all relevant probabilities.

The equation for the forward likelihood of a text T containing n sentences is
below:

PF (T ) =
n−1∏

i=1

|si+1|∏

j=1

ε

|si| + 1

|si|∑

k=0

t(sj
i+1|sk

i ) (1)

6 http://www.fjoch.com/GIZA++.html

http://www.fjoch.com/GIZA++.html


236 A. Nenkova et al.

Here, sentence si+1 is assumed to be generated from events (words) in sentence
si. The events in si include a special NULL word.

The backward likelihood is identical, with si and si+1 interchanged.

Entity coherence. Linguistic theories, and Centering theory [20] in particular,
have hypothesized that the transition of attention between entities from one
sentence to the next plays a major role in the determination of local coherence.
[5], inspired by Centering, proposed an easily computable representation for
sequences of entity mentions across a text. In their Entity Grid model, a text is
represented by a matrix with rows corresponding to each sentence in a text, and
columns to each entity mentioned anywhere in the text. The value of a cell in the
grid is the entity’s grammatical role in that sentence (Subject, Object, Neither,
or Absent). This representation captures the pattern of entities across sentences
in terms of entity transitions. For example, if an entity that occurs in a subject
position in sentence si is an object in si+1, the text would have a transition SO.
One would expect that coherent texts would contain a certain distribution of
entity transitions which would differ from those in incoherent sequences.

We use the Brown Coherence Toolkit7 [17] to construct the grids. The tool
does not perform full coreference resolution. Instead, noun phrases are considered
to refer to the same entity if their heads are identical.

The actual entity coherence features are the probabilities of local entity tran-
sitions (SS, SO, etc), computed as the fraction of each type of transition in the
entire entity grid for the text.

4.3 Experimental Setup

We used the summaries from DUC 2006 for training and feature development
and DUC 2007 served as the test set. Validating the results on consecutive years
of evaluation is important, as results that hold for the data in one year might
not carry over to the next, as happened for example in [14]’s work.

We experiment with the predictive power of the linguistic quality classes of
our features in two settings. In system-level evaluation, we would like to rank all
participating systems according to their performance on the entire test set. In
input-level evaluation, we would like to rank all summaries produced for a single
given input.

We use a Ranking SVM (SV M light [25]) to learn how to rank summaries
using our features. Just as in a SVM used for classification, the Ranking SVM
learns a weight vector from the training data. The output of the Ranking SVM
is the dot product of the weight vector and the feature values, which is a real
number. However, rather than optimizing for this score to be as close as possible
to the true score, as in regression, the Ranking SVM instead seeks to minimize
the number of discordant pairs (pairs in which the gold standard has x1 ranked
strictly higher than x2, but the learner ranks x2 strictly higher than x1). The
default regularization parameter was used.

7 http://www.cs.brown.edu/~melsner/manual.html

http://www.cs.brown.edu/~melsner/manual.html
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Following [5], we report summary ranking accuracy as the fraction of correct
pairwise rankings in the test set.

For input-level evaluation, the pairs are formed from summaries of the same
input. Pairs in which the gold standard ratings are tied are not included. After
removing the ties, the test set thus consists of 51 pairs for human referential
clarity; 15,736 pairs for system referential clarity; 57 pairs for human focus;
13,660 pairs for system focus; 88 pairs for human structure; and 14,398 pairs for
system structure.

For system-level evaluation, we treat the real-valued output of the SVM ranker
for each summary as the linguistic quality score. The 45 individual scores for
summaries produced by a given system are averaged to obtain an overall score
for the system. The gold-standard system-level quality rating is equal to the
average human ratings for the system’s summaries over the 45 inputs. Again,
we compare all pairs of systems with non-tied gold-standard scores and compute
the prediction accuracy for these pairs. At the system level, there are 491 pairs
for referential clarity, 492 pairs for focus, and 490 pairs for structure in the test
set.

For both evaluation settings, a random baseline which ranked the summaries
in a random order would have an expected pairwise accuracy of 50%.

4.4 Results

The performance of each class of features is shown in Table 8. The best result
in each colum is given in bold, and the rank of the structural features class is
noted in brackets.

Structural and language model features are the best predictors of input-level
evaluation of human summaries. The pairwise ranking prediction accuracy of
structural features is 80% for referential clarity and lower 70s for focus and
structure. For system evaluation structural features do reasonably—accuracies
of low 60s for input-level and around 85% for system-level for each of the three
quality aspects.

No class of predictors stand out as the overall best because the performance
differs considerably across tasks. Structural features are very good for input-
level human summaries, middle of the range for input level system summaries
and about the worst class of features for system-level evaluation of automatic
summaries.

Table 8. Pairwise ranking prediction accuracy

Features Input-level; Systems Input-level; Humans System-level
Refs Focus Struct. Refs Focus Struct. Refs Focus Struct.

LM 62.2 60.5 62.5 76.5 71.9 78.4 91.2 85.2 86.3
Coh-metrix 67.9 63.0 62.4 68.6 59.6 67.0 88.6 83.9 86.3
Entity coh. 64.3 64.2 63.6 54.9 52.6 56.8 89.6 85.0 87.1
Word coh. 53.3 53.2 53.7 62.7 70.2 60.2 87.8 81.7 79.0
Structural 64.4 [2] 61.9 [3] 62.6 [2] 80.4 [1] 71.9 [1] 72.7 [2] 87.6 [5] 82.3 [4] 84.9 [4]
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The language model and entity coherence classes seem to be the two classes
that tend to perform uniformly well for the three tasks.

System-level accuracies are high for all classes of features, above 85% which
suggest that using the trained ranker can be a practical substitute of manual
evaluation.

5 Conclusion

We presented a study of sentence fluency based on data from machine transla-
tion evaluations. These data allow for two types of comparisons: human (fluent)
text and (not so good) machine-generated text, and levels of fluency in the auto-
matically produced text. The distinctions were possible even when based solely
on features describing syntactic phrasing in the sentences.

Correlation analysis reveals that the structural features are significantly but
weakly correlated with fluency. Interestingly, the features correlated with fluency
levels in machine-produced text are not the same as those that distinguish be-
tween human and machine translations. Such results raise the need for caution
when using assessments for machine produced text to build a general model of
fluency. The captured phenomena in this case might not be the same as these
from comparing human texts with differing fluency. For future research it will
be beneficial to build a dedicated corpus in which human-produced sentences are
assessed for fluency.

Our experiments show that basic fluency distinctions can be made with high
accuracy. Machine translations can be distinguished from human translations
with accuracy of 87%; machine translations with low fluency can be distinguished
from machine translations with high fluency with accuracy of 61%. In pairwise
comparison of sentences with different fluency, accuracy of predicting which of
the two is better is 90%. Results are not as high but still promising for compar-
isons in fluency of translations of the same text.

We also demonstrated that while fluency models based on structural features
learned on machine translation data do not generalize well to human texts,
the models of overall text quality for summarization are robust and can be
used for automatic evaluation of linguistic quality. Structural features compare
favorably to other classes of predictors of linguistic quality for input-level ranking
of human summaries particularly, but also for input-level evaluation of automatic
summaries.
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