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Abstract
We address the problem of object detection and segmentation using global holistic properties of object shape.
Global shape representations are highly susceptible to clutter inevitably present in realistic images, and can be
applied robustly only using a precise segmentation of the object. To this end, we propose a figure/ground
segmentation method for extraction of image regions that resemble the global properties of a model boundary
structure and are perceptually salient. Our shape representation, called the chordiogram, is based on
geometric relationships of object boundary edges, while the perceptual saliency cues we use favor coherent
regions distinct from the background. We formulate the segmentation problem as an integer quadratic
program and use a semdefinite programming relaxation to solve it. Obtained solutions provide the
segmentation of an object as well as a detection score used for object recognition. Our single-step approach
achieves state-of-the-art performance on several object detection and segmentation benchmarks.
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Abstract We address the problem of object detection

and segmentation using global holistic properties of ob-

ject shape. Global shape representations are highly sus-

ceptible to clutter inevitably present in realistic images,

and can be applied robustly only using a precise seg-

mentation of the object. To this end, we propose a

figure/ground segmentation method for extraction of

image regions that resemble the global properties of a

model boundary structure and are perceptually salient.

Our shape representation, called the chordiogram, is

based on geometric relationships of object boundary

edges, while the perceptual saliency cues we use favor

coherent regions distinct from the background. We for-

mulate the segmentation problem as an integer quadratic

program and use a semidefinite programming relaxation

to solve it. Obtained solutions provide the segmenta-
tion of an object as well as a detection score used for

object recognition. Our single-step approach achieves

state-of-the-art performance on several object detection

and segmentation benchmarks.
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1 Introduction

A multitude of different object representations have

been explored, ranging from texture and local features

to region descriptors and object shape. Although local

features based on image gradients and texture perform

relatively well for some object classes, many classes are

not modeled sufficiently by local descriptors. For ob-

jects primarily characterized by distinctive shape, lo-

cal texture features typically provide weak descriptions.

In this paper we focus on the problem of exploiting

global shape properties for object detection. Moreover,

we tightly couple these properties to object segmen-

tation, which makes shape-based detection possible in

cluttered scenes.

Shape is commonly defined in terms of the set of
contours that describe the boundary of an object. In

contrast to gradient- and texture-based representations,

shape is more descriptive at a larger scale, ideally cap-

turing the object of interest as a whole. This has been

recognized by the Gestalt school of perception, which

has established the principle of holism in visual percep-

tion (Palmer, 1999; Koffka, 1935). This principle sug-

gests that an object should be perceived in its totality

and not merely as an additive collection of individual

parts. The essential goal of a holistic representation for

object recognition is to capture not just the presence

of object parts but also non-local relationships between

its parts. In this work, our response to the mantra ‘the

whole is greater than the sum of its parts’ is ‘the whole

is the sum of all the relationships between its parts’, as

we make precise below.

Some of the most notable holistic representations

are based on global transforms, such as Fourier trans-

form (Zhang and Lu, 2003) or the Medial Axis Trans-

form (Blum, 1973). Unfortunately, such transforms as-



2 Alexander Toshev et al.

Fig. 1 Using BoSS to perform simultaneous shape-based
object detection and segmentation in a cluttered scene.

sume a pre-segmented object shape as input. As a re-

sult, the above representations cannot be used directly

for object detection in realistic scenes which inevitably

contain clutter.

To address the problems arising from clutter, a num-

ber of structural theories for object perception were in-

troduced. According to this paradigm, an object can be

decomposed and described as a configuration of atomic

parts. Structuralism has inspired a number of approaches

such as generalized cylinders (Marr, 2010; Binford, 1971),

Recognition by Components Theory (Biederman, 1987),

and superquadrics (Pentland, 1986). Although being

well motivated from a perceptual point of view, the

above approaches have not found wide applicability.

First, the theories assume that one can extract the

shape primitives in images, which is very difficult in

realistic images. Second, even if one can obtain good

primitive candidates from an image, the search for the

correct shape is typically not straightforward and tractable

(Grimson and Lozano-Perez, 1987).

To alleviate the above problems, a number of ap-

proaches were proposed in recent years that use prim-

itives which are simpler and easier to extract such as
edgels (Huttenlocher et al, 1993), contour segments (Fer-

rari et al, 2008) or statistical descriptors of local or

semi-local contours such as Shape Context (Belongie

et al, 2002). The above local primitives are combined in

a global configuration model. Depending on expressive-

ness of the model, inference can be intractable, such as

graph matching where one captures all pairwise depen-

dences among parts (Leordeanu et al, 2007), or tractable,

such as, for example, dynamic programming (Ling and

Jacobs, 2007) in which case many of the dependences

are left out. Another strategy is to capture all global de-

pendences among parts in a less expressive model such

as Thin-Plate Splines (Belongie et al, 2002) or Pro-

crustes (Mcneill and Vijayakumar, 2006). The above

shape models present a step towards recognition in clut-

tered scenes but depart from the idea of holism.

In this work we advocate holistic shape-based recog-

nition in realistic cluttered scenes. In particular, we pro-

pose a recognition method, called Boundary Structure

Segmentation (BoSS)1. This method relates the object

detection, based on a novel holistic shape descriptor, to

figure/ground segmentation and performs them simul-

taneously (see Fig. 1). While matching an input image

with an object model, BoSS selects a foreground region

with the following properties:

– Similarity in Shape: captured by a top-down process

exploiting object-specific knowledge. Evidence from

human perception indicates that familiarity with

the target shape plays a large role in figure/ground

assignment (Palmer, 1999).

– Perceptual Saliency: captured by a bottom-up pro-

cess based on general grouping principles, which ap-

ply to wide range of objects. In particular, the per-

ceptual grouping component is based on configural

cues of salient contours, color and texture coherence,

and small perimeter prior.

Furthermore, the shape-based detection costs of match-

ing several models to an image can be used to detect the

corresponding object class as the one whose model has

the smallest matching cost. In this way, object segmen-

tation and detection are integrated in a unified frame-

work. More precisely, the contributions of the approach

are threefold:

Shape Representation. We introduce a global,

boundary-based shape representation, called chordiogram,

which is defined as the distribution of all geometric rela-

tionships (relative location and normals) between pairs

of boundary edges – called chords – whose normals re-

late to the segmentation interior. This representation

captures the boundary structure of a segmentation as

well as the position of the interior relative to the bound-

ary. Moreover, the chordiogram is translation invariant

and robust to shape deformations.

The chordiogram can be theoretically related to cor-

respondence estimation techniques and thus to other

common shape matching approaches. In particular, we

show that the cost of chordiogram matching is a lower

bound on the cost of the point correspondence estima-

tion problem between two shapes. Furthermore, it is

also equal to the cost of chord correspondence prob-

lem between two shapes. This the chordiogram provides

approximate means to measure the cost of point corre-

spondence estimation without the need of explicit in-

ference.

Figure/Ground Segmentation. We match the

the chordiogram while simultaneously extracting fig-

ure/ground segmentation. This is a key advantage of

the representation, which relates the object boundary

to its interior and thus to region segmentation. The per-

1 A preliminary version of this work appeared in
CVPR2010 (Toshev et al, 2010).
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ceptual grouping component of the segmentation model,

which is defined in terms of configural cues of salient

contours, color and texture coherence, and small perime-

ter prior, ensures that the detections constitute salient

regions. More importantly, the joint matching and seg-

mentation removes the irrelevant image contours during

matching and allows us to obtain correct object detec-

tions and segmentation in highly cluttered images.

Inference. We pose BoSS in terms of selection of

superpixels obtained via an initial over-segmentation.

The selection problem is a hard combinatorial problem

which has a concise formulation as an integer quadratic

program consisting of two terms – a boundary structure

matching term defined over superpixel boundaries, and

a perceptual grouping term defined over superpixels.

The terms are coupled via linear constraints relating

the superpixels with their boundary. The resulting op-

timization problem is solved using a Semidefinte Pro-

gramming relaxation and yields shape similarity and

figure/ground segmentation in a single step.

We achieve state-of-the-art results on two challeng-

ing object detection tasks – 94.3% detection rate at 0.3

fppi on ETHZ Shape Dataset (Ferrari et al, 2006) and

92.4% detection rate at 1.0 fppi on INRIA horses (Fer-

rari et al, 2007) as well as accurate object boundaries,

evaluated on the former dataset.

2 Chordiogram

We introduce a novel shape descriptor, called a chordio-

gram. This descriptor adheres to the principle of holis-

tic visual perception by attempting to describe each

object contour in the context of the whole object. In

other words, the contribution of an edge or a contour

segment to the whole object representation depends on

all other object contours. Furthermore, it captures both

the boundary as well as interior of the object. In addi-

tion, it is invariant to certain rigid transformations and

robust to shape deformations. Most importantly, how-

ever, it can be applied in images with severe clutter,

which allows for recognition in unsegmented images.

To define the chordiogram, consider the outline of a

pre-segmented object as in Fig. 2(a) and denote by C

a set of sampled boundary points of this outline (in the

following we will use all the pixels lying on the outline

as C). A pair of boundary edges p and q from C will

be referred to as a chord. We can think of a chord as a

way to express a dependency between edges p and q. We

define features describing the geometry of the chord:

– Length lpq and orientation ψpq of the vector p→ q.

– Normalized normals θp and θq to the boundary at

p and q with respect to the chord orientation ψpq:

p

q(lpq,ψpq)

θp
θq

(a) Chord features.

p1
q1

p2

q2

(b) Normals of two chords.

Fig. 2 Chord features and orientation of the normals at
boundary edges.

p
q

chordiogram

l

ψ

θ

chord feature
quantization and binning

all shape
chords

fpq = (lpq,ψpq, θp, θq)
T

Fig. 3 For an input shape, all chord features are binned
in the quantized chord feature space which is the resulting
chordiogram.

θp = θ′p − ψpq and θq = θ′q − ψpq, where θ′p and θ′q
are the normals at p and q respectively.

Thus, the chord features can be written as a four-tuple:

fpq = (lpq, ψpq, θp, θq)
T (1)

We describe the shape of a segmented object by cap-

turing the features of all chords. In this way we attempt

to capture all dependencies among boundary points and

achieve a holistic description. More precisely, the chor-

diogram (denoted by ch) is defined as a K-dimensional

histogram of all chords, where chord features are quan-

tized into bins and the mth chordiogram element is

given by:

chm(C) = #{(p, q) | p, q ∈ C, fpq ∈ bin(m)} . (2)

Note that the above definition can be applied not only

to contours but also on any ordered point set C for

which the points have normals associated with them.

The chordiogram construction process is visualized

in Fig. 3. The lengths lpq are binned in bl bins in log

space, which allows for larger shape deformation be-

tween points lying further apart. The length h of the

largest bin determines the scale of the descriptor – ev-

ery two boundary points lying within distance h will

be captured by the descriptor. To guarantee that the

descriptor is global, we set h equal to the diameter of

the object in case of pre-segmented object masks. The

remaining three features are angles lying in [0, 2π) and

are binned uniformly – the chord orientation in br bins;

the normal angles are binned in bn angles. This binning
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(a) Global shape difference. (b) Local shape difference.

Fig. 4 For each pair of shapes (upper row), we show two
chordiograms: one computed over the normal features only
(middle row) and one over the chord length and orientation
(lower row).

strategy results in a N = bl×br×b2n dimensional shape

descriptor at scale h.

The chord features are chosen such that they com-

pletely describe the geometry of a chord. When it comes

to the chordiogram, the features capture different shape

properties. The chord length and orientation capture

global coarse shape properties (see Fig. 4(a)), while

the fine information is captured by the normals (see

Fig. 4(b)).

The chord features determine the invariance of the

chordiogram to geometric transformations. Since we do

not capture absolute location information, the resulting

descriptor is translation invariant. However, the chord

orientation feature prevents the descriptor from being

rotation invariant. Similarly, the chord length feature

prevents the chordiogram from being scale invariant.

There is a fundamental balance between descriptor in-

variance and discrimination under clutter, and we found

that search over scale and rotation (when needed) pro-

vided a better solution.

To evaluate the dissimilarity between two shapes we

can use any metric between the chordiogram extracted

from the shapes. In the subsequent experiments we use

L1 distance between L1-normalized chordiograms, which

we will call chordgram distance:

d(u, v) = ||u/||u||1 − v/||v||1||1 (3)

for two chordiograms u and v.

3 Properties and Analysis of the Chordiogram

In this section, we explore the properties of the chordio-

gram as a shape descriptor, motivate its holistic nature

and present a theoretical analysis of the connection be-

tween chordiograms and point-set correspondence meth-

ods. In the next section, we show how chordiograms can

(a) Contours.

p1 p2

q2
q1

(b) Face.

p1 p2

q2
q1

(c) Vase.

Fig. 5 Rubin’s vase, whose contours are shown in (a), can
have two drastically different interpretations depending on
the figure (see (a) and (b)). A purely contour-based shape de-
scriptor would not be able to differentiate between these two
interpretations. The chordiogram is able to make this distinc-
tion through the orientation of the normals of its chords.

be used in cluttered images via joint segmentation and

detection.

3.1 Figure/Ground Organization

An important difference with most contour-based shape

representations, is that the chordiogram captures the

contour orientation relative to the object interior. Ori-

enting the boundary normals with respect to the inte-

rior allows us to capture different interpretations of a

contour, as shown in Fig. 5. This property will allow us

to relate the descriptor to the segmentation of the im-

age, as we will see in Sec. 4. In addition, it contributes

to better discrimination, for example, between concave

and convex structures (configurations fp1q1 and fp2q2
respectively in Fig. 2(b)), which otherwise would be in-

distinguishable.

3.2 Gestaltism

The introduced descriptor is a global since it takes into

account all possible chords – long chords as well as short

chords. Thus we capture short-range as well as long-

range geometric relations. To give some intuition for the

holistic nature of the descriptor, consider the example

of a horse and a centaur in Fig. 6, each of which can be

thought of being composed of two parts — a head and

a torso. Since the chordiogram captures not only the

shape of the individual parts but also their relationship,

the chordiogram distance bewteen the two shapes:

d(chhorse, chcentaur) = 0.72

is larger than the distance between the isolated parts

together:

d(chhorse
torso + chhorse

head , ch
centaur
torso + chcentaur

head ) = 0.46
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(a) Centaur. (b) Horse.

Fig. 6 Two shapes which are perceptually different and have
one identical part – torso. Since the chordiogram captures
the parts in the context of the whole shape, the chordiogram
distance between the two shapes is larger than the distance
between the parts together (see text).

In other words, each object part is captured in the con-

text of the whole object, which we interpret is a holistic

representation.

3.3 Shape Part Correspondence

A common paradigm in shape matching is to try to

quantify the similarity between two shapes by estab-

lishing correspondences between points on the shapes.

The correspondence between the points serves as an ex-

planation of the match, while the quality of the match

is determined using a matching model (Yoshida and

Sakoe, 1982; Basri et al, 1998). The chordiogram, as

defined in Sec. 2, does not capture any absolute bound-

ary point information as part of the chord features, nei-

ther it captures any location relations among chords.

As a result, it is not clear whether the chordiogram, as

a histogram, can be used to establish correspondences

among boundary points of two shapes.

In this section we relate the chordiogram to the

graph matching problem, which is a widely used ap-

proach to the correspondence problem (Shapiro and

Haralick, 1979; Gold and Rangarajan, 1996; Umeyama,

1988), and obtain the following insights:

1. We provide a different interpretation of the chordio-

gram matching as bipartite matching among chords.

We show that the chordiogram can be used to com-

pute the cost of this bipartite matching efficiently

without recovering any explicit correspondences.

2. We bound the chordiogram matching from above

with the cost of a graph matching among points on

the shape. This relates our descriptor to correspon-

dence estimation.

3. Finally, we show how to estimate correspondences

between shapes starting from the bipartite matching

interpretation of our descriptor.

Next we set up the notation and tools needed for

the subsequent analysis.

i

j

k

l

shape 1 shape 2

fij fkl

Color encoding of
the bins of each chord:
1: 
2: 

||fij − fkl||1

||chij − chkl||1

(a) Original feature 
space:

(b) Chordiogram-
based:

chkl =chij =

Fig. 7 Top: two similar shapes. Middle: for each of the two
shapes, we show chords of different lengths for fixed orienta-
tion and normals. The colors of the chords correspond to the
bins they fall in. Bottom: (a) One can use the feature vectors
of the chords to compute a distance between them, or (b) a
chordiogram for each chord can be defined and the distance
between them can be used.

Graph matching. Suppose that the two shapes,

whose similarity needs to be assessed, are defined in

terms of point sets:

P s = {ps1, · · · , psn} for s ∈ {1, 2}

For simplicity, we assume that both point sets have the

same cardinality n. In this case, we can think of a shape

as a complete graph, whose nodes are the above point

set and the edges are the chords (see Sec. 2).

Chord distances. Furthermore, a chord (i, j) from

shape described with point set P s, can be described by

the bin into which it falls using a predefined binning

scheme b. This can be written as a chordiogram chb,sij
built only on the point set {i, j}:

chb,sij = ch({i, j})

Using the definition from Eq. 2, the above chordiogram

can be considered as a binary indicator vector which

describes in which bin the chords falls into:

(chb,sij )m =

{
1 if fsij ∈ binb(m)

0 otherwise

Denote further by chb,s the chordiogram for shape s

using binning scheme b and N =
(
n
2

)
= ||ch1|| = ||ch2||

the number of chords.

In the following exposition we will use a sequence

of nested binning schemes, as defined in (Indyk and

Thaper, 2003). Suppose that ∆ is the diameter of the

chord set of both shapes, where the diameter is de-

fined in terms of the L1 distance on the feature vector
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i

j

k

l
ch−1

ij = ch−1
kl =

||ch−1
ij − ch−1

kl ||1 = 2

i

j

k

l
ch0

ij = ch0
kl =||ch0

ij − ch0
kl||1 = 0

k

l

i

j
ch1

ij = ch1
kl =||ch1

ij − ch1
kl||1 = 0

Binning scheme 
b = 0:

Binning scheme 
b = -1:

Binning scheme 
b = 1:

Fig. 8 For the two shapes from Fig. 7, we visualize chords
and their bin membership for three different nested binning
schemes. Note that for the two coarse binning schemes, the
chords ij and kl fall in the same bin, while in the finer binning
scheme they are assigned to different bins. Aggregating the
distances over all binning schemes gives an approximation of
chord distance in the original feature space (see text).

fij of a chord (i, j). Further, δ is the smallest L1 dis-

tance among a pair of chords. We assume that each

chord has a unique feature vector so that δ > 0.Then

the bth binning scheme is defined by partitioning each

feature space using a grid of size δ2b. The values of

b are {−1, 0, 1, . . . , dlog2(∆/δ)e} such that they define

together a fine to coarse hierarchical binning, where at

the finest level each bin contains a single chord, while

at the coarsest level all chords are contained in a single

bin.

Using the above descriptors of a chord, we can define

the following three distances Wij;kl between chords (i, j)

and (k, l) from two different shapes, which characterize

their dissimilarity:

– Distance in feature space (see Fig. 7, (a)):

W orig
ij;kl = ||f1

ij − f2
kl||1 (4)

– Chordiogram-based distance: For a particular

binning scheme b , one can declare two chords sim-

ilar if they lie in the same bin, and dissimilar oth-

erwise (see Fig. 7, (b)). This can be expressed as

follows:

W b
ij;kl = ||chb,1ij − chb,2kl ||1 (5)

– Multilevel chordiogram-based distance: In ad-

dition to the above bin comparison distance, one can

combine multiple binning schemes into a single dis-

tance (see Fig. 8):

Wmbins
ij;kl =

B∑
b=−1

αb||chb,1ij − chb,2kl ||1 (6)

with positive weights αb.

Graph Matching formulation. We would like to

recover one-to-one correspondence between both graphs.

For this purpose, we define a correspondence indicator

variable

xik =

{
1 if p1

i and p2
k are in correspondence;

0 otherwise
(7)

Then, the graph matching problem, which evaluates the

structural similarity between the graphs, can be formu-

lated as follows:

(GM) : min
x

∑
ijkl

Wij;klxikxjl (8)

subject to
∑
k

xik = 1 for all i (9)∑
i

xik = 1 for all k (10)

xik ∈ {0, 1} for all i, k (11)

where w can be any positive chord distance, such as the

one defined in Eq. (4–6). The constraints (9-10) guaran-

tee one-to-one correspondence, while the integral con-

straints (11) assure that the solution to the problem is a

correspondence indicator variable, as defined in Eq. (7).

Graph Matching via Chord Matching. Follow-

ing (Chekuri et al, 2005), we reformulate the above

problem into an equivalent one, in which we introduce a

new set of variables X : Xijkl = xikxjl. These variables

can be thought of as correspondence variables between

chords. Then problem (GM) from Eq. (8) can be for-

mulated in terms of the chord correspondence variables.

This new formulation has correspondence uniqueness

and integrality constraints as GM. In addition, it has

consistency constraints which guarantee that the ob-

tained chord correspondences are consistent with a set
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Graph Matching (GM)
formulation

Graph Matching via
Chords (GMC)

va
ri

ab
le

s
un

iq
ue

ne
ss

co
ns

is
te

nc
y

xik

i
k Xij;kl

j l

i k
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Fig. 9 Equivalent formulations of the graph matching prob-
lem. Left: The original graph matching formulation (GM)
through point correspondence variables. Right: An equivalent
formulation using chord correspondence variables (GMC) .

of point correspondences (see Fig. 9):

(GMC) : min
X

∑
ijkl

Wij;klXijkl (12)

subject to
∑
k,l

Xijkl = 1 for all i, j (13)

∑
i,j

Xijkl = 1 for all k, l (14)

∑
l

Xij1kl =
∑
l

Xij2kl for all i, k, j1, j2 (15)∑
j

Xijkl1 =
∑
l

Xijkl2 for all i, k, l1, l2 (16)

Xijkl ∈ {0, 1} for all i, k (17)

Constraints (13-14) stem directly from the definition

of X and the constraints (9-11) on x. Further, the con-

straints (15-16) assure that corresponding chords agree

on a unique correspondence between the points. This

constraint can be derived from the following relation-

ship between point and chord correspondences:

xik = xik
∑
l

xjl =
∑
l

Xijkl for all j (18)

Relaxation of Graph Matching. To solve the

integer program (GMC), one needs to resort to relax-

ations of the problem (see Fig. 10).

The first tractable problem can be obtained by re-

laxing the integral constraints (17) to non-negativity

Chord Matching (CM)
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Point Matching (PM)
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Xij;kl ∈ {0, 1}
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PCMPPM

Fig. 10 Relaxation of GMC. Left: Point Matching (PM) is
obtained by relaxing the integrality constraint. Right: Chord
Matching (CM) is obtained by relaxing the consistency con-
straints.

constraints. As a result, one obtains the following ex-

actly solvable linear program (Chekuri et al, 2005),

which we call point matching (PM) indicating that it

aims to recover point correspondences:

(PM) : min
X

W ·X subject to X ∈ PPM (19)

where W ·X =
∑
ijklWij;klXijkl. The above constraint

set PPM is defined in terms of the following constraints:

PPM =



∑
k,lXijkl = 1 for all i, j∑
i,j Xijkl = 1 for all k, l∑
lXij1kl =

∑
lXij2kl for all i, k, j1, j2∑

j Xijkl1 =
∑
lXijkl2 for all i, k, l1, l2

X ≥ 0


A different relaxation would be to retain the integral

constraints (17), but to remove the constraints (15-16)

which guarantee that the chord correspondences trans-

late into point correspondences. This corresponds to bi-

partite matching among the chords of the two shapes,

which we will call chord matching (CM):

(CM) : min
X

W ·X subject to X ∈ PCM (20)

with constraints

PCM =


∑
k,lXijkl = 1 for all i, j∑
i,j Xijkl = 1 for all k, l

Xijkl ∈ {0, 1} for all i, j, k, l
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The latter program does not guarantee that the result-

ing chord correspondence can be directly translated to

point correspondences. However, it is an integer pro-

gram, which can be solved exactly using Max-Flow es-

timation algorithms.

Relations between graph matching and chor-

diogram distance. Using the above definition of graph

matching and its relaxations, one can show that the

chordiogram matching is closely related to the corre-

spondence problem between two shapes. First, we show

the relationship between the chordiogram and bipartite

matching among chords:

Theorem 1 Consider the chord matching problem (CM)

(see Eq. (20)) with the multilevel chordiogram-based dis-

tance (see Eq. (6)):

min
X

Wmbins ·X subject to X ∈ PCM

The solution of this problem can be characterized as

follows:

– The minimum can be analytically computed using

the chordiogram distance:

min
X∈PCM

Wmbins ·X =

B∑
b=−1

αb||chb,1 − chb,2||1

for weights αb = 2b.

– All the minimizers can be described in terms of the

chordiograms of the individual shapes with the fol-

lowing set:

P∗CM =

{
X ∈ PCM|

∑
(i,j)∈binb(m)

(k,l)∈binb(m)

Xijkl = min{chb,1m , chb,2m }

for all bins m and schemes b

}
(21)

Furthermore, we can relate the chordiogram match-

ing to point matching between shapes:

Theorem 2 Suppose that X∗cm,orig is a minimizer of

the chord matching problem (see Eq. (20)) using data

termsW orig based on the distance in the original feature

space (see Eq. (4)):

X∗cm,orig ∈ arg min
X

W orig ·X subject to X ∈ PCM

Further, X∗pm,mbins is a minimizer of the point match-

ing problem (see Eq. (19)) using data terms Wmbins

based on the multilevel chordiogram-based distance (see

Eq. (6)):

X∗pm,mbins ∈ arg min
X

Wmbins ·X subject to X ∈ PPM

Fig. 11 Examples of recovered correspondence on pairs of
shapes. Points, colored in the same color, are in correspon-
dence.

Then, the following relationship holds:

αW orig ·X∗cm,orig ≤
B∑

b=−1

αb||chb,1 − chb,2||1

≤ Wmbins ·X∗pm,mbins
for a positive constant α.

The proof of both theorems is given in Appendix A.

There are several insights we gain from the above theo-

rems which relate our shape representation to matching

points on the two shapes.

1. As shown in Theorem 1, the chordiogram distance

is a minimizer of a bipartite matching among chords

for a specific form of the chord distances. Thus, it

quantifies the best possible correspondences among

chords on two shapes without explicitly giving those

correspondences. In addition, the chordiogram dis-

tance does not require any inference and is thus

more efficient.

2. As shown in the first inequality of Theorem 2, the

chordiogram over several binning schemes is an up-

per bound of the bipartite matching for which the

similarities are defined in the original chord feature

space. This shows that by choosing several binning

schemes for the chordiogram, we can obtain an ap-

proximation to the original distance in the chord

feature space.

3. As shown in the second inequality of Theorem 2,

the distance based on our shape descriptor is a lower

bound of the linear programming approximation for

establishing correspondences among points on two

shapes.

Correspondence recovery. The above theorem is

based on the fact that we can think of the chordiogram

matching as a different relaxation of the original graph

matching formulation. This allows for recovery of point

correspondences – if we have X ∈ PPM , then we can

use Eq. (18) for an arbitrary j to estimate point cor-

respondences. To obtain such an X, however, we will

not solve (PM) directly, but rather use the solution for
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(CM) obtained from the chordiogram matching. More

precisely, we will try to find X ∈ PPM closest to any

minimizer of (CM):

min
X

{
||X −X∗cm||2|X ∈ PPM , X∗cm ∈ P∗CM

}
(22)

Note the above problem is an integer quadratic pro-

gram, and thus NP-hard. To obtain an approximate

solution, one can relax the above problem by replacing

the integral constraints with nonnegativity constraints

in the definition of P∗CM:

P∗∗CM =


∑
k,lXijkl = 1 for all i, j∑
i,j Xijkl = 1 for all k, l

Xijkl ≥ 0 for all i, j, k, l∑
(i,j),(k,l)∈bin(m)Xijkl = min{ch1

m, ch
2
m}


The above polytope P∗∗CM is a convex set and if we re-

place P∗CM for P∗∗CM in problem (22), then we obtain

a convex program. The correspondence recovery proce-

dure is summarized in Algorithm 1.

Algorithm 1 Correspondence estimation from chor-

diograms.

Require: Chordiograms ch1, ch2 of two shapes.
1: Define P∗∗CM using ch1 and ch2.
2: Solve program (22) and obtain minimizer X∗ ∈ PPM .
3: Recover correspondence indicator variables x from X∗

using Eq. (18).
4: Obtain discrete indicators

x̂ij =

{
1 iff j = arg maxj1

{xij1
}

0 otherwise

.

Examples. We show results of the correspondence

recovery algorithm on selected pairs of shapes from

MPEG 7 dataset (Latecki et al, 2000). From each shape,

defined by the outline of the shape mask, we sample uni-

formly 30 points, which are to be put in correspondence.

The chordiogram is computed using only the sample

points. For the optimization problem in step 2 of the

algorithm, we use the CVX optimization package (Grant

and Boyd, 2010). Results are shown in Fig. 11. As we

can see, correct correspondences are recovered for most

of the points for articulated as well as rigid objects. The

main problems arise in cases of strong articulation (see

tree in row 3, column 1, where the orientation of the

branches differs drastically), or lack of matching points

(see elephant in row 1, column 3, where in the left ob-

ject two legs are visible, while in the right object three

legs are visible).

(a) Segment m is foreground (b) Segment k is foreground

Fig. 12 There are two cases in which boundary b can be an
object boundary.

Boundary Segments
tkb tmb sk sm

1 0 1 -1
0 1 -1 1
0 0 1 1
0 0 -1 -1

Table 1 We present the relationship between boundary and
segment indicator variables.

4 Boundary Structure Segmentation and

Detection Model

The introduced chordiogram as a holistic and global

representation can potentially suffer from all the ir-

relevant structure present in images, such as interior

contours and background clutter. This is a major chal-

lenge in applying global object representations in re-

alistic images, which include multiple objects and rich

background structure.

To address this problem, we propose a chordiogram-

based object detection model called Boundary Structure

Segmentation (BoSS) model, which solves simultane-

ously for object segmentation and detection. First, we

show how to relate region segmentation to chordiogram

matching in Sec. 4.1 and Sec. 4.2. The bottom-up per-

ceptual principles are described in Sec. 4.3. The BoSS

model and inference are explained in full detail in Sec. 4.4

and 4.5.

4.1 Chordiogram Parameterization

In order to relate the chordiogram to image segmenta-

tion, we parameterize it in terms of variables that track

selected segments and segment boundaries.

Oversegmentation. As a starting point for our

method, we assume that we have an over-segmentation

of the input image. The property we require from the

segments is that they do not cross object boundaries

(most of the time). In this way, every object in the im-

age is representable as a set of such segments and the

object boundary as a set of segment boundary.

Segment parametrization. For each segment k

obtained via the oversegmentation we introduce a seg-
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(a) Segmented object (b) Unknown object

Fig. 13 The chordiogram of an object can be decomposed
in terms of chordiograms which relate pair of boundaries, as
shown on the left. If the object is not segmented, the bound-
aries can be selected via the boundary indicator variables.

ment indicator variable sk ∈ {−1, 1}:

sk =

{
1 segment k is foreground

−1 otherwise
(23)

We use N to denote the number of segments.

Segment boundary parameterization. We de-

note by B the set of all boundary segments between

pairs of neighboring segments, where the number of

such boundary segments is M = |B|. Note that a con-

tour b is a boundary because exactly one of its neigh-

boring segments k and m is foreground and the other is

background (see Fig. 12). To differentiate between those

two cases, for each contour b and its two neighboring

segments k and m we include in B two boundaries: bm

and bk. The first denotes the case when m is foreground

and k is background; the second denotes the opposite

case.

We introduce boundary indicator variables which

indicate whether a segment boundary is an object bound-

ary. This variable not only captures the state of the

boundary but tracks which segment configuration causes

this state. More precisely, for each boundary bk ∈ B we

introduce a boundary indicator variable tkb ∈ {0, 1}:

tkb =


1 neighboring segment k is foreground

and other neighboring segment m

is background

0 otherwise

(24)

As a result, there are two variables associated with

each boundary. If a segment boundary designates an

object boundary, then exactly one of the variables has

value 1. Otherwise both are 0. The relationship between

the values of the boundary and segment variables is

summarized in Table 1. This relationship can be ex-

pressed in terms of two constraints:

tkb − tmb = 1/2(sk − sm) (25)

tkb t
m
b = 0 (26)

Chordiogram additivity. To parameterize the chor-

diogram using the above variables, it will prove useful

to provide an equivalent definition to Eq. (2). For a

given segmented object, the chords connecting points

on two boundaries b and c, caused by segments k and

m being foreground respectively, can be described by a

chordiogram chkmbc ∈ RK , bk, cm ∈ B (see Fig. 13, (a)):

(chkmbc )l = #{(p, q) | fpq ∈ bin(l), p ∈ bk, q ∈ cm} (27)

The above quantity can be considered as boundary-pair

chordiogram. Note that the boundary-pair chordiogram

is a subset of the overall chordiogram. Then Eq. (2)

can be expressed as a sum of all boundary-pair chordio-

grams for all pairs of boundaries. This has the following

linear form:

ch =
∑

bk,cm∈B
chkmbc (28)

The above decomposition will be referred to as chordio-

gram additivity – the descriptor can be expressed in an

additive form in terms of relations between object parts.

Note that this is not a contradiction to the holistic na-

ture of the descriptor since the additive components are

not object parts, but configurations between parts.

Chordiogram parameterization. If we do not

have a segmented object, we can select the object bound-

aries using the indicator variables (see Fig. 13 (b)) and

express the resulting image chordiogram as follows:

ch(t) =
∑

bk,cm∈B
chkmbc t

k
b t
m
c (29)

The value of the lth bin can be expressed as a quadratic

function:

ch(t)l =
∑

bk,cm∈B
(chbc)lt

k
b t
m
c = tTQlt (30)

for a matrixQl which contains the values of the boundary-

pair chordiogram: (Ql)bk;cm = (chbc)l.

Note that in the above parameterization one needs

to indicate not only the boundary but also its relation-

ship to the neighboring segments. This information is

already contained in the chordiogram, since as defined

in Sec. 2, each chord captures the object interior via

the orientation of the normals.

4.2 Shape Matching

After we have parameterized the chordiogram in terms

of the boundary indicators (see eq. (29)), we chose to

compare it with the model chmodel using L1 distance:

match(t,m) = ||chmodel − ch(t)||1 (31)
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The above shape matching cost evaluates the shape

similarity between a model and a particular selection

of segment boundaries. This motivates us to formulate

the problem of shape matching as minimization of the

above cost while taking into account the relation be-

tween boundaries and segments, as expressed in con-

straints in Eq. 25:

(SM) : min
t,s
||chmodel − ch(t)||1 (32)

s.t. tkb − tmb =
1

2
(sk − sm) for all bm, bk ∈ B

tkb t
m
b = 0, t ∈ {0, 1}2M , s ∈ {−1, 1}N .

Solving the above optimization problem produces:

– Figure/ground segmentation: The optimal val-

ues of the boundary and segment indicators encode

the object interior and boundary.

– Shape-based detection cost: The minimum of

the objective function quantifies the quality of the

match based on shape similarity.

Solving the optimization problem for several object types,

and selecting the best match, accomplishes joint shape-

based detection and segmentation.

4.3 Perceptual Grouping

Our model can express grouping principles relating re-

gions as well as boundaries.

4.3.1 Region grouping principles.

While matching the input image to a model, we would

like to ensure that the resulting figure represents a per-

ceptually salient segmentation, i.e., the resulting figure

should be a coherent region or set of regions distinct

from the background. This property can be expressed

using the segment indicator variables, as introduced in

Sec. 4.1, and a Min-Cut-type smoothness criterion. If

we denote by we,g the similarity between the appear-

ance of superpixels e and g, then we can encourage re-

gion coherence by the standard graph cut score:

groupr(s) = −sTWs = −1TW1 + 2
∑

e∈figure
g∈ground

we,g (33)

for s ∈ {−1, 1}.

4.3.2 Boundary grouping principles.

In many cases an edge/contour detector cannot detect

all object boundaries since there is no evidence in the

image (see Fig. 14, right). However, if we use segmenta-

tion we can hallucinate object boundaries and recover

the missing ones (see Fig. 14, left). This comes with

the danger that one can also hallucinate non-existing

objects in the maze of segment boundaries.

To address this issue we propose to use all segment

boundaries, while at the same time incurring a cost if

we choose hallucinated ones. In this way we will be

able to complete the bottom of the bottle in Fig. 14

by paying a small cost, while we will never detect the

apple since the cost for hallucinating all boundaries will

be prohibitively large.

hallucination missing boundaryinput image

Fig. 14 Left: input image. Middle: if we use all segment
boundaries, than non-existing objects can be easily halluci-
nated. Right: if we rely on an edge/contour detection, then
we can miss correct boundaries, which the segmentation can
potentially hallucinate.

For a boundary segment b, we denote by cb the per-

cent of the pixels of b not covered by image edges ex-

tracted using thresholded Probability of Boundary edge

detector (Martin et al, 2004). Then the boundary cost

is defined as

groupb(t) = cT t =
∑
bk∈B

cbt
k
b (34)

for tkb ∈ {0, 1}N .

4.4 BoSS Model

The BoSS model combines the costs from the previous

sections. It solves for a shape match using cost (31)

from Sec. 4.2, while at the same time applies grouping

principles as formulated in costs (33) and (34) from

Sec. 4.3:

mint,s match(t,m) + δgroupr(s) + γgroupb(t) (35)

s.t. tkb − tmb =
1

2
(sk − sm) for bk, bm ∈ B

tkb t
m
b = 0, t ∈ {0, 1}2M , s ∈ {−1, 1}N ,

where δ and γ are weights of the different terms. The

difference from the problem (SM) in Eq. (32) lies in the

addition of two grouping terms.

Term contributions. We examine the contribu-

tion of each term of the model on one concrete example
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Fig. 15 For an input image and model, as shown in the
first row, our algorithm computes an object segmentation dis-
played in (a) row. We present three solutions by using only
the matching term from Eq. (31) in first column; the match-
ing term together with the superpixel segmentation prior (see
Eq. 33) in second column; and the whole cost function con-
sisting of the matching, segmentation and the boundary term
in third column. (b) We also show for the three cost combi-
nations the relaxed values of the segmentation variable s, as
explained in Sec. 4.5.

presented in Fig. 15. The shown results were obtained

using the optimization described in Sec. 4.5. By using

only the matching term we are able to localize the ob-

ject and obtain a rough mask, which however extends

the back of the horse and ignores its legs (first column).

The inclusion of the superpixel grouping bias helps to

remove some of the erroneous superpixels above the ob-

ject which have a different color than the horse (second

column). Finally, if we add the boundary term, it serves

as a sparsity regularization on t and results in a tighter

segmentation (third column). Thus, the incorrect su-

perpixels above the horse get removed, since they con-

tain hallucinated boundaries not supported by edge re-

sponse. Additionally, it recovers some of the legs, since

they exibit strong edge response along their boundary.

4.5 Inference

Both the Shape Matching problem formulated as an in-

teger quadratic program (SM) in Eq. (32) and the BoSS

program in Eq. (35) are in general NP-hard. This not

surprising since it is the problem of selecting from a

set of exponentially many segments such that the re-

sulting region has a desired shape and perceptual prop-

erties. To compute an approximate solution, we apply

the Semi-definite Programming (SDP) relaxation (Goe-

mans and Williamson, 1995; Boyd and Vandenberghe,

2004). Since the latter program is a superset of the for-

mer, we present an optimization scheme for the BoSS

program only.

First, we re-write the objective as a linear function

and a set of quadratic constraints. We introduce for

the lth bin a variable βl, which denotes the difference

of the model and image chordiogram at this bin. Then

the objective of the BoSS program can be expressed in

terms of β and a quadratic constraint for each bin:

(BoSS) : min
t,s,β

1Tβ − δsTWs+ γcT t (36)

s. t. tTQlt− chmodel
l ≤ βl (37)

chmodel
l − tTQlt ≤ βl (38)

tkb − tmb =
1

2
(sk − sm) (39)

tkb t
m
b = 0 (40)

t ∈ {0, 1}2M , s ∈ {−1, 1}N (41)

for all pairs of segment boundaries bk, bm ∈ B. In the

first two constraints (37) and (38) we use the chordio-

gram parameterization as defined in Eq. (30).

To apply the SDP relaxation, we introduce variables

T and S, which bring both the quadratic terms (37) and

(38) into linear form: T = ttT ; and the quadratic terms

in (36) into linear form: S = ssT . This allows us to

state the relaxation as follows:

(BoSSsdp) : min
t,s,β

1Tβ − δtr(WTS) + γcT t (42)

s. t. tr(QTl T )− chmodel
l ≤ βl (43)

chmodel
l − tr(QTl T ) ≤ βl (44)

tkb − tmb =
1

2
(sk − sm) (45)

Tbk;bm = 0 (46)

tkb = Tbk;bk for bk ∈ B (47)

diag(S) = 1n (48)(
T t

tT 1

)
� 0 (49)(

S s

sT 1

)
� 0 (50)

The above problem was obtained from problem (36)

in two steps. First, we relax the constraints T = ttT to

T � ttT and S = ssT to S � ssT respectively, which

by Schur complement are equivalent to (49) and (50)

(Boyd and Vandenberghe, 2004). Second, we weakly en-

force the domain of the variables from the constraint

(41). The −1/1-integer constraint on s is expressed as

diagonal equality constraint on the relaxed S (see Eq. (48)),

which can be interpreted as bounding the squared value

of the elements of s by 1.The 0/1-integer constraint (see

Eq. (47)) is enforced by requiring that the diagonal and

the first row of T have the same value. Since T = ttT ,

this has the meaning that the elements of t are equal to
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Algorithm 2 BoSS algorithm.
Input: model masks m1, . . . ,mk; image segmentation
parametrized by t and s; scales h1, . . . , hp.
Initialize: segmentations S ← ∅ and their detection costs
D ← ∅.
for i = 1 . . . k do

for j = 1 . . . p do
mj

i ← rescale mi to scale hj :

Compute chmod
i,j of mj

i at scale hj using Eq. (2).

Solve relaxed BoSS problem (42) using chmodel
i,j .

Discretize to obtain segmentation si,j ; S ← S∪{si,j}.
Compute chi,j from si,j at scale hj using Eq. (2).

Detection cost: di,j ←
∣∣∣∣∣∣∣∣ chi,j

||chi,j||
−

chmodel
i,j

||chmodel
i,j
||

∣∣∣∣∣∣∣∣
1

.

end for
end for
(i∗, j∗)← arg mini,j di,j .
Output: segmentation si∗,j∗ and detection cost di∗,j∗ .

their squared values, which is true only if they are 0 or 1.

Finally, the boundary-region constraints, one of which

is quadratic, naturally translate to linear constraints.

The above problem is a linear program with inequal-

ity constraints in the cone of positive semi-definte ma-

trices. As such, it is convex and can be solved exactly

with any standard optimization package which supports

such problems.

Discretization. Discrete solutions are obtained by

thresholding s. Since s has N elements, there are at

most N different discretizations, all of which are ranked

using their distance to the model. If a threshold results

in a set of several disconnected regions, we consider all

possible subsets of this set. The algorithm outputs the

top 5 ranked non-overlapping masks. Note that we are

capable of detecting several instances of an object class

since they result in several disconnected regions which

are evaluated independently.

BoSS algorithm. The BoSS algorithms starts with

an input image and a set of models. It solves the above

optimization problem for each image-model pair at each

scale. The best matching model gives the object seg-

mentation as well as a detection cost – the chordiogram

distance of the model to the obtained segmentation.

The full details are presented in Algorithm 2.

5 Related Work

In the context of the proposed method, we review in

this section relevant work.

Holistic Representations. Some of the first at-

tempts to define holistic representations are based on

global transforms of the input object shape. Exam-

ples are Fourier coefficients of a contour distance func-

tion (Zhang and Lu, 2003) and Zernicke moments ap-

plied on the object mask (Zhang and Lu, 2003). An-

other class of holistic shape representations was initi-

ated by the development of the Medial Axis Transform

by Blum, which is defined as the set of centers of max-

imally inscribed circles in a closed shape (Blum, 1973).

This set can be thought of as a skeleton of the shape,

which is computed globally, and reveals geometrical as

well as topological shape properties. Depending how

those properties are captured, the medial axis has led to

the development of Shocks, Shock graphs (Kimia et al,

1995; Siddiqi et al, 1999; Sebastian et al, 2004; Trinh

and Kimia, 2011) as well as M-reps in medical imaging

(Pizer et al, 1999). To deal with the instability of the

medial axis to small boundary protrusions a more ro-

bust transform based on the Poisson equation has been

proposed (Gorelick and Basri, 2009).

More recently, Zhu et al (2008) propose a holis-

tic shape matching approach which selects relevant ob-

ject contours while matching Shape Contexts (Belongie

et al, 2002). In follow-up work, the above matching has

been combined with discriminative learning to leverage

salient object contours (Srinivasan et al, 2010).

The presented BoSS model does not try to estab-

lish a point correspondence between the model and

the object shape. In many cases, however, an explicit

correspondence estimation between the two shapes lies

in the core of a shape matching technique. Spectral

graph matching in conjunction with geometric features

of edgels and pairs of edgels has been used by Leordeanu

et al (2007). A parametric statistical framework, which

models the shape deformation of the point set is the

Active Shape Model (Cootes, 1995).

Simpler models which do not capture all pairwise

relationships between shape parts depart from the idea

of holism but allow for tractable inference. This is com-

monly done by treating a shape as a linearly ordered

point set instead of unorganized point set as the chor-

diogram assumes. Lu et al (2009) explore particle fil-

tering to search for a set of object contours. Felzen-

szwalb and Schwartz (2007) propose a hierarchical rep-

resentation by decomposing a contour into a tree of

subcontours and using dynamic programming to per-

form matching. A globally optimal shape matching and

segmentation based on the Minimum Ratio Cycle al-

gorithm was introduced by Schoenemann and Cremers

(2007). Dynamic programming has been also applied in

a mutli-stage framework to search for a chain of object

contours (Ravishankar et al, 2008). A similar approach

to shape-based recognition is to search for a chain of

image contours which best matches to a model in a con-

tour network extracted from the image (Ferrari et al,

2006).
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The chordiogram uses edgels as atomic shape parts.

A different approach is to use contour segments as parts.

For example, a descriptor of groups of adjacent contour

segments was introduced in conjunction with an SVM

classifier for the purpose of recognition (Ferrari et al,

2008). Boundary fragments scored using a classifier and

geometrically related to an object center have been ex-

plored as well (Opelt et al, 2006; Shotton et al, 2005).

The simple fragment configuration model allows for ef-

ficient inference using a voting scheme.

Statistical Representations. The presented de-

scriptor in this work captures relationships among edgels

in a statistical fashion. Similarly, geometric hashing has

been used to describe purely geometric properties (Lam-

dan et al, 1990) as well as topological properties at a

global scale (Carlsson, 1999). A widely used descriptor,

called Shape Context (Belongie et al, 2002) captures a

semi-local distribution of edges. Its descriptive power

has been extended to more deformed and articulated

shapes (Ling and Jacobs, 2007).

Histograms of geometric properties of sets of points

have been used to match 3D models (Osada et al, 2002).

These histograms can be interpreted as distributions

of shape functions, where each function represents a

property of a small set of points.

Recognition and Segmentation. Close interplay

between segmentation and recognition has been stud-

ied by Yu and Shi (2003) who guide segmentation using

part detections and do not use global shape descrip-

tors. Segment shape descriptors based on the Poisson

equation have been used for detection and segmenta-

tion (Gorelick and Basri, 2009). Leibe et al (2008) com-

bine recognition and segmentation in a probabilistic

framework. Recently, Gu et al (2009) use global shape

features on image segments. However, segmentation is

a preprocessing step, decoupled from the subsequent

matching.

Object dependent segmentation has been addressed

in prior work (Borenstein et al, 2004; Levin and Weiss,

2006). Both methods combine bottom-up segmentation

with top-down matching, using templates of object parts

as a way to match shape. An explicit reasoning about

figure/ground organization has been proposed by Ren

et al (2005) who use shapemes for local shape match-

ing. Although these approaches have segmentation and

boundary priors they employ only local shape descrip-

tors.

6 Experiments

In this section we evaluate both the chordiogram on

its own as well as BoSS on several established bench-

marks. The parameter of the model and its implemen-

tation details are described in Sec. 6.1. In Sec. 6.2 we

evaluate the performance of the chordiogram on the

task of recognition of presegmented objects. In Sec. 6.3

we present recognition and segmentation results of our

chordiogram-based method BoSS on two datasets of

real cluttered images.

6.1 Implementation Details

We use the chordiogram on presegmented objects with

parameters bl = 4, br = 8, bn = 8, resulting in a 2048-

dimensional descriptor. The number of bins was se-

lected such that it on the one hand it is a fine and thus

discriminative binning of the chord feature space and

on the other hand the dimensionality of the descriptor

is not too large. When we use the chordiogram in the

BoSS model, we use bl = 3, br = 4, bn = 4, resulting in

a 196-dimensional descriptor. A lower dimensional de-

scriptor is used for computational reasons – in the BoSS

inference in Eq. (36) we introduce a variable for each

chordiogram bin and thus a larger descriptor would re-

sult in harder optmization.

To obtain superpixels we oversegment the image us-

ing NCuts (Cour et al, 2005) with n = 45 segments. The

number of segments was chosen such that the resulting

segmentation covers most of the object boundaries. The

grouping cues used to define the affinity matrix W pixels

are color and intervening contours (Yu and Shi, 2003)

based on Probability of Boundary edge detector (Mar-

tin et al, 2004).

To define the segmentation term (33) in our model

we can use any affinity matrix. We choose to use the
same grouping cues as for segmentation above. For each

pair of superpixels k and m we average the pixel affini-

ties to obtain an affinity matrix over the superpixels:

W superpixels
km = 1

akam

∑
p∈k,q∈m Ŵ

pixels
pq , where ak and

am are the size of the superpixels k and m respectively.

Above, Ŵ pixels is obtained from the top n eigenvectors

E of W pixels: Ŵ pixels = EΛET ≈W pixels, where Λ are

the corresponding eigenvalues. This low-rank approx-

imation represents a smoothed version of the original

matrix and reduces the noise in the original affinities.

Finally, the weights of the term in Eq. (35) were chosen

to be δ = 0.01 and γ = 0.6 on five images from ETHZ

dataset and held constant for all experiments.

For the optimization we use SeDuMi (Sturm, 1999)

which is based on the Primal-Dual Interior Point Method.

To compute the number of variables in the SDP, one can

assume that each superpixel has at most C neighboring

superpixels. Hence we obtain M = Cn boundary vari-

ables. Thus, if we denote by D the dimensionality of

the chordiogram, then the total variable number in the



Shape-based Object Detection via Boundary Structure Segmentation 15

Method Bulleye score

(Mokhtarian et al, 1997) 75.44%
(Latecki and Lakamper, 2000) 76.45%
(Belongie et al, 2002) 76.51%
(Sebastian et al, 2003) 78.16%
(Tu and Yuille, 2004) 80.03%
chordiogram 80.85%
(Ling and Jacobs, 2007) 85.40%
(Mcneill and Vijayakumar, 2006) 86.35%
(Felzenszwalb and Schwartz, 2007) 87.70%

Table 2 Bullseye score of the chordiogram and other shape
matching methods on the MPEG dataset.

relaxed problem is bounded by n2 +C2n2 +D ∈ O(n2).

In our experiments, we have n = 45 and the value of C

is less than 5 which results in less than 200 boundary

segment variables. The empirical running time of the

optimization is around 30 − 45 seconds on a 3.50 GHz

processor. Note that for other applications the number

of needed superpixels n to segment an object might be

larger than 45 which will increase the running time of

the algorithm.

6.2 Chordiogram Evaluation

To evaluate the performance of the chordiogram for the

task of object recognition, we perform experiments on

the MPEG-7 CE-Shape 1 part B dataset (Latecki et al,

2000). This dataset is used for evaluation of shape-

based classification and retrieval. It consists of 1400

binary object masks representing 70 different classes,

each class having 20 examples. The recognition rate re-

ported for this dataset is the Bullseye score: each shape

is matched to all shapes and the percentage of the 20

possible correct matches among the top 40 matches is

recorded; the score is the average percentage over all

shapes.

To compute a distance between two binary object

masks using the chordiogram, we first scale-normalize

the masks. Since the chordiogram is not rotation in-

variant, we rotate each mask br times using br rota-

tions of angle {0, 2π
br
, . . . , (br − 1) 2π

br
} around the object

mask center of mass, compute the chordiogram and nor-

malize it by setting its L1 norm to 1. Thus, we obtain

br descriptors {ch(1)
i , . . . , ch

(br)
i } for the ith object. The

distance between two objects i and j is defined as the

smallest distance in L1 sense among all rotated chor-

diograms:

d(i, j) = min
θi,θj

{
||ch(θi)

i − ch
(θj)
j ||1|θi, θj ∈ {1, . . . , br}

}
The bullseye score of the chordiogram in comparison to

other shape matching approaches is presented in Ta-

ble 2. Using the above setup, we achieve a score of

80.85%. We outperform most of the approaches with

exception of Shape Trees by Felzenszwalb and Schwartz

(2007), Hierarchical Procrustes by Mcneill and Vijayaku-

mar (2006) and Inner Distance Shape Context by Ling

and Jacobs (2007). The main reason is that the lat-

ter methods are based on metrics which are computed

along the shape contour, while our approach uses Eu-

clidean distances to capture shape. As a result these

methods deal better with non-rigid deformations and

articulations than the chordiogram.

However, the use of rigid metrics to capture relation-

ships between contours allows for a parameterization of

the chordiogram in terms of image segmentation and

thus deals with image clutter, as we will see in the next

section. An additional advantage of the chordiogram

is that its distance is simply a L1 norm computation,

while the above approaches require an inference of some

sort.

6.3 BoSS Evaluation

In this section we turn to the evaluation of our complete

model BoSS on two datatsets consisting of real images.

6.3.1 ETHZ Shape Dataset

The ETHZ Shape Dataset (Ferrari et al, 2010) consists

of 255 images of 5 different object classes — Applelogos

(40 images), Bottles (48 images), Mugs (48 images), Gi-

raffes (87 images) and Swans (32 images). The dataset

is designed such a way that the selected object classes

do not have distinctive appearance and the only repre-

sentation, which can be used to detect instances, is the

object shape. As a result, this dataset has been widely

used for evaluation of shape-based detection methods.

Some of the challenges in this dataset are highly clut-

tered images – in the background as well as internal

spurious contours; wide variation of object scale; multi-

ple instances of an object in the same image. However,

the depicted objects are fully included in the images

and are not occluded. Also, the used objects vary in

shape but are not articulated (the giraffe’s legs are not

detected).

We apply the BoSS model using hand-drawn object

outlines as shape models, one model per class. These

models were supplied with the dataset. We use 7 dif-

ferent scales, such that the scale of the model, defined

as the diameter of its bounding box, range from 100 to

300 pixels. We use non-maximum suppression – for ev-

ery two hypotheses, whose bounding boxes overlap by

more than 50%, we retain the one with the higher score

and discard the other one.
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Algorithm Apple logos Bottles Giraffes Mugs Swans Average

2
0
%

o
v
e
r. BoSS† 86.4%/88.6% 96.4%/98.2% 97.8%/97.8% 84.8%/86.4% 93.4%/93.4% 91.2%/93.0%

(Lu et al, 2009)†] 92.5%/92.5% 95.8%/95.8% 86.2%/92.0% 83.3%/92.0% 93.8%/93.8% 90.3%/93.2%
(Fritz and Schiele, 2008)∗ -/89.9% -/76.8% -/90.5% -/82.7% -/84.0% -/84.8%

(Ferrari et al, 2010)† 84.1%/86.4% 90.9%/92.7% 65.6%/70.3% 80.3%/83.4% 90.9%/93.9% 82.4%/85.3%

P
a
sc

a
l

c
ri

t.

BoSS† 86.4%/88.6% 96.4%/96.4% 81.3%/86.8% 72.7%/77.3% 93.9%/93.9% 86.1%/88.6%
BoSS∗rerank 100%/100% 96.3%/97.1% 86.1%/91.7% 90.1%/91.5% 98.8%/100% 94.3%/96.0%
(Maji and Malik, 2009)∗ 95.0%/95.0% 92.9%/96.4% 89.6%/89.6% 93.6%/96.7% 88.2%/88.2% 91.9%/93.2%
(Srinivasan et al, 2010)∗ 95.0%/95.0% 100%/100% 87.2%/89.6% 93.6%/93.6% 100%/100% 95.2%/95.6%
(Gu et al, 2009)∗ 90.6%/- 94.8%/- 79.8%/- 83.2%/- 86.8%/- 87.1%/-

(Ravishankar et al, 2008)†◦ 95.5%/97.7% 90.9%/92.7% 91.2%/93.4% 93.7%/95.3% 93.9%/96.9% 93.0%/95.2%

Table 3 Detection rates at 0.3/0.4 false positives per image, using the 20% overlap and Pascal criteria. († use only hand-
drawn models; ∗ use strongly labeled training data with bounding boxes, while we use hand-drawn models and weakly labeled
data in the reranking, i. e. no bounding boxes; ] considers in the experiments only at most one object per image and does not
detect multiple objects per image; ◦ uses a slightly weaker detection criterion than Pascal.)

(a) detection rate vs false positives per image (fppi)

(b) precision recall curves

Fig. 16 Results on ETHZ Shape dataset. Results using BoSS are shown using 20% overlap as well as after reranking using
the stricter Pascal criterion. Both consistently outperform other approaches, evaluated using the weaker 20% overlap criterion.

Detection results. In order to compute precision,

recall and detection rates, traditionally two detection

criteria were established. According to the 20% overlap

detection criterion we declare a detection if the inter-

section of the hypothesis and ground truth bounding

boxes overlap more than 20% with the each of them. A

stricter criterion is the Pascal criterion which declares

a detection if the intersection of the hypothesis and

groundtruth bounding boxes is at least 50% of their

union.

The results of BoSS under both criteria are pre-

sented and compared to other methods in Table 3 and

Fig. 16. Under the 20% overlap criterion we achieve

state-of-the-art performance of 91.2%/93.0% detection

rate at 0.3/0.4 fppi. Under the stricter Pascal crite-

rion we achieve 86.1%/88.6% detection rate at 0.3/0.4

at fppi without any learning. With learning, which we

call reranking (see below), we achieve state-of-the-art

detection rates of 94.3%/96.0%.

For Applelogos, Swans and Bottles, the results for

both criteria are almost the same, which shows that we

achieve good localization of the objects. For Giraffes

and Mugs results are slightly lower due to imperfect

segmentation (some segments leak into the background

or missed parts) – the detections which are correct un-

der the weaker 20% overlap criterion, are not counted

as correct under the Pascal criterion.

In Fig. 17 we show examples of typical detections

in the datasets described above. Our method is capable

of detecting objects of various scales in highly cluttered

images, even when the object is small and most of the

image contours and segments are not part of the object.

Note that the translation invariance of the chordiogram

allows us to find the object without having to search ex-

haustively for location. Additionally, the segmentation



Shape-based Object Detection via Boundary Structure Segmentation 17

gives us a pixel-level object localization which is much

more precise compared to the bounding-box localiza-

tion used by other methods.

Our approach is robust against local shape varia-

tions as well as global transformations. As shown in

Fig. 18 (a), using a single mug model BoSS obtains de-

tections of objects whose shape deviates from the model

in various ways: aspect ration, global shape, shape of

parts, etc. In addition, it tolerates global transforma-

tions as minor rotations and foreshortening (see Fig. 18

(b)).

The major sources for incorrect detections are acci-

dental alignments with background contours, which we

call hallucinations, and partially incorrect boundaries

(see Fig. 19). The former cause shows the limitation of

shape – one can sometimes find a constellation of con-

tours which resemble the model outline. Some of those

cases can be ruled out by using perceptual grouping

principle. However, in other cases the lack of an ap-

pearance model is limiting.

Reranking. In order to compare with approaches

on the ETHZ Shape Dataset which use supervision, we

use weakly labeled data to rerank the detections ob-

tained from BoSS. We use only the labels of the training

images to train a classifier but not the bounding boxes.

This classifier can be used to rerank new hypotheses

obtained from BoSS.

More precisely, we use half of the dataset as training

and the other half as test (we use 5 random splits). We

use BoSS to mine for positive and negative examples.

The top detection in a training image using a model

which represents the label of that image is considered a
positive example; all other detections are negative ex-

amples. The chordiograms of these examples are used

as features to train one-vs-all SVM (Joachims, 1999) for

each class. During test time, each detection is scored us-

ing the output of the SVM corresponding to the model

used to obtain this detection.

Note that this is a different setup of supervision

which requires less labeling – while we need one hand-

drawn model per class to obtain detections via BoSS,

we do not use the bounding boxes but only the labels of

the training images to score them. We argue that the ef-

fort to obtain a model is constant while segmenting im-

ages by hand is much more time consuming. Although

the hand-drawn models are the driving force for object

detection, the weakly labeled data is used to learn a dis-

criminative chordiogram-based model which takes into

account the shape deformations present in the dataset

and not captured in the hand-drawn model. The major-

ity of the approaches in Table 3, which use learning, use

bounding-boxes as labeling but no hand-drawn models.

(a)

(b)

Fig. 18 Example detection on ETHZ Shape dataset which
show the robustness of the chordiogram and BoSS to shape
variations. For each example, we show on the left side the
selected superpixel boundaries, and on the right the selected
object mask. We use the same model to obtain those detec-
tions. Note. however, that the detected mugs may have differ-
ent aspect ratio, shape of the body (rectangle or cone), and
shape and size of the handle.

(a) Inexact segmentation. (b) Hallucinations.

Fig. 19 Examples of missdetections.

The results are shown in Table 3. The weak supervi-

sion leads to 94.3%/96.0% detection rate under Pascal

criterion, which is an improvement of approx. 5% over

BoSS. It is attributed to the discriminatively learned

weights of the chordiogram’s bins. This corresponds to

discriminatively learning object shape variations and

builds on the power of BoSS to deal with clutter.

Segmentation. In addition to the detection results,

we evaluate the quality of the detected object bound-

aries and object masks. For evaluation of the former we

follow the test settings of Ferrari et al (2010)2. We re-

port recall and precision of the detected boundaries in

correctly detected images in Table 4. We achieve higher

recall at higher precision compared to (Ferrari et al,

2010)3. This is mainly result of the fact that BoSS at-

tempts to recover a closed contour and in this way the

complete object boundary. These statistics show that

2 A detected boundary point is considered a true positive if
it lies within t pixels of a ground truth boundary point, where
t is set to 4% of the diagonal of the ground truth mask. Based
on this definition, one computes recall and precision.
3 It should be noted that we use hand-drawn models while

(Ferrari et al, 2010) uses the models learned from the labeled
data.
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Fig. 17 Example detection on ETZ Shape dataset. For each example, we show on the left side the input image; in the middle
selected superpixel boundaries; and on the right the selected object mask.
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boundary precision/recall pixel error
SM BoSS (Ferrari et al, 2010) SM BoSS

Applelogos 91.9% 97.1% 91.8%/97.5% 91.6%/93.9% 2.0% 1.6%
Bottles 89.4%/91.1% 90.3%/92.5% 83.4%/84.5% 2.8% 2.7%
Giraffes 75.4%/81.3% 76.8%/82.4% 68.5%/77.3% 6.2% 5.9%
Mugs 77.7%/89.1% 86.5%/90.5% 84.4%/77.6% 5.5% 3.6%
Swans 81.0%/86.8% 85.8%/87.6% 77.7%/77.2% 6.7% 4.9%

Table 4 Precision/recall of the detected object boundaries and pixel classification error of the detected object masks for
ETHZ Shape dataset. We present results using only the Shape Matching cost (see Eq. (25)) as well as the full cost – BoSS –
which consists of shape matching as well as perceptual grouping terms (see Eq. (35)).

the combination of shape matching and figure/ground

organization results in precise boundaries (> 87% for

all classes except Giraffes). The slightly lower results for

Giraffes is due to the legs which are not fully captured

in the provided class models. We also provide object

mask evaluation as percentage of the image pixels clas-

sified incorrectly by the detected mask (see Table 4).

For all classes we achieve less than 6% error, and espe-

cially classes with small shape variation such as Bottles

and Applelogos we have precise masks (< 3% error).

To analyze the contribution of the perceptual terms,

we apply BoSS on the ETHZ Shape Dataset without

the perceptual terms (see program SM in Eq. (32)) and

compare the resulting segmentations and object bound-

aries to the one obtained using the full BoSS model. The

results are compared in Table 4. Although SM performs

pretty comparable to the full model, its boundary and

pixel precisions are slightly below the ones obtain via

BoSS – on average SM has 4.6% pixel error, while BoSS

reduces it to 3.7%. Perceptual grouping tends to cor-

rect shape-based segmentation in cases where the shape

match is not very good, but the bottom-up grouping is

based on a strong signal.

6.3.2 INRIA Horses Dataset

The INRIA horses dataset has 340 images, half of which

contain horses and the other half has background ob-

jects. This dataset presents challenges not only in terms

of clutter and scale variation, but also in articulation,

since the horses are in different poses, and partial oc-

clusions.

We use 6 horse models representing different poses

for the INRIA horse dataset (see Fig. 21). In these ex-

periments we used 10 scales such that the scale of the

model, defined as the diameter of its bounding box,

range from 55 to 450 pixels. Similarly to the previous

dataset, we use non-maximum suppression – for every

two hypotheses, whose bounding boxes overlap by more

than 50%, we retain the one with the higher score and

discard the other one.

(a)

Method Det. rate

BoSS 92.4%
(Maji and Malik, 2009) 85.3%
(Ferrari et al, 2008) 80.8%
(Ferrari et al, 2010) 73.8%

(b)

Fig. 20 (a) Detection rate vs false positives per image (fppi)
for our and other approaches on INRIA Horse dataset. (b)
Detection rates at 1 fppi.

Detection results. On INRIA Horses dataset, we

achieve state of the art detection rate of 92.4% at 1.0

fppi (see Fig. 20). Examples of detections of horses in

different poses, scales and in cluttered images are shown

in Fig. 21.

6.3.3 BoSS vs. Multiple Segmentation-Based

Approaches

Most of the applications of segmentation in computer

vision serve as coarsening of the input space. In the

case of general object recognition, one often computes

texture-based descriptors for each segment (Shotton et al,

2009), groups of segments (Malisiewicz and Efros, 2008)

or bag-of word descriptors of segments (Russell et al,

2006). In such approaches, a pre-segmentation is con-

sidered useful if a segment or groups of segments overlap
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models:

Fig. 21 Examples of detections for INRIA horses dataset.
For each image we show the selected superpixel boundaries
on the left and the detected object segmentation on the right.
Bottom right: 6 models used in the experiments.

sufficiently well with the object of interest. Therefore,

using small groups of segments or multiple segmenta-

tions is often enough to capture an object.

In the case of shape-based object detection, it is

important to capture the correct object boundaries in

a segment selection. Therefore, even if the overlap of

a segment or a group of segments with an object of

interest is large, these segments may not capture the

shape of the object at all.

To see the importance of being able to select all pos-

sible groups of segments for real images, we compare the

BoSS model to chordiogram-based detection over seg-

ments computed via multiple segmentations. More pre-

cisely, we use three different segmentations per image

with 10, 20, and 30 segments. For each segmentation,

we compute groups of connected segments of up to 5

segments. This results in 5337 groups of segments per

image on average. We consider each group of segments

as a hypothesis for an object segmentation. To evalu-

ate how likely a hypothesis is an object of a particular

class, we compute the chordiogram distance between

the hypothesis and the object model.

The detection rates for the five classes of the ETHZ

Shape Dataset are presented in Table 5. We can see

that using only groups of segments, the detection rate

drops, the main reason being that a selection of up

to 5 segments is not sufficient to capture all object

boundaries. This is apparently drastic for Applelogos

and Mugs, which are large and occupy most of the im-

age. Of course, one can increase the size of the groups,

however their number groups exponentially with their

size. Therefore, it would become less feasible to com-

pute the chordiogram for all groups of larger sizes.

Applelogos Bottles Giraffes

GoS 38.6%/43.2% 85.5%/87.3% 46.2%/52.8%
BoSS 86.4%/88.6% 96.4%/96.4% 81.3%/86.8%

Mugs Swans average

GoS 50%/50% 78.8%/78.8% 59.1%/62.4%
BoSS 72.7%/77.3% 93.9%/93.9% 86.1%/88.6%

Table 5 Detection rates of Group of Segments (GoS) and
BoSS at 0.3 and 0.4 fppi for the five classes of the ETHZ
Shape Datatset.

6.3.4 Number of Input Superpixels

As justified above, being able to select any possible

combination of segments as a figure segmentation is of

paramount importance when it comes to shape-based

object detection. Using more segments could poten-

tially result in better object segmentation since one

should be able to model finer details of an object shape.

However, having more segments comes at a higher cost

since the optimization problem in Sec. 4.5 will be car-

ried over a larger number of variables.

To evaluate the importance of the number of seg-

ments in the final object segmentation, we run BoSS

with a pre-segmentation on the ETZ Shape Dataset

with 10, 20, 30 and 45 superpixels. For every level of in-

put pre-segmentation, we evaluate the obtained object

segmentation using the ground truth model and scale

for each image. We use the Pascal overlap score. To

better evaluate the quality of the boundaries of the seg-

mentation, we also compute boundary precision/recall,

as used in the evaluation of the segmentation in Sec. 6.3.

The results for those three measures over the whole

dataset for the four setups are summarized in Fig. 22.

We can see that the Pascal overlap scores improve with

increasing number of segments. Moreover, the values

become closer to the median, which indicates that with



Shape-based Object Detection via Boundary Structure Segmentation 21

(a) Pascal overlap error. (b) Boundary precision. (c) Boundary recall.

Fig. 22 We present three different measures for the quality of the segmentation. For each measure, we use all images
from the ETHZ Shape Dataset and pre-segmentations with 10, 20, 30, and 45 segments. We display for each measure and
pre-segmentation, the median in red, the 25% and 75% quantile as blue boxes, and the range of the values as black lines.

increasing number of segments the quality of the seg-

mentation improves for more images. Similar behav-

ior can be observed for boundary precision/recall. The

biggest improvement is in the recall – as we have more

segments, we obtain larger portions of the object bound-

aries better. Also, we can see that there is a clear im-

provement from 10 to 20 and from 20 to 30 segments.

However, the observed improvement beyond 30 segments

is small. This means that using 30 segments for this

dataset is sufficient to capture most of the objects.

Hence, we use 45 segments in the preceding experi-

ments.

7 Conclusion

In this paper we introduced a novel shape descriptor,

called chordiogram, and a shape-based segmentation

and recognition approach, called Boundary Structure

Segmentation (BoSS).

The chordiogram is a global descriptor, which is mo-

tivated by the idea of holism introduced by the Gestalt

school of perception. As such, the descriptor capture

the object shape as a whole. Moreover, the chordiogram

can be parameterized in terms of image segments. As

such it can be related to perceptual grouping principles

in the image, such as consistency in region appearance

and small hallucinations of object boundaries. This al-

lows us to combine the chordiogram with perceptual

grouping in the unified approach (BoSS). We perform

simultaneous shape matching and segmentation and as

a result, enable holistic shape-based object detection in

cluttered scenes.

The approach is analyzed both theoretically and

empirically. We showed that the chordiogram can be

viewed as an approximation of graph matching tech-

niques for shape matching. Furthermore, we showed

very good performance of the descriptor for the task

of shape retrieval. We evaluated BoSS for both ob-

ject recognition and precise object localization on two

datasets of realistic images and achieves state of the art

results on both tasks.
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A Proofs of Theorem 1 and 2

Theorem 1. Consider the chord matching problem (CM)
(see Eq. (20)) with the multilevel chordiogram-based distance
(see Eq. (6)):

min
X

Wmbins ·X subject to X ∈ PCM

The solution of this problem can be characterized as follows:

– The minimum can be analytically computed using the
chordiogram distance:

min
X∈PCM

Wmbins ·X =

B∑
b=−1

αb||chb,1 − chb,2||1

for weights αb = 2b.

– All the minimizers can be described in terms of the chor-
diograms of the individual shapes with the following set:

P∗CM =

{
X ∈ PCM|

∑
(i,j)∈binb(m)

(k,l)∈binb(m)

Xijkl = min{chb,1m , chb,2m }

for all bins m and schemes b

}
(51)

Proof First we will show that the chordiogram matching lower
bounds the problem (CM) for all X ∈ PCM. In a second step,
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we will show that for X∗ ∈ P∗CM the bound turns into an
equality.

Lower bound for (CM). Suppose that X ∈ PCM.
Then, one can show that

B∑
b=−1

αb||chb,1 − chb,2|| (52)

=

B∑
b=−1

αb||
∑
i,j

chb,1
ij −

∑
k,l

chb,2
kl ||1 (def. of chordiogram)

=

B∑
b=−1

αb||
∑
i,j

(
∑
k,l

Xijkl)chb,1
ij −

∑
k,l

(
∑
i,j

Xijkl)chb,2
kl ||1(53)

=

B∑
b=−1

αb||
∑

i,j,k,l

(chb,1
ij − chb,2

kl )Xijkl||1

≤
∑

i,j,k,l

B∑
b=−1

αb||chb,1
ij − chb,2

kl ||1Xijkl (54)

=
∑

i,j,k,l

Wmbins
ij;kl Xijkl (by Eq. (6))

= Wmbins ·X

Line (53) is derived using the correspondence uniqueness,
while line (54) uses the positivity of the variables.

Minimizers for (CM). As a second step, we will show
that for each X∗ ∈ P∗CM the above inequality turns into an
equality.

Consider for a moment a concrete bin m using finest bin-
ning scheme b = −1. We can use the bin indices of the chords
to define a matching between them. More precisely, we put
chords in correspondence if they lie in the same bin. After this
procedure there will remain chords which are not in any cor-
respondence. The correspondence assignment for such chords
is deferred for a coarser binning scheme.

Now we turn to the description of the correspondence
assignment for a particular binning scheme b. For the sake of
brevity we will skip the binning scheme index b. Suppose that
X gives a chord mapping for which dm denotes the number
of chords from shape 1 from bin m mapped to chords from
shape 2 which are also in bin m; am chords from shape 1
from bin m mapped to chords not in bin m; and cm chords
from shape 1 not in bin m mapped to chords from shape 2 in
bin m. From the definition of dm we have

dm =
∑

(i,j)∈bin(m)

(k,l)∈bin(m)

Xijkl (55)

Since ch1
m counts all the chords lying in bin m from shape

1, which can be mapped either to chords in bin m or not in
bin m from the other shape, then ch1

m = am +dm. SImilarly,
ch2

m = dm + cm. Therefore, |ch1
m − ch2

m| = |am − cm|.
Also, since the

∑
ijkl |(ch1

ij)m − (ch2
kl)m|1Xijkl = am +

cm. Thus, we can express the gap in the above inequality
derivation for a single binning scheme as:

Wb ·X − ||ch1 − ch2||1 =
∑
m

(am + cm − |am − cm|)

X is a minimizer for (CM) exactly when the above gap
equals zero, i. e. am + cm − |am − cm| = 0 for all m. This
is equivalent to min{am, cm} = 0, which holds iff dm =
min{ch1

m, ch2
m}. The latter identity together with Eq. (55)

gives the desired characterization.

Now, suppose that dbm = min{ch1,b
m , ch2,b

m } holds for all
binning schemes from the definition of multiple-bin distance
between chords from Eq. (6). This means that all gaps disap-
pear:

Wb ·X − ||chb,1 − chb,2||1 = 0 for all b ∈ {−1, 0, . . . , B}

with B = dlog(∆/δ)e as defined in sec. 3.3. Combining the
above inequalities together with weights αb gives the equality
relationship in the theorem.

Theorem 2. Suppose that X∗cm,orig is a minimizer of
the chord matching problem (see Eq. (20)) using data terms
W orig based on the distance in the original feature space (see
Eq. (4)):

X∗cm,orig ∈ arg min
X

W orig ·X subject to X ∈ PCM

Further, X∗pm,mbins is a minimizer of the point matching

problem (see Eq. (19)) using data terms Wmbins based on the
multilevel chordiogram-based distance (see Eq. (6)):

X∗pm,mbins ∈ arg min
X

Wmbins ·X subject to X ∈ PPM

Then, the following relationship holds:

αW orig ·X∗cm,orig ≤
B∑

b=−1

αb||chb,1 − chb,2||1

≤ Wmbins ·X∗pm,mbins

for a positive constant α.

Proof We show both inequalities separately.
First inequality. The left inequality is result of a direct

application of Lemma 1 from Indyk and Thaper (2003). Note
that the point sets, which are considered in
Indyk and Thaper (2003), correspond to the chords sets in our
setting. Then there is a constant α such that the chordiogram
distance is lower bounded by the weighted bipartite matching
among the chords, where the weights are defined in terms of
the L1 distance in the chord feature space:

α(W orig ·X∗cm,orig) ≤
B∑

b=−1

αb||chb,1 − chb,2||1

Second inequality. From the previous theorem, we have
that the middle term is the minimum of the (CM) problem
with data terms Wmbins. It is known that the minimum of the
(CM) problem interpreted as a bipartite matching is smaller
that the minimum of the (PM) problem interpreted as linear
programming relaxation of the graph matching. This gives us
the second inequality.
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