
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

2008

Evidence-based Audit
Jeffrey A Vaughan
University of Pennsylvania

Limin Jia
University of Pennsylvania

Karl Mazurak
University of Pennsylvania

Stephan A. Zdancewic
University of Pennsylvania, stevez@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-based Audit. In Proc. of 21st IEEE Computer Security Foundations
Symposium (CSF), pages 177-191. IEEE Computer Society Press, 2008
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.1109/CSF.2008.24

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/586
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Jeffrey A Vaughan, Limin Jia, Karl Mazurak, and Stephan A. Zdancewic, "Evidence-based Audit", . January 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CSF.2008.24
http://repository.upenn.edu/cis_papers/586
mailto:libraryrepository@pobox.upenn.edu

Evidence-based Audit

Abstract
Authorization logics provide a principled and flexible approach to specifying access control policies. One of
their compelling benefits is that a proof in the logic is evidence that an access-control decision has been made
in accordance with policy. Using such proofs for auditing reduces the trusted computing base and enables the
ability to detect flaws in complex authorization policies. Moreover, the proof structure is itself useful, because
proof normalization can yield information about the relevance of policy statements. Untrusted, but well-
typed, applications that access resources through an appropriate interface must obey the access control policy
and create proofs useful for audit.

This paper presents AURA, an authorization logic based on a dependently-typed variant of DCC and proves
the metatheoretic properties of subject-reduction and normalization. It shows the utility of proof-based
auditing in a number of examples and discusses several pragmatic issues that must be addressed in this
context.

Disciplines
Computer Sciences

Comments
Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-based Audit. In Proc. of 21st
IEEE Computer Security Foundations Symposium (CSF), pages 177-191. IEEE Computer Society Press, 2008

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

DOI: 10.1109/CSF.2008.24

This working paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/586

http://dx.doi.org/10.1109/CSF.2008.24
http://repository.upenn.edu/cis_papers/586?utm_source=repository.upenn.edu%2Fcis_papers%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages

Evidence-based Audit

Jeffrey A. Vaughan Limin Jia Karl Mazurak Steve Zdancewic

University of Pennsylvania

Abstract

Authorization logics provide a principled and flexible ap-
proach to specifying access control policies. One of their
compelling benefits is that a proof in the logic is evidence
that an access-control decision has been made in accor-
dance with policy. Using such proofs for auditing purposes
is implicit in much of the work on authorization logics and
proof-carrying authorization.

This paper explores some ramifications of adopting this
“proofs as log entries” approach to auditing. Two benefits
of evidence-based audit are a reduced trusted computing
base and the ability to detect flaws in complex authoriza-
tion policies. Moreover, the proof structure is itself useful,
because operations like proof normalization can yield in-
formation about the relevance of policy statements.

To explain these observations concretely, we develop
a rich authorization logic based on a dependently-typed
variant of DCC and prove the metatheoretic properties of
subject-reduction and normalization. We show untrusted
but well-typed applications, that access resources through
an appropriate interface, must obey the access control pol-
icy and create proofs useful for audit. We show the utility of
proof-based auditing in a number of examples and discuss
several pragmatic issues, such as proof size, that must be
addressed in this context.

1 Introduction

Auditing, i.e. recording significant events that occur dur-
ing a system’s execution for subsequent review, has long
been recognized as a crucial part of building secure systems.
A typical use of auditing is found in a firewall, which might
keep a log of the access control decisions that it makes when
deciding whether to permit connection requests. In this
case, the log might consist of a sequence of time stamped
strings written to a file where each entry indicates some
information about the nature of the request (IP addresses,
port numbers, etc.) and whether the request was permitted.
Other scenarios place more stringent requirements on the

log. For example, a bank server’s transactions log should
be tamper resistant, and log entries should be authenticated
and not easily forgeable. Audit logs are useful because they
can help administrators (or other auditors) to both identify
sources of unusual or malicious behavior and to find flaws
in the authorization policies enforced by the system.

Despite the importance of auditing in practice, there has
been surprisingly little research into what constitutes good
auditing procedures.1 There has been work on cryptograph-
ically protecting logs to prevent or detect log tampering [32,
15], efficiently searching confidential logs [33], and experi-
mental research on effective, practical logging [9, 29]. But
there is relatively little work on what the contents of an au-
dit log should be or how to ensure that a system implemen-
tation performs appropriate logging (see Wee’s paper on a
logging and auditing file system [34] for one approach to
these issues, however).

In this paper, we argue that audit log entries should
constitute evidence that justifies the authorization decisions
made during the system’s execution. What is valid evidence
for an authorization decision? Following an abundance of
prior work on authorization logic [3, 28, 21, 1, 30, 2, 25],
we adopt the stance that log entries should contain proofs
of suitable propositions that encode access-control queries.
Indeed, the idea of logging such proofs is implicit in the
proof-carrying authorization literature [7, 11, 14], but, to
our knowledge, the use of proofs for auditing purposes has
not been studied outright.

There are several compelling reasons why it is profitable
to include proofs of authorization decisions in the log. First,
by connecting the contents of log entries directly to the
authorization policy (as expressed by a collection of rules
stated in terms of the authorization logic), we obtain a prin-
cipled way of determining what information to log. Second,
proofs contain structure that can potentially help adminis-
trators find flaws or misconfigurations in the authorization
policy. Third, storing verifiable evidence helps reduce the

1Note that the term auditing can also refer to the practice of statically
validating a property of the system. Code review, for example, seeks to
find flaws in software before it is deployed. Such auditing is, of course,
very important, but this paper focuses on dynamic auditing mechanisms
such as logging.

1

size of the trusted computing base, since the justification for
the authorization decision made is available for independent
inspection. We shall consider all of these benefits in more
detail in Section 2.

The impetus for this paper stems from our experi-
ence with the (ongoing) design and implementation of a
new security-oriented programming language called Aura.
Among other features intended to make building secure
software easier, Aura provides a built-in notion of prin-
cipals, and its type system includes authorization proofs
as first-class objects; the authorization policies may them-
selves depend on program values. The Aura runtime system
will use authorization proofs when constructing audit logs.

One goal of this paper is to investigate some of the ram-
ifications of adopting the design decision to log proof ob-
jects. A second goal is to find mechanisms that can be
used both to simplify the task of manipulating authorization
proofs and to ensure that (potentially untrusted) software
performs appropriate logging. This paper therefore focuses
on the use of proofs for logging purposes and the way in
which we envision structuring Aura software to take advan-
tage of the authorization policies to minimize the trusted
computing base. The main contributions of this paper can
be summarized as follows.

Section 2, proposes a system architecture in which log-
ging operations are performed by a trusted kernel, which
can be thought of as part of the Aura runtime system. Such
a kernel accepts proof objects constructed by programs
written in Aura and logs them while performing security-
relevant operations.

To illustrate Aura more concretely, Section 3 develops
a dependently typed authorization logic based on DCC [4]
and similar to that found in the work by Gordon, Fournet,
and Maffeis [23, 24]. This language, Aura0, is intended
to model the fragment of Aura relevant to auditing. We
show how proof-theoretic properties such as subject reduc-
tion and normalization can play a useful rôle in this context.
One significant contribution of this paper is the normaliza-
tion result for Aura0 authorization proofs.

Section 4 gives an extended example of a file system in-
terface that demonstrate that our techniques can be used to
implement a reference monitor kernel such that any well-
typed (but otherwise untrusted) client that satisfies the in-
terface is forced to provide appropriate logging informa-
tion. This approach is general in the sense that it allows the
application developer to create domain-specific authoriza-
tion policies even though the kernel interface is fixed. This
example also show how this technique reduces the size of
the trusted computing base and allows for the debugging of
rules meant to capture particular domain-specific policies.

Of course there are many additional engineering prob-
lems that must be overcome before proof-enriched auditing
becomes practical. Although it is not our intent to address

all of those issues here, Section 5 highlights some of the
salient challenges and sketches some future research direc-
tions. Section 6 discusses related work.

2 Kernel Mediated Access Control

A common system design idiom protects resources with
a reference monitors [16]. The reference monitor takes re-
quests from (generally) untrusted clients and may decide to
allow or deny them. A well implemented reference monitor
should be configured using a well-specified set of rules that
define the current policy. Ideally, this collection of rules
should mirror the relevant institutional policy intent.

Unfortunately, access control decisions may are not al-
ways made in accordance with institutional intent. This can
occur for a variety of reasons including the following:

1. The reference monitor implementation or rule lan-
guage may be insufficient to express institutional in-
tent. It this case, some access decisions will necessar-
ily be too restrictive or too permissive.

2. The reference monitor may be configured with an in-
correct set of rules.

3. The reference monitor itself may be buggy. That is,
it may reach an incorrect decision even when starting
from correct rules.

Points (1) and (2) illustrate an interesting tension: rule lan-
guage expressiveness is both necessary and problematic.
While overly simple languages prevent effective realization
of policy intent, expressive languages make it more likely
that a particular rule set has unintended consequences. The
latter issue is particularly acute in light of Harrison and
colleagues’ observation that determining the ultimate ef-
fect of policy changes in even simple systems is generally
undecidable[27]. Point (3) recognizes that reference moni-
tors may be complex, and likely to be vulnerable to imple-
mentation flaws.

The Aura programming model suggests a different ap-
proach to protecting resources. This is illustrated in Fig-
ure 1. There are three main components in the system: a
trusted kernel, an untrusted application, and a set of rules
that constitute the formal policy. The kernel itself contains
a log and a resource to be protected. The application may
only request resource access through kernel interface IK .
This interface (the opis) wraps each of the resource’s native
operations, the raw-opis in the figure, with new operations
taking an additional argument, which is a proof that access
is permitted. ΣK and Σext contain constant symbols that
may be occur in these proofs.

Unlike a standard reference monitor, when given any re-
quest, the kernel always logs it and forwards the request to

2

Rules

Kernel

ResourceLog

RawOp1 RawOp2

Application

Trusted Computing Base

Untrusted Code Auditable
Formal Policy

∑K

∑ext
Extended
Signature

Op1 Op2IK

Figure 1. A monolithic application decom-
posed into several components operating
with various degrees of trust.

the resource. How is the resource access mediated? The
formal rules are expressed in a policy logic, and, in order to
make well-typed calls to the kernel interface, the application
must present a proof that access is permitted. While that ap-
plication is untrusted, we assume it is well typed; thus any
interface call contains an appropriate proof. Of course, this
assumption may be weakened by requiring that each opera-
tions, opis, perform dynamic proof—i.e. type—checking.

We define a language Aura0 to provide an expressive pol-
icy logic for writing rules and kernel interface types. It is
a cut-down version of full Aura, which itself is a polymor-
phic and dependent extension of Abadi’s Dependency Core
Calculus [5, 4].

Explicit in Aura0 are notions of principals and assertions.
Software components may be associated with one or more
principals. Typically the trusted kernel will be identified
with principal K, and the untrusted application may work on
behalf of several principals: A, B, etc. Principals can state
assertions; for instance the rule, or proposition, “the kernel
asserts that all principals may ‘write’ any string,” is written
K says ((A:prin) → (x:string) → OkToWrite A x). Ev-
idence for such a rule will contain one or more signature
objects—possibly, but not necessarily, cryptographic digi-
tal signatures—which irrefutably tie principals to their ut-
terances.

The above design carries several benefits. Kernels log
the reasoning used to reach access control decisions. Thus
if a particular access control decision violates policy intent
but is allowed by the rules, audit can reveal which rules con-
tributed to this failure. Additionally, because all resource
access is accompanied by a proof, the trusted computing

base is limited to the proof checker and kernel. As small,
standard programs these components are less likely to suffer
from software vulnerabilities than ad-hoc reference moni-
tors.

A key design principle is that kernels should small and
general; this is realized by removing complex, specialized
reasoning about policy (e.g. proof search) from the trusted
computing base. In this sense, Aura systems are to tradi-
tional reference monitors as operating system microkernels
are to monolithic kernels.

The formal computation model We model a system with
three principle components: a trusted kernel K, an un-
trusted application a, and a security-oblivious resource R.
The kernel mediates between the application and resource
by checking and logging access control proofs.

A resource, R, is a stateful object with a set of op-
erators that may query and update the state. Formally,
R = (σ, States, IR) where

IR = raw-op1 : T1 ⇒ S1, . . . , raw-opn : Tn ⇒ Sn

The σ ∈ States component is an arbitrary structure that rep-
resenting R’s current state, and States is the set of all pos-
sible resource states. IR is the resource’s interface; each
raw-opi : Ti ⇒ Si is an operator with its correspond-
ing type signature. Every operator has an interpretation as
a total function with shape [[raw-opi]] : [[Ti]] × States →
[[Si]] × States where [[T]] is the set of T ’s inhabitants. The
input and output state arguments encode effectful update.

The kernel is the trusted system component that encap-
sulates and mediates access to a resource and maintains a
log. For each raw operation raw-opi, the kernel interface
provides a new logged version, opi.

Formally a kernel is tuple K = (L,R,ΣK , IK). The
first component, L, is a list of proofs representing the
log. The second component is the resource encapsulated
by the kernel. Signature ΣK contains pairs of predicates,
OkToOpi : Ti → Prop and DidOpi : Ti → Si → Prop for
each raw-opi of type Ti ⇒ Si in R. These predicates serve
as the core lexicon for composing access control rules: a
proof of K says OkToOp t signifies that an operation is per-
mitted with input t, and a proof of K says DidOp t s means
that the the operation was run with input t and returned s.
Lastly, the kernel exposes an application programming in-
terface, Ik, which contains a lifted operation,

opi : (x : Ti) ⇒ K says (OkToOpi x) ⇒
{y:Si; K says DidOpi x y}

for each raw-opi in R.
The type of opi shows that the kernel expects two (cur-

ried) arguments before providing access to raw-opi. The

3

first argument is simply raw-opi’s input. The second argu-
ment is a proof that the kernel approves the operation. Such
a proof could be created by the kernel directly or, more typi-
cally, by the application composing proofs from Rules. The
return value of opi is a pair of raw-opi’s output with a proof
that acts as a receipt, attesting that the kernel called raw-opi

and linking the call’s input and output. Note that the propo-
sitions OkToOpi and DidOpi depend on the arguments x and
y.

We implement operations in IK by wrapping each un-
derlying raw-op with trusted logging code. Each lifted op-
eration is defined as follows:

1 [[opi]] = λv.λp.
2 do logAppend(p)
3 let s = [[raw-opi]] v
4 let p′ = sign(K, DidOpi v s)
5 do logAppend(p′)
6 return 〈s, p′〉

The total function [[opi]] takes two inputs2: a term v (repre-
senting the data needed by the operation) and a proof p. It
returns a pair 〈s, p′〉 whose first component is a data value
s and whose second component is a proof p′ generated by
the kernel to provide evidence that the operation was per-
formed. We assume that all application calls to opi respect
this signature; thus the proof recorded in the log on line 2
must inhabit K says OkToOpi v. Lines 3 and 4 call into the
underlying resource and construct a signature object attest-
ing that this call occurred. Line 5 records the newly created
proof.

The final components in the model are the application,
the rule set, and the extended signature. The application
is a program assumed to be well-typed, in that it respects
the interface’s type signature. The rule set is simply a well-
known set of proofs. Lastly, the extended signature (Σext in
Figure 1) is a type signature which extends ΣK .

Remote Procedure Call Example We will now examine
a small example in our computation model. Consider the
simple remote procedure call resource with only a single
raw operation raw-rpc : string ⇒ string. The kernel asso-
ciated with this resource exposes the following predicates:

ΣK = OkToRPC : string → Prop,

DidRPC : string → string → Prop

and the kernel interface

IK = rpc : (x : string) ⇒ K says OkToRPC x ⇒
{y:string; K says DidRPC x y}.

2We abuse notation and treat pure mathematical functions logAppend
and [[rawOpi]] as imperative procedures.

Terms
t ::= KindP | KindT Sorts

| Prop | Type Kinds
| string | prin Base Types
| x | a | Variables and Constants
| t says t Says modality
| (x:t) → t Implication/Quantification
| {x:t; t} Dependent Pair Type
| "a" | "b" | . . . String Literals
| A | B | C . . . Principal Literals
| sign(A, t) Signature
| return@[t] t Injection into says
| bind x = t in t Reasoning under says
| λx:t. t | t t Abstraction and Application
| 〈t, t〉 Pair
| (x:t) ⇒ t Computation Type

Figure 2. Syntax of Aura0

One trivial policy permits any remote procedure call. This
policy is most simply realized by the singleton rule set
Rules = {r0 : K says ((x:string) → OkToRPC x)}.

3 The Logic

This section defines Aura0, a language for expressing ac-
cess control. Aura0 is a higher-order, dependently typed,
cut-down version of Abadi’s Dependency Core Calculus [5,
4]. Following the Curry-Howard isomorphism [20], Aura0

types correspond to propositions in access control logic, and
expressions correspond to proofs. Dependent types allow
propositions to be parameterized by objects of interest, such
as principals or file handles. The interface between applica-
tion and kernel code is defined using this language.

This section is organized as follows. First, we define the
syntax and typing rules of Aura0, followed by a few simple
examples to illustrate how to use our language for access
control. We then present the reduction rules of our language
and discuss the importance of normalization with regard to
auditing. Lastly, we state the formal properties of Aura0.

3.1 Syntax

Figure 2 defines the syntax of Aura0. There are two
kinds of terms: propositions, which are used to construct
access control proofs and are classified by types of the kind
Prop, and expressions, which are classified by types of the
kind Type. For ease of the subsequent presentation of the
typing rules, we introduce two different sorts, KindP and
KindT , which classify Prop and Type respectively. Base
types are prin, which is inhabited by principals, and string.

4

We use x to range over variables, and a to range over con-
stants. String literals are ""–enclosed ASCII symbols, and
we use capital letters A, B, C etc. to denote literal princi-
pals. In addition to the standard constructs for the func-
tional dependent type (x:t1) → t2, dependent product type
{x:t1; t2}, lambda abstraction λx:t1. t2, function applica-
tion t1 t2, and dependent pair 〈t1, t2〉, our language in-
cludes a special functional dependent type (x:t1) ⇒ t2.
The distinction between (x:t1) → t2 and (x:t1) ⇒ t2 lies
in their typing judgments, and will be made clear in the next
section. Intuitively, the distinction rules out complex com-
putation at the type level. We will sometimes write t1 → t2,
t1 ⇒ t2, and {t1; t2} as a shorthand for (x:t1) → t2,
(x:t1) ⇒ t2, and {x:t1; t2} respectively when x does not
appear free in t2.

As in DCC, we use the modality says to represent access
control logic formulas. The expression return@[t1] t2 is
the introduction proof term for the type t1 says t2. The
elimination term for the type t1 says t2 is the expression
bind x = t1 in t2. Intuitively, the bind expression lets us
use the proof t1 in the proof t2.

Finally, we use the expression sign(A, P) to represent
a “signed” assertion. Such assertions are indisputable ev-
idence of a principal’s statement. By signing P—creating
a proof of A says P—principal A expresses her belief that
proposition P is true. Intuitively, assertions are verifiable,
binding (i.e. non-repudiatable), and unforgeable. Imple-
mentation strategies are discussed in Section 5.

3.2 Type System

This section defines Aura0’s type system. In the typ-
ing judgments, Σ denotes a signature that maps constants to
their types. Γ denotes a variable typing context. Constants
are considered globally fixed; variables only have meaning
within local scopes. The formal definitions follow.

Contexts Γ ::= · | Γ, x : t
Signatures Σ ::= · | Γ, a : t

The four main typing judgments are:

Signature Typing Σ ` � Signature Σ is well-formed
Context Typing Σ ` Γ Context Γ is well formed

under signature Σ
Term Typing Σ; Γ ` t1 : t2 Term t1 has type t2

under signature Σ, context Γ
Special Term Σ; Γ ` t Term t is well-typed
Typing under signature Σ, context Γ

The typing rules for signatures and contexts are standard.
The signature Σ is well-formed if Σ maps constants to types
of sort KindP . Thus all Aura0 constants construct proposi-
tions. The context Γ is well-formed with respect to signa-
ture Σ if Γ maps variables to well-formed types.

A summary of the typing rules for terms can be found
in Figure 3. Most of the rules are straightforward, and we
explain only a few key rules. The rule T-SIGN states that a
signed assertion created by the principal A signing a propo-
sition P has type A says P . Since P can be any proposi-
tion, even false, sometimes certificates are also referred to
as “false assertions”. In other words, there is no justification
for proposition P within the logic, except that principal A
expressed her belief in P by signing it. These signed asser-
tions are an essential part of encoding access control. The
premises of T-SIGN typechecks A and P in the empty vari-
able context, as signatures are intended to have unambigu-
ous meaning in any scope—a signature with free variables
is inherently meaningless.3

The rule T-RETURN states that if we can construct
a proof term t2 for proposition s2, then the term
return@[t1] t2 is a proof term for proposition t1 says s2.
The T-BIND rule is a standard bind rule for monads. It states
that what a principal A believes can only be used to deduce
other propositions that A believes.

The rule for the functional dependent type T-PI restricts
the kinds of dependencies allowed in our type system. Es-
sentially, it rules out functional dependencies for the kind
Type. Notice that in the T-LAM rule, the type of the lambda
abstraction can only be of type Prop. These two rules al-
lows us to express flexible access control rules. At the same
time, it is rather straightforward to see that the restrictions
on these rules eliminate type level computations, thus en-
suring the decidability of type checking.

To express the interfaces between the application code
and the kernel, however, we need more general forms of de-
pendent types. To that end Aura0 includes dependent prod-
uct types and a special functional dependent type x:t1 ⇒
t2. Notice that dependent products have an introduction
proof term but no elimination form. This is because we use
the product dependent types only to associate data with the
proofs that depend on these data.

The typing judgments for the special functional depen-
dent type are at the bottom of Figure 3. The formula-
tion of the rule is very similar to the typing judgment for
(x:t1) → t2, but the argument’s type must itself have kind
Type or Prop and the result type’s kind is unrestricted. We
could have relaxed the T-PI rule to include these cases, but
we make this distinction for ease of reasoning about termi-
nation behavior at the type level.

3.3 Aura0 Examples

The combination of dependent types and the says modal-
ity in Aura0 can express many interesting policies. For in-

3The signature in line 4 of the definition [[Opi]] contains free variables,
but this is acceptable because [[Opi]] is a mathematical function, not a pro-
gram. The full Aura language can express such computations in programs.

5

Σ; Γ ` t : t

Σ ` Γ

Σ; Γ ` Prop : KindP
T-PROP

Σ ` Γ

Σ; Γ ` Type : KindT
T-TYPE

Σ ` Γ
Σ; Γ ` string : Type

T-STRING

Σ ` Γ
Σ; Γ ` prin : Type

T-PRIN
Σ ` Γ x : t ∈ Γ

Σ; Γ ` x : t
T-VAR

Σ ` Γ a : t ∈ Σ
Σ; Γ ` a : t

T-CONST

Σ; Γ ` t1 : prin Σ; Γ ` t2 : Prop
Σ; Γ ` t1 says t2 : Prop

T-SAYS

Σ; Γ ` t1 : k1 Σ; Γ, x : t1 ` t2 : k2 k1 ∈ {KindP , Type, Prop} k2 ∈ {KindP , Prop}
Σ; Γ ` (x:t1) → t2 : k2

T-PI

Σ; Γ ` t1 : k Σ; Γ, x : t1 ` t2 : k2 k1, k2 ∈ {Type, Prop}
Σ; Γ ` {x:t1; t2} : k2

T-SIGMA
Σ ` Γ s ∈ {"a","b", . . .}

Σ; Γ ` s : string
T-LITSTR

Σ ` Γ A ∈ {A, B . . .}
Σ; Γ ` A : prin

T-LITPRIN
Σ ` Γ Σ; · ` t1 : prin Σ; · ` t2 : Prop

Σ; Γ ` sign(t1, t2) : t1 says t2
T-SIGN

Σ; Γ ` t1 : prin Σ; Γ ` t2 : s2 Σ; Γ ` s2 : Prop
Σ; Γ ` return@[t1] t2 : t1 says s2

T-RETURN

Σ; Γ ` e1 : t says P1 Σ; Γ, x : P1 ` e2 : t says P2

Σ; Γ ` bind x = e1 in e2 : t says P2

T-BIND

Σ; Γ, x : t ` p : P Σ; Γ ` (x:t) → P : Prop
Σ; Γ ` λx:t. p : (x:t) → P

T-LAM
Σ; Γ ` t1 : (x:P2) → P Σ; Γ ` t2 : P2

Σ; Γ ` t1 t2 : {t2/x}P
T-APP

Σ; Γ ` t1 : s1 Σ; Γ ` t2 : {t1/x}s2 Σ; Γ, x : s1 ` s2 : k

Σ; Γ ` 〈t1, t2〉 : {x:s1; s2}
T-PAIR

Σ; Γ ` t

Σ; Γ ` t1 : t2 t2 ∈ {KindP , KindT , Prop, Type}
Σ; Γ ` t1

T-C
Σ; Γ ` t1 : k k ∈ {Type, Prop} Σ; Γ, x : t1 ` t2

Σ; Γ ` (x:t1) ⇒ t2
T-PI-C

Figure 3. The typing relation

stance, Abadi’s encoding of speaks-for [4] is easily adopted:

A speaksfor B , B says ((P :Prop) → A says P → P)

Adding dependency allows for more fine grained delega-
tion. For instance we can encode partial delegation.

B says ((x:string) → A says Good x → Good x)

Here A speaks-for B, but only when certifying that a string is
“good.” Such fine-grained delegation appears to be impor-

tant in real applications where the full speaks-for relation is
too permissive.

Recall the Remote Procedure Call example from Sec-
tion 2. While an application might use r0 directly when
building proofs, it could also store a more convenient de-
rived rule. This requires using Aura0’s monadic bind to rea-

6

son from K’s perspective. For instance:

r′0 : (x:string) → K says OkToRPC x

r′0 = λx:string. bind y = r0 in return@[K]y x

However, rules like r0 and its derivatives are too trivial to
admit interesting opportunities for audit.

A slightly more interesting policy says that any principal
may perform a remote procedure call, so long as that princi-
pal signs the input string. One encoding uses the extended
context

Σext = ReqRPC : string → Prop,ΣK .

and singleton rule set

Rules = {r1 = sign(K, (x:string) → (A:prin) →
(A says ReqRPC x) → OkToRPC x)}.

Given this rule, and auditor might find the following proofs
in the log.

p1 = bind x = r1

in return@[K](x "hi" A sign(A, ReqRPC "hi"))
p2 = (λx:K says OkToRPC "ab".

λy:C says ReqRPC "cd". x)
(bind z = r1

in return@[K](z "ab" B sign(B, ReqRPC "ab"))
(sign(C, ReqRPC "cd")).

We see that the first proof, p1, contains A’s signature. As
signatures are unforgeable, the auditor can conclude that A
is—in an informal, institutional policy sense—responsible
for the request. Proof p2 is more complicated; it contains
signatures from both B and C. An administrator can learn
several things from this proof.

We analyze p2 using a reduction relation that simplifies
proofs and which is defined in the following section. Taking
the normal form of (i.e. simplifying) p2 yields

bind z = r1

in return@[K](z "ab" B sign(B, ReqRPC "ab").

This term containing only B’s signature: hence B may be
considered accountable for the action. The inclusion of C’s
signature may be significant, however. If the application
is intended to pass normal proofs to the kernel, this is a
sign the application is malfunctioning. If principals are only
supposed to sign certain statements, C’s seemingly spurious
signature may indicate a violation of rules outside the scope
of Aura0 on C’s part.

` t → t′

x /∈ fv(t2)
` bind x = t1 in t2 → t2

R-BINDS

` bind x = return@[t0] t1 in t2 → {t1/x}t2
R-BINDT

` t2 → t′2
` return@[t1] t2 → return@[t1] t2

R-SAYS

y /∈ fv(t3)
` bind x = (bind y = t1 in t2) in t3 →

bind y = t1 in bind x = t2 in t3

R-BINDC

Figure 4. Selected reduction rules

3.4 Formal Properties of Aura0

Subject reduction As the preceding example illustrates,
proof simplification is a useful tool for audit. Following
the Curry-Howard isomorphism, proof simplification corre-
sponds to λ-calculus reductions on proof terms.

We present selected reduction rules for our language in
Figure 4. A full set of the reduction rules can be found
in the Appendix. Most of the reduction rules are standard.
For the bind expression, in addition to the standard congru-
ence, beta reduction, and commute rules as we often see in
monadic languages, we also include a special beta reduction
rule T-BINDS. The T-BINDS rule eliminates bound proofs
which are never mentioned in the bind’s body. Note that the
reduction rules also include beta reduction under the says
monad, which is not present in standard monadic languages.
The reason for this is that in a monadic setting, the compu-
tation trapped under the monad may contain effects and thus
must be evaluated lazily. In the access control logic setting,
however, such effects are not a concern. Note also that there
is no reduction under signatures or says. Intuitively, this is
because signatures represent fixed objects realized in cryp-
tography or a similarly immutable form. Allowing reduc-
tions under signatures and says does not affect the sound-
ness of the system, but doing so complicates the proof of
strong normalization and implementation strategies.

The following lemma states that the typing of an expres-
sion is preserved under reduction rules.

Lemma 3.1 (Subject Reduction). If ` t → t′ and Σ; Γ `
t : s then Σ; Γ ` t′ : s.

Proof Sketch. Proof is by structural induction on the reduc-
tion relation. It requires several standard facts. Addition-
ally, the R-BINDS cases requires a non-standard lemma say-

7

ing that we may remove a variable x from the typing context
when x is not used elsewhere in the typing judgment.

Proof normalization We say an expression is in normal
form if there are no applicable reduction rules. As we have
shown in the example above, given a proof term t for propo-
sition P , it is useful to reduce t to a normal form. We call
this process proof normalization. In order for proof nor-
malization to be viable, we need to know (1) whether the
normalization process will terminate, and (2) whether the
normal form is unique. The answer to both of these ques-
tions, in this case, is yes.

We say an expression t is strongly normalizing if appli-
cation of any sequence of reduction rules to t always termi-
nates. We say a language is strongly normalizing if all the
terms in the language are strongly normalizing. We have
proved that Aura0 is strongly normalizing, which implies
that any algorithm for proof normalization will terminate.
The details of the proofs are presented in the Appendix A.3.
Here we present only a sketch of the proof.

Lemma 3.2 (Strong Normalization). Aura0 is strongly nor-
malizing.

Proof Sketch. We prove Aura0 is strongly normalizing by
translating Aura0 to the Calculus of Construction extended
with product dependent types, which is known to be
strongly normalizing [26]. The key property of the trans-
lation is that it preserves types and reduction steps. The
interesting cases are the translations of DCC terms. The
translation drops the says monad, and translates the bind
expression to lambda application. The term sign(t1, t2) has
type t1 says t2 and is translated to a variable whose type is
the translation of t2. One subtlety of the proof is tracking
the dependency in the types of these introduced variables,
which must be handled delicately.

We have also proved that Aura0 is confluent.

Lemma 3.3 (Confluence). If t →∗ t1, and t →∗ t2, then
there exists t3 such that t1 →∗ t3 and t2 →∗ t3.

Proof Sketch. We first prove that Aura0 is weakly con-
fluence. We use the well-known result that if a language
is strongly normalizing and has weak confluence property,
then it is confluence.

A direct consequence is that the normal form of an ex-
pression is unique. Given an expression, any algorithm
for proof normalization will yield the same normal form.
Therefore, the set of relevant evidence (i.e., signatures) in a
proof term is also unique.

4 File System Example

As a more concrete example, we consider a filesystem in
which file access is authorized using our logic and log en-
tries consist of these authorization proofs. In a traditional
filesystem authorization decisions regarding file access are
made when a file is opened, and thus we begin by con-
sidering only the open operation; additional operations are
discussed in Section 4.1. Our open is intended to provide
flexible access control on top of a system featuring a corre-
sponding raw-open and associated constants:

Mode : Type FileDes : Type

RDONLY : Mode WRONLY : Mode
APPEND : Mode RDWR : Mode

raw-open : {Mode; string} ⇒ FileDes

We can imagine that raw-open is part of the interface
to an underlying filesystem with no notion of per-user ac-
cess control or Aura0 principals; it, of course, will not
be exposed outside of the kernel. Taking inspiration from
Unix, we define RDONLY, WRONLY, APPEND, and RDWR
(the inhabitants of Mode), which specify whether to open
a file for reading only, overwrite only, append only, or un-
restricted reading and writing respectively. Left undefined
is the type FileDes, which is assumed to be some sort of
unforgeable capability—i.e., a file descriptor—that can be
used to access the contents of an opened file.

Figure 5 shows interface to open, the extended signa-
ture of available predicates, and the rules used to construct
the proofs of type K says OkToOpen 〈f,m〉 for some file f
and mode m that open requires. OkToOpen and DidOpen
are as specified in Section 2, and the other predicates have
the obvious readings: Owns A f states that the principal
A owns the file f , ReqOpen m f is a request to open file
f with mode m, and Allow A m s states that A should be
allowed to open f with mode m. (As we are not model-
ing authentication we will take it as given that all proofs of
type A says ReqOpen m f come from A; we discuss ways
of enforcing this in Section 5.) We assume, for each file
f , the existence of a rule ownerf of type K says Owns A f
for some constant principal A—as only one such rule ex-
ists for any f and no other means are provided to generate
proofs of this type, we can be sure that each file will always
have a unique owner. Aside from such statements of owner-
ship, the only rule a filesystem absolutely needs is delegate,
which states that the kernel allows anyone to access a file
with a particular mode if the owner of the file allows it.

The other rules are of great convenience, however;
owned relieves the file owner A from the need to create
signatures of type A says Allow A m f for files A owns,
readwrite allows a user who has acquired read and write

8

OkToOpen : {Mode; string} → Prop
DidOpen : (x : {Mode; string}) →

FileDes → Prop

open : (x : {Mode; string}) ⇒
K says OkToOpen x ⇒
{h:FileDes; K says DidOpen x h}

Owns : prin → string → Prop
ReqOpen : Mode → string → Prop

Allow : prin → Mode → string → Prop

ownerf : K says Owns A f

delegate : K says ((A : prin) → (B : prin) →
(m : Mode) → (f : string) →
A says ReqOpen m f →
K says Owns B f →
B says Allow A m f →
OkToOpen m f)

owned : K says ((A : prin) → (m : Mode) →
(f : string) →
A says ReqOpen m f →
K says Owns A f →
OkToOpen m f)

readwrite : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDONLY f →
B says Allow A WRONLY f →
B says Allow A RDWR f)

read : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDWR f →
B says Allow A RDONLY f)

write : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDWR f →
B says Allow A WRONLY f)

append : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDWR f →
B says Allow A APPEND f)

Figure 5. Interface, extended signature, and
rules for file access control

permission for a file from different sources to open the file
for reading and writing simultaneously, and read, write, and
append do the reverse, allowing a user to drop from RDWR
mode to RDONLY, WRONLY, or APPEND. These last three
rules simply reflect the semantic fact that read-write permis-
sion is equivalent to read-only permission combined with
write-only permission.

Proof creation is done in the same manner as shown in
the RPC example in the previous sections. For brevity we
omit most proof terms in this section, as they can grow quite
large, but a simple use of the rule owned by A to read the
file "foo.txt" might appear as follows:

ownerf : A says ReqOpen RDONLY "foo.txt"
req = sign(A, ReqOpen RDONLY "foo.txt")

bind o = owned
in return@[K](o A RDONLY "foo.txt" req ownerf)

With the rules given in Figure 5 and the other constructs of
our logic it is also easy to create complex chains of dele-
gation for file access. For example, Alice (A) may delegate
full authority over any files she can access to Bob (B) with
a signature of type

A says (C : prin → m : Mode → f : string →
B says Allow C m f → A says Allow C m f),

or she may restrict what Bob may do by adding further re-
quirements on C, m, or f . She might restrict the delegation
to files that she owns, or replace C with B to prevent Bob
from granting access to anyone but himself. Chains of rea-
soning constructed out of such user-created acts of delega-
tion can grow to be arbitrarily long.

As described in Section 2, the kernel logs the arguments
to our interface functions whenever they are called. So far
we have only one such function, open, and logging its ar-
guments means keeping a record every time the system per-
mits a file to be opened. Given the sort of delegation chains
that the rules allow, it should be clear that the reason why an
open operation is permitted can be rather complex, which
provides a strong motivation for the logging of proofs.

Logging file opens can also allow a system administrator
to debug the rule set. The rules in Figure 5 might well be
supplemented with, for example

r1 : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A RDONLY f →
B says Allow A APPEND f →
B says Allow A RDWR f)

r2 : K says ((A : prin) → (B : prin) →
(f : string) →
B says Allow A WRONLY f →
B says Allow A APPEND f)

9

Rule r1 is clearly erroneous, as it allows a user with only
permission to read from and append to a file to alter its ex-
isting content, but such a rule could easily be introduced by
human error when the rule set is created. Since any uses
of this rule would be logged, however, it would not be pos-
sible to exploit such a problematic rule without leaving a
clear record of how it was done, allowing a more prudent
administrator to correct the rule set.

Rule r2, on the other hand, is a bit more subtle—it states
that the ability to overwrite a file is strictly more powerful
than the ability to append to that file, even in the absence
of any ability to read. Whether such a rule is valid depends
on the expectations of the system’s users; r2 is clearly un-
acceptable if users desire to allow others to overwrite but
not append to files, yet if they do not, r2 may be seen as
quite convenient, allowing for, among other things, easy
continuation of long write operations that were prematurely
aborted. Examining the proofs in the log—especially if the
log includes invalid proofs rejected at runtime, a possibil-
ity discussed in Section 5—can help the administrator de-
termine whether the inclusion of r2 best suits the needs of
most users.

4.1 Extensions

We have so far discussed only open, but there is still
much our logic has to offer a filesystem, even in the con-
text of operations that do not involve authorization.

Reading and writing While access permission is granted
when a file is opened, it is worth noting that, as presented,
the type FileDes conveys no information about what sort of
access has been granted; consequently, attempting, for ex-
ample, to write to a read-only file descriptor will result in a
run-time error. Since we already have a system with depen-
dent types, this need not be the case; while it is somewhat
orthogonal to our concerns of authorization, FileDes could
easily be made to depend on the mode with which a file has
been opened, and operations could expect file descriptors
equipped with the correct Mode arguments. This would,
however, require both some analog to the subsumption rules
read, write, and append, as well as, for pragmatic reasons, a
means of preventing the kernel from logging what is being
written during file writes.

Close At first glance it seems that closing a file belongs
with reading and writing as an operation that depends only
on having a valid file descriptor to ensure success, yet there
is something more we can gain from our types. For ex-
ample, if we require a corresponding DidOpen when con-
structing proofs of type OkToClose, we can allow a user to
share an open file descriptor with other processes secure in

the knowledge that those processes will be unable to pre-
maturely close the file. In addition, logging of file close op-
erations can help pinpoint erroneous double closes, which,
while technically harmless, may be signs of deeper logic
errors in the program that triggered them.

Ownership File creation and deletion are certainly oper-
ations that have something to do with authorization, and
they are especially interesting due to their interaction with
the Owns predicate. The creation of file f by principal A
should introduce a rule ownerf : Owns A f into the rule
set, while the deletion of a file should remove said rule. A
means of transferring file ownership would also be desir-
able. This can amount to treating a subset of our rules as
a protected resource in their own right, with a protected in-
terface to these rules and further rules about when access to
this new resource should be granted. An alternate approach
is to dispense with ownership rules completely and instead
use signed objects and signature revocation, discussed fur-
ther in Section 5, to represent ownership.

5 Discussion

Signature implementation Thus far we’ve treated signa-
tures as completely abstract. The key property we have
asked of signatures is that they be unforgeable. This in-
terface lends itself to two different implementations.

The first approach is cryptographic. A signature can be
constructed by using public key cryptography. Each princi-
pal must be associated with a key pair, and the public keys
should be well known. Implementing rule T-SIGN reduces
to calling the signature scheme’s verification function. The
cryptographic scheme is well suited for distributed systems
with mutual distrust.

A decision remains to be made, however: we can in-
terpret sign(A, P) as a tuple containing the cryptographic
signature and also A and P in plaintext, or we can inter-
pret it as only the cryptographic signature. In the latter case
signatures are small (potentially constructed from a hash of
the contents), but recovering the text of a proposition from
its proof (i.e. doing type inference) is computationally in-
feasible. In the former case, inference is trivial, but proofs
are generally large. Note that proof checking signs (that is,
given a proof and a proposition, determining whether the
proof supports the proposition) is a polynomial time opera-
tion in either case.

An alternative implementation of signatures assumes
that all principals trust some party, moderator, who main-
tains a table of signatures as abstract data values. Each sign
may then be represented as an index into the moderator’s ta-
ble. These proof handles can be made small, without com-
plicating type inference, but such a moderated scheme re-
quires a closed system with a mutually trusted component.

10

In a small system, this can be the kernel itself, but a larger
system might contain several kernels protecting different
resources and administered by disparate organizations, in
which case finding a suitable moderator may become quite
difficult, but the savings as compared with expensive public
key cryptography may be worth the difficulty.

Temporary signatures Real-world digital signature im-
plementations generally include with each signature an in-
terval of time outside of which the signature should not be
considered valid. In addition, there is often some notion
of a revocation list to which signatures can be added to en-
sure their immediate invalidation. Both of these concepts
could be useful in our setting, as principals might want
to delegate authority temporarily and might or might not
know in advance how long this delegation could last. Po-
tentially mutable rules can even be represented by digital
signatures—which could be very important in a truly dis-
tributed setting—in the presence of a revocation list.

The question remains, however, how best to integrate
these concepts with the authorization logic. One possible
answer is to change nothing in the logic and simply allow
for the possibility that any proof could be declared invalid
at runtime due to an expired signature. Following this strat-
egy requires the log operations to dynamically validate the
timestamps in the signatures before logging, thereby mak-
ing the kernel operations partial (the validity checks might
fail). In such a setting, it seems appealing to incorporate
some kind of transaction mechanism so that clients can be
guaranteed that their proofs are current before attempting
to pass them to the kernel. While easy to implement, this
approach may be unsatisfying in that programmers are left
unable to reason about or account for such invalid proofs.

Signatures might also be limited in the number of times
they may be used, and this seems like a natural applica-
tion for linear types (see Bauer et al. for an authorization
logic with linearity constraints [12]). Objects of a linear
type must be used exactly once, making linear types appro-
priate for granting a user access to a resource only a set
number of times. They can also be used to represent pro-
tocols at the type level, ensuring, for example, that a file
descriptor is not used after it is closed.

Garg, deYoung, and Pfenning [22] are studying a con-
structive and linear access control logic with an explicit
time intervals. Their syntax includes propositions of the
form P@[T1, T2], meaning “P is valid between times T1

and T2.” Proofs relying on such proposition are only valid
during at certain times. To handle this, the judgment system
is parameterized by an interval; the interpretation of sequent
Ψ;Γ; ∆ =⇒ P [I] is, “given assumptions Ψ, Γ, and ∆, P is
valid during interval I .” Adopting this technique could be
a useful generalization of Aura0 to address the problems of
temporal policies, though it is currently unclear what rep-

resentations of time and revocation might best balance con-
cerns of simplicity and expressive power.

Authentication In Section 4 we assumed that signatures
of type A says ReqOpen m f are always sent from A.
Such an assumption is necessary because we are not cur-
rently modeling any form of authentication—or even the as-
sociation of a principal with a running program—but a more
realistic solution is needed when moving beyond the scope
of this paper. For example, communication between pro-
grams running on behalf of different principals could take
place over channel endpoints with types that depend on the
principal on the other end of the channel.

Of course, when this communication is between different
machines on an inherently insecure network, problems of
secure authentication become non-trivial, as we essentially
hope to implement a secure channel on top of an insecure
one. In real life this is done through cryptography, and one
of the long-term goals of the Aura project is to elegantly
integrate these cryptographic methods with our type system.

Pragmatics We are in the process of implementing Aura,
in part to gain practical experience with the methodology
proposed in this paper. Besides the technical issues with
temporal policies and authentication described above, we
anticipate several other concerns that need to be addressed.

In particular, we will require efficient log operations and
compact proof representations. Prior work on proof com-
pression in the context of proof-carrying code [31] should
apply in this setting, but until we have experience with con-
crete examples, it is not clear how large the authorization
proofs may become in practice. A related issue is what kind
of tool support is necessary for browsing and querying the
audit logs. Such a tool should allow system administrators
to issue queries against the log, manipulate the evidence
present in the logs, and possibly receive help in debugging
rule sets.

For client developers, we expect that it will often prove
useful to log information beyond that which is logged by
the kernel. A simple means of doing this is to treat the log
object as a resource protected by the kernel. The kernel
interface could expose a generic “log” operation

log : (x : string) → K says OkToLog x → K says DidLog x

with (hopefully) permissive rules as to the construction
of OkToLog proofs. As discussed in Section 4, it might
prove especially useful to log failed attempts at proof con-
struction. Conversely, some operations take arguments that
should not be logged, for security or space constraints.

11

6 Related Work

Earlier work on proof-carrying access control [6, 8,
18, 13, 14, 23] recognized the importance of “says”, but
Abadi [4] was the first to define it as an indexed monad,
as in Aura0. Abadi et al.’s work [5] also proved DCC’s
key noninterference property: in the absence of delegation,
nothing B says can cause A to say false. Aura0 builds on
DCC in several ways. The addition of dependent types
enhances the expressiveness of DCC, and the addition of
sign allows for a robust distributed interpretation of says.
Aura0’s treatment of principals as terms, as opposed to
members of a special index set, enables quantification over
principals. Lastly Aura0 eliminates DCC’s protects relation
(which allows additional commutation and simplification of
says types). Dropping the protects relation eliminates un-
intuitive DCC tautologies, such as (A says B says P) →
(B says A says P), and ensures desired says manipula-
tions are explicitly recorded in proofs.

Our work is closely related to Fournet, Gordon and Maf-
feis’s [23, 24] research on authorization in distributed sys-
tems. Fournet et al. work with an explicit, π-calculus based
model of computation. Like us they use dependent types to
express access control properties. Fournet and colleagues
focus on the security properties that are maintained dur-
ing execution. These properties are reflected into the type
system using static theorem proving and a type construc-
tor, Ok. However, the inhabitants of Ok do not contain
dynamic information and cannot be logged for later audit.
Additionally, while Aura0 treats signing abstractly, Fournet
and colleagues’ type system (and computation model) can
explicitly discuss cryptographic operations.

Trust management systems like PolicyMaker and
Keynote are also related [17]. Trust Management systems
are intended to answer the question “Does the set C of cre-
dentials, prove that the request r complies with the local
security policy P .” [17] Such systems use general purpose
compliance checkers to verify credentials. In PolicyMaker
proofs are programs, written in a safe language, that oper-
ate on strings. Request r is allowed when the application
can compose such programs such that the on input r the
composed program returns true. Note that while validity of
proposition in Aura0 is tested by type checking, validity in
PolicyMaker is tested by evaluation; these are fundamen-
tally different approaches to logic. Similar to this paper,
trust management systems intend for proof checking to oc-
cur in a small and general trusted computing base. Proof
search may be delegated to untrusted components.

Proof Carrying Access Control has been field tested by
Bauer and colleagues in the Grey project [13, 14]. In their
project, smart phones build proofs which can be used to
open office doors or log into computer systems. The Grey
architecture shares structural similarities to the model dis-

cussed in this paper. In Grey, devices generating proofs,
like our applications, need not reside in the trusted comput-
ing base. Additionally, both systems use expressive foun-
dational logics to define policies, higher-order logic in the
case of Grey [19]. In order to make proof search effec-
tive, Bauer suggests using cut-down fragments of higher
order logic for expressing particular rule sets and using a
distributed, tactic-based proof search algorithm.

Wee implemented the Logging and Auditing File System
(LAFS) [34], a practical system that shares several archi-
tectural elements with our design. LAFS uses a lightweight
daemon, analogous to our kernel, to wrap NFS file systems.
Like our kernel, the LAFS daemon forwards all requests
to the underlying resources. Both systems configure pol-
icy using sets of rules defined outside the trusted computing
base. The systems differ in three key respects. First, the
LAFS policy language is too weak to express many Aura0

policies. Second, Aura0 requires some privileged K says ·
rules to bootstrap a policy; but LAFS can be completely
configured with non-privileged policies. Third, the LAFS
interface is designed to be transparent to application code,
and does not provide any access control properties. Instead
LAFS logs, but does not prevent, rules violations.

Cederquist and colleagues [18] describe a distributed
system architecture with discretionary logging and no ref-
erence monitor. In this system agents (i.e. principals) may
choose to enter proofs (written in a first-order natural de-
duction style logic) into a a trusted log when performing
actions. Cederquist et. al. formalizes accountability, so
that agents are guilty until proved innocent; that is, agents
use log entries to reduce the quantity of actions they are
accountable for. This relies on the ability of an authority
to independently observe some actions. Such observations
appear necessary to begin the audit process.

7 Conclusion

This paper has argued for evidence-based auditing, in
which audit log entries contain proofs about authorization;
such proofs are useful for minimizing the trusted computing
base and provide information that can help debug policies.
This paper presents an architecture for structuring systems
in terms of trusted kernels whose interfaces require proofs.
As a concrete instance of this approach, this paper has de-
veloped Aura0, a dependently-typed authorization logic that
enjoys subject reduction and strong normalization proper-
ties. Several examples using Aura0 demonstrate how we
envision applying these ideas in practice.

References

[1] Martı́n Abadi. Logic in access control. In Proceedings
of the 18th Annual Symposium on Logic in Computer

12

Science (LICS’03), pages 228–233, June 2003.

[2] Martı́n Abadi. Access control in a core calculus of de-
pendency. In ICFP ’06: Proceedings of the eleventh
ACM SIGPLAN international conference on Func-
tional programming, pages 263–273, New York, NY,
USA, 2006. ACM Press.

[3] Martı́n Abadi, Michael Burrows, Butler Lampson, and
Gordon Plotkin. A calculus for access control in dis-
tributed systems. ACM Transactions on Program-
ming Languages and Systems, 15(4):706–734, Octo-
ber 1993.

[4] Martn Abadi. Access control in a core calculus of de-
pendency. Electronic Notes in Theoretical Computer
Science, 172:5–31, April 2007.

[5] Martn Abadi, Anindya Banerjee, Nevin Heintze, and
Jon Riecke. A core calculus of dependency. In Proc.
26th ACM Symp. on Principles of Programming Lan-
guages (POPL), pages 147–160, San Antonio, TX,
January 1999.

[6] Martn Abadi, Michael Burrows, Butler W. Lampson,
and Gordon D. Plotkin. A calculus for access control
in distributed systems. Transactions on Programming
Languages and Systems, 15(4):706–734, September
1993.

[7] Andrew W. Appel and Edward W. Felten. Proof-
carrying authentication. In Proceedings of the 6th
ACM Conference on Computer and Communications
Security, pages 52–62, November 1999.

[8] Andrew W. Appel and Edward W. Felten. Proof-
carrying authentication. In CCS ’99: Proceedings of
the 6th ACM conference on Computer and communi-
cations security, pages 52–62, New York, NY, USA,
1999. ACM.

[9] S. Axelsson, U. Lindqvist, U. Gustafson, and E. Jons-
son. An approach to UNIX security logging. In Proc.
21st NIST-NCSC National Information Systems Secu-
rity Conference, pages 62–75, 1998.

[10] Gilles Barthe, John Hatcliff, and Peter Thiemann.
Monadic type systems: Pure type systems for impure
settings (preliminary report). In Andrew Gordon, An-
drew Pitts, and Carolyn Talcott, editors, Proc. of 2nd
Wksh. on Higher-Order Operational Techniques in Se-
mantics, HOOTS’97, Stanford Univ., CA, USA, 8–11
Dec. 1997, volume 10 of Electronic Notes in Theoret-
ical Computer Science. Elsevier, Amsterdam, 1998.

[11] Lujo Bauer. Access Control for the Web via Proof-
Carrying Authorization. PhD thesis, Princeton Uni-
versity, November 2003.

[12] Lujo Bauer, Kevin D. Bowers, Frank Pfenning,
and Michael K. Reiter. Consumable credentials in
logic-based access control. Technical Report CMU-
CYLAB-06-002, Carnegie Mellon University, Febru-
ary 2006.

[13] Lujo Bauer, Scott Garriss, Jonathan M. McCune,
Michael K. Reiter, Jason Rouse, and Peter Rutenbar.
Device-enabled authorization in the Grey system. In
Information Security: 8th International Conference,
ISC 2005, volume 3650 of Lecture Notes in Computer
Science, pages 431–445, September 2005.

[14] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Dis-
tributed proving in access-control systems. In Pro-
ceedings of the 2005 IEEE Symposium on Security &
Privacy, pages 81–95, May 2005.

[15] Mihir Bellare and Bennet Yee. Forward integrity for
secure audit logs. Technical report, Computer Science
and Engineering Department, University of California
at San Diego, November 1997.

[16] Matt Bishop. Computer Security: Art and Science.
Addison-Wesley Professional, 2002.

[17] Matt Blaze, Joan Feigenbaum, John Ioannidis, and
Angelos D. Keromytis. The role of trust manage-
ment in distributed systems security. In Secure In-
ternet programming: security issues for mobile and
distributed objects, pages 185–210. Springer-Verlag,
London, UK, 1999.

[18] J.G. Cederquist, R. Corin., M.A.C. Dekker, S. Etalle,
and J.J. den Hartog. An audit logic for accountabil-
ity. In The Proceedings of the 6th IEEE International
Workshop on Policies for Distributed Systems and Net-
works, 2005.

[19] Alonzo Church. A formulation of the simple theory
of types. The Journal of Symbolic Logic, 5(2):56–68,
June 1940.

[20] Haskell B. Curry, Robert Feys, and William Craig.
Combinatory Logic, volume 1. North-Holland, Am-
sterdam, 1958.

[21] John DeTreville. Binder, a logic-based security lan-
guage. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, pages 105–113, May 2002.

[22] Henry deYoung, Deepak Garg, and Frank Pfenning.
An authorization logic with explicit time, 2007. Draft,
by personal communication.

[23] Cdric Fournet, Andrew D. Gordon, and Sergio Maf-
feis. A type discipline for authorization policies. In

13

Proc. of the 14th European Symposium on Program-
ming, volume 3444 of LNCS, pages 141–156, Edin-
burgh, Scotland, April 2005. Springer-Verlag.

[24] Cdric Fournet, Andrew D. Gordon, and Sergio Maf-
feis. A type discipline for distributed systems. In Proc.
of the 20th IEEE Computer Security Foundations Sym-
posium, pages 31–45, Venice, Italy, July 2007.

[25] Deepak Garg and Frank Pfenning. Non-interference in
constructive authorization logic. In Proceedings of the
19th IEEE Computer Security Foundations Workshop
(CSFW 19), pages 283–296, 2006.

[26] Herman Geuvers. A short and flexible proof of strong
normalization for the calculus of constructions. In
TYPES ’94: Selected papers from the International
Workshop on Types for Proofs and Programs, pages
14–38, London, UK, 1995. Springer-Verlag.

[27] M. A. Harrison, W. L Ruzzo, and J. D. Ullman. Pro-
tection in operating systems. Comm. of the ACM,
19(8):461–471, August 1976.

[28] Sushil Jajodia, Pierangela Samarati, and V. S. Subrah-
manian. A logical language for expressing authoriza-
tions. In SP ’97: Proceedings of the 1997 IEEE Sym-
posium on Security and Privacy, page 31. IEEE Com-
puter Society, 1997.

[29] C. Ko, M. Ruschitzka, and K. Levitt. Execution moni-
toring of security-critical programs in distributed sys-
tems: a specification-based approach. In SP ’97: Pro-
ceedings of the 1997 IEEE Symposium on Security
and Privacy, page 175, Washington, DC, USA, 1997.
IEEE Computer Society.

[30] Ninghui Li, Benjamin N. Grosof, and Joan Feigen-
baum. Delegation logic: A logic-based approach to
distributed authorization. ACM Trans. Inf. Syst. Secur.,
6(1):128–171, 2003.

[31] G. C. Necula and P. Lee. Efficient representation and
validation of proofs. In LICS ’98: Proceedings of the
13th Annual IEEE Symposium on Logic in Computer
Science, page 93, Washington, DC, USA, 1998. IEEE
Computer Society.

[32] Bruce Schneier and John Kelsey. Cryptographic sup-
port for secure logs on untrusted machines. In Pro-
ceedings of the 7th on USENIX Security Symposium,
pages 53–62, Berkeley, CA, USA, January 1998.

[33] B. Waters, D. Balfanz, G. E. Durfee, and D. K. Smet-
ters. Building an encrypted and searchable audit log.
In 11th Annual Network and Distributed Security Sym-
posium (NDSS ’04), San Diego, CA, USA, February
2004.

[34] Christopher Wee. LAFS: A logging and auditing file
system. In Annual Computer Security Applications
Conference, pages 231–240, New Orleans, LA, USA,
December 1995.

14

A Appendix

A.1 Definitions

Definition A.1 (Metafunctions over syntax).

{s/z}z = s

{s/z}x = x if z 6= x

{s/z}(x:t1) → t2 = (x:{s/z}t1) → {s/z}t2 if z 6= x

{s/z}{x:t1; t2} = {x:{s/z}t1; {s/z}t2} if z 6= x

{s/z}sign(t1, t2) = sign({s/z}t1, {s/z}t2)
{s/z}return@[t1] t2 = return@[{s/z}t1] {s/z}t2

{s/z}bind x = t1 in t2 = bind x = {s/z}t1 in {s/z}t2 if z 6= x

{s/z}λx:t1. t2 = λx:{s/z}t1. {s/z}t2 if z 6= x

{s/z}t1 t2 = ({s/z}t1) ({s/z}t2)
{s/z}〈t1, t2〉 = 〈{s/z}t1, {s/z}t2〉

{s/z}t = t otherwise

{s/z}· = ·
{s/z}Γ, x : t = ({s/z}Γ), x : {s/z}t

fv(x) = {x}
fv(t1 says t2) = fv(t1) ∪ fv(t2)

fv((x:t1) → t2) = fv(t1) ∪ fv(t2) \ {x}
fv({x:t1; t2}) = fv(t1) ∪ fv(t2) \ {x}

fv(sign(t1, t2)) = fv(t1) ∪ fv(t2)
fv(return@[t1]t2) = fv(t1) ∪ fv(t2)

fv(bind x = t1 in t2) = fv(t1) ∪ fv(t2) \ {x}
fv(λx:t1. t2) = fv(t1) ∪ fv(t2) \ {x}

fv(t1 t2) = fv(t1) ∪ fv(t2)
fv(〈t1, t2〉) = fv(t1) ∪ fv(t2)

fv(·) = ·
fv(Γ, x : t) = fv(Γ) ∪ fv(t)

A.2 Subject Reduction

Lemma A.1 (Evidence Substitution). [{t2/x}t1] ⊆ [t1] ∪
[t2]

Proof. By trivial induction the structure of t1.

Σ ` �

· ` �
S-EMPTY

Σ; · ` t : KindP

Σ, a : t ` �
S-CONS

Σ ` Γ

Σ ` �
Σ ` ·

E-EMPTY

Σ; Γ ` t : k if x /∈ fv(Γ)
k ∈ {KindP , KindT , Prop, Type}

Σ ` Γ, x : t
E-CONS

Figure 6. Well formed signature and environ-
ment judgments (defined mutually with typ-
ing relation)

Lemma A.2. If ` p → p′ then [p′] ⊆ [p].

Proof. Proof by structural induction on the reduction rela-
tion.

Case R-APP1: Inverting the reduction relation gives p =
t1 t2 and p′ = t1 t2 where ` t1 → t′1. By the induction
hypothesis [t′1] ⊆ [t1], so [p′] = [t′1]∪[t2] ⊆ [t1]∪[t2] = [p].

Case R-BETA: Inverting the reduction relation gives
p = (λx:t1. t2) t3 and p′ = {t3/x}t2. It suffices to
show [{t3/x}t2] ⊆ [t2] ∪ [t3]. This follows directly from
Lemma A.1.

The R-BINDT case is similar to R-BETA, and all remain-
ing cases are similar to R-APP1.

Lemma A.3 (Weakening). If Σ; Γ,Γ′ ` t1 : t2 and Σ `
Γ, x : t3,Γ′ then Σ; Γ, x : t3,Γ′ ` t1 : t2.

Proof. By structural induction on the typing derivation.

Lemma A.4 (Inversion Var—Same). If Σ; Γ, z : u, Γ′ ` z :
s then u = s.

Proof. Inverting the typing derivation (which ends in T-
VAR) yields z : y ∈ Γ, z : u, Γ′ and Σ ` Γ, z : u, Γ′.
Proof precedes by a trivial induction on the environment’s
well-formedness.

Lemma A.5 (Inversion Var—Different). If Σ; Γ, z : u, Γ′ `
x : s and u 6= z then x : s ∈ Γ or x : s ∈ Γ′.

Proof. By inverting the typing derivation, than structural in-
duction on the environment’s well formedness.

Lemma A.6 (Variables closed in context). If Σ; Γ ` s : t
and x ∈ fv(t) ∪ fv(s) then x ∈ dom(Γ).

15

` t → t′

` (λx:t1. t2) t3 → {t3/x}t2
R-BETA

x /∈ fv(t2)
` bind x = t1 in t2 → t2

R-BINDS

` bind x = return@[t0] t1 in t2 → {t1/x}t2
R-BINDT

` t2 → t′2
` return@[t1] t2 → return@[t1] t2

R-SAYS

y /∈ fv(t3)
` bind x = (bind y = t1 in t2) in t3 →

bind y = t1 in bind x = t2 in t3

R-BINDC

` t2 → t′2
` λx:t1. t2 → λx:t1. t′2

R-LAM

` t1 → t′1
` bind x = t1 in t2 → bind x = t′1 in t2

R-BIND1

` t2 → t′2
` bind x = t1 in t2 → bind x = t1 in t′2

R-BIND2

` t1 → t′1
` t1 t2 → t′1 t2

R-APP1
` t2 → t′2

` t1 t2 → t1 t′2
R-APP2

` t1 → t′1
` 〈t1, t2〉 → 〈t′1, t2〉

R-PAIR1

` t2 → t′2
` 〈t1, t2〉 → 〈t1, t′2〉

R-PAIR2

Figure 7. Reduction relation

Proof. Proof by induction on the typing derivation.

Lemma A.7. If Σ ` Γ, z : u and x : s ∈ Γ then z /∈ fv(s).

Proof. By the definition of ∈, we know Γ = Γ1, x : s,Γ2.
The well-formedness of Γ1, x : s,Γ2, z : u shows that (1)
dom(z) /∈ Γ1 and (2) Σ; Γ1 ` s : k for some k. From these
and Lemma A.6 we can conclude z /∈ fv(s).

Lemma A.8 (Subsitution, strong form for induction). As-
sume Σ; Γ ` tu : u. Then

(1) Σ; Γ, z : u, Γ′ ` t : s implies Σ; Γ, {tu/z}Γ′ `
{tu/z}t : {tu/z}s. And

(2) Σ ` Γ, z : u, Γ′ implies Σ ` Γ, {tu/z}Γ′.

Proof. By mutual structural induction over the typing and
well-formed environment derivations. Proceed with inver-
sion on the form of the last typing or well-formedness rule.

Case T-PROP. We have t = Prop and s = KindP . So
it suffices to show Σ ` Γ, {tu/z}Γ′. This follows immedi-
ately from the induction hypothesis.

Case T-VAR. Suppose t = z. Then, by Lemma A.4 s =
u. Therefore it suffices to show Σ; Γ, {tu/z}Γ′ ` tu : u,
which we get by applying weakening (finitely many times)
to the assumption Σ; Γ ` tu : u. Instead suppose t = x 6=
z. Then we must show Σ; Γ, {tu/z}Γ′ ` x : {tu/z}s. By
Lemma A.5, either x : s ∈ Γ or x : s ∈ Γ′. Suppose
x : s ∈ Γ. Then by Lemma A.7 we find z /∈ fv(s) so s =
{tu/z}s. Thus it suffices to show Σ; Γ, {tu/z}Γ′ ` x : s,
which follows from T-VAR, the induction hypothesis and
the form of Γ. Lastly, consider the case that x : s ∈ Γ′.
Then x : {tu/z}s ∈ {tu/z}Γ′, and we conclude using this,
T-VAR, and the induction hypothesis.

Case T-LAM. We have t = λx:t1. t2 and s = (x:t1) →
P . Without loss of generality assume x 6= z. The induc-

tion hypothesis yields Σ; Γ, {tu/z}(Γ′, x : t1) ` {tu/z}t2 :
{tu/z}P and Σ; Γ, {tu/z}Γ′ ` {tu/z}(x:t1) → P :
Prop. We conclude by applying T-LAM and the fol-
lowing facts about substitution: {tu/z}(Γ′, x : t1) =
({tu/z}Γ′), x : ({tu/z}t1) and {tu/z}((x:t1) → t2) =
(x:{tu/z}t1) → {tu/z}t2. (The latter holds because
x 6= z.)

Case T-BIND. This case is similar to T-LAM, but uses the
additional fact that, for all t1 and t2, {tu/z}(t1 says t2) =
({tu/z}t1) says ({tu/z}t2).

Case T-SIGN. We have t = sign(t1, t2) and s =
t1 says t2. From Lemma A.6, we find fv(t1) = fv(t2) = ∅.
Hence {tu/z}t = t and {tu/z}s = s, so to use T-SIGN,
we need only show Σ ` Γ, {tu/z}Γ′. This follows imme-
diately from the induction hypothesis.

Case T-PAIR. We have s = {s1:x; s2}. Assume with-
out loss of generality x 6= z. This case follows from
the induction hypothesis and the fact {tu/z}({t1/x}s2) =
{({tu/z}t1)/x}({tu/z}t2).

The remaining cases are similar to T-PROP (T-TYPE, T-
STRING, T-CONST, T-PRIN, T-LITSTR, T-LITPRIN), or T-
LAM (T-PI, T-SIGMA), or are trivial (T-SAYS, T-RETURN,
T-APP).

Subject reduction will need both subsitution (above) and
the following strengthening lemma (below). Note that
strengthening is not a special case of of subsitution, as stren-
thening works even when u is unihabited.

Lemma A.9 (Strengthening). If Σ; Γ, z : u, Γ′ ` t : s and
Σ ` Γ,Γ′ and z /∈ fv(t) ∪ fv(s) then Σ; Γ,Γ′ ` t : s.

16

Proof. Proof by structural induction on the typing relation.
If the typing derivation ends with T-VAR then t is a variable,
x. By the defintion of fv(·), x 6= z. Inverting the typing
relation yields x : s ∈ Γ, z : u, Γ′. Thus z ∈ Γ,Γ′, and we
conclude with T-VAR. All other cases follow directly from
the induction hypothesis.

Lemma A.10 (Subject Reduction). If ` t → t′ and Σ; Γ `
t : s then Σ; Γ ` t′ : s.

Proof. Proof is by structural induction on the reduction re-
lation. Proceed by case analysis on the last rule used.

Case R-BETA. We have t = (λx:t1. t2) t3 and t′ =
{t3/x}t2. Term t could only have been typed by a deriva-
tion ending in

T-APP

T-LAM

...
Σ; Γ, x : t1 ` t2 : s2 . . .

Σ; Γ ` λx:t1. t2 : (x:t1) → s2

...
Σ; Γ ` t3 : s3

Σ; Γ ` (λx:t1. t2) t3 : {s3/x}s2

for some s2 and s3. So s = {t3/x}t2. That Σ; Γ ` t′ : s
holds follows directly from Lemma A.8 and the judgments
written in the above derivation.

Case R-BINDS. We have t = bind x = t1 in t2 and
t′ = t2. Term t could only be typed by T-BIND, and invert-
ing this rule gives s = a says s2 and Σ; Γ, x : s1 ` t2 :
a says s2. Before concluding with Lemma A.9, we must
show x /∈ a says s2. This is a consequence of Lemma A.6,
and the hypothesis that a says s2 is a type assigment in Γ.

Case R-BINDT. We have t = bind x =
return@[t0] t1 in t2 and t′ = {t1/x}t2 and s =
t0 says s2. Term t can only be typed by a derivation ending
with, for some s1,

T-BIND

T-APP

...

...
Σ; Γ ` t1 : s1

Σ; Γ ` return@[t0] t1 : t0 says s1

...
Σ; Γ, x : s1 ` t2 : t0 says s2

Σ; Γ ` bind x = return@[t0] t1 in t2 : t0 says s2

By Lemma A.8, we find Σ; Γ ` {t1/x}t2 :
{t1/x}(t0 says s2). The contrapositive of Lemma A.6
shows x /∈ t0 says s2, so we can rewrite the above to
Σ; Γ ` t′ : s.

The remaining cases follow directly from the induction
hypothesis.

A.3 Proof of Strong Normalization

We prove Aura0 is strongly normalizing by translating
Aura0 to the Calculus of Construction extended with prod-
uct dependent types (CC).

The main property of the translation, which we will
prove later in this section, is that the translation has to
perserves both the typing relation and the reduction rela-
tion. The translation has the form: JtK∆ = (s,∆′), where
context ∆ is a typing context for variables. To translate a
Aura0 term, we take in a context ∆, and produce a new
context ∆′ together with a term in CC.

The translation of Aura0 terms to CC terms are defined
belows. The translation collapses KindP and KindT to the
kind � in CC, and Prop, Type to ∗. We translate all the base
types to unit, and constants to eunit. The interesting cases
are the translation of DCC terms. The translation drops the
monads, and tranlate the bind expression to lamba applica-
tion. The term sign(t1, t2) has type t1 says t2; therefore, it
has to be translated to a term which is the translation of t2.
One way to find such a term is to generate a fresh variable
and assign its type to be the translation of t2. The con-
text ∆ is used to keep track of the type mapping of those
fresh variables generated. There are two cases in transla-
tion sign(t1, t2). In the first case, the variable we need has
already been generated. In the second case, we need to gen-
erate a fresh variable and append its type binding to ∆ as
the output context. The contexts in the translation of other
terms are threaded through the translation and keep track of
all the variables generated so far.

JtK∆ = (s,∆′)

if t ∈ {KindP , KindT }
JtK∆ = (�,∆)

if t ∈ {Prop, Type}
JtK∆ = (∗,∆)

if t ∈ {"a", . . . , A . . .}
JtK∆ = ((),∆)

if t ∈ {string, prin}
JtK∆ = (unit,∆)

JaK∆ = (a,∆) JxK∆ = (x,∆)

Jt1 says t2K∆ = Jt2K∆

17

Jt1K∆ = (s1,∆1) Jt2K∆1 = (s2,∆2)
J(x:t1) → t2K∆ = ((x:s1) → s2,∆2)

Jt1K∆ = (s1,∆1) Jt2K∆1 = (s2,∆2)
J(x : t1) ⇒ t2K∆ = ((x:s1) → s2,∆2)

Jt1K∆ = (s1,∆1) Jt2K∆1 = (s2,∆2)
J{x:t1; t2}K∆ = ({x:s1; s2},∆2)

Jt2K∆ = (s,∆1) ∆1(y) = s

Jsign(t1, t2)K∆ = (y, ∆1)

Jt2K∆ = (s,∆1)
not exists x ∈ dom(∆1)s.t.∆1(x) = s y is fresh

Jsign(t1, t2)K∆ = (y, (∆1, y : s))

Jreturn@[t1] t2K∆ = Jt2K∆

Jt0K∆ = (s,∆1)
Jt1K∆1 = (s1,∆2) Jt2K∆2 = (s2,∆3)

Jbind x:t0 = t1 in t2K∆ = ((λx:s. s2) s1,∆3)

Jt1K∆ = (s1,∆1) Jt2K∆1 = (s2,∆2)
Jλx:t1. t2K∆ = (λx:s1. s2,∆2)

Jt1K∆ = (s1,∆1) Jt2K∆1 = (s2,∆2)
Jt1 t2K∆ = (s1 s2,∆2)

Jt1K∆ = (s1,∆1) Jt2K∆1 = (s2,∆2)
J〈t1, t2〉K∆ = (〈s1, s2〉,∆2)

JΣK∆ = (Σ′,∆′)

J·K∆ = (·,∆)

JΣK∆ = (Σ′,∆1) JtK∆1 = (s, (∆1,∆2))
JΣ, v : tK∆ = ((Σ′,∆2, v : s), (∆1,∆2))

JΓK∆ = (Γ′,∆0,∆′)

J·K∆ = (·, ·,∆)

JΓK∆ = (Γ′,∆0,∆1) JtK∆1,∆2 = (s, (∆1,∆2,∆3))
JΓ, v : tK∆ = ((Γ′, v : s), (∆0,∆2,∆3), (∆1,∆2,∆3))

Definitions

• unique(∆) if for all x, y ∈ dom(∆), ∆(x) 6= ∆(y).

• wf(Γ):

wf(·)

Γ `CC t : s s ∈ {∗,�} v /∈ dom(Γ)
wf(Γ, v : t)

Lemma A.11 (Translation Weakening). If JtK∆1 =
(s,∆2), unique(∆), and ∆2 ⊆ ∆, then JtK∆ = (s,∆).

Proof. By induction on the structure of t. The key is when
t is sign(t1, t2).

case: t = sign(t1, t2).
By assumptions,

unique(∆) (1)
Jsign(t1, t2)K∆1 = (x,∆2)
and Jt2K∆1 = (s,∆2),∆1(x) = s (2)
∆2 ⊆ ∆ (3)

By I.H. on t1,
Jt2K∆ = (s,∆) (4)

By (2), (1), (3),
∆(x) = s (5)

By the rules for translation,
Jsign(t1, t2)K∆ = (x,∆) (6)

case: t = sign(t1, t2).
By assumptions,

unique(∆) (1)
Jsign(t1, t2)K∆1 = (x, (∆2, x : s))
and Jt2K∆1 = (s,∆2),
@x ∈ dom(∆) s.t. ∆1(x) = s (2)
(∆2, x : s) ⊆ ∆ (3)

By I.H. on t1,
Jt2K∆ = (s,∆) (4)

By (1), (3),
∆(x) = s (5)

By the rules for translation,
Jsign(t1, t2)K∆ = (x,∆) (6)

Lemma A.12 (CC Typing Weakening). If Γ1,Γ2 `CC t : s,
and wf(Γ1,Γ′,Γ2), then Γ1,Γ′,Γ2 `CC t : s.

Proof. By induction on structure of the derivation E ::
Γ1,Γ2 `CC t : s.

Lemma A.13 (Substitution). If Σ; Γ ` t1 : k, Jt1K∆ =
(s1,∆) and Jt2K∆ = (s2,∆), then J{t2/x}t1K∆ =
({s2/x}s1,∆).

Proof. By induction on the struction of t1.

18

case: t1 = sign(t, p).
By assumption,

Jt2K∆ = (s2,∆) (1)
Σ; Γ ` sign(t, p) : k (2)
Jsign(t, p)K∆ = (y, ∆) (3)

By the definition of translation, (3),
JpK∆ = (s,∆) (4)
and ∆(y) = s (5)

By inversion on (2),
Σ; · ` p : Prop (6)
x /∈ fv(p) (7)
{t2/x}p = p (8)

By (8), (4), (5),
J{t2/x}(sign(t, p))K∆ = (y, ∆) = ({s2/x}y, ∆) (9)

Lemma A.14 (Correctness of Translation).

1. If Σ ` �, JΣK∅ = (Σ1,∆1), then wf(Σ1).

2. If Σ ` Γ, JΣK∅ = (Σ1,∆1), JΓK∆1 = (Γ1,∆0,∆2),
then wf(Σ1,∆0,Γ1).

3. If E :: Σ; Γ ` t : s, JΣK∅ = (Σ1,∆1), JΓK∆1 =
(Γ1,∆0,∆2), JtK∆2,∆3 = (t1, (∆2,∆3,∆4)), then
Σ1,∆0,∆3,∆4,Γ1 `CC t1 : s1, and JsK(∆2,∆3,∆4) =
(s1, (∆2,∆3,∆4)).

4. If E :: Σ; Γ ` t, JΣK∅ = (Σ1,∆1), JΓK∆1 =
(Γ1,∆0,∆2), JtK∆2,∆3 = (t1, (∆2,∆3,∆4)), then
Σ1,∆0,∆3,∆4,Γ1 `CC t1 : ∗/�.

Proof. In the proof of 1 and 2, we use 3 only when (Σ,Γ)
is smaller.
1. By induction on the structure of (Σ).

case: Σ = Σ′, a : t
By assumption,

Σ′, a : t ` � (1)
Σ; · ` t : KindP (2)
JΣK∅ = (Σ1,∆1) (3)
JtK∆1 = (s, (∆1,∆2)) (4)
JΣ, a : tK∅ = ((Σ1,∆2, a : s), (∆1,∆2)) (5)

By 2, (2),
Σ1,∆2 `CC s : � (6)

By definition of wf, and (6),
wf(Σ1,∆2, a : s) (7)

2. By induction on the structure of (Σ; Γ).

case: Γ = Γ′, x : t
By assumption,

Σ ` � (1)
Σ ` Γ′, x : t (2)
JΣK∅ = (Σ1,∆1) (3)

JΓ′K∆1 = (Γ1,∆0,∆2) (4)
JtK∆2,∆3 = (s, (∆2,∆3,∆4)) (5)
JΣ,Γ′, x : tK∅ = ((Σ1,Γ1, x : s),

(∆0,∆3,∆4), (∆2,∆3,∆4)) (6)
By inversion of (2),

Σ; Γ′ ` t : KindP /KindT /Prop/Type (7)
By 2,

Σ1,∆0,∆3,∆4,Γ1 `CC s : �/∗ (8)
By definition of wf, and (8),

wf(Σ1,∆0,∆3,∆4,Γ1, x : s) (9)

3. By induction on the structure of the derivation E .

case: E ends in T-PROP.
By assumption,

E =

E ′ :: Σ ` Γ

Σ; Γ ` Prop : KindP (1)
JΣK∅ = (Σ1,∆1) (2)
JΓK∆1 = (Γ1,∆0,∆2) (3)
JPropK∆2,∆3 = (∗, (∆2,∆3)) (4)

By ax rule,
· `CC ∗ : � (5)

By 1, (4), (2),
wf(Σ1,∆0,∆3,Γ1) (6)

By Lemma weakening,
Σ1,∆0,∆3,Γ1 `CC ∗ : � (7)

case: E ends in T-PI.
By assumption,

E =

E1 :: Σ; Γ ` t1 : (KindP , Type, Prop)
E2 :: Σ; Γ, x : t1 ` t2 : k2 k2 ∈ {KindP , Prop}

Σ; Γ ` (x:t1) → t2 : k2 (1)
JΣK∅ = (Σ1,∆1) (2)
JΓK∆1 = (Γ1,∆0,∆2) (3)
J(x:t1) → t2K∆2,∆3 =
((x:s1) → s2, (∆2,∆3,∆4,∆5)) (4)
where Jt1K∆2,∆3 = (s1, (∆2,∆3,∆4)) (5)
and Jt2K∆2,∆3,∆4 = (s2, (∆2,∆3,∆4,∆5)) (6)

By I.H. on E1,
Σ1,∆0,∆3,∆4,Γ1 `CC s1 : (∗,�) (7)
JΓ, x : t1K∆1 = ((Γ1, x : s1),
(∆0,∆3,∆4), (∆2,∆3,∆4)) (8)
Σ1,∆0,∆2,∆3,∆5,Γ1, x : s1 `CC s2 : (∗/�) (9)

By Π, (7), (9),
Γ1,∆0,∆2,∆3,∆4,∆5 `CC (x:s1) → s2 : (∗/�) (10)

4. By induction on the structure of the derivation E .

The following β′ reduction rule mirrors the commute re-
duction rule in Aura0.

Special Reduction Rule:
(λx:t. t1)((λy:s. t2)u) →β′ (λy:s. ((λx:t. t1)t2))u

19

Calculus of Construction extended with product depen-
dent types is know to be strongly normalizing [26]. We use
SN(β) to denote the set of terms that are strongly normaliz-
ing under β reductions in CC; similarly, SN(ββ′) is the set
of terms that are strongly normalizing under the β and β′

reduction rules. We demonstrate that CC augmented with
β′ is also stronly normalizing.

Lemma A.15 (Strong normalization of ββ′-reduction in
CC). For all term t ∈ SN(β), t ∈ SN(ββ′).

Proof. Use the proof technique in [10].

Now we prove that the reductions in CC augmented with
the β′ reduction rule simulates the reduction in Aura0.

Lemma A.16 (Simulation). If t → t′, and and JtK∆ =
(s,∆), Jt′K∆ = (s′,∆), then s →+

β,β′ s′.

Proof. By examing all the reduction rules.

Lemma A.17 (Strong normalization). Aura0 is strongly
normalizing.

Proof. By Lemma A.16, and Lemma A.15. A diverging
path in Aura0 implies a diverging path in CC. Since CC is
strongly normalizing, Aura0 is also strongly normalizing.

Lemma A.18 (Weak Confluence). If t → t1, t → t2, then
exists t3 such that t1 →∗ t3, and t2 →∗ t3.

Proof. By examing the reduction rules.

20

	University of Pennsylvania
	ScholarlyCommons
	2008

	Evidence-based Audit
	Jeffrey A Vaughan
	Limin Jia
	Karl Mazurak
	Stephan A. Zdancewic
	Recommended Citation

	Evidence-based Audit
	Abstract
	Disciplines
	Comments

	tmp.1342633606.pdf.Kfvte

