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Lolliproc: to Concurrency from Classical Linear Logic via Curry-Howard
and Control

Abstract

While many type systems based on the intuitionistic fragment of linear logic have been proposed, applications
in programming languages of the full power of linear logic-including double-negation elimination-have
remained elusive. Meanwhile, linearity has been used in many type systems for concurrent programs-e.g.,
session types-which suggests applicability to the problems of concurrent programming, but the ways in which
linearity has interacted with concurrency primitives in lambda calculi have remained somewhat ad-hoc. In this
paper we connect classical linear logic and concurrent functional programming in the language Lolliproc,
which provides simple primitives for concurrency that have a direct logical interpretation and that combine to
provide the functionality of session types. Lolliproc features a simple process calculus “under the hood” but
hides the machinery of processes from programmers. We illustrate Lolliproc by example and prove soundness,
strong normalization, and confluence results, which, among other things, guarantees freedom from deadlocks
and race conditions.
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Abstract

While many type systems based on the intuitionistic fragment of
linear logic have been proposed, applications in programming lan-
guages of the full power of linear logic—including double-negation
elimination—have remained elusive. Meanwhile, linearity has been
used in many type systems for concurrent programs—e.g., session
types—which suggests applicability to the problems of concurrent
programming, but the ways in which linearity has interacted with
concurrency primitives in lambda calculi have remained somewhat
ad-hoc. In this paper we connect classical linear logic and con-
current functional programming in the language Lolliproc, which
provides simple primitives for concurrency that have a direct logi-
cal interpretation and that combine to provide the functionality of
session types. Lolliproc features a simple process calculus “under
the hood” but hides the machinery of processes from programmers.
We illustrate Lolliproc by example and prove soundness, strong
normalization, and confluence results, which, among other things,
guarantees freedom from deadlocks and race conditions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Theory

Keywords Linear logic, Concurrency, Type systems

1. Introduction: Linearity and Concurrency

Since its introduction by Girard in the 1980’s [22], linear logic
has suggested applications in type system support for concurrency.
Intuitively, the appeal of this connection stems from linear logic’s
strong notion of resource management: if two program terms use
distinct sets of resources, then one should be able to compute them
both in parallel without fear of interference, thereby eliminating
problems with race conditions or deadlock. Moreover, linear logic’s
ability to account for stateful computation [42], when combined
with the concurrency interpretation above, suggests that it is a good
fit for describing stateful communication protocols in which the
two endpoints must be synchronized.

Indeed, there have been many successful uses of linearity in type
systems for concurrent programming. Ideas from linearity play a
crucial role in session types [12, 15, 25, 38, 40], for example, where
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they are used to ensure that two end-points of a channel agree on
which side is to send the next message and what type of data should
be sent. Linearity is also useful for constraining the behavior of -
calculus processes [4, 28], and can be strong enough to yield fully-
abstract encodings of (stateful) lambda-calculi [45].

Given all this, it is natural to seek out programming-language
constructs that correspond directly to linear logic connectives via
the Curry-Howard correspondence [26]. In doing so, one would
hope to shed light on the computational primitives involved and,
eventually, to apply those insights in the contexts of proof theory
and programming-language design. Here too, there has been much
progress, which falls, roughly, into three lines of work.

First, there has been considerable effort to study various in-
tuitionistic fragments of linear logic [6, 11, 29-31, 39]. This has
yielded type systems and programming models that are relatively
familiar to functional programmers and have applications in man-
aging state and other resources [2, 13, 16, 24, 41, 47]. However,
such intuitionistic calculi do not exploit concurrency (or non-
standard control operators) to express their operational semantics.

A second approach has been to formulate proof terms for the se-
quent calculus presentation of linear logic. This path leads to proof
nets, as in Girard’s original work [22] and related calculi [1, 18].
This approach has the benefit of fully exposing the concurrency
inherent in linear logic, and it takes full advantage of the symme-
tries of the logical connectives to provide a parsimonious syntax.
Yet the resulting type systems and programming models, with their
fully symmetric operations, are far removed from familiar func-
tional programming languages.

A third approach studies natural deduction formulations of lin-
ear logic [10, 14], following work on term assignments for classical
(though not linear) logic [35-37]. These calculi typically use typing
judgments with multiple conclusions, which can be read computa-
tionally as assigning types to variables that name first-class contin-
uations. Their operational semantics encode the so-called commut-
ing conversions which shuffle (delimited) continuations in such a
way as to effectively simulate parallel evaluation. This approach of-
fers type systems that are relatively similar to those used in standard
functional programming languages at the expense of obscuring the
connections to concurrent programming.

Contributions This paper introduces Lolliproc, a language in the
natural deduction tradition that takes a more direct approach to con-
currency. Lolliproc is designed first as a core calculus for concur-
rent functional programming; it gives a Curry-Howard interpreta-
tion of classical—as opposed to intuitionistic—linear logic! that is
nonetheless suggestive of familiar functional languages.

There are two key ideas to our approach. First, in contrast with
the work mentioned previously, we move from an intuitionistic to
a classical setting by adding a witness for double-negation elimi-

! Girard would say “full linear logic” or simply “linear logic”.



nation, which we call yield. Second, to recover the expressiveness
of linear logic, we introduce an operation go, which corresponds
logically to the coercion from the intuitionistic negation (p — L)
to p, p’s dual as defined analogously to de Morgan’s laws in classi-
cal logic. Operationally, go spawns a new process that executes in
parallel to the main thread while yield waits for a value sent by an-
other process. These constructs are novel adaptations of Felleisen
& Hieb’s control operator [17] to our linear setting.

The search for appropriate operational semantics for these con-
structs leads us to a simple process language—reminiscent of Mil-
ner’s m-calculus [32]—hidden behind an abstract interface. Pro-
grams are written entirely in a standard linear A-calculus aug-
mented with the go and yield operations and elaborate to processes
at run time. As a consequence, our type system isolates the classi-
cal multiple-conclusions judgments (captured by our typing rules
for processes) so that they are not needed to type check source
program expressions. This situation is somewhat analogous to how
reference cells are treated in ML—location values and heap typ-
ings are needed to describe the operational semantics, but source
program type checking doesn’t require them.

Organization The next Section introduces Lolliproc informally,
covering both what we take from the standard intuitionistic linear
A-calculus and our new constructs. Given our goal of enabling con-
current programming in a traditional functional setting, we demon-
strate Lolliproc’s functionality by example in Section 3; we show
how a system that seems to permit communication in only one di-
rection can in fact be used to mimic bidirectional session types.

Section 4 gives the formal typing rules and operational seman-
tics for Lolliproc and presents our main technical contributions: a
proof of type soundness, which implies both deadlock-freedom and
adherence to session types; a proof of strong normalization, ruling
out the possibility of livelocks or other non-terminating computa-
tions; and a proof of confluence, showing that there are no race
conditions in our calculus.

Lolliproc does remain quite restricted, however—we have de-
liberately included only the bare minimum necessary to demon-
strate its concurrent functionality. Section 5 discusses additions
to the language that would relax these restrictions, including un-
restricted (i.e., non-linear) types, general recursion via recursive
types, and intentional nondeterminism. This approach adheres to
our philosophy of starting from a core language with support for
well-behaved concurrency, then explicitly introducing potentially
dangerous constructs (which, for instance, might introduce race
conditions) in a controlled way. This section also concludes with
a discussion of related work and a comparison of Lolliproc to more
conventional classical linear logics.

2. An overview of Lolliproc

As shown in Figure 1, the types 7 of Lolliproc include linear func-
tions 71 —o T2, additive products T & 72 (sometimes pronounced
“with”), the unit type 1, multiplicative products 71 ® 72, and addi-
tive sums 7, @ 72. These types form an intuitionistic subset of linear
logic, and they come equipped with standard introduction and elim-
ination forms and accompanying typing rules. In addition, we have
the type AL, which is notably not the falsity from which everything
follows.? Its purpose will become apparent later.

Our syntax for expressions is given by the grammar e in Fig-
ure 1, and their standard evaluation semantics is summarized in Fig-
ure 2.° In Lolliproc, all variables are treated linearly and functions

2 Such a type in linear logic is the additive false, while L is the multiplica-
tive false; we have left additive units out of Lolliproc for simplicity’s sake.

3 The typical rule for handling evaluation contexts is missing, as this is done
at the process level in Lolliproc.

T U= T-—oT T&T‘IIT®T|T@T{L types
p = T—op|pkp | L protocol types
i o= 112 indices
e = x|AniT.€ ‘ ee ’ (e, e) ’ e.i expressions

0 ‘ e e ‘ (e,e) | in]® e

let (z,y) =eine
casecofin, x —e|iny y — e
gope|yielde

lal | lal | Jal

new primitives
channel endpoints

von= AxiT.e ‘ (e, e | 0 | (v,v) | inf®" v values
|

7 >
| 1al ] lal | Jal

E = H | FEe | vE | E.q evaluation contexts
Eie|(E,e)| (v, E) |in]®" E
let (z,y) = Eine
case Eofin, z — e |iny y — e
go’ E | yield E
P = e ‘ PP | va:p. P processes
1I = - |1Lap | I, a"p ’ 1L, a:p channel contexts
A = | Azt typing contexts

Figure 1. Lolliproc syntax

[E-APPLAM]| (Az:T.€) v — {x — v}e

[E-LOCALCHOICE] (e1,e2).i — €; [E-UNIT] ();e — e

[E-LET] let (z1,22) = (vi,v2) ine — {x1 — v1, 22 — v2}e

T1OT2
7

[E-CASE] case in vofin, z1 — e1

|ing z2 — e — {z; — v}e;

Figure 2. Basic evaluation rules

are call-by-value. Additive pairs (el, €2> use the same resources
to construct both of their components and are thus evaluated lazily
and eliminated via projection; multiplicative pairs (e1, e2), whose
components are independent, are evaluated eagerly and eliminated
by let-binding both components. We use the sequencing notation
e1; ez to eliminate units () of type 1. Additive sums, eliminated by
case expressions, are completely standard.

Our new constructs—the go and yield operations, along with
channels and processes—are perhaps best understood by looking
at what motivated their design. In the rest of this section we will
see how the desire to capture classicality led to processes with
a simple communication model and how the desire to make that
communication more express led back to classical linear logic.
We will also see Lolliproc’s operational semantics; we defer a full
account of its typing rules for Section 4.

2.1 Moving to classical linear logic

The differences between intuitionistic and classical logic can be
seen in their treatment of negation and disjunction. In standard
presentations of classical linear logic, negation is defined via a
dualizing operator (—)™ that identifies the de Morgan duals as



shown below:

LY =1 1 = L
(h&ta)” = tr @ty (tL@t)" = &ty
(b1 —t2)™ = 6@ty (L®t)" = t1—oty

With this definition, dualization is clearly an involution—that is,
(1) = 7. Moreover, the logic is set up so that duals are logically
equivalent to negation: 7 is provable if and only if 7 — L is
provable. In this way, classical linear logic builds double-negation
elimination into its very definition—it is trivial to prove the theorem
((t —o L) —o L) —o 7, which is not intuitionistically valid.

Sequent calculus formulations of classical linear logic take ad-
vantage of these dualities by observing that the introduction of 7
is equivalent to the elimination of 7; this allows them to be pre-
sented with half the typing rules and syntactic forms that would
otherwise be required. This symmetric approach is extremely con-
venient for proof theory but does not allow us to conservatively
extend the existing typing rules and operational semantics for the
intuitionistic fragment of linear logic already described above. For
that, we need a natural-deduction formulation of the type system.

Our solution to this problem is to forget dualization (for now)
and instead add double-negation elimination as a primitive. We take
inspiration from type systems for Felleisen & Hieb’s control and
abort operators [17, 34]: in a non-linear setting, control, can be
given the type ((r — 1) — 1) — 7, corresponds to double-
negation elimination, while abort is a functional variant of false
elimination that takes L to any type. The operational behavior of
these constructs is as follows:

E[control (Ac. e)] —  (Ac.e) (Az. abort E [m})
E [abort e] — e

Unfortunately, abort clearly has no place in a linear system, as it
discards evaluation context £ and any resources contained therein.
What can we do instead? Observe that ¢ has the continuation type
7 — L (or, in a linear setting, 7 —o L) and that invoking ¢ within
the body e returns an “answer” to the context ££. We can reconcile
this behavior with a linear system by dropping abort and instead
introducing the ability to evaluate two expression in parallel:

E[control (Ac. e)] — E[control 1aF] | (Ac.e) |al

Here, evaluating a control expression spawns its argument as a
child process. The connection between the original evaluation con-
text £ and the child process is now the channel a: we write a[ for
the receiving endpoint or source of a, held by the parent process,
while the |a| passed to the child denotes the sending endpoint or
sink. Now evaluation can proceed in the right-hand expression until
the sink is applied to a value, at which point this “answer” is passed
back to the parent process:

Elcontrol 1a] | E'[|al v] — E[v] | E'[Jal]

The closed channel token |a| indicates that communication over
a is finished; it also indicates that the child process may now ter-
minate, but before process termination actually happens all linear
resources in £’ must be safely consumed. Linearity is preserved by
both of our operations, as neither expressions nor evaluation con-
texts are duplicated or discarded.

So far, though, these constructs offer a very poor form of
concurrency—in the rules above, the parent process immediately
blocks waiting for the child process to return. To allow the parent
and child to execute in parallel, we split can control into two oper-
ations. The first, which we call go, is responsible for generating the
channel a and spawning the child process; it immediately returns a
source value to the parent, which can keep running:

E[go (A\c.e)] —  E[lal] | (\c.e) la]

The second operation, yield, is used by the parent process to syn-
chronize with the child by blocking on a source:

E|yield lal] | E'[lal v] — E[v] | E'[Jal]

2.2 Typing and extending go and yield

How, then, to type check these new operations? Which is to say,
what is their logical meaning?

The source ]a[ has type ((t — L) —o L), and such doubly-
negated types appear so frequently in Lolliproc that we abbreviate
them as |7, pronounced “source of 7”. Invoking yield on such a
source returns a 7—it eliminates the double negation—so we have:

yield : 7] —o7T

What about go? At first glance, it appears that go takes an
expression of type 17| and returns a |7 [—it is logically an identity
function. This would be sound, but we can do better. The type
7 —o L is usually thought of as a continuation that accepts a 7, but
here it is better to think of it as expressing a very simple protocol,
one in which a 7 is sent and there is no further communication.
From this point of view, we can instead think of go as taking a
function of type p — A, and spawning that function as a child
process that must communicate according to the protocol p. The
parent process receives from go a source whose type describes the
other side of the protocol p; hence a yield on the source waits for
information to be sent across the sink by the child process, after
which both sides continue with the protocol.

Which types make sense as protocols? A protocol might be
complete (i.e., L), it might specify that a value of type 7 be sent
before continuing according to the protocol p (i.e., 7 — p), or it
might specify a choice between protocols p1 and p2 (i.e., p1 & p2).
For each such protocol type p we define a dual type p, as follows:*

L =1
pr&ps = 1p1®pal
T—op = 170

Aside from the extra double-negations—corresponding opera-
tionally to points at which we must synchronize with yield and
logically to explicitly marking where classical reasoning will take
place—this is exactly the left-hand column of the definition of
(—)*.° Additionally, since |7 is defined in terms of implication,
both {p1 @ p=2] and 17 ® p| are themselves protocol types, a fact
which will become important as we go on.

Thus go witnesses the logical isomorphism between the intu-
itionistic negation of a type and its dual:

go : (p—od)—op

The channel endpoints |a| and 1al, then, must have the types p
and p. Their types will change over the course of evaluation, as
communication proceeds over the channel a; when communication
is finished, the |a| of type L will be replaced by |a| of that same
type, while the 1a| of type 1 will simply step to ().

With this plumbing in place, we can define our operational se-
mantics for processes as shown in Figure 3. At the process level
we bind channels with va:p. P; these binders are generated by
rule EP-GO and require that we annotate go expressions as go” e.
Evaluation blocks when yielding on sources or eliminating sinks

4 The choice to define L as 1 rather than 111 is a simple optimization that
saves us from unnecessary synchronization at channel shutdown; our link™
example in the next section shows how this can come in handy.

5 In linear logic, the protocol connectives are said to be negative, meaning
that their introduction forms are invertible. That is, no additional choice is
made in their construction—in contrast to the choice of injection for ¢ and
the choice of resource split for ®, which are both positive connectives.



anot free in £ [gop v}

[EP-GO]

E[gop U] — va:p. (E[]aF] | v lal)

[EP-APPSINK] va:T —o p. Ei [yield lal] | Ez[lal v] — va:p. Ei[(v,1al)] | E2[lal]

[EP-REMOTECHOICE] va:p1 & po. E1 |yield {al] | Ez[|al.i] — va:pi. E1[in{*®*2 {a]] | Ez[|al]

[EP-CLOSE] va: L. Ey “a[] | Eo [ja[] — B [()] | va:L. Es [Jau

/
e — €

P — P

[EP-DONE]| P | va:Ll. Ja| — P

Pp— P

[EP-EVAL] [EP-PAR]

[EP-NEW]

PilP,— PP va:r. P — va:t. P’

Figure 3. Process evaluation rules

v #1lal

[E-YIELDOTHER]

[E-APPSOURCE] lal v — v (yield 1a[)

yield v — let (z,u) = yield (go

T—o AL

v) in u; 2

Figure 4. Expression congruence rules

until a matching pair is in play, at which point the argument or
choice bit is relayed across the channel (rules EP-APPSINK and
EP-REMOTECHOICE). Note that such communication has the ef-
fect of updating the type of the channel at its binding site to re-
flect the new state of the protocol. The rule EP-CLOSE is similar,
but exists only to facilitate typing of completed channels and thus
does not require a yield. EP-DONE eliminates completed processes
(reminiscent of 0 in the 7r-calculus) and their binders. EP-EVAL in-
tegrates evaluation contexts and expression evaluation with process
evaluation, while EP-PAR and EP-NEW allow evaluation within
processes. (We also define the standard notion of process equiva-
lence, given in Section 4.)

Two final points must be addressed by operational semantics:
the type 17 can be inhabited by more than just sources, and thus
we need evaluation rules for yielding on other sorts of values; sim-
ilarly, our sources all technically have function types, so we must
be able to apply them. Figure 4 gives the appropriate congruence
rules. For the first case, we recall our earlier intuition concerning
the simpler (but less useful) language where yield and go are com-
bined into control. Rule E-YIELDOTHER thus synthesizes a go in
such cases, although we must also synthesize a let binding, as we
have transformed a value of type |7 [ into one of type |7 ® 1].

When a source appears in the function position of an applica-
tion, we appeal to the intuition from other systems for classical
logics [22, 35] that the interaction of a term with type 7 and an-
other with type 7 should not depend on the order of those terms.
Thus, applying la| of type (1 — L) — L tov of type 7 —o L
should be the equivalent of first yielding on {a[, then supplying the
result to v. Rule E-APPSOURCE makes this so, and it is easy to
verify that this property also holds in the case of other applications
at those types.

Although these congruence rules are a bit unusual, the fact that
Lolliproc does not introduce a new family of types for channel
endpoints turns out to be a very useful property of the system:
for instance, it allows us to bootstrap bidirectional communication
from what appears, at first glance, to be a unidirectional language.
We will see how this transpires in the next section.

3. Examples

Here we demonstrate some of what can be done with Lolliproc by
introducing several concurrency routines of increasing complexity.
For ease of explanation and consistency, we write foo” when the
function foo is parameterized by the type 7, and we use capitalized
type abbreviations, e.g., Bar 7. In a real language we would of
course want polymorphism—either ML-style or the full generality
of System F with linearity [31].

Futures A future [33] is simply a sub-computation to be calcu-
lated in a separate thread; the main computation will wait for this
thread to complete when its value is needed. This is one of the sim-
plest forms of concurrency expressible in Lolliproc. We can define

Futurer = 17®1]
future” (1 — 7) —o Future 7
future” = Azl —o7.80" °" At — L.k (2 ()
wait” : FutureT —o 7
wait” = Af:Future 7.let (2,u) = yield f in u; 2

The main process passes a thunk to its newly spawned child; this
child applies the thunk and sends back the result.
More pictorially, the run-time behavior of £/ [futu re” g] , where

g() — vandE[—] —" E/[—},is

(o) —(ETe0) (]
N i

(5 0)— ()

The connection between endpoints of a channel at a given moment
in time are given by ~~ arrows. Similarly, for such some |a| of type
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YLD(e) £ let (z,u) = yield e in u; 2

™~

a JaHbH—a>

/

() — (s (yield 1))

Figure 5. Evaluation of link™ vy, vk

Future 7, we have
E' [wait™ {al] T;

o) —— (&)

Here the a subscript on evaluation arrows indicates that communi-
cation over a has occurred. Since a supports no further communi-
cation afterwards—its sink has been replaced by the closed channel
token |a|—the ~~ connection is then removed. Recall that such a
lone |a| indicates a completed process; the child process in this
example is now complete and will disappear.

Linking channel endpoints Given a v, of type 7] and vg of
type 7 —o L—which may or may not be a literal source and sink—
we might want to join the two such that v, flows to v without
making the parent process wait by yielding on vs.. In doing so,
however, we must still somehow produce a value of type L; it can’t
be the value that applying vy would produce, so it must come from
some other process.

Our solution relies on the ability to pass process completion
tokens from one process to another:

link™ : Jr]—o(r—od)—o 4L
link™ = Az:|7[. A\fi1 — L.yield \g:L — L. go* gz f

Note that the final x f will step to f (yield x) via rule E-
APPSOURCE; similarly, rule E- YIELDOTHER will insert a go™ ™
immediately following the yield. A call to link” vge v thus
spawns two processes: the first spawns the second with the trivial
protocol, then proceeds to wait and link the original arguments; the
second uses the sink created for the first child to immediately return
control to the parent process. This is illustrated in Figure 5; we use
the abbreviation YLD(e) for the now common pattern of yielding
to receive a product, immediately unpacking the resulting pair, and
eliminating the left component.

Reversing directions So far we have seen only child processes
that send information back to their parents. While our constructs
show bias towards this sort of communication, Lolliproc does allow
exchanges in both directions; a few complications arise, however,
due to the unidirectional nature of our so-called dualization.

For instance, while the dual of 7 —o p is |7 ® p/, the dual of
17®p] is the somewhat unwieldy 1((7®p) — L) ®1] rather than
the 7 —o p for which we would have hoped. Yet we observe that the
former can be transformed into the latter with a yield operation, an
uncurrying, a partial application, and a go’ we combine these steps

into a function send:

send” —°*

IT®pl—7—p

send” " = As:|T®pl.
let (f,u) = yield s in
u; Az:T. go” Ap:p. f (z,p)

Similarly, the dual of 1p1 @ p2] is 1((p1 ® p2) — L) ® 1]; to
coerce this to p1 & p2, we define select as

select”1472 1p1 ® p2] —o p1 & p2
select”14P2 — /\s:m.

let (f,u) = yield s in
P1Dp2

u; (go”* Ap1:p1. f inf D1,

20”2 Apa:pa. f ing P2 py)

To demonstrate the first of these coercions in action, we look to
the identity function echo, which spawns a child process, passes its
argument to that child, then receives it back:

reply” : 17®(1— L) - L
reply” = Mul7® (7 — L)[.let (y,g9) =yield hingy
echo” : 717
echo” = Az:iT.let (z,u) = yield
send” 7@ (gowT@Uﬂ*>r reply”) =
inu; z

Here reply is the body of the child process that will receive the
initial argument and send it back. (The type of reply” could equally
well have been written as the equivalent 17 ® (7 — L) —o L]—
this notation better reflects how it is used with echo, while the
notation given above more closely matches its definition.)

The execution of echo” v for some v of type 7 is shown
in Figure 6. We can see how, while the initial spawning of the
reply” process orients the channel a in the usual child-to-parent
direction, the machinery of send spawns another process that sets
up a channel b in the opposite direction; afterwards, a third channel
c is established in the original direction. All this is facilitated again
by our congruence rules.

It is worth noting that, while the value v cycles among several
processes, at no point does a cycle exist in the communication
structure—the ~» arrows—of Figure 6. That this fact always holds
is crucial to our proof of soundness in Section 4.

A larger example So far we have seen relatively small examples.
As a larger demonstration of the protocols expressible in Lolliproc,
we consider Diffie-Hellman key exchange, formulated as follows:
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Figure 6. Evaluation of echo™ v

1. Alice and Bob select secret integers a and b.
2. Alice and Bob exchange g® mod p and ¢® mod p in the clear.

3. Alice and Bob compute the shared secret (¢°)* = (¢%)® mod p
and use it to encrypt further communication.

Here g is a publicly known generator with certain properties, often
2 or 5, and p is a similarly known large prime number. The shared
secret cannot feasibly be computed from the publicly known values
g® and g°. For purposes of this example, we declare that further
communication consists only of Alice sending an encrypted string
to Bob, and we treat Alice’s session as a child process spawned
by Bob rather than as a process somewhere over the network that
initiates contact. We augment Lolliproc with the types Int and
String, as well as necessary operations over these types:

bigrandom 1 —Int
powmod Int —o Int —o Int —o Int
lessthan Int — Int - (1®1)
encrypt Int — String —o String
decrypt Int — String —o String

For clarity, we also freely use general let expressions rather than
only those that eliminate multiplicative products, and we allow the
reuse of variables of type Int.

To demonstrate the use of additive products and sums—and to
add a hint of realism—we allow Alice or Bob to abort the session
after receiving a value from the other party. Thus the protocol type
that must be enforced in Alice’s session and a sample implementa-
tion of said session are

Alice = Int - 1L ®1Int® (L & (String — L))
alice : Int— Int — Int — Alice — L
alice = Ag:Int. Ap:Int. An:Int. As:Alice.

let a = bigrandom () in
case yield (s (powmod g a p)) of
in; s1 — s1
| iny s2 +— let (b, s') = yield s in
case lessthan b n of
in; u; — ul;s/.l
| iny u2 — ug;let k = powmod b a p in
(s'.2) (encrypt k "I know secrets!")
Since Alice’s session is the child process, the point at which she

must check for an abort signal from Bob appear as L @ p, while
the point at which she may abort appears as L & p. In this case,

Alice chooses to abort whenever the public key Bob sends her is
too small in comparison to some parameter n.

An implementation of Bob’s side of the communication—i.e.,
the parent process—Ilooks very similar. While bob relies on the
type Alice to specify the whole communication protocol, we do
need type annotations B1 and B2 for our uses of send and select.

Bl = 1&1((Int® (L & (String — L))) - L)®1]
B2 = Int— 11 (String — )]

bob : Int —o Int — Int —o String

bob = Ag:Int. Ap:Int. An:Int.

let (a, s) = yield (go™" (alice g p n)) in

case lessthan a n of

in, w1 — ug; (selectBl s).1; "ERROR1"

| iny w2 — ug;let s1 = (selectBl $).2 in
let b = bigrandom b in
let so = send®? s, (powmod g b p) in
case yield s’ of
in; v — w; "ERROR2"
|iny s” — let k = powmod a b p in
let (c,u’) = yield s” in
u'; decrypt k ¢
For brevity, we do not illustrate an evaluation of bob g p n.
We observe, however, that nothing new is going on in this example
as compared to echo”. We also observe that the definitions of al-
ice and bob are relatively straightforward. They could be improved
by standard type inference and by syntactic sugar that gave the re-
peated generation and consumption of linear variables the appear-

ance of a single variable being mutated [31], but they are generally
quite readable.

4. Metatheory

We now discuss the technical aspects of Lolliproc, including the
formal proofs of soundness, strong normalization, and confluence.

4.1 Typing

The expression typing rules for Lolliproc can be seen in Figure 7.
As we discussed in the introduction, these typing rules follow the
natural-deduction presentation of intuitionistic linear calculi. Our
typing judgment II; A F e : 7 depends both on a channel context
II and a term variable context A. Term variables = are bound to
types 7 in A, while IT contains binders a-p (representing the ability
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Figure 7. Expression typing rules

U-Bwpry]-w. = [UT-Lger] 2L8B2=A @ fdomd) g Ai¥Ae=A o dom(A)
i n i Ay, zTU Ay = A7 i AU A,z = AT
= |7 Mmool =01 dom(II Mmoo, =10 dom(II
.§ ’ A’ [UC-LEFT] : i a ¢ dom(Il) [UC-RIGHT] - 2 a ¢ dom(Il)
U == U |LUJ II1,a§p U IIo =11, a§p II U Iz, a$p = 11, a§p
[Mull, =11 IMull, =11 dom(IT LI, =11 dom(II
[UC-NONE] — 2 [UC-SRCSNK] : ~2 — ad ) [UC-SNKSRC] : i ~a z (1)
II, Il =11 Mi,a"p Ullz,a-p =11, a:p IIi,apUIlg,ap =11 a:p
Figure 8. Context splitting rules
. ) ) ) II; W II; and Ay W Ag to denote contexts that can be split into I1;
[TP-ExP] M [TP-NEW] M and II2 and into A; and As respectively; this relation is formally
HEe:r HFvap P:r defined in Figure 8.
The typing rules for our new constructs are straightforward. The
- P o P L 2 i i .
[TP-PARLEFT] 1 1T 2 2 types for go” e and yield e have already been discussed; channel

LUIL-P | P T

H1|_P1Z,L HQ}_PQZT
Hl@HQFP1|P21T

[TP-PARRIGHT]

Figure 9. Process typing rules

to send on the channel a), a*p (representing the ability to receive
on a), and a:p (combining both capabilities). Both varieties of
context are linear, in the sense that they permit neither weakening
nor contraction.

Many of our rules are standard for a linear type system, but
as linear type systems themselves are not quite standard, they
still deserve some explanation. Because linear variables cannot
be discarded, rules that serve as the leaves of proof trees require
contexts that are either empty (as in T-UNIT) or that contain exactly
what is being typed (as in T-VAR).

Rules with multiple premises vary depending on how many of
their subterms will eventually be evaluated. If only one of several
will, then all those subexpressions should share the same contexts,
as in T-WITH. When multiple subexpressions will be evaluated, as
in T-TENSOR, the contexts must be divided among them. We write

endpoints |a| and ]a| have the types ascribed to them by the
channel context II by a-p and ap respectively. The closed channel
|a| accounts for both endpoints but must be given the type L.

We write I = P : 7 for a well-typed process P with channels
typed by II; our process typing rules are given in Figure 9. No
A is needed, as processes never depend on expression variables;
rule TP-EXP type checks atomic processes in the empty variable
context. Rule TP-NEW extends the channel environment at binders.
As the final type of all processes but our original wi