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Automatically Incorporating New Sources in Keyword Search-Based Data
Integration

Abstract
Scientific data offers some of the most interesting challenges in data integration today. Scientific fields evolve
rapidly and accumulate masses of observational and experimental data that needs to be annotated, revised,
interlinked, and made available to other scientists. From the perspective of the user, this can be a major
headache as the data they seek may initially be spread across many databases in need of integration. Worse,
even if users are given a solution that integrates the current state of the source databases, new data sources
appear with new data items of interest to the user. Here we build upon recent ideas for creating integrated
views over data sources using keyword search techniques, ranked answers, and user feedback [32] to
investigate how to automatically discover when a new data source has content relevant to a user’s view — in
essence, performing automatic data integration for incoming data sets. The new architecture accommodates a
variety of methods to discover related attributes, including label propagation algorithms from the machine
learning community [2] and existing schema matchers [11]. The user may provide feedback on the suggested
new results, helping the system repair any bad alignments or increase the cost of including a new source that is
not useful. We evaluate our approach on actual bioinformatics schemas and data, using state-of-the-art schema
matchers as components. We also discuss how our architecture can be adapted to more traditional settings
with a mediated schema.
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ABSTRACT
Scientific data offers some of the most interesting challenges in
data integration today. Scientific fields evolve rapidly and accumu-
late masses of observational and experimental data that needs to be
annotated, revised, interlinked, and made available to other scien-
tists. From the perspective of the user, this can be a major headache
as the data they seek may initially be spread across many databases
in need of integration. Worse, even if users are given a solution
that integrates the current state of the source databases, new data
sources appear with new data items of interest to the user.

Here we build upon recent ideas for creating integrated views
over data sources using keyword search techniques, ranked an-
swers, and user feedback [32] to investigate how to automatically
discover when a new data source has content relevant to a user’s
view — in essence, performing automatic data integration for in-
coming data sets. The new architecture accommodates a variety of
methods to discover related attributes, including label propagation
algorithms from the machine learning community [2] and existing
schema matchers [11]. The user may provide feedback on the sug-
gested new results, helping the system repair any bad alignments
or increase the cost of including a new source that is not useful.
We evaluate our approach on actual bioinformatics schemas and
data, using state-of-the-art schema matchers as components. We
also discuss how our architecture can be adapted to more traditional
settings with a mediated schema.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases—Data
translation—schema alignment; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval—Relevance feedback

General Terms
Algorithms, Human Factors, Performance

Keywords
Machine learning, user feedback, schema matching, schema align-
ment, keyword search, data integration

1. INTRODUCTION
Data integration remains one of the most difficult challenges in

information technology, largely due to the ambiguities involved in
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trying to semantically merge different data sources. In an ideal
world, the data needs of science, medicine, and policy would be
met by discovering new data sets and databases the moment they
are published, and automatically conveying their contents to users
with related information needs, in the form relevant to those users.
Instead, we live in a world where both discovery and semantic con-
version are for the most part time-consuming, manual processes,
causing a great deal of relevant information to be simply ignored.
To address these difficulties, some research communities have at-
tempted to define a consensus global schema (mediated schema) for
their field so that individual sources can be mapped into a common
representation. Researchers in machine learning, databases, and
the semantic web have made significant progress in recent years on
partially automating these mapping and alignment tasks [29].

However, the global-schema approach is poorly suited to au-
tomating the process of source discovery and integration in a dy-
namic scientific community. It is difficult to develop a consensus
mediated schema that captures the diverse needs of a large user
base and keeps up with new concepts, methods, and types of ex-
perimental result. Few mechanisms exist for discovering relevant
sources as they are first published, and for having their data auto-
matically put into use. Finally, schema alignment tools rarely scale
to large numbers of schemas and relations, and it can be difficult to
determine when they have produced the right mappings.

Our work on the Q system [32] develops an information need-
driven paradigm for data integration, which addresses the above
problems. Q is initially given a set of databases that contain known
cross-references, links, and correspondence or cross-reference ta-
bles; it does not require a global mediated schema or full schema
mappings. A user specifies an information need through a keyword
query. Leveraging ideas from keyword search in databases [4, 5,
17, 20], Q defines a ranked view consisting of a union of conjunc-
tive queries over different combinations of the sources. This view
is made persistent and refined through user feedback.

In this paper we build upon Q’s information need-driven integra-
tion model by addressing the challenge of automatically adding
new data sources and relating them to the existing ones. As a
user (or a Web crawler) registers a new database, that source’s rel-
evance to existing ranked views is considered, using information
about data-value overlap as well as schema alignment costs from
existing schema matchers. Going beyond our previous work [32],
Q can now combine the weighted outputs from different schema
matchers. If the source is found to be highly relevant to a ranked
view, then query results are refreshed as appropriate. Now the users
of the view may provide feedback on its contents: certain new re-
sults may be valuable, or possibly erroneous. As the system gets
feedback about erroneous results, it adjusts the costs it has assigned
to specific mappings or alignments so that associations responsi-
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Figure 1: Basic architecture of Q. The initial search graph comes from the sources known at startup. At query time this is expanded
into a query graph, from which queries and ultimately results are generated. The search graph maintenance modules, the focus of
this paper, handle user feedback and accept new source registrations, in order to update the search graph with new alignments —
triggering recomputation of the query graph and query results in response.

ble for the errors are avoided. Q can adjust weights for individual
alignments, including how much to favor the outputs from different
schema matchers.

Our work distinguishes itself from prior efforts in interactive,
user-driven integration (e.g., dataspaces [14] and best-effort inte-
gration [30]) by automatically discovering semantic links among
data sources, and using a data-driven approach to providing feed-
back to the system. Any form of automatic schema alignment is
likely to make errors, especially at scale; the challenge is to deter-
mine when and where there are mistakes. Simply “eyeballing” the
output mapping is unlikely to help identify what is correct. How-
ever, if a domain expert is looking at data from the perspective of
a particular information need, he or she is (1) likely to invest some
effort in ensuring the quality of results, (2) likely to recognize when
results do not make sense.

We make the following contributions:
• We create a novel “pluggable” architecture that uses match-

ing tools to create alternative potential alignments.
• We develop an automatic, information need-driven strategy

for schema alignments that, for a given top-k keyword query
and a new source, only aligns tables against the new source
if there is potential to affect the top-k query results.
• We develop a unified representation for data values and at-

tribute labels, using edge costs to measure relatedness; this
facilitates both ranked querying and learning.
• We incorporate state-of-the-art alignment components from

the database [11] and machine learning [33] literature, and
show how to combine their outputs.
• We propose the use of a random-walk-inspired algorithm

called Modified Adsorption (MAD) [31] to detect schema
alignments, and study its effectiveness instead of, and in
combination with, the COMA++ tool [11].
• We apply a machine learning algorithm called MIRA [10],

to learn not only correct attribute alignments, but also how to
combine information from multiple matching tools. Unlike
the learning techniques applied in schema matching tools,
our techniques are based on feedback over answers.

We experimentally evaluate our techniques over bioinformatics
databases, demonstrating effectiveness of the proposed methods.

In Section 2 we review the data integration model of the Q sys-
tem and describe our basic problem setup. Section 3 then presents
our solution to the problem of determining when a new source is
relevant to an existing view, through the use of focused schema
alignment tasks. Section 4 describes how we learn to adjust the
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alignments among attributes, and their weights, from user feed-
back. We experimentally analyze our system’s effectiveness in Sec-
tion 5. We discuss related work in Section 6, before concluding and
describing future work in Section 7.

2. SEARCH-BASED INTEGRATION
This paper adopts a keyword search query model [4, 17, 20, 32]

in which keywords are matched against elements in one or more re-
lations in different data sources. The system attempts to find links
between the relations matching the given keywords. Such links
are proposed by different kinds of associations such as foreign key
relationships, value overlaps or global identifiers, similarity pred-
icates, or hyperlinks. In general, there may be multiple relations
matching a search keyword, and multiple attribute pairs may align
between relations, suggesting many possible ways to join relations
in order to answer the query.

Figure 1 shows the basic architecture of our Q system. We start
with an initial search graph generated from existing data source re-
lations and the associations among them. During the view creation
and output stage, a keyword search is posed against this search
graph, and results in a top-k view containing answers believed to
be relevant to the user. The definition and contents of this view
are maintained continuously: both the top-scoring queries and their
results may need to be updated in response to changes to the under-
lying search graph made (1) directly by the user, who may provide
feedback that changes the costs of certain queries and thus query
answers; (2) by the system, as new data sources are discovered,
and their attributes are found to align with the existing relations in
the search graph, in a way that results in new top-k answers for
the user’s view. We refer to the process of updating the schema
graph’s nodes and associations as search graph maintenance. In
fact, there is interplay between the two graph maintenance mech-
anisms and the view creation and output stage, as the system may
propose an alignment, the view’s contents may be updated, the user
may provide feedback on these results, and the view output may be



updated once again. All of this is focused around alignments that
are relevant to the user’s ongoing information need.

2.1 Initial Search Graph Construction
Before any queries are processed, an initial search graph is cre-

ated (leftmost module in Figure 1) to represent the relations and
potential join links that we already know about. Q first scans the
metadata in each data source, determining all attribute and relation
names, foreign keys, external links, common identifiers, and other
auxiliary information. The basic search graph (see Figure 2 for an
example) consists of two types of nodes: relations, represented by
rounded rectangles, and attributes, represented by ellipses. We add
undirected edges between attributes and the relations that contain
them (with zero-cost, indicated as thin lines with no annotations),
and between tables connected by a key-foreign-key relationship
(bold lines with costs cf1, . . . , cf3) initialized to a default foreign
key cost cd.

The graph is extended with bidirectional association edges
drawn from the results of hand-coded schema alignments (or pos-
sibly the results of schema matching tools, such as the ones we
consider in this study, which are a label propagation algorithm and
the COMA++ schema matcher). Such associations may be within
the same database (such as those added between InterPro2GO and
entry2pub, or entry.name and pub.title) or across databases.
Each of these associations receives a cost (ca1, . . . , ca3 in Figure 2)
based on the alignment confidence level.

Each tuple in each of the tables is a virtual node of the search
graph, linked by zero-cost edges to its attribute nodes. However,
for efficiency reasons we will add tuples nodes as needed for query
interpretation. Once the search graph has been fully constructed, Q
is ready for querying, and ready to learn adjustments to the costs
cci, caj , and cfk or to have new association edges added.

2.2 Views from Keyword Queries
Given a keyword query Q = {K1, . . . ,Km}, we dynamically

expand the search graph into a query graph as follows. For each
Ki ∈ Q, we use a keyword similarity metric (by default tf-idf,
although other metrics such as edit distance or n-grams could be
used) to match the keyword against all schema elements and all
pre-indexed data values in the data sources. We add a node rep-
resenting Ki to the graph (see Figure 3, where keyword nodes are
represented as boldfaced italicized words). We then add an edge
from Ki to each graph node (approximately) matching it. Each
such edge is assigned a set of costs, including mismatch cost (e.g.,
s2 in the figure) that is lower for closer matches, and costs related to
the relevance of the relations connected by the edge. The edge also
has an adjustable weight (for instance w2) that appropriately scales
the edge cost to yield an overall edge cost (for instance c2). Ad-
ditionally, we “lazily” bring in data values as necessary. For each
database tuple matching the keyword, we add a node for each value
in the tuple, with a similarity edge between the value and the Ki

node (e.g., wc3s3 to plasma membrane, where s3 is the mismatch
cost and wc3 represents the starting weight for that edge). To com-
plete the graph, we add zero-cost edges between tuple value nodes
and their corresponding attribute nodes.

From this query graph, each tree with leaf nodesK1 . . .Km rep-
resents a possible join query (each relation node in the tree, or con-
nected to a node in the tree by a zero-cost edge, represents a query
atom, and each non-zero-cost edge represents a join or selection
condition). As described in [32], Q runs a top-k Steiner tree algo-
rithm (using an exact algorithm at small scales, and an approxima-
tion algorithm [32] at larger scales; STAR [21] could also be used)
to find the k lowest-cost Steiner trees.

From each such tree Q, we generate a conjunctive SQL query

that constructs a list of items for the SQL select, from, and
where clauses, and an associated cost expression for the particu-
lar query. For efficiency reasons, we only incorporate value-based
similarity predicates in matching keywords to data or metadata, not
in joining one item with another; hence the cost of each query is
independent of the tuples being processed. (In ongoing work we
are incorporating similarity joins and other operations that vary in
cost from one tuple to the next.)

The individual SQL statements must be unioned together in in-
creasing order of associated cost. This actually requires a disjoint
or “outer” union: each query may output different attributes, and
we want a single unified table for output. However, we would like
to place conceptually “compatible” output attributes from different
queries into the same column.

We start by defining the query output schema QA to match the
output schema of the first query’s select-list LA. Then, for each
successive query, we iterate over each attribute a in its select-list.
Let na be the node in the query graph with label a. Suppose there
exists some similarity edge (na, na′) with cost below a threshold
t, and label(na′) appears in QA. If the current query is not al-
ready outputting an attribute corresponding to label(na′), then we
rename attribute a to label(na′) in the output. Otherwise, we sim-
ply add a as a new attribute to QA. Then we create a multiway
disjoint union SQL query, in which each “branch” represents one
of the queries produced from a query tree. Each “branch” also out-
puts a cost (its e term). Finally, we execute the queries and return
answers in ranked order, annotated with provenance information
about their originating queries.

2.3 Search Graph Maintenance
The novel aspect of our system is its ability to maintain the

search graph and adjust the results of existing user queries accord-
ingly, as highlighted on the right side of Figure 1. We assume that
a user’s query has described an ongoing information need for that
user, and that he or she will make future as well as current use of the
query results. Hence we save the results of the query as a view, and
we focus on enabling the user to refine the view by giving feedback
and adjusting the weights given to various associations, and on in-
corporating new data sources if good associations can be found
with the existing relations in the search graph, and the contents
of these new sources affect the contents of the top-k tuples in the
user’s view.

The core capabilities for user feedback were addressed in our
previous work [32], so we concentrate here on discovering new
associations (alignments) with relevant sources (Section 3), and on
using feedback to refine and repair such associations (Section 4).

3. ADDING NEW DATA SOURCES
Once a keyword search-based view has been defined as in the

previous section, Q switches into search graph maintenance mode.
One crucial maintenance process, discussed in this section, decides
if and how to incorporate new sources into the current view as the
system is notified of their availability.

Q includes a registration service for new tables and data sources:
this mechanism can be manually activated by the user (who may
give a URL to a remote JDBC source), or could ultimately be trig-
gered directly by a Web crawler that looks for and extracts tables
from the Web [7] or the deep Web [24, 35] .

3.1 Basic Approach
When a new source is registered, the first step is to incorporate

each of its underlying tables into the search graph. The search
graph is in effect the data model queried by Q. It contains both
metadata (relation and attribute nodes) and data (tuple values), re-
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lated by edges that specify possible ways of constructing a query.
The lower the cost of an edge, the more likely that the edge will be
relevant to answering queries involving one of the nodes it links.

When a new source is encountered, the first step is to determine
potential alignments between the new source’s attributes and those
in existing tables: these alignments will suggest (1) potential joins
to be used in query answering, and (2) potential alignments of at-
tributes in query output, such that the same column in the query an-
swers contains results from different sources. We note that in both
cases, it is desirable that aligned attributes come from the same do-
mains (since, in the case of joins, no results would be produced
unless there are shared data values among the attributes).

Of course, this task requires a set of alignment primitives
(schema matching algorithms) used to match attributes, which we
describe in Section 3.2. But there are additional architectural chal-
lenges that must be faced at the overall system level. As the search
graph grows in size, the cost of adding new associations becomes
increasingly expensive: regardless of the specific primitives used,
the cost of alignment tends to be at least quadratic in the number
of compatible attributes. We must find ways of reducing the space
of possible alignments considered. Moreover, not all of these pro-
posed alignments may be good ones: most schema matching or
alignment algorithms produce false positives.

We exploit the fact that a bad alignment will become apparent
when (and only when) it affects the top-k results of a user query
whose results are closely inspected. We develop an information
need-driven strategy where we consider only alignments that have
the potential to affect existing user queries (Section 3.3). As we
later show in Section 5, this restricts the space of potential align-
ments to a small subset of the search graph, which grows at a much
lower rate than the search graph itself. We then develop techniques
for correcting bad alignments through user feedback on the results
of their queries (Section 4).

3.2 Alignment Primitives
Since we focus here on system architecture and learning meth-

ods, our goal with Q is to develop an architecture and learning
methods that are agnostic as to the specific schema matching or
attribute alignment techniques used, such that we can benefit from
existing methods in databases and machine learning.

To demonstrate the architecture’s ability to accommodate dif-
ferent schema matching algorithms, we incorporate two comple-
mentary types of matchers in Q. The first type consists of typical
similarity-based schema matchers from the database community
that rely on pairwise matches between source and target relations,
primarily looking at schema rather than instance-level features, and
which we aim to plug into our architecture as “black boxes”. The

second kind are matchers that globally aggregate the compatibili-
ties between data instances. To that end, we develop a new schema
matching technique that looks at “type compatibility” in a way that
considers transitivity: if attribute A has 50% overlap in values with
attribute B, and attribute B has 50% overlap in values with source
C, all three attributes likely come from the same domain even if A
and C do not share many values. Here we adapt a technique from
the machine learning and Web community called label propagation
that exploits transitivity and data properties, which has not previ-
ously been applied to schema matching. We briefly review both
kinds of matchers, then describe how we incorporate them into Q.

3.2.1 Alignment with Metadata Matcher
Prior work on schema matching has shown that it is useful to

consider multiple kinds of features, both at the data and meta-
data level, when determining alignments. Many different schema
matchers that incorporate multiple features have been proposed
in recent years [29], with one of the most sophisticated being
COMA++ [11]. The creators of the COMA++ schema match-
ing tool graciously provided a copy of their system, so our spe-
cific implementation incorporates COMA++ through its Java API.
This system is described in detail elsewhere [11]. Briefly, we used
COMA++’s default structural relationship and substring matchers
over metadata to produce proposed alignments1.

3.2.2 Alignment with Label Propagation
Our second matcher focuses on which attributes are type-

compatible at the instance level. The notion of label propagation
has been used in recent machine learning work for finding asso-
ciated metadata based on weighted transitive relationships across
many sources. Informally, this work represents a generalization of
some of the ideas in similarity flooding [26] or the Cupid algo-
rithm [23], but at a larger scale. In label propagation, we are given
a graph G = (V,E,W ) with nodes V , directed edges E, and a
weight function W : E → R that assigns a weight (higher is bet-
ter) to each edge. Assume some of the nodes i ∈ V initially are
given labels li. Labels are propagated from each node along its
out-edges to its neighboring nodes with a probability proportional
to edge weight, eventually yielding a label probability distribution
Li for each node. Intuitively, this model is similar to PageRank [6],
except that it computes how likely a “random surfer” starting at
an initial node with a particular label will end up at some other
node, based on a Markovian (memory- or history-free) behavioral

1COMA++ also optionally includes instance-level matching ca-
pabilities, but despite our best efforts and those of the authors,
we were only able to get the metadata matching capabilities of
COMA++ to work through its Java API.
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assumption. In this work, we use the Modified Adsorption (MAD)
[31] label propagation algorithm.

MAD is one of a family of related label propagation algorithms
used in several areas [36]. While these algorithms can be explained
in several ways [2], for simplicity we will rely here on the random
walk interpretation of MAD.

Let Gr = (V,Er,Wr) be the edge-reversed version of the orig-
inal graph G = (V,E,W ), where (a, b) ∈ Er iff (b, a) ∈ E, and
Wr(a, b) = W (b, a). Now, choose a node of interest q ∈ V . To
estimate Lq for q ∈ V , we perform a random walk on Gr starting
from q to generate samples for a random label variable L. After
reaching a node i during the walk, we have three choices:

1. With probability pcont
i , continue the random walk to a neigh-

bor of i.

2. With probability pabnd
i , abandon the random walk. This

abandonment probability makes the random walk stay rel-
atively close to its source when the graph has high-degree
nodes. When the random walk passes through such a node,
it is likely that further transitions will be into regions of the
graph unrelated to the source. The abandonment probability
mitigates that effect.

3. With probability pinj
i , stop the random walk and emit either

Li if i is one of the initially labeled nodes.

Lq will converge to the distribution over labels L emitted from ran-
dom walks initiated from node q. In practice, we use an equivalent
iterative fixpoint view of MAD [31], shown in Algorithm 1. In this
algorithm, Iv is the injected label distribution that a node is seeded
with; Rv is a label distribution with a single peak corresponding to
a separate “none of the above” label >. This dummy label allows
the algorithm to give low probability to all labels at a node if the
evidence is insufficient.

3.2.3 Combining Matchers in Q
We now describe how we fit each type of matcher into Q, starting

with the “black box” interface to COMA++. Later in the paper,
we discuss how we can combine the outputs of multiple matchers,
using user feedback to determine how to weigh each one.

COMA++ as a black-box matcher. An off-the-shelf “black box”
schema matcher typically does pairwise schema matching, mean-
ing that each new source attribute gets aligned with only a single
attribute in the existing set of data sources (rather than, e.g., an at-
tribute in each of the existing data sources). Moreover, matchers
tend to only output their top alignment, even when other poten-
tial alignments are considered. Our goal in Q is to determine the
top-Y (where Y is typically 2 or 3) candidate alignments for each
attribute, unless the top alignment has very high confidence: this
way we can later use user feedback to “suppress” a bad alignment
and see the results of an alternative.

To get alignments between the new source’s attributes and all
sources, we do a pairwise schema alignment between the new
source and each existing source. We thus obtain what COMA++
assumes to be the top attribute alignments between each relation
pair.

While we do not do this in our experiments, it is feasible (if ex-
pensive) to go beyond this, to force COMA++ to reveal its top-Y
overall alignments. Between each pair of schemas, we can first
compute the top alignment. Next, for each alignment pair (A,B)
that does not have a high confidence level, remove attribute A and
re-run the alignment, determining what the “next best” alignment
with B would be (if any). Next re-insert A and remove B, and
repeat the process. If there are additional schema matching con-
straints (e.g., no two source attributes may map to the same target
attribute), we can again iterate over each alignment pair (A,B).
Now remove all attributes from A’s schema that are “type com-
patible” with A, except for A itself; and run the alignment. Then
replace those attributes, and repeat the process removing attributes
type-compatible with B other than B itself.

Ultimately, we will have obtained from the matcher a set of as-
sociations (equivalent here to the alignments) and their confidence
levels. Depending on the matcher used, the confidence scores may
need to be normalized to a value between 0 and 1; in the case of
COMA++, its output already falls within this range. These confi-
dence scores will be used in forming a new edge cost (Section 3.4).

MAD to discover compatible datatypes. We developed a matcher
module (parallelizable for Hadoop MapReduce), which performs
MAD across schemas, using techniques described in [31]. While
this matcher implementation is in some sense a part of Q, it is im-
plemented in a way that does not provide any special interfaces,
i.e., from Q’s perspective it remains a black box. This matcher first
creates an internal label propagation graph that incorporates both
metadata and data. From the search graph, we take all relation at-
tributes from all sources, and create a node in the label propagation
graph for each attribute, labeled with its canonical name. We also
take all data values and create a label propagation graph node for
each unique value. We add to the graph an edge between a value
node and each node representing an attribute in which the value ap-
pears. Now we annotate or label each attribute node with its name.
A sample graph is shown in the left portion of Figure 4; for sim-
plicity, all the edges have weight 1.0.

We run the MAD algorithm over this graph, propagating sets of
annotations from node to node. The algorithm runs until the label
distribution on each node ceases to change beyond some tolerance
value. Alternatively, the algorithm can be run for a fixed number
of iterations. Each value node ultimately receives a distribution de-
scribing how strongly it “belongs” to a given schema attribute, and
each attribute node receives a distribution describing how closely it
matches other attribute nodes.



Algorithm 1 Modified Adsorption (MAD) Algorithm

Input: Graph: G = (V,E,W ), Seed labeling: Iv ∈ Rm+1

for v ∈ V , Probabilities: pinj
v , pcont

v , pabnd
v for v ∈ V , Label

priors: Rv ∈ Rm+1 for v ∈ V , Output: Label Scores: Lv for
v ∈ V
1: Lv ← Iv for v ∈ V {Initialization}
2: Mvv ← µ1 × pinj

v + µ2 × pcont
v ×

P
u Wvu + µ3

3: repeat
4: Dv ←

X
i

`
pcont

v ×Wvi + pcont
i ×Wiv

´
× Ii

5: for all v ∈ V do
6: Lv ← 1

Mvv
×
`
µ1 × pinj

v × Iv + µ2 ×Dv+

7: µ3 × pabnd
v ×Rv

´
8: end for
9: until convergence

Algorithm 2 VIEWBASEDALIGNER(G,G
′
,K,C, α). Input:

Search graphG, new sourceG
′
, keywords (K) associated with cur-

rent view, cost function C, cost threshold α. Output: Augmented
schema graph G

′′
, with alignments between G and G

′
.

1: G
′′
← G ∪ G

′

2: S ← ∅
3: for k ∈ K do
4: S = S ∪ GETCOSTNEIGHBORHOOD(G,C, α, k)
5: end for
6: for v ∈ S do
7: A = BASEMATCHER (G

′
, v)

8: E(G
′′

)← E(G
′′
) ∪A

9: end for
10: Return G

′′

In the graph in the second column in the Figure 4, we see that
the attribute nodes are annotated with labels matching their names,
each with probability 1. These labels are propagated to the neigh-
boring nodes and multiple iterations are run until convergence is
reached (shown in the rightmost graph). At the end, we see that
all data values are annotated with both go_id and acc since there
is significant value overlap between the two attributes. Note that
MAD does not require direct pairwise comparison of sources. This
is very desirable as such pairwise comparisons can be expensive
when many sources are involved.

We use the label distributions generated by MAD to generate
uncertainty levels from which edge costs will be derived for Q’s
search graph. For each node n in the MAD graph, we select the top-
Y attributes from its label distribution, and we add an edge in the
search graph between the attribute node for l and the attribute node
for n. The confidence level for each such edge will be Ln(l). Sec-
tion 3.4 describes how this level is combined with other weighted
parameters to form an edge cost.

3.3 Searching for Associations
We just saw how to harness individual schema matchers to find

alignments of sources, and hence association edges between exist-
ing and new source relations. However, we need to ensure that the
alignment algorithms can be applied scalably, as we increase the
number of data sources that we have discovered.

Of course, the simplest (though least scalable) approach is to
simply perform exhaustive matching: upon the registration of a new
data source, we iterate over all existing data sources in turn, and run
our alignment algorithm(s). We term this approach EXHAUSTIVE,
and note that it will scale quadratically in the number of attributes
in each source. As we shall see in Section 5, even for small numbers

Algorithm 3 PREFERENTIALALIGNER(G,G
′
, P ). Input: Search

graph G, new source G
′
, vertex cost function P . Output: Aug-

mented schema graph G
′′

, with alignments between G and G
′
.

1: G
′′
← G ∪ G

′

2: Vs = SORT(V (G), P )
3: for i = 1 to Vs.length do
4: r = GETRELATIONNODE (Vs[i])
5: A = BASEMATCHER (G

′
, r)

6: E(G
′′

)← E(G
′′
) ∪A

7: end for
8: Return G

′′
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Figure 5: A schema graph for the keywords term and plasma
membrane. Edges are annotated with costs. The shaded region
is the α-cost neighborhood (α = 2) of the two keywords, i.e. all
nodes reachable with cost ≤ 2 from a keyword.

of attributes schema alignment takes time, and with large numbers
of sources it may be costly to find new associations.

As was previously noted, we can exploit the fact that new as-
sociations are only “visible” to users if they appear in any queries
returning top-k results. Hence we exploit existing user views, and
the existing scores of top-k results, to restrict the search space of
alignments. As new queries are materialized within the system, we
would incrementally consider further alignments that might affect
the results of those queries.

Algorithm 2 shows code for VIEWBASEDALIGNER, which re-
duces the number of schema alignment comparisons (calls to
BASEMATCHER) through a pruning strategy that is guaranteed to
provide the same top-k answer set for a query as EXHAUSTIVE.
Given an existing schema graph G = (V,E,C) where C is a non-
negative real-valued cost function for each edge (discussed in the
next section), a set of keyword nodes K, and the cost α of the kth
top-scoring result for the user view, VIEWBASEDALIGNER con-
siders alignments between the new source’s schema graph G′, and
the projection of the graph that is within α of any keyword node. To
affect the view output, any new node fromG′ must be a member of
a Steiner tree with cost ≤ α; given that edge costs are always non-
negative, our pruning heuristic guarantees that we have considered
all possible alignments that could lead to this condition.

We illustrate this with an example in Figure 5, where we assume
two keywords have matched and the kth best score α = 2. Here,
VIEWBASEDALIGNER only considers alignments between a new
source and those nodes within the shaded cost neighborhood. This
yields savings in comparison with EXHAUSTIVE, which would ad-
ditionally need to compare the new source against the two sources



outside of the region. Of course, in a real search graph many more
sources are likely to be outside the region than inside it.

If we need even more aggressive pruning, we can adapt ideas
from network formation in social networks [3], and assume the ex-
istence of an alignment prior (P ) over vertices of the existing search
graph G, specifying a preference ordering for associations with the
existing nodes. This can capture, e.g., that we might want to align
with highly authoritative or popular relations. Algorithm 3 shows
pseudocode for such a PREFERENTIALALIGNER. A new source,
G

′
, is compared against the existing nodes in G in the order of the

ranking imposed by the prior P . The prior might itself have been
estimated from user feedback over answers of keyword queries, us-
ing techniques similar to those of the next section, or it might be
computed using alternate methods such as link analysis [1].

3.4 Measuring Schema Graph Edge Quality
As we take the output of the aligner and use it to create an asso-

ciation in the search graph, we would like to set the edge cost in a
principled way: ideally the value is not simply a hard-coded “de-
fault cost,” nor just the confidence value of the aligner, but rather it
should take into account a number of factors. For instance, the edge
cost might take into account costs associated with the relations be-
ing joined, derived from their authoritativeness or relevance; and
when we are using multiple matchers to create an alignment, we
might want to perform a weighted sum of their confidence scores.

We use a cost function for each edge that considers a com-
bination of multiple weighted components, some of which may
be shared across edges, and others of which may be exclusive to
a specific edge. We formalize this by describing the cost of an
edge as a sum of weights times feature values (also called scores).
The weights will be learned by Q (Section 4), whereas the fea-
tures are the base cost components whose value does not change.
For instance, to incorporate the uncertainty score from a black-
box schema matcher, we capture it as a feature, whose associated
weight we will learn and maintain. In some cases, we consider
features to be Boolean-valued: for instance, if we want to learn a
different weight for each edge, then we will create a feature for that
edge whose value is 1 for that edge (and 0 elsewhere).

Let the set of predefined features across the search graph be
F = {f1, . . . , fM}. Formally, a feature maps edges to real val-
ues. For each edge (i, j), we denote by f(i, j) the feature vector
that specifies the values of all the features of the edge. Each fea-
ture fm has a corresponding weight wm. Informally, lower feature
weights indicate stronger preference for the edges that have those
features. Edge costs are then defined as follows:

C((i, j),w) =
X
m

wm × fm(i, j) = w · f(i, j) (1)

where m ranges over the feature indices.
When we add a new association edge based on an alignment, we

set its cost based on the following weighted features:

• A default feature shared with all edges and set to 1, whose
weight thus comprises a default cost added to all edges.

• A feature for the confidence value of each schema matcher,
whose weight represents how heavily we (dis)favor the
schema matcher’s confidence scores relative to the other cost
components.

• A feature for each relation R connected by the association,
whose value is 1 for this relationR, and whose weight repre-
sents the negated logarithm of the R’s authoritativeness.

• A feature that uniquely identifies the edge itself, whose value
is 1, and whose weight comprises a cost added to the edge.

Together, the weighted features form an edge cost that is initial-
ized based not only on the alignment confidence levels, but also on
information shared with other nodes and edges.

4. USER FEEDBACK & CORRECTIONS
When the user sees a set of results, he or she may notice a few

results that seem either clearly correct or clearly implausible. In
Q the user may provide feedback by optionally annotating each
query answer to indicate a valid result, invalid result, or a ranking
constraint (tuple tx should be scored higher than ty). Q first gen-
eralizes this feedback by taking each tuple, and, by looking at its
provenance, replacing it with the query tree that produced it, using
a scheme similar to [32]. Recall that our model is one of tuple and
edge costs so a lower cost results in higher ranking.

The association cost learner converts each tuple annotation into
a constraint as follows:
• A query that produces correct results is constrained to have a

cost at least as low as the top-ranked query result.
• A query Qx that should be ranked above some other query
Qy is constrained to have a cost that is lower than Qy’s cost.

These constraints are fed into an algorithm called MIRA [10],
which has previously been shown to be effective in learning edge
costs from user feedback on query results [32]. We briefly summa-
rize the key ideas of MIRA here, and explain how we are using it
in a less restricted way here, learning over real-valued features, as
opposed to the Boolean features in the previous work [32].

Relationship between Edge Costs and Features. Recall from
Section 3.4 that each edge is initialized with a cost composed of
multiple weighted features: the product of the weight and the fea-
ture value comprise a default cost given to every edge, a weighted
confidence score from each schema alignment algorithm, the au-
thoritativeness of the two relations connected by the edge, and an
additional cost for the edge itself. Q’s association cost learner takes
the constraints from user feedback and determines a weight assign-
ment for each feature — thus assigning a cost to every edge.

Learning Algorithm. The learning algorithm (Algorithm 4) reads
training examples sequentially and updates its weights after receiv-
ing each of the examples based on how well the example is classi-
fied by the current weight vector. The algorithm, which was first
used in [32], is a variant of the Margin Infused Ranking Algorithm
(MIRA) [10]. We previously showed in [32] that MIRA effectively
learning top-scoring queries from user feedback; however, in that
work only binary features were used, while here we need to in-
clude real-valued features from similarity costs. Using real-valued
features directly in the algorithm can cause poor learning because
of the different ranges of different real-valued and binary features.
Therefore, as described above, we bin the real-valued features into
empirically determined bins; the real-valued features are then re-
placed by features indicating bin membership.

The weights are all zero as Algorithm 4 starts. After receiv-
ing feedback from the user on the rth query Sr about a top an-
swer, the algorithm retrieves the list B of the k lowest-cost Steiner
trees using the current weights. The user feedback for interac-
tion r is represented by the keyword nodes Sr and the target tree
Tr that yielded the query answers most favored by the user. The
algorithm then updates the weights so that the cost of each tree
T ∈ B is worse than the target tree Tr by a margin equal to the
mismatch or loss L(Tr, T ) between the trees. If Tr ∈ B, be-
cause L(Tr, Tr) = 0, the corresponding constraint in the weight
update is trivially satisfied. The update also requires that the cost
of each edge be positive, since non-positive edge costs will result
in non-meaningful Steiner tree computations. To accomplish this,



Algorithm 4 ONLINELEARNER(G,U, k). Input: Search graphG,
user feedback stream U , required number of query trees k, zero-
cost constraint edges A. Output: Updated costs of edges in G.

1: w(0) ← 0
2: r = 0
3: while U is not exhausted do
4: r = r + 1
5: (Sr, Tr) = U.NEXT()

6: Cr−1(i, j) = w(r−1) · fij ∀(i, j) ∈ E(G)
7: B = KBESTSTEINER(G,Sr, Cr−1,K)

8: w(r) = arg minw

‚‚‚w −w(r−1)
‚‚‚

9: s.t. C(T,w)− C(Tr,w) ≥ L(Tr, T ), ∀T ∈ B
10: w · fij = 0 ∀(i, j) ∈ A
11: w · fij > 0 ∀(i, j) ∈ E(G) \A
12: end while
13: Let C(i, j) = w(r) · fij ∀(i, j) ∈ E(G)
14: Return C

we include the default feature listed above, whose weight serves
as a uniform cost offset to all edge weights in the graph, which
keeps the edge costs positive. Some edges in the query graph are
constrained to have a fixed edge cost, irrespective of learning. For
example, attribute-relation edges have a cost of zero that should al-
ways be maintained. We achieve this by adding such constraints
to the MIRA algorithm. Our implementation requires a modifica-
tion of MIRA (shown in Algorithm 4) that takes as input a set A
specifying edges with zero cost constraints.

An example loss function, used in our experiments, is the sym-
metric loss with respect to the edges E present in each tree:

L(T, T ′) = |E(T ) \ E(T ′)|+ |E(T ′) \ E(T )| (2)

The learning process proceeds in response to continued user
feedback, and finally returns the resulting edge cost function.

5. EXPERIMENTAL ANALYSIS
In this section, we use Q as a platform to validate our strategy

of performing schema alignment in a query-guided manner (Sec-
tion 5.1), as well as our techniques for using user feedback over
data to correct bad alignments (Section 5.2). The search graph
maintenance modules in Q comprise approximately 4000 lines of
Java code, and all experiments were run on a Dell PowerEdge 1950
computer running RedHat Enterprise Linux 5.1 with 8GB RAM.
We used the COMA++ 2008 API, and a Java-based implementa-
tion of our MAD-based schema matcher.

Our focus in Q is on supporting bioinformatics applications, and
hence wherever possible, we use real biological databases and com-
pare with gold standard results, i.e., reference results supplied by
domain experts. This enables us to perform an experimental study
without having to conduct extensive user studies.

For the first set of experiments, we use a dataset for which we
have logs of actual SQL queries executed by Web forms, such that
we can determine which proposed source associations are actu-
ally valid (as witnessed by having real queries use them). This
dataset, GBCO2, consists of 18 relations (which we model as sepa-
rate sources) with 187 attributes.

In the second set of experiments, we used a different dataset,
based on the widely used (and linked) Interpro and GO databases,
where we could obtain keyword queries and find multiple alterna-
tive means of answering these queries. This dataset consists of 8
closely interlinked tables with 28 attributes.
2http://www.betacell.org/
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Figure 6: Running times (avgd. over intro of 40 sources) when
aligning a new source to a set of existing sources (COMA++ as
base matcher). VIEWBASEDALIGNER and PREFERENTIAL-
ALIGNER significantly reduce running times vs. EXHAUSTIVE.

5.1 Incorporating New Sources
We first look at the cost of adding new data sources to an existing

search graph, in a way that keeps the alignment task tractable by
limiting it to the “neighborhood” of an existing query. We set up the
experiment, using the GBCO dataset described above, as follows.

We first scanned through the GBCO query logs for pairs of SQL
queries, where one query represented an expansion of the other,
base, query: i.e., the expanded query either joined or unioned addi-
tional relations with the base query. Intuitively, the expanded query
tells us about new sources that would be useful to add to an existing
search graph that had been capable of answering the base query.
When the expanded query represents the union of the base query
with a new query subexpression, then clearly adding the new data
source results in new association edges that provide further data for
the user’s view. When the expanded query represents an additional
join of the base query with new data, this also affects the contents
of the existing view if the additional join represents a segment of a
new top-scoring Steiner tree for the same keyword query.

For each base query, we constructed a corresponding keyword
query, whose Steiner trees included the relations in the base query.
Next, we initialized the search graph to include all sources except
the ones unique to the expanded query. We initially set the weights
in the search graph to default values, then provided feedback on
the keyword query results, such that the SQL base query from our
GBCO logs was returned as the top query. For all experiments
in this section, the edge costs learned in the process were used
as the value of the function C in the VIEWBASEDALIGNER algo-
rithm. The vertex cost functionP in PREFERENTIALALIGNER was
similarly estimated from the weights of features corresponding to
source identities.

5.1.1 Cost of Alignment
Our first experiment measures the cost of performing align-

ments between the new source and a schema graph containing all
of the other sources — using our EXHAUSTIVE, VIEWBASED-
ALIGNER, and PREFERENTIALALIGNER search strategies, with
the COMA++ matcher. Figure 6 compares the running times of
these strategies. Figure 7 shows the number of pairwise attribute
comparisons necessary, under two different sets of assumptions.
The Value Overlap Filter case assumes we have a content index
available on the attributes in the existing set of sources and in the
new source; we only make compare attributes that have shared val-
ues (hence can join). More representative is likely to be the No
Additional Filter case, which has only metadata to work from.

We observe that, regardless of whether a value overlap filter is
available, limiting the search to the neighborhood of the existing
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size of the search graph is increased (avgd. over introduction
of 40 sources). VIEWBASEDALIGNER and PREFERENTIAL-
ALIGNER are hardly affected by graph size.

query (i.e., our information need-driven pruning strategy) provides
significant speedups (about 60%) versus doing an exhaustive set of
comparisons, even on a search graph that is not huge. Recall that
VIEWBASEDALIGNER will provide the exact same updates to a
user view as the exhaustive algorithm. PREFERENTIALALIGNER
does not have this guarantee, and instead focuses on the alignments
specified in the prior, but gives even lower costs.

The differences in costs results from the fact that the number
of comparisons in EXHAUSTIVE depends on the number of source
relations in the schema graph, whereas the number of comparisons
in the other cases is only dependent on the number of nodes in the
local neighborhood of the query.

5.1.2 Scaling to Large Number of Sources
We next study how the cost of operations scales with respect to

the search graph size. Since it is difficult to find large numbers
of interlinked tables “in the wild,” for this experiment we gener-
ated additional synthetic relations and associations for our graph.
We started with the real search graph, and built upon it as follows.
We initialized the original schema graph of 18 sources with default
costs on all edges. Then we took our set of keyword queries and
executed each in sequence, providing feedback on the output such
that the base query was the top-scoring one. At this point, the costs
on the edges were calibrated to provide meaningful results. Now

go_term
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interpro_entry2pub interpro_method2pub

interpro_methodinterpro_pubinterpro_entry
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Figure 9: Schema graph used in the experiments of Section 5.2
(attributes are not shown).

we randomly generated new sources with two attributes, and then
connected them to two random nodes in the search graph. We set
the edge costs to the average cost in the calibrated original graph.

Once the schema graph of desired size was created, the three
alignment methods were used to align the new sources in the ex-
panded graph. Since our mostly-synthetic expanded search graph
does not contain realistic node labels and attributes, we do not di-
rectly run COMA++ on the results, but instead focus on the num-
ber of column comparisons that must be performed. The results
appear in Figure 8. Recall that Figure 6 shows that COMA++’s
running times grow at a rate approximately proportional to the
number of column comparisons. From Figure 8, we observe that
the number of pairwise column comparisons needed by VIEW-
BASEDALIGNER and PREFERENTIALALIGNER remained virtu-
ally unchanged as the number of sources increased from 18 to 500,
whereas EXHAUSTIVE grew quite quickly.

We conclude from the experiments in this subsection that local-
izing the search to the neighborhood around a query yields much
better scalability. VIEWBASEDALIGNER gives the same results as
the exhaustive strategy, and hence is probably the preferred choice.

5.2 Correcting Matchings
The previous section focused on the cost of running alignment al-

gorithms, without looking at their quality. We now look at how well
Q takes the suggested alignments from the individual alignment al-
gorithms, as well as user feedback on query answers, to get the
correct associations. These experiments were conducted over the
InterPro-GO dataset described previously (shown visually in Fig-
ure 9), for which we were able to get a set of keyword queries based
on common usage patterns suggested in the description of the GO
and InterPro databases3. We know from the original schema speci-
fications and documentation that there are 8 semantically meaning-
ful join or alignment edges among these relations, but we remove
this information from the metadata.

Our experimental setup is to start with a schema graph that sim-
ply contains the tables in Figure 9, and then to run the associa-
tion generation step (using COMA++ and/or MAD) to generate a
search graph in the Y most promising alignments (for different val-
ues of Y ) are recorded for each attribute. Next we execute the set of
keyword queries obtained from the databases’ documentation. For
each query, we generate one feedback response, marking one an-
swer that only makes use of edges in the gold standard. Since the
gold standard alignments are known during evaluation, this feed-
back response step can be simulated on behalf of a user. Our goal
3http://www.ebi.ac.uk/interpro/User-FAQ-InterPro.html



Y System Precision Recall F-measure

1 COMA++ 62.5 62.5 62.5
MAD 70 87.5 77.78

2 COMA++ 63.64 87.5 73.68
MAD 66.67 100 80

5 COMA++ 63.64 87.5 73.68
MAD 66.67 100 80

Table 1: Evaluation of top-Y edges (per node) induced by
COMA++ and MAD for various values of Y (see Section 5.2.1).
The schema graph of Figure 9 was used as the gold reference.

is to “recover” all of the links shown in Figure 9, which forms the
gold standard.

We now present our results using precision, recall and F-measure
as our evaluation metrics. We compute these metrics with respect
to the search graph, as opposed to looking at query answers. For
different values of Y , we compare the top Y alignment edges in the
search graph (that also fall under a cost threshold) for each attribute,
versus the edges in the gold standard. Clearly, if the alignment
edges in the schema graph exactly match the gold standard, then
they will result in correct answers.

5.2.1 Baseline Matcher Performance
Our first set of experiments compares the relative performance of

the individual matchers over our sample databases, as we increase
the number of alternate attribute alignments we request from the
matcher in order to create the search graph. We briefly describe
setup before discussing the results.

COMA++ setup. As described in Section 3.2.1, COMA++ [11]
was applied as a pairwise aligner among the relations in Figure 9.
This involved computing alignments and scores in COMA++ for
attributes in each pair of relations. Using this scheme we were able
to induce up to 34 alignment edges.

MAD setup. We took the relations in Figure 9 and the values con-
tained in the tables, and constructed a MAD graph resembling Fig-
ure 4. All nodes with degree one were pruned out from the MAD
graph before the matching algorithm was run, as they are unlikely
to contribute to the label propagation. Also, all nodes with numeric
values were removed, as they are likely to induce spurious associ-
ations between attributes. The resulting graph had 87K nodes. We
used the heuristics from [31] to set the random walk probabilities.

MAD was run for 3 iterations (taking approximately 4 seconds
total), with µ1 = µ2 = 1, and µ3 = 1e−2. Each unique col-
umn name (attribute) was used as a label, and so 28 labels were
propagated.

Results. For each of the algorithms, we added to the search graph
(up to) the top-Y -scoring alignments per attribute, for Y values
ranging from 1 to 5, as shown in Table 1. Our general goal is to have
the matchers produce 100% recall, even at the cost of precision: the
Q learner must be able to find the correct alignment in the search
graph if it is to be able to allow for mapping correction.

We conclude that our novel MAD scheme, which is purely based
on data values, does very well in this bioinformatics setting, with a
recall of 7 out of 8 edges even with Y = 1, and 100% recall with
Y = 2. COMA++ produced good output (7 out of 8 alignments)
with Y = 2, but we were not able to get it to detect all of the
alignments even with high Y values.

Note that we compute precision under a fairly strict def-
inition, and one might compellingly argue that some of the
“wrongly” induced alignments are in fact useful in answer-
ing queries, even if they relate attributes that are not synony-
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Figure 10: Precision vs. recall for COMA++, MAD and Q
(which combines COMA++ and MAD). Q was trained from
feedback on 10 keyword queries, replayed three times to re-
inforce the feedback. Precision and Recall were computed by
comparing against the foreign key associations in Figure 9.
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Figure 11: Precision versus recall in Q, given default weight-
ing, then successively greater amounts of feedback.

mous. For instance, if we look at the “incorrect” edges in-
duced by MAD, we see one between interpro.method.name

and interpro.entry.name. The data shows an overlap of 780
distinct values (out of 53,007 entries in interpro.method.name
and 14,977 in interpro.entry.name). Joining these two tables
according to this alignment may in fact produce useful results for
exploratory queries (even if these results should be given a lower
rank in the output). We hope in the future to conduct user studies
to evaluate how useful biologists find Q’s answers.

5.2.2 Correcting Associations
We next study Q’s performance in combining the output of the

two matchers, plus processing feedback to correct alignments. This
performance (measured in precision and recall) is dependent on
how high a similarity (how low a cost) we require between aligned
attributes. Generally, the more strict our similarity threshold, the
better our precision and the lower our recall will be.

Benefits of learning. In Figure 10, we take the schema alignments
from both matchers (COMA++ and MAD) when Y = 2 (the low-
est setting where we get 100% recall, see Table 1) and combine
them, then provide feedback on 10 different two-keyword queries
(created as previously discussed), with k = 5 (see Algorithm 4).
In order to ensure that weight updates are made in a way that con-
sistently preserves all of the “good” answers, we actually apply the
feedback repeatedly (we replay a log of the most recent feedback
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Figure 12: Average costs of gold edges (i.e., those in Figure 9)
vs. non-gold edges in the search graph, as more feedback is ap-
plied. To obtain Steps 11–40 we repeat the feedback steps from
1–10 up to 3 times. Q continues to increase the gap between
gold and non-gold edges’ average scores.

steps, recorded as a sliding window with a size bound). Here we
input the 10 feedback items to the learner four times in succession
(i.e., replay them three times) to reinforce them. In order to remove
the edge cost variations resulting from intermediate feedbacks, we
consider the average edge cost over all feedback steps.

To see the relationship between recall and precision levels, we
vary a pruning threshold over the schema graph: any alignment
edges with cost above this threshold will be ignored in query result
generation, and any below will be included. Compared to both
schema matchers in isolation, with the ten feedback steps, Q does
a much better job of providing both good precision and recall: we
can get 100% precision with 100% recall.

Relative benefits of feedback. Next we study how performance
improves with successive feedback steps. Figure 11 repeats the
above experiment with increasing amounts of feedback. As a base-
line, we start with the setting where the matchers’ scores are sim-
ply averaged for every edge — in the absence of any feedback, we
give equal weight to each matcher. Next we consider a single feed-
back step, designated Q (1x1), then ten feedback steps. Previously
we had applied the feedback four successive times: we show here
what happens if we do not repeat the feedback (10x1), if we repeat
it once (10x2), and if we repeat it three times (10x4).

Looking at relative performance in Figure 11, we see that the
baseline — the average of the two matchers’ output — approxi-
mately follows the output of COMA++. It turns out that COMA++
gives higher confidence scores on average than MAD, and hence
this simple average favors its alignments. Of course, we could ad-
just the default weighting accordingly — but it is far better to have
the system automatically make this adjustment. We see from the
graph that this happens quite effectively: after a single feedback
step, we immediately see a noticeable boost in precision for most
of the recall levels below 60%. Ten items of feedback with no rep-
etitions makes a substantial difference, yielding precision of 100%
for recall values all the way to 50%. However, repeating the feed-
back up to four times shows significant benefit.

Figure 12 shows the average costs of edges in the gold-standard
(i.e., edges in Figure 9) versus non-gold edges, as we provide more
feedback. Q assigns lower (better) costs on average to gold edges
than to non-gold edges, and the gap increases with more feedback.

Feedback vs. precision for different recall levels. Finally, we
consider the question of how much feedback is necessary to get

Recall Level 12.5 25 37.5 50 62.5 87.5 100
Feedback Steps 1 2 2 2 2 2 2

Table 2: Number of feedback steps required to initially get
precision 1 with a certain recall level in the schema graph.

perfect precision (hence, ultimately exact query answers) if we are
willing to compromise on recall: Table 2 summarizes the results.
Note that perfect precision is actually obtained with only 2 feed-
back steps even with 100% recall. At first glance this may seem
incongruous with the results of the previous figures, but it is im-
portant to remember that each feedback step is given on a different
query, and each time the online learner makes local adjustments
that may counter the effects of the previous feedback steps. Hence
we can see drops in precision with additional feedback steps, and it
takes several more steps (plus, as we saw previously, multiple rep-
etitions) before the overall effects begin to converge in a way that
preserves all of the correct edges.

We conclude from these experiments that (1) the simple act of
combining scores from different matchers is not enough to boost
scores, (2) with a small number of feedback steps Q learns to favor
the correct alignments, (3) particularly if a sequence of feedback
steps is replayed several times, we can achieve very high precision
and recall rates. Ultimately this means that we can learn to gener-
ate very high-quality answers directly using the output of existing
schema matching components, plus feedback on the results.

6. RELATED WORK
In this paper, we addressed one of the shortcomings of the ver-

sion of Q presented in [32], namely, that all alignments were spec-
ified in advance. Many systems supporting keyword search over
databases [4, 5, 16, 17, 18, 20] use scores based on a combina-
tion of similarity between keywords and data values, length of join
paths, and node authority [1]. Existing “top-k query answering” [9,
15, 22, 25] provides the highest-scoring answers for ranked queries.

Schema alignment or matching is well-studied across the
database, machine learning, and Semantic Web communities [29].
General consensus is that methods that incorporate both data- and
metadata-based features, and potentially custom learners and con-
straints, are most effective. Thus, most modern matchers combine
output from multiple sub-matchers [11, 12, 26]. Our focus is not
on a new method for schema matching, but rather an architecture
for incorporating the output of a matcher in a complete iterative,
end-to-end pipeline where the matches or alignments are incorpo-
rated into existing user views, and feedback on answers is used to
correct schema matching output. Our approach requires no special
support within the matcher, simply leveraging it as a “black box.”

The notion of propagating “influences” across node connectivity
for schema alignment is used in similarity flooding [26] and the Cu-
pid system [23], among other schema matching studies. However,
in the machine learning and Web communities, a great deal of work
has been done to develop a principled family of label propagation
algorithms [2, 36]. We incorporate this kind of matching method
not only to align compatible attributes in the output, but to discover
synonymous tables and transitively related items. This paper builds
upon recent observations [33] showing that one could find potential
labelings of tables extracted from the Web using a particular label
propagation algorithm called Modified Adsorption (MAD).

Our ranked data model propagates uncertainty from uncertain
mappings to output results. Intuitively, this resembles the model
of probabilistic schema mappings [13], although we do not use a
probabilistic model. Our goal is to learn rankings based on answer
feedback, and hence we need a ranking model amenable to this.



Our work is complementary to efforts on learning to construct
mashups [34], in suggesting potential joins with new sources. Re-
cent work on “pay as you go” integration has used decision theory
to determine which feedback is most useful to a learner [19].

As opposed to feedback-driven query expansion and rewriting
in [28], our goal here is to exploit user feedback to learn to cor-
rect schema matching errors. A method that learns to rank pairs
of nodes based on their graph-walk similarity is presented in [27].
In contrast, the learning method used in this paper learns to rank
trees derived from the query graph, and not just node pairs. The
method for incorporating user feedback as presented in [8] requires
developers to implement declarative user feedback rules. We do
not require any such intermediate rule implementation, and instead
learn directly from user feedback over answers.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed an automatic, information need-

driven strategy for automatically incorporating new sources and
their information in a data integration setting. Schema matches
or alignments, whether good or bad, only become apparent when
they are used to produce query answers seen by a user; we exploit
this to make the process of finding alignments with a new source
more efficient, and also to allow the user with an information need
to actually correct bad mappings through explicit feedback (from
which the system learns new association weights). Through exper-
iments on real-world datasets from the bioinformatics domain, we
have demonstrated that our alignment scheme scales well. We have
also demonstrated that our learning strategy is highly effective in
combining the outputs of “black box” schema matchers and in re-
weighting bad alignments. In doing this, we have also developed a
new instance-based schema matcher using the MAD algorithm.

We believe that Q represents a step towards the ultimate goal of
automated data integration, at least for particular kinds of datasets.
In ongoing work we are expanding our experimental study to con-
sider a wider array of domains, including Web sources with infor-
mation extraction components.
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