University of Pennsylvania ScholarlyCommons

# Notes on the Schur Complement 

Jean H. Gallier

University of Pennsylvania, jean@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers
Part of the Computer Sciences Commons

## Recommended Citation

Jean H. Gallier, "Notes on the Schur Complement", . December 2010.

Gallier, J., Notes on the Schur Complement

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/601
For more information, please contact libraryrepository@pobox.upenn.edu.

# Notes on the Schur Complement 

## Disciplines

Computer Sciences

## Comments

Gallier, J., Notes on the Schur Complement

# The Schur Complement and Symmetric Positive Semidefinite (and Definite) Matrices 

Jean Gallier

December 10, 2010

## 1 Schur Complements

In this note, we provide some details and proofs of some results from Appendix A. 5 (especially Section A.5.5) of Convex Optimization by Boyd and Vandenberghe [1].

Let $M$ be an $n \times n$ matrix written a as $2 \times 2$ block matrix

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right),
$$

where $A$ is a $p \times p$ matrix and $D$ is a $q \times q$ matrix, with $n=p+q$ (so, $B$ is a $p \times q$ matrix and $C$ is a $q \times p$ matrix). We can try to solve the linear system

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{x}{y}=\binom{c}{d},
$$

that is

$$
\begin{aligned}
& A x+B y=c \\
& C x+D y=d,
\end{aligned}
$$

by mimicking Gaussian elimination, that is, assuming that $D$ is invertible, we first solve for $y$ getting

$$
y=D^{-1}(d-C x)
$$

and after substituting this expression for $y$ in the first equation, we get

$$
A x+B\left(D^{-1}(d-C x)\right)=c
$$

that is,

$$
\left(A-B D^{-1} C\right) x=c-B D^{-1} d
$$

If the matrix $A-B D^{-1} C$ is invertible, then we obtain the solution to our system

$$
\begin{aligned}
& x=\left(A-B D^{-1} C\right)^{-1}\left(c-B D^{-1} d\right) \\
& y=D^{-1}\left(d-C\left(A-B D^{-1} C\right)^{-1}\left(c-B D^{-1} d\right)\right)
\end{aligned}
$$

The matrix, $A-B D^{-1} C$, is called the Schur Complement of $D$ in $M$. If $A$ is invertible, then by eliminating $x$ first using the first equation we find that the Schur complement of $A$ in $M$ is $D-C A^{-1} B$ (this corresponds to the Schur complement defined in Boyd and Vandenberghe [1] when $C=B^{\top}$ ).

The above equations written as

$$
\begin{aligned}
& x=\left(A-B D^{-1} C\right)^{-1} c-\left(A-B D^{-1} C\right)^{-1} B D^{-1} d \\
& y=-D^{-1} C\left(A-B D^{-1} C\right)^{-1} c+\left(D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}\right) d
\end{aligned}
$$

yield a formula for the inverse of $M$ in terms of the Schur complement of $D$ in $M$, namely

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right) .
$$

A moment of reflexion reveals that

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & 0 \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right),
$$

and then

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right)\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & 0 \\
0 & D^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right) .
$$

It follows immediately that

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
D^{-1} C & I
\end{array}\right) .
$$

The above expression can be checked directly and has the advantage of only requiring the invertibility of $D$.

Remark: If $A$ is invertible, then we can use the Schur complement, $D-C A^{-1} B$, of $A$ to obtain the following factorization of $M$ :

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right)\left(\begin{array}{cc}
I & A^{-1} B \\
0 & I
\end{array}\right) .
$$

If $D-C A^{-1} B$ is invertible, we can invert all three matrices above and we get another formula for the inverse of $M$ in terms of $\left(D-C A^{-1} B\right)$, namely,

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
$$

If $A, D$ and both Schur complements $A-B D^{-1} C$ and $D-C A^{-1} B$ are all invertible, by comparing the two expressions for $M^{-1}$, we get the (non-obvious) formula

$$
\left(A-B D^{-1} C\right)^{-1}=A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} .
$$

Using this formula, we obtain another expression for the inverse of $M$ involving the Schur complements of $A$ and $D$ (see Horn and Johnson [5]):

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
$$

If we set $D=I$ and change $B$ to $-B$ we get

$$
(A+B C)^{-1}=A^{-1}-A^{-1} B\left(I-C A^{-1} B\right)^{-1} C A^{-1}
$$

a formula known as the matrix inversion lemma (see Boyd and Vandenberghe [1], Appendix C.4, especially C.4.3).

## 2 A Characterization of Symmetric Positive Definite Matrices Using Schur Complements

Now, if we assume that $M$ is symmetric, so that $A, D$ are symmetric and $C=B^{\top}$, then we see that $M$ is expressed as

$$
M=\left(\begin{array}{cc}
A & B \\
B^{\top} & D
\end{array}\right)=\left(\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A-B D^{-1} B^{\top} & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right)^{\top}
$$

which shows that $M$ is similar to a block-diagonal matrix (obviously, the Schur complement, $A-B D^{-1} B^{\top}$, is symmetric). As a consequence, we have the following version of "Schur's trick" to check whether $M \succ 0$ for a symmetric matrix, $M$, where we use the usual notation, $M \succ 0$ to say that $M$ is positive definite and the notation $M \succeq 0$ to say that $M$ is positive semidefinite.

Proposition 2.1 For any symmetric matrix, $M$, of the form

$$
M=\left(\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right)
$$

if $C$ is invertible then the following properties hold:
(1) $M \succ 0$ iff $C \succ 0$ and $A-B C^{-1} B^{\top} \succ 0$.
(2) If $C \succ 0$, then $M \succeq 0$ iff $A-B C^{-1} B^{\top} \succeq 0$.

Proof. (1) Observe that

$$
\left(\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right)^{-1}=\left(\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right)
$$

and we know that for any symmetric matrix, $T$, and any invertible matrix, $N$, the matrix $T$ is positive definite $(T \succ 0)$ iff $N T N^{\top}$ (which is obviously symmetric) is positive definite $\left(N T N^{\top} \succ 0\right)$. But, a block diagonal matrix is positive definite iff each diagonal block is positive definite, which concludes the proof.
(2) This is because for any symmetric matrix, $T$, and any invertible matrix, $N$, we have $T \succeq 0$ iff $N T N^{\top} \succeq 0$.

Another version of Proposition 2.1 using the Schur complement of $A$ instead of the Schur complement of $C$ also holds. The proof uses the factorization of $M$ using the Schur complement of $A$ (see Section 1).

Proposition 2.2 For any symmetric matrix, $M$, of the form

$$
M=\left(\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right),
$$

if $A$ is invertible then the following properties hold:
(1) $M \succ 0$ iff $A \succ 0$ and $C-B^{\top} A^{-1} B \succ 0$.
(2) If $A \succ 0$, then $M \succeq 0$ iff $C-B^{\top} A^{-1} B \succeq 0$.

When $C$ is singular (or $A$ is singular), it is still possible to characterize when a symmetric matrix, $M$, as above is positive semidefinite but this requires using a version of the Schur complement involving the pseudo-inverse of $C$, namely $A-B C^{\dagger} B^{\top}$ (or the Schur complement, $C-B^{\top} A^{\dagger} B$, of $A$ ). But first, we need to figure out when a quadratic function of the form $\frac{1}{2} x^{\top} P x+x^{\top} b$ has a minimum and what this optimum value is, where $P$ is a symmetric matrix. This corresponds to the (generally nonconvex) quadratic optimization problem

$$
\operatorname{minimize} \quad f(x)=\frac{1}{2} x^{\top} P x+x^{\top} b
$$

which has no solution unless $P$ and $b$ satisfy certain conditions.

## 3 Pseudo-Inverses

We will need pseudo-inverses so let's review this notion quickly as well as the notion of SVD which provides a convenient way to compute pseudo-inverses. We only consider the case of square matrices since this is all we need. For comprehensive treatments of SVD and pseudo-inverses see Gallier [3] (Chapters 12, 13), Strang [7], Demmel [2], Trefethen and Bau [8], Golub and Van Loan [4] and Horn and Johnson [5, 6].

Recall that every square $n \times n$ matrix, $M$, has a singular value decomposition, for short, $S V D$, namely, we can write

$$
M=U \Sigma V^{\top}
$$

where $U$ and $V$ are orthogonal matrices and $\Sigma$ is a diagonal matrix of the form

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)
$$

where $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$ and $r$ is the rank of $M$. The $\sigma_{i}$ 's are called the singular values of $M$ and they are the positive square roots of the nonzero eigenvalues of $M M^{\top}$ and $M^{\top} M$. Furthermore, the columns of $V$ are eigenvectors of $M^{\top} M$ and the columns of $U$ are eigenvectors of $M M^{\top}$. Observe that $U$ and $V$ are not unique.

If $M=U \Sigma V^{\top}$ is some SVD of $M$, we define the pseudo-inverse, $M^{\dagger}$, of $M$ by

$$
M^{\dagger}=V \Sigma^{\dagger} U^{\top}
$$

where

$$
\Sigma^{\dagger}=\operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{r}^{-1}, 0, \ldots, 0\right)
$$

Clearly, when $M$ has rank $r=n$, that is, when $M$ is invertible, $M^{\dagger}=M^{-1}$, so $M^{\dagger}$ is a "generalized inverse" of $M$. Even though the definition of $M^{\dagger}$ seems to depend on $U$ and $V$, actually, $M^{\dagger}$ is uniquely defined in terms of $M$ (the same $M^{\dagger}$ is obtained for all possible SVD decompositions of $M$ ). It is easy to check that

$$
\begin{aligned}
M M^{\dagger} M & =M \\
M^{\dagger} M M^{\dagger} & =M^{\dagger}
\end{aligned}
$$

and both $M M^{\dagger}$ and $M^{\dagger} M$ are symmetric matrices. In fact,

$$
M M^{\dagger}=U \Sigma V^{\top} V \Sigma^{\dagger} U^{\top}=U \Sigma \Sigma^{\dagger} U^{\top}=U\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right) U^{\top}
$$

and

$$
M^{\dagger} M=V \Sigma^{\dagger} U^{\top} U \Sigma V^{\top}=V \Sigma^{\dagger} \Sigma V^{\top}=V\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right) V^{\top} .
$$

We immediately get

$$
\begin{aligned}
\left(M M^{\dagger}\right)^{2} & =M M^{\dagger} \\
\left(M^{\dagger} M\right)^{2} & =M^{\dagger} M
\end{aligned}
$$

so both $M M^{\dagger}$ and $M^{\dagger} M$ are orthogonal projections (since they are both symmetric). We claim that $M M^{\dagger}$ is the orthogonal projection onto the range of $M$ and $M^{\dagger} M$ is the orthogonal projection onto $\operatorname{Ker}(M)^{\perp}$, the orthogonal complement of $\operatorname{Ker}(M)$.

Obviously, range $\left(M M^{\dagger}\right) \subseteq \operatorname{range}(M)$ and for any $y=M x \in \operatorname{range}(M)$, as $M M^{\dagger} M=M$, we have

$$
M M^{\dagger} y=M M^{\dagger} M x=M x=y
$$

so the image of $M M^{\dagger}$ is indeed the range of $M$. It is also clear that $\operatorname{Ker}(M) \subseteq \operatorname{Ker}\left(M^{\dagger} M\right)$ and since $M M^{\dagger} M=M$, we also have $\operatorname{Ker}\left(M^{\dagger} M\right) \subseteq \operatorname{Ker}(M)$ and so,

$$
\operatorname{Ker}\left(M^{\dagger} M\right)=\operatorname{Ker}(M)
$$

Since $M^{\dagger} M$ is Hermitian, range $\left(M^{\dagger} M\right)=\operatorname{Ker}\left(M^{\dagger} M\right)^{\perp}=\operatorname{Ker}(M)^{\perp}$, as claimed.
It will also be useful to see that range $(M)=\operatorname{range}\left(M M^{\dagger}\right)$ consists of all vector $y \in \mathbb{R}^{n}$ such that

$$
U^{\top} y=\binom{z}{0}
$$

with $z \in \mathbb{R}^{r}$.
Indeed, if $y=M x$, then

$$
U^{\top} y=U^{\top} M x=U^{\top} U \Sigma V^{\top} x=\Sigma V^{\top} x=\left(\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right) V^{\top} x=\binom{z}{0}
$$

where $\Sigma_{r}$ is the $r \times r$ diagonal matrix $\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$. Conversely, if $U^{\top} y=\binom{z}{0}$, then $y=U\binom{z}{0}$ and

$$
\begin{aligned}
M M^{\dagger} y & =U\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right) U^{\top} y \\
& =U\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right) U^{\top} U\binom{z}{0} \\
& =U\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right)\binom{z}{0} \\
& =U\binom{z}{0}=y
\end{aligned}
$$

which shows that $y$ belongs to the range of $M$.
Similarly, we claim that range $\left(M^{\dagger} M\right)=\operatorname{Ker}(M)^{\perp}$ consists of all vector $y \in \mathbb{R}^{n}$ such that

$$
V^{\top} y=\binom{z}{0}
$$

with $z \in \mathbb{R}^{r}$.
If $y=M^{\dagger} M u$, then

$$
y=M^{\dagger} M u=V\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right) V^{\top} u=V\binom{z}{0}
$$

for some $z \in \mathbb{R}^{r}$. Conversely, if $V^{\top} y=\binom{z}{0}$, then $y=V\binom{z}{0}$ and so,

$$
\begin{aligned}
M^{\dagger} M V\binom{z}{0} & =V\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right) V^{\top} V\binom{z}{0} \\
& =V\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right)\binom{z}{0} \\
& =V\binom{z}{0}=y,
\end{aligned}
$$

which shows that $y \in \operatorname{range}\left(M^{\dagger} M\right)$.
If $M$ is a symmetric matrix, then in general, there is no SVD, $U \Sigma V^{\top}$, of $M$ with $U=V$. However, if $M \succeq 0$, then the eigenvalues of $M$ are nonnegative and so the nonzero eigenvalues of $M$ are equal to the singular values of $M$ and SVD's of $M$ are of the form

$$
M=U \Sigma U^{\top}
$$

Analogous results hold for complex matrices but in this case, $U$ and $V$ are unitary matrices and $M M^{\dagger}$ and $M^{\dagger} M$ are Hermitian orthogonal projections.

If $M$ is a normal matrix which, means that $M M^{\top}=M^{\top} M$, then there is an intimate relationship between SVD's of $M$ and block diagonalizations of $M$. As a consequence, the pseudo-inverse of a normal matrix, $M$, can be obtained directly from a block diagonalization of $M$.

If $M$ is a (real) normal matrix, then it can be block diagonalized with respect to an orthogonal matrix, $U$, as

$$
M=U \Lambda U^{\top}
$$

where $\Lambda$ is the (real) block diagonal matrix,

$$
\Lambda=\operatorname{diag}\left(B_{1}, \ldots, B_{n}\right)
$$

consisting either of $2 \times 2$ blocks of the form

$$
B_{j}=\left(\begin{array}{cc}
\lambda_{j} & -\mu_{j} \\
\mu_{j} & \lambda_{j}
\end{array}\right)
$$

with $\mu_{j} \neq 0$, or of one-dimensional blocks, $B_{k}=\left(\lambda_{k}\right)$. Assume that $B_{1}, \ldots, B_{p}$ are $2 \times 2$ blocks and that $\lambda_{2 p+1}, \ldots, \lambda_{n}$ are the scalar entries. We know that the numbers $\lambda_{j} \pm i \mu_{j}$, and the $\lambda_{2 p+k}$ are the eigenvalues of $A$. Let $\rho_{2 j-1}=\rho_{2 j}=\sqrt{\lambda_{j}^{2}+\mu_{j}^{2}}$ for $j=1, \ldots, p, \rho_{2 p+j}=\lambda_{j}$ for $j=1, \ldots, n-2 p$, and assume that the blocks are ordered so that $\rho_{1} \geq \rho_{2} \geq \cdots \geq \rho_{n}$. Then, it is easy to see that

$$
U U^{\top}=U^{\top} U=U \Lambda U^{\top} U \Lambda^{\top} U^{\top}=U \Lambda \Lambda^{\top} U^{\top}
$$

with

$$
\Lambda \Lambda^{\top}=\operatorname{diag}\left(\rho_{1}^{2}, \ldots, \rho_{n}^{2}\right)
$$

so, the singular values, $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$, of $A$, which are the nonnegative square roots of the eigenvalues of $A A^{\top}$, are such that

$$
\sigma_{j}=\rho_{j}, \quad 1 \leq j \leq n
$$

We can define the diagonal matrices

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)
$$

where $r=\operatorname{rank}(A), \sigma_{1} \geq \cdots \geq \sigma_{r}>0$, and

$$
\Theta=\operatorname{diag}\left(\sigma_{1}^{-1} B_{1}, \ldots, \sigma_{2 p}^{-1} B_{p}, 1, \ldots, 1\right)
$$

so that $\Theta$ is an orthogonal matrix and

$$
\Lambda=\Theta \Sigma=\left(B_{1}, \ldots, B_{p}, \lambda_{2 p+1}, \ldots, \lambda_{r}, 0, \ldots, 0\right)
$$

But then, we can write

$$
A=U \Lambda U^{\top}=U \Theta \Sigma U^{\top}
$$

and we if let $V=U \Theta$, as $U$ is orthogonal and $\Theta$ is also orthogonal, $V$ is also orthogonal and $A=V \Sigma U^{\top}$ is an $S V D$ for $A$. Now, we get

$$
A^{+}=U \Sigma^{+} V^{\top}=U \Sigma^{+} \Theta^{\top} U^{\top}
$$

However, since $\Theta$ is an orthogonal matrix, $\Theta^{\top}=\Theta^{-1}$ and a simple calculation shows that

$$
\Sigma^{+} \Theta^{\top}=\Sigma^{+} \Theta^{-1}=\Lambda^{+}
$$

which yields the formula

$$
A^{+}=U \Lambda^{+} U^{\top}
$$

Also observe that if we write

$$
\Lambda_{r}=\left(B_{1}, \ldots, B_{p}, \lambda_{2 p+1}, \ldots, \lambda_{r}\right)
$$

then $\Lambda_{r}$ is invertible and

$$
\Lambda^{+}=\left(\begin{array}{cc}
\Lambda_{r}^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block diagonalization of $A$, as claimed.

Next, we will use pseudo-inverses to generalize the result of Section 2 to symmetric matrices $M=\left(\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right)$ where $C$ (or $A$ ) is singular.

## 4 A Characterization of Symmetric Positive Semidefinite Matrices Using Schur Complements

We begin with the following simple fact:
Proposition 4.1 If $P$ is an invertible symmetric matrix, then the function

$$
f(x)=\frac{1}{2} x^{\top} P x+x^{\top} b
$$

has a minimum value iff $P \succeq 0$, in which case this optimal value is obtained for a unique value of $x$, namely $x^{*}=-P^{-1} b$, and with

$$
f\left(P^{-1} b\right)=-\frac{1}{2} b^{\top} P^{-1} b .
$$

Proof. Observe that

$$
\frac{1}{2}\left(x+P^{-1} b\right)^{\top} P\left(x+P^{-1} b\right)=\frac{1}{2} x^{\top} P x+x^{\top} b+\frac{1}{2} b^{\top} P^{-1} b .
$$

Thus,

$$
f(x)=\frac{1}{2} x^{\top} P x+x^{\top} b=\frac{1}{2}\left(x+P^{-1} b\right)^{\top} P\left(x+P^{-1} b\right)-\frac{1}{2} b^{\top} P^{-1} b .
$$

If $P$ has some negative eigenvalue, say $-\lambda$ (with $\lambda>0$ ), if we pick any eigenvector, $u$, of $P$ associated with $\lambda$, then for any $\alpha \in \mathbb{R}$ with $\alpha \neq 0$, if we let $x=\alpha u-P^{-1} b$, then as $P u=-\lambda u$ we get

$$
\begin{aligned}
f(x) & =\frac{1}{2}\left(x+P^{-1} b\right)^{\top} P\left(x+P^{-1} b\right)-\frac{1}{2} b^{\top} P^{-1} b \\
& =\frac{1}{2} \alpha u^{\top} P \alpha u-\frac{1}{2} b^{\top} P^{-1} b \\
& =-\frac{1}{2} \alpha^{2} \lambda\|u\|_{2}^{2}-\frac{1}{2} b^{\top} P^{-1} b,
\end{aligned}
$$

and as $\alpha$ can be made as large as we want and $\lambda>0$, we see that $f$ has no minimum. Consequently, in order for $f$ to have a minimum, we must have $P \succeq 0$. In this case, as $\left(x+P^{-1} b\right)^{\top} P\left(x+P^{-1} b\right) \geq 0$, it is clear that the minimum value of $f$ is achieved when $x+P^{-1} b=0$, that is, $x=-P^{-1} b$.

Let us now consider the case of an arbitrary symmetric matrix, $P$.
Proposition 4.2 If $P$ is a symmetric matrix, then the function

$$
f(x)=\frac{1}{2} x^{\top} P x+x^{\top} b
$$

has a minimum value iff $P \succeq 0$ and $\left(I-P P^{\dagger}\right) b=0$, in which case this minimum value is

$$
p^{*}=-\frac{1}{2} b^{\top} P^{\dagger} b
$$

Furthermore, if $P=U^{\top} \Sigma U$ is an $S V D$ of $P$, then the optimal value is achieved by all $x \in \mathbb{R}^{n}$ of the form

$$
x=-P^{\dagger} b+U^{\top}\binom{0}{z}
$$

for any $z \in \mathbb{R}^{n-r}$, where $r$ is the rank of $P$.
Proof. The case where $P$ is invertible is taken care of by Proposition 4.1 so, we may assume that $P$ is singular. If $P$ has rank $r<n$, then we can diagonalize $P$ as

$$
P=U^{\top}\left(\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right) U,
$$

where $U$ is an orthogonal matrix and where $\Sigma_{r}$ is an $r \times r$ diagonal invertible matrix. Then, we have

$$
\begin{aligned}
f(x) & =\frac{1}{2} x^{\top} U^{\top}\left(\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right) U x+x^{\top} U^{\top} U b \\
& =\frac{1}{2}(U x)^{\top}\left(\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right) U x+(U x)^{\top} U b .
\end{aligned}
$$

If we write $U x=\binom{y}{z}$ and $U b=\binom{c}{d}$, with $y, c \in \mathbb{R}^{r}$ and $z, d \in \mathbb{R}^{n-r}$, we get

$$
\begin{aligned}
f(x) & =\frac{1}{2}(U x)^{\top}\left(\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right) U x+(U x)^{\top} U b \\
& =\frac{1}{2}\left(y^{\top}, z^{\top}\right)\left(\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right)\binom{y}{z}+\left(y^{\top}, z^{\top}\right)\binom{c}{d} \\
& =\frac{1}{2} y^{\top} \Sigma_{r} y+y^{\top} c+z^{\top} d .
\end{aligned}
$$

For $y=0$, we get

$$
f(x)=z^{\top} d
$$

so if $d \neq 0$, the function $f$ has no minimum. Therefore, if $f$ has a minimum, then $d=0$. However, $d=0$ means that $U b=\binom{c}{0}$ and we know from Section 3 that $b$ is in the range of $P$ (here, $U$ is $U^{\top}$ ) which is equivalent to $\left(I-P P^{\dagger}\right) b=0$. If $d=0$, then

$$
f(x)=\frac{1}{2} y^{\top} \Sigma_{r} y+y^{\top} c
$$

and as $\Sigma_{r}$ is invertible, by Proposition 4.1, the function $f$ has a minimum iff $\Sigma_{r} \succeq 0$, which is equivalent to $P \succeq 0$.

Therefore, we proved that if $f$ has a minimum, then $\left(I-P P^{\dagger}\right) b=0$ and $P \succeq 0$. Conversely, if $\left(I-P P^{\dagger}\right) b=0$ and $P \succeq 0$, what we just did proves that $f$ does have a minimum.

When the above conditions hold, the minimum is achieved if $y=-\Sigma_{r}^{-1} c, z=0$ and $d=0$, that is for $x^{*}$ given by $U x^{*}=\binom{-\Sigma_{r}^{-1} c}{0}$ and $U b=\binom{c}{0}$, from which we deduce that

$$
x^{*}=-U^{\top}\binom{\Sigma_{r}^{-1} c}{0}=-U^{\top}\left(\begin{array}{cc}
\Sigma_{r}^{-1} c & 0 \\
0 & 0
\end{array}\right)\binom{c}{0}=-U^{\top}\left(\begin{array}{cc}
\Sigma_{r}^{-1} c & 0 \\
0 & 0
\end{array}\right) U b=-P^{\dagger} b
$$

and the minimum value of $f$ is

$$
f\left(x^{*}\right)=-\frac{1}{2} b^{\top} P^{\dagger} b
$$

For any $x \in \mathbb{R}^{n}$ of the form

$$
x=-P^{\dagger} b+U^{\top}\binom{0}{z}
$$

for any $z \in \mathbb{R}^{n-r}$, our previous calculations show that $f(x)=-\frac{1}{2} b^{\top} P^{\dagger} b$.
We now return to our original problem, characterizing when a symmetric matrix, $M=\left(\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right)$, is positive semidefinite. Thus, we want to know when the function

$$
f(x, y)=\left(x^{\top}, y^{\top}\right)\left(\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right)\binom{x}{y}=x^{\top} A x+2 x^{\top} B y+y^{\top} C y
$$

has a minimum with respect to both $x$ and $y$. Holding $y$ constant, Proposition 4.2 implies that $f(x, y)$ has a minimum iff $A \succeq 0$ and $\left(I-A A^{\dagger}\right) B y=0$ and then, the minimum value is

$$
f\left(x^{*}, y\right)=-y^{\top} B^{\top} A^{\dagger} B y+y^{\top} C y=y^{\top}\left(C-B^{\top} A^{\dagger} B\right) y
$$

Since we want $f(x, y)$ to be uniformly bounded from below for all $x, y$, we must have $\left(I-A A^{\dagger}\right) B=0$. Now, $f\left(x^{*}, y\right)$ has a minimum iff $C-B^{\top} A^{\dagger} B \succeq 0$. Therefore, we established that $f(x, y)$ has a minimum over all $x, y$ iff

$$
A \succeq 0, \quad\left(I-A A^{\dagger}\right) B=0, \quad C-B^{\top} A^{\dagger} B \succeq 0
$$

A similar reasoning applies if we first minimize with respect to $y$ and then with respect to $x$ but this time, the Schur complement, $A-B C^{\dagger} B^{\top}$, of $C$ is involved. Putting all these facts together we get our main result:

Theorem 4.3 Given any symmetric matrix, $M=\left(\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right)$, the following conditions are equivalent:
(1) $M \succeq 0$ ( $M$ is positive semidefinite).
(2) $A \succeq 0, \quad\left(I-A A^{\dagger}\right) B=0, \quad C-B^{\top} A^{\dagger} B \succeq 0$.
(2) $C \succeq 0, \quad\left(I-C C^{\dagger}\right) B^{\top}=0, \quad A-B C^{\dagger} B^{\top} \succeq 0$.

If $M \succeq 0$ as in Theorem 4.3, then it is easy to check that we have the following factorizations (using the fact that $A^{\dagger} A A^{\dagger}=A^{\dagger}$ and $C^{\dagger} C C^{\dagger}=C^{\dagger}$ ):

$$
\left(\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right)=\left(\begin{array}{cc}
I & B C^{\dagger} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A-B C^{\dagger} B^{\top} & 0 \\
0 & C
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
C^{\dagger} B^{\top} & I
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
B^{\top} A^{\dagger} & I
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & C-B^{\top} A^{\dagger} B
\end{array}\right)\left(\begin{array}{cc}
I & A^{\dagger} B \\
0 & I
\end{array}\right) .
$$

## References

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, first edition, 2004.
[2] James W. Demmel. Applied Numerical Linear Algebra. SIAM Publications, first edition, 1997.
[3] Jean H. Gallier. Geometric Methods and Applications, For Computer Science and Engineering. TAM, Vol. 38. Springer, first edition, 2000.
[4] H. Golub, Gene and F. Van Loan, Charles. Matrix Computations. The Johns Hopkins University Press, third edition, 1996.
[5] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, first edition, 1990.
[6] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press, first edition, 1994.
[7] Gilbert Strang. Linear Algebra and its Applications. Saunders HBJ, third edition, 1988.
[8] L.N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM Publications, first edition, 1997.

