
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

9-22-2008

AURA: A Programming Language for
Authorization and Audit
Limin Jia
University of Pennsylvania

Jeffrey A Vaughan
University of Pennsylvania

Karl Mazurak
University of Pennsylvania

Jianzhou Zhao
University of Pennsylvania

Luke Zarko
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph Schorr, and Steve Zdancewic. AURA: A Programming Language for
Authorization and Audit. In Proc. of the 13th ACM SIGPLAN International Conference on Functional Programming (ICFP), Victoria, British Columbia,
Canada, September 2008.
© ACM, 2008. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proc. of the 13th ACM SIGPLAN International Conference on Functional Programmin, {(2008)} http://doi.acm.org/
10.1145/1411204.1411212" Email permissions@acm.org
doi>10.1145/1411204.1411212

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/579
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Limin Jia, Jeffrey A Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph Schorr, and Stephan A. Zdancewic, "AURA: A
Programming Language for Authorization and Audit", . September 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F579&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F579&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F579&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F579&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F579&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/1411204.1411212
http://dx.doi.org/10.1145/1411204.1411212
http://repository.upenn.edu/cis_papers/579
mailto:libraryrepository@pobox.upenn.edu

AURA: A Programming Language for Authorization and Audit

Abstract
This paper presents AURA, a programming language for access control that treats ordinary programming
constructs (e.g., integers and recursive functions) and authorization logic constructs (e.g., principals and
access control policies) in a uniform way. AURA is based on polymorphic DCC and uses dependent types to
permit assertions that refer directly to AURA values while keeping computation out of the assertion level to
ensure tractability. The main technical results of this paper include fully mechanically verified proofs of the
decidability and soundness for AURA's type system, and a prototype typechecker and interpreter.

Disciplines
Computer Sciences

Comments
Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph Schorr, and Steve Zdancewic.
AURA: A Programming Language for Authorization and Audit. In Proc. of the 13th ACM SIGPLAN
International Conference on Functional Programming (ICFP), Victoria, British Columbia, Canada, September
2008.

© ACM, 2008. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proc. of the 13th ACM SIGPLAN
International Conference on Functional Programmin, {(2008)} http://doi.acm.org/10.1145/1411204.1411212"
Email permissions@acm.org

doi>10.1145/1411204.1411212

Author(s)
Limin Jia, Jeffrey A Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph Schorr, and Stephan A.
Zdancewic

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/579

http://dx.doi.org/10.1145/1411204.1411212
http://dx.doi.org/10.1145/1411204.1411212
http://repository.upenn.edu/cis_papers/579?utm_source=repository.upenn.edu%2Fcis_papers%2F579&utm_medium=PDF&utm_campaign=PDFCoverPages

AURA: A Programming Language for Authorization and Audit

Limin Jia Jeffrey A. Vaughan Karl Mazurak Jianzhou Zhao Luke Zarko Joseph Schorr
Steve Zdancewic

University of Pennsylvania
{liminjia, vaughan2, mazurak, jianzhou, zarko, jschorr, stevez}@seas.upenn.edu

Abstract
This paper presents AURA, a programming language for access
control that treats ordinary programming constructs (e.g., integers
and recursive functions) and authorization logic constructs (e.g.,
principals and access control policies) in a uniform way. AURA is
based on polymorphic DCC and uses dependent types to permit
assertions that refer directly to AURA values while keeping com-
putation out of the assertion level to ensure tractability. The main
technical results of this paper include fully mechanically verified
proofs of the decidability and soundness for AURA’s type system,
and a prototype typechecker and interpreter.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.4.6 [Operating Sys-
tems]: Security and Protection – Access controls; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic –
Lambda calculus and related systems

General Terms Design, Language, Security

Keywords Access control, Authorization logic, Audit, Type sys-
tems

1. Introduction
There can be no universal definition of security. Every piece of con-
fidential data and every sensitive resource may have specialized ac-
cess control requirements. At the same time, almost every modern
computer system stores some private information or provides a ser-
vice intended only for certain clients. To ensure that only allowed
principals—human users or other computer systems—can reach
the protected resources, these access control requirements must
be carefully defined and enforced. An authorization policy spec-
ifies whether a request by a principal to access a resource should
be granted, and a reference monitor mediates all access to the re-
source, ensuring that the handling of requests complies with the
authorization policy.
One significant challenge in building secure systems that en-

force access control is that, as the number of resources and princi-
pals grows, specifying the authorization policy becomes more dif-
ficult. The situation is further complicated in decentralized or dis-
tributed settings, where resources may have different owners and
the principals may have non-trivial trust relationships. Once the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

policies become sufficiently complex, understanding which prin-
cipals may access which resources is itself a daunting problem.
Consequently, reference monitors that enforce such policies also
become complex, which is not a desired situation when (as in a
conventional access control scheme) the reference monitor is part
of the trusted computing base.
To help mitigate this complexity, researchers have proposed

authorization logics that facilitate reasoning about principals, re-
quests, and policy assertions [5, 14, 20, 1, 2]. Several of these log-
ics have been concerned with specifying access control policies in
distributed settings [45, 6, 11, 21, 20]. Part of the appeal of autho-
rization logics is that proofs of propositions in the logic can act as
capabilities that provide the reference monitor with evidence that
a given request should be granted. As proposed by Appel and Fel-
ten [6], proof-carrying authorization places the burden of validat-
ing the authorization decision on the principal requesting access.
Moreover, the explicit proofs can be logged for future auditing,
which can help track down bugs in the authorization policy [40].
Authorization logics are rich and concise languages for spec-

ifying access control policies, abstracting away low-level details
like authentication and cryptography. Unfortunately, these logics
are rather removed from the languages used to write software that
must respect the access control policies; tools like typecheckers that
help the programmer write correct programs will not necessarily
help the programmer make correct use of an authorization logic.
This is especially problematic in the case of a reference monitor,
which has the task of enforcing policies written in an authorization
logic and must be considered part of the trusted computing base.
This paper presents the design of AURA, a domain-specific

programming language that incorporates a constructive authoriza-
tion logic based on DCC [4, 2] as part of its type system. Rather
than mediating between programs and policy statements written
in two distinct languages, AURA uses dependent types to permit
policy statements that refer directly to AURA values (like integers
or datatype constructors). For example, a function playFor, which
plays a song s on behalf of a principal p, might have the following
type, which requires a proof that principal p is permitted to play s:

(s :Song) → (p :prin) → pf (self says MayPlay p s) → Unit.

As indicated by this type, AURA programs may construct and ma-
nipulate authorization proofs just as they might other program val-
ues, and the AURA programming model provides notions of princi-
pals (p), authority (self), and policy assertions (MayPlay) in ad-
dition to standard functional language features like higher-order
functions, polymorphism, and recursive algebraic datatypes. In ad-
dition, security-relevant implementation details—like the creation
of audit trails or the cryptographic interpretation of certain logi-
cal statements—can be handled automatically with little to no pro-
grammer intervention.
Because policy assertions are part of AURA’s type system, de-

ciding whether to grant access amounts to typechecking a proof ob-

ject. This can be performed by AURA’s runtime, removing individ-
ual reference monitors from the trusted computing base. Moreover,
any program written in AURA benefits from the immediate avail-
ability of the authorization logic; many misbehaving programs can
now be ruled out at compile time. Finally, DCC, on which AURA
is based, has been shown to be useful in representing other forms
of language-based security, such as the type-based enforcement of
information-flow properties as found in Jif [31] or FlowCaml [35];
AURA thus represents a promising avenue for further work in con-
necting these concepts.
The main contributions of this paper are as follows:

• We present the design of core AURA, a language with support
for first-class, dependent authorization policies.

• We give a fully machine-checked proof of type soundness for
the core language.

• We also give a fully machine-checked proof of decidability of
typechecking for AURA.

• We describe a prototype implementation of a typechecker and
interpreter and give sample programs.

Typical dependently typed languages (see Section 6) use types
to encode precise program specifications. Our goal is differ-
ent; AURA uses dependent types to naturally connect data with
proofs for run-time policy enforcement. Compared with a conven-
tional dependently typed language, AURA adds some features—
assertion types, digitally signed objects as proofs, the says and pf
modalities—and restricts or removes others—only values may ap-
pear in dependent types. The result is a system tuned for dynamic
authorization but unsuitable for, e.g., static program verification.
Our proof of soundness is implemented in Coq and encom-

passes all of AURA’s features, including higher order and poly-
morphic types, mutually recursive datatypes and propositions, a
restricted form of dependent types, and authorization proofs. We
believe that the mechanized proof is of independent value, as parts
of the proof may be reused in other settings.
The rest of this paper focuses on the novel core features of

AURA. The next section introduces AURA’s programming model
and illustrates its novel features by example. Section 3 gives a for-
mal account of the core AURA language, including its type system
and operational semantics, along with our main technical results,
soundness and decidability of typechecking. Section 4 describes
our prototype implementation. Section 5 gives a larger scale exam-
ple demonstrating how AURA’s features work in concert. Section 6
situates AURA with respect to related work, especially prior work
on authorization logics and languages with dependent types. Fi-
nally, Section 7 concludes with a discussion of future avenues for
extending AURA.
AURA as we present it is most suitable as a compilation target

for a more convenient surface syntax. As such, we defer the im-
portant (and practical) issues of type inference, pattern match com-
pilation, and the like to future work. Additional topics for future
study include authentication, credential revocation, the interpreta-
tion of AURA values in cryptography, and integration with mixed
language (e.g. C or .NET) systems.

2. Programming in AURA
AURA is intended to be used to implement reference monitors [12]
for access control in security sensitive settings. A reference monitor
mediates access by allowing and denying requests to a resource
(based, in this case, on policy specified in an authorization logic).
It must also log accesses to enable ex post facto audit. This latter
point we have covered in detail elsewhere [40] (although we discuss
logging briefly in Section 2.3); in this paper we concentrate on

the details of integrating general purpose programming with an
authorization logic.
The potential design space of dependently-typed languages

is quite large, and there are many challenges in striking a good
balance between expressiveness and tractability of typechecking.
AURA’s design strives for simplicity, even at the cost of expressive-
ness. This section describes AURA’s design, concentrating on the
features relevant to access control.
As alluded to by the function playFor in the introduction, we use

an AURA implementation of a jukebox server as a running example
throughout this paper. The full example is given in Section 5; the
rest of this section will illustrate playFor in more detail.

2.1 AURA as an authorization logic
We first turn our attention to AURA’s assertions, which are based
on the polymorphic core calculus of dependency (DCC) [4] and in
particular on DCC’s interpretation as an authorization logic [2].1 In
both DCC and AURA, an indexed monad says associates proposi-
tions with principals. The statement a says P holds when a proof
for P is known, when a says P logically follows from monad oper-
ations that we will describe shortly, or when the principal a directly
affirms P . It is critical to note, however, that a says P does not im-
ply P. We augment DCC with dependent types, which allow prin-
cipals to assert propositions about data, and with the constructs say
and sign, which allow for the aforementioned direct affirmations.
Principals in AURA, written a, b, etc. and having type prin, rep-

resent distinct components of a software system. They may corre-
spond to human users or system components such as an operating
system kernel, a particular server, and so on. Formally, principals
are treated as special values in AURA; they are characterized by
their ability to index the family of says monads.
As ‘a says’ is a monad [42], we can construct a term of type

a says P from a proof p of P using the operation return a p. A
proof encapsulated in a says monad cannot be used directly; rather,
the monad’s bind operation, written (bind p (λx:P. q)) allows x
to stand in for the proof encapsulated by p and appear in the
expression q.
For example, consider the principals a and b, the song freebird,

and the assertion MayPlay introduced earlier. The statements
ok : a says (MayPlay a freebird)

delegate : b says ((p:prin) → (s:Song) →
(a says (MayPlay p s)) →
(MayPlay p s))

assert that a gives herself permission to play freebird and b dele-
gates to a the authority to make any variety of MayPlay statement
on his behalf. These two terms may be used to create a proof of
b says (MayPlay a freebird) as follows:

bind delegate (λd: ((p: prin) → (s: Song) →
(a says (MayPlay p s)) →
(MayPlay p s)).

return b (d a freebird ok))

Such a proof might have direct utility—it could be passed to the
playFor function if self is b—or it might become part of a larger
chain of reasoning.
In addition to uses of return, AURA allows for the introduction

of proofs of a says P without corresponding proofs of P by provid-
ing a pair of constructs, say and sign, that represent a principal’s
active affirmation of a proposition. The value sign(a, P) has type
a says P; intuitively we may think of it as a digital signature using

1 AURA is most similar to the cut-down variant of DCC called CDD [3].
Full DDC, as opposed to AURA and CDD, features a relaxed typing rule for
bind and admits type coercions unsuitable for access control.

a’s private key on proposition P. Such a value is intended to have a
stable meaning as it is passed throughout a distributed system.
Only the principal a—or, equivalently, programs with access

to a’s private key—should be able to create a term of the form
sign(a, P). We thus prohibit such terms from appearing in source
programs and introduce the related term say P, which represents
an effectful computation that uses the runtime’s current authority—
that is, its private key—to sign proposition P. When executed, say P
generates a fresh value sign(self, P), where self is a distinguished
principal representing the current runtime authority.
It is worth noting that a principal can assert any proposition,

even False. Because assertions are confined to the monad—thanks
to the non-interference property of DCC—such an assertion can
do little harm apart from making that particular principal’s own
assertions inconsistent. In practice, it is useful to restrict the kinds
of assertions that various principals can make, but, a priori, AURA
requires no such constraints.
The concept of a program’s runtime authority already has a nat-

ural analog in the operating system world—a UNIX process, for
example, has an associated user ID that often, but not always, cor-
responds to the user who started the process. In a more distributed
setting, running under the authority of a can indeed be represented
by possession of a’s private key. In such a setting objects of the
form sign(a, P) can be represented by actual digital signatures, and
principal identifiers—which, in AURA, are first class values of type
prin—can be thought of as public keys.
The restriction of authority to a single principal is only for sim-

plicity’s sake; although syntax would need to be changed, nothing
in our development would conflict with a more complex notion of
authority. AURA currently provides no means of transferring au-
thority, in effect disallowing programs from directly manipulating
private keys; this prevents AURA programs from creating new prin-
cipals (i.e., key pairs) at runtime but also trivially disallows the ac-
cidental disclosure of private keys. Were AURA to be extended with
support for dynamically generated principals, the addition of infor-
mation flow tracking could assist in ensuring that private keys stay
sufficiently private.

2.2 Authorization proofs and dependent types
By defining assertions as types and proofs as terms we are taking
advantage of the well-known Curry-Howard Isomorphism [19, 24]
between logic and programming languages. One benefit to this ap-
proach is that AURA programs use the same constructs to manip-
ulate both data and proofs. More critically it provides—via depen-
dent typing, which allows types to mention terms—an elegant way
for access control statements to mention data. For instance, in the
example given earlier, freebird is data that appears at the assertion
(i.e. type) level. The type signature for the function playFor in the
introduction is another example of such dependency.
AURA incorporates dependent types directly—in contrast to, for

example, using GADTs [34] or static equality proofs [37] to sim-
ulate the required dependencies. Such an approach allows straight-
forward use of data at the type level and avoids replication of the
same constructs in both static and dynamic form, but unconstrained
use of dependent types can quickly lead to an undecidable typing
judgment. Moreover, care must be taken to separate effectful com-
putations from pure proof objects.
Much like CIC [18], AURA has separate universes Type and

Prop, with the constants Type and Prop themselves being clas-
sified by Kind. The previously mentioned assertion MayPlay, for
instance, would be given the assertion type prin → Song → Prop.
Unlike CIC, both types of kind Type and propositions of kind Prop
describe data that may be available at runtime. Propositions, how-
ever, are required to be completely computation-free: propositions
never reduce and AURA does not employ type-level reduction dur-

ing typechecking, meaning that only dependencies on values (i.e.,
well-formed normal forms) for which equality comparison is avail-
able can be used in non-trivial ways. This turns out to be enough to
ensure the decidability of AURA’s type system.
AURA offers a type-refining equality test on atomic values—

for instance, principals and booleans—as well as a dynamic cast
between objects of equivalent types, which prove necessary for
certain equalities that arise only at runtime. For example, when
typechecking if self = a then e1 else e2, the fact that self = a is
automatically made available while typechecking e1 (due to the fact
that prin is an atomic type), and hence proofs of type self says P
can be cast to type a says P and vice-versa.
The distinction between Type and Prop is also illustrated by

the previously introduced say and sign. On the one hand, say P
certainly belongs in Type’s universe. We intend it to be reduced
by our operational semantics—and this reduction is an effectful (if
trivial) computation dependent on a program’s runtime authority.
On the other hand, sign(a, P) should be of type a says P , which,
like P , is of kind Prop. To solve this dilemma we introduce the
modality pf : Prop → Type, allowing us to give sayP the type pf
(self says P) of kind Type. The pf modality comes equipped with
its own bind and return operations, allowing proofs to be manip-
ulated by computations while keeping the worlds of computations
and assertions separate.
AURA’s dependent types also address something that might

have seemed odd about our cryptographic interpretation of the says
monad, namely that one most often thinks of digitally signing data,
whereas sign(a, P) signs only an assertion. With dependent types,
however, this issue evaporates, as an assertion can refer to whatever
data might be endorsed. We find this design compelling, because a
digital signature on raw data does not necessarily have a sensible
meaning; signing only propositions ensures that the signed data is
attributed with some semantics, just as, for example, a physical
signature on a contract will indicate whether the signer is party to
the contract or merely a witness.
Our previous work [40] addressed only the Prop fragment of

AURA; it did not consider the Type level constructs necessary for
programming. This paper presents a complete programming model
that includes recursive datatypes, constructs such as the pfmodality
and say operator, and dynamic type refinement in if statements,
which are absent from our previous work. The new additions to the
language (particularly recursive datatypes) significantly complicate
the metatheory.

2.3 Auditing in AURA
Passing proofs at runtime is also useful for after the fact auditing
of AURA programs. The full details are given elsewhere [40] but
we note that, when full proofs are logged for every resource ac-
cess, it becomes possible to determine how access was granted at a
very fine granularity. This is of great importance when the intent of
some institutional policy is not properly reflected in the actual rules
enforced by a software system—for example, an auditor can exam-
ine the proof that allowed an unwanted access to take place and
determine whether and where authority was improperly delegated.
These guarantees can be made as long as the interface to the

resources of interest is sufficiently rich: we can simply decree that
every interface function—that is, a function that wraps a lower level
operating system call—must write its arguments to the log. There
are no constraints on what the rest of the reference monitor may do
other than that it must respect this interface; it is not possible to in-
advertently add a path through the program that causes insufficient
information to be logged. This is in keeping with AURA’s general
philosophy of resilience toward programmer mistakes.
Returning to playFor, let us assume that there exists a native

function rawPlayFor : Song → Unit that is not security-aware and

hence is not available to the programmer. We define the interface
function playFor as simply

λs :Song. λp :prin. λproof :pf (self says MayPlay p s).
rawPlayFor s.

Because playFor is an interface function—i.e., because it has ac-
cess to rawPlayFor—its arguments will automatically be logged,
and because the access control policy is entirely encoded in
playFor’s signature, the log will automatically contain everything
an auditor needs to determine precisely how any song was autho-
rized to be played.

3. The AURA Core Language
This section presents the main technical contributions of this paper,
namely a formal description of the AURA core language, its type
system, operational semantics, and the corresponding proofs of
type soundness and decidability of typechecking. Due to space
constraints, we present only the key components of the type system.
Omitted details can be found in the companion tech report [25] and
the Coq implementation.
We adopt the design philosophy of elaboration-style semantics

(as used, for example, by Lee et. al [29]): the AURA intermedi-
ate language is intended to make typechecking as explicit as pos-
sible. Following this principle, our design eschews complex pat-
tern matches, equality tests over complex values, and implicit casts.
Our goal was to cleanly divide the compiler into two parts: an
elaboration phase that uses inference, possibly with heuristics and
programmer-supplied hints, to construct an internal representation
that makes all type information explicit; and a compilation phase
that processes the fully elaborated intermediate representation into
executable code.

3.1 AURA core syntax
As described above, AURA is a call-by-value polymorphic lambda
calculus. It consists of a “term-level” programming language
(whose expressions are classified by types of kind Type) for writ-
ing algorithms and manipulating data and a “proof-level” assertion
language (whose expressions are classified by propositions of kind
Prop) for writing proofs of access control statements. These two
languages share many features (λ-abstraction, application, con-
structors, etc.) and, because of dependent types, propositions and
types may both mention terms of either sort. To simplify the presen-
tation of AURA, it makes sense to unify as many of these constructs
as possible. We thus adopt a lambda-cube style presentation [10]
that uses the same syntactic constructs for terms, proofs, types,
and propositions. Different categories are distinguished by the type
system as necessary. This approach also has the appeal of greatly
reducing the number of objects in the language, which simplifies
both the metatheory and implementation. Our design was signifi-
cantly influenced by the Henk intermediate language [26], which
also adopts this compact representation.
The lambda-cube terms of the AURA core syntax are given by:
Terms t : : = x | ctr | . . .

| λx : t1. t2 | t1 t2 | (x : t1) → t2
| match t1 t2 with {b} | 〈t1 : t2〉

Branches b : : = · | b | ctr ⇒ t

Here, x ranges over variables, and ctr ranges over programmer-
defined constructors created using datatype declarations as de-
scribed below. In addition to the standard lambda abstraction,
application, and dependent arrows, AURA also has a pattern
matching construct and an explicit typecast. In the expression
match t1 t2 with {b}, t1 is the term under analysis, t2 is the
return type, and b is a list of branches that t1 is matched against.
Type annotation t2 ensures that typechecking is straightforward

even when the set of branches is empty. The explicit cast 〈t1 : t2〉
ensures (safely) that t1 be considered to have type t2.
To express and reason about access control, AURA extends the

core syntax above with additional terms. Here, and throughout the
rest of the paper, we use metavariable conventions that make it
easier to recall constraints placed on a term by the type system:
a ranges over principals, P ranges over propositions, p ranges over
proofs, e ranges over program expressions, and v stands for values.
All of these metavariables are synonymous with t, which we use to
indicate syntactic objects of any flavor. The AURA-specific syntax
is given by2:

t : : = . . . | Type | Prop | Kind
| prin | a says P | pf P
| self | sign(a,P) | sayP
| returns a p | binds e1 e2

| returnp p | bindp e1 e2

| if v1 = v2 then e1 else e2

3.2 Typechecking AURA
AURA’s type system contains the following judgments:

Well-formed signature S % &
Well-formed typing environment S % E
Well-typed term S;E % t : s
Well-typed match branches S;E; s; args % branches : t

Figure 1 shows the term typechecking rules. We omit the rules
for typechecking signatures and branches, though we describe their
salient features below.
In all these judgments, S is a signature that declares types,

propositions, and assertions (described in more detail below). A
typing environment E maps variables to their types as usual, but
it also records the hypothetical equalities among atomic run-time
values. In the definition of environments below, a binding x ∼
(v1 = v2):t indicates that values v1 and v2 have type t, and that
the run-time values of v1 and v2 are equal.

Environments E : : = · | E, x : t | E, x∼ (v1 = v2):t

3.3 Signatures: data declarations and assertions
Programmers can define bundles of mutually recursive datatypes
and propositions in AURA just as they can in other programming
languages. A signature S collects together these data definitions
and, as a consequence, a well-formed signature can be thought of
as map from constructor identifiers to their types. We omit the
formal grammar and typing rules for signatures, as they are largely
straightforward; here we explain signatures via examples.
Data definitions may be parameterized. For example, the famil-

iar polymorphic list declaration is written:

data List :Type → Type {
|nil :(t:Type) → List t
|cons :(t:Type) → t → List t → List t
}

AURA’s type system rules out data declarations that require
nontrivial equality constraints at the type level. For example, the
following GADT-like declaration is ruled out, since Bad t u would
imply t = u:

data Bad :Type → Type → Type {
|bad :(t:Type) → Bad t t
}

2 In the Coq development, these constructs are represented using constants
and term application.

S % E
S;E % Type : Kind

WF-TM-TYPE S % E
S;E % Prop : Kind

WF-TM-PROP

S % E S(ctr) = t

S; E % ctr : t
WF-TM-CTR

S % E E(x) = t

S;E % x : t
WF-TM-FV

S;E, x : t1 % t2 : k2 k2 ∈ {Type, Prop, Kind}
S;E % (x : t1) → t2 : k2

WF-TM-ARR

S;E % t : k S;E, x : t % u : k1 S;E % (x :u) → k1 : k2 k ∈ {Type, Prop, Kind} k2 ∈ {Type, Prop}
S;E % λx : t. u : (x : t) → k1

WF-TM-ABS

S;E % t1 : (x :u2) → u S;E % t2 : u2 val(t2) or x /∈ fv(u)

S;E % t1 t2 : {x/t2}u
WF-TM-APP

S;E % e : s s = ctr a1 a2 · · · an S(ctr) = (x1 : t1) → · · · (xn : tn) → u
branches cover S branches ctr S;E; s; (a1, · · · , an) % branches : t
S;E % s : u S;E % t : u u ∈ {Type, Prop}

S;E % match e t with {branches} : t
WF-TM-MATCHES

S % E
S;E % prin : Type

WF-TM-PRIN S % E
S;E % self : prin

WF-TM-SELF

S;E % a : prin S;E % P : Prop

S; E % a says P : Prop
WF-TM-SAYS

S;E % a : prin val(a) S;E % p : P S;E % P : Prop

S;E % returns a p : a saysP
WF-TM-SAYS-RET

S;E % e1 : a says P S;E % e2 : (x :P) → a says Q x /∈ fv(Q)

S; E % binds e1 e2 : a says Q
WF-TM-SAYS-BIND

S; · % a : prin S; · % P : Prop

S;E % sign(a, P) : a says P
WF-TM-SIGN

S;E % P : Prop

S;E % sayP : pf self says P
WF-TM-SAY

S; E % P : Prop

S;E % pf P : Type
WF-TM-PF

S;E % p : P S;E % P : Prop

S;E % returnp p : pf P
WF-TM-PF-RET

S;E % e1 : pf P S;E % e2 : (x :P) → pf Q x /∈ fv(Q)

S;E % bindp e1 e2 : pf Q
WF-TM-PF-BIND

S;E % v1 : k S; E % v2 : k atomic S k val(v1) val(v2) S; E, x∼ (v1 = v2):k % e1 : t S;E % e2 : t

S;E % if v1 = v2 then e1 else e2 : t
WF-TM-IF

S;E % e : s converts E s t

S; E % 〈e : t〉 : t
WF-TM-CAST

Figure 1. AURA typing rules

Logical connectives like conjunction and disjunction can be
encoded using dependent propositions, as in Coq and other type-
based provers. For example:

data And :Prop → Prop → Prop {
|both :(p1:Prop) → (p2:Prop) → p1 → p2 → And p1 p2
}

AURA’s type system conservatively constrains Prop definitions
to be inductive by disallowing negative occurrences of Prop con-
structors. Such a restriction is essential for consistency of the logic,
since otherwise it would be possible to write loops that inhabit any
proposition, including False. False itself is definable: it is a propo-
sition with no constructors:

data False :Prop { }

Assertions, like the MayPlay proposition from Section 2, are
uninhabited constants that construct Props:

assert MayPlay :prin → Song → Prop

While assertions are similar in flavor to datatypes with no construc-
tors, there is a key difference. When an empty datatype is scru-
tinized by a match expression, the match may be assigned any
type. Hence if we were to define MayPlay as an empty inductive
type, A says False would follow from A says MayPlay A freebird.
In contrast, there is no elimination form for assertions. This means
that principals may sign assertions without compromising their
says monad’s consistency.

3.4 Core term typing
Type is the type of computation expressions, and Prop is the type
of propositions. The constant Kind classifies both Type and Prop,
as shown in rules WF-TM-TYPE and WF-TM-PROP. (Here and
elsewhere, we use the lowercase word “type” to mean any classifier
in the type system—Prop and Type are both “types” in this sense.)
The typechecking rules for constructors declared in the signa-

ture (WF-TM-CTR) and for free variables (WF-TM-FV) are com-
pletely standard. More interesting is WF-TM-ARR, which states
that the type of an arrow is the type of arrow’s output type. The

latter is required to be one of Type, Prop, or Kind, which rules out
nonsensical arrow forms. For example, (x :Type) → Type is legal
whereas (x :Type) → self is not—the former could be the type of
the polymorphic list constructor while the latter doesn’t make sense
since self is a computation-level value.
The WF-TM-ABS rule for introducing functions is standard ex-

cept that, as in other lambda-cube like languages, AURA restricts
what sorts of abstractions may be created. The argument to a func-
tion can be a term value, a proof, a type or a proposition. The re-
sulting lambda must be typable with an arrow that itself has type
Type or Prop. These restrictions imply that lambda abstractions
may only be computational functions or proof terms. AURA does
not support Type–level lambdas (as seen in Fω) because doing so
would require support for β-reduction at the type level. Such re-
ductions, while useful for verification, appear superfluous here.
The interesting part of the WF-TM-APP rule is the side condition

requiring either that t2 is a value (val(t2)) or that u does not depend
on x (x /∈ fv(u)). This restriction has the effect that, while AURA
seems to be quite liberal with respect to the dependencies allowed
by well-formed (x :s) → t terms, the actual dependencies admitted
by the type system are quite simple. For instance, although the type
system supports singleton types like S(0), it cannot check S(1+2)
because the latter type depends on a non-value.
The upshot of these restrictions is that truly dependent types in

AURA depend on values—i.e. terms that cannot reduce. While this
limits the applicability of dependent types for program verification
tasks, it greatly simplifies the metatheory, since there is no possi-
bility of effectful computations appearing in a type.
Typechecking pattern match expressions is fairly standard (WF-

TM-MATCHES), though it is a bit intricate due to AURA’s support
for a rich class of parameterized recursive datatypes. Only ex-
pressions that have saturated (fully applied) types can be matched
against. The types of the branches must exhaustively match the
constructors declared in the signature, and any parameters to
the datatype being analyzed are also made available inside the
branches. Each branch must return an expression of the same
type, which is the result type of the entire match expression. Since
datatypes and propositions in AURA may be nullary (have zero con-
structors), typechecking without inference requires that the match
expression carry an annotation. The auxiliary definitions and the
judgments used for typechecking the branches themselves are pre-
sented in the companion tech report [25].

3.5 Principals and proofs
Principals are an integral part of access control logics, and AURA
treats principals as first-class objects with type prin. The only built-
in principal is self, which represents the identity of the currently
running process (see WF-TM-PRIN and WF-TM-SELF); additional
principal identifier constants could be accommodated by adding
them with type prin, but we omit such a rule for simplicity’s sake.
As described in Section 2, AURA uses the principal-indexed

says monad to express access control policies. The proposition
a says P means that principal a has asserted proposition P (ei-
ther directly or indirectly). The expression returns a p introduces
proofs into the a says monad, and binds e1 e2 allows for reasoning
under the monad. These constraints are shown in rules WF-TM-
SAYS, WF-TM-SAYS-RET and WF-TM-SAYS-BIND. The rules are
adapted from DCC [2], or more properly CDD [3], as AURA es-
chews DCC’s label lattice in favor of explicit delegation among
principals.
The expression sign(a,P) witnesses the assertion of propo-

sition P by principal a (WF-TM-SIGN). Since sign(a,P) is in-
tended to model evidence manufactured by a without justification,
it should never appear in a source program. Moreover, since signed
propositions are intended to be distributed and thus may escape the

converts E t t
CONV-REFL converts E t s

converts E s t
CONV-SYMM

converts E s u converts E u t
converts E s t

CONV-TRANS

x∼ (s = t):k ∈ E
converts E s t

CONV-AXIOM

converts E s1 t1 converts E s2 t2
converts E (s1 s2) (t1 t2)

CONV-APP

converts E s1 t1 converts E s2 t2
converts E (λx :s1. s2) (λx : t1. t2)

CONV-ABS

converts E s1 t1 converts E s2 t2
converts E ((x :s1) → s2) ((x : t1) → t2)

CONV-ARR

Figure 2. Conversion

scope of the running AURA program, they are required to be closed.
Note, however, that the declaration signature S must be available in
whatever context the signature is to be ascribed meaning. In prac-
tice, this means that two distributed AURA programs that wish to
exchange proofs need to agree on the signatures used to construct
those proofs.
Creating sign(a, P) requires a’s authority. AURA models the

authority of a running program with the principal constant self. The
sayP operation creates an object of type pf self says P . Intuitively,
this operation creates the signed assertion sign(self, P) and injects
it as a proof term for further manipulation (see WF-TM-SAY).
AURA uses the constant pf : Prop → Type to wrap the ac-

cess control proofs that witness propositions as program values,
as shown in the rule WF-TM-PF. The pf type operates monadi-
cally: returnp p injects a proof p into the term level and bindp al-
lows a computation to compose proofs (rules WF-TM-PF-RET and
WF-TM-PF-BIND). Such a separation between proofs and compu-
tations is necessary to prevent effectful program expressions from
appearing in a proof term. For example, if sayP was given type
self says P rather than pf (self says P), it would be possible to cre-
ate a bogus “proof” λx :Prop. say x; the meaning of this “proof”
would depend on the authority (self) of the program that applied
the proof object.

3.6 Equality and conversion
Some typing rules (e.g. WF-TM-APP) require checking that two
terms can be given the same type. Satisfying such constraints in a
dependently typed language requires deciding when two terms are
equal—a difficult static analysis problem in the best case.
In AURA we address this with a conditional construct. Dynam-

ically, if v1 = v2 then e1 else e2 steps to e1 when v1 and v2 are
equal, otherwise the expression steps to e2. Statically (rule WF-
TM-IF), the then branch is typed in an environment containing the
static constraint (v1 = v2). As we will see shortly, the constraint
may be used to perform safe typecasts. This is an instance of the
type refinement problem, well known from pattern matching in lan-
guages such as Coq [17], Agda [33], and Epigram [30].
AURA limits its built-in equality tests to inhabitants of atomic

types. The built-in prin type is atomic, as is any type defined by a
non-parameterized Type declaration, each of whose constructors
takes no arguments. The List type is not atomic, nor is List nat
(since cons takes an argument). However, the following Song type
is atomic:

data Song: Type { |freebird: Song |ironman: Song }

In other words, atomic types are prin and enumerated types. Our
definition of atomic type is limiting, but we believe it can be
naturally extended to first-order datatypes.
With equalities over atomic types in the context, we can now

consider the issue of general type equality. As in standard presenta-
tions of the Calculus of Constructions [10] we address type equality
in two acts.
Two types in AURA are considered equivalent when they are re-

lated by the conversion relation. This relation, written converts and
defined in Figure 2, is of course reflexive, symmetric, and transi-
tive; the key rule is CONV-AXIOM, which uses equality assump-
tions in the environment. For instance, under assumption x = self,
term x says P converts to self saysP . As equalities only mention
atomic values, conversion will only alter the “value” parts of a
type—convertible types always have the same shape up to embed-
ded data values.
AURA contains explicit, safe typecasts. As specified in rule WF-

TM-CAST, term 〈e : T 〉 is assigned type T whenever e’s type is
convertible with T . Many standard presentations of dependently
typed languages use implicit conversions, which may occur any-
where in a type derivation, but the explicit cast is appealing as it
gives an algorithmic type system. Casts have no run-time effect
and are simply discarded by our operational semantics.

3.7 Evaluation rules
Figure 3 defines AURA’s operational semantics using a call-by-
value small-step evaluation relation.
Most of the evaluation rules are straightforward. The rule PF-

BIND is a standard beta reduction for monads. The term say P
creates a proof that principal self has asserted that proposition P
is true; therefore, it evaluates to an assertion “signed” by princi-
pal self. There are two possibilities in the evaluation of if v1 =
v2 then e1 else e2: when v1 equals v2, it evaluates to e1, other-
wise it evaluates to e2. We define two auxiliary reduction relations
to implement the reduction rule for pattern matching.
We write (v, b))→b e to denote the evaluation of a value v

against a set of branches. These evaluation rules search through the
list of branches until v matches with the constructor of one of the
branches, at which point the rules focus on the branch and supply
the body of the branch with the arguments in v. The tricky part
lies in correctly identifying the arguments in v and discarding the
type parameters. We write (v, c, body))→c (e, n) to denote the
evaluation of the body of the branch where v matches with the
constructor c in the branch. Here, n is the number of parameters
that should be discarded before the first argument of v is found. For
example, the first parameter nat in the value cons nat 3 (nil nat) of
type List nat has no computational content; therefore it should be
discarded during the evaluation of pattern matching. Note that the
semantics represents constructors as a pair of the constructor name
c and its number of type parameters. For instance, in the definition
of polymorphic lists shown previously, the representation of cons
is (cons, 1).

3.8 Metatheory
We have proved soundness (in terms of progress and preservation)
for AURA. The proofs are fully mechanized in the Coq proof
assistant.

Theorem 1 (Preservation). If S; · % e : t and e)→ e′, then
S; · % e′ : t.

Theorem 2 (Progress). If S; · % e : t then either val(e) or exists e′

such that e)→ e′.

We have also proved that typechecking in AURA is decidable.

Theorem 3 (Typechecking is Decidable).

t)→ t′

val(v)

(λx : t. e) v)→ {v/x}e APP

bindp (returnp e1) e2)→ e2 e1
PF-BIND

sayP)→ returnp (sign(self, P))
SAY

v1 = v2

if v1 = v2 then e1 else e2)→ e1
IF-EQ

v1 *= v2

if v1 = v2 then e1 else e2)→ e2
IF-NEQ

val(v)

〈v : t〉)→ v
CAST

(v, branches))→b e

match v t with {branches})→ e
MATCH

(v, b))→b e

(v, c, body))→c (e, 0)

(v, brn c body {rest}))→b e
B-HERE

(v, rest))→b e

(v, brn c body {rest}))→b e
B-EARLIER

(v, c, body))→c (e, n)

((c, n), (c, n), body))→c (body, n)
CTR-BASE

val(v2) m > 0
(v1, (c, n), body))→c (body, m)

(v1 v2, (c, n), body))→c (body, m − 1)
CTR-PARAM

(v1, (c, n), body))→c (e, 0)

(v1 v2, (c, n), body))→c (e v2, 0)
CTR-ARG

Figure 3. Reduction Rules

• If S % & and S % E, then ∀e, ∀t, it is decidable whether there
exists a derivation such that S;E % e : t.

• If S % & then ∀E it is decidable whether there exists a derivation
such that S % E.

• It is decidable whether there exists a derivation such that S % &.

We have mechanized all parts of these decidability results by
giving constructive proofs of the form φ ∨ ¬φ. For instance, the
constructive proof of (S % &) ∨ ¬(S % &) is a total algorithm that
decides signature well-formedness.
For ease of explanation, the judgments and rules presented in

this section are a close approximation of the formal definitions of
AURA. For instance, in order to prove the preservation of pattern
matching, we have to take the parameters and arguments supplied
to the constructor in the pattern matching evaluation rules. In order
to prove the decidability of typechecking, we strengthened the
typing judgments to take two signature arguments: one contains the
type declarations of the top-level type constructors (e.g., List) that
can appear in mutually recursively defined datatypes and the other
is used for looking up the constructors (e.g., nil, cons) of the top-
level type constructors. However, this simplified presentation has

the same key invariants as the full type system. The full detailed
version can be found in the companion tech report.

4. Validation and Prototype Implementation
Mechanized proofs AURA has 20 reduction rules, 40 typing judg-
ments (including the well-formedness of terms, environments and
signatures), and numerous other relations such as atomic equality
types to constrain the type system. For a system of this size, im-
plementing a fully complete, mechanized version of the soundness
proofs is challenging.
We formalized the proofs of soundness and the decidability

of typechecking for AURA in the Coq proof assistant3. We use a
variant of the locally nameless representation [9] to formalize the
metatheory of the language. Well documented definitions of AURA
including typing rules, reduction rules, and other related relations
require about 1400 lines of Coq code. The soundness proofs take
about 6000 lines of Coq code, and the proofs of the decidability of
typechecking take about 5000 lines of Coq code. The automation
used in the these Coq proofs is relatively rudimentary; we did not
devote much time to writing automation tactics.
The most intricate parts of the language design are the invariants

of the inductive datatypes, the dependent types, atomic equality
types, and the conversion relations. This complexity is reflected in
the Coq proof development in two ways: one is in the number of
lemmas stating the invariants of the datatype signatures, the other
is in the number of revisions made to the Coq proofs due to design
changes motivated by failure to prove soundness. We found that
for such a complicated system, mechanized proofs are well-suited
for dealing with design iteration, as Coq can easily identify which
proofs require modification when the language design changes.
Because AURA is a superset of system F with inductively de-

fined datatypes, we conjecture that, without much difficulty, we
could extract mechanized soundness proofs of other related type
systems from the Coq proofs of AURA.

Typechecker and interpreter The prototype AURA typechecker
and interpreter together implement the language as it is formalized
in Coq with only minor differences. The typechecker recognizes a
small number of additional types and constants that are not present
in the formal definition, including literal 32-bit integers, literal
strings and tuples. Although it is derivable in AURA, we include a
fix constant for defining recursive functions; by using this constant
together with tuples, mutually recursive functions can be defined
more succinctly than is possible in the formal definition. To allow
for code reuse, we have added an include statement that performs
textual substitution from external files. The software sorts included
files in dependency order and copies each only once.
AURA is not meant for general-purpose application develop-

ment; instead, it is designed to be used synergistically with exist-
ing production programming languages. One way we plan to take
to reach this goal is to eventually target the .NET runtime, as it
encourages language intermingling (see Section 7). We plan to ex-
pose authorization polices written in AURA to the .NET common
type system by providing libraries for interacting at runtime with
propositions. We will also explore the possibilities of rewriting an-
notated methods in compiled .NET code to make implicit calls to
these libraries. This approach allows any language that uses the
common type system to interoperate with AURA.

5. An Extended Example
In this section, we illustrates the key features of AURA’s type
system by explaining a program implementing a simple streaming
music server.
3 Code available at: http://www.cis.upenn.edu/~stevez/sol/

The extended code sample is given in Figures 4 and 5. The
example program typechecks in the prototype AURA interpreter
and uses some of the language extensions discussed in Section 4.
On line 1) the program imports library code that defines utility
types (such as dependent tuples and lists).
We imagine that the server implements a policy in which every

song may have one or more owners, corresponding to principals
who intrinsically have the right to play the song. Additionally, song
owners may delegate their listening rights to other principals.
This policy is defined over predicates Owns and MayPlay,

which are declared as assertions in lines 5 and 6. Recall that as-
sertions are appropriate because we cannot expect to find closed
proofs of ownership and delegation in pure type theory.
The main policy rule, shareRule (line 12) is defined using a say

expression. The type of shareRule is an implication wrapped in two
monads. The outer pfmonad is required because say accesses a pri-
vate key and must be treated effectfully. The inner self says monad
is required to track the provenance of the policy. The implication
encodes the delegation policy above. This rule provides a way to
build up a value of type pf (self says (MayPlay a s)), which is re-
quired before a can play song s.
The exact form of shareRule is somewhat inconvenient. We

derive two more convenient rules, shareRule′ and shareRule′′
(lines 53 and 76). These rules use monadic bind and return op-
erations to change the placement of pf and says type construc-
tors relative to shareRule’s type. The resulting type of shareRule′′
shows that one can obtain a proof of pf (self says (MayPlay a s))
by a simple application of shareRule′′ to various arguments, as
shown in line 101.
The key functionality of the music server is provided by a func-

tion stub, playFor, which is intended to model an effectful func-
tion that streams a provided song to a specified principal. Its type
is given by the annotation on line 20. The playFor function takes
the song to be played and the principal it should play on behalf
of as its first two arguments. The third argument is a proof of the
proposition self says (MayPlay A s), demonstrating the requesting
principal’s capability to play the song, which is required by the
server’s policy. As modeling an audio API would clutter the exam-
ple, playFor simply returns a unit value. In a real implementation,
playFor would call into the trusted computing base, which would
also log appropriate proofs for future auditing.
The remaining code implements the application’s main func-

tionality. The handleRequest function takes a delegation request
and, using a provided database of owner information, attempts to
construct an appropriate self says MayPlay proof. If it succeeds,
playFor is invoked.
The implementation of handleRequest (line 93) is straightfor-

ward. There are two interesting things to note. First, handleRequest
takes a database of owner information expressed as a list of
OwnerRecords. OwnerRecord (line 8) is an inductive type whose
single constructor has a dependent type. Because ownerRecord’s
third argument depends on its first two, OwnerRecord encodes an
existential type. Second, the match expression on line 98 relies
on the fact that (getOwnerProof s o l) returns an object of type
Maybe (pf (self says (Owns p s))). Getting such a type is possible
because, when getOwnerProof pulls a proof from the list, its type
is refined so that the existentially bound principal and song are
identified with p and s.

GetOwnerProof (line 30) performs this type refinement in sev-
eral steps. It uses the fixpoint combinator (line 33) to perform a list
search. After each OwnerRecord is decomposed, we must check its
constituent parts to determine if it is the correct record and, if so,
refine the types appropriately. The action occurs between lines 42
and 48. At runtime the first if expression tests for dynamic equal-
ity between the principal we’re searching for, p, and the princi-

include ”tuple.core” include ”list.core”
2

data Song :Type { |freebird: Song |ironman: Song }
4

assert Owns :prin → Song → Prop;
6 assert MayPlay :prin → Song → Prop;

8 data OwnerRecord :Type {
|ownerRecord :(p: prin) → (s: Song) →

10 (pf (self says (Owns p s))) → OwnerRecord }

12 let shareRule :
pf (self says ((o: prin) → (r: prin) → (s: Song) →

14 (Owns o s) → (o says (MayPlay r s)) → (MayPlay r s))) =
say ((o: prin) → (r: prin) → (s: Song) →

16 (Owns o s) → (o says (MayPlay r s)) → (MayPlay r s))
in

18

(∗ A real implementation would do something here ∗)
20 let playFor :(s: Song) → (p: prin) →

(pf (self says (MayPlay p s))) → Unit =
22 λs: Song . λp: prin . λproof: (pf (self says (MayPlay p s))) . unit

in
24

let notFound :(p: prin) → (s: Song) →
26 (Maybe (pf (self says (Owns p s)))) =

λp: prin. λs: Song. nothing (pf (self says Owns p s))
28 in

30 let getOwnerProof: (s: Song) → (p: prin) →
(List OwnerRecord) → (Maybe (pf (self says (Owns p s)))) =

32 λs: Song . λp: prin . λownerRecords: List OwnerRecord .
fix (λrec: (List OwnerRecord) →

34 (Maybe (pf (self says (Owns p s)))).
λl: (List OwnerRecord) .

36 match l with (Maybe (pf (self says Owns p s))) {
|nil → notFound p s

38 |cons → λx:OwnerRecord. λxs: List OwnerRecord .
match x with (Maybe (pf (self says Owns p s))) {

40 |ownerRecord → λp′:prin. λs′:Song.
λproof: pf (self says (Owns p′ s′)).

42 if p = p′
then if s = s′

44 then
just (pf (self says (Owns p s)))

46 〈proof: (pf (self says (Owns p s)))〉
else rec xs

48 else rec xs
} })

50 ownerRecords
in

52

let shareRule′ :
54 (pf ((o: prin) → (r: prin) → (s: Song) →

(self says (Owns o s)) → (o says (MayPlay r s)) →
56 (self says (MayPlay r s)))) =

bind shareRule (λsr: (self says
58 ((o: prin) → (r: prin) →

(s: Song) → (Owns o s) →
60 (o says (MayPlay r s)) →

(MayPlay r s))) .
62 return (λo: prin. λr: prin. λs: Song.

λowns: (self says (Owns o s)).
64 λmay: (o says (MayPlay r s)).

bind sr (λsr′: ((o′: prin) → (r′: prin) → (s′: Song) →
66 (Owns o′ s′) → (o′ says (MayPlay r′ s′)) →

(MayPlay r′ s′)) .
68 bind owns (λowns′ :(Owns o s).

return self (sr′ o r s owns′ may)))))
70 in

Figure 4. AURA code for a music store (cont. in Figure 5).

76 let shareRule′′: (o: prin) → (p: prin) → (s: Song) →
(pf self says (Owns o s)) →

78 (pf (o says (MayPlay p s))) →
(pf self says (MayPlay p s)) =

80 λo: prin. λp: prin. λs: Song.
λownsPf: pf (self says (Owns o s)).

82 λplayPf: pf (o says (MayPlay p s)).
bind ownsPf (λopf: (self says (Owns o s)).

84 bind playPf (λppf: (o says (MayPlay p s)).
bind shareRule′ (λsr′:

86 ((o′: prin) → (r′: prin) → (s′: Song) →
(self says (Owns o′ s′)) →

88 (o′ says (MayPlay r′ s′)) →
(self says (MayPlay r′ s′))) .

90 (return (sr′ o p s opf ppf)))))
in

92

let handleRequest: (s: Song) → (p: prin) → (o: prin) →
94 (List OwnerRecord) →

(delPf: pf (o says (MayPlay p s))) → Unit =
96 λs: Song. λp: prin. λo: prin. λl: List OwnerRecord.

λdelPf: pf (o says (MayPlay p s)).
98 match (getOwnerProof s o l) with Unit {

|nothing → unit
100 |just → λx: (pf (self says (Owns o s))).

playFor s p (shareRule′′ o p s x delPf)
102 }

in unit

Figure 5. AURA code for a music store (cont. from Figure 4).

pal store in the current record, p′. A similar check is performed
for between Songs s and s′. If both checks succeed then we cast
proof:pf (self says Owns p′s′) to type pf (self says Owns p s) and
return it packaged as aMaybe. If either dynamic check fails we re-
peat again, and, if no match is found, we eventually return Nothing.

6. Related Work
We have published related results on AURA0, a language closely re-
lated to the Prop fragment of AURA [40]. This includes soundness
and strong normalization proofs for AURA0, as well as discussion
and examples of audit in the presence of authorization proofs.
One intended semantics for AURA implements objects of form

sign(A, P) as digital signatures. All cryptography occurs at a lower
level of abstraction than the language definition. This approach
has previously be used to implement declarative information flow
policies [41]. An alternative approach is to treat keys as types or
first class objects and to provide encryption or signing primitives
in the language [7, 15, 36, 28, 27]. Such approaches typically
provide the programmer with additional flexibility but complicate
the programming model.

Authorization logics Many logics and languages [5, 6, 14, 11,
21, 2, 20] have tracked authorization using says. We follow the ap-
proach of DCC [2], a logic in which says is defined as an indexed
monad. This is compelling for several reasons. First, DCC proofs
are lambda-terms, a fact we exploit to closely couple the Prop and
Type universes. Second, DCC is a strong logic and important au-
thorization concepts, such as the acts-for relation and the hand-
off rule (A saysB acts-for A) → (B acts-for A), can be defined or
derived. Third, DCC is known to enjoy a non-interference prop-
erty: in the absence of delegation, statements in the A says monad
will not affect the B says monad. AURA modifies DCC in several
ways. In addition to adding dependent types, AURA omits DCC’s
protects relation. The protects relation strengthens monadic bind,
making propositions A says (B says P) and B says (A says P) inter-
derivable. While useful in other settings, such equivalences appear

incorrect for access control. Additionally AURA’s use of signatures
changes some meta-theoretic properties of DCC leading to, for ex-
ample, a more subtle proof of normalization [40].
The Grey project [11] uses proof carrying authorization in a

manner similar to AURA. In Grey, mobile phone handsets build
authorization proofs that unlock doors. While AURA is a unified
authorization logic and computation language, Grey’s logic is not
integrated with a computation language.
DeYoung, Garg, and Pfenning [20] describe a constructive au-

thorization logic that is parameterized by a notation of time. Propo-
sitions and proofs are annotated with time intervals during which
they may be judged valid. This allows revocation to be modeled as
credential expiration.

Language-based access control The trust management system
PolicyMaker [13] treats the handling of access control decisions
as a distributed programming problem. A PolicyMaker assertion
is a pair containing a function and (roughly) a principal. In gen-
eral, assertion functions may communicate with each other, and
each function’s output is tagged by the associated principal. Pol-
icyMaker checks if a request complies with policy by running all
assertion functions and seeing if they produce an output in which a
distinguished principal POLICY says “approve”. Principal tags ap-
pear similar is purpose, but not realization, to says in AURA. Note
also that expressing security properties via term-level computation
is fundamentally different from expressing them as types, the ap-
proach followed in other work discussed here. The ideas in Policy-
Maker have been refined in KeyNote [13] and REFEREE [16].
Fournet, Gordon and Maffeis [21, 22] discuss authorization

logic in the context of distributed systems. They use a limited
form of dependent pairs to associate propositions with data. Unlike
in AURA, proofs are erased at runtime. Consequently, their type
discipline is best suited for closed systems that do not require high-
assurance logging.
The Fable language [38] associates security labels with data val-

ues. Labels may be used to encode information flow, access control,
and other policies. Technically, labels are terms that may be re-
ferred to at the type level; colored judgments separate the data and
label worlds. The key security property is that standard computa-
tions (i.e. application computations described with color app) are
parametric in their labeled inputs. Unlike AURA proofs, the label
sub-language (i.e. policy computations described with color pol)
admits arbitrary recursion. Hence the color separation may restrict
security sensitive operations to a small trusted computing base, but
does not give rise to a logical soundness property.

Dependent type theory The AURA language design was influ-
enced by dependent type systems like the Calculus of Construc-
tions (CoC) [10, 18]. Both CoC and AURA contain dependent types
and a unified syntax encompassing both types and terms. However
there are several important differences between CoC and AURA.
Most critically, CoC’s type equality includes beta equivalence but
AURA’s does not. Type-level beta reduction, while convenient for
verification, is unnecessary for expressing authorization predicates,
and greatly complicates language design and use.
As realized in the Coq proof assistant [17], CoC can contain

inductive types and different universes for computation and logic
types—AURA universes Prop and Type correspond to Prop and
Set in Coq. However, because Set is limited to pure computations,
Coq does not need AURA’s pf mechanism to separate Prop from
Set. In Coq all inductive declarations are subject to a complex pos-
itivity constraint which ensures inductive types have a well-defined
logical interpretation. By contrast, AURA uses a simpler positivity
constraint in Prop and no constraint in Type. Additionally, AURA
permits less type refinement than Coq does for type indices—Coq
datatypes can be used to encode GADTs. Compared with Coq,

AURA is strictly weaker for defining logical predicates, but is more
expressive for defining datatypes for use in computation.
Several other projects have combined dependent types and prag-

matic language design. Ynot (an embedding of Hoare Type The-
ory [32] in Coq), Agda [33], and Epigram [30] are intended to sup-
port general purpose program verification and usually require that
the programmer construct proofs interactively. By contrast, Depen-
dent ML [47], ATS [47, 46], and RSP1 [44] provide distinguished
dependency domains and can only express constraints on objects
from these domains. These dependency domains are intended to
be amenable to automated analysis. Cayenne [8] extends Haskell
with general purpose dependent types. In Cayenne, type equality is
checked by normalizing potentially divergent Haskell terms, a strat-
egy which may cause typechecking itself to diverge. Hancock and
Setzer [23] present a core calculus for interactive programming in
dependent type theory; their language uses an IO monad to encap-
sulate stateful computations. Inhabitants of the monad are modeled
as imperative programs and type equality is judged up to a bisimu-
lation on (imperative) program text.
Peyton Jones and Meijer describe the Henk typed intermediate

language [26]. Henk is an extension of the lambda cube family of
programming languages that includes CoC. Like AURA, Henk is
intended to be a richly-typed compiler intermediate language. Un-
like AURA, Henk has not been proved sound. Additionally, its lack
of a pf monad (or equivalent technique for isolating computations
from proofs) makes it unsuitable for programming in the presence
of both dependent types and effects.

7. Future Work
Future work: Theory One important direction for future work is
to study AURA’s security properties, such as the non-interference
of AURA’s authorization logic and the strong normalization of
AURA’s authorization proofs. The non-interference property of au-
thorization logics (c.f. [2]) allows analysis on the influence of
one principal’s assertions to other principals’ beliefs; this provides
more confidence in the correctness of authorization logics. Since
AURA used DCC as the authorization logic, we believe a proof sim-
ilar to that presented in [2] is also possible for AURA.
AURA allows programmers to specify secure functions such as

playFor to protect access to resources. As a corollary of the type
safety theorem, these functions cannot be invoked unless a valid
proof is provided. To ensure that proofs are meaningful and can
later be compared during auditing, we would like to prove that
every reduction of a proof will result in the same normal form.
In our previous work [40], we have proved that a simplified Prop
fragment of AURA is strongly normalizing and confluent. As future
work, we intend to prove the same results for the fullProp fragment
of AURA using similar techniques.
As discussed in Section 3, AURA’s restrictions on dependency

and its weak notion of type refinement allow for decidable type-
checking. We believe that there may be other decidable, but more-
liberal, variants of the type system. As we continue to write AURA
programs, we expect to discover precisely what relaxations of the
type system would be useful to programmers. Additionally, the
literature on GADTs [34] and dependent pattern matching [33]
promises to be a fertile source of inspiration and examples. Future
versions of AURA may be extended along these lines.
Likewise, while making the pf construct a monad was a conve-

nient and effective design decision, we might be able to relax its
treatment. For instance, pf’s elimination form is currently monadic
bind, but it is probably safe to instead eliminate pf by pattern
matching when constructing arbitrary objects in Type. We conjec-
ture that this does not affect the soundness of AURA, and we plan
to explore such alternative designs in the future.

Section 2 describes the correspondence between a says P
and objects digitally signed by a’s private key. It is natural,
then, to wonder about the possibility of an analog for public key
encryption—perhaps terms of type T for a could be constructed
from objects of type T encrypted with a’s public key. It is unclear
how to integrate such an additional construct with AURA, not least
because while the says monad makes complete sense operating
only at the Prop level, we almost certainly want to encrypt data of
kind Type. Additionally, our use of dependent types means that the
type of an AURA term will often reference part of the term, which
may well be unacceptable for data that is meant to be encrypted.
The tracking of information flow was one of the first uses pro-

posed for DCC [4], and even without encryption AURA’s assertions
are sometimes reminiscent of confidentiality tracking; were encryp-
tion to be added, the similarities would be even more pronounced. It
may be possible to take advantage of this by equipping AURA with
a more general notion of information flow—which does not neces-
sarily have as straightforward a cryptographic interpretation—for
use internal to a single well-typed application while reverting to
the coarser-grained says (and possibly for) when communication
with the outside world is desired. The challenge, of course, is to
make this change of granularities as fluid and light as possible.
Even without information flow it may still be useful to have a

better idea of which proofs may come from the outside world. After
all, operations on digital signatures are not trivial, but since proofs
are defined to be computation-free, a purely local proof could be
given a more efficient but less portable representation, and certain
proofs might be completely elided at runtime. For the first case,
we would first need to extend our formalism with some notion of
network communication; inference could be performed backwards
from communication points to ascertain which proofs need not be
represented in portable form. As an initial step towards recognizing
the second case, we might consider an additional form of abstrac-
tion, with an argument that cannot be used in certain ways but is
guaranteed to be necessary only at compile time; ideally, however,
we would want to infer these abstractions during compilation.
It is clear from our examples that AURA is fairly verbose. As

it is meant to be an intermediate language, this is not a pressing
usability issue. We hope that a higher-level language that generates
AURA will be able to cut down on this verbosity using inference
techniques. Our proof-passing style also suggests the use of some
variety of proof inference. Of course, this very quickly becomes
undecidable, but that does not rule out practical partial solutions.
Finally, although AURA emphasizes the security aspects of pro-

gramming with an embedded authorization logic, there might be
other applications of this idea. In particular, one of the challenges
of making program verification via dependent types practical is
the need to construct and otherwise manipulate proof objects. Of
course, one can always add axioms to the logic, but doing so can
easily compromise its consistency. Failures due to a poor choice of
axioms might be hard to isolate when debugging. The says mon-
ads of DCC provide a possible intermediate ground: One could
imagine associating a principal with each module of the program
and then allowing modules to make assertions. Explicit trust dele-
gations would then be required when importing axioms from one
module to another; such delegations would document the module
dependencies and help the typechecker isolate uses of faulty ax-
ioms. We speculate that it is even possible that blame (in the style
similar to that proposed by Wadler and Findler [43]) can be appro-
priately assigned to offending modules whenever a run-time error
caused by incorrect assertions is encountered.

Future work: Practice The single-step interpreter is useful as a
tool for checking the correctness of small examples; however, it is
infeasible to use it to run code in a production environment. As
such, we are extending the implementation to generate CIL byte-

code compatible with both Microsoft’s .NET CLR and the open-
source Mono runtime. Don Syme’s work on ILX aids us greatly
in this effort. ILX, described in [39], is a group of extensions to
the CIL that facilitates the use of higher-order functions, discrimi-
nated unions and parametric polymorphism. By compiling for this
existing standard execution environment, we will gain access to the
ecosystem of .NET software and libraries. Most notably, we should
be able to make use of existing code for cryptography and cross-
platform networking. We will also be free from having to worry
about lower-level issues like efficient machine code generation and
garbage collection, both of which are well outside of the AURA
project’s scope.
Additionally, there remain practical issues that AURA must ad-

dress in order to fully express policies likely to be found in its in-
tended problem domain. Chief among these is the demand for the
signatures that expire, either due to explicit revocation or simply the
passage of time. This stands in contrast to our current formalism—
and, indeed, most formalisms of programming languages, as a term
that successfully typechecks is generally seen as valid for regard-
less of the time or the state of the world. It would, of course, be
possible to define the operational semantics of AURA such that ev-
ery operation has a chance to fail at runtime due to digital signature
expiration, but this could easily make programming quite cumber-
some. Instead, we hope to find a solution that allows time and revo-
cation to be referenced by AURA in an intuitive way; one possibil-
ity, explored by Garg and Pfenning [20], is the use of linear logic,
which is naturally suited to describing resources that can, in some
sense, be used up.
Acknowledgements: This research is supported in part by NSF
grants CNS-0524059, CCF-0524035, and CCF-0716469.

References
[1] Martı́n Abadi. Logic in access control. In Proceedings of the 18th

Annual Symposium on Logic in Computer Science (LICS’03), pages
228–233, June 2003.

[2] Martı́n Abadi. Access control in a core calculus of dependency. In
Proceedings of the 11th ACM SIGPLAN International Conference
on Functional Programming, ICFP 2006, Portland, Oregon, USA,
September 16-21, 2006, pages 263–273. ACM, 2006.

[3] Martı́n Abadi. Access control in a core calculus of dependency.
Computation, Meaning, and Logic: Articles dedicated to Gordon
Plotkin ENTCS, 172:5–31, April 2007.

[4] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A
core calculus of dependency. In Proc. 26th ACM Symp. on Principles
of Programming Languages (POPL), pages 147–160, San Antonio,
TX, January 1999.

[5] Martı́n Abadi, Michael Burrows, Butler W. Lampson, and Gordon D.
Plotkin. A calculus for access control in distributed systems.
Transactions on Programming Languages and Systems, 15(4):706–
734, September 1993.

[6] Andrew W. Appel and Edward W. Felten. Proof-carrying authen-
tication. In CCS ’99: Proceedings of the 6th ACM conference on
Computer and communications security, pages 52–62, New York,
NY, USA, 1999. ACM.

[7] Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographi-
cally masked information flows. In Proceedings of the International
Static Analysis Symposium, LNCS, Seoul, Korea, August 2006.

[8] Lennart Augustsson. Cayenne–a language with dependent types. In
Proc. 3rd ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 239–250, September 1998.

[9] Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy
Pollack, and Stephanie Weirich. Engineering formal metatheory.
In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, pages 3–15. ACM, 2008.

[10] Henk P. Barendregt. Lambda calculi with types. In Samson
Abramsky, Dov M. Gabbay, and Thomas S. E. Maibaum, editors,
Handbook of Logic in Computer Science, volume 2, pages 117–309.
Clarendon Press, Oxford, 1992.

[11] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter,
Jason Rouse, and Peter Rutenbar. Device-enabled authorization in the
Grey system. In Information Security: 8th International Conference,
ISC 2005, pages 431–445, September 2005.

[12] Matt Bishop. Computer Security: Art and Science. Addison-Wesley
Professional, 2002.

[13] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote:
Trust management for public-key infrastructures (position paper).
Lecture Notes in Computer Science, 1550:59–63, 1999.

[14] J.G. Cederquist, R. Corin, M.A.C. Dekker, S. Etalle, and J.I. den
Hartog. An audit logic for accountability. In The Proceedings of the
6th IEEE International Workshop on Policies for Distributed Systems
and Networks, 2005.

[15] TomChothia, Dominic Duggan, and Jan Vitek. Type based distributed
access control. In Proceedings of the 16th IEEE Computer Security
Foundations Workshop (CSFW’03), Asilomar, Ca., USA, July 2003.

[16] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick,
and Martin Strauss. REFEREE: Trust management for web
applications. Computer Networks and ISDN Systems, 29:953–964,
1997.

[17] The Coq Development Team, LogiCal Project. The Coq Proof
Assistant Reference Manual, 2006.

[18] T. Coquand and G. Huet. The calculus of constructions. Information
and Computation, 76, 1988.

[19] Haskell B. Curry, Robert Feys, and William Craig. Combinatory
Logic, volume 1. North-Holland, Amsterdam, 1958.

[20] Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization
logic with explicit time. In Proceedings of the 21st IEEE Computer
Security Foundations Symposium (CSF-21), Pittsburgh, June 2008.

[21] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type
discipline for authorization policies. In Proc. of the 14th European
Symposium on Programming, volume 3444 of LNCS, pages 141–156,
Edinburgh, Scotland, April 2005. Springer-Verlag.

[22] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type
discipline for authorization in distributed systems. In Proc. of the
20th IEEE Computer Security Foundations Symposium, pages 31–48,
Venice, Italy, July 2007.

[23] Peter Hancock and Anton Setzer. Interactive programs in dependent
type theory. In Proceedings of the 14th Annual Conference of the
EACSL on Computer Science Logic, pages 317–331, London, UK,
2000. Springer-Verlag.

[24] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindly, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda-Calculus, and Formalism, pages 479–
490. Academic Press, New York, 1980.

[25] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke
Zarko, Joseph Schorr, and Steve Zdancewic. Aura: A programming
language for authorization and audit, preliminary technical results.
Technical Report MS-CIS-08-10, U. Pennsylvania, 2008.

[26] Simon Peyton Jones and Erik Meijer. Henk: A typed intermediate
language. In Proceedings of the Types in Compilation Workshop,
Amsterdam, June 1997.

[27] Peeter Laud. On the computational soundness of cryptographically
masked flows. SIGPLAN Not., 43(1):337–348, 2008.

[28] Peeter Laud and Varmo Vene. A type system for computationally
secure information flow. In Proceedings of the 15th International
Symposium on Fundamentals of Computational Theory, volume
3623, pages 365–377, Lübeck, Germany, 2005.

[29] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized
metatheory of Standard ML. In POPL ’07: Proceedings of the

34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173–184, 2007.

[30] Conor McBride. The Epigram Prototype: a nod and two winks,
April 2005. Available from http://www.e-pig.org/downloads/
epigram-system.pdf.

[31] Andrew C. Myers, Stephen Chong, Nathaniel Nystrom, Lantian
Zheng, and Steve Zdancewic. Jif: Java information flow. 1999.

[32] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and
separation in Hoare Type Theory. In Proc. 11th ACM SIGPLAN
International Conference on Functional Programming (ICFP), 2006.

[33] Ulf Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Department of Computer Science
and Engineering, Chalmers University of Technology, SE-412 96
Göteborg, Sweden, September 2007.

[34] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for
GADTs. In ICFP ’06: Proceedings of the Eleventh ACM SIGPLAN
International Conference on Functional Programming, pages 50–61,
New York, NY, USA, 2006. ACM Press.

[35] François Pottier and Vincent Simonet. Information flow inference for
ML. ACM Trans. Program. Lang. Syst., 25(1):117–158, 2003.

[36] Geoffrey Smith and Rafael Alpı́zar. Secure information flow with
random assignment and encryption. In Proceedings of The 4th
ACM Workshop on Formal Methods in Security Engineering: From
Specifications to Code (FSME’06), pages 33–43, November 2006.

[37] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones,
and Kevin Donnelly. System F with type equality coercions. In TLDI
’07: Proceedings of the 2007 ACM SIGPLAN international workshop
on Types in languages design and implementation, pages 53–66, New
York, NY, USA, 2007. ACM.

[38] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A
language for enforcing user-defined security policies. In Proceedings
of the IEEE Symposium on Security and Privacy (Oakland), May
2008.

[39] Don Syme. ILX: Extending the .NET Common IL for functional
language interoperability. Electronic Notes in Theoretical Computer
Science, 59(1), 2001.

[40] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic.
Evidence-based audit. In Proc. of the IEEE Computer Security
Foundations Symposium, 2008. Extended version available as U.
Pennsylvania Technical Report MS-CIS-08-09.

[41] Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic
decentralized label model. In IEEE Symposium on Security and
Privacy, pages 192–206, Berkeley, California, 2007.

[42] Philip Wadler. Monads for functional programming. In J. Jeuring and
E. Meijer, editors, Advanced Functional Programming, volume 925
of LNCS. Springer Verlag, 1995. Some errata fixed August 2001.

[43] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t
be blamed. In Workshop on Scheme and Functional Programming,
pages 15–26, 2007.

[44] E. Westbrook, A. Stump, and I. Wehrman. A language-based
approach to functionally correct imperative programming. In
B. Pierce, editor, 10th ACM SIGPLAN International Conference
on Functional Programming, Tallinn, Estonia, 2005.

[45] Edward Wobber, Martı́n Abadi, Michael Burrows, and Butler
Lampson. Authentication in the Taos operating system. ACM Trans.
Comput. Syst., 12(1):3–32, 1994.

[46] Hongwei Xi. Applied Type System (extended abstract). In post-
workshop Proceedings of TYPES 2003, pages 394–408. Springer-
Verlag LNCS 3085, 2004.

[47] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-
gramming. In Proc. 26th ACM Symp. on Principles of Programming
Languages (POPL), San Antonio, Texas, September 1998.

	University of Pennsylvania
	ScholarlyCommons
	9-22-2008

	AURA: A Programming Language for Authorization and Audit
	Limin Jia
	Jeffrey A Vaughan
	Karl Mazurak
	Jianzhou Zhao
	Luke Zarko
	See next page for additional authors
	Recommended Citation

	AURA: A Programming Language for Authorization and Audit
	Abstract
	Disciplines
	Comments
	Author(s)

	tmp.1342627244.pdf.St6kJ

