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Human Model Reaching, Grasping, Looking and Sitting Using Smart
Objects

Abstract
Manually creating convincing animated human motion in a 3D ergonomic test environment is tedious and
time consuming. However, procedural motion generators help animators efficiently produce complex and
realistic motions. Using the concept of a Human Modeling Software Testbed (HMST), we created novel
procedural methods for animating reaching, grasping, looking, and sitting using the environmental context of
‘smart’ objects that parametrically guide human model ergonomic motions. This approach enabled
complicated procedures such as collision-free leg reach and contextual sitting motion generation. By
procedurally adding small secondary details to the animation, such as head/eye vision constraints and
prehensile grasps, the animated motions look more natural with minimal animator input. A ‘smart’ object in
the scene graph provides specific parameters to produce proper motions and final positions. These parameters
are applied to the desired figure procedurally to create any secondary motions, and further generalize to any
environment. Our system allows users to proceed with any required ergonomic analyses with confidence in
the visual validity of the automated motions.

Disciplines
Computer Sciences

Comments
Slonneger, D., Croop, M., Cytryn, J., Kider, J., Rabbitz, R., Halpern, E., & Badler, N., Human Model Reaching,
Grasping, Looking and Sitting Using Smart Objects, International Ergonomic Association-Digital Human
Modeling, June 2011

Author(s)
D. Slonneger, Matthew Croop, J. Cytryn, Joseph T. Kider Jr., R. Rabbitz, E. Halpern, and Norman I. Badler

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/581

http://repository.upenn.edu/cis_papers/581?utm_source=repository.upenn.edu%2Fcis_papers%2F581&utm_medium=PDF&utm_campaign=PDFCoverPages


D. Slonneger, Using Smart Objects 

Human Model Reaching, Grasping, Looking and Sitting 
using Smart Objects  

D. Slonneger*†, M. Croop†, J. Cytryn†, J. T. Kider Jr.†, R. Rabbitz‡, E. Halpern‡, and N. I. Badler† 

† SIG Center for Computer Graphics, University of Pennsylvania 

‡ Lockheed Martin Maritime Systems Corporation 

Abstract 

Manually creating convincing animated human motion in a 3D ergonomic test environment is tedious and time 
consuming. However, procedural motion generators help animators efficiently produce complex and realistic 
motions. Using the concept of a Human Modeling Software Testbed (HMST), we created novel procedural 
methods for animating reaching, grasping, looking, and sitting using the environmental context of ‘smart’ objects 
that parametrically guide human model ergonomic motions. This approach enabled complicated procedures such 
as collision-free leg reach and contextual sitting motion generation.  By procedurally adding small secondary 
details to the animation, such as head/eye vision constraints and prehensile grasps, the animated motions look 
more natural with minimal animator input.  A ‘smart’ object in the scene graph provides specific parameters to 
produce proper motions and final positions. These parameters are applied to the desired figure procedurally to 
create any secondary motions, and further generalize to any environment.  Our system allows users to proceed 
with any required ergonomic analyses with confidence in the visual validity of the automated motions. 
 

Keywords: Posture and Motion, Human Performance, Motor Behavior.  

1. Introduction 

Operators of human factors software tools 
manipulate graphical user interfaces to define 
human tasks to be performed and analyzed in 3D 
modeled environments.  Although the historic 
purposes of such analyses were human fit, safety, 
and comfort, motions were mostly limited to arm 
and leg reaches in a seated posture, lift or 
placement actions using arms or whole body 
motions, or locomotion from one workplace to 
another.  Such movements precipitated great 
interest in algorithms for reach, visible space, 
strength, collision avoidance and path navigation. 
 
  Over the years the job of the human factors analyst 
has been to reproduce desired tasks in digital 
manikin modeling systems in order to analyze 
necessary feasibility, fit, accommodation, comfort 
and health factors. Reproducing human tasks has 
thus become rather more aligned with human 
motion animation as used in the movie and game 
industry, without giving the human factors engineer 
the benefit of the extensive tools (and concomitant 
background and training) developed for those well-
funded industries. 

 
Figure 1: This diagram shows an image from the Human 
Modeling Software Testbed (HMST). This is an 
ergonomic test platform tool based on the Jack and 
Process Simulate Human toolkit. The tool allows users to 
test designs of new environments with virtual people and 
test many human factors, such as timing, efficiency, 
reachability, lines of sight, and user comfort. 

This paper describes the processes and 
methodologies we engaged to add new functionality 
to allow procedural support for secondary 
animations.  This section outlines in detail the 
general approach to procedural motion generation 
across several body systems including view control, 
hand grasps, arm reach, leg reach, and a sit-down 

D. Slonneger. Email: sloda@seas.upenn.edu 1 



D. Slonneger, Using Smart Objects 

generator based on a “smart” chair object.  We 
present and discuss our results and a discussion of 
an informal assessment of these improvements’ 
utility for the user. 
 

2. Materials and Methods 

When humans reach for objects they typically do 
not stare lifelessly ahead but instead track what they 
do. A view motion procedure provides a tracking 
system that drives the figure’s head and eyes to 
follow the hand, the reach target, or the midpoint 
between these two. The eyes of the figure follow 
the chosen point until the eye limits are reached, at 
which time the head begins to track, allowing for 
greater tracking coverage. While the angles are 
constrained by the figure’s physical limits, the 
speed of motion is based upon Fitts’ Law.  The eyes 
are allowed to move independently or in parallel, 
depending if visual vergence is desired, e.g. 
depending on target proximity. 
 
Proper hand grasps also add realism to the 
animation. We incorporated motions for thirteen 
grasps (MacKenzie and Iberall 1994). To couple the 
grasp action with arm reach, we conducted a simple 
study to measure the time and distance away from 
various objects where people begin to change their 
hand shape for the final grasp. From these empirical 
tests we found that the transition began about 50 cm 
from the object. 
 
While the HMST already had a collision-free arm 
reach (Zhao et al. 2005), leg reaches had to be 
animated by hand. We designed a collision-free leg 
reach allowing for more automatic animations, e.g., 
by allowing the feet to reach for pedals or move 
around chair legs. We also modified the arm/leg 
strength curves (used to create natural joint 
positions) by making each smooth and continuous. 
This creates smoother more pleasing animated 
motions by avoiding discontinuities. Using 
(Baerlocher 2001) the function used to calculate the 
swivel angle for the arms and legs has been 
modified so that only one orientation singularity 
may occur. This point is located behind the figure 
in an area that cannot be reached. 
 
Finally, the sit generation procedure is a significant 
aid to the animator. This tool allows any sized 
figure to sit in a variety of chairs. Drawing from the 
idea of a “smart object” (Kallman and Thalmann 
1998), a given chair object in the HMST scene can 
provide parameters to the figure so that a proper 
sitting motion and final resting position can be 
reached. The parameters are a sit point and a 
desired knee position; if the chair has arms then 
points for each are needed to animate the figure’s 
reach and its final rest position. These parameters 
are read from a file before animation and are used 

to drive the figure from standing, to reaching back 
for balance, and finally to the rest position in the 
chair. 
 

2.1. View Constraints 

To create more realistic looking reach animations, 
head and eye tracking have been added. Originally 
the figure would look straight ahead while reaching 
for a point, but by making the figure’s view track 
the target point during the reach, the animation 
looks more lifelike and natural.  
 
Adding the view tracking was complicated by the 
fact that the order in which the three degrees of 
freedom of head rotation are applied is different 
than the logical way of specifying the desired pitch 
and yaw. Thus, to prevent looking at the target with 
the head rolled, we perform rotation matrix 
manipulations to get the rotations applied in the 
correct order. Head Tilting is prevented in the sense 
that we always keep the local left vector of the head 
(which determines tilt) perpendicular to the 
(locally) constant up vector of the base of the neck.  
Thus, if the user rotates the figure and then aims at 
a target, there will be no roll relative to the upper 
torso. 
 
There are various options now worked into HMST 
for different ways of doing head-eye motion during 
a reach.  The user can track the target, the hand(s) 
that are moving toward the target, or the midpoint 
between the two.  Also, the user can have the eyes 
independently track the target or force the eyes to 
be parallel (useful for two-handed reaches). 
 
The main issue with head motion at this juncture is 
how the system deals with natural angle limits of 
the joints.  For example, conflicts arise if we tell the 
model to look past the model's naturally 
comfortable range of rotation.  Right now, we 
clamp each Euler angle to the natural joint limits, 
but with this method the model will end up looking 
at some arbitrary point.  A better solution would be 
to find the arc between the unclamped target and 
the original view direction, and then clamp to the 
last point on this arc that is still within limits. 
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Figure 2: This image shows automatic head and eye 
tracking to the target of the reach. 

2.2. Hand Grasping Model 

In order to create a larger variety of animations with 
the hands, more grasp configurations were needed. 
At first we considered using motion capture to 
decide what kinds of grasps people used for 
everyday objects, but a lot of work has already been 
done on the subject of hand grasps. We decided to 
create a database of general usage grasps from the 
types enumerated in The Grasping Hand 
(MacKenzie and Iberall 1994) as well as in (Feix et 
al. 2009). We integrated these new hand grasps into 
HMST to allow the figure more generalized hand 
shapes while reaching. These grasps may be used in 
any part of the HMST but when used with the 
collision free reach, allows the hand to animate as 
the reach is occurring.  
 
To better understand how humans reach change 
their hand shape while reaching for objects, we 
conducted a study. This study measured when 
people tend to start opening their hands in order to 
reach their target hand shape. We calculated this 
based upon distance from target and type of object 
being reached for. We ran these tests with 20 men 
and women to get a broader range of test subjects. 
These tests show that at about 50.0 cm from the 
object people begin to transition from their original 
hand shape to the grasp needed to grip the object. 
Below is a chart of what we found based upon two 
different starting distances from the object. 

Table 1: Averaged finding from group study on reaching 
for variously sized objects. 

 Short Reach 
(~137 cm) 

Long Reach 
(~275 cm.) 

Start of grasping 
position / total 
distance (%) 

 
63.6% 

 
81.6% 

Start of grasping 
time / total time (%) 

 
63% 

 
78.6% 

Distance from 
target when starting 
grasp (cm.) 

 
49.96 

 
50.35 

 
While figuring out when humans start to change 
grasps adds realism to reach animations we decided 
more could be done. In order to do this we looked 
at how reach worked with vision tracking via Fitts’ 
law. By using Fitts’ law we can determine the speed 
for the reach and by replacing distance to target 
with the angle between the current view and target 
view vectors, the figure’s head-eye tracking motion 
speed as well. Fitts’ law depends on the width of 
the object; in the future this size would be read in 
from the smart object that the figure is reaching for. 
Currently, we are using a value of 10.0 cm as the 

width of the target objects but would like to 
incorporate different sizes for future work. 
 
Using what we learned from the studies above, we 
determined the timing for the hand grasp. The 
hands start to open up towards the final hand grasp 
at a certain distance away from the target (about 50 
cm) and does 80% of the interpolation to final hand 
pose by the time it gets to within 5 cm of the target. 
The last 20% of the motion is animated within these 
final centimeters so that the hand “clenches” more 
quickly at the end of the reach. Fitts’ law is used to 
determine the speeds of both reach and head-eye 
motion. Finally, since the user would presumably 
start looking at a target before reaching for it, when 
tracking the target with the eye-head system we put 
in a time offset so that the eye-head tracking begins 
before reach does. 
 

2.3. Collision-free Leg Reach 

Expanding upon the work done in Zhao et al. (Zhao 
et al. 2005), we added collision free reach to the 
figure’s legs in the HMST. This was done to 
accommodate reaching for pedals, avoiding chair 

 
Figure 3: Two of the newly added grasps while reaching. 

legs, and other animations that require leg 
adjustment within an enclosed work space. 
Modifying the arm reach for the leg was straight 
forward by replacing the shoulder, elbow, and wrist 
with the hip, knee, and ankle, respectively, and 
taking into account knee rotation. We also changed 
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some aspects of the general collision-free reach 
while incorporating the collision-free reach into the 
leg.  
 
To start, we noticed that the strength curves from 
Zhao’s reach (Zhao et al. 2005) were not always 
continuous or provide consistently smooth motions. 
We fixed these discontinuities by tweaking the 
control points and smoothed the curves by 
weighting low-twist angles to be more comfortable. 
An issue of having two singularities across possible 
swivel angles also existed and our solution is 
below. 

2.4.1Discontinuity changes to IKAN 

The HMST uses IKAN inverse kinematics for 
actions like walking and reaching (Tolani and 
Badler 1996). While performing leg reaches, the 
user will often want to move the end effector from a 
position in front of the model to a position behind 
the model. This required us to extend the 
functionality of reach so as to allow for a larger 
range of motion. IKAN models the leg with four 
degrees of freedom: three for the hip and one for 
the knee. The desired end effector position 
constrains three dimensions; however, for a given 
end effector position, there exists a circle of 
possible knee positions that are available for the IK 
solver. IKAN uses swivel angle as a fourth 
parameter to disambiguate among the knee 
positions.  One point on this circle of positions is 
designated the zero swivel angle, and all other knee 
positions on the circle are determined by their angle 
away from this zero point. The function IKAN used 
to determine the reference elbow position from a 
given wrist position had two discontinuities. 
However, Zhao’s (Zhao et. al 2005) reach depends 
on this function being continuous across adjacent 
voxel cells, as it uses nearby swivel angles to 
determine which positions are close to each other. 
The collision-free reach algorithm searches a graph 
of (position, swivel angle) pairs called pose cells, 
weighting edges between adjacent pose cells based 
on their spatial distance and swivel angle 
difference. Therefore, the function that maps end 
effector positions to zero swivel angle should be as 
stable as possible. If nearby positions have vastly 
different reference swivel angles, then similar poses 
may have large swivel angle differences, making 
this a poor metric near any discontinuities in the 
function. Although there is no completely 
continuous function mapping each vector to a 
vector orthogonal to the input, we changed the 
function so that it only has one discontinuity which 
is easily avoided, resulting in smoother animations 
during playback of the motions. 

 
Figure 4: This diagram shows the direction of zero swivel 
angle for every possible unit end effector position for an 
Euler angle representation of rotation (equivalent to 
IKAN’s previous method) and for an axis-angle 
representation of rotation (equivalent to our method). 
(Image source: Baerlocher 2001) 

To determine the reference swivel angle, IKAN 
projects the end effector position onto a fixed plane, 
and returns the angle between the projected vector 
and a fixed reference vector in this plane. This 
function has two discontinuities, one at each unit 
normal vector of this plane, resulting in sporadic 
motions when the end effector approaches these 
discontinuities. We would like to choose the fixed 
plane so that typical reach motions do not move the 
end effector near these discontinuities; however, 
since the discontinuities must be in opposite 
directions, this is unfeasible. To rectify this, we 
instead find the minimum-angle rotation from a 
fixed vector to the end effector, and apply this 
rotation to a second fixed vector orthogonal to the 
first (see Figure 4). This results in a function with 
only one discontinuity, in the direction opposite the 
first fixed vector. The discontinuity can easily be 
positioned in a location that the end effector cannot 
reach, specifically the up vector for leg reach. 
Applying this change resulted in improved motion 
for leg reach. Similar modifications to arm reach 
were successful in increasing range of smooth 
motions. 
 

 4 



D. Slonneger, Using Smart Objects 

 
Figure 5: This figure has just completed reaching for the 
target by using the collision-free leg reach. 

2.4. Smart Objects 

In order to create the sit generator we had to 
develop the smart object specification and design a 
set of classes to incorporate into the HMST. We 
referred to the works of (Kallman M, Thalmann D, 
1998) and (Peters C et al. 2003) to design our smart 
objects. Below is the description for each class as 
well as an image of the class in UML (Unified 
Modeling Language). 
 
Smart_Object: 
The Smart_Object class holds the intrinsic 
properties of the object that will be interacted with, 
which are used for the physical simulation. The 
behavior variable is of type Object_Behavior and 
will control how a figure interacts with the object at 
a given moment in time. 
 
Object_Behavior: 
This Object_Behavior class is a finite state machine 
containing each possible interaction of the figure 
with the object. For example, a door could be open 
or closed and each of these options allows for 
different ways the figure could act. States is a 
container for each of the interaction possibilities, 
containing objects of type FSM_Entry. A 
state_controller is needed so the object can know 
the state variables, current state, next states that are 
possible, and when to change to a new state. 
 
FSM_Entry: 
The FSM_Entry class acts as an individual entry for 
the finite state machine contained in 
Object_Behavior. It holds the name of the state and 
possible animations for the object and figure. The 
animations would be dependent on what state this 
entry represents. For example, a door opening 
would animate the object but reaching for the knob 

figure. Finally, there could also be a list of 
constraints to aid in the figure interaction of type 
Interaction_Information. 
 

or walking through would be an animation for the 

nteraction_Information: 
 class holds interaction 

I
The Interaction_Information
values relating a figure's segment to the object. The 
agent_part is the specific segment of the figure's 
skeleton being constrained. The interaction_target 
is where on the object the figure will interact. 
Approach_vector describes how the figure's 
segment needs to be oriented during the interaction. 
If the segment needs to be in a specific 
configuration at the end of interaction an IK target 
is stored in the shape variable. Finally, this 
interaction constraint can be declared as required or 
not depending on the desired outcome. 
 

 
Figure 6: Image of the Smart Object class in UML 

2.5. Sit-down Generator 

 the engineers using the 

nce these values are input and the sit animation 

format. 

In order to further help
HMST, a way was desired to incorporate 
automatically allowing any sized figure to sit in any 
chair. Drawing from the idea of a smart object, an 
external file linked to a given chair object in the 
HMST scene provides parameters for the figure. 
These parameters describe how to animate a sitting 
motion and achieve a final rest position. The chair 
files contain two required sets of points and a 
combination of up to three other point sets. The 
required points tell the character where to sit and 
position its knees. The optional points allow the 
figure to reach for the chair’s right and left arms for 
balance, rest its forearms on the chair’s right and 
left arms, or position its wrists on a console in front 
of the chair. If no chair arm rest or console 
positions are given, the figure will place its hands 
on its lap midway between hip and knee. These 
points are given in the chair’s coordinate system so 
that there is consistency in the coordinates and to 
ensure the figure is always facing forward no matter 
where in the HMST space the chair is. 
 
O
begins, there are two separate components of the sit 
generation. First the character’s sit point is driven 
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from standing to the chair’s sit point by 
interpolating across the vector between the two. 
While this is happening, the figure is animated to 
make it appear to be balancing. An angle for its 
waist is calculated to cause the torso to lean 
forward, balancing itself from falling backwards. A 
knee height (position) is needed due to the fact that 
smaller figures cannot reach the floor while seated. 
If the knee height was not provided, the smaller 
figure’s legs would unrealistically penetrate the 
chair. Using this height, the hip angles are changed 
each frame so that the knees positions are driven 
towards the desired final height. Finally, if arms 
exist on the chair, the character hands reach for the 
given points. This is accomplished by using the 
reach from Zhao’s reach (Zhao et al. 2005) but 
without collision avoidance with the world. This 
was done because currently collision free reach 
works when only the figure is still; removing this 
constraint is work for the future. 
 
After the figure is seated, the second part of the 
process begins. The torso, which is leaning forward, 
is driven to an upright position in the chair by 
changing the angle of the waist. The arms are 
moved depending on whether the chair has arms, no 
arms, or is at a console. If the chair has arms, the 
figure’s left and right arms move to the rest 
position. The shoulder angle is driven so that the 
wrist can be moved into position within the Y-Z 
plane. At the same time the elbow angle is driven 
so that the wrist is in the proper position in the X-Z 
plane. When no chair arms are present the midpoint 
of the figure’s lap is used as the rest position for 
each wrist. Finally, when a console exists, the 
figure reaches for the given console points in the 
same manner as when the figure reaches for the 
chair’s arms. 
 

 
Figure 7: This crew member is currently bracing hers f 

3. Results 

new methods the HMST human factors 

el
on the chair arms as she settles into the chair. 

Using these 
engineers are able to quickly produce more realistic 
looking animations with less effort. As seen in 
Figure 8 adding view tracking to the reach quickly 
adds a lifelike appearance to the figure. The same is 

true of the new hand grasps. Figure 3 shows how 
the model’s final hand configuration is animated 
during the reach. 
  

 

 
Figure 8: Reaching without and with view tracking can 

Using our collision-free leg reach algorithm, the 

ur procedural sit generation method generates 

4. Discussion 

of view tracking, leg reach, grasp 

tasks and implied behaviors. 

be seen. Notice how the bottom image looks more 
natural. 

figure comfortably reaches for a target end effector 
without unnecessary twist as in Figure 4.  As with 
arm reach, the motion of the leg during reach no 
longer suffers from sudden changes in orientation, 
resulting in smoother, more natural-looking motion. 
 
O
plausible sitting down animations for figures of 
arbitrary size on chairs with smart object data.  
Figure 7 shows a model sitting down using our 
technique.  Note that the model uses the arms of the 
chair for balance.  Figure 1 shows a group of crew 
members all seated using our sit generation 
algorithm.  

With the addition 
animations, and sit generation, crew member 
ergonomic evaluation can be expedited since we 
have decoupled the animation generation from 
tedious key framing methods. This allows the user 
to work on other aspects of the animation without 
needing to spend excessive time working on simple 
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For example, objects can be quickly grasped 

ithout exhaustively key framing every joint. Even 

the collision-free leg reach 
eeds up user workflow by animating the model in 

ows that it takes 
bout an hour to animate a model sitting down in 

lusion 

suite of tools for procedurally 
rtant secondary movement effects 

acknowledge donations from 
NVIDIA for the graphics hardware, Siemens for the 

 2001. Inverse kinematics techniques 

 R, Schmiedmayer H.B., Romero J, 

w
if the final grasp is not exactly what the animator 
desires, minimal key framing can be added once the 
reach is complete. While either vision tracking or 
final grasp could be done by key framing, our 
method does this automatically during the collision-
free reach. Thus the user only needs to select the 
final hand configuration and where to reach before 
running the simulation. 
 
As with the arm reach, 
sp
tight or hard to reach areas. This simulation allows 
the user to work on other parts of the animation 
instead of time-consuming key framing. Previously, 
users had to fix animations from the arm and leg 
reach due to irregularities caused by the two 
singularities in the function mapping elbow and 
knee positions to reference swivel angles. By 
limiting this to one singularity the simulation 
always creates realistic motions. 
 
Finally, informal evaluation sh
a
the HMST. Obviously this time grows linearly 
when 20 crew members must be seated; animating 
100 is out of the question. The sit generator we 
implemented can do any number of crew members 
sitting in chairs. There is set up time for a specific 
chair type’s smart object, but in these simulations it 
is more likely that the same chair type would be 
used repeatedly. With our system the user only 
needs to select the chairs and models they want to 
sit and then run the simulation. The simulation time 
does increase with the number of figures sitting but 
the animator can work on other tasks while this 
occurs. 

5. Conc

We describe a 
simulating impo
for human factors animations. Our system provides 
users with tools to perform sitting, collision free leg 
reaching, eye tracking and grasping animations.  
Our extensions save the HMST operator’s time, and 
these effects provide added animated realism 
without having to manually key-frame the 
activities.  These tools improve indoor environment 
design by speeding up placement, fit and motion 
tests using virtual people and objects. 
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