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Abstract— Many real-world applications deal with uncertain
or missing data, prompting a surge of activity in the area of
probabilistic databases. A shortcoming of prior work is the
assumption that an appropriate probabilistic model, along with
the necessary probability distributions, is given. We address this
shortcoming by presenting a framework for learning a set of
inference ensembles, termed meta-rule semi-lattices, or MRSL,
from the complete portion of the data. We use the MRSL to
infer probability distributions for missing data, and demonstrate
experimentally that high accuracy is achieved when a single
attribute value is missing per tuple. We next propose an inference
algorithm based on Gibbs sampling that accurately predicts
the probability distribution for multiple missing values. We also
develop an optimization that greatly improves performance of
multi-attribute inference for collections of tuples, while maintain-
ing high accuracy. Finally, we develop an experimental frame-
work to evaluate the efficiency and accuracy of our approach.

I. INTRODUCTION

Many real-world applications deal with uncertain or miss-

ing data. For example, data integration often has to deal

with inconsistencies across sources, while in scientific data

management experimental results are often noisy or missing.

Nevertheless, it is important for such applications to effectively

manage the uncertain information being collected, motivating

research on probabilistic databases.

Most research on probabilistic databases assumes that a

probability distribution over missing or noisy values is known,

presumably supplied by a domain expert. However, such quan-

titative input rarely exists in practice. The goal of this paper,

therefore, is to provide a framework for deriving probability

distributions for the missing data.

As an example, consider the incomplete relation R
in Fig. 1 that describes a fictional dataset of per-

sonal profiles in a matchmaking site such as eHar-

mony.com. Profiles are described by four non-key at-

tributes drawn from discrete domains: age ∈ {20, 30, 40},

income ∈ {$50K, $100K}, education ∈ {HS ,BS ,MS},

and netWorth ∈ {$100K, $500K}, with ”?”’ indicating a

missing value. Analyzing this relation, we notice that some

trends hold among known values, e.g., that higher age often

co-occurs with higher income (inc), and that higher income

often co-occurs with higher net worth (nw). Using this type

of information, we wish to produce a collection of predictions

(estimations) of discrete probability distributions ∆t, one for

each incomplete tuple t ∈ R. ∆t consists of all possible

id age edu inc nw

t1 20 HS ? ?

t2 20 BS 50K 100K 

t3 20 ? 50K ?

t4 20 HS 100K 500K 

t5 20 ? ? ?

t6 20 HS 50K 100K 

t7 20 HS 50K 500K 

t8 ? HS ? ?

t9 30 BS 100K 100K 

t10 30 ? 100K ?

t11 30 HS ? ?

t12 30 MS ? ?

t13 40 BS 100K 100K 

t14 40 HS ? ?

t15 40 BS 50K 500K 

t16 40 HS ? 500K 

t17 40 HS 100K 500K 

id age edu inc nw prob

t12.1 30 MS 50K 100K 0.30

t12.2 30 MS 50K 500K 0.45

t12.3 30 MS 100K 100K 0.10

t12.4 30 MS 100K 500K 0.15

Fig. 1. An incomplete relation R and part of a probabilistic model.

combinations of values of the attributes missing in t, each

annotated with a probability, and with the probabilities adding

to 1. Each combination of values corresponds to a possible

complete version of t, hence these combinations are mutually

exclusive. For example, ∆t12 is given in a call-out in Fig. 1.

A. Background

Probabilistic databases The semantics of a probabilistic

database is a probability distribution on a set of possible

worlds, these being complete and fully determined (i.e., usual)

database instances [26]. Since the number of such possible

worlds may be large, this is too unwieldy to be represented and

manipulated as such. Therefore, following some early work

in [14], [22], [28], much research has focused on compact

representations for probabilistic databases and on efficient

query answering algorithms over such compact representa-

tions, e.g., [2], [3], [7], [16], [20], [24], [25], [27].

By making various independence assumptions, these ap-

proaches restrict the probability space from that of all possible

worlds to combinations of much smaller probability spaces,

leading to more compact representations. For example, in

the independent-tuple model [7] each tuple is included in a

possible world with some probability, independently of the

others. In the disjoint-independent model [8] blocks of tuples

are independent of each other, with each block consisting of

a probability distribution on mutually exclusive tuples.



Probabilistic databases that we derive in this paper adhere to

the disjoint-independent model. As illustrated in Fig. 1, each

incomplete tuple gives rise to a distribution on a block of

complete tuples. A possible world is obtained by choosing

one complete tuple from each block, e.g., t12.2 is chosen

from the block that corresponds to t12. The assumption that

these choices are independent allows one to compute the

probabilities of possible worlds or of query answers [8].

Learning a probabilistic model We now consider the

question that is central to this paper. Given an incomplete

database, which probabilistic model does it obey? A reason-

able assumption is that each tuple in the observed relational

dataset was generated independently and by the same statis-

tical process. However, even if tuples are jointly independent

there may exist correlations between the values of the different

attributes in each tuple. A further reasonable and, in fact,

common, assumption is that attributes are random variables

of a Bayesian network (BN) or of a Markov network (MN).

Graphical models such as BN and MN represent a joint

distribution over a set of random variables. When available,

these models may be used for exact statistical inference. An

important drawback of these models, however, is that they are

computationally very expensive to learn [21]. The structure

of a BN is typically learned using one of three approaches.

Constraint-based approaches identify independencies that hold

over the data, and are sensitive to failures of individual

independence tests. Score-based methods overcome this sensi-

tivity, addressing learning as a model-selection problem, while

Bayesian model averaging methods generate an ensemble of

possible structures. The latter two methods select models from

a hypothesis space of super-exponential size in the number of

random variables — 2O(n2), and often resort to approximation.

Even if we know the probability model, the question re-

mains how to effectively derive the probability values. One

approach proposed in the literature is to obtain subjective

weights and scores from domain experts and to then work

them into a statistical model [10]. However, such quantitative

input from domain experts is frequently unavailable.

Dependency networks The approach we take in this paper

is to use dependency networks (DN) to learn the probability

model [17]. Unlike exact representations such as BN and MN,

a DN is an approximate representation; it approximates the

join distribution with a set of conditional probability distri-

butions (CPDs) that are learned independently. This learning

approach is significantly more efficient than the learning of

exact models, because of its locality. However, because CPDs

are learned independently, a DN is not guaranteed to specify

a consistent probability distribution, in the sense that there is

no joint distribution from which each of the local CPDs may

be obtained via the rules of probability. For example, given a

set of random variables x, it is possible that the estimator of

p(x1|x−{x1}) discards x2 as an input, whereas the estimator

p(x2|x − {x2}) retains x1 as an input. Nonetheless, if the

dataset is sufficiently large, strong inconsistencies will be rare

because each CPD is learned from the same data, which is,

in turn, generated from a single joint distribution. Importantly,

Gibbs sampling inference techniques can be used to recover

an approximation of the full joint probability distribution,

regardless of the consistency of the local CPDs. This is

justified both formally and experimentally in [17].

To improve consistency, ultimately improving the accuracy

of inference, we use an ensemble based on Bayesian vot-

ing [11] to represent each local CPD. In particular, we mine

the dataset for association rules, and use combinations of

association rules, termed meta-rules, as CPD estimates. One or

several meta-rules will be applicable to any inference task. We

arrange meta-rules in a hierarchy, termed MRSL (for meta-rule

semi-lattice). This hierarchy acts as an ensemble, and is used

for inferring probability distributions over the missing values.

Our approach turns out to scale well and to produce accurate

estimates in a manner that is largely independent of network

topology. We now give a detailed overview of our approach.

B. Our Approach

In this paper we will assume that the observed incomplete

database consists of a single relation. If the database contains

multiple incomplete relations, we may apply our techniques

separately to each one. In addition, we may exploit correlations

that hold across relations, by computing a primary-foreign key

join when appropriate.

Input We start with a relation R as input. We assume that

R’s tuples have been generated separately and independently

by the same process. Importantly, we do not need to assume

that this process follows a specific probabilistic model. Some

of the tuples in R are complete, and some have one or more

missing attribute values, and are hence incomplete. We do

not assume that “how many” and “which” attribute values are

missing follows a specific probabilistic model.

Output Given the relation R, our approach ultimately

produces a collection of predictions (estimations) of discrete

probability distributions ∆t, one for each incomplete tuple t ∈
R. ∆t consists of the set of all possible combinations of values

of the attributes missing in t, each annotated with a probability,

and with probabilities adding to 1. Each combination of values

corresponds to a possible complete version of t, and these

combinations are mutually exclusive. Hence, as we discussed

earlier, the output of our approach is a disjoint-independent

probabilistic model associated with R.

In order to estimate probability distributions over the miss-

ing values in each incomplete tuple in R, we must carry out

two steps. During the learning phase, an inference ensemble

is built based on the complete portion of the data. During the

inference phase, the ensemble is used to estimate probability

distributions for incomplete tuples.

Learning phase Using the portion of R that consists

of complete tuples, we build a model that is later used for

inferring probabilities over the missing values in incomplete

tuples. A separate model is built for each attribute a in R, and

captures an estimate of the conditional probability distribution

of the values of a, given values of some, or all, other attributes.

We begin the learning phase by mining frequent itemsets

and association rules of attribute-value pairs [1] from the com-



P (age)

0.31 0.38 0.32

P (age | edu = HS)

0.15 0.70 0.15

P (age | inc = 50K)

0.31 0.41 0.28

P (age | inc = 100K)

0.21 0.21 0.58

P (age | nw = 500K)

0.31 0.38 0.32

P (age | edu = HS  inc = 50K)

0.15 0.70 0.15

W = 0.30 

W = 0.61 

W = 1.0 

W = 0.41 W = 0.43 

W = 0.57 

age 20 30 40

Fig. 2. MRSL for age.

plete tuples of R. We then combine the mined association rules

into meta-rules. (These are similar to sets of rule CPDs [21]

and could be used to learn the parameters of an underlying

Bayesian network if its topology were known.) Finally, we

organize all the meta-rules corresponding to one attribute

into a Meta-Rule Semi-Lattice (MRSL), which is ordered by

subsumption. Fig. 2 presents an MRSL for the attribute age.

The top-level meta-rule, P (age), lists the frequencies of the

values of age in the known portion of the dataset. Meta-

rules at lower levels of the semi-lattice refine the estimates

by progressively considering more evidence, e.g., the meta-

rule P (age|edu = HS) refines the estimate of the CPD for

the tuples in which edu = HS . Meta-rules are annotated with

weights that quantify the support of the meta-rule, i.e., the

portion of the dataset from which the meta-rule was mined.

Intuitively, meta-rules with a higher weight are supported by

a larger portion of the dataset. Only rules that pass a specified

support threshold are included in the MRSL. MRSLs are the

result of the learning phase of our approach.

Inference phase Next, for each incomplete tuple t ∈ R
with a missing value for a single attribute a, we use the MRSL

corresponding to a to estimate the conditional probability

distribution ∆t,a for the possible values of a in t. Consider

for example t1 : 〈age =?, edu = HS, inc = 50K,nw =
500K〉. We identify five meta-rules in the MRSL in Fig. 2 that

match t1: P (age), P (age|edu = HS), P (age|inc = 50K),
P (age|nw = 500K), and P (age|edu = HS ∧ inc = 50K).
When multiple meta-rules match, we use voting techniques to

generate the estimate ∆t,age. We may use all the meta-rules

that match, or we may use the most specific applicable meta-

rules, i.e., meta-rules that do not subsume any other meta-rules

among the matches. In either case each selected meta-rule

contributes a vote to the final estimate, and we may combine

the votes in different ways, e.g., with weighted voting or with

averaging. Given its use of voting techniques for inference, the

MRSL is an example of an inference ensemble [11]. The choice

of which meta-rules to use, and which voting technique to

employ, will have an impact on the accuracy of the estimated

CPD. For example, for tuple t1, averaging the predictions of

all applicable meta-rules produces the CPD 〈0.25, 0.51, 0.24〉,
while weighted voting of the most specific meta-rules produces

the CPD 〈0.26, 0.48, 0.26〉. We will measure the impact of

voter choice and voting method on accuracy in the evaluation.

Suppose now that we are given tuple t2 : 〈age =?, edu =
?, inc = 50K,nw = 500K〉, and that we need to estimate the

joint probability distribution over two attributes, age and edu.

One approach would be to estimate the CPDs for age and

for edu separately, and then to compute P (age, edu|inc =
50K ∧ nw = 500K) = P (age|inc = 50K ∧ nw = 500K)×
P (edu|inc = 50K ∧ nw = 500K), but that would rely on

independence assumptions that are not warranted. Instead, we

use ordered Gibbs sampling [17] using both the MRSL for age

and that for edu to produce an estimate of ∆t.

We optimize the performance of inference based on the

observation that many similar computations are performed by

Gibbs sampling while computing ∆u and ∆v when u and v

are related by subsumption. This suggests implementing multi-

attribute inference holistically for the entire R, and caching

the results of partial computations for re-use. The resulting

optimization turns out to be very effective. This completes

the inference phase of our approach and results in the desired

disjoint-independent probabilistic model.

Experimental evaluation Although our approach does not

need to make statistical assumptions about how each tuple

is generated, and how missing values arose, such assumption

are needed for experimental evaluation. In order to judiciously

evaluate the scalability and accuracy of our approach, we de-

fine an experimental benchmark that generates data according

to Bayesian networks of various sizes and topologies. We treat

the occurrences of missing values uniformly.

Our experimental framework takes as input the description

of the topology of a Bayesian network, and generates an

instance of the network by randomly selecting probability

distributions for each random variable in accordance with the

topology. Given a BN instance, we sample it to generate a set

of complete tuples of specified size. The sample is then split

into training and test. MRSL is learned from the training set.

The test set is further processed, and one or more attribute

values are replaced by a “?” in each tuple. Inference is then

run over the test set, using the MRSL built on the training set.

The accuracy of inferred probability distributions is evaluated

by comparing them to the corresponding true probability dis-

tributions of the Bayesian network that generated the dataset.

C. Overview of Contributions and Roadmap

This paper makes the following contributions. We develop

the Meta-Rule Semi-Lattice (MRSL), an inference ensemble

used for deriving probabilistic databases starting from in-

complete data (Section II). We demonstrate how MRSL can

be learned from the known (complete) portion of the data

(Section III), and how it can be used to estimate probability

distributions for a single unknown attribute value (Section IV).

We develop a sampling-based inference approach used when

multiple attribute values are unknown, and develop an opti-

mization that greatly improves the performance of inference

over entire databases (Section V). We provide an extensive

experimental evaluation of the efficiency and effectiveness of

our approach (Section VI), and show that it is both scalable



and that it makes accurate probability estimates. We describe

related work in Section VII and conclude in Section VIII.

II. MODEL

This section defines the concepts used in the remainder of

the paper. First, we define the notion of (in)complete tuples,

then introduce meta-rules and meta-rule semi-lattices that will

be used in the sequel to derive probability distributions for

incomplete tuples.

Database We assume that a database consists of a single

relation R with a set A of attributes, each with a corresponding

domain of values. We limit our discussion to discrete finite-

valued attributes, and propose to break up the domains of

continuous attributes into sub-ranges, treating each sub-range

as a discrete value. We distinguish two types of tuples in R.

Definition 2.1 (Incomplete Tuple): An incomplete tuple t is

an assignment of values to a subset of attributes A ⊂ A.

Missing attribute values are denoted with “?”. We refer to A

as the complete portion of t.

Definition 2.2 (Complete Tuple or Point): A complete tu-

ple (also called a point) is an assignment of values to all

attributes in A.

For example, in Fig. 1 t1 : 〈age = 20, edu = HS, inc =
?, nw =?〉 is an incomplete tuple, and t2 : 〈age = 20, edu =
BS, inc = 50K,nw = 100K〉 is a point (complete tuple).

Meta-Rules We start by introducing the notions of support,

subsumption and association rules.

We view R as consisting of two disjoint subsets of tuples

– the complete part Rc, consisting of the points in R, and the

incomplete part Ri, consisting of the incomplete tuples.

Definition 2.3 (Support): We say that point p ∈ Rc

matches incomplete tuple t ∈ Ri if p and t agree on the

values of attributes in the complete portion of t. The support

of t is the fraction of points in Rc that match t. When Rc is

known from context we denote this value by supp(t).

For example, in Fig. 1 point t4 supports tuple t1, while point

t2 does not. In fact, 3 out of 8 points in Rc (t4, t6, and t7)

support t1, and so supp(t1) =
3
8 .

Definition 2.4 (Subsumption): Given incomplete tuples t1
and t2, we say that t1 subsumes t2 if the complete portion

of t1 is a proper subset of the complete portion of t2, i.e.,

if t2 assigns the same values to the attributes to which t1
also assigns values, and also makes some additional value

assignments. We denote this by t2 ≺ t1.

To continue with our example, t1 ≺ t5 and t3 ≺ t5. No

subsumption holds between t1 and t3.

We are now ready to define our notion of an association

rule, from which our meta-rules are constructed. 1

Definition 2.5 (Association Rule): An association rule r is

a pair of tuples 〈t1, t2〉, where t1 ≺ t2. We refer to the set

of attribute value assignments that are common to t1 and t2
as the body of the rule, denoted body(r). (In fact, body(r) is

precisely the complete part of tuple t2.) The set of attribute

1This definition is slightly different from the one used in frequent itemset
mining [1], since an itemset in our setting is the complete part of a tuple.

value assignments made by t1 but not by t2 is the head of

the rule, denoted head(r). We also define confidence of an

association rule conf (r) = supp(t1)
supp(t2)

.

Returning to our example, given t3 and t5, we may define

an association rule r : 〈t3, t5〉, with body(r) = {age = 20}
and head(r) = {inc = 50K}. For now, we are interested

in association rules with a single attribute value assignment

in the head. Note that confidence estimates the conditional

probability that the assignment in the head takes place, given

the evidence in the body.

We next combine association rules that have the same body

and assign different values to the same attribute in the head

to form a meta-rule.

Definition 2.6 (Meta-Rule): A meta-rule m is a set of asso-

ciation rules {r1, . . . , rn}, where all ri have the same attribute

value assignments in the body, but assign different values to

the same attribute in the head. We overload notation and use

body(m) to denote the (common) attribute value assignments

in the body of m, and head(m) to denote the name of the

attribute in the head (rather than an attribute value assignment,

since the values are different).

An estimated CPD of m, denoted ∆(m), is an estimate of the

conditional probability distribution over the entire domain of

values for head(m), with body(m) given as evidence.

Consider tuples t1, t8, t11, and t14 in Fig. 1, and suppose

that supp(t1) = 0.06, supp(t8) = 0.41, supp(t11) = 0.29,

and supp(t14) = 0.06. The following subsumption relation-

ships hold between the tuples: t1 ≺ t8, t11 ≺ t8, and t14 ≺ t8.

Note that supp(t8) = supp(t1) + supp(t11) + supp(t14),
because t1, t11, and t14 agree on edu = HS, and together

enumerate all possible assignments of age. We may use the

four tuples to generate three association rules: r1 : 〈t1, t8〉,
r2 : 〈t11, t8〉, and r3 : 〈t14, t8〉. Noticing that the rules agree on

the body and assign different values to the same attribute in the

head, we combine them into the meta-rule m = {r1, r2, r3},

with head(m) = age and body(m) = {edu = HS}. Finally,

we compute ∆(m) that estimates P (age|edu = HS) =
[ 0.060.41 ,

0.29
0.41 ,

0.06
0.41 ] = [0.15, 0.70, 0.15] (See Fig. 2). We also

record the support of t8 as the support of m.

Meta-Rule Semi-Lattices Meta-rules are grouped together

to form semi-lattices. These will be used to derive probability

distributions for incomplete tuples. The notion of meta-rule

subsumption is used to determine the shape of the semi-lattice.

Definition 2.7 (Meta-Rule Subsumption): Given meta-rules

m1 and m2 we say that m1 subsumes m2, denoted m2 ≺ m1,

if head(m2) = head(m1) and body(m2) ≺ body(m1).

The meta-rule semi-lattice is now defined as follows.

Definition 2.8 (Meta-Rule Semi-Lattice): For each attribute

a, its meta-rule semi-lattice, or MRSLa, is a partial order

〈M,≺〉, where M is the set of meta-rules with head attribute

a, and ≺ is the meta-rule subsumption relationship.

An example of an MRSL that includes the meta-rules derived

above is given in Fig. 2. Finally, we define the MRSL model.

Definition 2.9 (MRSL Model): Given a relation R, an

MRSL model is a set of MRSLs, one for each attribute in R.



Algorithm 1 MRSL learning algorithm.

Require: Complete relation Rc, support threshold θ, maxItemsets.
1: MRSL = ∅
2: freqItemsets = ComputeFreqItemsets(θ,maxItemsets)
3: for a ∈ Attributes(Rc) do

4: assocRules = ComputeAssocRules(a, freqItemsets)
5: metaRules = ComputeMetaRules(assocRules)
6: MRSLa = ComputeSubsumption(metaRules)
7: Add(MRSL,MRSLa)
8: end for

9: return MRSL

III. LEARNING THE MODEL

The algorithmic approach of this paper uses frequent item-

sets and association rules as basic building blocks, and we

assume for ease of exposition that these are discovered from

the complete portion of the data, Rc. In practice, the complete

portion of incomplete tuples in Ri may also be used to

discover association rules. As is customary in frequent itemset

mining (see, e.g., [1]), an itemset is recorded if its support

passes a support threshold.

Algorithm 1 presents the MRSL learning algorithm. The

algorithm takes a complete relation Rc as input and outputs

the MRSL model, a set containing a meta-rule semi-lattice for

each attribute in Rc (Def. 2.9). Support threshold θ and an

integer maxItemsets are also supplied as arguments.

As the first step, in a call to ComputeFreqItemsets, fre-

quent itemsets of attribute-value pairs are identified in the

dataset. This procedure implements Apriori [1], a standard

frequent itemset mining algorithm. However, the essence of

our method is not dependent on which frequent itemset mining

algorithm is used. Apriori is a bottom-up algorithm that

starts with frequent 1-itemsets, and iteratively builds frequent

itemsets of size k by joining together appropriate pairs of

itemsets of size k − 1, and verifying that their frequency

passes the support threshold. The algorithm terminates when

no frequent itemsets are identified at a particular round k.

Run-time of Apriori at round k is quadratic in the number

of frequent itemsets found at round k − 1. In order to

control execution time, we modify the algorithm slightly by

introducing another termination condition, namely, we stop

after round k if either no new frequent itemsets are found, or

if more than maxItemsets frequent itemsets are found at that

round. We set maxItemsets = 1000 in our implementation.

We empirically determined that this setting effectively controls

model-building time, without a significant effect on accuracy.

Having identified frequent itemsets, the algorithm proceeds

to build a meta-rule semi-lattice for each attribute a. First,

in a call to ComputeAssocRules, association rules with a as

the head attribute are identified. We compute association rules

irrespective of their confidence, i.e., there is no confidence

threshold in our algorithm (see Def. 2.5).

Next, ComputeMetaRules is invoked and identifies groups

of association rules with the same attribute-value assignments

in the body, and with different values assigned to the head

attribute a. These association rules are grouped into a sin-

gle meta-rule. Recall that each association rule is a pair

Algorithm 2 Single-attribute inference algorithm.

Require: Incomplete tuple t (with missing a value), MRSLa, vChoice,
vScheme.

1: voters = GetMatchingMetaRules(t,MRSLa, vChoice)
2: if vScheme = weighted then

3: cpd = WeightedAverage(voters)
4: else
5: cpd = Average(voters)
6: end if

7: return cpd

of frequent itemsets (or incomplete tuples), and association

rules are grouped into a meta-rule if they agree on the tuple

that represents the body (see Def. 2.6 and the example that

illustrates it). We record the support of the frequent itemset

that corresponds to the body of the meta-rule as that meta-

rule’s support. Fig. 2 lists these as weights above each meta-

rule. For example, the weight of the meta-rule that computes

P (age|edu = HS) is w = 0.41, which is precisely the support

of the frequent itemset edu = HS in the dataset.

Importantly, for a particular assignment of attribute values in

the body, not all values of the head attribute may be accounted

for, because some frequent itemsets do not pass the support

threshold θ. As a result, supports of the association rules may

not sum to 1. Our inference algorithms in Sections IV and V

require that all probability distributions be positive, i.e., that

each value in the domain of a have a non-zero probability. To

produce a valid positive CPD estimate for each meta-rule, we

smooth and re-normalize each CPD, assigning a probability of

at least 0.00001 to each value, and distributing any remaining

probability mass equally among all values of a.

Finally, ComputeSubsumption is invoked, and outputs an

MRSL according to meta-rule subsumption (Def. 2.7). An

example of the MRSL for attribute age is given in Fig. 2.

We will experimentally evaluate the performance of Algo-

rithm 1, and the size of the model in Section VI-B.

IV. INFERENCE FOR A SINGLE ATTRIBUTE

Algorithm 2 presents the inference procedure for tuples

with a single missing value. The algorithm takes as input

an incomplete tuple t with a missing value for attribute a,

MRSLa, a voter selection mechanism vChoice (with possible

values all and best), and a voting scheme vScheme (with

possible values weighted and averaged). Other voter selection

mechanisms and voting schemes exist, and we implement two

reasonable options for each. The output cpd is an estimate of

the probability distribution over the values of a in t.

First, GetMatchingMetaRules is invoked, and returns the

set of meta-rules from MRSLa that match tuple t, i.e., meta-

rules in which the complete portion of the body makes the

same attribute-value assignments as does t. If vChoice = all,

all matching meta-rules are returned; if vChoice = best,

only meta-rules that do not subsume any other matches are

returned. Next, depending on whether the voting scheme is

averaged or weighted, probability distributions of the voters

are either averaged, position by position, or a weighted average

is computed, with the support of the meta-rule serving as the



weight, and the computed CPD estimate is returned. We will

experimentally evaluate the impact of different voter choices

and voting schemes on run-time performance and accuracy of

inference in Section VI-C.

V. INFERENCE FOR MULTIPLE ATTRIBUTES

In this section we describe a method for estimating the joint

probability distribution for incomplete tuples with multiple

missing values. We first give some background on Gibbs sam-

pling and present the basic version of multi-attribute inference

in our setting (Section V-A) that takes a single incomplete tuple

as input. We then argue that multi-attribute inference may be

optimized for a workload of incomplete tuples, and present the

tuple-DAG optimization (Section V-B).

Suppose that we are interested in estimating the probabil-

ity distribution over the missing values of inc and nw in

incomplete tuple t12 (Fig. 1). One approach is to estimate

the values of inc and nw independently, using the inference

procedure of Section IV. However, since attributes are often

non-independent in practice, this may result in an inaccurate

estimate. Instead, we propose to use Gibbs sampling over

MRSL models to estimate the joint probability distribution over

the missing values simultaneously.

A. Gibbs Sampling

Gibbs sampling is commonly used to approximate the

joint probability distribution over multiple variables when

the conditional probability distribution over each variable is

known. Our MRSL model described in earlier sections fits

this application scenario exactly. A variant called ordered

Gibbs sampling operates as follows. Start with a valid random

assignment of attribute values. Then, repeatedly cycle through

each attribute a, resampling it in accordance with the MRSLa

(i.e., sampling from the estimated CPD for a, with all other

attributes given as evidence). This procedure defines a Markov

chain with a unique stationary joint distribution that can be

reached from any initial state of the chain [17]. The first

few tuples in the sampling are discarded, which is referred

to as the burn-in period. The joint probability distribution can

be estimated reliably after a sufficient number of iterations

following the burn-in. The length of burn-in (B), and the

subsequent number of iterations (N ), may be estimated using

standard techniques.

A Gibbs sampler converges to the true joint probability dis-

tribution if all local distributions are positive, i.e., they define

transitions between all pairs of states, and if the local models

are consistent, i.e., together they define a valid probabilistic

space. As we will demonstrate in the experimental evaluation

in Section VI-C, MRSL models make accurate predictions for

any attribute – a good indication of consistency.

Sampling over the entire probabilistic space can be prob-

lematic. Suppose that we want to run inference for t1 : 〈age =
20, edu = HS, inc =?, edu =?〉. The support of the complete

portion of t1 in our dataset is 0.06, i.e., only 6% of the sampled

points will be relevant to t1. Assuming that N points that

match t1 are required to compute P (inc, edu|age = 20, edu =

t
1

20 HS ? ?t
3

20 ? 50K ?

t
5

20 ? ? ? t
8

? HS ? ?

t
11 

30 HS ? ?

t
12

30 MS ? ?

Fig. 3. A tuple DAG used in Gibbs sampling.

HS) reliably, we will have to draw N
0.06 samples, wasting

94% of the samples. A standard way to address this is to

only sample from the part of the space where age = 20 and

edu = HS. During sampling age and edu remain fixed, and

the sampler cycles through the remaining attributes.

Sampling from the entire probabilistic space, which we call

all-at-a-time, and sampling individually for each tuple, which

we call tuple-at-a-time, are two possible approaches. There

are also other options available. For example, suppose that we

want to run inference for tuples t1 and t8 in Fig. 1. We leverage

tuple subsumption (Def. 2.4) and observe that points generated

when sampling tuple-at-a-time for t8 may also be used to

estimate the CPD for the missing values in t1, because t1 ≺ t8.

In fact, all-at-a-time sampling may be viewed as sampling

for the tuple t∗ = 〈age =?, edu =?, inc =?, nw =?〉, and

samples generated in this way may be used to estimate the

CPD for any tuple t, since t ≺ t∗.

B. Workload-driven Sampling

Based on the observation that incomplete tuples may reuse

samples from tuples that subsume them, we propose to build

the tuple DAG, a data structure based on tuple subsumption

(Def. 2.4). Fig. 3 shows the tuple DAG for a subset of the

incomplete tuples in Fig. 1, and Algorithm 3 presents our

workload-driven sampling algorithm.

The algorithm takes as input the MRSL model, a workload

of tuples with multiple missing attributes Ri, and integers B

and N , representing the length of burn-in period and the target

number of samples per tuple, respectively. The output of the

algorithm is a probability distribution over the missing values

for each tuple t ∈ Ri. The algorithm starts by computing a

tuple DAG based on subsumption, and returns the set of roots

– incomplete tuples that are not subsumed by any other tuples.

Then the algorithm visits roots of the DAG in a round-robin

fashion, and, if it encounters a root that has not been sampled

for yet, takes B samples as part of burn-in, and discards those

samples (lines 6-8). Next, a sample is taken and recorded

(line 9), and then the number of samples accumulated by r

so far is checked. When sample size reaches N , sampling

for r completes, its samples are propagated to its subsumees

(line 15), and subsumees are promoted to root status when

appropriate (lines 18-20). Note that when r’s samples are

shared with its subsumee s (in ShareSamples), only samples

that match s are recorded. The algorithm terminates when all

tuples have accumulated N samples.

Note that the DAG in Fig. 3 only has two levels, because

at most three attributes are missing per tuple in our running

example. The DAG can be deeper in relations in which more

attributes are potentially missing. However, we will demon-



Algorithm 3 Workload-driven sampling.

Require: MRSL model, Ri, # samples N , # burn-in samples B
1: {roots is a set of tuples that have no parents in the DAG}
2: completed = ∅
3: roots = ComputeTupleDAG(RI)
4: while roots 6= ∅ do

5: r = GetNext(roots)
6: if NotInitialized(r) then
7: DoSampleDiscard(MRSL, r,B) // run burn-in for r
8: end if

9: DoSample(MRSL, r, 1)
10: if SampleSize(r) = N then
11: Remove(roots, r) // finished sampling for r
12: ComputeCPD(r)
13: Add(completed, r)
14: for s ∈ GetSubsumees(r) do

15: ShareSamples(r, s)
16: if SampleSize(s) = N then

17: Add(completed, s) // finished sampling for s
18: else if IsRoot(s, roots) then

19: Add(roots, s)
20: end if

21: end for
22: end if

23: end while

24: return completed

strate experimentally in Section VI-D that the tuple DAG

optimization results in significant performance improvements

even for relations with few attributes.

VI. EXPERIMENTAL EVALUATION

Our experimental evaluation was performed using a Java

prototype, with all processing done in memory. Experiments

were carried out on Xeon X3450 quad-core 2.66GHz ma-

chines, with 4GB of RAM, running Linux (Fedora 12, 64-bit).

We next describe our experimental framework (Section VI-

A), then present three sets of experiments. The first, described

in Section VI-B, studies the properties of the MRSL model and

shows that the model can be learned in reasonable time, even

for large databases. The second set of experiments, described

in Section VI-C, studies the accuracy and run-time perfor-

mance of inference for a single missing attribute, showing that

high accuracy is indeed achievable in realistic settings. The

last set of experiments in Section VI-D studies the accuracy of

sampling-based inference for multiple missing values per tuple

and demonstrates the performance improvements achieved by

our tuple-DAG optimization.

A. Experimental Framework

Our experimental framework allows us to execute repeatable

experiments, while varying the parameters of the probabilistic

model and of the dataset. In the experiments we assume

the Bayesian network that generated the incomplete relation

is known, allowing us to compare the inferred probability

distribution with the true probability distribution of the BN.

Architecture of the Experimental Framework Our

framework takes as input a description of the topology of

a Bayesian network, specifying the number and names of

random variables, along with a domain of values, and with

a set of parents. First, the BN Instance Generator is invoked

and instantiates network parameters by randomly populating

conditional probability distributions over each variable given

its parents. In all experiments, we randomly generate three

network instances for each network topology, and average all

results over these network instances. This allows us to control

for variation in performance that is due to the particulars of

the probability distributions.

For each network instance, the BN Sampler is invoked and

uses forward sampling ([21] Sec. 12.1) to generate a dataset

according to the specification of the network instance. The

dataset is then split into training (90%) and test (10%) subsets.

For each network instance, we execute three random splits

of the dataset into training and test, and average all results

across splits, thus reducing the variance in reported results.

The training set is used for learning the MRSL model. The test

set is further processed and one or several attributes in each

tuple are replaces with “?”. Which attributes are replaced in a

given tuple is chosen uniformly at random.

Experimental Dataset Our experimental evaluation uses

20 different Bayesian network topologies, divided into two

sets. Properties of the networks are summarized in Table I.

BN1 through BN7 have varying attribute cardinalities and

topologies. BN8 through BN20 have regular topologies, and

all attributes in a particular network have the same cardinality.

Adopting common parameter settings from the literature on

experiments on probabilistic database, our networks have

between 4 and 10 attributes. Attribute cardinality ranges from

2 to 10; recall that when attribute domains are larger we group

the values into a smaller number of buckets.

Note that, although our benchmark uses attributes of

bounded cardinality, our results are applicable to attributes of

high cardinality. The decisive parameter is not the cardinality

of an individual attribute, but rather the size of the Cartesian

product of domains of all unknown attributes (dom. size

in Table I). Our benchmark assumes that the values of all

attributes are potentially unknown, and accommodates the size

of the Cartesian product of domains as high as 500,000. In

a real-life setting this would typically be smaller, as only a

handful of attributes would be missing.

Depth is the length of the longest path in the network graph,

and is 0 when all attributes are independent. We use different

subsets of the 20 networks in different experiments, depending

on the trends that we wish to illustrate.

Measuring Accuracy To quantify the accuracy of infer-

ence, we compare the probability distributions predicted by

MRSL to the true probability distributions of the Bayesian

network, using Kullback-Leibler (KL) divergence [6], a non-

symmetric measure of the difference between two probability

distributions. When the distributions are close the absolute

value of KL divergence is close to zero.

To further examine accuracy, we also compare the most

probable value derived by MRSL to the true most probable,

reported as percentage of correct top-1 guesses. This measure

is naturally sensitive to the particulars of the probability

distributions, since correct top-1 predictions are difficult to

make when the probability distributions are nearly uniform.



TABLE I

CHARACTERISTICS OF 20 BAYESIAN NETWORKS IN OUR EXPERIMENTS.

network num. attrs avg card dom. size depth

BN1 4 4 300 2
BN2 5 4.4 1400 3
BN3 5 5.2 2400 3
BN4 5 5.2 2400 0
BN5 5 5.2 2400 2
BN6 10 2 1024 4
BN7 10 4 518,400 4
BN8 4 2 16 2
BN9 6 2 64 2
BN10 6 4 4096 2
BN11 6 6 46,656 2
BN12 6 8 262,144 2
BN13 6 2 64 6
BN14 6 4 4096 6
BN15 6 6 46,656 6
BN16 6 8 262,144 6
BN17 8 2 256 2
BN18 10 2 1024 2
BN19 10 2 1024 3
BN20 10 2 1024 5

B. Learning the MRSL Model

In this section we present our first set of experiments, which

focus on learning the MRSL from the known portion of the

data, as described in Section III. We study the influence of

training set size and support threshold on two parameters –

the time it takes to learn the MRSL model, in seconds, and

the size of the resulting model, quantified as the total number

of meta-rules. As we will see, even for large data sets, the

learning time is very reasonable (under 10 min), implying that

learning the MRSL from the data as part of an off-line process

is feasible.

We experimented with 7 training set sizes, ranging from

1000 to 100,000 tuples, and with 5 values of support between

0.001 and 0.1. We considered 10 networks in this experiment.

The networks had between 4 and 6 attributes, attribute cardi-

nality from 2 to 8, and domain size from 16 to 262,144.

Fig. 4(a) presents the time taken to build the model as a

function of training set size. The observation points represent

averages across all ten networks, with support fixed at the

median value of 0.02. Actual model building times varied

between 0.01 and 6 sec for training size 1000 (avg 1.3

sec), and between 0.6 and 570 sec for training size 100,000

(avg 86 sec). We observe that model building time increases

linearly with increasing training set size. We also considered

the relationship between model size and training set size, and

noticed that model size stays approximately constant. (Graph

omitted due to space considerations.)

Fig. 4(b) and 4(c) show the relationship between support

and model building time and model size, respectively. Results

are averaged over ten networks, with training set size fixed

at the median 10,000 tuples. We observe that values of both

parameters decrease super-linearly with increasing support,

with model size dropping particularly sharply. This is as

expected, since fewer associations pass the support threshold

as the threshold increases. Actual model building times ranged

between 0.06 and 1.3 sec (avg 0.36 sec) for support 0.1, and

between 0.07 and 230 sec (avg 29 sec) for support 0.001.

The same trends hold for individual networks as for aver-

ages in Fig. 4, with variations largely due to network size. We

also observed that larger domain size usually resulted in longer

model building times, albeit with some exceptions. The depth

and width of the network did not seem to influence either the

model building time or the resulting model size. The lack of a

clear relationship between model building times and network

properties may in part be due to the optimization that we use to

control model building time, where we stop exploring higher-

dimensional itemsets when the number of frequent itemsets

reaches 1000 (see Section III).

C. Inference for a single missing attribute

In our second set of experiments we study the performance

of inference over a single missing variable. Our results show

that the MRSL model may be used to make accurate pre-

dictions of probability distributions in this case. Specifically,

the best-averaged and best-weighted methods achieve highest

accuracy when enough training data is available. As expected,

larger training sets and lower support threshold values allow

for higher accuracy. Interestingly, accuracy correlates with at-

tribute cardinality and with network size, but not with network

topology. Finally, single-attribute inference correlates with

model size, and achieves reasonable run-time performance,

even when the size of the MRSL is large.

In this experiment we used 14 networks. In the first part

of this experiment, we consider how accuracy of inference

depends on the size of the training set, on the support

threshold, on the voting method being used, and on network

characteristics. We experiment with five training set sizes,

ranging from 1000 to 100,000 points, and with five support

thresholds, ranging from 0.001 to 0.1.

Effect of Support, Training Size, and Voting on Accu-

racy We found, as expected, that larger training sets and lower

values of support result in the most accurate model. Table II

presents average accuracy of inference for the networks used in

this experiment, for support of 0.001 and training set of size

100,000 (these settings give highest accuracy), for a variety

of voting methods. By considering average KL values, we

establish that best weighted and best averaged are no less

accurate than the other methods for all networks, and strictly

more accurate for a significant subset of the networks (see

Section IV for a description of the voting methods). The top-

1 accuracy (% of correct guesses of the most likely value) is,

for the most part, in agreement with KL – lower values of KL

correlate with higher top-1 accuracy, and KL values of 0.1 and

below typically lead to top-1 accuracy of over 90%.

We next explore the dependency between accuracy and

training set size, for different voting methods. The left side of

Fig. 5 plots average KL divergence as a function of training

set size, for support = 0.001, which gives highest potential

accuracy. Recall that lower KL values correspond to higher

accuracy. We observe that KL divergence decreases as training

set size increases to 5000 points, and then plateaus. We also
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Fig. 4. Building the MRSL model, results averaged over 10 networks.

TABLE II

ACCURACY OF SINGLE-VARIABLE INFERENCE, FOR SUPPORT = 0.001 AND TRAINING SET SIZE 100,000.

all averaged all weighted best averaged best weighted

network top-1 accuracy KL top-1 accuracy KL top-1 accuracy KL top-1 accuracy KL

BN1 0.76 0.14 0.56 0.25 0.96 0.03 0.96 0.03
BN2 0.7 0.16 0.53 0.24 0.82 0.08 0.78 0.11
BN3 0.69 0.16 0.5 0.25 0.82 0.06 0.8 0.08
BN4 0.93 0.11 0.93 0.15 0.92 0.1 0.92 0.1
BN5 0.61 0.17 0.53 0.2 0.69 0.14 0.63 0.16
BN6 0.79 0.08 0.78 0.1 0.8 0.07 0.79 0.08
BN7 0.64 0.24 0.55 0.3 0.67 0.22 0.63 0.24
BN8 0.83 0.09 0.76 0.14 0.98 0 0.98 0
BN9 0.91 0.01 0.88 0.02 0.98 0 0.98 0
BN10 0.71 0.15 0.54 0.22 0.79 0.1 0.76 0.11
BN11 0.61 0.23 0.41 0.31 0.68 0.17 0.67 0.18
BN12 0.48 0.28 0.3 0.34 0.53 0.26 0.49 0.27
BN17 0.82 0.09 0.81 0.11 0.82 0.08 0.82 0.09
BN18 0.83 0.09 0.81 0.1 0.83 0.08 0.82 0.09

see that KL values are lowest for best averaged and best

weighted voting methods, while the all averaged and all

weighted outperform the other two methods when the sample

size is small. This is because at low sample sizes training data

is subject to high variance, and the all methods deal with

variance more gracefully because they take more votes into

account. On the other hand, the best methods are more accurate

for larger training sets, because they model the probability

space more closely, i.e., they have lower bias [12]. The right

side of Fig. 5 presents average top-1 accuracy as a function

of training set size, for support = 0.001. Here, we observe

the same trend, namely, that best averaged and best weighted

are most accurate with a training set size of at least 5000.

Fig. 6 plots KL divergence and top-1 accuracy as a function

of support, for training sets of size 100, 000, which corre-

sponds to highest potential accuracy. Lower support thresholds

lead to higher accuracy. Accuracy is highest at support =
0.001, with best averaged and best weighted voting.

Effect of Network Properties on Accuracy We now turn

to the effect that various properties of the networks have on

the accuracy of the MRSL model. The following experiments

are carried out with training sets of size 100,000, support =

0.001, and the best averaged voting method. The networks

used in this experiment are represented graphically in Fig. 7.

Fig. 8(a) explores the effect of network topology on accuracy

for networks BN18, BN19, and BN20. These networks each

represent 10 attributes, and all attributes have cardinality 2. We

BN19 (card=2)

BN20 (card=2)

BN8 (card=2) BN9 (card=2)

BN17 (card=2)

BN13 (card=2)

BN14 (card=4)

BN15 (card=6)

BN16 (card=8)

BN18 (card=2)

Fig. 7. Properties of a subset of the Bayesian networks.

observe no difference in accuracy among these networks, and

conclude that topology does not directly influence accuracy of

inference, at least not for the networks we considered.

Fig. 8(b) considers the effect of network size on accuracy for

crown-shaped networks BN8, BN9, BN17, and BN18. The

networks have similar topology and the same attribute cardi-

nality, and differ only in the number of attributes (size). We

observe that, for crown-shaped networks, accuracy depends on

size, with smaller networks achieving higher accuracy.

Fig. 8(c) plots the effect of attribute cardinality on accuracy

for line-shaped networks BN13, BN14, BN15, and BN16,

each containing 6 attributes with cardinality varying from 2

to 8. We observe that, for these networks, accuracy of infer-

ence depends on attribute cardinality, with lower cardinality

corresponding to higher accuracy.
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Fig. 5. KL divergence and top-1 accuracy as a function of training set size, for support = 0.001.
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Fig. 6. KL divergence and top-1 accuracy as a function of support, for training set size = 100,000.
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Fig. 8. Relationship between accuracy of inference and network properties.

Run-time Performance As a final experiment in this sec-

tion, we consider the run-time performance of single-attribute

inference. In our experiments we determined that the choice

of a voting method has no measurable effect on inference

time. We report average inference for support = 0.001, for

a variety of test set sizes. Fig. 9 plots inference time as a

function of model size, for batches of 500, 1000, 5000, and

10,000 tuples, Each point on the charts represents inference

time for an entire batch. To ease understanding of the results,

we also plot regression lines. We notice that inference time

scales linearly with the size of the model. When the MRSL

model is of size 10,000 or less, as is the case for the majority

of the networks in our experiments, it takes 0.153 ms to run

inference for a single missing attribute per tuple. For larger

models, which we typically see for BN7, BN12, and BN16,

it takes 1.539 ms to run such inference, on average.

D. Sampling-Based Inference

In this last set of experiments we consider the accuracy

and efficiency of inference for tuples with multiple missing

attribute values. Recall that our approach, described in Sec-

tion V, is based on (optimized) Gibbs sampling. Our exper-

iments show that this achieves high prediction accuracy for

multi-variable inference with MRSL, particularly when indi-

vidual MRSL models are highly accurate. In those cases about

2000 sampling points per tuple are needed, and prediction

accuracy increases with increasing number of samples. The

experiments further confirm that our tuple-DAG optimization

technique is extremely effective, reducing the sampling run-

time by close to an order of magnitude. We compared the

accuracy of tuple-DAG to tuple-at-a-time, and, as expected,

found no difference for any of the networks (plot omitted).

We consider 10 networks with 4 to 8 attributes, cardinality

between 2 and 5.2, and domain size between 16 and 4096.

Accuracy The accuracy of multi-attribute inference varied

for different networks, and we observed multiple trends. For

this reason, rather than presenting averages across networks

as we did in previous sections, we present results on a case-

by-case basis. For the majority of the networks (7 out of

10), very high prediction accuracy was achieved, with KL

divergence values of 0.1 or below. The left side of Fig. 10

plots average KL divergence for BN8, for a varying number of

missing attributes. As expected, prediction accuracy increases

(KL divergence decreases) as the number of samples per tuple

increases. Prediction accuracy is higher for tuples with fewer

missing values, also as expected.
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Fig. 9. Inference time as a function of model size, with support=0.001.

For some networks, KL divergence remained above 0.1 for

the experimental parameters we considered. The middle of

Fig. 10 plots average KL divergence for BN17, for up to five

missing attributes per tuple. We observe similar trends as for

BN8, but prediction accuracy is in general lower. This is to be

expected, since BN17 is a much larger network, and prediction

accuracy of individual MRSL models for BN17 is lower than

for BN8 (see Table II). Nonetheless, KL values of 0.5 (2000

samples/tuple, 5 missing attributes), translate into about 40%

correct top-1 guesses, as compared to 3% for random guessing.

Finally, the right side of Fig. 10 plots average KL for BN2.

We do not observe the trend seen for BN8 and BN17, where

accuracy improved with increasing number of points per tuple,

and was lower for tuples with more missing values. We plan

to investigate reasons for this in the future, but remark that

KL values of about 0.26 (2000 samples per tuple, tuples with

3 and 4 missing values) translate to top-1 accuracy of 38%,

compared to under 2% for random guessing.

Run-time Performance In our final experiment we explore

the run-time performance of Gibbs sampling for workloads of

incomplete tuples, with and without the tuple-DAG optimiza-

tion (see Section V). The experiment in this section considers

a workload of incomplete tuples with a varying number of

missing values. For each network, at most networkSize− 1
attributes were missing, where networkSize is the total

number of attributes per network. We present performance for

the case where 500 points are sampled per incomplete tuple

from MRSL. We measured performance with other sample

sizes, and observed the same trends.

Sampling cost is a function of workload size — the number

of distinct incomplete tuples in the test set. To quantify sam-

pling cost we measure wall-clock time of inference and sample

size — the total number of sampled points. The left side of

Fig. 11 plots sample size as a function of workload size. Each

dot corresponds to a single observation in a single network.

The choice of a network has no bearing on sampling cost,

and we plot all observations on a single graph. We observe

that sample size increases linearly with increasing workload

size, and that tuple-DAG clearly outperforms the tuple-at-a-

time baseline, and increases with a much lower slope. The left

side of Fig. 11 plots wall-clock time of inference as a function

of sample size. We observe that wall-clock time increases

linearly with workload size, justifying our choice to minimize

the number of sampled points per workload. Here again tuple-

DAG significantly outperforms the baseline in all cases.

VII. RELATED WORK

In our work we use an ensemble method for inference.

Ensemble methods are widely used for a variety of machine

learning tasks [11] and in many application domains. To the

best of our knowledge, this is the first work in which an

ensemble is used for inference in the context of probabilis-

tic databases. Our approach builds on dependency networks

proposed in [17]. Our approach differs in that we propose an

inference ensemble, and develop a performance optimization

of sampling for workloads of tuples.

Our work is also related to mining approximate and con-

ditional functional dependencies (e.g., [13], [15], [18], [19])

and to data cleaning (e.g., [4], [5], [23]). However, while

the goal of that work is largely on detecting correlations

among attributes, and on predicting the most probable set of

attribute values, our goal is to estimate probability distributions

and to do so efficiently. Our work is particularly related to

ERACER [23], that builds on relational dependency networks

and models correlations between attribute values within a tuple

and across tuples. Similarly to our approach, the model is de-

rived from a collection of local CPDs, and so is approximate.

Another similarity is the averaging of votes at the level of

local CPDs. In contrast to our approach, ERACER focuses

on prediction accuracy, while we consider, and quantify, both

accuracy and run-time performance of learning and inference,

particularly with multiple missing values. A thorough compar-

ison with their method is in our immediate plans.

There has been much work on probabilistic databases that

assumes that a probabilistic model and the associated proba-

bility values are known. An approach for deriving probability

values based on input from domain experts is proposed in [10].

Another approach, partially based on learning, is found in [9].

Here a probabilistic model—combinations of time-varying

multivariate Gaussians—is postulated, and its parameters are

learned from historical data. This seems to work well for

sensor network data. Concerns about how the probability

distributions are derived are also addressed in [20] and [27].

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a novel framework for deriving prob-

ability distributions for incomplete databases. Our solution is

based on inference ensembles, called meta-rule semi-lattices,

that are learned from the complete portion of the data. We de-

velop a mechanism for selecting a subset of the available meta-

rules to infer probability distributions for a single missing
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0 

500 

1000 

1500 

2000 

0 500 1000 1500 2000 2500 3000 

s
a

m
p

le
 s

iz
e

 (
th

o
u

s
a

n
d

s
) 

workload size 

tuple at a time 

tuple DAG 

0 

50 

100 

150 

200 

250 

300 

0 500 1000 1500 2000 2500 3000 

in
fe

re
n

c
e

 t
im

e
 (

s
e

c
) 

workload size 

tuple at a time 

tuple DAG 

Fig. 11. Efficiency of multi-variable inference.

attribute. We propose an optimized inference algorithm based

on Gibbs sampling for predicting the probability distribution

over multiple missing values. A thorough experimental study

demonstrates the accuracy and efficiency of our approach.

In the future we plan to evaluate our approach on real-world

datasets. We will also compare the performance of our method

with other methods that are based on local CPD estimates.

Query optimization for the probabilistic databases generated

by our framework is another intriguing problem that we intend

to study in the future. In particular, our approach opens new

possibilities for partial materialization of probability values,

as well as for lazy, query-targeted learning and inference.
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