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Token Tenure and PATCH: A Predictive/Adaptive Token-Counting
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Abstract
Traditional coherence protocols present a set of difficult trade-offs: the reliance of snoopy protocols on
broadcast and ordered interconnects limits their scalability, while directory protocols incur a performance
penalty on sharing misses due to indirection. This work introduces PATCH (Predictive/Adaptive Token-
Counting Hybrid), a coherence protocol that provides the scalability of directory protocols while
opportunistically sending direct requests to reduce sharing latency. PATCH extends a standard directory
protocol to track tokens and use token-counting rules for enforcing coherence permissions. Token counting
allows PATCH to support direct requests on an unordered interconnect, while a mechanism called token
tenure provides broadcast-free forward progress using the directory protocol’s per-block point of ordering at
the home along with either timeouts at requesters or explicit race notification messages. PATCH makes three
main contributions. First, PATCH introduces token tenure, which provides broadcast-free forward progress
for token-counting protocols. Second, PATCH deprioritizes best-effort direct requests to match or exceed the
performance of directory protocols without restricting scalability. Finally, PATCH provides greater scalability
than directory protocols when using inexact encodings of sharers because only processors holding tokens
need to acknowledge requests. Overall, PATCH is a “one-size-fits-all” coherence protocol that dynamically
adapts to work well for small systems, large systems, and anywhere in between.
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Token Tenure and PATCH:
A Predictive/Adaptive Token-Counting Hybrid

ARUN RAGHAVAN, COLIN BLUNDELL, and MILO M. K. MARTIN
University of Pennsylvania

Traditional coherence protocols present a set of difficult trade-offs: the reliance of snoopy protocols on broad-
cast and ordered interconnects limits their scalability, while directory protocols incur a performance penalty on
sharing misses due to indirection. This work introduces PATCH (Predictive/Adaptive Token-Counting Hybrid),
a coherence protocol that provides the scalability of directory protocols while opportunistically sending direct
requests to reduce sharing latency. PATCH extends a standard directory protocol to track tokens and use token-
counting rules for enforcing coherence permissions. Token counting allows PATCH to support direct requests on
an unordered interconnect, while a mechanism called token tenure provides broadcast-free forward progress us-
ing the directory protocol’s per-block point of ordering at the home along with either timeouts at requesters or
explicit race notification messages.

PATCH makes three main contributions. First, PATCH introduces token tenure, which provides broadcast-free
forward progress for token-counting protocols. Second, PATCH deprioritizes best-effort direct requests to match
or exceed the performance of directory protocols without restricting scalability. Finally, PATCH provides greater
scalability than directory protocols when using inexact encodings of sharers because only processors holding
tokens need to acknowledge requests. Overall, PATCH is a “one-size-fits-all” coherence protocol that dynamically
adapts to work well for small systems, large systems, and anywhere in between.
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1. INTRODUCTION

A multicore chip’s coherence protocol impacts both its scalability (e.g., by requiring broad-
cast) and its miss latency (e.g., by introducing a level of indirection for sharing misses).
Traditional coherence protocols present a set of difficult trade-offs. Snoopy protocols main-
tain coherence by having each processor broadcast requests directly to all other processors
using a totally ordered interconnect [Agarwal et al. 2009; Charlesworth 1998; Martin et al.
2000] or a physical or logical ring [Marty and Hill 2006; Strauss et al. 2006; Strauss et al.
2007; Tendler et al. 2002]. This approach can provide low sharing miss latencies but does
not scale due to excessive traffic and interconnect constraints. Conversely, directory proto-
cols introduce a level of indirection to obtain scalability at the cost of increasing sharing
miss latency.

Prior proposals have attempted to ease the tension between snoopy protocols and di-
rectory protocols. One approach aims to make snooping protocols more efficient by using
destination-set prediction [Bilir et al. 1999; Martin et al. 2003] or bandwidth adaptivity
[Martin et al. 2002] to send direct requests to fewer than all processors. These protocols
suffer from their snooping heritage by sending all requests over a totally ordered inter-
connection network, limiting their scalability and constraining their implementation. An
alternative approach adds direct requests to a directory protocol (e.g., Acacio et al. [2002a,
2000b], Cheng et al. [2007], Ros et al. [2008], Jerger et al. [2008b]), but these proposals
target only specific sharing patterns or introduce significant implementation complexities
for handling races.

This article describes PATCH (Predictive/Adaptive Token-Counting Hybrid), a proto-
col that achieves high performance without sacrificing scalability. PATCH relies neither
on broadcast nor an ordered interconnect for correctness. PATCH uses unconstrained pre-
dictive direct requests as performance hints that may be dropped at times of interconnect
congestion. Furthermore, PATCH requires only true sharers to acknowledge requests. This
property can allow PATCH to scale better than a directory protocol when directory encod-
ings are inexact.

PATCH obtains these attributes by combining token counting and a standard directory
protocol. Token counting [Martin et al. 2003a, 2003b] directly ensures coherence safety:
Processors pass tokens around the system and use rules based on the number of tokens
that they currently have for a given block to determine when an access to that block is
legal. Token counting allows PATCH to naturally and simply support direct requests and
destination-set prediction without requiring a nonscalable interconnect [Martin 2003].

Although adding token counting to a directory protocol enables indirection-free shar-
ing misses, PATCH also inherits the challenge of ensuring forward progress on introduc-
tion of direct cache-to-cache requests. Previously proposed mechanisms to ensure forward
progress in token-counting protocols rely on broadcast, a requirement that we expressly
want to avoid in PATCH.

To meet this challenge without relying on broadcast, this article proposes token tenure,
which leverages the directory protocol underpinnings of PATCH. Token tenure allows to-
kens to move in response to direct requests, but it requires that processors must eventually
relinquish any tokens to the directory if they are not tenured: that is, if the processor does
not see an activation message from the directory granting permission to retain the tokens.
When races occur, token tenure ensures forward progress because the directory activates
only one of the racing processors; untenured tokens held at other processors will eventually
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Table I. Token-Counting Rules

Rule #1 (Conservation of Tokens): After system initialization, tokens may not be created or destroyed.
One token for each block is the owner token. The owner token can be either clean or dirty, and whenever
the memory receives the owner token, the memory sets the owner token to clean.
Rule #2 (Write Rule): A component can write a block only if it holds all T tokens for that block and has
valid data. After writing the block, the writer sets the owner token to dirty.
Rule #3 (Read Rule): A component can read a block only if it holds at least one token for that block and
has valid data.
Rule #4 (Data Transfer Rule): If a coherence message contains a dirty owner token, it must contain data.
Rule #5 (Valid-Data Bit Rule): A component sets its valid-data bit for a block when a message arrives
with data and at least one token. A component clears the valid-data bit when it no longer holds any tokens.
The home memory sets the valid-data bit whenever it receives a clean owner token (even if the message
does not contain data).

flow to the winning processor, allowing it to complete its request. Untenured tokens can be
identified either (i) implicitly, upon not receiving an activation message from the directory
after a certain amount of time or (ii) explicitly, upon receiving a message from the directory
when a racing request exists. In either case, untenured tokens are relinquished in favor of
the active requester by the racing requesters.

The combination of token counting and a directory protocol allows PATCH to employ a
novel form of bandwidth adaptivity called best-effort direct requests. In PATCH, the home
forwards requests to the owner and/or sharers (as in all directory protocols). Furthermore,
only token holders (i.e., true sharers) must respond to requests (as in all token-counting
protocols). These properties together allow PATCH to treat direct requests strictly as perfor-
mance hints. Interconnect networks and coherence controllers deprioritize direct requests
and process them only when there is sufficient bandwidth to do so, discarding them if
they become too stale. This approach allows PATCH to be profligate in its destination-set
prediction without hindering scalability by ensuring that direct requests never delay other
messages.

This article makes three main contributions. First, token tenure provides broadcast-free
forward progress for token-counting protocols because it does not require global consen-
sus. Second, PATCH’s best-effort direct requests enable it to match the performance of
broadcast-based protocols when bandwidth is plentiful, while its deprioritization mech-
anism maintains the scalability of a directory protocol. Finally, PATCH avoids unneces-
sary acknowledgements because only processors holding tokens send acknowledgements,
which can allow PATCH to scale better than a baseline directory protocol when using inex-
act encodings of sharers.

2. BACKGROUND ON TOKEN COUNTING

The goal of an invalidation-based cache coherence protocol is to enforce the “single-writer
or many-readers” cache coherence invariant. Token counting enables the direct enforce-
ment of this invariant [Martin et al. 2003b]. Instead of enforcing the coherence invariant
using a distributed algorithm for providing coherence safety in the presence of subtle races,
token-based coherence protocols use token counting to enforce coherence permissions. At
system initialization, the system assigns each block T tokens. One of the tokens is desig-
nated as the owner token, which can be marked as either clean or dirty. Tokens and data
are allowed to move between system components as long as the system maintains the five
token-counting rules given in Table I [Martin 2003]. Table II shows the correspondence
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Table II. Mapping of Coherence States
to Token Counts

Tokens Owner? State

All Dirty M
Some Dirty O
All Clean E
Some Clean “F”
Some Not held S
None Not held I

between token counts and coherence states [Sweazey and Smith 1986; Hum and Goodman
2005; Tendler et al. 2002]. In particular, the token-counting rules require writers to hold all
tokens and readers to hold at least one token. As the number of tokens per block is fixed,
the token-counting rules ensure coherence safety irrespective of protocol races and without
relying on interconnect ordering properties.

Races may still introduce protocol forward progress issues. Several mechanisms for
guaranteeing forward progress in token-counting protocols have been proposed [Cuesta
et al. 2007; Martin et al. 2003b; Marty et al. 2005; Marty and Hill 2006]. Token coher-
ence uses persistent requests [Martin et al. 2003b; Marty et al. 2005] to ensure forward
progress. A processor invokes a persistent request after its transient requests have repeat-
edly failed to collect sufficient tokens during a timeout interval. Persistent requests are
broadcast to all processors, and the system uses centralized [Martin et al. 2003b] or dis-
tributed arbitration [Marty et al. 2005] to achieve a global consensus of the identity of the
highest priority requester. All processors then forward data and tokens to that highest pri-
ority requester. To facilitate this mechanism, each processor must maintain a table of active
persistent requests. Priority requests [Cuesta et al. 2007] are similar to persistent requests
in that they are broadcast-based and use per-processor tables. Ring-Order [Marty and Hill
2006] uses broadcast on a unidirectional ring interconnect to ensure that initial requests
always succeed (without reissue or invoking persistent requests). Ring-Order introduces
a priority token to prioritize different requesters as the priority token moves around the
ring.

Other proposals have explored token counting in the context of multisocket multicore
systems [Marty et al. 2005], virtual hierarchical coherence [Marty and Hill 2007], fault-
tolerant coherence [Fernandez-Pascual et al. 2007; Meixner and Sorin 2007], and multicast
interconnection networks [Jerger et al. 2008a].

3. PATCH MOTIVATION AND OVERVIEW

PATCH is a directory-based cache coherence protocol augmented with token counting. The
goal of PATCH is to obtain high performance without sacrificing the scalability of the di-
rectory protocol on which it builds. To achieve this goal, PATCH uses several enabling fea-
tures: predictive direct requests, avoidance of unnecessary acknowledgements, bandwidth
adaptivity via best-effort direct requests, and a broadcast-free forward progress mechanism
called token tenure.

3.1 Predictive Direct Requests

Token counting provides flexibility to transfer coherence permissions without incurring
directory indirection. By adding token counting to a directory protocol, PATCH inherits the
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Fig. 1. Resolution of a load miss in a regular directory protocol. Initially, P1 owns the block, with P0 being a
sharer. At time ❶, P2 incurs a load miss and issues its “ReqS” to the home. On receiving this request at time ❷,
the home forwards it to the owning processor P1, which at time ❸ sends the data and transfers ownership to P2. At
time ❹, P2 receives this message and may now cache the block in the Owned state and complete its outstanding
load. In addition, it sends an “Unblock” message to the home, indicating that the request has been completed.
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Home
1

P1P0
O, t = 2S, t = 1

P2
I, t = 0

Datat=1
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O, t = 1

{P0, P1}

O, t = 1
Unblock

{P0, P1, P2}

fwdReqS
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Fig. 2. Common case behavior of PATCH under the same conditions as Figure 1. The initial states of all caches
and the memory are augmented with token counts, so that P1 now holds two tokens while owning the block.
At time ❶, P2 issues its “ReqS” to P1 in addition to the home. At time ❷, P1 receives this and transfers data,
ownership, and all but one of its tokens to P2. Also at time ❷, the home forwards the request to P1 per the
DIRECTORY protocol. The home sets an additional bit in the forward message, indicating that P1 is required to
activate P2. At time ❸, P2 receives the response from P1 and may cache the block and complete its load. Also at
this time, P1 receives the forwarded message from the directory, and on finding the activating field set, sends an
“Activation” message to P2 . At time ❹, P2 receives the activation and deallocates any resources that might have
been allocated for the load miss. P2 also deactivates the home as with the DIRECTORY protocol.

same flexibility to use destination-set prediction to send direct requests to zero, some, or
all other processors in the system [Martin 2003]. If the requester sends a direct request to
all the necessary processors—the owner for read requests, all sharers for write requests—a
higher-latency indirect (3-hop) sharing miss, becomes a faster, direct (2-hop) miss. Figure 1
shows the common-case behavior of a 3-hop load miss with a directory protocol. Figure 2
shows how PATCH satisfies the request in 2 hops, effectively removing the indirection
latency from the critical path of the miss. Coherence is easily enforced with PATCH because
the token-counting rules govern coherence permissions.

3.2 Avoiding Unnecessary Acknowledgments

In protocols based on token counting, processors determine when a request has been satis-
fied by waiting for a certain number of tokens rather than by waiting for a certain number
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of acknowledgement messages. This property allows protocols that use token counting to
elide those acknowledgement messages that would have contained zero tokens. Avoiding
these unnecessary acknowledgements enhances the appeal of direct requests by reducing
the amount of traffic that they add to the system, which could otherwise dilute their bene-
fits. In systems that employ bandwidth-efficient fan-out routing for multidestination direct
(or indirect) request messages, these unnecessary acknowledgements can cause “acknowl-
edgement implosion,” which can substantially reduce the effectiveness of direct requests
by introducing a significant (non-scalable) amount of additional traffic into the system. In
fact, token counting can also be used to avoid unnecessary acknowledgments for indirect
requests [Marty and Hill 2007]. For large systems that employ an inexact set of sharers at
the directory, avoiding these unnecessary acknowledgements enables PATCH to scale more
gracefully than even a standard directory protocol.

3.3 Bandwidth Adaptivity via Best-Effort Direct Requests

PATCH uses a novel form of bandwidth adaptivity to achieve high performance without
sacrificing scalability. Because the home continues to forward requests to the owner and/or
sharers (as in the baseline protocol) and direct requests need not be acknowledged (as de-
scribed earlier), PATCH can treat direct requests strictly as hints. Hence, PATCH’s direct
requests can now be delivered on a best-effort, lowest-priority basis. Interconnect switches
and coherence controllers deprioritize direct requests, simply dropping them if they be-
come too stale. This approach ensures that direct requests never delay other messages,
even when PATCH is sending direct requests to many processors.

3.4 Broadcast-Free Forward Progress via Token Tenure

The previously described attributes provide a framework for a fast, scalable, and adaptive
protocol. However, races may prevent forward progress. Figure 3 provides an example of
the problems caused by racing requests. To ensure forward progress without impeding scal-
ability, PATCH introduces token tenure, a forward progress mechanism for token counting
protocols that neither relies on broadcast nor requires any specific interconnect proper-
ties. Untenured tokens can be funneled to the active requester, using one of the following
mechanisms.

—In PATCH-TIMEOUT, a processor that has received tokens for a block is required to
discard these tokens after a bounded amount of time unless the home has informed it
that it is the active requester for the block. The home funnels all such discarded tokens
to the active requester. Once the active requester completes, the home activates the
next queued request, ensuring that all requests eventually complete. Figure 4 illustrates
PATCH-TIMEOUT resolving the race from Figure 3.

—In PATCH-NOTIFY and PATCH-SPLIT, whenever the home receives a racing request
while an active request is already pending to the same block, the home sends the rac-
ing requester an explicit notification message identifying the currently active requester.
The racing requester then gives up any untenured tokens it may have received until such
time it receives its own activation message, as illustrated in Figure 5. Whereas PATCH-
NOTIFY requires worst-case endpoint buffering, PATCH-SPLIT splits each request
into redundant queued and nonqueued request messages. The nonqueued requests are
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I, t = 1

Both P1 and P2 starve
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Fig. 3. Protocol race that can occur when direct requests and token counting are naı̈vely added to a directory
protocol. Initially, P0 has the owner token and one other token (placing it in the O state) and P1 has one token
(placing it in the S state). At time ❶, P2 (solid lines) initiates a “ReqM” (a request for modified) to the home as
well as sending a direct request to P1. P1 observes this message at time ❷ and responds with its token, which
P2 receives at time ❸. Also at time ❸, P1 (hollow lines) sends a ReqM request to the home. The home observes
P1’s indirect request at time ❹ and forwards it to P0 (the only other processor in the directory’s sharers list). P0

receives the forwarded request at time ❺; also at time ❺, the home receives P2’s delayed request from time ❶

and queues it behind P1’s request. At time ❻, P 1 receives P0’s data and tokens. At this point, both P1 and P2 are
waiting indefinitely for tokens that will never arrive.

always processed immediately upon receipt (i.e., without blocking) and they are sent on
a separate virtual network, hence no additional buffering is required.

—To improve PATCH’s performance when many requesters race for the same block,
PATCH-CHAIN extends PATCH-NOTIFY by chaining the explicit activation messages
to provide one-hop direct notification of subsequent active requests.

The next section elaborates on token tenure and the advantages and disadvantages of
these variants.

4. TOKEN TENURE

The rules of token counting enforce coherence safety, but they say nothing about ensur-
ing forward progress. In directory-based protocols, the directory ensures forward progress
by tracking all sharing caches in the system. In such a setting, token movement between
processors can only take place in response to forwarded requests from the directory. Intro-
ducing direct cache-to-cache requests invalidates this invariant by moving tokens between
processors without the knowledge of the directory. Racing requests between two proces-
sors could be seen by the directory in a different order from other processors. Figure 3
gives an example of how such a race could result in starvation. This section introduces
rules for restoring the directory’s ability to ensure forward progress in token-counting pro-
tocols, based on a mechanism called token tenure. In token tenure, tokens can be in two
states: tenured and untenured. Tenured tokens are established and allowed to remain at pro-
cessors until requested by another processor. In contrast, untenured tokens must become
tenured. If not, the processor is required to discard the tokens (e.g., by writing them back to
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Fig. 4. Implicit denial of tenure with timeout. The operation of PATCH-TIMEOUT in this scenario proceeds
initially as in Figure 3. However, when the home activates the request of P1 at time ❹, it augments the forward
to P0 with the “activated bit.” At time ❻, P2 times out because it has not been activated and sends its token to the
home. Also at time ❻, P1 becomes active when it receives P0’s acknowledgement, which includes the activated
bit. At time ❼, the home receives P2’s token. The home redirects the token to P1. At time ❽, P1 receives the
redirected token, completes its request, and sends a deactivation message to the home. When the home receives
this deactivation message at time ❾, it activates P2, sending a forward to P1 that includes the activation bit destined
for P2. At time ❿, P1 receives this message and sends data, tokens, and the activation bit to P2. At this time, P2

completes its miss and sends a deactivation message to the home.
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Fig. 5. Explicit denial of tenure with notification. In PATCH-NOTIFY, when the home receives P2’s request at
time ❺, in addition to queuing it, the home sends an explicit “denial of tenure” notification message to P2. At
time ❻, P2 receives this notification message and sends its transiently received token to the home. At time ❼, the
home redirects this token to the active requester P1, which receives the token at time ❽. The actions from time ❽

proceed just as with Figure 4, with P1 and P2 subsequently completing their requests.

the block’s home memory module). This denial of tenure is inferred either implicitly after
a bounded amount of time (PATCH-TIMEOUT), or from receiving an explicit notification
message from the home (PATCH-NOTIFY). The tenured status is used only in providing
forward progress; untenured tokens can be used to satisfy misses. Thus, the token tenure
process is off the critical path for typical misses.

To tenure tokens, the home selects one request at a time on a per-block basis to be
the block’s current active request. Only the home node and active requester need to know
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Table III. Implict (PATCH-TIMEOUT) and Explicit (PATCH-NOTIFY) Token Tenure

Token tenure with timeout (PATCH-TIMEOUT) Tenure with notification (PATCH-NOTIFY)
Rule #1 Activation Rule: (a) The home fairly designates one request as the block’s current active request
and informs that requester of its activation, also responding to the request with tokens if present. (b) When
activating a request (and only when activating a request), the home forwards the request to a superset of
caches holding tenured tokens.
Rule #2 (Token Arrival Rule): Tokens that arrive at a processor are by default untenured.
Rule #3 (Promotion Rule): Only the active requester may tenure tokens, and it tenures all tokens it possesses
or receives.
Rule #4 (Probationary Period Rule): A processor
may hold untenured tokens only for a bounded du-
ration before discarding the tokens by sending them
to the home.

Rule #4′ (Explicit Notification Rule): (a) When the
home receives a request to a block with an active
requester, the home sends an explicit race notifica-
tion message to the conflicting requester. (b) If a
requester receives an explicit race notification mes-
sage, it discards its tokens (if any) to the home, and
it continues to discard any tokens it receives until it
is notified by the home that it has become the active
requester. (c) Whenever a processor without an out-
standing request receives tokens, it discards them to
the home.

Rule #5 (Home Redirect Rule): The home node redirects any discarded tokens to the active requester.
Rule #6 (Processor Response Rule): (a) The active requester hoards tokens by ignoring incoming requests
until its request completes. (b) All other processors with tokens respond to forwarded requests. (c) Processors
with untenured tokens ignore direct requests.
Rule #7 (Deactivation Rule): Once the active requester has collected sufficient tenured tokens, it gives up
its active status by informing the home.

Fig. 6. Flow of tokens to the active requester.

which request is active. Once a processor has become the active requester, any tokens that
it holds become tenured, as well as any further tokens that it receives while its request
is active. Table III contains the complete set of rules for token tenure. Rules #4 and #4′

differentiate the timeout-based mechanism and the notification-based mechanism.
To verify that token tenure ensures that all requests eventually complete, we describe the

flow of tokens it enforces (this flow is represented pictorially in Figure 6). Consider many
racing requests to the same block. The home activates one of these requests (Rule #1a).
The below discussion assumes this request is a write request (i.e., it seeks all tokens); for
a read request, the same reasoning can be applied to just the owner token. Tokens that are
not already tenured at the active requester may be either at the home, in-flight, untenured,
or tenured at one or more nonactive processors.
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Table IV. Comparison of Forward Progress Mechanisms Proposed for Token-Counting Protocols

Broadcast- State at State at
Mechanism free? Interconnect Reissues? Processor Home

Persistent/priority requests [Cuesta
et al. 2007; Martin et al. 2003b;
Marty et al. 2005]

no any yes tokens & P.R. table tokens

RingOrder [Marty and Hill 2006] no ring no tokens 1 bit
Token tenure yes any no tokens tokens & sharers set

The home forwards all tokens that it holds to the active requester (Rule #1a) and also
redirects any tokens that it subsequently receives to the active requester (Rule #5). Thus,
any tokens that begin or arrive at the home will eventually arrive at the active requester.

Any in-flight tokens that arrive at a nonactive processor become untenured (Rule #2).
Untenured tokens may not move via direct requests (Rule #6c). As such, they either (i)
are denied tenure—via timeout (PATCH-TIMEOUT’s Rule #4), an explicit race notification
message (PATCH-NOTIFY’s Rule #4′a and #4′b), or by not having an outstanding request
for the block (PATCH-NOTIFY’s Rule #4′c)—and are thus sent to the active requester via
the home (Rules #4 and #5) or (ii) move in response to a forwarded request (Rules #1b
and #6b). Forwarded requests usually cause tokens to move to the active requester, but a
lingering (stale) forwarded request from a prior activation can move tokens to a nonactive
processor. However, the number of such stale requests is bounded (Rule #1b), so tokens
may move due to such requests only a finite number of times, after which they will move
to the active requester either directly via a forwarded request or indirectly via denial of
tenure.

Finally, all tenured tokens either (i) move to the active requester via a direct or forwarded
request or (ii) move to another (nonactive) processor, in which case they become untenured
and the previously described reasoning applies.

Until the active requester has received its notification of activation, it acts like any other
nonactive requester, and may inadvertently send tokens to the home or another processor;
any such tokens will eventually be returned to the active requester as described earlier.
Once the active requester learns that it has been activated, it will tenure (Rule #3) and
hoard (Rule #6a) tokens, and thus, it will eventually collect sufficient tokens. Once the
active requester has been satisfied, it will then deactivate by informing the home (Rule #7).
The home will then fairly select another requester to activate (Rule #1a), thus ensur-
ing that all pending requests eventually become the active requester (and thus eventually
complete).

Although the correctness reasoning for token tenure is somewhat subtle, the next section
shows that its implementation requires only small extensions to a directory protocol. In
particular, unlike prior proposals for ensuring forward progress in token-counting protocols
(see Table IV), token tenure does not require broadcast [Cuesta et al. 2007; Martin et al.
2003b; Marty et al. 2005; Marty and Hill 2006], per-processor tables [Cuesta et al. 2007;
Martin et al. 2003b; Marty et al. 2005], or a ring-based interconnect [Marty and Hill 2006].

5. IMPLEMENTATION AND OPERATION

This section describes the operation of specific implementations of PATCH. Although the
conceptual framework of PATCH could likely be applied to any directory protocol, for
concreteness, this section first describes a specific baseline directory protocol on which
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our implementation of PATCH is built. This section then describes the modifications PATCH

makes to this baseline protocol to support best-effort direct requests via token counting and
token tenure. Section 6 describes the predictive and adaptive policies that use this direct
request mechanism.

5.1 Baseline Directory Protocol

Our baseline protocol, DIRECTORY, is based on the blocking directory protocol distributed
as part of GEMS [Martin et al. 2005]. DIRECTORY resolves races without negative ac-
knowledgement messages (nacks) by using a busy/active state at the home for every re-
quest. Although this approach is different from the SGI Origin 2000 [Laudon and Lenoski
1997], it is reflective of more recent protocols such as Sun’s WildFire [Hagersten and
Koster 1999]. In this approach, the arrival order at the home unambiguously determines
the order in which racing requests are serviced. DIRECTORY does not depend on any or-
dering properties of the interconnect.

When a request arrives at the home, it sets the block’s state to active. All subsequent
requests for that block are queued (at the home or in the interconnect) until the active re-
quest is deactivated. If the request is a write request, the home sends invalidation messages
to all sharers, which respond with invalidation acknowledgments directly to the requester.
To make these invalidation messages more bandwidth-efficient, the interconnect supports
sending them as a single fan-out multicast. For both read and write requests, if the home is
the owner, the home responds with data; otherwise, the home forwards the request and the
number of acknowledgements to expect to the processor that owns the block. The owner
(be that either the home or a processor) includes the number of acknowledgements to ex-
pect in its data response message sent to the requester. Once the original requester has
received all the expected acknowledgements, it sends a deactivation message to the home
node to update the directory based on the requester’s new coherence state. This deactiva-
tion also unblocks the home for that block, allowing the next queued request for that block
(if any) to proceed.

DIRECTORY supports the MOESI [Sweazey and Smith 1986] and F [Hum and Good-
man 2005] states plus a migratory-sharing optimization. To reduce memory accesses, DI-
RECTORY uses the dirty-owner (O) state and a clean-owner state (F) [Hum and Goodman
2005]. To increase the frequency with which some cache is the owner, ownership of the
block transfers to the most recent requester on both read and write misses. DIRECTORY

uses the exclusive-clean (E) state to avoid upgrade misses to nonshared data, but it does
not support silent eviction of blocks in the E state.

5.2 PATCH’s Modifications to DIRECTORY

PATCH adds token counting to the baseline directory protocol to enable best-effort direct
requests and avoid unnecessary acknowledgement messages. PATCH makes four changes
to DIRECTORY: (i) adding token state, (ii) enforcing coherence via token counting, (iii)
supporting direct requests, and (iv) implementing token tenure. We discuss each of these
changes below.

5.2.1 Adding Token State. PATCH adds an additional token count field to directory
entries, cache tags, data response messages, and dataless acknowledgement messages.
When responding to requests, processors use this token count field to send their tokens
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to the requester. The token count is encoded using log N bits for N cores plus a few bits for
identifying the owner token and its clean/dirty status. Ten bits would comfortably hold the
token state for a 256-core system. For 64-byte cache blocks, this adds only about 2% over-
head to caches and data response messages. To ensure conservation of tokens, processors
may not silently evict clean blocks, so they instead send a dataless message with a token
count back to the home.

5.2.2 Enforcing Coherence via Token Counting. PATCH uses token counting for com-
pleting requests. Only the owner supplies data, and these data responses always contain the
owner token plus zero or more additional tokens. Instead of waiting for a specific number
of invalidation acknowledgements to arrive to complete a write miss, the requester counts
tokens and completes the miss when all tokens have arrived. Because token counting (and
not ack counting) is used to complete misses, the protocol does not send acknowledgement
messages that would have a zero token count.

5.2.3 Supporting Direct Requests. In addition to its regular indirect request sent to
the home, a requester may also send direct request messages directly to one or more other
processors. Processors that have a miss outstanding to the block always ignore these di-
rect requests. Otherwise, the processors respond to direct requests exactly as they would
respond to forwarded requests. When activating a request, the home responds and/or for-
wards the request to the owner and/or sharers exactly as DIRECTORY (independent of
whatever direct messages were sent for the request). Processors always respond to requests
forwarded from the home, even if they have an outstanding miss to the block.

5.3 Token Tenure Mechanism

Token tenure requires three mechanisms: (i) a mechanism for fairly activating requests one-
at-a-time on a per-block basis (and informing a requester that it has been activated), (ii) the
ability to send a forwarded message to (at least) the set of processors holding tenured
tokens upon activating a block, and (iii) a mechanism for processors to determine when to
give up untenured tokens.

5.3.1 Fair Activation. To activate requests one at a time, PATCH leverages DIREC-
TORY’s property of processing requests serially on a per-block basis. PATCH informs a
requester that it has been activated by reusing the “acks to expect” field (which is not nec-
essary in PATCH). Becoming activated is typically not on the critical path of misses because
the processor can access a requested block as soon as it has enough tokens to do so. Once
the requester is both active and has sufficient tokens, it sends a deactivation message to the
home (as would DIRECTORY).

5.3.2 Forwarding Requests to Processor with Tenured Tokens. PATCH uses the di-
rectory to track which caches have tenured tokens, ensuring that it can forward requests
to all processors with tenured tokens when activating a request. When the home receives
a deactivation message, it uses the included coherence state of the processor to update the
block’s directory entry. Because only active processors tenure tokens, the sharers set is a
nonstrict superset of the set of caches holding tenured tokens at any given point in time.

5.3.3 Denial of Tenure. Token tenure requires a mechanism to redirect untenured to-
kens (held by processors with racing requests) to the active requester. PATCH-TIMEOUT
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implements this by adding a timer per outstanding request at each processor. PATCH adap-
tively sets the value of the tenure timeout to twice the dynamic average round-trip latency;
if the processor has not seen an activation request after this amount of time, then it is likely
that another processor has been activated for the block.

PATCH-NOTIFY relies on the home observing all racing requests and explicitly notify-
ing the (nonactive) racing requests that they must discard their tokens. If the system has
sufficient buffering to allow any home controller to ingest all incoming requests bound
for it (i.e., each home can handle n× k pending requests for a system with n processors
and k outstanding misses per processor), the home is guaranteed to observe all racing re-
quests. Without such buffering, queueing at coherence controllers or in the interconnect
could block racing requests and lead to deadlock.

As this worst-case buffering is likely expensive for large systems, PATCH-SPLIT is an
alternative implementation that avoids this restriction at the cost of increasing interconnect
traffic. To ensure the home observes all racing requests, in PATCH-SPLIT requesters send
a nonqueued request to the home in addition to the regular request. Whereas the regular
requests are queued and activated as normal, nonqueued requests are sent on their own
virtual network and are never queued or otherwise blocked by the home, ensuring all
nonqueued requests are eventually observed by the home. In PATCH-SPLIT, the home
responds to a nonqueued request in one of three ways: (i) if the nonqueued request is
from the currently active requester, the home can simply discard it; (ii) if the nonqueued
request is from a processor other than the currently active requester, the home responds
with an explicit race notification message; (iii) if there is no currently active requester,
the home also sends a notification message. This conservative response is necessary to
avoid deadlock, because another processor’s request could arrive (and become active) and
prevent the nonqueued request’s corresponding request from being processed by the home.
In all the three cases, the nonqueued request is immediately deallocated by the home. To
avoid unnecessary denial of tenure in the common case when there are no racing requests,
the requester sends the nonqueued request a few cycles after the original request.

These three token tenure mechanisms present different implementation trade-offs.
PATCH-TIMEOUT has the overhead of a timer per outstanding request and, as with the to-
ken coherence’s original forward progress mechanisms, PATCH-TIMEOUT inherits the per-
formance stability and protocol verification concerns raised by timeouts. PATCH-NOTIFY

and PATCH-SPLIT both avoid tenure timeouts, but have other overheads. PATCH-NOTIFY

introduces hardware overhead at the home by requiring buffering sized to the maximum
number of outstanding requests per processor. PATCH-SPLIT avoids extra buffering, but
instead increases interconnect traffic by sending an extra nonqueued request per miss.

5.4 Reducing the Performance Impact of Races

To reduce the performance impact of racing requests, PATCH introduces a few mechanisms
to mitigate the impact of racing requests.

5.4.1 Use Timeouts. Because many racing direct requests to the same block may
cause tokens to inefficiently flow to processors other than the next active requester, for a
short interval of time after completing a request, all variants of PATCH ignore direct re-
quests (but not indirect requests, which are sent by the home). This use timeout reduces the
impact of racing requests by providing a window for the home to orchestrate the movement
of tokens to the next active requester without interference from direct requests. Such use
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Fig. 7. PATCH-NOTIFY’s notification with forwarding. In the example in Figure 5, the home issued a notification
to P2 at time ❺, resulting in writing back of tokens from P2 to the home and redirection from the home to P1. This
can be optimized by including the active requester’s identity in the notification message at time ❺. P2 responds
to this message by sending its token to P1 at time ❻, allowing P1’s request to complete at time ❼. Consequently,
P1’s deactivation at time ❽ allows P2’s request to be activated at this time and completed at time ❿.

timeouts mimic the round-trip delay present in DIRECTORY from when a requester sends
its unblock request to when the home forwards the next request.

5.4.2 PATCH-NOTIFY with Forwarding. As described in Section 4 and Figure 5,
requesters in PATCH-NOTIFY discard tokens to the home upon receipt of notification that
another processor is the active requester. One simple enhancement to PATCH-NOTIFY is
for the home to include the current active requester in the notification message, and then
when a requester receives a notification message, it sends its tokens directly to the specified
active requester (illustrated in Figure 7). This direct transfer of tokens avoids the latency
of redirecting these discarded tokens through the home in most cases. As a requester will
receive at most one notification message per request, this one-time forward to another
processor retains token tenure’s forward progress guarantee. Because of its simplicity of
implementation, both PATCH-NOTIFY and PATCH-SPLIT incorporate this optimization.

5.4.3 PATCH-CHAIN . To further improve the performance impact of racing requests
in PATCH, PATCH-CHAIN is a variant of PATCH-NOTIFY that chains consecutive requests
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for the same block to provide direct transfer of tokens during periods in which many
processors are repeatedly requesting the same block.1 As before, there is at most one
activation message for a given block in the system. However, instead of the home activating
the next requester for the block, in PATCH-CHAIN each requester directly activates the next
conflicting requester (if any), immediately once its own request has both received sufficient
tokens and has been activated. Thus, the completion message to the home and the message
to activate the next requester are sent in parallel (rather than being serialized).

The home establishes this per-block chain of successive active requesters by tracking
the tail of the chain and then whenever the home receives a racing request it: (i) sends
a message to the tail with the next requester’s identity and (ii) records this most-recently
received request as the new tail of the chain. These next activate messages contain the
requester’s identity and type of request, which the requester records upon receipt of the
message. If the message recipient has no pending request for the block, it immediately
sends an activate message to the specified next requester. Otherwise (i.e., a request is
pending at the receipt of the next active message), upon completion of its own request
(i.e., when the requester receives sufficient tokens), it sends an activation message to the
next active requester, which includes zero or more tokens and data as appropriate based on
the request type. Figure 8 illustrates the operation of PATCH-CHAIN.

Unlike PATCH-NOTIFY, in PATCH-CHAIN the order in which deactivation messages
arrive at the home may not match the activating order. To ensure the home updates the
directory state (owner and sharers) in the activation order, the home records the expected
order of activations and reorders any out-of-order deactivation messages it may receive.

6. PREDICTION AND BANDWIDTH ADAPTATION

Inspired by a multicast variant of token coherence [Martin 2003], PATCH uses destination-
set prediction for selecting the recipients of direct requests. PATCH, however, enhances
the utility of destination-set prediction by sending all direct requests as low-priority, best-
effort messages to achieve a natural bandwidth adaptivity. This optimization prevents direct
request messages from introducing harmful interconnect congestion.

The goal of destination-set prediction [Bilir et al. 1999; Martin et al. 2003] is to send
direct requests only to those processors that need to see the request (in PATCH’s case, all
token holders for a write and the owner token holder for a read). Processors determine what
predictions to make by tracking the past behavior of blocks (recording which processors
have sent incoming requests or responses). Predictors can make different bandwidth/la-
tency trade-offs ranging from predicting a single additional destination (i.e., the owner)
to all processors that have requested the block in the recent past. Our goal in this work
is not to devise new predictors. In fact, PATCH uses predictors taken directly from prior
work [Martin et al. 2003].

One challenge with destination-set prediction, however, is that the predictor that obtains
the optimal bandwidth/latency trade-off varies based on the specific system configuration
and workload characteristics [Martin et al. 2002, 2003]. BASH used all-or-nothing throt-
tling to disable the broadcasting of direct requests when a local estimate of the global

1PATCH-CHAIN can also be applied to PATCH-SPLIT in a straightforward manner. Although similar ideas could
likely be applied to PATCH-TIMEOUT, it would likely require introducing some sort of activation notifica-
tion messages—perhaps used selectively only when contention manifests—but we have not explored such an
approach.
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Fig. 8. PATCH-CHAIN’s chaining of activations. At time ❺, when the home receives P2’s racing request, along
with the notification to P2, the home also sends P1 a message indicating that P2’s ReqM is the next active request.
P1 receives this message at time ❻ and stores the next active identifiers. At time ❼, when P1 completes its request,
it deactivates the home as before, but also activates P2 and sends it data and all tokens. P2 receives this message at
time ❽, completes its request, and deactivates the home. At time ❽, the home recognizes P2 to be the next active
requester and forwards P2’s request to all sharers (P1). P1 receives this request at time ❾, but ignores it since it
now holds no tokens.

interconnect utilization indicates the interconnect is highly utilized [Martin et al. 2002].
This approach was shown to be effective in adapting to system configuration and workload
in the context of a multicast snooping protocol on a totally ordered crossbar interconnect,
but the intermittent interconnect congestion caused by direct requests reduces performance
to less than that of a directory protocol for some system configurations.

Instead of deciding between all or nothing at the time a processor issues a request,
PATCH uses a form of bandwidth adaptivity that operates via low-priority best-effort mes-
sages. The interconnect and cache snoop controllers give direct requests strictly lower pri-
ority than all other messages. If a switch or endpoint has queued a direct message for a
long time, it eventually drops the stale message.

This best-effort approach to bandwidth adaptivity is enabled by the property that
PATCH’s direct requests are simply performance hints that are not necessary for correct-
ness; the indirect request sent through the directory ensures forward progress independent
of any additional direct requests. Deprioritizing direct requests allows the system to benefit
from whatever bandwidth is available for delivering them without slowing down other mes-
sages, including indirect requests. Thus, to the first order, PATCH with best-effort delivery
will perform no worse than the baseline directory protocol (a “do-no-harm” guarantee not
provided by prior proposals).
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Although adding a single low-priority virtual network introduces some design complex-
ity, more sophisticated schemes than that assumed by PATCH have been implemented in
high-performance systems. For example, the SGI Spider chip used in the Origin 2000 sup-
ports 256 levels of priority on a per-message basis [Galles 1997]. Furthermore, best-effort
delivery has the potential to simplify the interconnect. Guaranteed multicast (or broad-
cast) delivery requires additional virtual channels and sophisticated buffer management to
prevent routing deadlocks [Dally and Towles 2004; Jerger et al. 2008a]. In contrast, best-
effort multicast avoids many of these issues, because deadlock can be avoided by simply
dropping best-effort messages. Finally, our experimental results indicate that broadcast-
ing best-effort direct requests is highly effective (see Section 8.7). This implies that the
interconnect design could eschew support for generalized multicast in favor of the simpler
case of best-effort broadcast.

7. SCALING BETTER THAN DIRECTORY

Protocols that use token counting are more tolerant of inexact directory state than DI-
RECTORY because such protocols avoid unnecessary acknowledgments. A full-map bit
vector (one bit per core) becomes too much state per directory entry as the number of
cores grows. For this reason, many inexact encodings of sharer information (i.e., conserva-
tive over-approximations) have been proposed (e.g., Gupta et al. [1990], and Laudon and
Lenoski [1997]). Inexact encodings result in additional traffic due to an increased number
of forwarded requests and acknowledgment messages. This additional traffic may be mit-
igated in several ways: for example, fan-out multicast (which reduces forwarded request
traffic), acknowledgement combining (which reduces acknowledgment traffic), cruise mis-
sile invalidations [Barroso et al. 2000] (which reduces both), or using a totally ordered
interconnection network to avoid explicit acknowledgements [Gharachorloo et al. 2000;
Bilir et al. 1999].

DIRECTORY employs fan-out multicast to reduce the traffic incurred by forwarded re-
quests. Unfortunately, this optimization does not reduce acknowledgment traffic. On an
N-processor D-dimensional torus interconnect supporting fan-out multicast, for example,
the worst-case traffic cost of unnecessary acknowledgments in DIRECTORY is N × D

√
N

while that of unnecessary forwarded requests is only N.
In PATCH, only token holders (i.e., true sharers) send acknowledgment messages on

receiving a forwarded request from the directory. Thus, PATCH avoids the unnecessary
acknowledgments created by inexact directory encodings. As a result, PATCH’s worst-case
unnecessary forward+invalidation traffic scales more gracefully than that of DIRECTORY

(N rather than N × D
√

N in the previous example).
The Virtual Hierarchies protocol exploited the same properties of token counting to

avoid unnecessary acknowledgements in the context of a directory protocol [Marty and
Hill 2007]. This prior work used the extreme case of a single-bit directory. In the next
section, we experimentally explore this phenomenon over a range of directory encodings.

8. EXPERIMENTS

This section experimentally shows that PATCH’s use of prediction and best-effort direct re-
quests coupled with its elimination of unnecessary acknowledgement messages allows it to
(i) achieve higher performance than DIRECTORY without sacrificing scalability, (ii) adapt
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to varying amounts of available interconnect bandwidth, and (iii) out-scale DIRECTORY

for inexact directory encodings.

8.1 Methods

We use the Simics full-system multiprocessor simulator [Magnusson et al. 2002] and
GEMS [Martin et al. 2005]. GEMS/Ruby builds on Simics’ full-system simulation to
model simple single-issue cores with a detailed cache coherent memory system timing
model. Each core’s instruction and data caches are 64KB, and each core has a 12-cycle
private 1MB second-level cache. All caches have 64-byte blocks and are 4-way set as-
sociative. Off-chip memory access latency is the 80-cycle DRAM look-up latency plus
multiple interconnection link traversals to reach the block’s home memory controller. We
assume an on-chip directory with a look-up latency of 16 cycles. The interconnect is a 2D-
torus with adaptive routing, efficient multicast routing, and a total link latency of 15 cycles.
If not otherwise specified, the throughput of each link bandwidth is 16 bytes per cycle. The
interconnect deprioritizes direct requests and drops them if they have been queued for more
than 100 cycles. Cache and directory controllers process, at most, one incoming message
each cycle.

We compare PATCH to the original token coherence protocols. TOKENB is a broadcast-
based token-counting protocol [Martin et al. 2003b]. TOKENM [Martin 2003] extends the
original TOKENB to support destination-set prediction [Bilir et al. 1999; Martin et al. 2003]
by: (i) adding a best-effort directory at the home to track likely sharers and owner of the
block, (ii) using completion messages to inform the home to update its directory state, and
(iii) sending transient requests to none, some, or all other processors based on a destination
set predictor. TOKENM audits each transient request at the home to forward the request
to any sharers and/or owner that must receive the request but that were not included in
the predicted destination set. In contrast, PATCH forwards the request, as would a normal
directory (irrespective of whatever direct requests were sent). In our experiments, TOKENB
and TOKENM attempt two transient requests before issuing a persistent request, and they
use persistent requests with distributed activation [Martin 2003; Marty et al. 2005], which
allows for efficient transfer of tokens even when many processors are requesting the same
block [Marty et al. 2005]. To provide a fair comparison, TOKENB and TOKENM also use
PATCH-TIMEOUT’s adaptive timeout mechanism (Section 5.3.3).

We use two scientific workloads (barnes and ocean) from the SPLASH2 suite [Woo
et al. 1995] and three commercial workloads (oltp, apache, and jbb) from the Wisconsin
Commercial Workload Suite [Alameldeen et al. 2003]. We simulate these workloads on a
64-core SPARC system by running four 16-core copies of the same workload concurrently.
We perform multiple runs with small random perturbations and different random seeds to
plot 95% confidence intervals [Alameldeen et al. 2003]. To evaluate scalability up to 512
cores, we use a simple microbenchmark wherein each core writes a random entry in a
fixed-size table (16K Locations) 30% of the time and reads a random entry 70% of the
time.

8.2 PATCH without Direct Requests

PATCH augments a directory protocol with the ability to support direct requests, so when
PATCH’s use of direct requests is disabled, it should perform similarly to the baseline DI-
RECTORY protocol. The first two bars of each group in Figure 9 experimentally validate
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Fig. 9. PATCH runtime.

Fig. 10. PATCH traffic.

Fig. 11. PATCH cache-controller throughput.

this assumption by showing that PATCH-TIMEOUT configured not to send any direct
requests (PATCH-TIMEOUT:NONE) and DIRECTORY perform similarly across a set of
benchmarks. This result shows that there is no common-case performance penalty intro-
duced by PATCH’s token-counting and token-tenure mechanism. The interconnect link traf-
fic (the first two bars in each group of Figure 10) shows that PATCH’s data and request traf-
fic are the same as DIRECTORY. PATCH’s overall traffic is somewhat higher (only 2%, on
average) because of PATCH’s nonsilent writebacks of clean shared blocks and its few home-
to-requester messages for activation on owner upgrade misses. Similarly, the normalized
coherence controller traffic results (Figures 11 and 12) show that PATCH-TIMEOUT:NONE

and DIRECTORY process similar a number of messages at the cache and directory
controllers.

8.3 PATCH with Broadcast Direct Requests

The simplest use of direct requests is to emulate the low-latency sharing of a broadcast
snooping system (but without the interconnect restrictions of snooping) by broadcasting
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Fig. 12. PATCH directory-controller throughput.

direct requests to all processors for all misses [Martin et al. 2003b]. The third bar from the
left in each group (labeled PATCH-TIMEOUT:ALL) of Figures 9 and 10 represents PATCH

configured to broadcast direct requests. Comparing PATCH-TIMEOUT:ALL to PATCH-
TIMEOUT:NONE (and DIRECTORY) highlights the benefit and cost of direct requests:
broadcasting direct requests improve runtime (22% for oltp, 19% for apache, and by
14%, on average), at the cost of increasing interconnect traffic by 145%, on average, and
an increase in the cache controller traffic proportional to the number of cores. With jbb,
apache, and ocean, almost all sharing misses are resolved with direct requests (repre-
sented by the bar component labeled “Direct”). In some cases, direct requests decrease
the cycles spent not waiting on second-level cache misses (signified by the reduction in
the “Processor” component), which is largely due to an increase in spinning. For this
bandwidth-rich baseline system configuration, PATCH’s additional traffic due to broadcast
results in little actual queuing in the interconnect. Thus, direct requests provide a signifi-
cant performance improvement.

8.4 PATCH’s Variants of Token Tenure

A system can implement token tenure in multiple ways. The bars in Figure 9 la-
beled PATCH-TIMEOUT:ALL, PATCH-NOTIFY:ALL, and PATCH-SPLIT:ALL correspond
to three always-broadcast variants of PATCH representing different implementation trade-
offs described in Section 5.3.3. For these benchmarks, all four implementations of token
tenure generally perform similarly. For barnes and ocean, PATCH-CHAIN’s activation
chaining mechanism reduces the performance penalty of racing requests, providing a small
performance improvement. The interconnect traffic results in Figure 10 show that PATCH-
NOTIFY’s use of notifications increases traffic somewhat (as indicated by larger “Forward”
component of each bar). The increase is noticeable for those benchmarks with the most
races (i.e., oltp, barnes, and ocean). PATCH-SPLIT generates additional traffic because
it issues twice the number of indirect requests (as indicated by the approximate doubling
in size of the “Ind. Req” component of each bar). The per-miss directory controller traffic
data (Figure 12) clearly illustrates the extra nonqueued requests sent by PATCH-SPLIT.

8.5 Comparison to TOKENB

When broadcasting direct requests for all misses, PATCH essentially behaves similarly to
token coherence’s TOKENB protocol (which also broadcasts all requests). The primary dif-
ference between TOKENB and PATCH:ALL is the mechanism used for forward progress
(persistent requests versus token tenure, respectively). Whereas persistent requests can
limit the scalability of token-counting protocols due to their reliance on broadcast and
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Fig. 13. Destination Set Prediction: runtime.

Fig. 14. Destination Set Prediction: traffic.

dedicated persistent request tables, token tenure avoids such scalability bottlenecks and fa-
cilitates PATCH’s use of deprioritized best-effort requests. The rightmost bars in each group
of Figure 9 show that PATCH:ALL and TOKENB generally perform similarly. TOKENB has
a small performance advantage over PATCH-TIMEOUT:ALL and PATCH-NOTIFY:ALL in
barnes and ocean due to frequent races. However, PATCH-CHAIN closes this gap to pro-
vide equivalent performance to TOKENB for all of our benchmarks. The overall traffic
(Figure 10) of TOKENB and PATCH are similar because of two largely offsetting effects:
TOKENB’s reissued and persistent requests increase its traffic and PATCH’s indirect re-
quests, forwarded requests, and owner-upgrade activations increase its traffic.

8.6 PATCH with Predictive Direct Requests

To explore different latency/bandwidth trade-offs, Figures 13 and 14 show the effects of us-
ing three previously published destination-set predictors [Martin et al. 2003] with PATCH-
TIMEOUT (results for PATCH-SPLIT and PATCH-NOTIFY are qualitatively similar) and
TOKENM. The OWNER predictor sends a direct request to a single processor (i.e., the pre-
dicted owner) in addition to the indirect request to the directory. The GROUP predictor
sends a direct request to a predicted subset (but not all) of the processors based on which
processors recently cached the block. The BROADCASTIFSHARED predictor (labeled “B.
If”) sends direct requests to all cores if the block was recently shared. The predictors have
8,192 entries and use 1,024-byte macroblock indexing.

These results show that predictive direct requests allow PATCH to increase performance
over PATCH without direct requests. For example, sending a direct request to just one
processor (PATCH:OWNER) achieves about half of the runtime reduction as broadcast-
ing direct requests to all processors (PATCH:ALL), while PATCH:OWNER’s additional
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Fig. 15. Destination Set Prediction: cache-controller throughput.

Fig. 16. Destination Set Prediction: directory-controller throughput.

traffic (just 20%, on average) is significantly lower than PATCH:ALL’s 145% average
increase in traffic. PATCH:GROUP uses 23% more traffic and is 10% faster, on average,
than PATCH:NONE. PATCH:BROADCASTIFSHARED uses 22% less traffic, on average,
than PATCH:ALL while achieving a runtime within 4% of PATCH:ALL. The cache con-
troller traffic results (Figure 15) closely track the increase in direct request interconnect
traffic.

These results mirror the results found in prior work on destination-set prediction [Martin
et al. 2003] and that of TOKENM [Martin 2003]. As a point of comparison, Figures 13 and
14 also include results for TOKENM. The TOKENM and PATCH have similar runtime and
traffic profiles for all the predictor types used, with any differences stemming from the
same differences discussed earlier when comparing TOKENB and PATCH. Overall, these
results indicate that PATCH’s use of destination-set prediction can be valuable in cases of
constrained bandwidth or where the extra power consumed by direct requests is a concern.

8.7 Bandwidth Adaptivity and Scalability

We next study the impact of PATCH’s bandwidth adaptivity via best-effort requests.
Figures 17 and 18 show the impact of limiting the available interconnect bandwidth by
varying the link bandwidth for ocean and jbb (the other three benchmarks are qualita-
tively similar). These graphs show the runtime of PATCH-TIMEOUT configured to send
direct requests to all processors using best-effort delivery (labeled PATCH:ALL), and a
broadcast variant of PATCH-TIMEOUT that uses guaranteed delivery for all messages (la-
beled PATCH-NA:ALL). The runtimes are normalized to the runtime of DIRECTORY with
the same link bandwidth, thus the DIRECTORY line is always at 1.0. When bandwidth is
plentiful, both variants of PATCH identically outperform DIRECTORY. As bandwidth be-
comes scarce, however, the runtime of PATCH’s nonadaptive variant quickly deteriorates as
compared to DIRECTORY. In contrast, the runtime of the adaptive variant of PATCH always
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Fig. 17. Bandwidth adaptivity: ocean.

Fig. 18. Bandwidth adaptivity: jbb.
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Fig. 19. Scalability: microbench.

stays at or better than DIRECTORY. Furthermore, in the middle of the graph, where there
is enough bandwidth for some but not many direct requests, the adaptive variant is faster
than both other configurations (by as much as 6.3% for ocean and 5.2% for jbb).

We next show that PATCH’s best-effort requests enable it to match the scalability of
DIRECTORY. Figure 19 shows the microbenchmark’s runtime of PATCH:ALL and PATCH-
NA:ALL (as defined earlier) with a link bandwidth of two bytes per cycle on 4 cores to
512 cores. The nonadaptive protocol performs significantly better than DIRECTORY up to
64 cores but sharply worse from 128 cores onward. The adaptive protocol, by contrast,
matches both the performance of PATCH-NA:ALL on low numbers of cores and the scala-
bility of DIRECTORY on a large number of cores. PATCH outperforms directory up to 256
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Fig. 21. PATCH-TIMEOUT:NONE vs. DIRECTORY traffic for inexact directory encodings.

cores, which shows that even for reasonably large systems, direct requests provide some
benefit (without sacrificing scalability).

8.8 Scalability with Inexact Directory Encodings

To show that PATCH can exhibit better scalability properties than DIRECTORY when the
directory encoding is inexact, Figure 20 compares PATCH:NONE and DIRECTORY on the
microbenchmark using varying degrees of inexactness of directory encoding. In the inexact
encoding used in this experiment, the owner is always recorded precisely (using log n bits),
making all read requests exact. Encoding of additional sharers uses a coarse bit vector that
maps 1 bit to K-cores, and the experiment varies K from 1 (which is a full map) to N
(which is a single bit for all the cores). Figure 20 show the runtime for 64, 128, and 256
cores for varying levels of coarseness normalized to a full-map bit vector. With unbounded
link bandwidth (the lower portion of each bar) the runtimes are all similar. When link
bandwidth is bound to 2 bytes per cycle (the total bar height), the runtime of DIRECTORY

for 128 and 256 cores shows substantial degradation (up to 142%); in contrast, PATCH’s
runtime increases by only 3.6% in the most extreme configuration of a single bit to encode
the sharers for 256 cores. Figure 21 shows that the traffic of DIRECTORY is dominated by
acknowledgement messages under extreme coarseness (319% more traffic than full-map
directory on 256 cores). PATCH’s elimination of unnecessary acknowledgements prevents
them from dominating the overall traffic (a maximum of only 32% more traffic than the
full-map baseline).
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Fig. 22. Timeout sensitivity: runtime.
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Fig. 23. Timeout sensitivity: traffic.

8.9 Timeout Sensitivity

One potential concern about timeout-based forward progress mechanisms is that their be-
havior may be too sensitive to the specific timeout value. In this experiment, we vary the
timeout value of PATCH-TIMEOUT between 100 and 100,000 cycles for jbb, barnes,
and ocean (the other two workloads are qualitatively similar). Figure 22 shows PATCH-
TIMEOUT’s runtime is relatively insensitive to timeout over a wide range of timeout values,
showing little variation between timeout values of 300 and 4,000 cycles.

When the timeout is set too low (200 cycles or less), the performance degrades because
requesters timeout prematurely and give up tokens too early. This unnecessary bouncing of
tokens and/or data also results in additional traffic as show in Figure 23. This lower bound
on the timeout is largely determined by the system configuration, that is, memory and cache
look-up latencies and interconnect delay, so the performance of all three workloads start to
degrade once the timeout value is less than the typical nonrace miss latency.

In contrast, the upper bound on the timeout value depends on the workload character-
istics. As the value of the timeout increases, requesters hoard untenured tokens for longer,
unduly delaying the active requester from completing. The jbb benchmark exhibits little
contention and hence tolerates large timeout values of up to 30,000 cycles. The perfor-
mance of barnes and ocean—which have more frequent races than jbb—degrade signif-
icantly when the timeout is 4,000 cycles or more. Traffic overhead does not increase for
larger timeout values because delaying the discarding of tokens does not lead to additional
messages.

The significant tolerance to timeout variation may reduce the cost of implementing per-
request timers. For example, an array of 2-bit counters (one per outstanding request) that
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are incremented whenever a 10-bit counter (per-core) overflows would suffice to provide a
timeouts in the range of a few thousand cycles.

8.10 Sensitivity to Races

In our final experiment, we explore the performance robustness of PATCH in the situation
when many processors are making simultaneous (i.e., racing) requests to the same block.
To systematically study the impact of races, we use a microbenchmark with 64 processors
each repeatedly loading or storing (70% load, 30% store) to a randomly chosen location.
We vary the number of block-aligned locations between 2 and 16,384 to vary the prevalence
of races (i.e., fewer locations result in more frequent races). As the total amount of data
is less than the capacity of the primary caches, almost all of the cache misses are sharing
misses.

Figure 24 shows the runtimes of DIRECTORY, three broadcast variants of PATCH

(PATCH-TIMEOUT, PATCH-NOTIFY, and PATCH-CHAIN), and TOKENB all normalized
to performance of DIRECTORY with the same number of locations, thus the DIRECTORY

line is always at 1.0. When the number of locations is large (the rightmost part of the
graph), all the broadcast-based protocols (PATCH variants and TOKENB) perform simi-
larly; DIRECTORY has higher runtime due to the prevalence of sharing misses.

As the number of locations is reduced, the absolute performance of all protocols de-
grades as the protocols serialize racing requests, but PATCH and TOKENB degrade more
quickly than DIRECTORY (as illustrated by the shrinking gap in normalized runtime when
moving from the right to middle of Figure 24). PATCH-TIMEOUT degrades most rapidly
(and becomes slower than DIRECTORY) due to its passive timeout-based recovery from
races. The performance of PATCH-NOTIFY degrades less than PATCH-TIMEOUT, because
PATCH-NOTIFY’s active notification mechanism quickly corrects any errant transfers of to-
kens (PATCH-NOTIFY includes the direct forward optimization described in Section 5.4.2).
In fact, when races dominate PATCH-NOTIFY’s performance is only slightly faster than
that of DIRECTORY. PATCH-CHAIN (which was described in Section 5.4.3) is more robust
than PATCH-NOTIFY; instead of its runtime converging to close to that of DIRECTORY

when races dominate, PATCH-CHAIN substantially outperforms DIRECTORY because of
its quick hand-off of tokens to the next requester.

When races occur occasionally (the middle of the graph), TOKENB’s reliance on time-
out causes it to perform worse than PATCH-NOTIFY and PATCH-CHAIN (but still faster
than PATCH-TIMEOUT). When races dominate, TOKENB’s performance is more robust
than any of the other protocols (including PATCH-CHAIN), primarily due to its broadcast-
based distributed persistent requests [Marty et al. 2005; Martin 2003] in which proces-
sors directly broadcast persistent request deactivations and use the global consensus en-
coded in the persistent request tables to immediately forward tokens to the next queued
persistent request. Although PATCH-CHAIN’s runtime is somewhat higher than TOKENB
when races are frequent, PATCH-CHAIN still substantially outperforms DIRECTORY and
the other PATCH variants. We next explore the traffic implications of TOKENB’s broadcast-
based persistent requests as compared to PATCH-CHAIN’s broadcast-free forward progress
mechanisms.

Figure 25 plots the normalized interconnection network traffic per miss for the same
configurations as Figure 24. This graph shows that the traffic per miss for DIRECTORY and
the PATCH variants are largely independent of the frequency of races. PATCH-TIMEOUT
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Fig. 24. PATCH sensitivity to races: runtime.
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Fig. 25. PATCH sensitivity to races: traffic.

traffic increases only due to redirection of tokens. PATCH-NOTIFY introduces the notify
messages, and PATCH-CHAIN further adds an extra message for chaining the requests.
However, these nondata point-to-point messages contribute only a small percentage of
overall traffic. In contrast, TOKENB’s request retry mechanism and broadcast-based per-
sistent requests result in a dramatic increase in traffic when races are frequent.

Altogether, the data in Figures 24 and 25 indicate that PATCH-TIMEOUT exhibits per-
formance robustness similar to DIRECTORY, that PATCH-NOTIFY’s measured performance
always exceeded DIRECTORY, and that PATCH-CHAIN achieves most of TOKENB’s per-
formance robustness benefits without the traffic overhead associated with TOKENB’s
broadcast-based persistent requests.

9. CONCLUSION

This article introduced PATCH (Predictive Adaptive Token Coherence Hybrid), a protocol
that obtains high performance without sacrificing scalability by augmenting a standard
directory protocol with token counting and a broadcast-free forward progress mechanism
called token tenure. The combination of token counting and token tenure allows PATCH

to support direct requests over an unordered interconnect without relying on broadcast
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messages for any part of correctness. PATCH employs best-effort direct requests, a form of
bandwidth adaptation, wherein the system deprioritizes direct requests. When bandwidth is
plentiful, PATCH matches the performance of broadcast-based protocols such as TOKENB.
When bandwidth is scarce, PATCH retains the scalability of a directory protocol. In fact,
microbenchmarks indicate PATCH can out-scale a standard directory protocol when both
are using inexact directory encodings. The combination of token counting and best-effort
direct requests allows PATCH to adapt smoothly between the extremes of broadcast and
directory protocols for different system configurations. These properties result in a protocol
that is both fast and scalable.
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ACACIO, M. E., GONZÁLEZ, J., GARCÍA, J. M., AND DUATO, J. 2002b. The use of prediction for accelerat-
ing upgrade misses in cc-NUMA multiprocessors. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques. IEEE, Los Alamitos, CA, 155–164.

AGARWAL, N., PEH, L.-S., AND JHA, N. K. 2009. In-network snoop ordering (INSO): Snoopy coherence on
unordered interconnects. In Proceedings of the 15th Symposium on High-Performance Computer Architecture.
IEEE, Los Alamitos, CA, 67–78.

ALAMELDEEN, A. R., MARTIN, M. M. K., MAUER, C. J., MOORE, K. E., XU, M., SORIN, D. J., HILL, M.
D., AND WOOD, D. A. 2003. Simulating a $2M Commercial Server on a $2K PC. IEEE Comput. 36, 2,
50–57.

BARROSO, L. A., GHARACHORLOO, K., MCNAMARA, R., NOWATZYK, A., QADEER, S., SANO, B., SMITH,
S., STETS, R., AND VERGHESE, B. 2000. Piranha: A scalable architecture based on single-chip multipro-
cessing. In Proceedings of the 27th Annual International Symposium on Computer Architecture. IEEE, Los
Alamitos, CA, 282–293.

BILIR, E. E., DICKSON, R. M., HU, Y., PLAKAL, M., SORIN, D. J., HILL, M. D., AND WOOD, D. A.
1999. Multicast snooping: A new coherence method using a multicast address network. In Proceedings
of the 26th Annual International Symposium on Computer Architecture. IEEE, Los Alamitos, CA, 294–
304.

CHARLESWORTH, A. 1998. Starfire: Extending the SMP envelope. IEEE Micro 18, 1, 39–49.
CHENG, L., CARTER, J. B., AND DAI, D. 2007. An adaptive cache coherence protocol optimized for

producer-consumer sharing. In Proceedings of the 13th Symposium on High-Performance Computer Archi-
tecture. IEEE, Los Alamitos, CA, 328–339.

CUESTA, B., ROBLES, A., AND DUATO, J. 2007. An effective starvation avoidance mechanism to enhance
the token coherence protocol. In Proceedings of the 15th EUROMICRO International Conference on Parallel,
Distributed, and Network-Based Processing (PDP’07). IEEE, Los Alamitos, CA.

DALLY, W. J. AND TOWLES, B. 2004. Principles and Practices of Interconnection Networks. Morgan Kauf-
mann, San Francisco, CA.
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