
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

11-2011

Intelligent Camera Control Using Behavior Trees
Daniel Markowitz
University of Pennsylvania

Joseph T. Kider Jr.
University of Pennsylvania, kiderj@seas.upenn.edu

Alexander Shoulson
University of Pennsylvania

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Markowitz, D., Kider, J., Soulson, A., & Badler, N., Intelligent Camera Control Using Behavior Trees, Motion in Games (MIG), Nov. 2011, doi: 10.1007/
978-3-642-25090-3_14

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/574
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Daniel Markowitz, Joseph T. Kider Jr., Alexander Shoulson, and Norman I. Badler, "Intelligent Camera Control Using Behavior Trees",
. November 2011.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-642-25090-3_14
http://dx.doi.org/10.1007/978-3-642-25090-3_14
http://repository.upenn.edu/cis_papers/574
mailto:libraryrepository@pobox.upenn.edu


Intelligent Camera Control Using Behavior Trees

Abstract
Automatic camera systems produce very basic animations for virtual worlds. Users often view environments
through two types of cameras: a camera that they control manually, or a very basic automatic camera that
follows their character, minimizing occlusions. Real cinematography features much more variety producing
more robust stories. Cameras shoot establishing shots, close-ups, tracking shots, and bird’s eye views to enrich
a narrative. Camera techniques such as zoom, focus, and depth of field contribute to framing a particular shot.
We present an intelligent camera system that automatically positions, pans, tilts, zooms, and tracks events
occurring in real-time while obeying traditional standards of cinematography. We design behavior trees that
describe how a single intelligent camera might behave from low-level narrative elements assigned by “smart
events”. Camera actions are formed by hierarchically arranging behavior sub-trees encapsulating nodes that
control specific camera semantics. This approach is more modular and particularly reusable for quickly
creating complex camera styles and transitions rather then focusing only on visibility. Additionally, our user
interface allows a director to provide further camera instructions, such as prioritizing one event over another,
drawing a path for the camera to follow, and adjusting camera settings on the fly.We demonstrate our method
by placing multiple intelligent cameras in a complicated world with several events and storylines, and illustrate
how to produce a well-shot “documentary” of the events constructed in real-time.

Disciplines
Computer Sciences

Comments
Markowitz, D., Kider, J., Soulson, A., & Badler, N., Intelligent Camera Control Using Behavior Trees, Motion
in Games (MIG), Nov. 2011, doi: 10.1007/978-3-642-25090-3_14

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/574

http://dx.doi.org/10.1007/978-3-642-25090-3_14
http://repository.upenn.edu/cis_papers/574?utm_source=repository.upenn.edu%2Fcis_papers%2F574&utm_medium=PDF&utm_campaign=PDFCoverPages


Intelligent Camera Control Using Behavior Trees

Daniel Markowitz, Joseph T. Kider Jr., Alexander Shoulson,
and Norman I. Badler

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389, USA
{idaniel,kiderj,shoulson,badler}@seas.upenn.edu

Abstract. Automatic camera systems produce very basic animations
for virtual worlds. Users often view environments through two types of
cameras: a camera that they control manually, or a very basic automatic
camera that follows their character, minimizing occlusions. Real cine-
matography features much more variety producing more robust stories.
Cameras shoot establishing shots, close-ups, tracking shots, and bird’s
eye views to enrich a narrative. Camera techniques such as zoom, focus,
and depth of field contribute to framing a particular shot. We present
an intelligent camera system that automatically positions, pans, tilts,
zooms, and tracks events occurring in real-time while obeying traditional
standards of cinematography. We design behavior trees that describe
how a single intelligent camera might behave from low-level narrative el-
ements assigned by “smart events”. Camera actions are formed by hier-
archically arranging behavior sub-trees encapsulating nodes that control
specific camera semantics. This approach is more modular and particu-
larly reusable for quickly creating complex camera styles and transitions
rather then focusing only on visibility. Additionally, our user interface
allows a director to provide further camera instructions, such as priori-
tizing one event over another, drawing a path for the camera to follow,
and adjusting camera settings on the fly. We demonstrate our method by
placing multiple intelligent cameras in a complicated world with several
events and storylines, and illustrate how to produce a well-shot “docu-
mentary” of the events constructed in real-time.

Keywords: intelligent cameras, behavior trees, camera control, cine-
matography, smart events.

1 Introduction

Filmmaking is a complex visual medium that combines cinematography and
editing to convey a story. The camera must film the right event at the right time
to produce the right picture. Cinematography and editing are both complex
art forms in their own right, as they involve many highly subjective stylistic
decisions. Given the opportunity to shoot the same event, two different directors
are likely to produce very different footage with varying shot choices, shot length,
and editing techniques. Unfortunately, many games limit a user’s experience to
a manually controlled camera, or an automatic camera designed to minimize

J.M. Allbeck and P. Faloutsos (Eds.): MIG 2011, LNCS 7060, pp. 156–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Intelligent Camera Control Using Behavior Trees 157

occlusions. This basic control does not use cinematic principles to help tell the
game’s narrative. Films use more shooting variety and style for capturing movies.
Our system provides the user with a way to create and style complex camera
transitions to provide a more engaging experience in the game.

Cinematography follows a variety of rules and principles to communicate infor-
mation and story in a clear and coherent fashion. Christianson and his colleagues
[6] describe some of the established cinematographic techniques, and Arijon [2]
and Lukas [21] provide additional detail. Cristie and Olivier [8] and Cristie et
al. [7] outline the state of the art in camera control in graphics. Some principles
include the 180-degree rule: if a horizontal line is imagined to cut across the
camera’s field of view, the camera should not instantly rotate and cross this line
in consecutive shots; if it does, subjects that originally appeared on the right side
of the frame will now appear on the left, and vice versa. Similarly, the 30-degree
rule states that when the camera cuts to a different view of the same subject, it
should be rotated at least 30 degrees in any direction to avoid a jump cut. In the
case of clear communication, editing should be essentially “invisible”: breaking
these rules can lead to jarring edits.

The progression of shots facilitates clear communication: when an event oc-
curs, a so-called “establishing shot” depicts the event from a distance and gives
the viewer context; next, close-ups and other shots fill in the details. In single
shots, framing assists in highlighting parts of the image that draw attention,
by using selective focus or keeping objects in the middle of the frame. Negative
space should also be left in front of moving objects, and the actor should always
lead. These techniques apply to both live-action and virtual films. These camera
semantics are cast as behavior trees in our system. Using behavior trees gives a
quick and modular method to create intricate camera styles.

In this paper, we introduce an intelligent camera system that automatically
reacts to events that occur in a virtual world. Our camera’s actions are pro-
grammed as behavior trees that react to “smart events”. We capture actions in
real-time while following standard principles of cinematography and editing. We
provide a user interface for a “director” to control and override camera semantics
such as prioritizing one event over another, drawing a path for the camera to
follow, and adjusting camera settings on the fly. This allows multiple intelligent
cameras to film events, and allows for a customizable approach to editing a final
animation. Our test environment tracks multiple rolling balls, a crowd scene,
and a conversation to demonstrate how to create a well-shot “documentary” of
multiple events edited in real time. Our world is built in the Unity Game engine
demonstrating the usefulness of our technique for producing videos for games.

Our system gives the game designer a more robust way to customize how
he wants to portray his game. Because the cameras are intelligent, once the
camera behavior is programmed, it automatically shoots the character, action,
or events occurring in real-time. A designer, much like a film director, brings
his own unique style to controlling the player’s visual experience. Additionally,
our user interface allows players to create custom “cut scenes” out of real-time
gameplay, and permits a player to create cinematic replays of his gameplay to
post on social media.



158 D. Markowitz et al.

2 Background

Many researchers have focused on integrating cinematographic principles into
automatic camera control. These approaches provide sophisticated control to a
user. Christianson et al. [6] divide cinematography into simple fragments in a
“Declarative Camera Control Language”. They also develop a “Camera Plan-
ning System” that partitions a character’s movement into individual actions. He
et al. [15] encode a finite state machine that controls the camera’s position and
parameters. This implementation does not work in real-time and is limited to
simple scenarios involving two characters. Our approach works for multiple si-
multaneous events, operates in real-time, and expands to more robust scenarios,
such as crowds, tracking an object/character, and conversations.

The CINEMA system [9] implements a method for camera movements (pans,
tilts, rolls, and dollies). This method procedurally generates camera moves based
on prior user inputs. CamDroid [10] implements intelligent cameras by defining
camera modules similar to Christianson et al.’s [6] approach. While they demon-
strate their work on both a conversation and football match, the approach re-
quires prespecified constraints by the user for how to implement a particular shot.
Bares et al. [4] developed an interactive fiction system using a constraint-based
approach. Bares et al. [3] also looked at using storyboard frames to constrain a
virtual camera. Friedman and Feldman [12] used non-monotonic reasoning for
their camera’s behavior and other knowledge-based systems [13]. Amerson et al.
[1] abstractly described cinematographic expressions to control their camera.

Portraying a narrative correctly is an important aspect in storytelling [25],
and many games fail to use complex camera behaviors to provide a mood and
style. Elson and Riedl [11] introduced Cambot that used an offline algorithm
to automatically produce a film. Jhala [18] proposed a method to generate a
narrative for events and directives.

Recent camera control work focuses on visibility planning. The camera is
automatically controlled to keep the actor visible. Li and Cheng [19] used a
probabilistic roadmap to update the camera’s position. Halper et al. [14] used
a point-based visibility method. Oskam et al. [22] demonstrated a robust global
planning algorithm. They used a visibility aware roadmap to avoid occlusions.
Of all of the previous camera control systems, Lino et al.’s work [20] is the most
similar to our approach. They rely on “Director Volumes” to partition the space,
determine visibility cells, and provide details for performing cinematic camera
control. The “Director Volumes” allow a user to program his own style by ranking
preferences. Our approach does not replace these systems, but complements
them. Our contribution provides a dynamic and modular approach to linking
various camera behaviors to “smart events”. Camera behaviors are determined
by the entire sequence of multiple events. A more complex visibility planner can
be programmed into our system based on a user’s needs. Our demonstration uses
a simplified version of the Oskam et al. [22] approach.

Pereira et. al [23] presented a model to describe events stored in a table
by their relationships. Their camera control merely frames the active agent, but
their system does not respond to events that occur in their scenario. Stocker and



Intelligent Camera Control Using Behavior Trees 159

her colleagues [24] programmed behaviors and responses into events. The “smart
event” informed an agent how to respond to a scenario. The user does not have
to plan and program how agents respond to each other, since the event provides
the appropriate behaviors. We leverage this approach in our method to provide
a novel control for our intelligent camera system. As new events occur, a camera
is assigned to an event, and the event itself provides the necessary parameters
to pick and execute a behavior tree to control the camera’s semantics. This
approach is more efficient for controlling multiple intelligent cameras since it
does not spend time planning how to shoot the event.

Fig. 1. This figure shows the basic cinematography movement controls for our cameras:
tracking, tilting, and panning. Most camera movement is broken down to these controls.

3 Cinematography Principles

Camera shots provide organization and style to a movie or game in a sequence
of scenes. Moving the camera, however, is a delicate art based on some well-
established principles. Researchers have outlined many complex details of spatio-
temporal cinematography standards [2,21]. In a game, however, a user interacts
with a virtual world in a sequence of play in real-time. Similar guidelines should
be used to guide game cameras as in film. Our intelligent cameras follow similar
principles of cinematography to provide a more robust visual experience. This
allows a game designer to set various facets of the gameplay’s setting, characters,
and themes.

Camera Movement: The camera movement shapes and informs a shot’s
meaning. Basic camera moves include three actions: pans, tilts, and tracks. In
general, most complex camera moves are simply mixtures of these basic compo-
nents. A camera pans when it rotates horizontally, either from left to right or
from right to left, normally establishing a scene. The camera rotates vertically
to tilt, either from up to down or from down to up. In a tracking shot, the entire
camera moves, rather than simply changing the direction of its focus to provide
detail. These moves provide 6 degrees of freedom allowing the camera to position
and orient itself and are illustrated in Figure 1.

Framing Shots: In games, framing and composition impart information to the
player. The tightness of a frame provides different information to the player. If
the shot is “tight,” it is more personal, focused, and offers less information. This
shot creates anxiety in a player. If the shot is “wide” there is more information
making it easier for the player to find his objective. Changing the shot type



160 D. Markowitz et al.

changes the mood and provides the game with an “emotional evolution”. The
composition should also allow for empty space in front of the character, both
when he is moving and where he is looking (Figure 2). Also, care should be taken
not to cut a character off at the ankles, knees or neck.

Fig. 2. This figure illustrates some advanced camera shots and editing principles. The
top demonstrates how leaving some negative space allows the actor to lead. The middle
shows the 180-degree rule related to the invisible line of action in a scene. The bottom
displays the 30-degree rule, which shows the minimal distance a camera should move.

Basic Editing Rules: Enforcing basic editing rules provides continuity to a
sequence of shots. These act as constraints that ensure that the player is not
disoriented in a game. For example, the 180-degree rule is related to the invisible
line of action in a scene. Once it’s established that the camera is on one side
of that line, abruptly cutting across it will be disorienting for viewers. The 30-
degree rule ensures the camera moves enough when it cuts, otherwise a jump-cut
or indecisive cut results. “Line of action” and “line of interest” are two continuity
rules that should be enforced as well [20].

3.1 Intelligent Camera Representation

Using more shot types and enforcing some basic cinematography principles im-
prove a game’s narrative, visual appearance, and play. Our intelligent cameras
use these three basic camera controls and take care framing shots. We set range
parameters on the camera cuts to enforce basic editing rules. We define our
intelligent cameras by the following parameters:

• Position(x,y,z) - position of the camera
• Rotation(rx,ry,rz) - rotation of the camera
• Zoom(level) - zoom level
• DepthOfField(level) - depth of field
• FocusPoint(x,y,z) - focus point if different than center point
• Style(type) - behavior style of the camera
• FollowDistance(dist) - follow distance
• FollowHeight(height) - follow height
• ShotDuration(time) - how long the shot will be held



Intelligent Camera Control Using Behavior Trees 161

• Cuttingspeed(speed) - how fast cuts take place
• lastCutPosition(x,y,z, rx,ry,rz) - if only one camera enforces edit rules
• EventID(ID) - The smart event the camera is assigned

Shot Idioms: The standard convention in previous work is to break shots up
into “fragments” and stitch multiple fragments together, composing an intricate
shot idiom as an element in the narrative [6,10,20]. These cinematic shot idioms
are sequences of camera setups. An idiom is encoded by defining the necessary
parameters in the scene (actors, times, angles). Idioms allow a game designer
to bring different styles into frame sequences. The shot idiom is chosen by the
“smart event” that assigns a shooting priority to the shots. The idiom’s param-
eters are assigned at run-time for the scene by this “smart event”. For example,
a simple dialogue scene is handled with a “shot/reverse” shot idiom. The game
designer programs these narrative idioms as behavior trees (defined in the next
section). So idioms are quickly scripted by the designer and are very modular.

4 Implementation

Behavior Trees are simple data structures that provide a graphical representation
and formalization for complex actions. Behavior Trees control our intelligent
cameras using “AND/OR” logic with actions, assertions, and other constructions
to implement various shot idioms. Behavior Trees are used in modern games to
provide agents with intelligence: examples include Halo2 [16], Halo3 [17], and
Spore [5]. Behavior trees are preferable to finite state machines for two reasons:
goal direction and hierarchical abstraction. A behavior tree can be designed a
series of actions geared towards accomplishing a single goal, with contingencies
to handle any obstacles that arise. Larger trees built for accomplishing broader
goals are built by combining smaller sub-goals, for which subtrees can be invoked.

Figure 3 shows an example of making our intelligent cameras behave like cine-
matographers. The tree describes how a single camera behaves. At the top of the
tree is a “Loop” decorator followed by a “Selector”-in simpler terms, this means
that the camera is in a constant loop of “selecting” which of the two subtrees
(left or right) to follow. Assertions, the white rectangles in the tree, test some-
thing and then return either success or failure. A selector attempts to execute
each of its children (in-order), and stops once a child return reports success at
its level. If a child fails, the selector advances and tries the next. The left subtree
is a behavior for when the camera is not assigned to an event, and the right sub-
tree is behavior for when it is assigned. The Parallel box means that its children
execute simultaneously. So, in the left subtree, the Assert node will constantly
check to make sure that there’s no event assignment, and the camera will “wan-
der” as long as that assertion is returning success. This enforces constraints on
the cameras: the parallel node has one child that is constantly enforcing some
constraints on the execution of its other child. The abstracted subtree “wan-
der” represents a “Sequence”: if you think of: “Selection” acts like “OR” while
“Sequence” acts like “AND”. Whereas a “Selector” would try children until it
finds one that returns success, a “Sequence” node attempts to execute each of its



162 D. Markowitz et al.

Fig. 3. On the left, this figure shows an intelligent camera’s behavior tree. Initially,
the camera wanders until it is assigned to an event. The camera reacts to information
provided based on the type of “smart event”. On the right, we show the abstracted
subtree for filming a dialogue scene with a shot / reverse-shot idiom.

children, in order. If any child fails, the sequence node ceases execution (ignoring
all subsequent children) and reports failure at its level. The “Sequence” succeeds
only after its last child succeeds. In this case, the children of “Wander” would
be different actions that cause the camera to move how the designer wishes.

The right subtree starts with another “Parallel” node, which makes sure that
it will execute while the camera is still assigned to an event (once the event
ends, we should revert back to wandering around). Another “Selector”decides

Fig. 4. This figure outlines a simple editing rule: the cameras currently only cut back
and forth between two shots: a tracking shot from behind the target, and a stationary
shot that pans with the target. This is a diagram of the behavior tree that the cameras
are implementing.



Intelligent Camera Control Using Behavior Trees 163

what kind of situation we are in. The Selector in the right branch of the tree is the
“Cinematographer Node”, since it plays the role of cinematographer: deciding
what kinds of shots to use based on the current situation.

Figure 4 illustrates a simple editing rule. The cameras currently cut back and
forth between two shots: a tracking shot from behind the target, and a stationary
shot that pans with the target. The camera has two branches for whether it’s
currently engaged with an event or not. When the camera is engaged, it enters
a shot idiom. In this case, there’s only one idiom: cut to a tracking shot behind
the target, wait a certain amount of time, cut to a stationary side shot, wait,
and repeat (until no longer engaged). This formulation is the foundation for
enforcing the cinematography principles discussed above.

4.1 Smart Event Representation

“Smart Events” store the behavioral responses and parameter information inside
the event [24]. These events update parameters in the Behavior Trees. This way
a designer does not have to program every combination manually and can rely
on the event to produce the correct shot. A “message board” updates global
information as an event evolves and assigns the intelligent cameras to cover the
events. A “blackboard” updates any local information for the behavior tree as
the event evolves. Once a “smart event” occurs, it broadcasts to the “message
board” and assigns an intelligent camera which is not currently engaged with an
event. If all the cameras are assigned, the “message board” looks at the event
priority and ShotDuration variables. Our formulation extends the parameters
found in Stocker et al. [24] such as “Type”, “Position”, “Start Time”, etc. for
the event. Our formulation adds relevant information for the camera such as:

• ShotIdiom(behavior names) - set of possible behaviors for the camera
• CameraIDs(IDs) - ids of intelligent cameras assigned to event
• Priority(p) - the importance of the event
• Participants(IDs)- list of actors/objects camera should track
• Position(x,y,z) - position of the camera
• Rotation(rx,ry,rz) - rotation of the camera
• Zoom(level) - zoom level
• DepthOfField(level) - depth of field
• FocusPoint(x,y,z) - focus point, if different then center point
• Style(type) - behavior style of the camera
• FollowDistance(dist) - follow distance
• FollowHeight(height) - follow height
• ShotDuration(time) - how long the shot will be held
• Cuttingspeed(speed) - how fast cuts take place
• LastCutPosition(x,y,z, rx,ry,rz) - for the cameras

5 Results

Figure 5 shows a screenshot of one of our test environments featuring 3 intelli-
gent cameras in our GUI. The cameras are color-coded across the top so that
the user can easily match the physical cameras to their displays. The far left



164 D. Markowitz et al.

camera is the “master track” display for the final output color-coded in yellow.
The main GUI window can switch among any intelligent camera, the master
track, or a user-controlled 3D view. The user-control view allows for a “direc-
tor” mode, where camera properties can be overridden and views selected, to
achieve a novel playback. This is especially useful for making video playbacks of
a player’s gameplay for posterity. Normally, the intelligent cameras and smart
events automatically create the master track with no additional user interven-
tion. The system automatically assigns the intelligent camera and shot idiom
behavior based on information from the “smart event”. This mode is very useful
during real-time gameplay.

Fig. 5. The figure shows the director GUI. The main window features a user-controlled
camera. The yellow window across the top is the “master track” window. The other
windows (red, green, blue) are color-coded intelligent cameras. The image on the left
is an example of our system shooting various events in a crowd. On the right, we
demonstrate a simple dialogue scene when a penguin walks into a pub.

In Figure 5 on the left, the red camera is filming a ball rolling down several
slopes (it is currently shooting an establishing shot of the ball with relation to the
slopes), while the green camera is following a ball through a complex environment
(it is currently shooting a tracking shot behind the ball). The master track is set
to display the perspective of the main (user-controlled) camera. The blue camera
is not engaged, so it randomly scans the environment until another “smart event”
occurs. Figure 5 (on the right) depicts a dialogue scene between a penguin and
stork. The red camera is engaged with the event and currently shooting an over-
the-shoulder shot within the dialogue idiom. The green and blue cameras are
not engaged and currently shooting establishing context shots.

Figure 6 shows a screenshot of a second test environment tracking balls rolling
down various slopes. When a ball start rolling it, triggers a “smart event” and
assigns a camera to start tracking the motion. The red camera’s options are
displayed, where the user can adjust certain settings, or change the “genre” of
the camera: setting it to “Bourne/24” mode will cause it to shake and cut often.
Shot duration sets the length of each shot before an edit occurs (when the shot
duration is set to 0, either by the event or user, the camera never cuts from the
event until it is fully completed). The camera keeps the ball visible through the
best path it can calculate when following the ball through the obstacles.



Intelligent Camera Control Using Behavior Trees 165

Fig. 6. The figure shows the application of our intelligent camera system in a second
virtual world featuring multiple rolling balls and difficult obstacles. The camera follows
various shot idioms, while keeping the ball visible. The settings for the red camera are
displayed in the left image. Users may use the GUI to compose playbacks of gameplay.

Fig. 7. This figure demonstrates how multiple intelligent cameras are assigned to the
scene (highlighted by red circles) to handle the “conversation event” that is unfolding.
A director may also assign cameras to enhance the visual experience.

Figure 7 shows a close-up of a “follow” idiom where the event is assigning
intelligent cameras to cover the event as the user controls the penguin. These
cameras are highlighted in red. Here, the camera is pulled back to “establish”
the shot, providing information about the environment. As the shot sequence
progresses, the camera draws closer when the player engages another agent.
We have tested our scene with multiple events and multiple cameras without
producing any lag in gameplay. Our test environments and user interactions use
the Unity Game engine, however any game engine would work.

6 Conclusions

In this paper, we have presented a novel intelligent camera system using be-
havior trees and smart events. Our system automatically positions, pans, tilts,
zooms, and tracks the camera to film events. Our system is very modular and
dynamically reacts to “smart events” that occur in the scene in real-time. Our
intelligent cameras take advantage of the modular abstraction behavior trees
provide. This allows a game designer the ability to quickly create new shot id-
ioms, and efficiently reuse the components to create more complex actions. Using



166 D. Markowitz et al.

“smart events” provides the necessary parameters to our cameras, and greatly
simplifies having to program every possible event manually. This generalizes our
approach since the designer does not have to plan out the camera in a game and
can instead focus on the game’s style and narrative. The intelligent camera will
react to the event automatically and film it appropriately. This provides a high-
quality visual experience to the player, thereby turning the game into the visual
experience of a movie. We provide a user interface to allow a director or user to
create their own videos. This feature may be used in a variety of ways in the
future. A user could edit his own visual appearance for the game, or construct
very strong playback videos of his game highlights to post online. The advan-
tage here is that the camera can record the event BEFORE the great play, save,
accomplishment, etc. is actually achieved. In the future, we hope to add more
advanced shooting techniques to the system. Parameterizing and implementing
camera blur, saturation, color, and contrast effects would all enhance the vi-
sual appearance. We also hope to improve the occlusion detection by applying
“Director Volumes” and other complex visibility algorithms or directed paths.

References

1. Amerson, D., Shaun, K., Young, R.M.: Real-time cinematic camera control for in-
teractive narratives. In: Proceedings of the 2005 ACM SIGCHI International Con-
ference on Advances in Computer Entertainment Technology, ACE 2005, pp. 369–
369. ACM, New York (2005), http://doi.acm.org/10.1145/1178477.1178552

2. Arijon, D.: Grammar of the Film Language. Communication Arts Books, Hastings
House Publishers (1976)

3. Bares, W., McDermott, S., Boudreaux, C., Thainimit, S.: Virtual 3d camera com-
position from frame constraints. In: Proceedings of the Eighth ACM International
Conference on Multimedia, MULTIMEDIA 2000, pp. 177–186. ACM, New York
(2000), http://doi.acm.org/10.1145/354384.354463

4. Bares, W.H., Grégoire, J.P., Lester, J.C.: Realtime constraint-based cinematog-
raphy for complex interactive 3d worlds. In: Proceedings of the Fifteenth Na-
tional/Tenth Conference on Artificial Intelligence/Innovative Applications of Ar-
tificial Intelligence, AAAI 1998/IAAI 1998, pp. 1101–1106. American Association
for Artificial Intelligence, Menlo Park (1998),
http://portal.acm.org/citation.cfm?id=295240.296260

5. Hecker, C., McHugh, L., Dyckho, M.A.,, M.: Three approaches to Halo-style be-
havior tree ai. In: Game Developers Conference (2007)

6. Christianson, D.B., Anderson, S.E., He, L.w., Salesin, D.H., Weld, D.S., Cohen,
M.F.: Declarative camera control for automatic cinematography. In: Proceedings
of the Thirteenth National Conference on Artificial Intelligence, AAAI 1996, vol. 1,
pp. 148–155. AAAI Press (1996),
http://portal.acm.org/citation.cfm?id=1892875.1892897

7. Christie, M., Machap, R., Normand, J.-M., Olivier, P., Pickering, J.H.: Virtual
Camera Planning: A Survey. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.)
SG 2005. LNCS, vol. 3638, pp. 40–52. Springer, Heidelberg (2005)

8. Christie, M., Olivier, P.: Camera control in computer graphics: models, techniques
and applications. In: ACM SIGGRAPH ASIA 2009 Courses, SIGGRAPH ASIA
2009, pp. 3:1–3:197. ACM, New York (2009),
http://doi.acm.org/10.1145/1665817.1665820

http://doi.acm.org/10.1145/1178477.1178552
http://doi.acm.org/10.1145/354384.354463
http://portal.acm.org/citation.cfm?id=295240.296260
http://portal.acm.org/citation.cfm?id=1892875.1892897
http://doi.acm.org/10.1145/1665817.1665820


Intelligent Camera Control Using Behavior Trees 167

9. Drucker, S.M., Galyean, T.A., Zeltzer, D.: Cinema: a system for procedural camera
movements. In: Proceedings of the 1992 Symposium on Interactive 3D Graphics,
I3D 1992, pp. 67–70. ACM, New York (1992),
http://doi.acm.org/10.1145/147156.147166

10. Drucker, S.M., Zeltzer, D.: Camdroid: a system for implementing intelligent camera
control. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics, I3D
1995, pp. 139–144. ACM, New York (1995),
http://doi.acm.org/10.1145/199404.199428

11. Elson, D.K., Riedl, M.O.: A lightweight intelligent virtual cinematography system
for machinima production. In: AIIDE, pp. 8–13 (2007)

12. Friedman, D., Feldman, Y.A.: Automated cinematic reasoning about camera be-
havior. Expert Syst. Appl. 30, 694–704 (2006),
http://dx.doi.org/10.1016/j.eswa.2005.07.027

13. Friedman, D.A., Feldman, Y.A.: Knowledge-based cinematography and its appli-
cations. In: ECAI, pp. 256–262 (2004)

14. Halper, N., Helbing, R., Strothotte, T.: A camera engine for computer games: Man-
aging the trade-off between constraint satisfaction and frame coherence. Computer
Graphics Forum 20(3), 174–183 (2001)

15. He, L.w., Cohen, M.F., Salesin, D.H.: The virtual cinematographer: a paradigm for
automatic real-time camera control and directing. In: Proceedings of the 23rd An-
nual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
1996, pp. 217–224. ACM, New York (1996),
http://doi.acm.org/10.1145/237170.237259

16. Isla, D.: Handling complexity in the Halo 2 ai. In: Game Developers Conference,
p. 12 (2005)

17. Isla, D.: Halo 3 - building a better battle. In: Game Developers Conference (2008)
18. Jhala, A.: Cinematic Discourse Generation. Ph.D. thesis, North Carolina State

University (2009)
19. Li, T.-Y., Cheng, C.-C.: Real-Time Camera Planning for Navigation in Virtual

Environments. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.)
SG 2008. LNCS, vol. 5166, pp. 118–129. Springer, Heidelberg (2008)

20. Lino, C., Christie, M., Lamarche, F., Schofield, G., Olivier, P.: A real-time cine-
matography system for interactive 3d environments. In: Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2010,
pp. 139–148. Eurographics Association, Aire-la-Ville (2010),
http://portal.acm.org/citation.cfm?id=1921427.1921449

21. Lukas, C.: Directing for Film and Television. Anchor Press / Doubleday (1985)
22. Oskam, T., Sumner, R.W., Thuerey, N., Gross, M.: Visibility transition plan-

ning for dynamic camera control. In: Proceedings of the 2009 ACM SIGGRAPH/
Eurographics Symposium on Computer Animation, SCA 2009, pp. 55–65. ACM,
New York (2009), http://doi.acm.org/10.1145/1599470.1599478

23. Pereira, F., Gelatti, G., Raupp Musse, S.: Intelligent virtual environment and cam-
era control in behavioural simulation. In: Proceedings of XV Brazilian Symposium
on Computer Graphics and Image Processing, pp. 365–372 (2002)

24. Stocker, C., Sun, L., Huang, P., Qin, W., Allbeck, J.M., Badler, N.I.: Smart Events
and Primed Agents. In: Safonova, A. (ed.) IVA 2010. LNCS, vol. 6356, pp. 15–27.
Springer, Heidelberg (2010),
http://portal.acm.org/citation.cfm?id=1889075.1889078

25. Young, R.M.: Story and discourse: A bipartite model of narrative generation in
virtual worlds. Interaction Studies (2006)

http://doi.acm.org/10.1145/147156.147166
http://doi.acm.org/10.1145/199404.199428
http://dx.doi.org/10.1016/j.eswa.2005.07.027
http://doi.acm.org/10.1145/237170.237259
http://portal.acm.org/citation.cfm?id=1921427.1921449
http://doi.acm.org/10.1145/1599470.1599478
http://portal.acm.org/citation.cfm?id=1889075.1889078

	University of Pennsylvania
	ScholarlyCommons
	11-2011

	Intelligent Camera Control Using Behavior Trees
	Daniel Markowitz
	Joseph T. Kider Jr.
	Alexander Shoulson
	Norman I. Badler
	Recommended Citation

	Intelligent Camera Control Using Behavior Trees
	Abstract
	Disciplines
	Comments


	Intelligent Camera Control Using Behavior Trees
	Introduction
	Background
	Cinematography Principles
	Intelligent Camera Representation

	Implementation
	Smart Event Representation

	Results
	Conclusions


