
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

12-18-2009

Arrows for Secure Information Flow
Peng Li
University of Pennsylvania

Stephan A. Zdancewic
University of Pennsylvania, stevez@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Peng Li and Steve Zdancewic. Arrows for Secure Information Flow. Theoretical Computer Science, 411(19):1974-1994, 2010.
©2011 Elsevier. Authors retain the right to post a pre-print version of the journal article on Internet web sites including electronic pre-print servers, and
to retain indefinitely such version on such servers or sites.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/557
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Peng Li and Stephan A. Zdancewic, "Arrows for Secure Information Flow", . December 2009.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/557
mailto:libraryrepository@pobox.upenn.edu

Arrows for Secure Information Flow

Abstract
This paper presents an embedded security sublanguage for enforcing information- flow policies in the
standard Haskell programming language. The sublanguage provides useful information-flow control
mechanisms including dynamic security lattices, run-time code privileges and declassification all without
modifying the base language. This design avoids the redundant work of producing new languages, lowers the
threshold for adopting security-typed languages, and also provides great flexibility and modularity for using
security-policy frameworks.

The embedded security sublanguage is designed using a standard combinator interface called arrows.
Computations constructed in the sublanguage have static and explicit control-flow components, making it
possible to implement information-flow control using static-analysis techniques at run time, while providing
strong security guarantees. This paper presents a formal proof that our embedded sublanguage provides
noninterference, a concrete Haskell implementation and an example application demonstrating the proposed
techniques.

Disciplines
Computer Sciences

Comments
Peng Li and Steve Zdancewic. Arrows for Secure Information Flow. Theoretical Computer Science,
411(19):1974-1994, 2010.

©2011 Elsevier. Authors retain the right to post a pre-print version of the journal article on Internet web sites
including electronic pre-print servers, and to retain indefinitely such version on such servers or sites.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/557

http://repository.upenn.edu/cis_papers/557?utm_source=repository.upenn.edu%2Fcis_papers%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages

Arrows for Secure Information Flow

Peng Li Steve Zdancewic

University of Pennsylvania, Department of Computer and Information Science,

3330 Walnut Street, Philadelphia, Pennsylvania, 19104-6389, USA

Abstract

This paper presents an embedded security sublanguage for enforcing information-
flow policies in the standard Haskell programming language. The sublanguage pro-
vides useful information-flow control mechanisms including dynamic security lat-
tices, run-time code privileges and declassification all without modifying the base
language. This design avoids the redundant work of producing new languages, low-
ers the threshold for adopting security-typed languages, and also provides great
flexibility and modularity for using security-policy frameworks.

The embedded security sublanguage is designed using a standard combinator in-
terface called arrows. Computations constructed in the sublanguage have static and
explicit control-flow components, making it possible to implement information-flow
control using static-analysis techniques at run time, while providing strong secu-
rity guarantees. This paper presents a formal proof that our embedded sublanguage
provides noninterference, a concrete Haskell implementation and an example appli-
cation demonstrating the proposed techniques. 1

Key words: Information flow, security, Haskell, arrows, type systems, combinators

1 Introduction

Language-based information-flow security (Sabelfeld and Myers, 2003) has a
long, rich history with many (mostly theoretical) results. This prior work has
focused mainly on the problems of static program analysis for a wide variety
of computation models and policy features. Often these analyses are presented
as type systems whose soundness is justified by some form of noninterference

1 This paper is an expanded version of an earlier paper that appeared in IEEE
CSFW (Li and Zdancewic, 2006).

Email addresses: lipeng@cis.upenn.edu (Peng Li), stevez@cis.upenn.edu
(Steve Zdancewic).

Preprint submitted to Elsevier 18 December 2009

result. The approach is compelling because programming-language techniques
can be used to specify and enforce security policies that cannot be achieved
by conventional mechanisms such as access control and encryption. Two full-
scale language implementations have been developed: Jif (Myers, 1999; Myers
et al., 2001) is a variant of Java, and Flow Caml (Simonet, 2003; Pottier and
Simonet, 2002) is an extension of Caml.

However, despite this rather large (and growing!) body of work on language-
based information-flow security, there has been relatively little adoption of
the proposed techniques—two success stories are the “taint-checking mode”
available in the Perl language and the use of information-flow analysis to
separate lower integrity components from higher integrity components built
in the SparkAda (Chapman and Hilton, 2004) language.

One important reason why these domain-specific security-typed languages
have not been widely applied is that, because the information-flow policies are
intended to apply in an end-to-end fashion, the whole system has to be written
in the new language. However, it is expensive to build large software systems
in a new language. Doing so can be justified only if the benefit of using the
new language outweighs the cost of migrating to the new language—including
the costs of retraining programmers and the time and expense necessary to
port existing libraries and other code bases.

Moreover, in practice, it may well be the case that only a small part of the
system (maybe only a few variables in a large program) has information-flow
security requirements. Although the system may be large and complex, the
secret information flow in the system may not be completely unmanageable.
In such cases, it is probably more convenient to use the programming language
that best fits the primary functionality of the system rather than its security
requirements, and manage security issues by traditional means such as code
auditing and careful software engineering practices. Such practical solutions
are often a compromise, because there is no provable security indeed. In re-
ality, there is a language adoption threshold based on the ratio of security
requirements to functionality requirements, and this threshold is very high.

1.1 Background on security-typed languages

In security-typed languages like Jif (Myers, 1999; Myers et al., 2001) and
Flow Caml (Simonet, 2003; Pottier and Simonet, 2002), variables can have
security annotations in their type declarations. Each variable has a security
level, represented syntactically by a label in the program. The security levels
are usually partially ordered and form a lattice. For example, the simplest
security lattice {L, H}, L ⊑ H defines two labels L and H and specifies an or-

2

dering between the two security levels represented by these labels. At compile
time, security-typed programs are checked to guarantee that there is no infor-
mation flow from higher security levels to lower security levels; violations of
this information-flow policy result in type errors.

Security-typed languages often favor static type checking, because information-
flow analysis requires the view of the entire control-flow graph in order to
examine implicit information flows caused by conditional branches. For ex-
ample, the C program “if (h==0) l=0; else l=1;” has an implicit flow from
h to l and, although there is no explicit assignment “l=(h==0);”, these code
fragments are effectively equivalent. In a dynamically-typed language, such
implicit flows are difficult to capture. For example, the taint-checking mode of
Perl does not capture the implicit flow in the above code: even if h is tainted
and there is information flow from h to l, l is still not tainted. This is fine
because the taint-checking mode is used only to provide a modest level of
integrity guarantees. However, for confidentiality purposes, implicit flows are
often unacceptable, especially when the program is not trusted.

To make security-typed languages practical, a feature called declassification is
necessary: sometimes, we do need information flow from higher levels to lower
levels, but only in permitted ways. For example, secret information can be
sent to public places after it is encrypted. One popular solution is to make
declassification an explicit (and unsafe) type cast; it is thus the programmers’
responsibility to use declassification safely. When the code is not trusted,
declassification can be dangerous. The decentralized label model (Myers and
Liskov, 2000) solves this problem by assigning code privileges to program
modules, so each module can only declassify information of certain security
levels that are determined by the code privilege.

1.2 Embedded security-typed sublanguages

This paper presents a different approach to enforcing information-flow security
policies. Rather than producing a new language from scratch, we show how
to encode traditional information-flow type systems using general features
of an existing, modern programming language. In particular, we show how
the abstract data type and the type class features found in Haskell (Peyton
Jones et al., 2002) can be used to build a module that effectively provides a
security-typed sublanguage embedded in Haskell itself. This sublanguage can
interoperate smoothly with existing Haskell code while still providing strong
information-flow security guarantees. Importantly, we do not need to modify
the design or implementation of Haskell itself—we use features in its standard
(but advanced) type system.

3

Our approach reduces the adoption threshold for systems implemented in
Haskell: such systems can be made more secure without completely rewriting
them in a new language. The implementation can be a fine-grained mixture
of normal code and security-hardened code (variables, data and computations
over secure data). The programmer needs to protect only sensitive data and
computation using a software library, which enforces the information-flow poli-
cies throughout the entire system and provides end-to-end security goals like
noninterference.

Another benefit of our approach is flexibility. A specialized language like Jif
must pick a fixed policy framework in which the security policies are expressed.
Considering the plethora of features present in the literature expressing the
label lattice, declassification options (Sabelfeld and Sands, 2005), dynamic
policy information (Tse and Zdancewic, 2004a; Zheng and Myers, 2004), etc.,
it is unlikely that any particular choice of policy language will be suitable
for all programs with security concerns. By contrast, since it is much easier
to build a library module than to build a new language, it is conceivable
that different programs would choose to implement entirely different policy
frameworks. Our embedded sublanguage approach is modular in the sense
that it provides an interface through which the programmer can choose which
policy framework and type system to use for specific security goals. In this
paper we sketch one possible policy framework that illustrates one particular
choice of label lattice, declassification mechanism, and support for dynamic
policies, but others could readily be implemented instead.

Although we use Haskell’s advanced type system and helpful features like the
ability to overload syntax, studying how to encode information-flow policies
in the context of Haskell can point to how similar efforts might be undertaken
in more mainstream languages like Java. Also, since the features we use are
intended to be “general purpose,” they are more likely to find a home in a
mainstream language than the less widely applicable security types. Evidence
of this can be found, for example, in Sun’s recent addition of parametric
polymorphism, a key component of our approach, to Java.

1.3 Overview of technical development

There are two key technical challenges in embedding a useful security-typed
sublanguage in Haskell. The first problem is that enforcing information-flow
policies requires static analysis of the control flow graph of the embedded
programs—purely dynamic enforcement mechanisms are generally too conser-
vative in practice. The second problem is representing the policy information
itself—depending on the desired model, the policy information might be quite
complex, perhaps depending on information available only at run time.

4

Our solution to the first problem is to use arrows (Hughes, 2000). Intuitively,
arrows provide an abstract interface for defining embedded sublanguages that
support standard programming constructs familiar to programmers: sequen-
tial composition, conditional branches, and loops. Haskell provides convenient
syntactic sugar for writing programs whose semantics are given by an arrow
implementation.

To address the second problem, we use Haskell’s type class mechanism to give
an interface for security lattices. Programs written in the embedded language
can be parameterized with respect to this interface. Moreover, the embedded
language can easily be given security-specific features such as a declassification
operation or run-time representation of privileges for access-control checks.

In both cases, we make use of Haskell’s strong type system to guarantee that
the abstractions enforcing the security policies are not violated. This encap-
sulation means that it is not possible to use the full power of the Haskell
language to circumvent the information-flow checks performed by the embed-
ded language, for example.

The rest of the paper is organized as follows. Section 2 presents a brief tu-
torial of the arrow interface. Section 3 presents the detailed implementation
of an arrow-based sublanguage for information-flow control. Section 4 gives
some example programs that illustrate how the secure embedded language
and the Haskell program can be smoothly integrated and considers the issues
with enforcing the desired security properties. Section 5 formalizes and proves
the security guarantee of our security sublanguage. Section 6 discusses some
limitations and caveats with this approach and describes some future work.
Section 7 concludes.

2 The arrows interface

The concept of arrows was proposed by Hughes (2000) as a generalization of
monads (Wadler, 1992). Both monads and arrows are generic interfaces for
constructing programs using combinators. This section presents an informal
and brief tutorial of arrows 2 and shows how arrows can be used to construct
computations with explicit control flow structures.

2 The related references (Hughes, 2000; Paterson, 2003, 2001) in the bibliography
can be used for more detailed studies of arrows.

5

2.1 Definition of arrows

The following code specifies the simplest Arrow type class. Here, a is an abstract
type of arrow with input type b and output type c. This arrow type class
supports only three operations: pure, (>>>), and first.

� �

class Arrow a where

pure :: (b -> c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b, d) (c, d)
� �

Basic blocks and compositions

The pure operation lifts a Haskell function of type b->c into the arrow; such
lifted functions serve as the “basic blocks” of the control-flow graphs con-
structed via arrow combinators. The infix operation (>>>) provides sequential
(horizontal) composition of computations, and first provides parallel (verti-
cal) composition of computations.

An instance of the Arrow type class is required to satisfy a set of axioms that
specify coherence properties between the operations. For example, (>>>) is
required to be associative. We omit the complete description of the arrow
axioms here; for our purposes, there is only one interesting case to consider,
and it is discussed in Section 6. The simplest instance of Arrow is Haskell’s
function arrow constructor (->) itself: every function of type b -> c is also an
arrow computation (->) b c.

Using the concept of monad transformers (Liang et al., 1995), one can also
build arrow transformers, which correspond closely to the categorical notion
of functors. Monad and arrow transformers allow program functionality be
composed in a modular, layered fashion.

Representing conditionals and loops

The basic Arrow interface does not provide the ability to construct condi-
tional computations—it can construct only control-flow graphs that represent
straight-line code with no branches. Two other type classes refine arrows by
permitting conditional branches and loops.

The ArrowChoice type class provides an operation called left that extends
the Arrow interface with the ability to perform a one-sided branch computa-
tion depending on the arrow’s input value. In Haskell, the type Either b d

describes a value that is a tagged union (or option) type that carries either a
value of type b or one of type d.

6

� �

class Arrow a => ArrowChoice a where

left :: a b c -> a (Either b d) (Either c d)
� �

Using left and the other arrow primitives, the following operations can be
implemented to construct different kinds of conditional computations:

� �

right :: a b c -> a (Either d b) (Either d c)

(+++) :: a b c -> a b’ c’->a (Either b b’) (Either c c’)

(|||) :: a b d -> a c d -> a (Either b c) d
� �

ArrowLoop provides the embedded language with a loop construct sufficient
for encoding while and for loops. Intuitively, the loop operator feeds the d

output of the arrow back into the d input of the arrow, introducing a cycle in
the control-flow graph:

� �

class Arrow a => ArrowLoop a where

loop :: a (b, d) (c, d) -> a b c
� �

The benefit of having this operation is that recursive computations can be
constructed as a finite combination of arrow components. We will use this
property in Section 3.6.

Translating the do-syntax

Programming directly with the arrow operations is sometimes cumbersome,
because arrows require a point-free programming style. The do-syntax for ar-
rows (Paterson, 2001) provides syntactic sugar for arrow programming, such
as arrow abstraction, arrow application, sequential composition, conditional
branching and recursion. Internally, the Haskell compiler 3 translates the do-
syntax used in the embedded sublanguage into the basic arrow operations. For
example, conditional statements are translated to pure, >>> and ||| opera-
tors, using the following rule:

[[proc p -> if e then c1 else c2]] =

pure (\p -> if e then Left p else Right p)

>>> [[proc p -> c1]] ||| [[proc p -> c2]]

This rule translates the if command in the sublanguage. The if construct in
the translated code is the conditional expression in the base Haskell language.
The sublanguage syntax “proc p->” provides an arrow abstraction that binds
the arrow input to the variable p.

The compiler is able to resolve this syntax overloading by using type infor-
mation. For example, the type Protected mentioned in our implementation
described below informs the compiler to use our definition for |||, which is

3 We use the Glasgow Haskell Compiler (http://www.haskell.org/GHC).

7

given by our FlowArrow instance of the ArrowChoice type class. This feature
allows programmer-defined embedded sublanguages to have convenient syn-
tax.

2.2 Control flow in arrow sublanguages

The Haskell programming language itself provides branching, looping, and
other control-flow constructs, so one might wonder why it is necessary to re-
implement all of these features in the embedded sublanguage. Compared to
Haskell’s full control-flow mechanisms (which also include function calls and
exceptions, for example), the arrow type classes are actually quite impover-
ished. The arrow interfaces isolate the base language (Haskell) and the sub-
language (arrows): by design, the control flow constructs in the base language
cannot be directly used to represent the control flow of the sublanguage.

This separation property is crucial for the security analysis of arrow-based
sublanguages. If an arrow implements only the operations in the ArrowChoice

type class, conditional branches on arrow computations can only be imple-
mented using the given arrow operations left, right, (+++), and (|||). By
keeping the arrow implementation abstract, the programmer is forced to use
these arrow operations for writing conditional branches, because there is no
other way to manipulate the interface.

Therefore, by designing the arrow interface with limited control-flow primi-
tives, the control-flow graph of an arrow computation is determined by the
composition of primitive arrow operations. In other words, arrows can force
computations to be constructed with static and explicit control-flow struc-
tures. This makes it possible to completely analyze the information flow in an
arrow-based sublanguage before running the computation. A more permissive
interface to the sublanguage (such as provided by monads for example) would
allow base language branches to leak information about supposedly protected
data.

3 An embedded security-typed language

This section presents the design of our secure embedded sublanguage using the
arrows interface. Our design uses the structure of arrow transformers, which
allows arrow sublanguages to be composed in a modular, layered fashion.

8

3.1 Encoding the security lattice

In our embedded language, the security labels are encoded using term-level
values. We start by defining a generic Haskell interface for security labels and
lattices: the type class Lattice provides a set of operations common for all
security lattices.

� �

class (Eq a) => Lattice a where

label_top :: a

label_bottom :: a

label_join :: a -> a -> a

label_meet :: a -> a -> a

label_leq :: a -> a -> Bool
� �

The programmer has the freedom to choose the implementation of the actual
security lattice. Because we are encoding labels using terms, there is no lim-
itation on the expressiveness of security policies: any security lattice can be
encoded as long as its labels and the operations on them can be represented
using Haskell. For simplicity and ease of presentation, we use the following
three-point lattice throughout the rest of the paper.

� �

data TriLabel = LOW | MEDIUM | HIGH deriving (Eq, Show)

instance Lattice TriLabel where

label_top = HIGH

label_bottom = LOW

label_join x y=if x ‘label_leq‘ y then y else x

label_meet x y=if x ‘label_leq‘ y then x else y

label_leq LOW _ = True

label_leq MEDIUM LOW = False

label_leq MEDIUM _ = True

label_leq HIGH HIGH = True

label_leq HIGH _ = False
� �

3.2 Encoding flow types and constraints

This paper employs a simple information-flow type system for purely-functional
arrow computations. An arrow computation has an input security label l1 and
an output security label l2. Each typing judgment has the form

Φ ⊢ c : l1 → l2

where c is a purely functional computation, l1 → l2 is the flow type assigned
to c, and Φ is a list of label constraints. The type system is presented in
Figure 1. There is also a certification judgement in the type system. We defer
its discussion until Section 3.5.

9

The sublanguage types appearing in the typing judgments are encoded using
the Haskell data type:

� �

data Flow l = Trans l l | Flat
� �

(1) Trans l1 l2 specifies a security type l1 → l2.
(2) Flat means the input and output can be given the same arbitrary label.

It specifies a security type l → l, where the label l can be determined by
constraints in the context.

The label constraints are encoded using the Constraint data type:
� �

data Constraint l = LEQ l l | USERGEQ l
� �

(1) LEQ l1 l2 represents a direct ordering between two labels: l1 ⊑ l2.
(2) USERGEQ l represents the constraint l ⊑ user. It requires that the run-time

code privilege, which is represented as a label, be at least l. This will be
used in Section 3.5 when we implement declassification.

The purpose of the constraint set Φ is to implement late binding of the secu-
rity lattice. The type system collects the label constraints when secure com-
putations are constructed from individual components. Such constraints are
checked when the secure computation is accessed through the policy enforce-
ment mechanism, namely, the cert operation. This design makes it possible
to use dynamic security lattices and also helps when implementing declassifi-
cation.

3.3 Encoding typing judgments and rules

The abstract datatype FlowArrow defines our secure embedded language by
implementing the arrow interfaces described above:

� �

data FlowArrow l a b c = FA

{ computation :: a b c

, flow :: Flow l

, constraints :: [Constraint l] }
� �

A value of type FlowArrow l a b c is a record with three fields. The computation
field encapsulates an arrow of type a b c that is the underlying computation to
be protected. The flow field specifies the security levels for the input and out-
put of the computation. The constraints field stores the list of flow constraints
Φ when the arrow computation is constructed from smaller components.

FlowArrow encodes an information-flow typing judgment for a purely functional
arrow computation, using the encoding of flow types and constraints we just

10

Φ ⊢ c : l1 → l2

∅ ⊢ pure f : l → l
pure

Φ1 ⊢ c1 : l1 → l2
Φ2 ⊢ c2 : l3 → l4

Φ1 ∪ Φ2 ∪ {l2 ⊑ l3} ⊢ c1 >>> c2 : l1 → l4
seq

Φ ⊢ c : l1 → l2

Φ ⊢ op c : l1 → l2
one

Φ1 ⊢ c1 : l1 → l2
Φ2 ⊢ c2 : l3 → l4

Φ1 ∪ Φ2 ⊢ c1 op c2 : l1 ⊓ l3 → l2 ⊔ l4
par

Φ ⊢ c : l1 → l2

Φ ∪ {l2 ⊑ l1} ⊢ loop c : l1 → l2
loop

∅ ⊢ tag l : l → l
tag

{l1 ⊑ user} ⊢ declassify l1 l2 : l1 → l2
decl

L, luser ≻ c : lin → lout

Φ ⊢ c : l1 → l2 lin ⊑ l1
l2 ⊑ lout L ⊢ Φ[luser/user]

L, luser ≻ c : lin → lout

cert

Fig. 1. Information-flow type system implemented by the sublanguage

defined. The typing judgment Φ ⊢ c : l1 → l2 is represented by the value:

FA c (Trans l1 l2)Φ

FlowArrow is implemented using a generic design of arrow transformers and it
is parameterized by several types:

(1) The type l of security labels. (FlowArrow l) is an arrow transformer.
(2) The purely functional arrow a we are transforming from. The simplest and

most common case of a is the function arrow (->). The result (FlowArrow
l a) is also an arrow.

(3) The input type b and output type c.

11

� �

instance (Lattice l,Arrow a)=>Arrow (FlowArrow l a) where

pure f = FA { computation = pure f −− PURE –

, flow = Flat

, constraints = [] }

(FA c1 f1 t1) >>> (FA c2 f2 t2) = −− SEQ –

let (f,c) = flow_seq f1 f2 in

FA { computation = c1 >>> c2

, flow = f

, constraints = t1 ++ t2 ++ c }

first (FA c f t) = −− ONE –

FA { computation = first c

, flow = f

, constraints = t }

(FA c1 f1 t1) &&& (FA c2 f2 t2) = −− PAR –

FA { computation = c1 &&& c2

, flow = flow_par f1 f2

, constraints = t1++t2 }

(FA c1 f1 t1) *** (FA c2 f2 t2) = −− PAR –

FA { computation = c1 *** c2

, flow = flow_par f1 f2

, constraints = t1++t2 }

instance (Lattice l, ArrowChoice a) =>

ArrowChoice (FlowArrow l a) where

left (FA c f t) = −− ONE –

FA { computation = left c

, flow = f

, constraints = t }

(FA c1 f1 t1) +++ (FA c2 f2 t2) = −− PAR –

FA { computation = c1 +++ c2

, flow = flow_par f1 f2

, constraints = t1++t2 }

(FA c1 f1 t1) ||| (FA c2 f2 t2) = −− PAR –

FA { computation = c1 ||| c2

, flow = flow_par f1 f2

, constraints = t1++t2 }

instance (Lattice l, ArrowLoop a) =>

ArrowLoop (FlowArrow l a) where

loop (FA c f t) = −− LOOP –

let t’ = constraint_loop f in

FA { computation = loop c

, flow = f

, constraints = t ++ t’ }

where

constraint_loop Flat = []

constraint_loop (Trans l1 l2) = [LEQ l2 l1]
� �

Fig. 2. Implementation of arrow operations

12

� �

flow_seq::Flow l->Flow l->(Flow l, [Constraint l])

flow_seq (Trans l1 l2) (Trans l3 l4)=

(Trans l1 l4, [LEQ l2 l3])

flow_seq Flat f2 = (f2,[])

flow_seq f1 Flat = (f1,[])

flow_par :: (Lattice l)=>Flow l->Flow l->Flow l

flow_par (Trans l1 l2) (Trans l3 l4) =

Trans (label_meet l1 l3) (label_join l2 l4)

flow_par Flat f2 = f2

flow_par f1 Flat = f1
� �

Fig. 3. Implementation of arrow operations (continued)

The arrow a must be purely functional and must have no side effects. Although
FlowArrow is a generic arrow transformer, we do require that the arrow a

represent a purely functional computation where information flows from one
end to the other, so the information-flow types in the form of l1 → l2 makes
sense. In the rest of the paper, the reader can assume a is the function arrow
(->) for ease of understanding.

(FlowArrow l a) is an arrow, so we can use FlowArrow as a sublanguage to rep-
resent computation. At the same time, (FlowArrow l a) also encodes a typing
judgment, so we can verify the information-flow policies for the computation.
Essentially, the implementation of (FlowArrow l a) is a type checker: each ar-
row operation implements a typing rule for that operation. For standard arrow
operations on a, FlowArrow lifts them by (1) running the original operation on
the computation fields of arguments, and (2) computing the flow types and
constraints using such information from the arguments.

The implementation of FlowArrow is given in Figures 2 and 3. In the definition
of each arrow operation, the operation in FlowArrow (on the left hand side) is
implemented using operations in the arrow a (on the right hand side).

The pure operation returns a Flat flow type and no constraints, because such
computations have no information-flow policies on them. It implements the
pure typing rule. Flat represents a flow type l → l, but the label l never
appears in the implementation—it can always be inferred from context.

The (>>>) operation sequentially composes two arrow computations. The flow
types and constraints are computed using the flow seq function, which im-
plements the seq typing rule.

The first and left operations implement the one typing rule. The (&&&),
(***), (|||) and (+++) operations are parallel compositions and they imple-
ment the par rule. The flow par function is used to compute parallel compo-
sition of flow types.

13

The loop operation is slightly more interesting. It implements the loop typ-
ing rule. Since loop connects the output of a computation back to its input,
we generate a constraint to capture this information flow. This requires that
the input and the output have the same security level, unless there is declas-
sification inside the computation.

As described in Section 2, the do-syntax of the secure sublanguage is trans-
lated to these standard arrow operations. Therefore, the typing judgment for
code written in the do-syntax can be derived by combining the typing rules
implemented in these standard arrow operations. For the translation of con-
ditional commands shown in the end of Section 2, the combination of typing
rules yields essentially the same constraints as the following cond rule found
in conventional information-flow type systems:

Γ ⊢ e1 : l1 Γ ⊢ e2 : l2
Γ ⊢ e3 : l3 l1 ⊑ l2 ⊔ l3

Γ ⊢ if e1 then e2 else e3 : l2 ⊔ l3
cond

3.4 Policy specification

So far, the typing rules implemented in FlowArrow permit the construction
of computations from smaller components while composing their information-
flow policies. Pure computations are given the l → l flow type, but we need a
way to introduce more interesting flow types. The tag operation annotates a
computation with a security label. It implements the tag rule in Figure 1.

� �

tag::(Lattice l,Arrow a)=> l -> FlowArrow l a b b

tag l = FA { computation = pure (\x->x)

, flow = Trans l l

, constraints = [] }
� �

When tag is applied to a label l, it creates an arrow that represents an empty
step of computation, with the flow type l → l. Intuitively, tag inserts a “pipe”
in the middle of the computation, with explicit flow types specified on both
ends. For example, to annotate the confidential value secret with label HIGH,
we can use the following code which has a flow type HIGH → HIGH:

pure (_->secret) >>> tag HIGH

To assert that the output of a computation c has no confidential information,
we can simply use the following code to connect c to a “low” pipe:

c >>> tag LOW

14

For confidentiality policies, we care about the future of secret computation,
i.e. where information will flow to. Therefore, a good pattern for protecting
confidentiality is to append tag to the output of the computation we want to
protect. The design of tag and the arrow types are completely symmetrical.
If we have labels for integrity policies, we can connect the output of tag to
computations that require trustworthy data as inputs. This is a bi-directional
design that works for both confidentiality and integrity policies.

3.5 Declassification

Declassification is a practical requirement for language-based information-flow
control. We need a mechanism to allow information flow from high levels to low
levels, but only in controlled ways. The decentralized label model (DLM) (Myers
and Liskov, 2000) solves this problem by assigning code with authority. Each
declassification statement can only weaken the security policy that belongs
to the authority of code. In our arrows framework, there is no difficulty of
encoding the labels in DLM, but we need a declassification mechanism that
takes code authority into account.

For simplicity of presentation, we designed the declassification construct and
its corresponding flow constraints for simple lattices such as the TriLabel

lattice implemented earlier in this section. It is simpler than the declassification
mechanism in Jif, but it implements the essence of code authority checking.
This design can be generalized to any finite lattice.

� �

declassify :: (Lattice l, Arrow a) =>

l -> l -> FlowArrow l a b b

declassify l1 l2 =

FA { computation = pure (\x->x)

, flow = Trans l1 l2

, constraints = [USERGEQ l1] }
� �

The declassify operation implements the decl rule in Figure 1. It is similar
to the tag operation except that it constructs a “pipe” where the security level
of the output is lower than the level of input. Similar to other operations,
declassify does not check the policies directly, but it creates a constraint
which can be checked later. When applied to two label values, declassify l1 l2
creates an arrow with flow type l1 → l2 and a flow constraint USERGEQ l1 stating
that the code privilege must be at least l1. For example, if the code privilege is
HIGH, it can declassify information from MEDIUM to LOW. But if the code privilege
is MEDIUM, it cannot declassify from HIGH to LOW.

15

3.6 Policy enforcement

Finally, we need to check the flow types and constraints that we have accu-
mulated during the construction of a secure computation. Since we have a
declassification mechanism which takes code privilege into account, the code
privilege must be provided to check the constraints.

� �

data Privilege l = PR l

certify :: (Lattice l) => l -> l ->

Priv l -> FlowArrow l a b c -> a b c

certify l_in l_out (PR l_user) (FA c f t) =

if not $ check_levels l_in l_out f then

error $ "security level mismatch" ++ (show f)

else if not $ check_constraints l_user t then

error $ "constraints cannot be met"++(show t)

else c
� �

The judgment L, luser ≻ c : lin → lout states the security property to be
checked: given a security lattice L and the label luser representing the code
privilege, does the arrow computation c satisfy the information-flow policy
lin → lout? The cert rule in Figure 1 checks this security property and the
certify function implements this rule.

The certify operation takes a few arguments:

(1) The information-flow types lin and lout that we expect the computation to
have. Suppose the flow type of the secure computation is l1 → l2, certify
calls another function to verify that lin ⊑ l1 and l2 ⊑ lout.

(2) The code privilege luser, under which the computation is performed. The
certify operation checks all the constraints that come with the secure
computation. For any constraints of the form USERGEQ l, a check is per-
formed to make sure that l ⊑ luser. If any constraint is not satisfied, a
run-time error is generated.

(3) A FlowArrow value that includes the secure computation to be checked.
If all the above checks are successful, the embedded secure computation
is returned. Note that we stacked the arrow transformer FlowArrow on
another arrow a, this certify operation strips FlowArrow off and gives
back computations in arrow a.

Although certify is a dynamic enforcement mechanism (it executes as part
of the Haskell program), it provides strong security guarantees. When an em-
bedded computation is certified, its whole control structure is examined using
an information-flow analysis before any part of embedded computation is per-
formed. This process is like type checking the embedded sublanguage.

16

Branches over arrow computations can only be constructed using the operators
provided in FlowArrow. 4 The control structure of a secure computation is
independent of the values generated in the computation. Therefore, if the
run-time check fails, the failure does not leak information about secrets inside
the computation.

A minor caveat is that recursive arrow computations should be constructed
using the loop operation rather than using standard Haskell recursion. The
certify function checks the flow types and constraints of the whole compu-
tation, so it forces evaluation of all arrow operations used to construct the
computation. If the computation is recursively constructed using standard
Haskell recursion, certify will essentially try to check an infinite control flow
graph with an infinite typing derivation, which will exhaust Haskell’s stack
space and eventually abort the program. In such cases secret information is
not leaked, but the secure computation should be re-written using the loop

operation.

The certify interface seems verbose, but it is very flexible to use. For pro-
tecting confidentiality, we only care about the security level of the output, so
the argument lin can always be label bottom. We also require all secrets be
declassified to the lowest security level before reaching the output channel, so
we let the argument lout always be label bottom. Thus, we hide the definition
of certify and define a simpler operation cert:

cert = certify label_bottom label_bottom

3.7 Code privileges

When using certify, it is important that the code privilege is correctly spec-
ified: untrusted code cannot call certify using a code privilege that it does
not have. Our solution is to define an abstract data type Privilege that in-
ternally stores a label as code privilege. The certify operation takes values
of the abstract type Privilege as its input.

� �

data Privilege l = PR l
� �

The key point is to make the constructor PR only available in trusted modules.
The program must be organized such that untrusted code can only treat the
Privilege type abstractly. Privileges can only be created in trusted code and
passed to untrusted code.

4 Importantly, FlowArrow does not implement a richer interface such as the
ArrowApply type class that would make it impossible to analyze the control struc-
ture.

17

Developing appropriate design patterns for structuring privileged code is an
important task that we leave to future work. An interesting question, as with
all capability-based authorization mechanisms, is how to revoke the privileges
passed to untrusted code. If the untrusted code has state and runs under
several privileges in different places, it can steal privileges by storing and
reusing them. One solution is to encode version numbers in such privileges
and have a global state to indicate valid privileges, doing so would require the
top level code be inside a monad.

4 Example use of the embedded language

This section presents the features of our secure embedded sublanguage using
code examples. All examples use the three-point security lattice encoding in
Section 3. First, we present some simple program fragments to show how
information-flow policies can be specified in programs. Then, we use a larger
application to demonstrate declassification and policy enforcement.

4.1 Programming with information-flow policies

The FlowArrow interface is designed to be generic, but it is fairly verbose to
use. To make programs look more concise, we define a type abbreviation for
the common uses of FlowArrow. The type Protected a represents a secure
computation that takes no input and produces the output of type a.

type Protected a = FlowArrow TriLabel (->) () a

By default, protected computations constructed by pure have no information-
flow constraints. Information-flow policies can be specified by using the tag

operation. The function tag val takes an arbitrary computation x and a se-
curity label l as inputs, converts x to a protected closure using pure, and
composes it with an information-flow annotation using >>> and tag. The out-
put is a protected computation with an output label l.

� �

tag_val :: a -> TriLabel -> Protected a

tag_val x l = pure (_ -> x) >>> tag l

cH = tag_val 3 HIGH

cM = tag_val 4 MEDIUM

cL = tag_val 5 LOW
� �

Using tag val, we can define cH, cM, cL as protected values with different
information-flow policies. The following shows some computation using these
protected values:

18

� �

t1 = liftA2 (+) cL cM

t2 = liftA2 (*) cH cM

t3 = proc () -> do

h <- cH -< ()

if h>3 then do x <- cM -< ()

returnA -< x

else do x <- t1 -< ()

returnA -< x
� �

The liftA2 function is a generic arrow operation that can be used in our sub-
language to convert any standard binary operator to an operator on protected
types: t1 is the sum of cL and cM, t2 is the product of cH and cM. The defini-
tion of t3 uses the do-syntax of arrows. Informally speaking, it represents the
computation if cH>3 then cM else t1.

The security sublanguage rigorously captures both explicit and implicit infor-
mation flows in protected computations. When the above code is executed,
t1 will have label MEDIUM, while t2 and t3 will have label HIGH. The control
flow of the protected computation is represented using operations provided
by the sublanguage, and these operations keep track of the information flow
policies and constraints incrementally during the construction of protected
computations.

Any protected computation can be used together with the tag operation to
restrict the information flow. The function expects medium takes a protected
computation c as argument and requires the output of c to be no higher than
MEDIUM:

� �

expects_medium :: Protected a -> Protected a

expects_medium c = c >>> tag MEDIUM
� �

Now, we can use this function with protected computations:
� �

success1 = expects_medium t1

failure2 = expects_medium t2

failure3 = expects_medium t3
� �

The first computation success1 is fine, because t1 has label MEDIUM. The sec-
ond and the third both violate the information-flow policies, because t2 and
t3 both have label HIGH while MEDIUM is expected: information flows from HIGH

to MEDIUM. If we try to certify these three compuatations, the first will pass the
certification (and hence be executable) but the latter two fill fail certification
(and hence not be executable).

19

4.2 An interactive multi-user application

This subsection uses an interactive application to demonstrate a more realistic
use of the security sublanguage. It simulates an online network service in which
users can log in to access information. There are only two kinds of users: guests
and administrators. Guests have security level LOW while administrators have
security level HIGH. we use the type abbreviation Priv for code privileges:

type Priv = Privilege TriLabel

In this application, guests can enter numbers as price bids, while the admin-
istrator can log in to see the highest bid. The information-flow policy is that
guests are not allowed to know what the highest bid is. To implement this
policy, we maintain the highest bid as a global state stat with security level
HIGH. The following code shows a simple session for guest services.

� �

guest_service::Priv->(Protected Int)->IO(Protected Int)

guest_service priv stat = do

{ putStrLn "Enter a number:";

i <- getNumber;

let stat’ = proc () -> do

{ x <- stat -< ();

if i>x then returnA -< i

else returnA -< x;

}

return stat’;

}
� �

The function guest service takes two arguments: priv has type Priv and it
represents a code privilege passed to this function; stat has type Protected

Int and it is the secret global state. The function returns a new state, which
also has type Protected Int. The main body of the guest service is written
in Haskell’s standard IO monad; when it runs, it reads a number from input
and updates the state if the input i is larger than the protected state stat.

The body of the let expression is the computation written in our embedded
sublanguage. It uses the do-syntax for arrow operations, and the Haskell com-
piler translates code in the do-syntax to the standard arrow operations, which
are overloaded by our sublanguage using Haskell type classes.

In the do block, there are two commands. The first command “x <- stat -< ();”
binds the value of the secret computation stat to a local variable x, where
x has type Int. Now, x can be freely used in any computation, but it can-
not escape the scope of the do-block. The next command “if..then..else..”
performs a conditional branching in the sublanguage. The body of the branch
“returnA -< i” generates the output for the do-block. Finally, the computa-

20

tion represented by the “proc ...do” block is bound to the variable stat’ and
it is returned as the result.

The function admin service implements a similar session for administrator
services. It has the same type signature as guest service.

� �

admin_service: Priv->(Protected Int)->IO(Protected Int)

admin_service priv stat = do

{ let low = stat >>> (declassify HIGH LOW) in

let summary = cert priv low () in

putStrLn (show summary);

let stat_new = (pure (_->0) >>> tag HIGH) in

return stat_new;

}
� �

In contrast to the previous function, admin service uses the combinators pro-
vided by the sublanguage directly, without using the do-syntax. In the first let
expression, it declassifies the protected state to LOW level using the declassify

operation and binds the result to the variable low. The variable low also has
type Protected Int, but the security level associated with it is LOW after the
declassification. Then, it uses the cert operation, together with its code privi-
lege priv, to access the computation protected in low. The result summary has
an unrestricted Int type and thus can be used as any other common Haskell
value. The next line calls the standard Haskell printing function putStrLn to
send this value to the program output. Finally, it creates a new protected
value stat new initialized to 0, sets the security policy of this protected value
to be HIGH, and returns it as the new global state.

The service loop function is part of the trusted computing base. It authen-
ticates users and dispatches to the appropriate service.

� �

service_loop::(Protected AuthDB)->(Protected Int)->IO()

service_loop auth_db stat = do

{

putStrLn "Enter username and password:";

u <- getLine; p <- getLine;

let (ident,priv) = authenticate auth_db u p

;

stat_new <- case ident of

"admin" -> admin_service priv stat;

"guest" -> guest_service priv stat;

_ -> do {

putStrLn "login error";

return stat;

};

service_loop auth_db stat_new;

21

}
� �

On every loop, it reads a user name and a password from the input, and au-
thenticates the user. The variable auth db contains the authentication database,
which is a list of user names, passwords and code privileges. The authenticate

function searches for the current user in the authentication database and re-
trieves the corresponding code privilege. Once a code privilege is available, it
is used to execute the corresponding service function.

The top-level main function is also part of the trusted computing base. It cre-
ates the authentication database and the initial global state, both are tagged
by the security label HIGH.

� �

main = do

{

let auth_db :: (Protected AuthDB) =

(

pure (_-> [("admin","admin",HIGH),

("guest","guest",LOW)]) >>>

tag HIGH

)

secret_val :: (Protected Int) =

(

pure (_->0) >>>

tag HIGH

)

in

service_loop auth_db secret_val;

}
� �

Security guarantees:

To see how this code enforces our information-flow policies, suppose an un-
trusted programmer adds the following code in guest service to declassify
the secret state:

� �

let s = cert priv (stat >>> declassify HIGH LOW) ()
� �

Or, suppose the services are incorrectly dispatched:
� �

stat_new <- case ident of

"admin" -> guest_service priv stat −− should be admin service

"guest" -> admin_service priv stat −− should be guest service
� �

In such cases, when the program tries to declassify the data and certify the
result using the guest privilege, a run-time error will be generated. The global
state is tagged with the label HIGH, but guests can only acquire LOW privileges
during the authentication process. The declassification operation requires that

22

the user privilege must be higher than the security level of the data to be
declassified. Therefore, a guest cannot declassify the global state to LOW and
use cert to steal the secret state. This provides a security mechanism similar
to that of using run-time principals (Tse and Zdancewic, 2004a).

Aside from the authentication process and initial setup of confidential state,
the information-flow policies are automatically enforced throughout the sys-
tem. The guest service and the admin service are very simple in this ex-
ample, but they can be scaled to more complex services, system states and
security policies.

The application program is a fine-grained mixture of normal components writ-
ten in standard Haskell and secure components constructed using a few special
operations from the sublanguage. At a glance, it may be hard to distinguish
where the “embedded” language ends and the “base” language begins, but
that is part of the point—the programmer has easy access to both the strong
security guarantees of the embedded language and the full power of Haskell
at the same time: all the Haskell language features and software libraries are
still available.

5 Formalizing the security guarantee

This section studies the formal security guarantees of the embedded FlowArrow

sublanguage. Because our sublanguage is used in a purely functional setting,
the type system shown in Figure 1 is fairly simple. Instead of reasoning about
all the information flow channels in a program, it only checks the information
flow of an individual channel, which is represented by a purely functional
computation.

The traditional notion of noninterference is also simplified in this setting.
Noninterference requires that the low outputs of a program do not depend on
high inputs. In the purely functional programming style, this is simply saying
that high computations cannot be certified for use at low output channels.
The addition of declassification makes the security guarantee more interesting.
Informally, the security guarantee can be stated as: “code running at privilege
lp cannot observe information of label l if ¬(l ⊑ lp).”

Another question concerns the soundness of the run-time checking mechanism,
i.e. the implementation of cert. We need to formally prove that the checking
mechanism itself is not a source of information leakage.

23

term e ::= () | x | λx.e | e e | fix e

| ci e | case e e e | (e,e) | πi e (i ∈ {1, 2})

| pure e l | e >>> e | e &&& e | e ||| e | loop e

| tag l | decl l→l | cert e

| FA(e, l→l, Φ) | •

value v ::= () | x | λx.e | ci e | (e,e) | FA(e, l→l, Φ)

Fig. 4. Formalizing the sublanguage

E ::= [] | E e | case E e e | πi E | cert E | E op e | v op E | loop E
(op ∈ {>>>, |||, &&&})

E[(λx.e1) e2] −→p E[[e2/x]e1]
E[fix e] −→p E[e (fix e)]
E[case (ci e) e1 e2] −→p E[ei e]
E[πi (e1,e2)] −→p E[ei]
E[pure e l] −→p E[FA(e, l→l, ∅)]
E[tag l] −→p E[FA(λx.x, l→l, ∅)]
E[decl l1→l2] −→p E[FA(λx.x, l1→l2, {usergeq(l1)})]
E[FA(e1, l1→l3, Φ1) >>> FA(e2, l2→l4, Φ2)]
−→p E[FA(λx.e2 (e1 x), l1→l4, Φ1 ∪ Φ2 ∪ {leq(l3, l2)})]
E[FA(e1, l1→l3, Φ1) ||| FA(e2, l2→l4, Φ2)]
−→p E[FA(λx.case x (λy.c1 (e1 x)) (λy.c2 (e2 x)), l1 ⊓ l2→l3 ⊔ l4, Φ1 ∪ Φ2)]
E[FA(e1, l1→l3, Φ1) &&& FA(e2, l2→l4, Φ2)]
−→p E[FA(λx.(e1 (π1 x),e2 (π2 x)), l1 ⊓ l2→l3 ⊔ l4, Φ1 ∪ Φ2)]
E[loop FA(e, l1→l2, Φ)]
−→p E[FA(λx.(π1 (fix λp.λa.f (a,π2 (e a)))) x, l1→l2, Φ ∪ {leq(l2, l1)})]

l2 ⊑⊥ ∧ valid(lp, Φ)

E[cert FA(e, l1→l2, Φ)] −→p E[c1 e]

¬(l2 ⊑⊥ ∧ valid(lp, Φ))

E[cert FA(e, l1→l2, Φ)] −→p E[c2 ()]

Fig. 5. Operational semantics

5.1 Language syntax and semantics

We formalize the security sublanguage as a simple call-by-need λ-calculus
extended with sums, products and the primitive arrow operations we defined
in FlowArrow, as shown in Figure 4. Two special syntax nodes are added to
the language. FA(e, l1 → l2, Φ) represents the run-time representation of the
FlowArrow data type and it does not appear in source programs. The special
syntax node • is used to represent term erasure, which is explained below.
The operational semantics of this language is formalized in Figure 5 using
evaluation contexts. Note that the evaluation relation (−→p) is parameterized

24

erasep(•) = •
erasep(()) = ()

erasep(x) = x
erasep(λx.e) = λx.erasep(e)
erasep(e1 e2) = erasep(e1) erasep(e2)
erasep(fix e) = fix (erasep(e))
erasep(ci e) = ci erasep(e)
erasep(case e1 e2 e3) = case erasep(e1) erasep(e2) erasep(e3)
erasep((e1,e2)) = (erasep(e1),erasep(e2))
erasep(e1 op e2) = erasep(e1) op erasep(e2)
erasep((loop e)) = loop (erasep(e))
erasep(tag l) = tag l
erasep(decl l1→l2) = decl l1→l2

erasep(pure e l) =

pure (erasep(e)) l : l ⊑ lp

FA(•, l→l, ∅) : otherwise

erasep(FA(e, l1→l2, Φ)) =

FA(erasep(e), l1→l2, Φ) : l2 ⊑ lp ∧ valid(lp, Φ)

FA(•, l1→l2, Φ) : otherwise

erasep([]) = []
erasep(E e) = erasep(E) erasep(e)
erasep(case E e1 e2) = case erasep(E) erasep(e1) erasep(e2)
erasep(πi E) = πi erasep(E)
erasep(cert E) = cert erasep(E)
erasep(E op e) = erasep(E) op erasep(e)
erasep(v op E) = erasep(v) op erasep(E)
erasep((loop E)) = loop (erasep(E))

Fig. 6. Term erasure and the modified semantics

by the code privilege p. In the operational semantics, the predicate valid(lp, Φ)
means that all the label constraints in Φ are valid under code privilege p: it
checks that the expected ordering of security labels are all correct and that
the user has enough privilege to run the code.

valid(lp, Φ)
△
= (∀leq(l1, l2) ∈ Φ. l1 ⊑ l2) ∧ (∀usergeq(l) ∈ Φ. l ⊑ lp)

For ease of presentation, this formal language is made simpler than the actual
FlowArrow implementation. The major differences are:

• Label inference. In the actual FlowArrow implementation, the pure operation
creates a flow type l→l where the label l is polymorphic and it can always be
inferred from the context when FlowArrow values are combined. Our formal

25

goodp(()) = T

goodp(x) = T

goodp(λx.e) = goodp(e)
goodp(e1 e2) = goodp(e1) ∧ goodp(e2)
goodp(fix e) = goodp(e)
goodp(ci e) = goodp(e)
goodp(case e1 e2 e3) = goodp(e1) ∧ goodp(e2) ∧ goodp(e3)
goodp((e1,e2)) = goodp(e1) ∧ goodp(e2)
goodp(e1 op e2) = goodp(e1) ∧ goodp(e2)
goodp(loop e) = goodp(e)
goodp(tag l) = T

goodp(decl l1→l2) = T

goodp(cert e) = goodp(e)
goodp(pure e l) = goodp(e)
goodp(FA(e, l1→l2, Φ)) = goodp(e) ∧ [(¬(l1 ⊑ lp) ∧ (l2 ⊑ lp)) ⇒ ¬valid(lp, Φ)]

Fig. 7. Invariant under evaluation

language in Figure 4 requires the label l be explicited annotated in the pure

operation. This explicit annotation makes programming less convenient, but
it makes the semantics less verbose and it does not affect the expressiveness
and the security guarantee of the language.

• Label computations. In the actual implementation, labels are first-class
terms and the program can manipulate labels in arbitrary ways. Our for-
mal language does not permit interesting computations on labels, but the
programmer still has the ability to manipulate labels in interesting ways.
For example, instead of writing tag (case e λx.l1 λx.l2), the programmer
can write case e (λx.tag l1) (λx.tag l2). For any finite security lattice, this
simplification indeed does not make a difference in terms of expressiveness.

5.2 Erasure and the modified semantics

To help formalize the security guarantee of this language, we use the tech-
nique of term erasing: a “useless” part of a term is rewritten to a special
syntax node “•”. Figure 6 shows the definition of erasure for terms and eval-
uation contexts. The idea is that any protected computation with output
labels higher than the current code privilege can be safely erased, because in-
formation from such a computation cannot be observed during code execution.
Also, any protected computation with unsatisfiable label constraints can also
be erased because the cert operation will eventually eliminate them. These
ideas are made precise in Figure 6, where the interesting cases are for pure

and FA—the remaining cases simply extend the erasep(−) function homomor-
phically over terms. It is worth noting that the pure rule is redundant: it could

26

be given as erasep(pure e l) = pure (erasep(e)) l. We state the rule in the form
in Figure 6 to simplify the proof of Theorem 5.3.1.

We also need to define an alternate evaluation relation (=⇒p) for erased terms.
The erased terms evaluate in the same way as normal terms, except that after
every step of evaluation, the result is erased again, as shown in the following
definition:

e1 −→p e2

e1 =⇒p erasep(e2)

The semantics of (=⇒p) guarantees that “useless” FA nodes are erased as soon
as they are created.

5.3 The security guarantee

Our strategy is to formalize the security guarantee by establishing a simulation
between normal term evaluation (−→p) and erased term evaluation (=⇒p).
The intuition is that a program runs as if its high-security components are
erased. Such components are never used, so high-security information is not
leaked. Lemma 5.3.1 establishes this simulation, Lemma 5.3.2 generalizes the
simulation to multiple steps and Theorem 5.3.1 use the simulation to prove a
noninterference-like result.

The crucial part of this strategy is to connect the meaning of the information-
flow type system we implemented in Figure 1 with the operational semantics:
how can we know that the type system guarantees that all high-security com-
putations are erased during evaluation? To do so, we need to formally define
what terms are “well-formed” and prove that the evaluation relation (−→p)
preserves this predicate as an invariant.

Figure 7 defines an invariant predicate goodp() that is preserved by the eval-
uation relation (−→p), as shown in Lemma 5.3.1. It states that for all the
records FA(e, l1→l2, Φ) created at run time, if the flow l1→l2 is not permitted
using the current code privilege, then the constraint Φ must be unsatisfiable.
Intuitively, this invariant specifies the semantics of the simple information-flow
type system we implemented. If l ⊑ lp then l is considered as a low security
label; otherwise it is considered as a high security label. The invariant goodp()
permits the following kinds of information flow: from low to low, from high to
high, from low to high, but it disallows the information flow from high to low
(by generating unsatisfiable constraints).

Using this definition, Lemma 5.3.1 and Lemma 5.3.2 are restricted to only
well-formed terms that satisfy the invariant goodp(). As shown later in the

27

proof of Lemma 5.3.1, this restriction is necessary to establish the simulation
between (−→p) and (=⇒p).

We begin with propositions about the validity of constraint sets.

Proposition 5.3.1 (Properties of label constraints)

(1) valid(lp, Φ ∪ Φ′) ⇒ valid(lp, Φ)
(2) ¬(valid(lp, Φ)) ⇒ ¬(valid(lp, Φ ∪ Φ′))

Proof: By definition of valid.

We next establish some simple propositions about the compositional behavior
of erasep(−).

Proposition 5.3.2 (Properties of term erasure)

(1) erasep(E[e]) = erasep(E)[erasep(e)]
(2) erasep([e2/x]e1) = [erasep(e2)/x]erasep(e1)
(3) erasep(erasep(e)) = erasep(e)
(4) erasep(erasep(E)) = erasep(E)

(5)
erasep(E)[e1] −→p erasep(E)[e2]

erasep(E)[e1] =⇒p erasep(E)[erasep(e2)]

Proof: By induction on terms and evaluation contexts.

The following standard propositions express that the operational semantics
of our simple language is deterministic and that the erased version of the
evaluation relation is also deterministic.

Proposition 5.3.3 (Deterministic evaluation)

(1) For any term e, there is a unique E and a unique e′ such that e = E[e′].
(2) The evaluation relation (−→p) is deterministic.
(3) The evaluation relation (=⇒p) is determnistic.

Proof: By induction on terms and evaluation contexts.

Finally, we need some inversion principles related to the goodp(−) predicate.

Proposition 5.3.4 (Properties of the invariant)

(1) Inversion holds for each rule in the definition of goodp():
(a) goodp(λx.e) ⇒ goodp(e)
(b) goodp(e1 e2) ⇒ goodp(e1) ∧ goodp(e2)
(c) . . .

(2) goodp(E[e]) ⇒ goodp(e).

28

(3) goodp(E[e1]) ∧ goodp(e2) ⇒ goodp(E[e2]).
(4) goodp(e1) ∧ goodp(e2) ⇐⇒ goodp([e2/x]e1).

Proof: By definition of goodp(−) and induction on terms and evaluation con-
texts.

Putting together the propositions above, we can establish the following sim-
ulation relation between the language and its erased version. The lemma si-
multaneously proves that goodp(−) actually is an invariant.

Lemma 5.3.1 (Single-step simulation) If goodp(e1) and e1 −→p e2, then
goodp(e2) and erasep(e1) =⇒∗

p erasep(e2).

Proof sketch: Case analysis on the evaluation rule used in e1 −→p e2.

(1) E[(λx.e1) e2] −→p E[[e2/x]e1].
Given goodp(E[(λx.e1) e2]), we can use Prop. 5.3.4 to prove that goodp(e1),

goodp(e2), goodp([e2/x]e1]) and goodp(E[[e2/x]e1]).
Now we need to prove that erasep(E[(λx.e1) e2]) =⇒∗

p erasep(E[[e2/x]e1]):
erasep(E[(λx.e1) e2])
= erasep(E)[(λx.erasep(e1)) erasep(e2)]
=⇒p erasep(E)[erasep([erasep(e2)/x]erasep(e1))]
= erasep(E)[[erasep(e2)/x]erasep(e1)]
= erasep(E[[e2/x]e1]) (by Prop. 5.3.2)
Each step in the above derivation can be justified by Prop. 5.3.2.

(2) E[fix e] −→p E[e (fix e)]. Similar.
(3) E[case (ci e) e1 e2] −→p E[ei e]. Similar.
(4) E[πi (e1,e2)] −→p E[ei]. Similar.
(5) E[pure e l] −→p E[FA(e, l→l, ∅)]

Given goodp(E[pure e l]), we can use Prop. 5.3.4 to prove that goodp(e).
By definition we know that goodp(FA(e, l→ l, ∅)) always holds because l
and l are the same label. Therefore we can use Prop. 5.3.4 to prove that
goodp(E[FA(e, l→l, ∅)]).

Now we need to prove erasep(E[pure e l]) =⇒∗

p erasep(E[FA(e, l→l, ∅)]).
(a) If l ⊑ lp:

erasep(E[pure e l])
= erasep(E)[pure erasep(e) l]
=⇒p erasep(E)[erasep(FA(erasep(e), l→l, ∅))]
= erasep(E)[FA(erasep(e), l→l, ∅)]
= erasep(E[FA(e, l→l, ∅)])

(b) If ¬(l ⊑ lp):
erasep(E[pure e l])

= erasep(E)[FA(•, l→l, ∅)]
=⇒∗

p erasep(E)[FA(•, l→l, ∅)] (0 steps)

29

= erasep(E[FA(e, l→l, ∅)])

(6) E[tag l] −→p E[FA(λx.x, l→l, ∅)]. Similar to E[pure e l].
(7) E[decl l1→ l2] −→p E[FA(λx.x, l1→ l2, {usergeq(l1)})]. Similar to previ-

ous cases except we need to verify that this rule indeed preserves goodp().
(8) E[FA(e1, l1→l3, Φ1) >>> FA(e2, l2→l4, Φ2)]

−→p E[FA(λx.e2 (e1 x), l1→l4, Φ1 ∪ Φ2 ∪ {leq(l3, l2)})].
This is the most interesting rule. Let us start from proving the invari-

ant. Given goodp(E[FA(e1, l1 → l3, Φ1) >>> FA(e2, l2 → l4, Φ2)]), we can
use Prop. 5.3.4 to prove that goodp(FA(e1, l1→l3, Φ1)), goodp(FA(e2, l2→
l4, Φ2)), goodp(e1),goodp(e2) and goodp(λx.e2 (e1 x)). Then we use a case
analysis to prove that the invariant holds:
(a) If ¬(¬(l1 ⊑ lp) ∧ (l4 ⊑ lp)): by definition, we have

goodp(FA(λx.e2 (e1 x), l1→l4, Φ1 ∪ Φ2 ∪ {leq(l3, l2)})),
so we can use Prop. 5.3.4 to prove that
goodp(E[FA(λx.e2 (e1 x), l1→l4, Φ1 ∪ Φ2 ∪ {leq(l3, l2)})]).

(b) If ¬(l1 ⊑ lp) ∧ (l4 ⊑ lp): we use a case analysis to prove that
¬valid(lp, Φ1 ∪ Φ2 ∪ {leq(l3, l2)}), thus the invariant is preserved.
(i) If l2 ⊑ lp:

(A) If l3 ⊑ l2: by transitivity, l3 ⊑ lp. Now we have goodp(FA(e1,
l1 → l3, Φ1)), ¬(l1 ⊑ lp) and (l3 ⊑ lp), we can derive
¬valid(lp, Φ1). By Prop.5.3.1, ¬valid(lp, Φ1∪Φ2∪{leq(l3, l2)}).

(B) If ¬(l3 ⊑ l2): by definition, ¬valid(lp, Φ1∪Φ2∪{leq(l3, l2)}).
(ii) If ¬(l2 ⊑ lp): we have goodp(FA(e2, l2→ l4, Φ2)), ¬(l2 ⊑ lp) and

(l4 ⊑ lp), we can derive ¬valid(lp, Φ2). By Prop.5.3.1, ¬valid(lp, Φ1∪
Φ2 ∪ {leq(l3, l2)}).

Now we proceed to prove the =⇒p part of the lemma.
(a) If ¬(l4 ⊑ lp ∧ valid(lp, Φ1 ∪Φ2 ∪{leq(l3, l2)})): this is the easy case be-

cause the erasure of the result must be in the erased form FA(•, . . . , . . .).
erasep(E[FA(e1, l1→l3, Φ1) >>> FA(e2, l2→l4, Φ2)])

= erasep(E)[FA(. . . , l1→l3, Φ1) >>> FA(. . . , l2→l4, Φ2)]]
=⇒p erasep(E)[erasep(FA(. . . , l1→l4, Φ1 ∪ Φ2 ∪ {leq(l3, l2)}))]
= erasep(E)[FA(•, l1→l4, Φ1 ∪ Φ2 ∪ {leq(l3, l2)})]
= erasep(E[FA(λx.e2 (e1 x), l1→l4, Φ1 ∪ Φ2 ∪ {leq(l3, l2)})])

(b) If l4 ⊑ lp∧ valid(lp, Φ1∪Φ2 ∪{leq(l3, l2)}): by Prop.5.3.1, valid(lp, Φ1),
valid(lp, Φ2) and l3 ⊑ l2.
(i) If l2 ⊑ lp: by transitivity, l3 ⊑ lp. The two sub-terms on the

left-hand side are not erased:
erasep(E[FA(e1, l1→l3, Φ1) >>> FA(e2, l2→l4, Φ2)])

= erasep(E)[erasep(FA(e1, l1→l3, Φ1)) >>> erasep(FA(e2, l2→l4, Φ2))]
= erasep(E)[FA(erasep(e1), l1 → l3, Φ1) >>> FA(erasep(e2), l2 →
l4, Φ2)]]
=⇒p erasep(E)[erasep(FA(λx.erasep(e2) (erasep(e1) x), l1→l4, Φ1∪
Φ2 ∪ {leq(l3, l2)}))]
= erasep(E)[FA(λx.erasep(e2) (erasep(e1) x), l1 → l4, Φ1 ∪ Φ2 ∪

30

{leq(l3, l2)})]
= erasep(E[FA(λx.e2 (e1 x), l1→l4, Φ1 ∪ Φ2 ∪ {leq(l3, l2)})])

(ii) If ¬(l2 ⊑ lp): we have ¬(l2 ⊑ lp), (l4 ⊑ lp) and valid(lp, Φ2), which
contradicts with our assumption that goodp(FA(e2, l2→ l4, Φ2)).
So this case cannot happen.

(9) E[FA(e1, l1→l3, Φ1) ||| FA(e2, l2→l4, Φ2)]
−→p E[FA(λx.case x (λy.c1 (e1 x)) (λy.c2 (e2 x)), l1⊓l2→l3⊔l4, Φ1∪Φ2)].

Suppose goodp(E[FA(e1, l1→l3, Φ1) ||| FA(e2, l2→l4, Φ2)]), we can use
Prop. 5.3.4 to prove goodp(FA(e1, l1 → l3, Φ1)), goodp(FA(e2, l2 → l4, Φ2)),
goodp(e1) and goodp(e2). Now we only need to prove that goodp(FA(. . . , l1⊓
l2→l3 ⊔ l4, Φ1 ∪ Φ2)).
(a) If l1 ⊑ lp and l2 ⊑ lp: then l1⊓l2 ⊑ lp, so by definition, goodp(FA(. . . , l1⊓

l2→l3 ⊔ l4, Φ1 ∪ Φ2)).
(b) If ¬(l1 ⊑ lp):

(i) If l3 ⊑ lp: by goodp(FA(e1, l1→l3, Φ1)) we know that ¬valid(lp, Φ1).
By Prop. 5.3.1, ¬valid(lp, Φ1 ∪Φ2). Therefore, goodp(FA(. . . , l1 ⊓
l2→l3 ⊔ l4, Φ1 ∪ Φ2)).

(ii) If ¬(l3 ⊑ lp): because l3 ⊑ l3 ⊔ l4, it must be the case that
¬(l3⊔ l4 ⊑ lp). Therefore goodp(FA(. . . , l1⊓ l2→l3⊔ l4, Φ1 ∪Φ2)).

(c) If ¬(l2 ⊑ lp): the dual case.
Now we proceed to prove the =⇒p part of the lemma.

(a) If l3 ⊑ lp ∧ l4 ⊑ lp ∧ valid(lp, Φ1) ∧ valid(lp, Φ2): then l3 ⊔ l4 ⊑ lp and
valid(lp, Φ1 ∪ Φ2).

erasep(E[FA(e1, l1→l3, Φ1) ||| FA(e2, l2→l4, Φ2)])
= erasep(E)[erasep(FA(e1, l1→l3, Φ1)) ||| erasep(FA(e2, l2→l4, Φ2))]
= erasep(E)[FA(erasep(e1), l1→l3, Φ1) ||| FA(erasep(e2), l2→l4, Φ2)]
=⇒p erasep(E)[erasep(FA(λx.case x (λy.c1 (erasep(e1) x))
(λy.c2 (erasep(e2) x)), l1 ⊓ l2→l3 ⊔ l4, Φ1 ∪ Φ2))]
= erasep(E)[FA(λx.case x (λy.c1 (erasep(e1) x)) (λy.c2 (erasep(e2) x))
, l1 ⊓ l2→l3 ⊔ l4, Φ1 ∪ Φ2)]
= erasep(E[FA(λx.case x (λy.c1 (e1 x)) (λy.c2 (e2 x)), l1 ⊓ l2→ l3 ⊔
l4, Φ1 ∪ Φ2)])

(b) If ¬(l3 ⊑ lp)∨¬valid(lp, Φ1): then ¬(l3 ⊔ l4 ⊑ lp)∨¬valid(lp, Φ1 ∪Φ2).
erasep(E[FA(e1, l1→l3, Φ1) ||| FA(e2, l2→l4, Φ2)])

= erasep(E)[erasep(FA(e1, l1→l3, Φ1)) ||| erasep(FA(e2, l2→l4, Φ2))]
= erasep(E)[FA(•, l1→l3, Φ1) ||| FA(. . . , l2→l4, Φ2)]
=⇒p erasep(E)[erasep(FA(λx.case x (λy.c1 (• x)) (λy.c2 (. . . x)), l1⊓
l2→l3 ⊔ l4, Φ1 ∪ Φ2))]
= erasep(E)[FA(•, l1 ⊓ l2→l3 ⊔ l4, Φ1 ∪ Φ2)]
= erasep(E[FA(λx.case x (λy.c1 (e1 x)) (λy.c2 (e2 x)), l1 ⊓ l2→ l3 ⊔
l4, Φ1 ∪ Φ2)])

(c) If ¬(l4 ⊑ lp) ∨ ¬valid(lp, Φ2): the dual case.
(10) E[FA(e1, l1→l3, Φ1) &&& FA(e2, l2→l4, Φ2)]

−→p E[FA(λx.(e1 (π1 x),e2 (π2 x)), l1 ⊓ l2→l3 ⊔ l4, Φ1 ∪ Φ2)].
Similar to the previous case.

31

(11) E[loop FA(e, l1→l2, Φ)] −→p E[FA(λx.(π1 (fix λp.λa.f (a,π2 (e a)))) x,
l1→l2, Φ ∪ {leq(l2, l1)})]
It is easy to verify that the invariant holds. For the (−→p) relation there
are two cases:
(a) If ¬(l2 ⊑ l1) ∨ erasep(FA(e, l1 → l2, Φ)) = FA(•, l1 → l2, Φ): then

erasep(FA(. . . , l1→l2, Φ∪{leq(l2, l1)})) = FA(•, l1→l2, Φ∪{leq(l2, l1)}).
So we can prove:
erasep(E[loop FA(e, l1→l2, Φ)])
= erasep(E)[loop FA(•, l1→l2, Φ)]
=⇒p erasep(E)[erasep(FA(. . . , l1→l2, Φ ∪ {leq(l2, l1)}))]
= erasep(E)[FA(•, l1→l2, Φ ∪ {leq(l2, l1)})]
= erasep(E[FA(λx.(π1 (fix λp.λa.f (a,π2 (e a)))) x, l1 → l2, Φ ∪
{leq(l2, l1)})])

(b) If l2 ⊑ l1 ∧ erasep(FA(e, l1→l2, Φ)) = FA(erasep(e), l1→l2, Φ):
erasep(E[loop FA(e, l1→l2, Φ)])
= erasep(E)[loop FA(erasep(e), l1→l2, Φ)]
=⇒p erasep(E)[erasep(FA(λx.(π1 (fix λp.λa.f (a,π2 (erasep(e) a)))) x,
l1→l2, Φ ∪ {leq(l2, l1)}))]
= erasep(E)[FA(λx.(π1 (fix λp.λa.f (a,π2 (erasep(e) a)))) x, l1 →
l2, Φ ∪ {leq(l2, l1)})]
= erasep(E[FA(λx.(π1 (fix λp.λa.f (a,π2 (e a)))) x, l1 → l2, Φ ∪
{leq(l2, l1)})])

(12)
l2 ⊑⊥ ∧ valid(lp, Φ)

E[cert FA(e, l1→l2, Φ)] −→p E[c1 e]
.

Suppose goodp(E[cert FA(e, l1 → l2, Φ)]), we can use Prop. 5.3.4 to
prove that goodp(e) and goodp(E[c1 e]). Given the condition l2 ⊑⊥
∧ valid(lp, Φ), we can prove:

erasep(E[cert FA(e, l1→l2, Φ)])
= erasep(E)[cert FA(erasep(e), l1→l2, Φ)]
=⇒p erasep(E)[erasep(c1 erasep(e))]
= erasep(E)[c1 erasep(e)]
= erasep(E[c1 e])

(13)
¬(l2 ⊑⊥ ∧ valid(lp, Φ))

E[cert FA(e, l1→l2, Φ)] −→p E[c2 ()]
Suppose goodp(E[cert FA(e, l1 → l2, Φ)]), we can use Prop. 5.3.4 to

prove that goodp(E[c2 ()]). Given the condition ¬(l2 ⊑⊥ ∧ valid(lp, Φ)),
we can prove:

erasep(E[cert FA(e, l1→l2, Φ)])
= erasep(E)[erasep(cert FA(e, l1→l2, Φ))]
= erasep(E)[cert FA(. . . , l1→l2, Φ)]
=⇒p erasep(E)[erasep(c2 ())]
= erasep(E[c2 ()])

2

32

Lemma 5.3.2 (Multiple-step simulation) If goodp(e1) and e1 −→∗

p e2,
then goodp(e2) and erasep(e1) =⇒∗

p erasep(e2).

Proof: Straightforward induction using Lemma 5.3.1. 2

Now we have established a simulation between term evaluation (−→p) and
erased term evaluation (=⇒p), we can proceed to formalize the security guar-
antee. Intuitively, secret information cannot be leaked because the program
runs as if such information is erased. Theorem 5.3.1 gives a noninterference-like
security guarantee:

Theorem 5.3.1 (Security guarantee) If ¬(l ⊑ lp), e has no FA or • syn-
tax nodes and i, j ∈ {1, 2}, then

∀e1.∀e2. (e (pure e1 l) −→∗

p ci ()) ∧ (e (pure e2 l) −→∗

p cj ()) ⇒ i = j

This theorem states that, if an input of the program e has a security label l
higher than the current code privilege, then there is no information flow from
that input to the output of the program execution using the current code
privilege. Note that the operation cert can be used freely in the program,
this theorem also guarantees that the result of cert does not leak information
about the secret values.

Proof: Because e has no FA or • syntax nodes, it is easy to verify that
goodp(e (pure e1 l)) and goodp(e (pure e2 l)). Using Lemma 5.3.2, we know
that erasep(e (pure e1 l)) =⇒∗

p erasep(ci ()) and erasep(e (pure e2 l)) =⇒∗

p

erasep(cj ()). However, erasep(e (pure e1 l)) = erasep(e) FA(•, l → l, ∅) and
erasep(e (pure e2 l)) = erasep(e)FA(•, l→l, ∅) , so we have erasep(e)FA(•, l→l, ∅)
=⇒∗

p ci () and erasep(e)FA(•, l→l, ∅) =⇒∗

p cj (). By Prop. 5.3.3, the evalu-
ation relation =⇒p is deterministic, the term erasep(e) FA(•, l→l, ∅) can only
be normalized to one value, so i = j. 2

6 Discussion and future work

6.1 Compile time vs. run time

For applications written using the embedded language, there are two stages
of type-checking. At compile time, the base language (in this case, Haskell)
is type checked and compiled. At run time, the embedded language is type
checked before embedded secure computations are executed. Therefore, the
information-flow policy violations are not detected until the application is

33

launched. Although the sublanguage uses static analysis techniques and pro-
vides similar strong security guarantees, this two-stage mechanism is some-
times not as convenient as specialized languages such as Jif. Each run of the
application may only use part of the secure computations, so debugging can be
more difficult. Therefore, it is appealing to have a one-stage, compile-time en-
forcement mechanism for the sublanguage. Such a mechanism can be possible
if it is built entirely in the static type system of the host language.

Abadi et. al. developed the dependency core calculus (DCC) (Abadi et al.,
1999), which uses a hierarchy of monads to model information flow. Tse and
Zdancewic (Tse and Zdancewic, 2004b) translated DCC to System F and
showed that noninterference can be translated to a more generic property
called parametricity, which states that polymorphic programs behave uni-
formly for all their instantiations. An intuitive demonstration of this idea is
that abstract data types can be used as a protection mechanism to hide high-
security information. They presented a Haskell implementation where each
security level is encoded using an abstract data type and binding operators
are defined to compose computations with permitted information flows. This
approach works well for simple lattices, but encoding the security lattice of
n points would require O(n2) definitions for binding operators. This makes it
difficult to implement more complex security lattices such as the decentralized
label model.

The problem with this approach is policy expressiveness. The type system
of the base language must be expressive enough to encode the syntax and
the semantics of security policies. Although Haskell has an expressive type
system, it is not clear how to encode more expressive policies directly in the
type language — we leave that as a open question to investigate in the future.

6.2 Parallel composition and arrow axioms

We used the arrow interface to build the embedded language, but it remains
to show that FlowArrow satisfies the appropriate arrow axioms. A quick check
of the arrow axioms (Paterson, 2003) shows that the exchange axiom does
not seem to hold. Let f have the flow type l1 → l2 and g have the flow type
l3 → l4. There are two canonical ways to compose f and g in parallel using
the first combinator. They should be equivalent:

first f >>> pure (id × g) = pure (id × g) >>> first f

However, our FlowArrow implementation yields the flow type l1 → l4 with
constraints {l2 ⊑ l3} on the left side and l3 → l2 with {l4 ⊑ l1} on the right.
This seems to violate the arrow axioms! Does our implementation make sense?

34

If we compose f and g naturally using the (***) operator, we get l1⊓l3 → l2⊔l4
with no constraints, which is the least restrictive flow type. The types we get
from using first are both more restrictive than this one. The problem with us-
ing first is that our analysis technique is not fine-grained enough—it reasons
about information flow in a syntax-directed, end-to-end fashion that yields im-
precise flow types for first f >>> pure (id × g). This coarse analysis does
not compromise the security guarantee because it always is conservative.

To justify that our arrow implementation satisfies the arrow axioms, we would
need to give finer semantic interpretations to the flow types and constraints.
Intuitively, although both sides of the exchange axiom are over-restrictive and
have different types, they can be considered equivalent in the sense that they
are both sound: using such flow types will not lead to acceptance of insecure
programs.

The practical ramification of this imprecision is that although soundness is
not affected by using first, programmers are encouraged to use the (&&&),

(***), (|||), (+++) operations directly so that safe programs are more likely
to be accepted. The use of first, second, left, right should be avoided
whenever possible. Compared to first, (&&&) is a more intuitive operation for
parallel composition because it resembles the product morphism in category
theory. The prior work on arrows (Hughes, 2000) uses first as the primitive
operation because it is simpler and it gives a definite evaluation order.

Another consequence of this imprecision is that the security analysis can be too
restrictive for arrow computations written in the do-syntax, because Haskell
implements some translation rules using first instead of (&&&). Fortunately,
conditional branches are translated using (|||), so programmers can still write
conditional branches in the natural way. In general, we need a more precise
type system to avoid depending on particular implementations of the transla-
tion rules of the do-syntax.

6.3 DLM and practical applications

The declassification mechanism in this paper can be adapted to work with
the decentralized label model (DLM) (Myers and Liskov, 2000), where the con-
straints on code authority are expressed using the act-for relation of principals.
We are currently working on the encoding and integration of DLM in the ar-
rows framework. Unlike Jif, where information-flow control are mostly-static,
the arrows framework is a run-time mechanism, so the principals, the act-for
hierarchy and the security lattice can all be dynamic. Such dynamic policies
have long been sought in language-based information-flow security because
they address practical requirements.

35

Once the dynamic DLM is implemented, it will be interesting to see how it
works in real applications. An important benefit of our approach is that exist-
ing Haskell applications can be enhanced with information-flow control with-
out complete rewriting. The programmers may proceed gradually by changing
the representation of secure components while leaving most normal compo-
nents untouched. It would be ideal if the security-sensitive computation only
takes a small portion of the whole program, so information-flow policies can
be globally enforced by a few local modifications to the program.

As mentioned in Section 3.7, there are still interesting open questions about
the protection and revocation of code privileges. Moreover, the dynamic check-
ing in our approach makes debugging more difficult because run-time errors
are hard to observe, reproduce and locate. All of these problems need to be
explored in the context of more concrete applications.

6.4 Implementing other type systems

Although FlowArrow is a generic arrow transformer, the type system imple-
mented in FlowArrow only works with arrows that have no side-effects, because
we assign a simple information-flow type l1 → l2 to such arrow computations.
This raises two questions. First, what arrows can be used besides the function
arrow (->)? The stream processor arrow (Hughes, 2000) is one example: we
can use FlowArrow to track information flow for stream processors, which map
input streams to output streams. But in general, we need to formally state
the properties of arrows that can be used with FlowArrow. Another question
is how to modify the type system in FlowArrow so that it works for mutable
state and other side-effects. We conjecture that for a specific effect such as
mutable state, we can extend the type system implemented in FlowArrow and
lift the arrow operations such as get and put to FlowArrow while implementing
appropriate typing rules. The feasibility of this approach has yet to be studied,
but one intriguing possibilitity is the potential to use multiple security type
systems in one application at the same time.

7 Conclusion

Using an embedded sublanguage of arrows, end-to-end information-flow poli-
cies can be directly encoded and enforced in Haskell using modular library
extensions, with a modest overhead of run-time checking. There is no need to
modify the Haskell language, and this embedded sublanguage approach per-
mits information-flow technology to be adopted gradually. The security mech-
anism is designed to be generic with respect to computation types and security

36

lattices. There is great flexibility in the choice of security policy frameworks
and multiple policy frameworks can co-exist in the same program. Dynamic
information-flow policies can be expressed, yet the security guarantee is as
strong as that of static analysis. This paper has demonstrated one example of
this embedded security-typed language approach, and established its proof of
noninterference.

Acknowledgments

We thank Benjamin Pierce, Geoffrey Washburn, Stephanie Weirich, the other
members of the PL Club at the University of Pennsylvania and the anonymous
reviewers for their valuable suggestions and feedback about our work. Funding
for this research was provided in part by NSF grants CNS-0346939 and CCF-
0524035, and grant N00014-04-1-0725 provided by the ONR.

References

Abadi, M., Banerjee, A., Heintze, N., Riecke, J., Jan. 1999. A core calculus
of dependency. In: Proc. 26th ACM Symp. on Principles of Programming
Languages (POPL). San Antonio, TX, pp. 147–160.

Chapman, R., Hilton, A., 2004. Enforcing security and safety models with an
information flow analysis tool. ACM SIGAda Ada Letters XXIV (4), 39–46.

Hughes, J., May 2000. Generalising monads to arrows. Science of Computer
Programming 37, 67–111.

Li, P., Zdancewic, S., 2006. Encoding information flow in Haskell. In: Pro-
ceedings of the 19th IEEE Computer Security Foundations Workshop
(CSFW’06).

Liang, S., Hudak, P., Jones, M., 1995. Monad transformers and modular inter-
preters. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 333–343.

Myers, A. C., Jan. 1999. JFlow: Practical mostly-static information flow con-
trol. In: Proc. 26th ACM Symp. on Principles of Programming Languages
(POPL). San Antonio, TX, pp. 228–241.

Myers, A. C., Liskov, B., 2000. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology 9 (4),
410–442.

Myers, A. C., Nystrom, N., Zheng, L., Zdancewic, S., Jul. 2001. Jif: Java
information flow, software release. Located at http://www.cs.cornell.edu/jif.

Paterson, R., Sep. 2001. A new notation for arrows. In: International Confer-
ence on Functional Programming. ACM Press, pp. 229–240.

37

Paterson, R., 2003. Arrows and computation. In: Gibbons, J., de Moor, O.
(Eds.), The Fun of Programming. Palgrave, pp. 201–222.

Peyton Jones, S., Augustsson, L., Barton, D., 2002. Haskell 98 language and
libraries (the revised report). http://www.haskell.org/report.

Pottier, F., Simonet, V., Jan. 2002. Information flow inference for ML. In:
Proc. 29th ACM Symp. on Principles of Programming Languages (POPL).
Portland, Oregon.

Sabelfeld, A., Myers, A. C., Jan. 2003. Language-based information-flow se-
curity. IEEE Journal on Selected Areas in Communications 21 (1), 5–19.

Sabelfeld, A., Sands, D., 2005. Dimensions and principles of declassification.
In: Proceedings of the 18th IEEE Computer Security Foundations Workshop
(CSFW’05). pp. 255–269.

Simonet, V., Mar. 2003. Flow Caml in a nutshell. In: Hutton, G. (Ed.), Pro-
ceedings of the first APPSEM-II workshop. Nottingham, United Kingdom,
pp. 152–165.

Tse, S., Zdancewic, S., 2004a. Run-time Principals in Information-flow Type
Systems. In: Proc. IEEE Symposium on Security and Privacy.

Tse, S., Zdancewic, S., 2004b. Translating Dependency into Parametricity. In:
ACM International Conference on Functional Programming.

Wadler, P., August 1992. Monads for functional programming. In: Proceedings
of the Marktoberdorf Summer School on Program Design Calculi.

Zheng, L., Myers, A. C., 2004. Dynamic security labels and noninterference.
In: Proceedings of the Second Workshop on Formal Aspects in Security and
Trust (FAST2004).

38

	University of Pennsylvania
	ScholarlyCommons
	12-18-2009

	Arrows for Secure Information Flow
	Peng Li
	Stephan A. Zdancewic
	Recommended Citation

	Arrows for Secure Information Flow
	Abstract
	Disciplines
	Comments

	Untitled

