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1 Introduction

Let Σ1, Σ2 be two schemas, which may overlap, C be a set of
constraints on the joint schema Σ1 ∪Σ2, and q1 be a Σ1-query.
An (equivalent) reformulation of q1 in the presence of C is
a Σ2-query, q2, such that q2 gives the same answers as q1 on
any Σ1∪Σ2-database instance that satisfies C. In general, there
may exist multiple such reformulations and choosing among
them may require, for example, a cost model.

In 1999 we published an algorithm, called Chase and Back-
chase (C&B), for enumerating the reformulations of a query
under constraints [11]. Our main motivation was query opti-
mization, in which Σ1’s role is played by the logical schema
and Σ2’s role by the physical schema. We found that the as-
sertions used for integrity constraints (a.k.a. dependencies), by
relating the elements of the logical and physical schemas con-
stitute a flexible tool for modeling ideas such as “semantic”
optimization [4], and the use of cached data or materialized
views [33, 3].

The 1999 paper did not limit itself to the standard relational
model and instead, following [30] and more distantly [6, 23],
covered complex values and OO classes with extents. A com-
prehensive approach to query optimization for this model, in-
cluding join (usual and dependent) reordering, appeared in [28],
see also[29].

Query reformulation is also essential for data publishing [32,
12] where Σ1 is the public schema and Σ2 the proprietary (stor-
age) schema. It is equally essential in schema evolution where
Σ1 respectively Σ2 is the old, respectively new schema.

Since views can be modeled as a pair of inclusion con-
straints, the C&B algorithm provided a new technique for rewrit-
ing with views [25] and hence was also applicable to informa-
tion integration. In fact, we had already shown in [11] that
C&B will find all reformulations of conjunctive queries using
conjunctive views, if such reformulations exists. However, we
should emphasize that C&B finds equivalent reformulations
while in information integration, when equivalent reformula-
tions may not exist, one is also very much interested in refor-
mulations that produce some (as many as possible) of the an-
swer tuples [26, 1, 21, 7].

As its name suggest, C&B is using the chase, a technique
developed 25+ years ago for the purposes of deciding logi-

∗Database Principles Column. Column editor: Leonid Libkin, Depart-
ment of Computer Science, University of Toronto, Toronto, Ontario M5S 3H5,
Canada. E-mail: libkin@cs.toronto.edu.

cal consequence for most types of integrity constraints used
in databases [27, 5]. Many papers have used the chase since
then 1 . It seemed surprising that there would still exist funda-
mental properties of the chase left undiscovered. Nonetheless,
we thought that the C&B algorithm provided such a property.
This was formally verified in [13] where we proved that with
constraints to which the chase applies, whenever the chase ter-
minated, C&B would find all minimal reformulations of con-
junctive (select-project-join) queries.

This completeness property holds also for the complex val-
ues and OO model, using a generalization of the chase devel-
oped in [30]. Moreover, the C&B algorithm was used also
for the reformulation of XML queries, via a compilation from
XML to relational queries and constraints [14, 12, 10]. These
early successes encourage us to think that C&B could become a
versatile tool for query processing. This survey will attempt to
provide an introduction to the why, when, and especially how,
of C&B.

2 What is C&B?

From the beginning it was observed that the chase can also be
used to decide containment (hence equivalence) of conjunctive
queries in the presence of constraints. Indeed, if the chase of
q1 with C terminates producing a query qc then q1 ⊆C q2 iff
qc ⊆ q2 and the latter can be checked by finding a containment
mapping from q2 to qc [9, 2]. (Here, q1 ⊆C q2 means that
when q1 and q2 are applied to any instance that satisfies C the
answers of q1 are contained in those of q2. Similarly for ≡C .)

In the reformulation problem, however, we are only given
C and q1 and we must decide whether there exists a q2 such
that q1 ≡C q2. Since q2 is among infinitely many queries of the
same type as q1 deciding this isn’t obvious. Moreover, in prac-
tice we want to actually compute a q2 when it exists, in fact we
probably want to enumerate the q2’s that provide solutions and
choose among them based on cost criteria. But it’s easy to see
that queries can be syntactically “padded” with redundant joins
while conserving equivalence, ad infinitum. We are therefore
led to searching for solutions that satisfy some syntactically de-
termined minimality condition. (See the definition of minimal-
ity under constraints in section 4.) As a consequence, we shall

1In this survey we assume familiarity with conjunctive queries, homomor-
phisms and the chase procedure which are all covered extensively in [2]. To
keep the paper self-contained we review these definitions in the appendix.
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Figure 1: Chase and Backchase.

solve both the reformulation problem and a generalization of
the query minimization problem [9, 2].

The C&B algorithm applies to the case when q1 is a con-
junctive query and when the constraints in C are either a tuple-
generating dependency (tgd) of the form

∀x(φ(x) → ∃yψ(x,y))

or an equality-generating dependency (egd) of the form

∀x(φ(x) → (x1 = x2))

(see [5]). Here, φ(x) and ψ(x,y) are conjunctions of atomic
formulas over Σ1 ∪ Σ2, all of the variables in x must appear in
φ(x), and x1, x2 must be among the variables in x.

These two classes (tgds and egds) together comprise the
(embedded) implicational dependencies [16], which seem to
include essentially all of the naturally-occurring constraints on
relational databases. Furthermore, tgds, which were originally
meant as a generalization of integrity constraints such as join
and inclusion dependencies turn out to be ideally suited for de-
scribing schema mappings in data exchange [18] and data inte-
gration [24], as well as for capturing physical structures typi-
cally used in query optimization (views, indexes, join indexes,
gmaps, etc.) [11]. As a whole, the class of embedded implica-
tional dependencies is remarkably well-suited for representing
most intra- and inter-schema relationships that are of impor-
tance in practice.

C&B proceeds in two phases. In the chase phase it uses C
to chase q1 until (and if) no more chase steps are possible. We
call the resulting query U , a universal plan, see Figure 1

Now it’s time to recall that q1 is Σ1-query, that we are look-
ing for a Σ2-query as reformulation, and that the constraints
in C are on the joint schema Σ1 ∪ Σ2. The universal plan, U ,
resulting from the chase of q1 with C will (in general) be a
Σ1 ∪ Σ2-query. We can think of the universal plan as incorpo-
rating all possible alternative ways to answer q1 in the presence
of the constraints C. This intuition is fully justified by the fol-
lowing [13]:

Theorem 1 If qm is a minimal conjunctive Σ1∪Σ2-query equiv-
alent to q1 under C, i.e., q1 ≡C qm, then qm is (isomorphic to)
a subquery of the universal plan U .

It is now possible to effectively enumerate all minimal re-
formulations. Indeed, we need only search the finite space of

subqueries of U . This is done in the backchase phase, so
called because we check for equivalence with q1 by chasing
subqueries of U with C. These chase sequences go “back-
wards”, toward the U we already have. For each such candi-
date reformulation we can stop (equivalence holds) whenever
we have a containment mapping from U into an intermedi-
ate chase result or (no equivalence) when the chase terminates
without such a containment mapping. In fact, as we shall see
(Section 4), it is enough to check the existence of a containment
mapping from the original query q1 into any intermediate result
of chasing the candidate subquery of U .

We see that in both the chase and the backchase phase the
algorithm (and Theorem 1) needs the chase sequences to termi-
nate. In [5] it was shown that this is always the case if the tgds
are total or full [2] (they cannot have ∃) while the egds can be
arbitrary. While full tgds cannot in general model the physical
structures or the integration/exchange mappings we have be-
come interested in, Deutsch and Popa have recently discovered
a significantly larger and remarkably useful class of tgds that
can. Chase sequences with such sets of dependencies, called
weakly acyclic in [17, 18] and stratified-witness in [13, 14] are
guaranteed to terminate. The set of constraints from Example 2
in Section 3 is weakly acyclic.

Finally, note that the subqueries of U are in general Σ1∪Σ2-
queries. Some of them may in fact be Σ1-queries (q1 itself
is one!) and some may be Σ2-queries. The theorem above
guarantees that if Σ2-reformulations exist, then we shall find
all minimal ones among the subqueries of U.

3 Schemas and Constraints, Queries and
Rewritings

In this article we focus our presentation on a scenario where
query reformulation is applied to a distributed heterogeneous
environment, with multiple schemas that are interconnected by
complex relationships. The problem is that of finding alterna-
tive (and equivalent) reformulations of a query that is initially
formulated in terms of one of the schemas. Our running ex-
ample will show the challenges (and opportunities) for query
reformulation in such an environment. The example will depict
constraints that fall into one of four categories:

1. (Traditional) single-database constraints (e.g., key and
foreign key constraints.)

2. Relationships (mappings) between schemas. These
constraints are a consequence of how these repositories
have been created and subsequently maintained.

3. Domain knowledge constraints. These constraints are
assertions that are true about a specific situation, for ex-
ample, the fact that a customer id has a unique nation
code across repositories.

4. Constraints capturing materialized views. These con-
straints express the fact that data is redundantly stored in
both base tables and materialized views.
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Figure 2: Retail Store Chain Example

Example 1 (Running) Consider a large retail store chain (call
it RSC) maintaining and accessing several repositories with
data about its suppliers, customers and parts.

One of the repositories (located at Site 2) is an external,
read-only, on-line directory of suppliers. The other repositories
are internal but distributed across Sites 1 and 3, with differ-
ent structure, and with different although possibly overlapping
data. The repository at Site 1 is a database containing parts
ordered on-line and some of the associated customer and sup-
plier information. Additional repositories like this may exist
(not shown here for simplicity). The repository at Site 3 is a
central repository intended to contain all the information about
RSC suppliers, customers and the orders that relate them. Fig-
ure 2 illustrates the schemas of these repositories; it also depicts
some of the intra- and inter-schema constraints that hold.

Example 2 (Constraints) We illustrate next some of the con-
straints associated with the schemas in the running example.
These constraints fall under the first three categories mentioned
earlier. We shall illustrate constraints in the fourth category, de-
scribing views, later in Section 5.
1. (Traditional) single-database constraints. The following
egds can be used to express that cust id plays the role of a
key in the each of the tables Cust and MasterCust and sim-
ilarly, supp id is a key in MasterSupp. (As a notational con-
venience, we will drop the the universal quantifiers in front of
a dependency, and implicitly assume such quantification.)

k1 : Cust(c, cn) ∧ Cust(c, cn′) → cn = cn′

k2 : MasterCust(c, cn, ca) ∧ MasterCust(c, cn′, ca′)
→ (cn = cn′) ∧ (ca = ca′)

k3 : MasterSupp(s, sa, sn, h) ∧ MasterSupp(s, sa′, sn′, h′)
→ (sa = sa′) ∧ (sn = sn′) ∧ (h = h′)

The following tgds describe formally the foreign key con-
straints f1, f2, and f3 shown in Figure 2.

f1 : WebOrder(p, s, o, c, q) → ∃cn Cust(c, cn)
f2 : Supp2Cust(s, o, c) → ∃sa∃sn∃h MasterSupp(s, sa, sn, h)
f3 : Supp2Cust(s, o, c) → ∃cn∃ca MasterCust(c, cn, ca)

2. Relationships (mappings) between schemas. The mapping
m1 from Sites 1 and 2 to Site 3 reflects the fact that the master
data repository will be refreshed with data from Site 1 and Site
2, for instance due to a periodic process that takes customer and
supplier info from Site 1, joins with Site 2 to get extra supplier
information (e.g., saddr and snation ) and updates appropriate
tables of Site 3. Such a mapping can be specified using schema
mapping tools (e.g., Clio [31]). In Figure 2, the mapping is
shown informally via the dotted arrows grouped under m1. The
link between supp id in Site 1 and supp id in Site 2 reflects the
join. Formally, the meaning of mapping m1 is expressed by the
following tgd (universal quantifiers are again dropped):

m1 : WebOrder(p, s, o, c, q) ∧ Cust(c, cn)

∧ SuppCatalog(s, sa, sn, d)

→ ∃h∃ca (MasterSupp(s, sa, sn, h)

∧ Supp2Cust(s, o, c) ∧ MasterCust(c, cn, ca))

Another example of a mapping between schemas (not shown
in Figure 2 to avoid cluttering) is the following tgd, expressing
that SuppCatalog is an “authority” for supplier information,
and every supplier in MasterSupp at Site 3 can be found in
SuppCatalog at Site 2. (The converse may not be true.)

m2 : MasterSupp(s, sa, sn, h) → ∃d SuppCatalog(s, sa, sn, d)

3. Domain knowledge constraints. The fact that a customer id
has a unique nation code (across all repositories) is expressed
by adding the following egd to the earlier key constraints:

e : Cust(c, cn) ∧ MasterCust(c, cn′

, ca) → cn = cn
′

Note that e is more general than a functional dependency, as it
states a property about tuples in different tables.

Example 3 (Reformulations) Consider the following query (ex-
pressed in conjunctive query notation [2]):

q(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

SuppCatalog(s, sa, sn, d)

The query q retrieves all parts that were ordered at Site 1, with
the addresses and nations of suppliers and with the customer
ids. The query needs to access Site 1 and Site 2, to be executed
in its current form.

Given the overall configuration, q is equivalent to the fol-
lowing (non-obvious) rewriting:

q
′(p, c, sa, sn) : − WebOrder (p, s, o, c, q),

MasterSupp(s, sa, sn, h)

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 67



The query q′ accesses Site 1 and Site 3 (all within RSC) and
avoids the external catalog (which could be slower, less avail-
able, may require subscription, etc). Thus, q′ is potentially
more efficient with respect to execution time or cost.

If for Example 1 we have that Σ1 contains the union of the
schemas at all sites and Σ1 = Σ2, then Example 3 shows that
we need to consider at least two candidates for evaluation: q′

and q itself. As the configuration of the system grows larger
(e.g., additional databases, cached queries, materialized views,
etc.), the number of equivalent rewritings increases as well (as
we shall also see in a later example). This increases the poten-
tial for improvement in performance but at the same time poses
the challenge of finding such reformulations in a systematic and
complete way.

Section 4 describes how the C&B algorithm can be used
for systematic enumeration of available reformulations. This
enumeration is based on constraints such as the ones described
above. In Section 5 we modify the running example by adding
materialized views (one in the example). We then describe how
the same C&B algorithm is able to find extra, view-based refor-
mulations, by using additional constraints describing the views.

4 The C&B Algorithm

Given a conjunctive query q and a set C of constraints, the C&B
algorithm finds reformulations q′ of q under C (i.e. q′ ≡C q)
which are minimal under C (in short C-minimal). The notion
of minimality of a conjunctive query in the absence of con-
straints is well-known [9, 2]: q is minimal if dropping any of
its atoms compromises equivalence to q. For minimality under
constraints, we require a subtle modification:

Definition 1 (Minimality under constraints) A conjunctive qu-
ery q is C-minimal if there are no queries s1, s2 where s1 is
obtained from q by replacing zero or more variables with other
variables of q, and s2 by dropping at least one atom from s1

such that s2 and s1 remain equivalent to q: q ≡C s1 ≡C s2.

Intuitively, the variable replacement reflects the equalities be-
tween replaced and replacing variables as implied by the equality-
generating dependencies (egds) in C.

Example 4

qnm(cn, cn
′) : − Cust(c, cn), MasterCust(c, cn, ca),

Cust(c, cn′), MasterCust(c, cn′

, ca
′)

s1(cn, cn) : − Cust(c, cn), MasterCust(c, cn, ca),

M asterCust(c, cn, ca
′)

s2(cn, cn) : − Cust(c, cn), MasterCust(c, cn, ca)

The query qnm above yields pairs of nations of customers listed
with the same customer id. The query is minimal in the ab-
sence of constraints: we cannot drop any atom, as proven by
the absence of containment mappings. However, for constraint
e from Example 2, qnm is not {e}-minimal, as witnessed by

queries s1 and s2 above. Intuitively, replacing cn′ with cn pre-
serves {e}-equivalence of s1 to qnm, since cn = cn′ is im-
plied by e (the duplicate atom Cust(c,cn) is removed). It is
easy to check that the removal of the second MasterCust atom
preserves equivalence to s1 even in the absence of constraints.

As illustrated in Figure 1, the C&B algorithm proceeds in
two phases. In the chase phase, the original query q is chased
with the constraints in C, yielding the query U called a uni-
versal plan. The backchase phase enumerates all C-minimal
subqueries sq of U which are formulated against Σ2 and are C-
equivalent to q (sq ≡C q). (A subquery is obtained by dropping
one or more atoms in the original query with the condition that
the head variables continue to appear in the new query body.)

Example 5 (Chase) Recall the query q from Example 3:

q(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

SuppCatalog(s, sa, sn, d)

A chase step of q with f1 yields

q1(p, c, sa, sn) : − WebOrder(p, s, o, c, q), Cust(c, cn),

SuppCatalog(s, sa, sn, d)

which chases with m1 to

U(p, c, sa, sn) : − WebOrder(p, s, o, c, q), Cust(c, cn),

SuppCatalog(s, sa, sn, d),

MasterSupp(s, sa, sn, h),

Supp2Cust(s, o, c),

MasterCust(c, cn, ca)

which is the universal plan since no further chase step applies.

For each subquery sq of U , to check sq ≡C q it suffices to
check sq ⊆C q. Indeed, by construction U is contained in sq,
U ⊆ sq, and U ≡C q because the chase preserves equivalence
under constraints [2]. Checking sq ⊆C q reduces according
to classical results to finding a containment mapping from q

into the result of chasing sq with C [2]. Finding a containment
mapping into an intermediate result of chasing also suffices to
show containment.
Pruning Property. An immediate yet naive backchase imple-
mentation would exhaustively enumerate all subqueries. We
can however avoid this by using the following key observation
(called the pruning property) which follows from the defini-
tion of C-minimality: given a subquery sq of U with sq ≡C q,
every subquery sq′ of U corresponding to a superset of sq’s
atoms (we say that sq′ is a superquery of sq) cannot be both
C-equivalent to q and C-minimal.

The pruning property enables an efficient backchase imple-
mentation which enumerates subqueries of U bottom-up, start-
ing with all subqueries generated by one atom of U , continuing
with those generated by all pairs of atoms, then all triplets, and
so on. As soon as a subquery is C-equivalent to q, it is output
and all its superqueries are pruned from subsequent considera-
tion. This enumeration discipline avoids even generating non-
minimal reformulations. We will discuss alternate backchase
implementations shortly.

68 SIGMOD Record, Vol. 35, No. 1, Mar. 2006



Example 6 (Backchase) The rewriting q′ of q from Example 3
corresponds to the subquery of U generated by the WebOrder
and MasterSupp atoms. Since q′ has no smaller subquery, it is
one of the starting points in the bottom-up backchase. To check
q′ ⊆C q, we chase q′ with C. A first chase step with constraint
m2 yields

q
′

1(p, c, sa, sn) : − WebOrder(p, s, o, c, q),

MasterSupp(s, sa, sn, h),

SuppCatalog(s, sa, sn, d)

Although we could continue to chase with f1 and then m1,
it is not necessary. We can already find a containment map-
ping from q to q′

1
(the identity mapping), thus proving that q′ is

equivalent under C to q. It can be checked that q′ is C-minimal.
In fact, it is a property of the C&B algorithm that it outputs only
C-minimal reformulations.

The backchase will enumerate additional subqueries and
will possibly output other minimal reformulations. For instance,
the subquery of U generated by its WebOrder and SuppCatalog
atoms is q itself.

In the example, the retrieval of rewriting q′ as a subquery of
the universal plan is not merely a happy coincidence: by The-
orem 1, we have that whenever the chase is guaranteed to ter-
minate, all minimal reformulations of a query will be found by
the C&B algorithm:

Theorem 2 (Sound and complete C&B [11, 13]) Let q be a
conjunctive query and C a set of tgds and egds such that the
chase of any query with C terminates. Then the C&B algorithm
outputs precisely all C-minimal reformulations of q (up to iso-
morphism).

The C&B algorithm relies on the termination of the chase.
This property is in general undecidable for conjunctive queries
and constraints given by tgds and egds. However, the notion of
weak acyclicity of a set of constraints, is sufficient to guarantee
that any chase sequence terminates. This is the least restrictive
sufficient termination condition we are aware of, holding in all
scenarios we encountered in practice (including our example).

Definition 2 (Weakly acyclic set of constraints) Let C be a set
of tgds over a fixed schema. Construct a directed graph, called
the dependency graph, as follows: (1) there is a node for every
pair (R, A) with R a relation symbol of the schema and A an
attribute of R; call such pair (R, A) a position; (2) add edges
as follows: for every tgd φ(x) → ∃yψ(x,y) in C and for every
x in x that occurs in ψ:

• For every occurrence of x in φ in position (R, Ai):

(a) for every occurrence of x in ψ in position (S, Bj), add
an edge (R, Ai) → (S, Bj).

(b) in addition, for every existentially quantified variable
y and for every occurrence of y in ψ in position (T, Ck),
add a special edge (R, Ai)

∗
→ (T, Ck).

Note that there may be two edges in the same direction between
two nodes, if exactly one of the two edges is special. Then C
is weakly acyclic if the dependency graph has no cycle going
through a special edge. We say that a set of tgds and egds is
weakly acyclic if the set of all its tgds is weakly acyclic.

Theorem 3 ([17, 13]) If C is a weakly acyclic set of tgds and
egds, then the chase with C of any conjunctive query q termi-
nates.

By Theorems 3 and 2, the C&B algorithm is sound and
complete for weakly acyclic sets of constraints:

Corollary 1 If C is a weakly acyclic set of tgds and egds, then
the C&B algorithm outputs precisely the C-minimal reformula-
tions of its input query.

The complexity of the chase. For fixed schemas and set C
of constraints, if C is weakly acyclic then any chase sequence
terminates in polynomial time in the size of the query being
chased (as shown in [17, 13]). The fixed size assumption about
schemas and constraints is often justified in practice, where
one is usually interested in repeatedly reformulating incom-
ing queries for the same setting with schemas and constraints.
Nonetheless, the degree of the polynomial depends on the size
of the dependencies and care is needed to implement the chase
efficiently. Successive implementations have shown that in prac-
tical situations the chase is eminently usable [29, 28, 10, 12].
The complexity of reformulation. Assume that the chase of
any query with C terminates in polynomial time. Then checking
whether a conjunctive query q admits a reformulation is NP-
complete in the size of q. Checking whether a given query r

is a C-minimal reformulation of q is NP-complete in the sizes
of q and r. Note that for arbitrary sets of dependencies (for
which the chase may not even terminate), the above problems
are undecidable.
Alternative strategies for backchase. The complexity of the
backchase is an even more delicate issue since even though the
size of the universal plan is (with weakly acyclic dependen-
cies) polynomial in that of the original query, in the worst case
the backchase enumerates exponentially many minimal solu-
tions [29]. Above, we presented the backchase as a bottom-up
procedure that generates subqueries of the universal plan U by
starting from the smallest subqueries and extending them with
additional atoms from U . The algorithm stops extending a sub-
query sq as soon as sq becomes equivalent to the original query
q. Such sq is guaranteed to be a C-minimal reformulation of q.

Symmetrically, another way of implementing the backchase
minimization is a top-down, decremental, procedure that goes
from the universal plan down to its subqueries by eliminating
one relational atom at a time in a systematic way, starting at ev-
ery step a new branch per available atom. The algorithm stops
descending on a branch whenever a non-equivalent subquery is
found. The last equivalent query on that branch is a C-minimal
reformulation.

The top-down and the bottom-up algorithms are dual and
produce the exact same output. However, the bottom-up ap-
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proach has a crucial advantage in that it can be mixed with cost-
based pruning (when cost information is available). The result-
ing procedure is as follows. When we find the first minimal re-
formulation, we estimate its cost (for example, based on tradi-
tional methods that include join reordering). This cost becomes
the best cost so far and it will be subsequently replaced by the
cost of every minimal reformulation that we may find later.
Once the best cost is in place, for every explored subquery, even
before checking for equivalence, we compute its cost. If the
cost is higher than the best cost so far, then we can prune the
subquery together with all of its superqueries without check-
ing equivalence. This pruning still guarantees that the least-
cost reformulation is found under the (typically true2) assump-
tion that queries become more expensive by adding extra atoms
(joins). The improvement in performance of the overall method
is then substantial, sometimes over an order of magnitude [28].
Bottom-up backchase minimization with cost-based pruning is
further extended in [28] to deal also with cases in which the
above assumption may be violated (for example, due to the
presence of indexes). Additional exploration strategies for sub-
queries of the universal plan are investigated in [29]. There it
was shown that in various practical situations, the C&B method
can be stratified, which means essentially, that the universal
plan can be decomposed into independent fragments (smaller
universal plans). For each fragment the backchase minimiza-
tion is applied in the usual way. The minimal reformulations
that result for each fragment can then be put together, by join-
ing, as minimal reformulations for the entire process. The net
effect is a significant reduction in the exponent of the search
space, and hence considerable improvement in the performance
of the method.

5 Adding Views

We show next that materialized views defined by conjunctive
queries can be captured using tgds, and hence the C&B algo-
rithm serves in particular as a complete algorithm which finds
all minimal rewritings of a conjunctive query using conjunctive
query views under integrity constraints. All we need to do is
add the constraints (tgds) capturing the views, and reformulate
the query against a schema containing the view names.

In detail, let V be a set of views defined by conjunctive
queries against Σ1. The views define a relationship between
schemas Σ1 and the schema V , in which each view name V de-
notes the table with the materialized result of the homonymous
view. We express this relationship equivalently using the set of
dependencies CV constructed as follows. For each view V ∈ V ,
assume w.l.o.g. that it is defined by the query

V (x) : − body(x,y)

where body is a conjunctive query body and x,y are its vari-
ables. Let d1

V , d2

V be the dependencies (over schema Σ1 ∪ V):

d1

V : body(x,y) → V (x) d2

V : V (x) → ∃y body(x,y)

2And in fact, the very idea of minimization is based on such assumption.

which state the inclusions between the result of the query defin-
ing the view, and the materialized table V . Set

CV := {d1

V | V ∈ V} ∪ {d2

V | V ∈ V}.

We consider two flavors of rewriting using views: rewrit-
ings using exclusively the views (also called total rewritings
in [25]), and rewritings using both the views and the base ta-
bles in Σ1 (called partial rewritings in [25]). Thus, given con-
junctive Σ1-query q and set of constraints C over Σ1, the prob-
lem of finding all total conjunctive query rewritings of q re-
duces to finding all minimal reformulations of q against schema
Σ2 := V under constraints C ∪ CV . For partial rewritings, we
set Σ2 := Σ1 ∪ V . According to Theorem 2, both flavors are
completely solved by the C&B algorithm.

Example 7 Continuing our example, consider the following
query launched at Site 1, which retrieves all parts provided by
Japanese suppliers and ordered by US customers.

j2us(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

SuppCatalog(s, sa, “Japan”, d)

In general, the query would need to access Sites 1 and 2. As-
sume however that the previously answered query q from Ex-
ample 3 is cached at Site 1, in cache entry cacheq. Then j2us

has a partial rewriting which reuses the pre-computed join of
WebOrder and SuppCatalog, performing only the remain-
ing join between the cache entry and the customer table, both
located at Site 1:

j2us′(p) : −cacheq(p, c, sa, “Japan”), Cust(c, “US”)

This is more efficient as it avoids network access to Site 2,
and saves the time to recompute the join of WebOrder and
SuppCatalog.

The C&B algorithm discovers this rewriting when called
with Σ2 := Σ1 ∪ V and C ∪ CV , where V contains the names
of all active cache entries, Σ1 is the union of the schemas at all
sites, and CV is constructed as described above. For instance,
entry cacheq can be seen as the materialized view

cacheq(p, c, sa, sn) : − WebOrder(p,s, o, c, q),

SuppCatalog(s, sa, sn, d)

and CV includes the constraints:

d
1

cacheq
: WebOrder(p, s, o, c, q) ∧ SuppCatalog(s, sa, sn, d)

→ cacheq(p, c, sa, sn)

d
2

cacheq
: cacheq(p, c, sa, sn) → ∃s∃o∃q∃d

WebOrder(p,s, o, c, q)

∧SuppCatalog(s, sa, sn, d)

Now j2us chases with m1, then d1

cacheq
, to

j2us1(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

SuppCatalog(s, sa, “Japan”, d),

MasterSupp(s, sa, “Japan”, h),

Supp2Cust(s, o, c),

MasterCust(c, “US”, ca),

cacheq(p, c, sa, “Japan”)
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This is the universal plan, and it contains the equivalent
(and minimal) rewriting j2us′ as the subquery given by the
second and last atoms. In fact, the universal plan includes even
more. The following two subqueries of the universal plan are
also C-minimal reformulations of j2us:

j2us
′′(p) : − WebOrder(p, s, o, c, q), Cust(c, “US”),

MasterSupp(s, sa, “Japan”, h)

j2us
′′′(p) : − WebOrder(p, s, o, c, q),

MasterSupp(s, sa, “Japan”, h),

MasterCust(c, “US”, ca)

While the first of the two rewritings above is similar to the
earlier rewriting q′ (Example 3), the second of the two rewrit-
ings is slightly different and less obvious. Its equivalence to
the original query (which can be proven by chasing) depends
essentially on the existence of several of the constraints in the
system (specifically, m2, f1, and even the egd e). The last two
reformulations do not include the view (cacheq) but they can
be equally good candidates for execution.

This example shows the versatility of the C&B method as a
rewriting tool that unifies several different concepts (e.g., views,
constraints, mappings) under one umbrella, that of rewriting
under constraints.

6 Other Considerations

Dictionaries. An interesting property of the query and de-
pendency languages used in [30, 11] is the use of dictionary
structures. In conjunction with complex values, dictionaries
can be used (see [11]) to model OO classes with extents, pri-
mary and secondary indexes on either relations or class extents
and gmaps [33]. On one hand this allows one to express and
optimize arbitrary OQL queries [8]. On the other hand, the ex-
plicit presence of indexes allows an optimizer that uses C&B to
automatically discover non-trivial execution plans that would
not be found by traditional optimizers (including the ones that
perform rewriting using materialized views [21]).
More expressive queries and constraints. For simplicity, we
have presented the C&B only for conjunctive queries and con-
straints given by tgds and egds. However, the soundness and
completeness of the C&B carries over to unions of conjunctive
queries with inequalities, and tgds and egds extended with dis-
junction and inequalities (using an appropriate generalization
of the chase) [10, 13, 14].
XML query reformulation. We were able to apply the C&B
method to XML query reformulation, by using a relational en-
coding of queries, views and constraints that are originally writ-
ten against a schema which models the XML tree. Relation-
ships between XML elements (such as parent-child and ancestor-
descendant) are captured by relational tables satisfying certain
constraints (e.g. each child has at most one parent, the descen-
dant table is transitive, etc.). We could show that for a sig-
nificant class of XML queries, the minimal reformulations are
found by running the C&B algorithm on the relational encod-
ing [10, 13, 14]. The encoding turned out to lead to queries and

universal plans of significantly larger size than encountered in
any real-life relational scenarios (as a typical data point, uni-
versal plans of 300 atoms were obtained by chasing queries of
20 atoms). Both the chase and the backchase implementation
were engineered to scale, and the feasibility of the method was
proven in a battery of experiments [10, 12].
Relationship to data integration and non-equivalent rewrit-
ings. The C&B algorithm looks for rewritings that are equiv-
alent (retrieve the same answers as the original query). Under
this semantics, it is more general than previously known algo-
rithms for rewriting using views, because it additionally takes
into account general constraints (tgds and egds). In many inte-
gration scenarios however, there is no equivalent rewriting and
one is content to approximate the original query q by finding a
maximally-contained rewriting. Significant research has been
carried out on algorithms which find such rewritings for con-
junctive queries. Contained rewritings are unions of conjunc-
tive queries expressed exclusively in terms of the views and
contained in q [15, 21]. Maximally-contained rewritings are
contained rewritings which contain any other contained rewrit-
ing of q, thus being the best “under-approximation” of q using
the views. The problem was generalized in [7] to replace views
with schema mapping constraints from the source schema to
the target schema, also allowing constraints on the target schema.
[22] generalizes the setting even further, allowing schema map-
pings in both directions, and settling the problem by charting its
decidability boundaries and providing tight complexity bounds.

Although in its basic form the C&B algorithm returns only
equivalent rewritings, it turns out that a simplified version acts
as a dual to the algorithms for finding maximally-contained
rewritings [21], by providing an alternate approximation: the
minimally-containing rewriting. A containing rewriting of q

is a conjunctive query against the views which contains q. A
minimally-containing rewriting is a containing rewriting which
is contained in any other containing rewriting of q. It is thus
the best “over-approximation” of q. The simplified algorithm
is the following:

1. Chase q and obtain the universal plan U .
2. Restrict the body of U only to the vocabulary of views,

obtaining a query M .
3. If M is safe (i.e., its head variables appear in the body),

output M , otherwise output “no containing rewriting of
q exists”.

This simplification of C&B skips the backchase minimization
stage. The following result states that the algorithm is sound
and complete for finding the minimally-containing rewriting,
which is unique up to equivalence:

Theorem 4 Assume that the chase of q terminates. Then q ad-
mits a minimally-containing rewriting if and only if the simpli-
fied C&B algorithm outputs such a rewriting. Moreover, the
minimally-containing rewriting is unique up to equivalence.

Relationship to data exchange There are several interesting
parallels (and differences) between the C&B method and the
formalism for data exchange that was developed in [18, 19].
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The data exchange problem is the problem of materializing an
instance of a target schema based on an instance of a source
schema, and based on a set of source-to-target constraints, rep-
resenting the mapping between the two schemas.

First of all, both methods make use of the chase in a fun-
damental way. The C&B method applies the chase to construct
the universal plan, while in data exchange, the chase is applied
on the source instance to construct a universal solution. Philo-
sophically, the concepts of universal plan and universal solution
are somewhat similar and play equally important roles. The
universal plan defines the space of all minimal reformulations
while the universal solution is the “best” representative for the
space of all possible target instances (or, solutions).

Second, both methods use minimization: in C&B, to gen-
erate all the minimal reformulations, in data exchange, to com-
pute the smallest universal solution (the core of the universal
solutions [19]). In C&B, minimization is performed under con-
straints and we look for multiple and non-isomorphic refor-
mulations that are minimal under constraints. In contrast, in
data exchange there is only one core of the universal solutions
(up to isomorphism). This core is defined independently of the
constraints and represents the minimal form of a universal so-
lution, under homomorphisms which preserve the values that
appear in the source instance. Finally, another (important) dif-
ference is the complexity of the minimization process in the
two cases. In data exchange, computing the core of the univer-
sal solutions has polynomial-time algorithms in several cases
of practical relevance [19, 20]. In the more general setting of
C&B, minimization is exponential (NP-hard even without con-
straints, when it becomes tableau minimization [9]).

7 Conclusion

Many classical database problems such as semantic optimiza-
tion (i.e. rewriting using semantic constraints), minimization,
rewriting using views, equivalent query reformulation in data
publishing and integration, are particular instances of query re-
formulation under constraints. While the general reformula-
tion problem is undecidable, the least restrictive known con-
ditions which are sufficient to guarantee decidability (namely
weak acyclicity of the constraint set) hold in numerous prac-
tical scenarios. Under these conditions, C&B is a sound and
complete algorithm, thus providing a uniform solution to the
above problems (with applicability to object-oriented and XML
settings). Our experiments show that, with careful engineering
of the chase and backchase phases, the C&B method is viable
in practice. An online demo of the C&B method can be found
at http://cb.ucsd.edu.
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A Some Definitions

We review the standard definitions of conjunctive queries, ho-
momorphisms, containment mappings and chase.

A conjunctive query q over a schema Σ is an expression
of the form q(x) : − φ(x,y) where φ(x,y) is a conjunction
of atomic formulas (i.e., relational atoms, also called subgoals)
over Σ. We follow the usual notation and separate the atoms
in a query by commas. We call q(x) the head and φ(x,y)
the body. We use a notation such as x for a vector of variables
x1, . . . , xk (not necessarily distinct). Every variable in the head
must appear in the body(i.e., the query must be safe). The set
of variables in y is assumed to be existentially quantified.

Given two conjunctions φ(u) and ψ(v) of atomic formulas,
a homomorphism from φ(u) to ψ(v) is a mapping h from the
set of variables in u to the set of variables in v such that for ev-
ery atom R(u1, . . . , un) of φ, the atom R(h(u1), . . . , h(un))
is in ψ. Given two conjunctive queries q1(x) : − φ(x,y)
and q2(x

′) : − ψ(x′,y′), a containment mapping from q1 to
q2 is a homomorphism h from φ(x,y) to ψ(x′,y′) such that
h(x) = x

′. A classical result [9] states that a necessary and
sufficient condition for the containment (under all instances) of
a conjunctive query q1 into a conjunctive query q2 is the exis-
tence of a containment mapping from q2 to q1.

Assume a conjunctive query q(x) : − φ(x,y) and a tgd t

of the form ∀u(α(u) → ∃vβ(u,v)). Assume without loss of
generality that v and the query have no variables in common.
The chase of q with t is applicable if there is a homomorphism
h from α(u) to the body of q, and moreover, if h cannot be
extended to a homomorphism h′ from α(u) ∧ β(u,v) to the
body of q. In that case, a chase step of q with t and h is a
rewrite of q into q′(x) : − φ(x,y) ∧ β(h(u),v).

Similarly, we can define a chase step with an egd. As-
sume a conjunctive query q as before and an egd e of the form
∀u(α(u) → (u1 = u2)). The chase of q with e is applicable if
there is a homomorphism h from α(u) to φ(x,y) so that h(u1)
and h(u2) are not the same variable. In that case, a chase step
of q with e and h is a rewrite of q into a query q′ which is the
same as q except that all occurrences of the variable h(u1) (in
the head and in the body) are replaced by the variable h(u2).
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