
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

1-19-2010

Arity-Generic Datatype-Generic Programming
Stephanie Weirich
University of Pennsylvania, sweirich@cis.upenn.edu

Chris Casinghino
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Stephanie Weirich and Chris Casinghino. Arity-generic type-generic programming. In ACM SIGPLAN Workshop on Programming Languages Meets
Program Verification (PLPV), pages 15-26, January 2010
© ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in {ACM SIGPLAN Workshop on Programming Languages Meets Program Verification (2010)} http://doi.acm.org/
10.1145/1707790.1707799 Email permissions@acm.org

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/631
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Stephanie Weirich and Chris Casinghino, "Arity-Generic Datatype-Generic Programming", . January 2010.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/631
mailto:libraryrepository@pobox.upenn.edu

Arity-Generic Datatype-Generic Programming

Abstract
Some programs are doubly-generic. For example, map is datatypegeneric in that many different data structures
support a mapping operation. A generic programming language like Generic Haskell can use a single
definition to generate map for each type. However, map is also arity-generic because it belongs to a family of
related operations that differ in the number of arguments. For lists, this family includes repeat, map, zipWith,
zipWith3, zipWith4, etc. With dependent types or clever programming, one can unify all of these functions
together in a single definition. However, no one has explored the combination of these two forms of
genericity. These two axes are not orthogonal because the idea of arity appears in Generic Haskell: datatype-
generic versions of repeat, map and zipWith have different arities of kind-indexed types. In this paper, we
define arity-generic datatype-generic programs by building a framework for Generic Haskell-style generic
programming in the dependently-typed programming language Agda 2.

Disciplines
Computer Sciences

Comments
Stephanie Weirich and Chris Casinghino. Arity-generic type-generic programming. In ACM SIGPLAN
Workshop on Programming Languages Meets Program Verification (PLPV), pages 15-26, January 2010

© ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in {ACM SIGPLAN Workshop on
Programming Languages Meets Program Verification (2010)} http://doi.acm.org/10.1145/1707790.1707799
Email permissions@acm.org

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/631

http://repository.upenn.edu/cis_papers/631?utm_source=repository.upenn.edu%2Fcis_papers%2F631&utm_medium=PDF&utm_campaign=PDFCoverPages

Arity-Generic Datatype-Generic Programming

Stephanie Weirich Chris Casinghino
University of Pennsylvania

{sweirich,ccasin}@cis.upenn.edu

Abstract
Some programs are doubly-generic. For example, map is datatype-
generic in that many different data structures support a mapping
operation. A generic programming language like Generic Haskell
can use a single definition to generate map for each type. However,
map is also arity-generic because it belongs to a family of related
operations that differ in the number of arguments. For lists, this
family includes repeat, map, zipWith, zipWith3, zipWith4, etc.
With dependent types or clever programming, one can unify all of
these functions together in a single definition.

However, no one has explored the combination of these two
forms of genericity. These two axes are not orthogonal because the
idea of arity appears in Generic Haskell: datatype-generic versions
of repeat, map and zipWith have different arities of kind-indexed
types. In this paper, we define arity-generic datatype-generic pro-
grams by building a framework for Generic Haskell-style generic
programming in the dependently-typed programming language
Agda 2.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming languages]: Language constructs and features—Data types
and structures, frameworks

General Terms Design, Languages, Verification

Keywords Dependent types, Arity-generic programming, Agda,
Generic Haskell

1. Introduction
This is a story about doubly-generic programming. Datatype-
generic programming defines operations that may be instantiated at
many different types, so these operations need not be redefined for
each one. For example, Generic Haskell [5, 11] includes a generic
map operation gmap that has instances for types such as lists, op-
tional values, and products (even though these types have different
kinds).

gmap 〈 [] 〉 :: (a → b) → [a] → [b]
gmap 〈 Maybe 〉 :: (a → b) → Maybe a → Maybe b
gmap 〈 (,) 〉 :: (a1 → b1) → (a2 → b2)

→ (a1, a2) → (b1, b2)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLPV’10, January 19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-890-2/10/01. . . $10.00

Because all the instances of gmap are generated from the same
definition, reasoning about that generic function tells us about map
at each type.

However, there is another way to generalize map. Consider the
following sequence of functions from the Haskell Prelude [20], all
of which operate on lists.

repeat :: a → [a]
map :: (a → b) → [a] → [b]
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith3 :: (a → b → c → d) → [a] → [b] → [c] → [d]

The repeat function creates an infinite list from its argument. The
zipWith function is a generalization of zip—it combines the two
lists together with its argument instead of with the tupling function.
Likewise, zipWith3 combines three lists.

As Fridlender and Indrika [7] have pointed out, all of these
functions are instances of the same generic operation, they just
have different arities. They demonstrate how to encode the arity
as a Church numeral in Haskell and uniformly produce all of these
list operations from the same definition.

Arity-genericity is not unique to the list instance of map. It is not
difficult to imagine arity-generic versions of map for other types.
Fridlender and Indrika’s technique immediately applies to all types
that are applicative functors [16]. However, one may also define
arity-generic versions of map at other types.

Other functions besides map have both datatype-generic and
arity-generic versions. For example, equality can be applied to
any number of arguments, all of the same type. Map has a dual
operation called unzipWith that is similarly doubly-generic. Other
examples include folds, enumerations, monadic maps, etc.

In this paper, we present the first doubly-generic definitions. For
each of these examples, we can give a single definition that can be
instantiated at any type or at any arity. Our methodology shows
how these two forms of genericity can be combined in the same
framework and demonstrates the synergy between them.

In fact, arity-genericity is not independent of datatype-genericity.
Generic Haskell has its own notion of arity. and each datatype-
generic function must be defined at a particular arity. Importantly,
that arity corresponds to the arities in map above. For example, the
Generic Haskell version of repeat has arity one, its map has arity
two, and zipWith arity three.

Unfortunately, Generic Haskell does not permit generalizing
over arities, so a single definition cannot produce repeat, map
and zipWith. Likewise, Generic-Haskell-style libraries encoded in
Haskell, such as RepLib [29] or Extensible and Modular Generics
for the Masses (EMGM) [6] specialize their infrastructure to spe-
cific arities, so they too cannot write arity-generic code.

However, Altenkirch and McBride [1] and Verbruggen et al.
[26] have shown how to encode Generic-Haskell-style generic
programming in dependently-typed programming languages. Al-
though they do not consider arity-genericity in their work, be-

cause of the power of dependent-types, their encodings are flexible
enough to express arity-generic operations.

In this paper, we develop an analogous generic programming
framework in the dependently-typed language Agda 2 [19] and
demonstrate how it may be used to define doubly-generic op-
erations. We choose Agda because it is particularly tailored to
dependently-typed programming, but we could have also used a
number of different languages, such as Coq [25], Epigram [15],
Ωmega [23], or Haskell with recent extensions [3, 21].

Our contributions are as follows:

1. We develop an arity-generic version of map that reveals com-
monality between gmap, gzipWith and gzipWith3. This cor-
respondence has not previously been expressed, but we find
that it leads to insight into the nature of these operations. Since
the definitions are all instances of the same dependently-typed
function, we have shown formally that they are related.

2. This example is developed on top of a reusable framework for
generic programming in Agda. Although our framework has
the same structure as previous work, our treatment of datatype
isomorphisms is novel and requires less boilerplate.

3. We use our framework to develop other doubly-generic opera-
tions, such as equality and unzipWith. All of these examples
shed light on arity support in a generic programming frame-
work. In particular, there are not many operations that require
arity of two or more: this work suggests what such operations
must look like.

4. Finally, because we develop a reusable framework, this work
demonstrates how a tool like Generic Haskell could be extended
to arity-genericity.

We explain doubly-generic map and our generic programming
infrastructure in stages. In Section 2 we start with an Agda defini-
tion of arity-generic map. Next, in Section 3, we describe a gen-
eral framework for generic programming that works for all types
(of any kind) formed from unit, pairs, sums and natural numbers.
We use this framework to define doubly-generic map. In Section 4
we show how datatype isomorphisms may be incorporated, so that
we can specialize doubly-generic operations to inductive datatypes.
We discuss other doubly-generic examples in Section 5. Finally,
Sections 6 and 7 discuss related work and conclude.

All code described in this paper is available from http://www.
cis.upenn.edu/~ccasin/papers/aritygen.tar.gz.

2. Arity-generic Map
We begin this section by introducing Agda and using it to define
applicative functors. We show how to use applicative functors to
define arity-generic map for vectors, following Fridlender and In-
drika. Finally, we demonstrate why this approach does not scale to
implementing datatype-generic arity-generic map.

2.1 Programming with Dependent Types in Agda

Agda is a dependently typed programming language where terms
may appear in types. For example, the Agda standard library de-
fines a type of polymorphic length-indexed vectors:

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)

This datatype Vec is parameterized by an argument A of type
Set, the analogue of Haskell’s kind �, and indexed by an argument
of type N

1, the type of natural numbers. The parameter A specifies

1 Note that Unicode symbols are valid in Agda identifiers.

the type of the objects stored in the vector and the index specifies
its length. For example, the type Vec Bool 2 is a list of boolean
values of length two. Note that indices can vary in the types of the
constructors; for example, empty vectors [] use index 0.

The underscores in _::_ create an infix operator. Arguments
to Agda functions may be made implicit by placing them in curly
braces, so Agda will attempt to infer the length index by unification
when applying _::_. For example, Agda can automatically deter-
mine that the term true :: false :: [] has type Vec Bool 2.

Vectors are applicative functors, familiar to Haskell program-
mers from the Applicative type class. Applicative functors have
two operations. The first is repeat (called pure in Haskell). Given
an initial value, it constructs a vector with n copies of that value.

repeat : {n : N} → {A : Set} → A → Vec A n
repeat {zero} x = []
repeat {suc n} x = x :: repeat {n} x

Observe that, using curly braces, implicit arguments can be explic-
itly provided in a function call or matched against in a definition.

The second, _�_, is an infix zipping application, pronounced
"zap" and defined by:

� : {A B : Set} {n : N}
→ Vec (A → B) n → Vec A n → Vec B n

[] � [] = []
(a :: As) � (b :: Bs) = (a b :: As � Bs)

The _�_ operator associates to the left. In its definition, we do
not need to consider the case where one vector is empty while the
other is not because the type specifies that both arguments have the
same length.

These two operations are the key to arity-generic map. The
following sequence shows that the different arities of map follow
a specific pattern.

map0 : {m : N} {A : Set} → A → Vec A m
map0 = repeat
map1 : {m : N} {A B : Set}

→ (A → B) → Vec A m → Vec B m
map1 f x = repeat f � x
map2 : {m : N} {A B C : Set}

→ (A → B → C)
→ Vec A m → Vec B m → Vec C m

map2 f x1 x2 = repeat f � x1 � x2

Indeed, all of these maps are defined by a simple application of
repeat and n copies of _�_. Agda can express the arity-generic
operation that unifies all of these maps via dependent types, as we
present in the next subsection.

2.2 Arity-Generic Vector Map

The difficulty in the definition of arity-generic map is that all of
the instances have different types. Given some arity n, we must
generate the corresponding type in this sequence. Fridlender and
Indrika, not working in a dependently typed language, do so by
encoding n as a Church numeral that generates the appropriate type
for map.

We prefer to use natural numbers to express the arity of the map-
ping operation. Therefore, we must program with Agda types. For
example, we can construct a vector of Agda types, Bool :: N :: [],
which has type Vec Set 2, and use standard vector operations (such
as _�_) with this value.2

2 This type requires Set to have type Set, enabled by Agda’s
–-type-in-type flag. The standard type system of Agda has an infinite
hierarchy of Sets, and users must resolve their code to be at the appropriate

The first step is to define arrTy, which folds the arrow type
constructor → over a non-empty vector of types. Given such a
vector, this operation constructs the type of the function that will
be mapped over the n data structures.

arrTy : {n : N} → Vec Set (suc n) → Set
arrTy {0} (A :: []) = A
arrTy {suc n} (A :: As) = A → arrTy As

The function arrTyVec constructs the result type of arity-
generic map for vectors. We define this operation by mapping the
Vec constructor onto the vector of types, then placing arrows be-
tween them. Notice that there are two integer indices here: n deter-
mines the number of types we are dealing with (the arity), while
m is the length of the vectors we map over. Recall that the curly
braces in the types of arrTyVec and arrTy mark m and n as implicit
arguments, so we need not always match against them in definitions
nor provide them explicitly as arguments.

arrTyVec : {m n : N} → Vec Set (suc n) → Set
arrTyVec {m} As =

arrTy (repeat (λ A → Vec A m) � As)

For example, we can define the sequence of types from Sec-
tion 2.1 using these functions applied to lists of type variables.

map0 : {m : N} {A : Set}
→ arrTy (A :: [])
→ arrTyVec {m} (A :: [])

map1 : {m : N} {A B : Set}
→ arrTy (A :: B :: [])
→ arrTyVec {m} (A :: B :: [])

map2 : {m : N} {A B C : Set}
→ arrTy (A :: B :: C :: [])
→ arrTyVec {m} (A :: B :: C :: [])

Now, to define arity-generic map, we start by defining a function
nvec-map. The type of this function mirrors the examples above,
except that it takes in the type arguments (A, B, etc) as a vector
(As). After we define nvec-map we will curry it to get the desired
operation.

nvec-map : {m : N} → (n : N)
→ (As : Vec Set (suc n))
→ arrTy As → arrTyVec {m} As

Intuitively, the definition of nvec-map is a simple application of
repeat and n copies of _�_:

nvec-map As f v1 v2 ... vn =
repeat f � v1 � v2 � ... � vn

We define this function by recursion on n, in accumulator style.
After duplicating f we have a vector of functions to zap, so we
define a helper function, g, for that more general case.

nvec-map n As f = g {n} As (repeat f) where
g : {n m : N}
→ (As : Vec Set (suc n))
→ Vec (arrTy As) m → arrTyVec {m} As

g {0} (A :: []) a = a
g {suc n} (A1 :: As) f =

(λ a → g As (f � a))

level. Although we have done so, in the interest of clarity we have hidden
this hierarchy and its associated complexities. We discuss this choice further
in Section 7.

Finally, we define two operations for currying. The first, ∀⇒,
creates a curried version of a type which depends on a vector. The
second, λ⇒, curries a corresponding function term.

∀⇒ : {n : N} {A : Set} → (Vec A n → Set) → Set
∀⇒ {zero} B = B []
∀⇒ {suc n} {A} B =
{a : A} → ∀⇒ {n} (λ as → B (a :: as))

λ⇒ : {n : N} {A : Set} {B : Vec A n → Set}
→ ((X : Vec A n) → B X) → (∀⇒ B)

λ⇒ {zero} f = f []
λ⇒ {suc n} {A} f =

λ {a : A} → λ⇒ {n} (λ as → f (a :: as))

With these operations, we can finish the definition of arity-
generic map. Again, the (implicit) argument m is the length of the
vector, and the (explicit) argument n is the specific arity of map that
is desired.

nmap : (n : N) → {m : N}
→ ∀⇒ (λ (As : Vec Set (suc n))
→ arrTy As → arrTyVec {m} As)

nmap n {m} = λ⇒ (nvec-map {m} n)

We can use this arity-generic map just by providing the arity as an
additional argument. For example, the term nmap 1 has type

{m : N} → {A B : Set} → (A → B)
→ (Vec A m) → (Vec B m)

and the expression

nmap 1 (λ x → x + 1) (1 :: 2 :: 3 :: [])

evaluates to 2 :: 3 :: 4 :: []. Likewise, the term nmap 2 has type

{m : N} → {A B C : Set} → (A → B → C)
→ (Vec A m) → (Vec B m) → (Vec C m)

and the expression

nmap 2 (,) (1 :: 2 :: 3 :: []) (4 :: 5 :: 6 :: [])

returns (1, 4) :: (2, 5) :: (3, 6) :: [].

2.3 Towards Type Genericity

We have shown how to define arity-generic map for vectors, but
what about for other types of data, such as products of vectors
or vectors of products? This should be possible, as map is a type-
generic operation, one that is defined by type structure.

Type-generic programming in Agda is done via a technique
called universes [13, 18]. The idea is to define an inductive datatype
Tyc, called a universe, which represents types, along with an inter-
pretation function �_� that maps elements of this universe to actual
Agda types. A generic program is then an operation which manip-
ulates this data structure.

However, there is one difficulty—what kind of types should we
represent? The answer to that question determines the type of the
interpretation function. For example, if the datatype Tyc represents
types of kind Set then the interpretation function should have type
Tyc → Set. If the universe represents type constructors, that
is, functions from types to types, then the interpretation function
should have type Tyc → (Set → Set).

Consider the following universe of codes for type constructors.

data Tyc : Set where
Nat : Tyc
Unit : Tyc
Prod : Tyc → Tyc → Tyc
Arr : N → Tyc → Tyc
Var : Tyc

Each of these codes can be decoded as an Agda type constructor
of kind Set → Set. For example, 	 is the unit type in Agda and ×
constructs the (non-dependent) type of products.

�_� : Tyc → (Set → Set)
� Nat � a = N

� Unit � a = 	
� Prod t1 t2 � a = � t1 � a × � t2 � a
� Arr n t1 � a = Vec (� t1 � a) n
� Var � a = a

With these two definitions, we can implement type-generic ver-
sions of the repeat and _�_ functions.3 They are implemented by
recursion on the structure of the Tyc, but we elide the definitions
for brevity.

grepeat : (t : Tyc) → {a : Set} → a → � t � a
gzap : (t : Tyc) → {a b : Set}

→ � t � (a → b) → � t � a → � t � b

With these type-generic functions, we can generalize the defi-
nition for vectors to produce gmap, which works for all type con-
structors in the universe. This definition is a straightforward exten-
sion of nmap for vectors (replacing repeat and _�_ with grepeat
and gzap), so we elide its definition and only show its type.

gmap : (t : Tyc) → (n : N)
→ ∀⇒ (λ (As : Vec Set (suc n))
→ arrTy As → arrTy (repeat � t � � As))

We use gmap by supplying a type code and arity. For example,

example-map : {m : N} → {A B : Set} → (A → B)
→ Vec (A × (A ×)) m
→ Vec (B × (B ×)) m

example-map =
gmap (Arr (Prod Var (Prod Var Unit))) 1

We have now combined arity genericity and type genericity. How-
ever, there is a problem with this definition; it only works for type
constructors of kind Set → Set. Maps for other kinds are not avail-
able. Furthermore, this definition tells us nothing about how to de-
fine other arity-generic functions. We have not really gotten to the
essence of arity genericity.

To extend arity-generic map to types of arbitrary kinds, we will
redo our framework for type-generic programming using a kind-
indexed universe. The kind determines the type of the decoding
function �_�. With this kind-indexed universe, the concept of arity
naturally shows up—following Generic Haskell, a generic function
has a kind-indexed type of a particular arity. For example, generic
repeat requires an arity one kind-indexed type, while generic map
requires arity two, and generic zipWith requires arity three. Re-
markably, but perhaps unsurprisingly, this notion of arity mirrors
the arity found in arity-generic map!

What is new in this paper is that we generalize over the arities
in the kind-indexed types to give a completely new definition of
arity-generic type-generic map. This definition incorporates arity-
genericity right from the start. In the current section we layered
arity-genericity on top of type-genericity; in the next, our type-
generic functions will be inherently arity-generic.

3. Arity-Generic Type-Generic Map
Next, we show how to generalize arity-generic map to arbi-
trary type constructors by implementing a framework for Generic

3 Because these generic functions show that all type constructors in this
universe are applicative functors, we cannot include a code for sum types.
We return to this issue in Section 3.3.

Haskell style kind-indexed types. We develop our framework
in stages, first including only primitive type constructors in the
universe, then in Section 4, extending it to include user-defined
datatypes.

3.1 Universe Definition

To write more general generic programs, we need a more expres-
sive universe. The universe that we care about is based on the type
language of F-omega [8]. It is the simply-typed lambda calculus
augmented with a number of constants that form types. Therefore,
to represent this language, we need datatypes for kinds, constants,
and for the lambda calculus itself.

Kinds include the base kind � and function kinds. The function
kind arrow associates to the right.

data Kind : Set where
� : Kind
⇒ : Kind → Kind → Kind

A simple recursive function takes a member of this datatype into
an Agda kind.

�_� : Kind → Set
� � � = Set
� a ⇒ b � = � a � → � b �

Constants are indexed by their kinds. For now, we will con-
centrate on types formed from natural numbers, unit, binary sums,
and binary products. Note that these definitions include a code for
sum types. Although doubly-generic map is partial for sums, many
doubly-generic operations are not. On the other hand, most generic
functions are partial for function types, so we do not include a code
for them. Furthermore, because vectors are representable in terms
of the other constructors, we do not include a code for them in this
universe. This keeps the definitions of arity-generic functions sim-
ple. In Section 4, we discuss how our generic programming frame-
work can interface directly with Agda datatypes like Vec.

data Const : Kind → Set where
Nat : Const �
Unit : Const �
Sum : Const (� ⇒ � ⇒ �)
Prod : Const (� ⇒ � ⇒ �)

Again, each of these constants can be decoded as an Agda type
constructor.

interp-c : ∀ {k} → Const k → � k �
interp-c Unit = 	
interp-c Nat = N

interp-c Sum = _
_
interp-c Prod = _×_

To represent other types (of arbitrary kinds), we now define an
indexed datatype called Typ. A Typ may be a variable, a lambda,
an application, or a constant. The datatype is indexed by the kind of
the type and a typing context which indicates the kinds of variables.
We use de Bruijn indices for variables, so we represent the typing
context as a list of Kinds. The nth Kind in the list is the kind of
variable n.

Ctx : Set
Ctx = List Kind
data TyVar : Ctx → Kind → Set where

VZ : ∀ {G k} → TyVar (k :: G) k
VS : ∀ {G k’ k} → TyVar G k → TyVar (k’ :: G) k

data Typ : Ctx → Kind → Set where
Var : ∀ {G k} → TyVar G k → Typ G k

Lam : ∀ {G k1 k2} → Typ (k1 :: G) k2
→ Typ G (k1 ⇒ k2)

App : ∀ {G k1 k2} → Typ G (k1 ⇒ k2) → Typ G k1
→ Typ G k2

Con : ∀ {G k} → Const k → Typ G k

We use the notation Ty for closed types—those that can be
checked in the empty typing context.

Ty : Kind → Set
Ty = Typ []

Now that we can represent type constructors, we need a mech-
anism to decode them as Agda types. To do so, we must have an
environment to decode the variables. We index the datatype for the
environment with the typing context to make sure that each variable
is mapped to an Agda type of the right kind. Note that this definition
overloads the [] and _::_ constructors, but Agda can infer which
we mean.

data Env : List Kind → Set where
[] : Env []
:: : ∀ {k G} → � k � → Env G → Env (k :: G)

sLookup : ∀ {k G} → TyVar G k → Env G → � k �
sLookup VZ (v :: G) = v
sLookup (VS x) (v :: G) = sLookup x G

Finally, with the help of the environment, we can decode a Typ
as an Agda type of the appropriate kind. We use the �_� notation
for decoding closed types in the empty environment.

interp : ∀ {k G} → Typ G k → Env G → � k �
interp (Var x) e = sLookup x e
interp (Lam t) e = λ y → interp t (y :: e)
interp (App t1 t2) e = (interp t1 e) (interp t2 e)
interp (Con c) e = interp-c c
�_� : ∀ {k} → Ty k → � k �
� t � = interp t []

For example, the following type constructor Option (isomor-
phic to the standard Maybe datatype)

Option : Set → Set
Option = λ A → 	
 A

is represented with the following code:

option : Ty (� ⇒ �)
option =

Lam (App (App (Con Sum) (Con Unit)) (Var VZ))

The Agda type checker can see that � option � normalizes to
Option, so it considers these two expressions equal.

3.2 Framework for Doubly-Generic Programming

Next, we give the signature of a framework for defining arity-
generic type-generic programs. For space reasons, we do not give
the implementation of this framework here. The interested reader
may consult Altenkirch and McBride [1], Verbruggen et al. [26], or
our source code for more details.

As with Generic Haskell, the behavior of a generic program
defined using this framework is fixed for applications, lambdas
and variables. Therefore, to define an arity-generic type-generic
operation, we need only supply the behavior of the generic program
for the type constants.

Datatype-generic operations have different types when instan-
tiated at different kinds, so they are described by kind-indexed
types [11]. For example, consider the type of the standard map func-
tion for the Option type constructor, of kind � ⇒ �:

option-map1 : ∀ {A B} → (A → B)
→ (Option A → Option B)

And map for the type constructor _×_, of kind � ⇒ � ⇒ �

pair-map1 : ∀ {A1 A2 B1 B2}
→ (A1 → B1) → (A2 → B2)
→ (A1 × A2) → (B1 × B2)

Though different, the types of option-map1 and pair-map1 are
instances of the same kind-indexed type. In Generic Haskell, kind-
indexed types are defined by recursion on the kind of the type
arguments. For example, here is the Generic Haskell definition of
map’s type [12]:

type Map 〈 � 〉 t1 t2 = t1 → t2
type Map 〈 k1 ⇒ k2 〉 t1 t2 =
∀ a1 a2, Map 〈 k1 〉 a1 a2 → Map 〈 k2 〉 (t1 a1) (t2 a2)

Readers new to Generic Haskell-style generic programming may
find it instructive to verify that Map 〈 � ⇒ � 〉 Option Option
and Map 〈 � ⇒ � ⇒ � 〉 _×_ _×_ simplify to the types
given above for option-map and pair-map (modulo notational dif-
ferences).

For arity-genericity, we must generalize kind-indexed types in
another way. We want not only pair-map1, but also pair-map at
other arities to be instances as well:

pair-map0 : ∀ {A B : Set} → A → B → A × B
pair-map2 : ∀ {A1 B1 C1 A2 B2 C2}

→ (A1 → B1 → C1) → (A2 → B2 → C2)
→ A1 × A2 → B1 × B2 → C1 × C2

We compute the type of a generic function instance from four
pieces of information: the arity of the operation (given with an
implicit argument n), a function b to construct the type in the base
case, the kind k itself and a vector v of n Agda types, each of kind k.
Reminiscent of Generic Haskell, our kind-indexed type is written
b 〈 k 〉 v:

〈〉_ : {n : N}
→ (b : Vec Set (suc n) → Set)
→ (k : Kind)
→ Vec � k � (suc n)
→ Set

b 〈 � 〉 Vs = b Vs
b 〈 k1 ⇒ k2 〉 Vs = ∀⇒ λ (As : Vec � k1 �) →

b 〈 k1 〉 As → b 〈 k2 〉 (Vs � As)

The primary difference between our definition and the Generic
Haskell definition of kind-indexed type is that because the arity is a
parameter, we deal with the type arguments as a vector rather than
as individuals. For higher kinds the polymorphic type produced
takes n arguments of kind �k1� (the vector As) and a kind-indexed
type for those arguments and produces a result where each higher
kinded type in the vector Vs has been applied to each argument in
vector As.

We use the ∀⇒ function (from Section 2) to curry the type so
that the user may provide n individual �k1�’s rather than a vector.
The in Vec � k1 � instructs Agda to infer the length of the
vector (convenient since we did not give a name to the arity).

We do not allow these vectors to be empty because few generic
functions make sense at arity zero. If we had allowed empty vectors
we would have to add a degenerate zero case for the majority
of generic functions. It would be straightforward, but tedious, to
remove this restriction. As a result, the number provided here as an
arity (n) is one less than the corresponding Generic Haskell arity.
We refer to this reduced number as the arity for convenience.

We define generic functions with ngen, whose type is shown
below. This operation produces a value of a kind-indexed type
given ce, a mapping from constants to appropriate definitions.

ngen : {n : N} {b : Vec Set (suc n) → Set} {k : Kind}
→ (t : Ty k)
→ (ce : TyConstEnv n b)
→ b 〈 k 〉 (repeat � t �)

The type of ce is a function which maps each constant to a value
of the kind-indexed type associated with that constant.

TyConstEnv : {n : N} → (b : Vec Set n → Set) → Set
TyConstEnv b =

{k : Kind} (c : Const k) → b 〈 k 〉 (repeat � Con c �)
We can already use this framework for non-arity-generic pro-

gramming. For example, suppose we wished to define the standard
generic map. In this case, we would provide the following defini-
tion for b.

Map : Vec Set 2 → Set
Map (A :: B :: []) = A → B

Next, we define the type-constant environment for this particu-
lar b. The mapping function for natural numbers and unit is an iden-
tity function. For products and sums, the mapping function takes
those arguments apart, maps the subcomponents and then puts them
back together.

gmap-const : TyConstEnv GMap
gmap-const Nat = λ x → x
gmap-const Unit = λ x → x
gmap-const Prod = λ f g x → (f (proj1 x), g (proj2 x))
gmap-const Sum = g

where
g : {A1 B1 A2 B2 : Set}
→ (A1 → B1) → (A2 → B2)
→ A1
 A2 → B1
 B2

g fa fb (inj1 xa) = inj1 (fa xa)
g fa fb (inj2 xb) = inj2 (fb xb)

Generic map then calls ngen with this argument.

gmap : {k : Kind} → (t : Ty k)
→ Map 〈 k 〉 (� t � :: � t � :: [])

gmap t = ngen t gmap-const

Providing the type code instantiates generic map at particular
types. For example, using the code for the Option type of the
previous section, we can define:

option-map1 : {A B : Set} → (A → B)
→ Option A → Option B

option-map1 = gmap option

3.3 Doubly-generic Map

To use ngen to implement a doubly-generic function, we must also
supply b and ce to ngen, but this time both of those arguments must
generalize over the arity. For doubly-generic map, we call these
pieces NGmap and ngmap-const. NGmap is simply the arrTy
function from Section 2.2, which takes the arity as an implicit
argument.

NGmap : {n : N} → Vec Set (suc n) → Set
NGmap = arrTy

We are simplifying the example somewhat because generic zips
(which are generic maps at arities greater than one) are partial
functions—they may fail if instantiated at a sum type and passed

mismatched injections. To account for this possibility in Generic
Haskell, the library function zipWith returns a Maybe. However,
we would like to keep our presentation as simple as possible, so we
use an error term to indicate failure. A version of doubly-generic
map that returns a Maybe is included with our sources. Because
Agda lacks Haskell’s error function, we use a postulate:

postulate error : (A : Set) → A

Next, we define the behavior of arity-generic type-generic map
at the constant types. We do this by writing a term that dispatches
to cases for the various constants (defined below). Each case takes
the arity as an argument.

ngmap-const : {n : N} → TyConstEnv NGmap
ngmap-const {n} Nat = defNat n
ngmap-const {n} Unit = defUnit n
ngmap-const {n} Prod = defPair n
ngmap-const {n} Sum = defSum n

Recalling the definition of NGmap, for the first two cases, we
must return arity-n functions with the types N → N → ... → N

and 	 → 	 → ... → 	. For N, when n is zero, we pick a
default element to return arbitrarily. When n is one, we return the
argument. For larger arities, we check that the inputs are identical.
We choose to reject unequal nats to mirror the behavior of map at
sum types.

defNat : (n : N) → NGmap 〈 � 〉 (repeat {suc n} N)
defNat zero = zero -- arbitrary N

defNat (suc zero) = λ x → x -- return what was given
defNat (suc (suc n)) =

λ x → λ y → if eqNat x y then defNat (suc n) y
else error

defUnit : (n : N) → NGmap 〈 � 〉 (repeat {suc n})
defUnit zero = tt
defUnit (suc n) = λ x → (defUnit n)

The Prod and Sum cases remain. Because these constants have
higher kinds, the return type of ngmap-const changes. Consider
Prod first. The desired type of defPair n is:

NGmap 〈� ⇒ � ⇒ �〉 (repeat {suc n} _×_) =
∀⇒ λ (As : Vec Set n) → arrTy As →
∀⇒ λ (Bs : Vec Set n) → arrTy Bs →

arrTy ((repeat ×) � As � Bs)

If we imagine writing out As as A1 :: A2 :: ... :: An :: [] and
Bs as B1 :: B2 :: ... :: Bn :: [] the type simplifies to:

NGmap 〈� ⇒ � ⇒ �〉 (repeat {suc n} _×_) =
{A1 A2 ... An : Set} → (A1 → A2 → ... → An)

→ {B1 B2 ... Bn : Set} → (B1 → B2 → ... → Bn)
→ (A1 × B1) → (A2 × B2) → ... → (An × Bn)

However, it is easier to define the case where the A1 ... An
arguments are uncurried, and then curry the resulting function.

defPairAux : (n : N)
→ (As : Vec Set (suc n)) → arrTy As
→ (Bs : Vec Set (suc n)) → arrTy Bs
→ arrTy (repeat _×_ � As � Bs)

defPairAux zero (A :: []) a (B :: []) b = (a, b)
defPairAux (suc n) (A1 :: As) a (B1 :: Bs) b =
λ p →

(defPairAux n As (a (proj1 p)) Bs (b (proj2 p)))

In the zero case of defPairAux, a and b are arguments of type A
and B respectively—the function must merely pair them up. In the
successor case, a and b are functions with types A1 → arrTy As

and B1 → arrTy Bs. We want to produce a result of type
A1 × B1 → arrTy (repeat _×_ � As � Bs). Therefore,
this case takes an argument p and makes a recursive call, passing
in a applied to the first component of p and b applied to the second
component of p. We use a kind-directed currying function k-curry,
whose definition has been elided, to define the final version.

defPair : (n : N)
→ NGmap 〈 � ⇒ � ⇒ � 〉 (repeat {suc n} _×_)

defPair n = k-curry (� ⇒ � ⇒ �) (defPairAux n)

Sum also has kind � ⇒ � ⇒ �, so the type of its ngmap-const
case is similar. However, for sums, we must check that the terms
provided have the same structure (are either all inj1 or all inj2).
Otherwise, we signal an error. Again, we first define defSumAux
and then curry the result.

Below, defSumAux checks if the first argument is an inj1 or an
inj2, then calls defSumLeft or defSumRight which require that all
subsequent arguments match. In the degenerate case, where there
are no arguments, we arbitrarily choose the right injection. Because
defSumRight is analogous to defSumLeft, we elide its definition
below.

defSumLeft : (n : N)
→ (As : Vec Set (suc n)) → arrTy As
→ (Bs : Vec Set (suc n))
→ arrTy (repeat _
_ � As � Bs)

defSumLeft zero (A :: []) a (B :: []) = inj1 a
defSumLeft (suc n) (A1 :: As) a (B1 :: Bs) = f

where
f : A1
 B1 → arrTy (repeat _
_ � As � Bs)
f (inj1 a1) = defSumLeft n As (a a1) Bs
f (inj2 b1) = defSumLeft n As (a (error A1)) Bs

defSumAux : (n : N)
→ (As : Vec Set (suc n)) → arrTy As
→ (Bs : Vec Set (suc n)) → arrTy Bs
→ arrTy (repeat _
_ � As � Bs)

defSumAux zero (A :: []) a (B :: []) b =
(inj2 b)

defSumAux (suc n) (A1 :: As) a (B1 :: Bs) b = f
where

f : A1
 B1 → arrTy (repeat _
_ � As � Bs)
f (inj1 a1) = defSumLeft n As (a a1) Bs
f (inj2 b1) = defSumRight n As Bs (b b1)

Finally, we also curry defSumAux to get the desired branch.

defSum : (n : N)
→ NGmap 〈 � ⇒ � ⇒ � 〉 (repeat {suc n} _
_)

defSum n = k-curry (� ⇒ � ⇒ �) (defSumAux n)

We can then define ngmap by instantiating ngen.

ngmap : (n : N) → {k : Kind} → (e : Ty k)
→ NGmap 〈 k 〉 (repeat {suc n} � e �)

ngmap n e = ngen e ngmap-const

If we had included vectors in our universe, we could simply use
nmap from Section 2.2 for that case.

Just as datatype-generic functions are instantiated at a type,
doubly generic functions are instantiated at an arity and a type.
For example, given the definitions Option and option from the last
section, we can define various maps for this type constructor:

option-map1 : {A B : Set} → (A → B)
→ Option A → Option B

option-map1 = ngmap 1 option

option-map2 : {A B C : Set} → (A → B → C)
→ Option A → Option B → Option C

option-map2 = ngmap 2 option

Of course, pair map functions are also instances of ngmap. We
only show the definition of pair-map2 below.

pair-map2 : {A1 B1 C1 A2 B2 C2 : Set}
→ (A1 → B1 → C1) → (A2 → B2 → C2)
→ A1 × A2 → B1 × B2 → C1 × C2

pair-map2 f1 f2 = ngmap 2 (Con Prod) f1 f2

4. Datatype Isomorphisms
The infrastructure described so far permits us to instantiate arity-
generic functions at different types based on their structure. How-
ever, to complete the story and generate versions of n-ary map for
datatypes like Vec, we must must make a connection between ar-
bitrary datatypes and their structure. In this section, we describe
modifications to the implementation necessary to support generic
functions on arbitrary datatypes through datatype isomorphisms.

4.1 Representing Datatypes

There are at least two ways to support datatypes. The current sys-
tem already can encode datatypes on an ad hoc basis, in a manner
described by Verbruggen et al. [26]. However, this encoding re-
quires some tedious applications of coercions between the datatype
and its isomorphism for each datatype instance of the generic op-
eration. Instead, we move that boilerplate to the generic function
itself by adding a new constructor to the Typ universe. This new
constructor, Data, contains information about a particular datatype.

data Typ : Ctx → Kind → Set where
...
Data : ∀ {G} → DT G → Typ G �

The DT data structure contains four pieces of information about
a datatype: its Typ representation t, the actual Agda datatype that
this code represents s, and two functions for coercing between
values of type t and values of type s.

data DT (G : Ctx) : Set where
mkDT : (t : Typ G �)

→ (s : Env G → Set)
→ (to : ({e : Env G} → interp t e → s e))
→ (from : ({e : Env G} → s e → interp t e))
→ DT G

Note that we can only represent datatypes of kind Set. Other
kinds do not support the coercion functions to and from as their
interpretations have the wrong type. To create isomorphisms of
type constructors like Vec, the DT datatype is parameterized by
a context G, and s may depend on an environment for that context.
We describe this mechanism in more detail below.

We define a number of accessor functions for retrieving the parts
of a DT, called DT-s, DT-t, DT-from and DT-to (here elided). 4

Because interp is mentioned by the components of DT, it must be
defined mutually with Env, sLookup, Typ, DT, and its accessors.

Finally, we extend the interpretation function for codes by look-
ing up the Agda type and giving it the current environment.

interp : ∀ {k G} → Typ G k → Env G → � k �
...
interp (Data dt) e = DT-s dt e

For example, suppose we have a simple datatype definition that
identifies natural numbers as Oranges.

4 Unfortunately, Agda does not support record definitions in a mutual block.

data Orange : Set where
toOrange : N → Orange

We can form the code for this datatype as below.

fromOrange : Orange → N

fromOrange (toOrange x) = x
orange : {G : Ctx} → Typ G �
orange = Data (mkDT

(Con Nat) -- t
(λ e → Orange) -- s
(λ {e} → toOrange) -- to
(λ {e} → fromOrange)) -- from

Even though the kind of a datatype isomorphism must be �, we
can still create isomorphisms for datatypes with higher kinds, such
as Maybe and Vec. This works by creating an isomorphism with a
"hole" (exploiting the fact that the environment need not be empty),
then wrapping it in a lambda.

Instead of defining the structure of the Maybe type as a code
with higher kind (i.e., something of type Ty (� ⇒ �), such
as option from Section 3.1), we instead define its structure as a
function from codes to codes.

maybeDef : {G : Ctx} → Typ G � → Typ G �
maybeDef t = (App (App (Con Sum) (Con Unit)) t)

The conversions to and from the Maybe type are also parame-
terized by the code of the argument to Maybe.

toMaybe : {G : Ctx} {e : Env G}
→ (t : Typ G �)
→ (interp (maybeDef t) e) → Maybe (interp t e)

toMaybe t (inj1) = nothing
toMaybe t (inj2 x) = just x
fromMaybe : {G : Ctx} {e : Env G} → (t : Typ G �)

→ Maybe (interp t e)
→ (interp (maybeDef t) e)

fromMaybe t (just x) = inj2 x
fromMaybe t nothing = inj1 tt

Finally, we form the code of the datatype itself by wrapping
the Data constructor in a Lam and using variable zero for the
parameter. The environments supplied to s, to and from allow us
to specify the type this variable corresponds to.

maybe : {G : Ctx} → Typ G (� ⇒ �)
maybe {G} = Lam (Data

(mkDT (maybeDef (Var VZ))
(λ e → Maybe (interp (Var VZ) e))
(λ {e} → toMaybe {� :: G} {e} (Var VZ))
(λ {e} → fromMaybe {� :: G} {e} (Var VZ))))

We can use this same idea to encode vectors. Because we know
the length of given vector, it is isomorphic to an n-tuple—a se-
quence of products terminated by unit. The code for the vector type
then abstracts both the code for the type of the elements of the vec-
tor and a natural number for its length.

vecDef : {G : Ctx} → Typ G � → (n : N) → Typ G �
vecDef 0 = Con Unit
vecDef t (suc n) =

(App (App (Con Prod) t) (vecDef t n))

fromVec : {n : N} {G : Ctx}
{t : Typ G �} {e : Env G}

→ Vec (interp t e) n → (interp (vecDef t n) e)
fromVec {0} [] = tt
fromVec {suc n} (x :: xs) = (x, fromVec xs)

toVec : {n : N} {G : Ctx} {t : Typ G �} {e : Env G}
→ interp (vecDef t n) e → Vec (interp t e) n

toVec {0} = []
toVec {suc n} (x, xs) = (x :: toVec xs)
vec : {G : Ctx} → {n : N} → Typ G (� ⇒ �)
vec {G} {n} = Lam (Data

(mkDT (vecDef (Var VZ) n)
(λ e → Vec (interp (Var VZ) e) n)
toVec
fromVec))

Lists are somewhat trickier to represent. The type of a list does
not tell us its length, so the direct recursive representation of List
is an infinite structure. Agda’s termination checker will be unable
to prove that uses of this representation terminate. Another option
is to encode dependent pairs of lists and proofs they have finite
lengths, rather than encoding lists directly. Examples of both these
encodings are included with our source code.

4.2 Adding Data Support to ngen
Although Data provides a mechanism for coding datatypes, we
cannot use it to define generic functions until we extend ngen to
handle Data. However, there is a complication—it is not clear how
to do so. Without getting too much into the technicalities, the issue
is that in this definition we need to produce a result of type5

b (repeat (DT-s dt) � envs)

but we only have a value of type

b (repeat (interp (DT-t dt)) � envs)

We would like to coerce the latter to the former using to and
from, but we know nothing about b. Therefore, we require an addi-
tional argument to ngen, to be supplied when the generic operation
is defined (i.e., when b is supplied).

ngen : {n : N} {b : Vec Set (suc n) → Set} {k : Kind}
→ (t : Ty k)
→ TyConstEnv n b
→ DataGen b
→ b 〈 k 〉 (repeat � t �)

This argument, of type DataGen, shown below, is exactly the
coercion function necessary.

DataGen : {n : N} → (b : Vec Set (suc n) → Set) → Set
DataGen {n} b =

{G : Ctx}
→ (dt : DT G)
→ (envs : Vec (Env G) (suc n))
→ b (repeat (interp (DT-t dt)) � envs)
→ b (repeat (DT-s dt) � envs)

As an example of an instance of DataGen, recall the definition
of ngmap and its base type NGmap from Section 3.3.

arrTy : {n : N} → Vec Set (suc n) → Set
arrTy {0} (A :: []) = A
arrTy {suc n} (A1 :: As) = A1 → arrTy As
NGmap : {n : N} → Vec Set (suc n) → Set
NGmap = arrTy

The definition of the DataGen coercion for the case where b
is NGmap, called ngmap-data below, proceeds by induction on

5 Here b : Vec Set (suc n) → Set describes the type of the generic
operation and envs : Vec (Env G) (suc n) is a vector of environments for
the free variables.

the arity. In the base case of n=0, ngmap-data must coerce a
result from the representation type to the Agda type using the to
component.

For higher n, ngmap-data is provided with a vector of environ-
ments e1 :: es and a function of type:

interp (DT-t dt) e1
→ arrTy (repeat (interp (DT-t dt)) � es)

Its result type is:

(DT-s dt) e1 → arrTy (repeat (DT-s dt) � es)

This case takes in a (DT-s dt) e1, uses the from function to
convert it to an interp (DT-t dt) e1, then coerces the result of the
provided function by calling ngmap-data recursively.

ngmap-data : {n : N} → DataGen (NGmap {n})
ngmap-data {0} dt (e :: []) bt = DT-to dt bt
ngmap-data {suc n} dt (e1 :: es) bt =

λ x → ngmap-data {n} dt es (bt (DT-from dt x))

4.3 Using ngen at Datatypes

With the ngmap-data function from the previous section, we may
instantiate the updated ngen for NGmap.

ngmap : (n : N) → {k : Kind} → (e : Typ [] k) →
NGmap {n} 〈 k 〉 (repeat (interp e []))

ngmap n e = ngen e ngmap-const ngmap-data

This new ngmap adds support for datatypes. For example, we
may use it with the maybe and vec representations of Section 4.1.
Note that vec-map0 is precisely the repeat function we have used
throughout this paper.

maybe-map1 : {A B : Set} → (A → B)
→ Maybe A → Maybe B

maybe-map1 = ngmap 1 maybe
vec-map0 : {A : Set} {n : N} → A → Vec A n
vec-map0 = ngmap 0 vec
vec-map1 : {A B : Set} {n : N}

→ (A → B) → Vec A n → Vec B n
vec-map1 = ngmap 1 vec

Observe that instantiating ngmap at a datatype is no differ-
ent than any other type we have seen. The codes for Maybe and
Vec work for any generic operation. Although the definition of
ngmap needed the DataGen argument, this argument must be im-
plemented once per generic operation, just like TyConstEnv. In
contrast, previous work [26] could not define a general code for
datatypes like Maybe and Vec, and required significant boilerplate
at every instantiation of a generic function with a specific datatype.

5. Other Doubly-Generic Operations
Mapping is not the only arity-generic function. In this section, we
examine two others.

5.1 Equality

We saw in Section 3.3 that doubly-generic map must check that its
arguments have the same structure. We can define doubly-generic
equality in a similar manner. This function takes n arguments,
returning true if they are all equal, and false otherwise. Unlike map,
equality is not partial for sums as it returns false in the case that the
injections do not match.

In the specific case of vectors, arity-generic equality looks a
lot like arity-generic map. Each instance of this function follows
the same pattern. Given an n-ary equality function for the type
argument, we can define n-ary equality for vectors as:

nvec-eq : {m : N} {A : Set}
→ (A → ... → A → Bool)
→ Vec A m → ... → Vec A m → Bool

nvec-eq f v1 ... vn = all (repeat f � v1 � ... � vn)

However, again this definition does not help us make equality
type-generic as well as arity-generic. For type-genericity, the type
of the equality function depends on the kind of the type constructor.

For example, the definition of arity-two equality for natural
numbers returns true only if all three match:

nat-eq2 : N → N → N → Bool

Likewise, the arity-two equality for pairs requires equalities for
all of the components of the pair. Furthermore, the type arguments
need not be the same. We can pass any sort of comparison functions
in to examine the values carried by the three products.

pair-eq2 : {A1 B1 C1 A2 B2 C2 : Set}
→ (A1 → B1 → C1 → Bool)
→ (A2 → B2 → C2 → Bool) →
→ (A1 × A2) → (B1 × B2) → (C1 × C2) → Bool

The definition of ngeq, which can define all of these opera-
tions, is similar to that of ngmap, so we will only highlight the
differences.6 One occurs in the definition of the arity-indexed type,
NGeq. This function returns a boolean value rather than one of
the provided types, which means that ngeq makes sense even for
n = 0. In that case its type is simply Bool.

NGeq : {n : N} → (v : Vec Set n) → Set
NGeq {zero} [] = Bool
NGeq {suc n} (A1 :: As) = A1 → NGeq As

Next we must define a TyConstEnv for NGeq. For simplicity,
we only show the cases for Unit and Nat. The cases for Prod and
Sum are straightforward variations of ngmap. As there is only a
single member of the 	 type, the case for unit is just a function that
takes n arguments and returns true.

defUnit : (n : N) → NGeq (repeat)
defUnit zero = λ x → true
defUnit (suc n) = λ x → defUnit n

For natural numbers, ngeq should compare each number and
return true only when they all match (or when n is less than 2).
We implement this by checking each argument for equality with
the next. If a mismatch is found, ngeq uses constFalse, which
consumes a given number of arguments and returns false.

constFalse : {n : N} → (v : Vec Set n) → NGeq v
constFalse {zero} [] = false
constFalse {suc m} (A1 :: As) = λ a → constFalse As
defNat : (n : N) → NGeq (repeat {n} N)
defNat zero = true
defNat (suc zero) = λ x → true
defNat (suc (suc n)) =

λ x → λ y → if eqNat x y then defNat (suc n) y
else constFalse (repeat N)

Finally, because we wish to use ngeq at various Agda datatypes,
we must define an instance of DataGen from Section 4. As before,
we go by recursion on the arity. Since NGeq is an n-ary function
of representable types, we simply take in each argument, use the
provided DT isomorphism to coerce it to the appropriate type, and
recurse:

ngeq-data : {n : N} → DataGen (NGeq {suc n})
ngeq-data {0} dt (e :: []) bt =

6 The complete definition may be found in ngeq.agda with our sources.

λ s → bt (DT-from dt s)
ngeq-data {suc n} dt (e :: es) bt =

λ s → ngeq-data dt es (bt (DT-from dt s))

With these pieces defined, the definition of ngeq is a straight-
forward application of ngen:

ngeq : (n : N) → {k : Kind} → (e : Ty k) →
NGeq 〈 k 〉 (repeat {suc n} (� e �))

ngeq n e = ngen e ngeq-const ngeq-data

5.2 Splitting

The Haskell prelude and standard library include the functions

unzip :: [(a, b)] → ([a], [b])
unzip3 :: [(a, b, c)] → ([a], [b], [c])
unzip4 :: [(a, b, c, d)] → ([a], [b], [c], [d])
unzip5 :: [(a, b, c, d, e)] → ([a], [b], [c], [d], [e])
unzip6 :: [(a, b, c, d, e, f)] → ([a], [b], [c], [d], [e], [f])

suggesting that there should be an arity-generic version of unzip
that unifies all of these definitions.

Furthermore, it makes sense that we should be able to unzip data
structures other than lists, such as Maybes or Trees.

unzipMaybe :: Maybe (a, b) → (Maybe a, Maybe b)
unzipTree :: Tree (a, b) → (Tree a, Tree b)

Indeed, unzip is also datatype-generic, and Generic Haskell in-
cludes the function gunzipWith that can generate arity-one unzips
for any type constructor.

Here, we describe the definition of ngsplit, which generates un-
zips for arbitrary data structures at arbitrary arities. In some sense,
ngsplit is the dual to ngmap. Instead of taking in n arguments (with
the same structure) and combining them together to a single result,
split takes a single argument and distributes it to n results, all with
the same structure.

For example, here is an instance of ngsplit, specialized to the
Option type and arity 2. Note that this function is more general than
unzipMaybe above, the Maybes need not contain pairs so long as
we have some way to split the data.

unzipWithMaybe2 : {A B C : Set} → (A → B × C)
→ (Maybe A → Maybe B × Maybe C)

unzipWithMaybe2 = ngsplit 2 maybe

The definition of unzipWith gives us unzip when applied to the
identity function.

unzipMaybe2 : {A B : Set} → Maybe (A × B)
→ (Maybe A × Maybe B)

unzipMaybe2 = unzipWith2 (λ x → x)

The function NGsplit gives the type of ngsplit at base kinds.
The first type in the vector passed to NGsplit is the type to split.
The subsequent types are those the first type will be split into. If
there is only one type, the function returns unit. The helper function
prodTy folds the _×_ constructor across a vector of types.

prodTy : {n : N} → (As : Vec Set n) → Set
prodTy {0} = 	
prodTy {1} (A :: []) = A
prodTy {suc (suc)} (A :: As) = (A × prodTy As)

NGsplit : {n : N} → (v : Vec Set (suc n)) → Set
NGsplit (A1 :: As) = A1 → prodTy As

The cases for Nat and Unit are straightforward, so we do not
show them. They simply make n copies of the argument.

To split a product (x, y), we first split x and y, then combine
together the results. For this combination, prodn takes arguments
of types (A1 × A2 × ... × An) and (B1 × B2 × ... × Bn) and
forms a result of type (A1 × B1) × (A2 × B2) × ... × (An × Bn).

prodn : {n : N} → (As Bs : Vec Set n)
→ prodTy As → prodTy Bs
→ prodTy (repeat _×_ � As � Bs)

prodn {0} a b = tt
prodn {1} (A :: []) (B :: []) a b = (a, b)
prodn {suc (suc n)} (A :: As) (B :: Bs) (a, as) (b, bs) =

((a, b), prodn {suc n} as bs)
defPair : (n : N)

→ (As : Vec Set (suc n)) → (NGsplit As)
→ (Bs : Vec Set (suc n)) → (NGsplit Bs)
→ NGsplit (repeat _×_ � As � Bs)

defPair n (A :: As) a (B :: Bs) b =
λ p → prodn {n} (a (proj1 p)) (b (proj2 p))

The case for sums scrutinizes the argument to see if it is a left
or right injection, and uses the appropriate provided function to
split the inner expression. Then we use either injLeft or injRight
(elided), which simply map inj1 or inj2 onto the members of the
resulting tuple.

defSum : (n : N)
→ (As : Vec Set (suc n)) → (NGsplit As)
→ (Bs : Vec Set (suc n)) → (NGsplit Bs)
→ NGsplit (repeat _
_ � As � Bs)

defSum 0 (A :: []) af (B :: []) bf = λ → tt
defSum (suc n) (A :: As) af (B :: Bs) bf = f

where f : A
 B → prodTy (repeat _
_ � As � Bs)
f (inj1 x1) = injLeft {n} (af x1)
f (inj2 x1) = injRight {n} (bf x1)

The definition of split-const (elided) dispatches to the branches
above in the standard way, delegating to a trivial case when n is 0.
Finally, we must define an instance of DataGen so that we may use
ngsplit at representable Agda datatypes. Since NGsplit is defined
in terms of prodTy, we must also convert instances of that type.
These (elided) functions are similar to previous examples, except
that we are converting a pair instead of an arrow. With split-const
and split-data, we can define ngsplit as usual.

Splitting is a good example of datatype-generic program-
ming’s potential to save time and eliminate errors. Defining a
separate instance of split for vectors is not simple. For exam-
ple, we would need a function to transpose vectors of prod-
ucts, transforming Vec m (A1 × A2 × ... × An) into
(Vec A1 m × Vec A2 m × ... × Vec An m). This code is slightly
tricky and potentially error-prone, but with generic programming
we get the vector split for free. Moreover, we may reason once
about the correctness of the general definition of split rather than
reasoning individually about each of its arity and type instances.

5.3 More Operations

Mapping, equality and splitting provide three worked out exam-
ples of doubly generic functions. We know of a few others, such
as a monadic map, a map that returns a Maybe instead of an er-
ror when the Sum injections do not match, a comparison function,
and an equality function that returns a proof that the arguments are
all equal. Furthermore, there are arity-generic versions of standard
Generic Haskell functions like crushes or enumerations. For exam-
ple, an arity-generic gsum adds together all of the numbers found
in n data structures. Such examples seem less generally useful than
arity-generic map or unzip, but are not difficult to define.

Compared to the space of datatype-generic functions, the space
of doubly generic operations is limited. This is unsurprising, as
there already were not many examples of Generic Haskell functions
with arities greater than one. However, this work has given us new
insight into what other doubly-generic functions might look like.
Furthermore, though the collection of doubly-generic functions is
small, this is no reason not to study it. Indeed, it includes some of
the most fundamental operations of functional programming, and
it makes sense that we should learn as much as we can about these
operations.

6. Related Work
Only a few sources discuss arity-generic programming. Fridlender
and Indrika [7] show how to encode n-ary list map in Haskell, using
a Church encoding of numerals to reflect the necessary type depen-
dencies. They remark that a generic programming language could
provide a version of zipWith that works for arbitrary datatypes,
but that no existing language provides such functionality. They also
mention a few other arity-generic programs: taut which deter-
mines whether a boolean expression of n variables is a tautology,
and variations on liftM, curry and uncurry from the Haskell
prelude. It is not clear whether any of these functions could be
made datatype-generic. McBride [14] shows an alternate encoding
of arity-generic list map in Haskell using type classes to achieve
better safety properties. He examines several other families of op-
erations, like crush and sum, but does not address type genericity.

Many Scheme functions, such as map, are arity-generic (or
variable-arity, in Scheme parlance). Strickland et al. [24] extend
Typed Scheme with support for variable-arity polymorphism by
adding new forms for variable-arity functions to the type lan-
guage. They are able to check many examples, but do not consider
datatype-genericity.

Sheard [22] translates Fridlender and Indrika’s example to the
Ωmega programming language, using that language’s native in-
dexed datatypes instead of the Church encoding. He also demon-
strates one other arity-generic program, n-ary addition. Although
the same work also includes an implementation of datatype-generic
programming in Ωmega, the two ideas are not combined.

Several researchers have used dependent types (or their encod-
ings) to implement Generic-Haskell-style datatype-genericity. In
previous work, we encoded representations of types using Church
encodings [28] and GADTs [29] and showed how to implement
a number of datatype-generic operations such as map. Hinze [10],
inspired by this approach, gave a similar encoding based on type
classes. In those encodings, doubly-generic programming is not
possible because datatype-generic programs of different arities re-
quire different representations or type classes.

The most closely related encoding of Generic Haskell to this one
is by Verbruggen et al. [26]. They use the Coq programming lan-
guage to define a framework for generic programming, but do not
consider arity-genericity. Altenkirch and McBride [1] show a simi-
lar development in Oleg. This work extends those developments by
considering examples not possible in Generic Haskell and showing
a technique for writing generic programs which work on source-
language datatypes.

The idea of generic programming in dependent type theory
via universes has seen much attention since it was originally pro-
posed [13, 18]. While demonstrating a new form of double gener-
icity, this paper covers only one part of what is possible in a de-
pendently typed language. In particular, our codes do not extend to
all inductive families and so we cannot represent all types that are
available (see Benke et al. [2] and Morris et al. [17] for more ex-
pressive universes). A dependently-typed language also permits the
definition of generic proofs about generic programs. Chlipala [4]
uses this technique in the Coq proof assistant to generically define

and prove substitution properties of programming languages. Ver-
bruggen et al. [27] use Coq’s dependent types to develop a frame-
work for proving properties about generic programs.

7. Discussion
Generic programming in a dependently-typed language As we
mentioned in the introduction, there are several dependently-typed
languages that we could have used for this development. We se-
lected Agda because the focus of its design has been this sort of pro-
gramming. Like Coq, Agda is a full-spectrum dependently typed
language. That has allowed us the flexibility to use universes to
directly implement generic programming. We had the full power
of the computational language available to express the relation-
ships between values and types. A phase-sensitive language, such
as Ωmega or Haskell, would have required singletons to reflect
computation to the type level, and would have permitted type-level
computation only in a restricted language.

Compared to Coq, Agda has more vigorous type inference,
especially combined with pattern matching. Although Coq can also
infer implicit arguments, if we had written the functions in Coq we
would have had to add many more type annotations. Additionally,
developing in Agda allowed us to deal with non-termination more
conveniently—while Coq must be able to see that a definition
terminates before moving on, Agda shows the user where it can
not prove termination and allows other work to continue.

On the other hand, using Coq would have lead to two advan-
tages. Coq’s tactic language can be used to automate some of the
reasoning. Tactics would have been particularly useful in proving
some of the equalities needed to typecheck the (elided) implemen-
tation of ngen. However, we did not see any need for tactics in any
of the uses of ngen to define doubly-generic operations. More im-
portantly, as discussed below, differences in the way Coq and Agda
handle type levels forced us to use Agda’s –-type-in-type flag
to clarify the presentation.

Type levels in Agda Although we have hidden it, Agda actually
has an infinite hierarchy of type levels. Set, also known as Set0,
is the lowest level in the type hierarchy. Terms like Set0 and
Set0 → Set0 have type Set1, which itself has type Set2, etc.

To simplify our exposition, we collapsed all of these levels to
the type Set, with the help of the –-type-in-type flag. This flag
makes Agda’s logic inconsistent, so to demonstrate that we are not
using it in an unsound way, we have also implemented a version of
the code that may be compiled without the flag. That version can
be found in the notypeintype subdirectory of our source tarball.

Three differences between Coq and Agda make this explicit
version more complicated than the one presented here. First, Agda
currently lacks universe polymorphism [9], a feature which allows
definitions to work on multiple type levels. As a result, many of
the data structures in this paper must actually be duplicated at the
level of Set1, creating significant clutter. Second, since Set is not
impredicative in Agda, many definitions that could live at the level
of Set in Coq must be at the level of Set1 instead. Finally, because
Set0 is not a subtype of Set1 in Agda, we found it necessary to
explicitly lift types from Set0 to Set1.

Future work and Conclusions Because we are working in the
flexible context of a dependently-typed programming language, our
work here will allow us to adapt and extend orthogonal results in
generic programming to this framework. For example, we would
like to use Agda as a proof assistant to reason about the properties
of the generic programs that we write. We would also like to extend
our universe so that it may encode more of Agda’s type system,
such as arbitrary indexed datatypes. Finally, we would like to gain
more experience with doubly-generic programming by creating and
analyzing additional examples.

In this paper, we have combined arity-generic and datatype-
generic programming into a single framework. Crucially, this com-
bination takes advantage of the natural role that arities play in the
definition of kind-indexed types. This framework has provided us
with new understanding of the definition and scope of doubly-
generic programs.

Acknowledgments Thanks to Andres Löh and Tim Sheard for
discussion, and to the anonymous reviewers for many helpful com-
ments. This paper was generated from literate Agda sources using
lhs2TeX.

References
[1] Thorsten Altenkirch and Conor McBride. Generic programming

within dependently typed programming. In Proceedings of the IFIP
TC2 Working Conference on Generic Programming, Dagstuhl, Ger-
many, July 2003.

[2] Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic
programs and proofs in dependent type theory. Nordic Journal of
Computing, 10(4):265–289, 2003.

[3] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. In ICFP ’05: Proceedings of the Tenth
ACM SIGPLAN International Conference on Functional Program-
ming, pages 241–253, New York, NY, USA, 2005. ACM.

[4] Adam Chlipala. A certified type-preserving compiler from lambda
calculus to assembly language. In PLDI ’07: Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 54–65, New York, NY, USA, 2007. ACM.

[5] Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Löh, and Jan de Wit.
The Generic Haskell user’s guide. Technical Report UU-CS-2001-26,
Utrecht University, 2001.

[6] Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Loeh. Extensible and
modular generics for the masses. In Henrik Nilsson, editor, Trends in
Functional Programming (TFP 2006), April 2007.

[7] Daniel Fridlender and Mia Indrika. Do we need dependent types?
Journal of Functional Programming, 10(4):409–415, July 2000.

[8] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. PhD thesis, Université
Paris VII, 1972.

[9] Robert Harper and Robert Pollack. Type checking with universes.
Theoretical Computer Science, 89:107–136, 1991.

[10] Ralf Hinze. Generics for the masses. Journal of Functional Program-
ming, 16(4-5):451–483, 2006.

[11] Ralf Hinze. Polytypic values possess polykinded types. Science of
Computer Programming, 43(2–3):129–159, 2002. MPC Special Issue.

[12] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory.
In Roland Backhouse and Jeremy Gibbons, editors, Generic Program-
ming, Advanced Lectures, volume 2793 of Lecture Notes in Computer
Science, pages 1–56. Springer-Verlag, 2003.

[13] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis-Napoli, 1984.

[14] Conor McBride. Faking it: Simulating dependent types in haskell.
Journal of Functional Programming, 12(5):375–392, 2002.

[15] Conor McBride and James McKinna. The view from the left. Journal
of Functional Programming, 14(1):69–111, 2004.

[16] Conor McBride and Ross Paterson. Applicative programming with
effects. Journal of Functional Programming, 18(1):1–13, 2008.

[17] Peter Morris, Thorsten Altenkirch, and Neil Ghani. Constructing
strictly positive families. In CATS ’07: Proceedings of the Thirteenth
Australasian Symposium on Theory of Computing, pages 111–121,
Darlinghurst, Australia, Australia, 2007. Australian Computer Society,
Inc.

[18] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-
Löf’s Type Theory: an introduction. Oxford University Press, 1990.

[19] Ulf Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, SE-412 96 Göte-
borg, Sweden, September 2007.

[20] Simon Peyton Jones et al. The Haskell 98 language and libraries: The
revised report. Journal of Functional Programming, 13(1):0–255, Jan
2003. http://www.haskell.org/definition/.

[21] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for
GADTs. In ICFP ’06: Proceedings of the Eleventh ACM SIGPLAN
International Conference on Functional Programming, pages 50–61,
Portland, OR, USA, September 2006.

[22] Tim Sheard. Generic programming programming in omega. In Roland
Backhouse, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors,
Datatype-Generic Programming, volume 4719 of Lecture Notes in
Computer Science, pages 258–284. Springer, 2006.

[23] Tim Sheard. Putting Curry-Howard to work. In Proceedings of
the ACM SIGPLAN 2005 Haskell Workshop. ACM Press, September
2005.

[24] T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen.
Practical variable-arity polymorphism. In ESOP ’09: Proceedings of
the Eighteenth European Symposium On Programming, pages 32–46,
March 2009.

[25] The Coq Development Team. The Coq Proof Assistant Reference
Manual, Version 8.1. LogiCal Project, 2006. Available from http:
//coq.inria.fr/V8.1beta/refman/.

[26] Wendy Verbruggen, Edsko de Vries, and Arthur Hughes. Polytypic
programming in Coq. In WGP ’08: Proceedings of the ACM SIGPLAN
Workshop on Generic Programming, pages 49–60, New York, NY,
USA, 2008. ACM.

[27] Wendy Verbruggen, Edsko de Vries, and Arthur Hughes. Polytypic
properties and proofs in Coq. In WGP ’09: Proceedings of the 2009
ACM SIGPLAN Workshop on Generic Programming, pages 1–12,
New York, NY, USA, 2009. ACM.

[28] Stephanie Weirich. Type-safe run-time polytypic programming. Jour-
nal of Functional Programming, 16(10):681–710, November 2006.

[29] Stephanie Weirich. RepLib: A library for derivable type classes. In
Haskell Workshop, pages 1–12, Portland, OR, USA, September 2006.

	University of Pennsylvania
	ScholarlyCommons
	1-19-2010

	Arity-Generic Datatype-Generic Programming
	Stephanie Weirich
	Chris Casinghino
	Recommended Citation

	Arity-Generic Datatype-Generic Programming
	Abstract
	Disciplines
	Comments

	tmp.1343761026.pdf.P1Rhc

