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Ronciling Differences

Abstract
In this paper we study a problem motivated by the management of changes in databases. It turns out that
several such change scenarios, e.g., the separately studied problems of view maintenance (propagation of data
changes) and view adaptation (propagation of view definition changes) can be unified as instances of query
reformulation using views provided that support for the relational difference operator exists in the context of
query reformulation. Exact query reformulation using views in positive relational languages is well
understood, and has a variety of applications in query optimization and data sharing. Unfortunately, most
questions about queries become undecidable in the presence of difference (or negation), whether we use the
foundational set semantics or the more practical bag semantics. We present a new way of managing this
difficulty by defining a novel semantics, Z- relations, where tuples are annotated with positive or negative
integers. Z-relations conveniently represent data, insertions, and deletions in a uniform way, and can apply
deletions with the union operator (deletions are tuples with negative counts). We show that under Z-
semantics relational algebra (R A) queries have a normal form consisting of a single difference of positive
queries, and this leads to the decidability of their equivalence.We provide a sound and complete algorithm for
reformulating R A queries, including queries with difference, over Z-relations. Additionally, we show how to
support standard view maintenance
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Abstract In this paper we study a problem motivated by the management of changes in
databases. It turns out that several such change scenarios, e.g., the separately studied prob-
lems of view maintenance (propagation of data changes) and view adaptation (propagation
of view definition changes) can be unified as instances of query reformulation using views
provided that support for the relational difference operator exists in the context of query
reformulation. Exact query reformulation using views in positive relational languages is
well understood, and has a variety of applications in query optimization and data sharing.
Unfortunately, most questions about queries become undecidable in the presence of differ-
ence (or negation), whether we use the foundational set semantics or the more practical bag
semantics.

We present a new way of managing this difficulty by defining a novel semantics, Z-
relations, where tuples are annotated with positive or negative integers. Z-relations conve-
niently represent data, insertions, and deletions in a uniform way, and can apply deletions
with the union operator (deletions are tuples with negative counts). We show that under
Z-semantics relational algebra (R A) queries have a normal form consisting of a single dif-
ference of positive queries, and this leads to the decidability of their equivalence. We provide
a sound and complete algorithm for reformulating R A queries, including queries with dif-
ference, over Z-relations. Additionally, we show how to support standard view maintenance
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and view adaptation over set or bag semantics, through an excursion into the Z-semantics
setting. Our algorithm turns out to be sound and complete also for bag semantics, albeit
necessarily only for a subclass of R A . This subclass turns out to be quite large and covers
generously the applications of interest to us. We also show a subclass of R A where refor-
mulation and evaluation under Z-semantics can be combined with duplicate elimination to
obtain the answer under set semantics. We investigate related complexity questions, and we
also extend our results to queries with built-in predicates.

Keywords View maintenance ·View adaptation ·Query optimization ·Query reformulation

1 Introduction

Fundamentally, databases are dynamic entities: data gets updated, and schemas and view
definitions get revised. In an increasing number of scenarios (e.g., data warehouses, data
exchange, and collaborative data sharing systems), large numbers of materialized views are
derived from base data: a change to the base data, the view definition, or the base schema
might have a cascading effect on the views. A key operation becomes reasoning about the
most efficient way to recompute a view instance (i.e., reformulate a query) given a set of
materialized views, a set of changes, and a set of base relations. A challenge is that up-
dates include deletions as well as insertions — and in general, deletions require a means of
handling the relational difference operator.

In this paper we study the reformulation (rewriting) of relational queries that contain
the difference operator. Our goal for query reformulation is to optimize by reusing existing
information, such as materialized views. Since the objective is optimization, we focus on
exact reformulation, which finds only equivalent rewritings of the query. 1

Query reformulation using views is well understood for positive fragments of relational
languages, such as conjunctive queries (CQs) or unions of CQs (UCQs), under both set and
bag semantics (see, e.g., [4,26]). As we shall discuss in more detail in the preamble to Sec-
tion 4 in both cases (bag and set semantics), complete procedures for finding UCQ rewritings
using UCQ views exist, using finite search spaces. Also, in both cases UCQ equivalence is
decidable. In fact, in the same discussion we argue that whenever a (reasonable) finite search
space procedure exists, query equivalence must also be decidable.

It follows that the initial outlook on doing reformulations involving the difference oper-
ator is glum because even without views the equivalence of relational algebra (R A) queries
is undecidable, for both set and bag semantics. 2 Hence, we cannot hope for the approaches
to UCQ reformulation under bag or set semantics to extend to the entire R A .

However, being able to solve this problem even partially would have an impact in at
least three major change propagation scenarios. With reformulation of queries that include
difference:

– Optimization using materialized views could be done over a broader space of plans.
Even if the original query and view were just CQs/UCQs it would be valuable if we
could find rewritings that, e.g., subtract one view from a larger view in order to return a
query answer. Sometimes only such rewritings using difference exist.

1 In data integration, one is also interested in maximally contained rewritings, see e.g., [21].
2 The latter follows, e.g., from the undecidability of bag-containment of unions of conjunctive queries

(UCQs) [23], since for UCQs Q,Q′ we have Q is contained in Q′ iff Q−Q′ is equivalent to the empty answer
query.
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– View adaptation [18], the act of updating a materialized view instance when the view
definition has changed, could be seen as a reformulation using views. Here, the updated
view can be recomputed based on the old contents of the view, by adding and/or sub-
tracting queries over the base data and possibly other views. This would be significant
progress over existing approaches.

– Incremental view maintenance [19] could be seen as a reformulation using views, since
insertions and deletions could be treated as unions and differences. Consequently, one
can consider multiple rewritings as solutions, using a cost model to choose the best one.

Since all these scenarios are highly relevant practical problems in databases, we are
led to ask the following natural question: is there a slightly less expressive class of queries
than R A , — still including difference, and hence still providing the benefits cited above
— for which reformulation can be handled effectively. In this paper we do this via an ex-
cursion through a non-standard semantics that is of interest in its own right: what we term
Z-relations. These are relations whose tuples are annotated with integers (positive or nega-
tive) and the positive R A operators are defined on them according to the semiring-annotated
semantics used in our previous [16,17]. In addition, difference has an obvious, natural defi-
nition on Z-relations.

Z-relations are a natural and uniform representation for both data and updates. For ex-
ample, they can represent updates to source relations (collections of tuple insertions and
deletions, a.k.a. deltas) which must be propagated in incremental view maintenance appli-
cations. Indeed, “application” of a delta to a relation corresponds to simply computing a
union. We discuss this further in Section 2.

It turns out that reformulation of R A queries using R A views can be solved effectively
with respect to the Z-semantics since here equivalence of R A queries with respect to a set of
R A views is decidable. We provide a sound and complete algorithm for finding rewritings
of R A queries using R A views under Z-semantics.

Moreover, we obtain practically useful results about the class of R A queries for which
the reformulation with respect to Z-semantics remains valid with respect to bag semantics.
For example, the algorithm is complete for finding R A-reformulations of UCQs using UCQ

views, provided we are only looking for well-behaved reformulations that on N-instances
produce the same results under Z-semantics as under N-semantics. We show two examples
that fall in this category in Section 2: an optimization using views example and a view
adaptation example. Another case in which the algorithm is nicely complete, for both bag
and set semantics, is the application to incremental view maintenance using the so-called
delta rules [19], also discussed in Section 2.

The main contributions of the paper are:

– We show that under Z-semantics every R A query is equivalent to the difference of two
queries in R A+. The latter are selection/projection/join/union queries, forming the pos-
itive relational algebra, and equivalent in expressiveness to UCQs. Then the decidability
of equivalence of R A queries under Z-semantics is a corollary of the decidability of
equivalence of UCQs.

– It follows that in reformulation using views under Z-semantics we can work with dif-
ferences of unions of conjunctive queries (DUCQs). We give a terminating, confluent,
sound and complete rewrite system such that if two DUCQs are equivalent under a set of
views then they can be rewritten to the same query (modulo isomorphism). This leads
to our procedure for exploring the space of reformulations (using the opposites of the
rewrite rules).
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– In contrast to CQs/UCQs under set semantics, there is no inherent or natural, instance-
independent notion of “minimality” for DUCQs under Z-semantics that would yield a
finite reformulation search space. We bound the search under a simple cost model, which
is an abstraction of the one used in a query optimizer.

– We examine when we can use the Z-semantics reformulation strategy to obtain results
that work for the bag semantics and set semantics. We show that the reformulation pro-
cedure is complete for queries/views in a certain class of queries that on N-instances
produce the same results under Z-semantics as under N-semantics. Membership in this
class is necessarily undecidable but we give simple and practical sufficient membership
criteria. We further examine when we can also obtain results that are sound under set
semantics provided we are allowed to add duplicate elimination to the reformulations.

– Finally, we also show how to extend our results to queries with built-in predicates, i.e.,
inequalities and non-equalities.

The paper is structured as follows. We discuss motivating applications in Section 2. We
define the semantics of R A on Z-relations, establish the decidability of Z-equivalence of
R A queries and introduce DUCQs in Section 3. We introduce the rewrite system for queries
using views in Section 4. We present reformulation algorithms and strategies in Section 5.
We discuss reformulation for bag semantics/set semantics via Z-semantics in Section 6. We
extend our Z-equivalence results to R A with built-in predicates in Section 7. We discuss
related work in Section 8 and conclude in Section 9.

2 Applications of Differences

In this section, we illustrate the three motivating applications mentioned in the introduction,
and show how these problems are closely related. Given a uniform way of representing
data along with changes to the data — including deletions or difference operations over
data, as well as insertions — we can consider each of these problems to be a case of query
reformulation or query rewriting. We shall propose Z-relations as a unifying representation
for this purpose, since they can capture base data, insertions, and deletions.

Optimizing queries using views [4,26]. Given a query Q and a set of materialized views
V , the goal is to speed up computation of Q by (possibly) rewriting Q using views in V .
Sometimes, a view may be “nearly” applicable for answering a query, but cannot be used
unless difference is allowed in the rewriting. For example, consider a view V with paths of
length 2 and 3 in R:

V (x,y) :- R(x,z),R(z,y)

V (x,y) :- R(x,u),R(u,v),R(v,y)

and a query Q for paths of length 3:

Q(x,y) :- R(x,u),R(u,v),R(v,y)

One can obtain an answer to Q from an instance of V by removing all paths of length
2 from it: compute paths of length 2 (by joining R with itself), then compute the difference
between V and those paths under bag semantics. If our end goal is set semantics, we would
also add a duplicate elimination step at the end.
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View adaptation [18]. Here, we have a set of base relations, an existing materialized view,
and an updated view definition, and we want to refresh the materialized view instance to
reflect the new definition. For example, the materialized view:

V (x,y,z) :- R(x,y),R(x,z)

V (x,y,z) :- R(x,y),R(y,z)

V (x,y,z) :- R(x,y),R(y,z),y = z

might be redefined by deleting the second rule and projecting out the middle column:

V ′(x,z) :- R(x,y),R(x,z)

V ′(x,z) :- R(x,y),R(y,z),y = z

In this case, the computation of V ′(x,z) might be sped up under bag semantics by computing
the second rule V (x,y,z) :- R(x,y),R(y,z), subtracting the tuples of the result, and projecting
only x and z. (Again, duplicate removal could be done at the end to get a set-semantics
answer.)

Incremental view maintenance [19]. We are given a source database, a materialized view,
and a set of changes to be applied to the source database (tuple insertions or deletions), and
the goal is to compute the corresponding change to the materialized view. This can then be
applied to the existing materialized view to obtain the new version. For example, consider a
source relation R and materialized view V , with definitions and instances:

R :

a b
b a
b c
c b

V (x,y) :- R(x,z),R(z,y) :

a a
a c
b b
c a
c c

Suppose we update R by deleting (b,a) and inserting (c,d); to maintain V , we must insert a
new tuple (b,d). Note that deleting (b,a) does not result in deleting (b,b) from V , because
this tuple can still be derived by joining (b,c) with (c,b). Yet if we now delete (c,b) from
R, then (b,b) and (c,c) must be deleted from V .

In order to solve the incremental view maintenance problem, Gupta et al. [19] proposed
recording in V along with each tuple the number of derivations of that tuple, i.e., the mul-
tiplicity of the tuple under bag semantics. To represent changes to a (bag) relation, they
introduced the concept of delta relations, essentially bag relations with associated signs:
“+” indicates an insertion and “−” a deletion. Finally, in order to propagate updates, they
proposed the device of delta rules. In the example above, a set of delta rules for V corre-
sponds to the UCQ:

V ∆(x,y) :- R(x,z),R∆(z,y)

V ∆(x,y) :- R∆(x,z),R′(z,y)

Here R′ denotes the updated version of R, obtained by applying the delta R∆ to R, i.e.,
computing R′ def= R∆∪R where union on delta relations sums the (signed) tuple multiplicities.
By computing V ∆ and then applying it to V , we obtain the updated version of V , namely V ′.
Note that there may actually be more than one possible set of delta rules for V , e.g.:

V ∆(x,y) :- R∆(x,z),R(z,y)

V ∆(x,y) :- R′(x,z),R∆(z,y)
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We would like to choose among the possible delta rules sets, as well as simply computing
V ′ “from scratch” via the query:

V ′(x,y) :- R′(x,z),R′(z,y)

based on the expected costs of the various plans. We model the relation R∆ with Z-relations,
presented in the next section. We consider this to again be a variant of optimizing queries
using views: the goal is to compute the view with deltas applied, V ′, given not only the
base data R and R∆, but also the existing materialized view V , and relation R′ resulting from
applying the updates in R∆ to R. (We can compute V ′ either before or after updating R to R′.)
Since every delta relation includes deletions, this version of the reformulation problem also
incorporates a form of difference.

As we shall see, a unified treatment of these three applications is possible by using
methods for representing data and changes via an excursion to an alternative semantics (Z-
relations), performing query reformulation in this context, and proving sufficient conditions
for cases in which the results agree with bag and set semantics.

3 Z-Relations

We use here the named perspective [1] of the relational model, in which tuples are functions
t : U → D with U a finite set of attributes and D a domain of values. We fix the domain D
for the time being and we denote the set of all such U-tuples by U -Tup. (Usual) relations
over U are subsets of U -Tup; we will also refer to these as B-relations, since they can also
be viewed as mappings from U -Tup to B = {true, false}.

A bag relation over attributes U is a mapping R : U -Tup→ N from U-tuples to their
associated multiplicities. Tuples with multiplicity 0 are those “not present” in R, and we
require of a bag relation that its support defined by supp(R) def= {t | R(t) 6= 0} is finite.

A Z-relation over attributes U is a mapping R : U -Tup→ Z of finite support. In other
words, it is a bag relation where multiplicities may be positive or negative.

A bag instance (Z-instance) is a mapping from predicate symbols to bag relations (Z-
relations). A set instance I (or B-instance) is a mapping from predicate symbols to B-
relations. If I is a K-instance (for K ∈ {Z,B,N}), then RI denotes the value of the K-relation
for R in I.

We define the semantics of the relational algebra on Z-instances according to the semiring-
annotated relational semantics used in our previous papers [17,16]. We begin with the oper-
ations of the positive algebra (R A+). If I is a Z-instance and Q is a positive algebra query,
then the result of evaluating Q on I is the Z-relation JQKI defined inductively as follows:

empty relation For any set of attributes U , there is /0 : U -Tup→ Z such that

J /0KI(t) = 0

identity If R is a predicate symbol with attributes U then JRKI : U -Tup→ Z is defined by

JRKI(t) def= RI(t)

union If JR1KI ,JR2KI : U -Tup→ Z then JR1∪R2KI : U -Tup→ Z is defined by

JR1∪R2KI(t) def= JR1KI(t)+ JR2KI(t)
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projection If JRKI : U -Tup→ Z and V ⊆U then JπV RKI : V -Tup→ Z is defined by

JπV RKI(t) def= ∑
t=t ′ onV and JRKI(t ′)6=0

JRKI(t ′)

(here t = t ′ on V means t ′ is a U-tuple whose restriction to V is the same as the V -tuple
t; note also that the sum is finite assuming JRKI has finite support)

selection If JRKI : U -Tup→ Z and the selection predicate P maps each U-tuple to either 0
or 1 then JσPRKI : U -Tup→ Z is defined by

JσPRKI(t) def= JRKI(t) ·P(t)

Which {0,1}-valued functions are used as selection predicates is left unspecified, ex-
cept that we assume that false—the constantly 0 predicate, and true—the constantly 1
predicate, are always available.

natural join If JRiKI : Ui-Tup→ Z i = 1,2 then JR1 on R2KI is the Z-relation over U1 ∪U2

defined by
JR1 on R2KI(t) def= JR1KI(t1) · JR2KI(t2)

where t1 = t on U1 and t2 = t on U2 (recall that t is a U1∪U2-tuple).
renaming If JRKI : U -Tup→ Z and β : U→U ′ is a bijection then JρβRKI is a Z-relation over

U ′ defined by
JρβRKI(t) def= JRKI(t ◦β)

For the time being we assume selection predicates correspond to equalities A = B of at-
tributes or equalities A = c of attributes with domain values. (We extend this to include
inequality predicates in Section 7.)

Observe that if we start with Z-relations with just positive multiplicities, i.e. N-relations,
the results of the operations defined above are also N-relations (leading to Lemma 3.1 be-
low) and the resulting semantics is in fact the usual bag semantics. B-relations correspond
to reading the “+” as disjunction and the “·” as conjunction, essentially “eliminating dupli-
cates,” hence we get the usual set semantics.

We extend the above definition to the full relational algebra (R A) on Z-instances by
defining the difference operator in the obvious way:

difference If JR1KI : U -Tup→ Z and JR2KI : U -Tup→ Z then JR1−R2KI : U -Tup→ Z is
defined by

JR1−R2KI(t) def= JR1KI(t)− JR2KI(t)

For bag semantics, the subtraction in the definition above is replaced by proper sub-
traction (negative numbers are truncated to 0). For B-relations this becomes the usual set
difference in set semantics.

Every bag instance is also a Z-instance. Relational queries on set or bag instances can be
evaluated under bag semantics or under Z-semantics. To disambiguate we use the notation
JQKI

K to mean the evaluation of Q on bag instance I under K-semantics, for K ∈ {N,Z}.
For Q,Q′ ∈R A and K ∈{B,N,Z}we say that Q and Q′ are K-equivalent (denoted Q≡K

Q′) if for every K-instance I, JQKI = JQ′KI . The following simple but useful observation
relates N-equivalence and Z-equivalence of positive queries:

Lemma 3.1 If Q,Q′ ∈ R A+ then Q≡Z Q′ iff Q≡N Q′

Proof “⇒” follows from the fact that every bag instance is also a Z-instance and the two
semantics agree for positive queries on bag instances. “⇐” follows from the fact that bag
equivalent positive queries, when transformed into UCQs, are isomorphic [9]. ut
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(A−B)−C ≡Z A− (B∪C)

Aon(B−C) ≡Z (A on B)− (A on C)

(!) A− (B−C) ≡Z (A∪C)−B

(A−B) on C ≡Z (A on C)− (B on C)

(!) A∪ (B−C) ≡Z (A∪B)−C

σP(A−B) ≡Z σP(A)−σP(B)

(!) (A−B)∪C ≡Z (A∪C)−B

(!) πX (A−B) ≡Z πX (A)−πX (B)

ρβ(A−B) ≡Z ρβ(A)−ρβ(B)

Fig. 3.1 Algebraic identities for the difference operator under Z-semantics

3.1 Normal Form and Decidability

Equivalence of relational queries under set semantics has long been known to be undecid-
able [32]. We have also seen (cf. footnote in Section 1) that bag equivalence of relational
queries is undecidable, via an easy reduction from containment of UCQs (which makes es-
sential use of proper subtraction). In contrast, the form of subtraction used in Z-relations
turns out to be surprisingly well-behaved: we will show in this section that Z-equivalence
of relational queries is actually decidable. The key idea is that in contrast to bag and set
semantics, under Z-semantics, every relational query is equivalent to a single difference of
positive queries.

Definition 3.2 For any Q ∈ R A we define a difference normal form denoted by DiffNF(Q)
by structural recursion on Q as follows:

– If R is a predicate symbol then DiffNF(R) = R− /0.
– If DiffNF(Q) = A−B then

DiffNF(πX (Q)) = πX (A)−πX (B), and

DiffNF(σP(Q)) = σP(A)−σP(B).

– If DiffNF(Q1) = A1−B1 and DiffNF(Q2) = A2−B2 then

DiffNF(Q1 on Q2) = (A1 on A2 ∪ B1 on B2)− (A1 on B2 ∪ B1 on A2),

DiffNF(Q1∪Q2) = (A1∪A2)− (B1∪B2), and

DiffNF(Q1−Q2) = (A1∪B2)− (A2∪B1).

Moreover, the above rules clearly also define an effective procedure for computing
DiffNF(Q).

Theorem 3.3 (Normalization) For any Q ∈ R A we can effectively find A,B ∈ R A+ such
that Q≡Z A−B.

Proof Clearly DiffNF(Q) has the form A−B with A,B ∈ R A+. It is straightforward to show
by induction on Q that Q ≡Z DiffNF(Q) using the algebraic Z-semantics identities in Fig-
ure 3.1. Note that in general DiffNF(Q) may be of size exponential in the size of Q.

The given definition of DiffNF(Q) proliferates redundant occurrences of /0. We will as-
sume that simplifications are made based on identities such as A∪ /0≡ A or A on /0≡ /0 (true
for Z-semantics, bag semantics, set semantics, and in fact all semiring-annotated semantics).
As a result, it is easy to check that for R A+ queries Q we have DiffNF(Q) = Q− /0 ut
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Note that the two identities in Figure 3.1 that are flagged by (!) fail in fact for both set and
bag semantics. For instance, consider binary relations R and S. For the first identity marked
(!), we have (R− (R∪R))∪R ≡Z (R∪R)− (R∪R), but the two queries are inequivalent
under set or bag semantics; while for the second identity marked (!), we have π1(R−S)≡Z
π1(R)−π1(S), but again the two queries are inequivalent under either set or bag semantics.
Indeed, Theorem 3.3 fails for set or bag semantics.

Corollary 3.4 Z-equivalence of R A queries is decidable.

Proof Let Q,Q′ ∈R A . By Theorem 3.3, Q≡Z Q′ iff DiffNF(Q)≡Z DiffNF(Q′). Let A,B,C,D∈
R A+ such that DiffNF(Q) = A−B and DiffNF(Q′) =C−D. But A−B≡Z C−D iff A∪D≡Z
B∪C iff A∪D≡N B∪C. But A∪D and B∪C are in R A+ and hence equivalent to UCQs so
the result follows from the decidability of UCQ bag equivalence [9]. ut

Corollary 3.4 can be used to show a PSPACE upper bound on the complexity of check-
ing Z-equivalence of R A queries; however, the exact complexity remains open. A lower
bound is given by Proposition 3.8 which shows that the problem is at least GI-hard.3

Remark 3.5 Converting R A+ queries to UCQs may increase their size exponentially, and
it is well-known that for set semantics, there is a corresponding jump in the complexity
of checking containment/equivalence: for UCQs, checking containment/equivalence is NP-
complete but for R A+ queries it is Π

p
2 -complete [32]. However, for bag-equivalence/Z-

equivalence of R A+ queries, the question seems to be open and may be difficult to re-
solve. There are intriguing connections with the polynomial identity testing problem (PIT),
an important open problem in theoretical computer science. PIT is known to be solvable
in probabilistic polynomial time and conjectured to be perhaps solvable in PTIME (via a
derandomization of the probabilistic procedure). In fact, we can show that for the cross
product-union fragment of R A+, at least, bag-equivalence/Z-equivalence is interreducible
with the non-commutative variant of PIT, which is known to lie in PTIME [31].

Another useful consequence of Theorem 3.3 is the following:

Lemma 3.6 For any Q1,Q2 ∈ R A , we have Q1 ≡Z Q2 iff JQ1KI
Z = JQ2KI

Z for every N-
instance I.

Proof “⇒” is immediate. For “⇐”, suppose Q1 6≡Z Q2. By Theorem 3.3, we have Q1 ≡Z
A−B and Q2 ≡Z C−D with A,B,C,D ∈ R A+. Since A−B 6≡Z C−D, we have A∪D 6≡Z
B∪C. By Lemma 3.1, this implies A∪D 6≡N B∪C. Therefore for some N-instance I, we
have JA∪DKI

N 6= JB∪CKI
N, hence JA∪DKI

Z 6= JB∪CKI
Z. Now consider some output tuple t

such that JA∪DKI
Z(t) 6= JB∪CKI

Z(t). It follows that JAKI
Z(t)+ JDKI

Z(t) 6= JBKI
Z(t)+ JCKI

Z(t).
But then JAKI

Z(t)− JBKI
Z(t) 6= JCKI

Z(t)− JDKI
Z(t). It follows that JA−BKI

Z(t) 6= JC−DKI
Z(t).

Hence JQ1KI
Z 6= JQ2KI

Z. ut

We shall see an application of Lemma 3.6 in Section 6.

3 GI is the class of problems polynomial time reducible to graph isomorphism. Graph isomorphism is
known to be in NP, but is not known or believed to be either NP-complete or in PTIME.
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3.2 DUCQs

As we shall see below, our reformulation algorithm uses R A queries in difference normal
form. In, fact as with CQs and UCQs it is notationally convenient to use a Datalog-style
syntax for the queries on which reformulation operates directly. We define differences of
unions of conjunctive queries (DUCQs) for this purpose, for example:

Q(x,z) :- R(x,y),S(y,z)

Q(x,y) :- R(x,u),R(u,v),R(v,y)

−Q(x,y) :- R(x,y),T (y,y)

The “−” marks a “negated” CQ. If A,B,C are the R A+ queries encoding the first, second,
and third rules above (ignoring the minus sign for the third rule), the equivalent R A query
is

Q = A∪B−C.

DUCQs are related to the elementary differences of [32]. Under Z-semantics, any R A query
can be written equivalently as a DUCQ; this follows from Theorem 3.3 and the fact that
any R A+ query can be rewritten as a UCQ. The semantics of DUCQs on bag relations/Z-
relations/set relations can be given formally by translation to R A .

Definition 3.7 If Q = Q1−Q2 is a DUCQ which is the difference of UCQs Q1 and Q2, and I
is a K-instance (for K ∈ {Z,N,B}), then the result of evaluating Q on I is the K-relation

JQKI
K(t) def= Jtrans(Q1)KI

K(t)− Jtrans(Q2)KI
K(t)

where trans : UCQ →R A+ is the standard translation of UCQs to positive relational queries.

Although we do not have a precise complexity for the Z-equivalence of R A queries,
we can fully characterize the complexity of checking Z-equivalence of DUCQs. For this and
further developments we recall the standard notion of isomorphism of UCQs. CQs A,B are
said to be isomorphic, denoted A ∼= B, if there is a bijective mapping h of variables of A to
variables of B (extended to the identity on constants) that induces a bijection of atoms from
the body of A to the body of B. UCQs A = A1∪·· ·∪Am and B = B1∪·· ·∪Bn are said to be
isomorphic, again denoted A ∼= B, if there is a bijection g : {1, . . . ,m} → {1, . . . ,n} (hence
m = n) such that Ai ∼= Bg(i) for 1 ≤ i ≤ n. Finally, we say that DUCQsA−B and C−D are
isomorphic, denoted A−B∼= C−D, if A∼= C and B∼= D.

Proposition 3.8 For DUCQs Q = A−B, Q′ = C−D we have Q ≡Z Q′ iff for UCQs A∪D
and B∪C, A∪D∼= B∪C. As a consequence, checking Q≡Z Q′ is GI-complete.

Proof Following similar reasoning as in the proof of Corollary 3.4, we have A−B≡Z C−D
iff A∪D≡Z B∪C iff A∪D≡N B∪C. But by the results of [9], this holds iff A∪D∼= B∪C.
Thus Z-equivalence of DUCQs is polynomial time many-one interreducible with the GI-
complete problem of checking isomorphism of UCQs. ut
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4 Reformulation Using Views

Let Σ be a relational schema and V a finite set of views over Σ. Let ΣV be the schema
consisting of the view names (disjoint from Σ). A Σ∪ ΣV instance is V -compatible if it
consists of a Σ-instance I and a ΣV -instance J such that J = JV KI . Orthogonally, these
instances may consist of Z-relations, N-relations or B-relations. For K ∈ {B,N,Z} we say
that two relational queries Q,Q′ over Σ∪ΣV are K-equivalent under V , denoted Q ≡V

K Q′,
if Q and Q′ agree on all V -compatible K-instances.

Given a Σ-query Q, a reformulation of Q using V is a Σ∪ΣV -query Q′ such that Q≡V
K

Q′. We also call Q′ an equivalent rewriting using V .
Query reformulation algorithms typically work by effectively enumerating certain queries,

call this a search space, filtering the queries that are not equivalent rewritings, and finding
a minimum-cost query (according to some cost model). There are three requirements for
designing such algorithms; (1) the search space must be finite so the algorithm terminates,
(2) the returned rewriting should be actually equivalent so the algorithm is sound, and (3)
if equivalent rewritings exist then at least one of them should be found so the algorithm is
complete. A more subtle requirement is that the returned rewriting has smaller cost than any
rewriting, even when there are infinitely many ones.

In the case of set semantics one can construct infinitely many rewritings of CQs even
without views, simply by adding to their bodies atoms that can be homomorphically mapped
to existing ones [1]. This can be dealt with by considering only queries that have no non-
trivial endomorphism, call them locally minimal. It was shown in [26] that the space of
locally minimal CQ reformulations of a CQ query Q using CQ views V is finitely bounded.
Further work focused on pruning and efficiently exploring this search space (looking for not
just equivalent rewritings but also maximally contained rewritings) [27,13,30,29]. Even if
certain classes of integrity constraints (capturing views and more) are considered, a corre-
sponding notion of minimality can be used to define a finite search space for rewritings,
using the chase and backchase technique [12]. For CQs and bag semantics a finite search
space exploration is described in [4]. Interestingly, the UCQ and/or bag-semantics analogs
of the complexity results in [26] do not seem to appear anywhere (to the best of our knowl-
edge). For bag semantics, we attempt to remedy this omission in Subsection 4.1 below.

In the reformulation procedures we have mentioned, the search spaces are constructed
and enumerated combinatorially, thus including non-equivalent rewritings. One takes ad-
vantage of the decidability of ≡V

K to filter them out. But such decidability is not just suffi-
cient, it is also necessary. Indeed, all such reasonable approaches describe a total recursive
function that associates to each Σ-query Q a finite set searchSpace(Q) of Σ∪ΣV -queries.
Moreover, procedures like local minimization can be abstracted by another total recursive
function that associates to each Σ-query Q and each Σ∪ΣV -query Q′ another Σ∪ΣV -query
µ(Q,Q′) such that Q′ ≡K µ(Q,Q′). And finally, one shows that Q′ ≡V

K Q if and only if
µ(Q,Q′) ∈ searchSpace(Q). Since the latter is decidable, so is ≡V

K .
In particular, K-equivalence of Σ-queries must also be decidable which is why under bag

or set semantics we cannot hope to extend the ideas that have worked for positive queries to
rewritings of relational queries with difference.

We have seen that shifting to Z-semantics however leads to the decidability of Z equiv-
alence of R A queries (hence DUCQs). According to the discussion above, next we need to
explore Z-equivalence under a set of views and we do so in Subsection 4.2 using a uniquely
terminating term rewrite system.

In the same subsection we discuss adding the reverse of the term rewrite rules as the basis
for a reformulation algorithm. In the last two subsections we consider limiting our search



12

to diff-irredundant rewritings, and we develop a cost model and a procedure for limiting the
search space further.

4.1 Complexity of Bag Reformulation

In the case of bag semantics, UCQ queries and UCQ views there are only finitely many rewrit-
ings (modulo symbol renaming). This is essentially because under bag semantics, positive
query equivalence is the same as isomorphism (see [5] for CQs and [9] for UCQs). For CQs,
that is, select-project-join queries, an algorithm for exploring the resulting finite search space
in conjunction with System-R style query optimization was given in [4].

We consider here, for UCQs and bag semantics, the analogs of the complexity results
shown in [26] for the existence of rewritings of CQs using CQ views under set semantics.

Theorem 4.1 Given a query Q ∈ UCQ and a set of views V ⊆ UCQ, it is NP-complete to
determine whether:

(i) There exists a UCQ reformulation under bag semantics of Q using at least one predicate
in V (the problem is NP-hard even for CQs).

(ii) There exists a UCQ reformulation under bag semantics of Q that is complete, i.e., using
only predicates in V (the problem is NP-hard even for CQs).

Proof To show membership in NPfor both cases, we observe that in each case we can guess
the rewriting along with an isomorphism between Q and the rewriting with unfolded view
definitions needed to demonstrate bag-equivalence, and these are easily verifiable in poly-
nomial time.

It remains to show NP-hardness in each case.
(i) NP-hardness when Q and V are all CQs (and hence also for the case where Q and V
may be UCQs) is established by a straightforward reduction from the subgraph isomorphism
problem: given directed graphs G1,G2 is there a subgraph of G1 which is isomorphic to
G2? (In contrast to graph isomorphism, the subgraph isomorphism problem is known to be
NP-complete.) Indeed, given directed graphs G1,G2, we construct CQs Q1,Q2 whose bodies
encode the graphs in the standard fashion using a single binary predicate E and a variable
xi for each graph vertex vi, and whose heads return all the variables occurring in the bodies.
Q1 has a rewriting using Q2 iff there is a safe substitution [?] of Q2 in Q1. But such a safe
substitution exists iff there is a subset of the body of Q1 which is isomorphic to the body of
Q2, which is true iff there is a subgraph of G1 which is isomorphic to G2.

(ii) NP-hardness when Q and V are CQs is again established by a reduction from the sub-
graph isomorphism problem. This time, we work with a slightly specialized version of the
problem: if n is the number of edges in G1, and m is the number of edges in G2, we assume
that m−n does not divide m. It can be shown that this version of the problem remains NP-
complete. Next, given directed graphs G1 and G2 satisfying this assumption, we construct
a Boolean CQ Q encoding the edges of G2, a CQ view V1 encoding the edges of G1, and an
additional CQ view V2 defined as follows:

V2(x1, . . . ,x2(m−n)) :- E(x1,x2),E(x3,x4), . . . ,E(x2(m−n)−1,x2(m−n))

We finish the reduction by showing that there exists a complete rewriting of Q using {V1,V2}
iff there exists a subgraph isomorphism from G1 to G2. ut
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By the way, for DUCQs, the first question in the theorem has a trivial answer: a DUCQ

Q can always be rewritten as the equivalent (V ∪−V )∪Q (equivalent under bag semantics,
Z-semantics, and even set semantics). As for the second question in the theorem, for DUCQs,
we do not even know if this problem is decidable.

4.2 Term Rewriting System and Decidability of Equivalence under Views

For the dual purposes of checking equivalence under views and — as we shall see later
— enumerating reformulations we introduce here a term rewriting system [25] for DUCQs
under Z-semantics. We fix a relational schema Σ and a set of views V given by DUCQs over
the relations in Σ. The terms of our rewrite system are the DUCQs over any combination of
the source predicates in Σ and the view predicates in V .

In the rewrite rules we use an auxiliary view unfolding relation on CQs, defined Q→V Q′,
if Q′ can be obtained from a CQ Q by unfolding (in the standard way) a single occurrence of
the view predicate V in Q. This can be extended to CQs containing “−” marks by defining
the result to have a “−” mark iff exactly one of the query and view have a “−” mark (in
other words, we “multiply” the signs). For instance, if U is the CQ

−U(x) :- S(x,y,z)

and Q is the query

Q() :- U(x),W (x)

then Q→V Q′ where Q′ is the CQ

−Q() :- S(x,y,z),W (x)

We extend→V to work with DUCQ views by unfolding repeatedly (once for each CQ in
the view) and producing a DUCQ as output (with the same number of rules as the view). For
example, if V is the DUCQ view:

V (x,y) :- R(x,z),R(z,y)

−V (x,y) :- R(x,u),R(u,v),R(v,y)

and Q is the CQ:

−Q(x,y) :- V (x,z),V (z,y)

then Q→V Q′ where Q′ is the UCQ:

−Q′(x,y) :- V (x,z),R(z,w),R(w,y)

Q′(x,y) :- V (x,z),R(z,u),R(u,v),R(v,y)

Note that the second rule for Q′ has no “−” mark because the marks on Q and the second
rule for V have cancelled each other.

Now we define a rewrite relation→ on terms as follows:

P,Q,R ∈ DUCQ V ∈ V P→V Q
P∪R→ Q∪R

(UNFOLD)
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A,B ∈ CQ Q ∈ DUCQ A∼= B
Q∪A∪ (−B)→ Q

(CANCEL)

Next we establish the salient properties of our rewrite system. We denote the transitive
reflexive closure of → by ∗→. A term is a normal form if no rewrite rule applies to it. A
reduction sequence Q1→ ··· → Qn is terminating if Qn is a normal form.

Proposition 4.2 The rewrite system above is uniquely terminating, i.e., it satisfies the
following two properties:

1. (confluence) For all Q,Q1,Q2 ∈ DUCQ if Q ∗→Q1 and Q ∗→Q2 then there exist Q3,Q′3 ∈
DUCQ such that Q1

∗→ Q3 and Q2
∗→ Q′3 and Q3 ∼= Q′3.

2. (termination) Every reduction sequence Q1→ Q2→ ··· eventually must terminate.

Proposition 4.3 The rewrite system above is sound and complete w.r.t. Z-equivalence with
respect to V , i.e., for any Q1,Q2 ∈ DUCQ we have

1. (soundness) If Q1
∗→ Q2 then Q1 ≡V

Z Q2.
2. (completeness) If Q1 ≡V

Z Q2 then there exist Q′1,Q
′
2 such that Q1

∗→ Q′1 and Q2
∗→ Q′2

and Q′1 ∼= Q′2.

Proof (of Propositions 4.2 and 4.3)
(termination) Let n be the number of occurrences of view predicate symbols in DUCQ Q1,
and let m be the maximum number of CQs in a DUCQ view definition. Then one can show
that any reduction sequence Q1 → Q2 → ··· uses UNFOLD at most mn times. Next, note
that if Q1→ Q2 using CANCEL, and Q1 has k CQs, then k ≥ 2 and Q2 has k−2 CQs. Thus
CANCEL may only be applied bk/2c times in a row to Q1. It follows that any reduction
sequence is finite and therefore terminating.

(soundness) It is easy to verify that UNFOLD and CANCEL are equivalence-preserving, and
the general result follows by induction on the reduction sequence.

(confluence) Suppose Q ∗→ Q1 and Q ∗→ Q2. Then there are terminating sequences Q→
Q1

∗→ Q′1 and Q→ Q2
∗→ Q′2. Since the rewrite system is sound, Q′1 ≡V

Z Q′2. Moreover,
Q′1 and Q′2 contain no view predicates (else UNFOLD would have applied), so Q′1 ≡Z Q′2.
Letting Q′1 = A−B and Q′2 = C−D, Proposition 3.8 implies that A∪D ∼= B∪C. Since the
reduction sequences were terminating, CANCEL does not apply to Q′1 or Q′2, hence no CQ in
A (resp. C) is isomorphic to a CQ in B (resp. D). It follows that A−B∼= C−D.

(completeness) Suppose Q1 ≡V
Z Q2. Then there exist terminating sequences Q1

∗→ Q′1 and
Q2

∗→ Q′2, and Q′1 ≡V
Z Q′2. However, Q′1 and Q′2 contain no view predicate symbols (else

UNFOLD would have applied). It follows that Q′1 ≡Z Q′2. ut

Corollary 4.4 Z-equivalence of DUCQs (and thus R A queries) with respect to a set of
DUCQ (and thus R A) views V is decidable.

The corollary holds for R A queries and views because we can always convert them first
to DUCQs. Note that converting them to DUCQs may increase the size exponentially, and
there can be a separate exponential blowup when unfolding the views in the DUCQs. We
leave open the exact complexity of the problems in Corollary 4.4.

Remark 4.5 Proposition 3.8 gives a GI-hard lower bound on the problems, and we conjec-
ture that Z-equivalence of R A queries w.r.t. R A views can be checked in PSPACE (by
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comparing counts of isomorphic CQs in the converted and unfolded DUCQs, without actu-
ally performing the full conversion and unfolding). Establishing the exact complexity may
be difficult, for the same reasons we gave in Remark 3.5.

In addition to their use for showing decidability, the term rewrite rules can be very
valuable in the search for reformulations. By the soundness property above, using the rules
guarantees that we only explore equivalent rewritings. By the completeness property, if an
equivalent rewriting exists, it will be reachable by a sequence of rewrite steps or — and this
is the main difficulty we will have to face — converse rewrite steps.

Thus, in Section 5 we develop an enumeration algorithm for Z-equivalent reformula-
tions, which uses the above rewrite system combined with the converse of the UNFOLD and
CANCEL operations, called FOLD and AUGMENT, respectively. FOLD rewrites a query by
removing some of its CQs and replacing them with an equivalent view (recall that under
bag semantics two UCQs are equivalent iff they are isomorphic.) In general we may need to
AUGMENT first before FOLD is applicable.

P,Q,R ∈ DUCQ V ∈ V P→V Q
Q∪R→ P∪R

(FOLD)

A,B ∈ CQ Q ∈ DUCQ A∼= B
Q→ Q∪A∪ (−B)

(AUGMENT)

4.3 Diff-Irredundant Rewritings

While UNFOLD and CANCEL only give terminating sequences of rewritings, the addition of
the converse rules destroys this property. For example AUGMENT can be used to “grow” a
DUCQ arbitrarily by adding more and more CQs: for example, Q→ Q∪A∪−A→ Q∪A∪
B∪−A∪−B→ ·· · .

Therefore the space of queries reachable in this way is infinite. How do we cut it down to
a finite size? Given the success of considering locally minimal rewritings for set semantics,
we could try to find a similar notion of minimality for DUCQs, hopefully one that is com-
patible with useful cost models. In this subsection, we define such a notion based on remov-
ing certain redundant computations, and we consider whether the space of non-redundant
rewritings is finite.

Definition 4.6 A DUCQ Q = A−B is said to be diff-redundant if for some subset of CQs
A′ ⊆ A and B′ ⊆ B, we have A′ ≡V

Z B′. In this case the pair of terms A′,B′ is said to be
diff-redundant.

In the example above, Q∪A∪−A and Q∪A∪B∪−A∪−B are both diff-redundant.
A diff-redundant DUCQ can be minimized by repeatedly finding and removing diff-

redundant pairs of terms until a diff-irredundant query is obtained. In the examples above,
this leads back to Q (assuming Q itself is irredundant). More generally:

Proposition 4.7 If Q,Q′ are DUCQs that do not contain view predicates and Q≡Z Q′, then
minimizing Q and minimizing Q′ produces the same query (up to isomorphism).

However, when queries may contain view predicates, this property fails dramatically:
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Theorem 4.8 The set IrrV (Q) of diff-irredundant rewritings of a DUCQ Q with respect to a
set of views V is in general infinite.

Proof If R and S are binary relations, then denote by RS the relational composition of R and
S, i.e., the query:

Q(x,y) :- R(x,z),S(z,y)

We will use exponents to mean repeated relational composition (e.g., R3 = RRR), and to
simplify notation we use here + for union.

Now let Q = R2, and let V contain the single view V = R+R3. Then we have:

Q = R2

≡V
Z V R−R4

≡V
Z V R−V R3 +R6

≡V
Z V R−V R3 +V R5−R8

and more generally:

Q ≡V
Z (−1)nR2(n+1) +

n

∑
i=1

(−1)i+1V R2i−1

for all n ≥ 0. Clearly, there are infinitely many rewritings of this form. Moreover, one can
check that every such rewriting is diff-irredundant. It follows that IrrV (Q) is infinite. ut

Thus, considering diff-irredundant queries does not suffice to establish a finite bound on
the set of possible rewritings for a DUCQ.

4.4 A Cost Model

Another notion of minimality we might consider is the global minimality of [26], where the
goal is to minimize the total number of atoms in a CQ reformulated using views. We find
this notion problematic for several reasons. First, in contrast to the classical CQ minimiza-
tion techniques (where minimizing the number of atoms coincides with computing the core
of the query), the mathematical justification is unclear. Second, it is not clear how global
minimality should be extended to UCQs/DUCQs (total number of atoms in all CQs?). Third,
in the practical applications of interest to us, the real goal is to minimize the cost of execut-
ing a query, and the number of atoms is often not indicative of query performance. This is
because of many factors, especially the different costs of computing with different source
relations (which may be of drastically different cardinalities, have different indexes, etc.).

To illustrate this last point, recall that in Section 2 we had a view maintenance example,
where the original view was defined as:

V (x,y) :- R(x,y),R(z,y)

and our updated view could be defined as:

V ′(x,y) :- R′(x,y),R′(z,y)

where R′(x,y) represents R(x,y)∪R∆(x,y). The reformulation problem has two materialized
views: the original V in terms of the base R, and R′ (R after updates are applied, which
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we can compute either before or after computing V ′). If R∆ is large, then V ′ may be most
efficient to compute in terms of R′, as specified in the second rule above. Alternatively, if R∆

is small, then it may be more efficient to compute V ′ using V and delta rules:

V ′(x,y) :- V (x,y)

V ′(x,y) :- R∆(x,z),R(z,y)

V ′(x,y) :- R(x,z),R∆(z,y)

Note that the latter query has three rules compared to only one in the first case, and five
atoms to only two. Yet, intuitively, for small R∆s, the second case is more efficient.

In practical DBMS implementations, a cost model [33] predicts query performance
given known properties (such as cardinalities) of the input relations. Thus we will seek
here an abstract cost model that captures the essence of the detailed models implemented in
real optimizers while allowing us to establish finite bounds on the set of possible rewritings
for DUCQs using the FOLD+AUGMENT+UNFOLD+CANCEL rules.

Our cost model, cost : R A → N, is instance-dependent, and makes use of external calls
to a cardinality estimation function, card : R A → N, which returns the estimated number
of tuples in the result of a subquery (for the current database instance). We define cost
inductively on R A expressions:

cost(R) = card(R)

cost(πE) = cost(E)

cost(σE) = cost(E)

cost(E1∪E2) = cost(E1)+ cost(E2)

cost(E1−E2) = cost(E1)+ cost(E2)

cost(E1 on E2) = cost(E1)+ cost(E2)

+ card(E1 on E2)

This cost model intuitively focuses on the cost of producing new tuples in expensive
operations, namely joins and tablescans. (Union in Z-semantics is inexpensive, as it is in
bag-semantics; difference in Z-semantics is in fact a union operation that negates counts,
and hence it is also inexpensive.) Our cost model essentially computes a lower bound on
the amount of work a join must perform: it considers tuple creation cost but ignores the
cost of matching tuples. (For an index nested loops join or a hash join, matching is in fact
inexpensive, so this is a fairly realistic lower bound.) Our model satisfies the principle of
optimality [11] required by a real query optimizer cost model.

The cost model above is based on queries represented as relational algebra expressions
(with a specific order of evaluation). However it can be extended to CQs by defining the cost
of a CQ as the cost of the cheapest equivalent algebraic expression,4 and to UCQs and DUCQs
by summing the costs of all the CQs in the UCQ or DUCQ. Assuming every source relation is
non-empty, a simple observation is that the cost of any CQ is at least equal to the number of
atoms in the CQ, and any DUCQ Q has a cost that is at least equal to the number of CQs in Q.

Now we can establish a bound on the search space in which we wish to look for rewrit-
ings of minimum cost:

Proposition 4.9 (completeness under cost) Let Q ∈ DUCQ, and let V be a set of DUCQ

views. Let k = cost(Q), and let w be the maximum number of CQs in Q or in a view in V .

4 This is in fact done by dynamic programming in real query optimizers.
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Assume w.l.o.g. that Q does not contain any view predicates (they can always be removed by
applying UNFOLD repeatedly). Then, any DUCQ of minimum cost among those equivalent
to Q using V can be reached from Q in at most O(kwk) steps of (FOLD + AUGMENT)-
rewriting.

Proof Suppose that Q′ is a DUCQ reformulation of Q of minimum cost. Then using our
observations above, Q′ contains at most k CQs each containing at most k view predicates.
We can rewrite Q′ into Q by a sequence of u UNFOLD steps (removing all view predicate
occurrences), followed by a sequence of v CANCEL steps. (Read in the reverse direction,
this will yield a sequence of v AUGMENT steps followed by a sequence of u FOLD steps,
rewriting Q into Q′.)

Consider a single CQ in Q′. We claim that UNFOLD can be applied to it at most wk times,
replacing the single CQ with at most wk CQs. Doing this for all of the≤ k CQs in Q′, we have
u≤ kwk UNFOLD steps, and the result is a DUCQ containing ≤ kwk CQs.

Next, since each application of CANCEL removes 2 CQs, it follows that CANCEL can be
applied at most bkwk/2c times. Thus, the total length of the sequence rewriting Q′ to Q is at
most kwk + bkwk/2c= O(kwk). ut

This yields a finite bound (which can be effectively computed from Q, V , and cost) on
the region of the rewrite space that must be explored in order to find a rewriting of minimum
cost (for a given instance).

5 Finding Query Rewritings

Now that we understand the conditions under which reformulation can be bounded to a finite
search space, we develop an enumeration algorithm for exploring the space of possible query
reformulations, for the problems of optimizing queries using views, view adaptation, and
view maintenance. Recall from Section 2 that the optimizing queries using views problem
takes a set of materialized views, plus a query to be reformulated, as input. View adaptation
takes a single materialized view (the “old” view definition and materialized instance), with
the modified view definition as the query to be reformulated. View maintenance takes the
pre-updated view instance and updated versions of the base relations as input views, with
the maintained view (i.e., the view computed over the updated base relations) as the query
to be reformulated.

5.1 Reformulation Algorithm

Section 4.2 presented four rewrite rules, UNFOLD, CANCEL, AUGMENT and FOLD, which
are required for enumerating the space of plans. However, as they are currently speci-
fied, they can lead to inefficient exploration. We observe that in isolation AUGMENT can
add/subtract arbitrary CQs to the query, regardless of whether this will turn out to be “use-
ful” (by enabling a subsequent FOLD). Hence we do not use AUGMENT directly, but rather
define a compound AUGMENT-FOLD operation, which augments the query only with the
CQs necessary to perform a FOLD operation with a given view. (The AUGMENT step of
AUGMENT-FOLD may be skipped if FOLD can be directly applied to the query.) Addition-
ally, we restrict AUGMENT-FOLD to apply only if there exists at least one rule in com-
mon between the query and the view. After applying AUGMENT-FOLD, we may be able to
CANCEL some rules introduced into the query. Hence, we will also always apply CANCEL
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Algorithm 1 reformulate(query q, set of views V ) returns query
1: for each view v in V do
2: v := normalize(v)
3: end for
4: Let qi := normalize(q)
5: Let Q := /0

6: Let F := {(qi,0)}
7: for each (q,k) in F do
8: Remove (q,k) from F and add it to Q
9: for each v in V do

10: Let q′ := AUGMENT-FOLD-CANCEL(q,v)
11: if q′ not in Q and not prune(q′,k +1) then
12: Add (q′,k +1) to F
13: end if
14: end for
15: end for
16: return the q in Q with lowest cost

after an AUGMENT-FOLD repeatedly until it is no longer applicable. We denote the rule
which corresponds to this sequence of AUGMENT-FOLD followed by repeated CANCEL by
AUGMENT-FOLD-CANCEL.

Algorithm 1 shows how the UNFOLD, CANCEL, and AUGMENT-FOLD-CANCEL prim-
itives can be composed to enumerate the space of plans. The normalize function (omitted)
repeatedly applies UNFOLD and CANCEL to the input query until they are no longer appli-
cable. Next, the main loop simply applies AUGMENT-FOLD-CANCEL to rewrite portions of
each “frontier” query q in F , in terms of any views that overlap with q.

The prune function determines whether the rewritten query q′ should be added to the
frontier set, or disregarded during exploration. For the rewrite algorithm to be guaranteed
to terminate and find an optimal rewriting according to the cost model, it suffices to define
prune(q,k) to return true iff k is less than the bound given by Proposition 4.9. (In prac-
tice, we would add additional heuristics to prune to limit the search space, sacrificing the
guarantee of a minimum-cost rewriting.) Once the full space has been explored, reformulate
returns the rewriting from Q with the lowest cost according to our cost model.

5.2 Rewriting in a Query Optimizer

In principle, one could search the space of query rewritings by building a layer above the
query optimizer, which enumerates possible rewritings; then separately optimizes each.
However, a more efficient approach is to extend an existing optimizer to incorporate the
rewriting system into its enumeration. Unlike with rewriting of conjunctive queries, most
existing cost-based optimizers cannot easily be extended to DUCQ rewritings. The System-
R optimizer [33] only does cost-based optimization of joins, instead relying on heuristics for
applying unions and differences. Starburst [20] can rewrite queries with unions and differ-
ences, but only at its heuristics-based query rewrite stage. Starburst only has limited facilities
for cost-based comparison of alternative rewritings.

Fortunately, the Volcano [14] optimizer generator (as well as its successors) can be mod-
ified to incorporate our rewrite scheme within an optimizer. Volcano models a query initially
as a plan of logical operators representing the algebraic operations, including unions and
differences; it uses transformation rules to describe algebraic equivalences that can be used
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to find alternate plans. Implementation rules describe how to rewrite a logical operator (or
set of operators) into a series of physical algorithms, which have associated costs.

Our rewrite rules of Section 4.2 can be expressed as transformation rules for Volcano,
and we would not need to change any implementation rules. However, we would also need
to modify Volcano’s pruning algorithm: we must place a finite bound on the size of the
rewritings explored, as with our prune function in the previous subsection.

6 Applications to Bag and Set Semantics

Having obtained a sound and complete algorithm for reformulation of R A queries using
R A views under Z-semantics, we wish to see for which R A queries/views this same al-
gorithm actually provides reformulations under bag semantics. Thus we are naturally led to
study the following class of queries:

Definition 6.1 We denote by R A the class of all queries Q ∈ R A such that for all bag-
instances I, JQKI

N = JQKI
Z.

Right away we see that:

Lemma 6.2 For any Q1,Q2 ∈ R A we have Q1 ≡Z Q2 iff Q1 ≡N Q2.

Proof Straightforward consequence of Lemma 3.6 and the definition of R A . ut

Then

Lemma 6.3 If A,B ∈ R A+ then A−B ∈ R A if and only if BvN A.

Proof “⇒”: suppose A−B∈R A and consider an arbitrary bag instance I and tuple t. Since
JA−BKI

Z(t) = JA−BKI
N(t)≥ 0, and by definition, JA−BKI

Z(t) = JAKI
Z(t)−JBKI

Z(t), it follows
that JAKI

Z(t) ≥ JBKI
Z(t). Since A and B are positive queries, by Lemma 3.1, JAKI

Z = JAKI
N

and JBKI
Z = JBKI

N and therefore JAKI
N(t) ≥ JBKI

N(t). Since I and t were chosen arbitrarily, it
follows that BvN A.

“⇐”: suppose BvN N and consider an arbitrary bag instance I. By Lemma 3.1 JAKI
N =

JAKI
Z and JBKI

N = JBKI
Z. But since JBKI

N ≤ JAKI
N, it follows that JA−BKI

Z = JA−BKI
N ≥ 0.

Since I was chosen arbitrarily, it follows that A−B ∈ R A . ut

Proposition 6.4 If Q ∈ R A then DiffNF(Q) ∈ R A and Q≡N DiffNF(Q).

Proof Suppose Q∈R A , let DiffNF(Q) = A−B (with A,B∈R A+), and choose an arbitrary
bag instance I and tuple t. Then JQKI

N(t) = JQKI
Z(t) = JA−BKI

Z(t) = JAKI
Z(t)− JBKI

Z(t)≥ 0.
It follows that JAKI

Z(t)≥ JBKI
Z(t) and therefore (using Lemma 3.1) that JA−BKI

Z(t) = JA−
BKI

N(t). Since I and t were chosen arbitrarily, it follows that Q ≡N A−B, as required, and
also that BvN A. By Lemma 6.3 this in turn implies that A−B ∈ R A . ut

Corollary 6.5 Bag-equivalence of R A queries is decidable.

Next we show that if we start with a DUCQ in R A and a set of DUCQ views also in R A ,
then the exploration of the space of reformulations prescribed by the algorithm of Section 5
examines only queries in R A which are ≡N under the views to the original DUCQ.

Suppose that V is a set of views in R A expressed as DUCQs.



21

Theorem 6.6 If Q and the views in V are DUCQs in R A , then the reformulation algorithm
of Section 4.2 is sound and complete with respect to N-equivalent R A reformulations of Q.

Proof Use Lemmas 6.2 and 6.3 and Proposition 4.3. ut

Therefore, the reformulation algorithm can be used with R A queries and views. Unfor-
tunately, but not unexpectedly, it is undecidable whether an R A query or even a DUCQ is
actually in R A (Lemma 6.3 provides a reduction from bag-containment of UCQs). But there
are interesting classes of queries for which membership in R A is guaranteed. The simplest
but still very useful case is based on the observation that R A+ ⊂ R A . It follows that our
algorithm is also complete for finding DUCQ reformulations of UCQs using UCQ views, as
in the example in Section 2.

Next we identify a subclass of R A for which, while still undecidable in general, mem-
bership may be easier to check in certain cases.

Definition 6.7 We denote by R̂ A the class of all R A queries Q such that for every occur-
rence A−B of the difference operator in Q, we have BvN A.

Theorem 6.8 (Normalization for R̂ A) For any Q ∈ R̂ A , one can find A,B ∈ R A+ such
that Q≡N A−B.

Proof Straightforward induction on Q, using the same algebraic identities as in Theorem 3.3.
Although these identities fail under bag semantics for R A queries, they hold for R̂ A
queries. ut

Corollary 6.9 Bag-equivalence of R̂ A queries is decidable.

Theorem 6.10 R̂ A ⊂ R A

Proof Checking R̂ A ⊆ R A is a straightforward application of Theorem 6.8. To see that
the inclusion is proper, consider the query Q def= (R− (R∪R))− (R− (R∪R)). Q is both
Z-equivalent and N-equivalent to the unsatisfiable query /0; it follows that Q is in R A . How-
ever, since R∪R 6vN R, it is clear that Q 6∈ R̂ A . ut

Although R A contains queries which are not in R̂ A (because of their syntactic struc-
ture), it turns out that, semantically, R̂ A captures R A , as the following theorem makes
precise:

Theorem 6.11 For all Q ∈ R A there exists Q′ ∈ R̂ A such that Q≡N Q′.

Proof For any Q ∈ R A , we show that there must exist A,B ∈ R A+ such that B vN A and
Q≡N A−B. Fix a Q∈R A . By Theorem 3.3, there exist A,B∈R A+ such that Q≡Z A−B.
We argue by contradiction that B vN A. Suppose B 6vN A. Then there exists a bag instance
I and tuple t such that JAKI

N(t) < JBKI
N(t). Then JA− BKI

Z(t) < 0, i.e., JA− BKI
Z = JQKI

Z
is not even a bag-instance. However, this is a contradiction, because by assumption (since
Q ∈ R A), we must have JQKI

Z = JQKI
N. Finally, we argue that Q ≡N A−B. To see this, fix

an arbitrary bag instance I. We want to show that JQKI
N = JA−BKI

N. Since Q∈R A , we have
JQKI

N = JQKI
Z. Since Q≡Z A−B we have JQKI

Z = JA−BKI
Z. Finally, since A−B ∈ R̂ A , by

Theorem 6.10 we have JA−BKI
Z = JA−BKI

N. This completes the proof. ut
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Membership in R̂ A is also undecidable. However in some practical situations, such as
incremental view maintenance of R A+ views using delta rules [19], the difference operator
is used in a very controlled way where the containment requirement is satisfied (e.g., it is
just necessary for the system to enforce that only tuples actually present in source tables are
ever deleted from the sources).

We are also interested in reformulating and answering queries under Z-semantics, but
then “eliminating duplicates” to obtain the answer under set semantics. Even for R̂ A queries,
this is not in general straightforward: for example, consider the query Q = (R∪R)−R. Un-
der set semantics, this is equivalent to the unsatisfiable query, while under bag semantics
or Z-semantics, it is equivalent to the identity query R. We can, however, restrict the use of
negation in R̂ A further, to obtain another fragment of R A suitable for this purpose.

Definition 6.12 An R A query Q over a schema Σ is said to be a base-difference query if
A−B can appear in Q only when A and B are both base relations (names in Σ). Further,
a base-difference query Q is said to be positive-difference w.r.t. a set-instance I if for each
A−B appearing in Q we have AI ⊇ BI (where AI is the relation in I that corresponds to
A ∈ Σ.)

Although the use of negation in base-difference queries considered on instances w.r.t. which
they are positive-difference is highly restricted, it still captures the form needed for incre-
mental view maintenance, where negation just relates old and new versions of source rela-
tions via the tables of deleted and inserted tuples.

For conversion between bag semantics / Z-semantics and set semantics we also define
the duplicate elimination operator δ : Z→ B which maps 0 to false and everything else
(positive or negative) to true. Conversely, we can view any set instance as a bag/Z instance
by replacing false with 0 and true with 1. With this we can state the salient property of
base-difference queries:

Proposition 6.13 . Let Q ∈ R A be a base-difference query and let I be a set instance
w.r.t. which Q is positive-difference. Then, we can compute JQKI under set semantics by
viewing I as a Z-instance, computing JQKI

Z, and finally applying δ.

Consequently, the optimization techniques in this paper (which replaces a query with a
Z-equivalent one) will also apply to set semantics, provided we restrict ourselves to base-
difference queries applied to instances w.r.t. which they are positive-difference.

7 Built-in Predicates

To this point, our approach to query rewriting has assumed equality predicates only. Clearly,
any practical implementation would also consider inequality (<,≤) and non-equality ( 6=)
predicates. In this section we discuss the extensions necessary to support such built-in pred-
icates.

We assume our domain D comes equipped with a dense linear order <, and we define
R A<, R̂ A

<
, CQ<, etc. as the previously defined classes of queries extended to allow use

of the predicates <, ≤, =, and 6=. In general, the predicates in a CQ< induce only a partial
order on the variables. We shall call a CQ< total if the predicates in the query induce a total
order on the variables, and partial otherwise. To facilitate syntactic comparison of queries
we shall assume w.l.o.g. for total CQ<s that a minimal number of predicate atoms are used,
i.e., if the predicates induce the total order x < y < z then the predicate atoms x < y and y < z
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and no others appear in the query. A UCQ< or DUCQ< is total if all of its CQ<s are total, and
partial if it contains a partial CQ<.

As in [9,8], we note that a partial CQ< Q can always be converted into an equivalent
total UCQ<, denoted lin(Q), that contains one CQ< for each linearization of the partial order
on the variables. For example:

Q(x,y) :- R(x,y),R(y,z),x < y,x≤ z

can be rewritten into:

Q(x,y) :- R(x,y),R(y,z),x = z,x < y

Q(x,y) :- R(x,y),R(y,z),x < y,y = z

Q(x,y) :- R(x,y),R(y,z),x < y,y < z

Q(x,y) :- R(x,y),R(y,z),x < z,z < y

Likewise a partial UCQ< (DUCQ<) Q can be converted into an equivalent total UCQ< (DUCQ<)
lin(Q) by replacing each partial CQ< with its equivalent total UCQ<. Note that if Q is already
total, then Q = lin(Q).

Theorem 7.1 For all Q,Q′ ∈ UCQ< the following are equivalent:

1. Q≡N Q′

2. Q≡Z Q′

3. lin(Q)∼= lin(Q′)

Proof (2) ⇒ (1) because every bag instance is a Z-instance. (1) ⇒ (3) follows by results
of [9]. (3)⇒ (1) follows from the observation that Q≡Z lin(Q). ut

Corollary 7.2 Z-equivalence of R A< queries is decidable and so is bag-equivalence of
R̂ A

<
queries.

This leads to an approach to enumerating rewritings of queries with predicates with
respect to views: linearize the queries and views into total UCQs/DUCQs as above and re-
formulate using the linearized representations. As an optional final step, the reformulated
query could then be “de-linearized” to a partial query.

8 Related Work

Exact query reformulation using views has been studied extensively, due to its applications
in query optimization, data integration, and view maintenance, starting with the papers by
Levy et al. [26] and Chaudhuri et al. [4]. The former paper established fundamental results
for UCQ<under set semantics. The latter paper considered CQ<s under bag semantics, but
it did not provide a complete reformulation algorithm or consider UCQs or UCQ<s. Cohen,
Nutt, and Sagiv [7] considered the problem for CQ<s with aggregate operators and built-
in predicates under bag-set semantics, and developed sound and complete reformulation
algorithms. In contrast to our term-rewrite system based approach, which considers only
equivalent rewritings, their algorithm considers non-equivalent candidate rewritings, using
an equivalence check to filter candidates. Afrati and Pavlaki [2] give results on rewriting with
views for CQs with safe negation. These queries/views are considered under set semantics
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but their expressive power seems to be incomparable to that of the queries we consider in
Proposition 6.13.

The seminal paper by Chandra and Merlin [3] introduced the fundamental concepts of
containment mappings and canonical databases in showing the decidability of containment
of CQs under set semantics and identifying its complexity as NP-complete. The extension to
UCQs is due to Sagiv and Yannakakis [32], where the undecidability of set-equivalence of
R A queries was also established.

The papers by Ioannidis and Ramakrishnan [23] and Chaudhuri and Vardi [5] initiated
the study of query optimization under bag semantics. Chaudhuri and Vardi showed that bag-
equivalence of CQs is the same as isomorphism and established the Π

p
2 -hardness of check-

ing bag-containment of CQs. Ioannidis and Ramakrishnan showed that bag-containment of
UCQs is undecidable. The decidability of bag-equivalence of UCQs can be derived from the
results on bag-set semantics in [9,6] and also from results on provenance-annotated seman-
tics (see the discussion in [15]). The decidability of bag-containment of CQs remains open.
Recent progress was made on the problem by Jayram, Kolaitis and Vee [24] who established
the undecidability of checking bag-containment of CQs with built-in predicates (our CQ<s).

Chaudhuri and Vardi also introduced in [5] the study of bag-set semantics (where source
tuple multiplicities are 0 or 1 only, and queries are evaluated under bag semantics), and
showed that bag-set equivalence of CQs is the same as isomorphism. This was essentially
a rediscovery of a much earlier result due to Lovász [28] (see also [22]). Cohen, Nutt, and
Sagiv [8] give decidability results for bag-set equivalence of CQs with comparisons and
aggregate operators. Cohen, Sagiv, and Nutt [10] give decidability results for bag-set equiv-
alence of UCQs with comparisons, aggregate operators, and a limited form of negation (only
on extensional predicates).

The view adaptation problem was introduced in [18], which gives a case-based algo-
rithm for adapting materialized views under changes to view definitions (under bag seman-
tics). In contrast, our methods apply to view adaptation, but use a more general term rewrite
system to develop a sound and complete query reformulation algorithm.

Our Z-relations appeared in an early form as the deltas in the count incremental view
maintenance algorithm for UCQs of [19]. That paper did not consider query equivalence for
deltas or make a general study of query reformulation.

9 Conclusions

In this paper we investigated the problem of exact query reformulation using views, when
queries and views are given with the full R A including difference. We introduced Z-relations,
we showed that under Z-semantics, every R A query may be expressed as a difference of
two R A+ queries, and we saw that this leads to the decidability of Z-equivalence of R A
queries. (In contrast, equivalence of R A queries is undecidable under set or bag semantics).
We presented a query reformulation algorithm based on a term rewrite system and saw that
it is sound and complete for R A queries under Z-semantics. We also saw that query refor-
mulation on Z-relations allows us to unify in one framework several interesting applications,
such as optimizing queries using materialized views, view adaptation, and incremental view
maintenance. We studied related complexity questions, and gave conditions under which
our techniques can be used to find reformulations under bag semantics and set semantics.
Finally, we showed that Z-equivalence of R A queries extended with built-in predicates, and
bag-equivalence of R A+ queries with built-in predicates, are also decidable.
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As future work, we hope to develop a practical implementation of our reformulation
algorithm and evaluate experimentally its effectiveness in view maintenance, adaptation,
and optimization.
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