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Structure from Motion with Known Camera Positions

Abstract
The wide availability of GPS sensors is changing the landscape in the applications of structure from motion
techniques for localization. In this paper, we study the problem of estimating camera orientations from
multiple views, given the positions of the viewpoints in a world coordinate system and a set of point
correspondences across the views. Given three or more views, the above problem has a finite number of
solutions for three or more point correspondences. Given six or more views, the problem has a finite number
of solutions for just two or more points. In the three-view case, we show the necessary and sufficient
conditions for the three essential matrices to be consistent with a set of known baselines. We also introduce a
method to recover the absolute orientations of three views in world coordinates from their essential matrices.
To refine these estimates we perform a least-squares minimization on the group cross product SO(3) × SO(3)
× SO(3). We report experiments on synthetic data and on data from the ICCV2005 Computer Vision
Contest.
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Abstract

The wide availability of GPS sensors is changing the
landscape in the applications of structure from motion tech-
niques for localization. In this paper, we study the prob-
lem of estimating camera orientations from multiple views,
given the positions of the viewpoints in a world coordi-
nate system and a set of point correspondences across the
views. Given three or more views, the above problem has
a finite number of solutions for three or more point corre-
spondences. Given six or more views, the problem has a
finite number of solutions for just two or more points. In
the three-view case, we show the necessary and sufficient
conditions for the three essential matrices to be consistent
with a set of known baselines. We also introduce a method
to recover the absolute orientations of three views in world
coordinates from their essential matrices. To refine these
estimates we perform a least-squares minimization on the
group cross product SO(3)× SO(3)× SO(3). We report ex-
periments on synthetic data and on data from the ICCV2005
Computer Vision Contest.

1. Introduction

Monocular image sequences have been widely used for
localization with respect to a reference frame that usually
coincides with one of the recorded frames. A subsequent
dense matching can yield a 3D model of the scene. The state
of the art is represented among others by the 3D modeling
approaches by Pollefeys [15] and Nistér [13] and the recur-
sive algorithm by Soatto [2]. When the application scenario
is outdoors and we avoid urban canyons, we can equip a
monocular camera with a rigidly attached GPS sensor. The
sensor’s measurement error bounds can constrain the search
for the camera positions in a general structure from motion
scheme, or be incorporated as a prior probability in a multi-
ple frames algorithm.

To increase our understanding of the problem, we de-
cided to study the exact problem when the positions of the

cameras are known with respect to an Earth coordinate sys-
tem and the missing information are the unknown orienta-
tions of the camera coordinate systems with respect to the
GPS coordinate system. In particular, we ask the following
questions: (1) is the problem more constrained than general
structure from motion (if yes, through which constraints and
for which number of frames)? (2) is there a generalization
of the essential parameters and what are the necessary and
sufficient conditions for their decomposability into the un-
known rotations? (3) how can we exploit the fact that the
unknowns are elements of a compact group, the cross prod-
uct SO(3) × . . .× SO(3)?

In this paper we focus on the geometry of the problem
and do not deal with the important issues of matching and
image retrieval, namely, finding the feature tuples with mu-
tual correspondences on which to apply our methods.

There is no particular literature yet for the problem we
address, but the setting is the same as in the recent ICCV
Contest where, given a database of images with associ-
ated GPS positions, the problem was to find the GPS po-
sition of novel input images. There are several browsers on
the Web that relate geographic information with images—
e.g., those by Microsoft Research (wwmx.org), Amazon
(maps.a9.com), and several add-ons to Google Maps (Flick-
rmap and Mappr). We can envision camera systems in the
future that will automatically annotate image headers with
GPS information (see the Ricoh camera model Pro G3).
Most of the literature deals with the retrieval aspect of the
problem [17, 22]. Johansson and Cipolla [6] estimate pose
based on metrically known building facades.

This paper’s main contributions are: (1) a proof that
cyclic epipolar constraints are necessary and sufficient (in
the general case) for a tuple of image points matched across
N views to back-project to a unique point in 3D space; (2)
a proven enumeration of the necessary and sufficient condi-
tions for three essential matrices to be consistent with three
known viewpoints; (3) algorithms that extract initial values
for orientations of three views from their essential matrices
and iterate on SO(3)× SO(3)× SO(3), so as to minimize a
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sum of squared epipolar constraints.
In the second section we present the derivation of the al-

gebraic conditions and the minimal number of frames and
point correspondences necessary to solve the N -view prob-
lem. In the third section we study the decomposability of es-
sential matrix triples. In the fourth section we show how to
recover orientations from essential matrices and in the fifth
section we present the minimization over SO(3)× SO(3)×
SO(3). Finally, we present experiments and conclusions.

2. General Algebraic Constraints

In this section we examine the general algebraic con-
straints imposed on the absolute orientations of N views
by P point correspondences across these views, in order to
determine how many such correspondences are necessary to
solve the absolute orientation recovery problem when view-
ing positions are known. More formally, the problem may
be posed as how to recover Ri ∈ SO(3), i = 1, . . . , N,
the unknown orthonormal matrices describing the N view-
ing orientations on an arbitrarily-chosen global Euclidean
reference system, from the following known quantities:
ti ∈ �3, i = 1, . . . , N, the viewing positions in the same
global reference system; and ui,k ∈ S2, i = 1, . . . , N, k =
1, . . . , P, the unit vectors describing the directions of P un-
known scene points pk ∈ �3 in local Euclidean reference
systems aligned with the N views.

The fundamental relationship between these quantities
is the incidence of each 3D point pk on each viewing ray
defined by a viewing position ti and a direction Riui,k: for
i=1, . . . , N, k=1, . . . , P, ∃! λi,k ∈ � such that

pk = ti + λi,k Riui,k, (1)

where each scalar λi,k that satisfies Eq. (1) is the (Eu-
clidean) depth of point pk in view i. This relationship
can be expressed in a way that does not involve the co-
ordinates of any 3D scene point pk: for k = 1, . . . , P,
∃λi,k ∈ �, i=1, . . . , N, such that for i, j=1, . . . , N,

λi,k Riui,k − λj,k Rjuj,k = bi,j , (2)

where bi,j � tj−ti. The depths λi,k that satisfy Eq. (2) are
unique if, and only if, the viewpoints ti are not all collinear.

Any algebraic constraints among the geometric parame-
ters of multiple views can be derived directly from Eq. (2)
[10]. Moreover, when the baselines bi,j are all known a
priori, Eq. (2) yields 2N−3 independent polynomial con-
straints [16] on the 3N free parameters of matrices Ri.
These two facts lead to the following:

Theorem 1 (Number of Correspondences Necessary)
From the knowledge of N absolute viewing positions and
projections on these views of P scene points that are
in general 3D positions with respect to them, it is only

possible to recover the N views’ absolute orientations if

N ≥ 3, P ≥
⌈

3N

2N−3

⌉
. (3)

Proof. N ≥ 3 views are needed because with two views
the problem is only solvable up to a simultaneous rotation
of both views about the baseline. The number of correspon-
dences needed when N ≥ 3 follows from Lemma 1.

Lemma 1 (Only 2N−3 Independent Constraints) Let
V � {ti, i=1, . . . , N} be any set of N ≥ 3 viewing
positions in �3. For every k such that pk is not coplanar
with any three points in V , Eq. (2) holds if, and only if, the
following constraints are satisfied:

uT
1 E1,2 u2 = 0, (4)

uT
2 E2,i ui = 0, i=3, . . . , N, (5)

uT
i Ei,1 u1 = 0, i=3, . . . , N, (6)

where Ei,j � RT
i b̂i,j Rj is an essential matrix, and v̂

denotes the skew-symmetric matrix associated to v ∈ �3.

Long Quan [16] has proven Lemma 1 by showing that
with points in general position, the ideal [3] of the bilinear
constraints above is equal to the ideal of all trilinear con-
straints. In Appendix A we provide a simpler direct proof
that Eqs. (4)-(6) imply Eq. (2) in the general case.

Corolary 1 (Irrelevance of baseline lengths) Because
Eqs. (4)-(6) hold even if their l.h.s. is scaled by an arbitrary
factor, a direct consequence of Lemma 1 is that only the
orientations of the known baselines provide constraints on
the unknown viewing orientations.

For this reason, we will assume from this point on that all
baselines have unit norm and, accordingly, that all essential
matrices have Frobenius norm equal to

√
2.

3. Stratification of Essential Matrix Triples

It is of course known that the algebraic constraints in
Eqs. (4)-(6) can be used to solve the general structure from
motion problem, i.e., the problem of simultaneously recov-
ering relative viewing positions and orientations from point
correspondences. In particular, five point correspondences
across a pair of views are generally necessary and sufficient
to recover their essential matrix [11]. Straightforward alge-
braic manipulation of such matrix then yields view-to-view
translation (up to a scalar factor) and rotation.

Thus, a fundamental question is: does the knowledge of
viewing positions provide additional constraints on essen-
tial matrices that may be used to recover these matrices with
less point correspondences than in general structure from
motion? In this section we provide an affirmative answer
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to the question above, by enumerating minimal sets of con-
straints that three arbitrary essential matrices have to satisfy
in order to be mutually consistent and in order to be consis-
tent with three known baselines:

Definition 1 (Mutual Consistency of Essential Matrices)
Three distinct essential matrices EA,EB,EC are
mutually consistent if, and only if, ∃ R1,R2,R3 ∈
SO(3),bA,bB,bC ∈ S2 such that

EA =RT
1 b̂AR2, EB =RT

2 b̂BR3, EC =RT
3 b̂CR1 (7)

and that bA,bB,bC are linearly dependent.

Definition 2 (Consistency with Known Baselines)
Three essential matrices EA,EB,EC are consistent
with a given triple of distinct but linearly depen-
dent baselines, b1,2,b2,3,b3,1 ∈ S2 if, and only if,
∃ R1,R2,R3 ∈ SO(3) such that Eq. (7) is satisfied with
bA = b1,2,bB = b2,3,bC = b3,1.

Definitions 1 and 2 induce a stratification of the set of all
triples of essential matrices. A real non-zero 3 × 3 matrix
is an essential matrix if, and only if, it has rank two and
its two non-zero singular values are identical [11]. The set
of matrices that satisfy these constraints and have Frobe-
nius norm equal to

√
2 is five-dimensional. Hence the set of

all essential matrix triples has fifteen degrees of freedom.
We will demonstrate (in Theorem 2, below) that Defini-
tion 1 imposes four independent constraints on such fifteen-
dimensional set and hence the subset of essential matrix
triples that satisfy it is eleven-dimensional. We will also
demonstrate (in Theorem 3, below) that Definition 2 re-
stricts another two degrees of freedom on the set of triples
that are already mutually consistent. Hence, it is satisfied
only by a nine-dimensional set of essential matrix triples,
which agrees with our counting of d.o.f. in Section 2.

Theorem 2 (Mutual Consistency Constraints) Essential
matrices EA,EB,EC satisfy Definition 1 if, and only if,
∃RA,RB,RC ∈ SO(3),vA,vB ,vC ∈ S2 such that

EA =RA v̂A, EB =RB v̂B, EC =RC v̂C , (8)

RA RB RC = I, (9)

vT
A

(
RBvB×RT

AvC

)
= 0. (10)

Proof. If arbitrary essential matrices EA,EB,EC can be
decomposed as in Eq. (7) then they can be decomposed as
in Eq. (8) with

RA =RT
1 R2, RB =RT

2 R3, RC =RT
3 R1, (11)

vA =RT
2 bA, vB =RT

3 bB, vC =RT
1 bC . (12)

By substituting Eqs. (11)-(12) on the l.h.s. of Eqs. (9)-(10),
it is straightforward to verify that if Definition 1 is satisfied,
so are Eqs. (8)-(10).

Conversely, if Eqs. (8)-(9) hold then ∃ R1,R2,R3 ∈
SO(3) such that RA,RB,RC can decomposed as in
Eq. (11). For every such R1,R2,R3, ∃ bA,bB,bC ∈ S2

that satisfy Eq. (12). Substituting Eqs. (11)-(12) into Eq. (8)
yields Eq. (7). Substituting Eqs. (11)-(12) into Eq. (10)
yields the fact that bA,bB,bC are linearly dependent. �

Since any three essential matrices can be decomposed
as in Eq. (8), what Theorem 2 means is that in order for a
triple of essential matrices to be mutually consistent, it is
necessary and sufficient that they satisfy four independent
constraints: the three constraints in Eq. (9) and the single
constraint in Eq. (10). Thus, the set of all mutually consis-
tent essential matrix triples is indeed eleven-dimensional.

Theorem 3 (Known Baseline Constraints) Let
EA,EB,EC be any mutually consistent triple of
essential matrices with Frobenius norms

√
2. Let

b1,2,b2,3,b3,1 ∈ S2 be any triple of distinct but linearly
dependent baselines. If EA,EB,EC are consistent with
b1,2,b2,3,b3,1 (according to Definition 2) then the first two
singular values of the product matrix PABC � EAEBEC

are |cos(b1,2,b2,3)| and |cos(b2,3,b3,1)|. Moreover, if
b1,2,b2,3,b3,1 are edges of an acute or right triangle, this
constraint on PABC is also sufficient to guarantee that
Definition 2 is satisfied. If b1,2,b2,3,b3,1 are edges of
an obtuse triangle then the additional constraint that the
cosine between the left and right null-spaces of PABC must
be equal in absolute value to |cos(b3,1,b1,2)| is needed
to guarantee consistency of EA,EB,EC with respect to
b1,2,b2,3,b3,1.

Proof. Since exchanging the signs of the baselines does
not affect Eqs. (4)-(6) we assume without loss of generality
that b3,1 is obtained by scaling b1,2 and b2,3 with negative
factors and adding the results.

Now, because essential matrices EA,EB,EC satisfy
Definition 1 by hypothesis,

PABC = RT
1 SABC R1, where : (13)

SABC � b̂A b̂B b̂C , (14)

and bA,bB,bC have unit norm and are linearly dependent.
These properties of bA,bB,bC imply that

SABC = US Σ VT
S , where : (15)

Σ � diagonal
(
bT

AbB, bT
BbC , 0

)
, (16)

US � [wAC bA×wAC bA] , (17)

VS � [bC×wAC −wAC bC ] , (18)

wAC � (bA×bC) / ‖bA×bC‖. (19)

We omit the tedious algebraic manipulations involved in the
derivation of the decomposition above — its validity can be
checked with symbolic linear algebra software.
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Note that when the elements in the diagonal of Σ are
all distinct, the decomposition in Eq. (15) is the singular
value decomposition of SABC , up to permutation of the two
non-null singular values (with corresponding permutations
of the columns of both US and VS) and to any sign inver-
sions of the singular values (with corresponding sign inver-
sions on the columns of either US or VS). In the case where
any two singular values of SABC are identical, its singular
value decomposition is ambiguous, but nonetheless some of
the infinite forms in which it may be written are equivalent
to Eq. (15), up to the transformations mentioned above.

Eq. (13) means that matrices PABC and SABC are or-
thogonally similar, which implies that they have the same
singular values. Hence, ∃UP ,VP ∈ SO(3) such that

PABC = UP Σ VT
P . (20)

This shows that the condition that the two first singular val-
ues of PABC must be |cos(b1,2,b2,3)|, |cos(b2,3,b3,1)| is
necessary for Definition 2 to be satisfied.

To see that the same condition is also sufficient for con-
sistency with known baselines that correspond to acute or
right triangles, remember that EA,EB,EC satisfy Defi-
nition 1 by hypothesis. Let bA,bB,bC ∈ S2 be any
three unit vectors that satisfy Eq. (7). If the condition
on the singular values of PABC is satisfied, Eq. (13) and
Eqs. (15)-(20) imply that |cos(bA,bB)|= |cos(b1,2,b2,3)|,
and |cos(bB,bC)| = |cos(b2,3,b3,1)|. Now, knowledge
of two absolute cosine values for any acute or right trian-
gle uniquely defines the triangle’s geometry up to a rigid
transformation and a uniform scaling factor. Hence, ∃R ∈
SO(3) such that

[bA bB bC ] = R [b1,2 b2,3 b3,1] . (21)

Substituting Eq. (21) back into Eq. (7) yields

EA =R̃T
1 b̂1,2R̃2, EB =R̃T

2 b̂2,3R̃3, EC =R̃T
3 b̂3,1R̃1, (22)

R̃1 � RT R1, R̃2 � RT R2, R̃3 � RT R3, (23)

which implies that Definition 2 is satisfied.
For baselines that correspond to an obtuse triangle, how-

ever, the knowledge of two absolute cosines leaves an ad-
ditional two-way ambiguity in the triangle’s geometry: it
is in general impossible to determine if the obtuse angle is
the one that has the larger known absolute cosine or the one
whose absolute cosine is unknown (if the two known abso-
lute cosines are identical, then the obtuse angle is necessar-
ily the one with unknown absolute cosine). In this case, an
additional constraint must be satisfied by matrices UP and
VP in order to guarantee that Definition 2 holds.

To obtain such constraint, we substitute Eq. (15) and
Eq. (20) into Eq. (13), which yields

UP Σ VT
P = RT

1 US Σ VT
S R1. (24)

A necessary and sufficient condition in order to ∃ R1 ∈
SO(3) such that Eq. (24) holds is that

VT
P UP = VT

S US . (25)

Substituting Eqs. (17)-(19) on Eq. (25) and simplifying the
resulting expression, we get

VT
P UP =

⎡
⎣ 0 cos(bC ,bA) sin(bC ,bA)
−1 0 0

0 − sin(bC ,bA) cos(bC ,bA)

⎤
⎦. (26)

Eq. (26) shows that given the knowledge of Σ, matrices
UP and VP do indeed contain very little extra informa-
tion about consistency with respect to known baselines.
Nonetheless, Eq. (26) implies that when the baselines
correspond to an obtuse triangle, the extra constraint that
the cosine between the left and right null spaces of PABC

must be equal in absolute value to |cos(b3,1,b1,2)| is
exactly what is needed to eliminate the two-way ambiguity
in the triangle’s geometry. �

Since the two constraints on the singular values of PABC

guarantee consistency with respect to known baselines up to
a finite ambiguity in the worst case, the set of essential ma-
trix triples that are consistent with respect to any particular
triple of know baselines is indeed nine-dimensional.

4. Linear Recovery of Orientations

Importantly, the proof that we presented for Theorem 3
is constructive, in the sense that the decomposition defined
in Eqs. (13)-(19) can be used to recover the absolute ori-
entations of three views from their essential matrices and a
set of three known baselines, even if each one of these three
essential matrices is estimated independently, from corre-
spondences across only one of the three pairs of views.

More specifically, to compute viewing orientations from
any triple of independently-estimated essential matrices
EA,EB,EC and from known baselines b1,2,b2,3,b3,1, we
start by: (1) enforcing the constraints in Eqs. (9)-(10), (2)
computing matrices UP and VP through a singular value
decomposition of the product matrix EAEBEC , and (3)
computing matrices US and VS according to the expres-
sions in Eqs. (17)-(19). Then, we perform the (possible)
permutation and the sign-flips needed in the columns of UP

and VP , in order for Eq. (25) to be satisfied.
After this is done, Eq. (24) must also be satisfied, from

which we get the following six constraints on R1:

[US VS ]
T
R1 = [UP VP ]

T
. (27)

We compute the orthonormal R1 that minimizes the least-
squares residuals between the l.h.s. and the r.h.s. of Eq. (27)
by: (1) performing a singular value decomposition of the
3 × 3 matrix [US VS ] [UP VP ]T , (2) replacing the com-
puted matrix of singular values with the identity matrix, (3)
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multiplying the computed left and right matrices of singular
vectors to obtain R1.

By applying analogous sequences of steps to the product
matrices EBECEA and ECEAEB we recover the orienta-
tions R2 and R3, respectively. In practice, when eight or
more correspondence across three views are available, es-
sential matrices can be estimated linearly [5]. Hence, in
such cases the procedure outlined above allows recovery of
viewing orientations with a fixed number of linear steps.

5. Minimization on SO(3) × SO(3) × SO(3)

The method described in Section 4 is sufficient to solve
the absolute viewing orientation problem in the ideal, noise-
free case, from at least five point correspondences across at
least three views. However, under practical conditions in
which image measurements are noisy, direct minimization
of the general algebraic constraints in Eqs. (4)-(6) usually
yields more accurate estimates of viewing orientations —
see Section 6 for some empirical evidence of this. In this
section we address the following optimization problem

find arg min
R1,R2,R3

E �

3∑
i=1

P∑
k=1

(εi,j,k)2, (28)

εi,j,k � uT
i,k RT

i b̂i,j Rj uj,k, j = i mod 3 + 1. (29)

The problem above involves optimization on a nine-
dimensional manifold (SO(3)×SO(3)×SO(3)) that is not
isomorphic to the vector space �9 [19]. Such problems are
often solved by assigning a unique global parameterization
to the manifold and then, from a given initial point on the
manifold, computing successive refinements by taking steps
along the manifold’s tangent planes and then projecting
points on these tangent planes back to the manifold. Here
we adopt a more stable and efficient approach suggested by
Taylor and Kriegman [21]: rather than using a unique global
parameterization, we cover the manifold with a set of local
parameterizations that are individually diffeomorphic to a
minimum-dimensional Euclidean space. Such approach al-
lows optimization to be performed directly on the manifold,
with no need for re-projection. More specifically, we extend
the solution that Taylor and Kriegman proposed for mini-
mization on SO(3) [21] to the nine-dimensional manifold
SO(3)× SO(3)× SO(3).

In order to do so, we parameterize this manifold
in the neighborhood of any fixed point 〈R(0)

1 , R
(0)
2 , R

(0)
3 〉

as the following function of parameter vector Ω �[
ωT

1 ωT
2 ωT

3

]T
, ωi ∈ �3, i=1, . . . , 3 :

Ri = R
(0)
i exp (ω̂i) , i=1, . . . , 3. (30)

where exp(·) is the matrix exponential operator [4]. Such
parameterization is diffeomorphic to�9 within the compact

neighborhood defined by ‖ωi‖ < π, i = 1, . . . , 3. More-
over, the derivatives of the unknown viewing orientations
with respect to any free parameters φ, ϕ in Ω are

∂Ri

∂φ
= R

(0)
i x̂φ,

∂2Ri

∂φ∂ϕ
= R

(0)
i

x̂φ x̂ϕ + x̂ϕ x̂φ

2
, (31)

where xφ is either [1 0 0]
T
, or [0 1 0]

T
, or [0 0 1]

T
, respec-

tively if φ is the first, or second, or third element of ωi.
To optimize the error metric in Eq. (28) we compute

its gradient, g, and its Hessian, H, using the chain rule
and Eq. (31). More specifically, in order to refine a given
set of estimated viewing orientations we use values of Ri,
g and H computed according to Eqs. (30)-(31) within a
standard iterative quadratic optimization algorithm (i.e., an
unconstrained optimization method similar to Levenberg-
Marquardt’s algorithm).

6. Experiments

The methods introduced in Sections 4 and 5 assume that
the centers of projection of all three cameras are known ex-
actly. In such ideal scenario these methods (when com-
bined) should yield more accurate estimates of absolute
viewing orientations than traditional structure from motion,
because they enforce the extra constraints enumerated in
Section 3. In practice, however, GPS measurements are
noisy. The main goal of the experiments presented in this
section is to determine the levels of noise in image and GPS
measurements for which one should use the methodology
proposed in this work.

More specifically, we compare the accuracy and effi-
ciency of four alternatives for finding absolute viewing ori-
entations from multiple point correspondences across three
views and GPS measurements: (1) traditional structure-
from-motion (SfM), represented by the eight-point algo-
rithm [5], (2) SfM followed by the method proposed in
Section 4 to enforce consistency with known baselines lin-
early (SfM-KB-L), (3) SfM-KB-L followed by the method
proposed in Section 5 to enforce consistency with known
baselines non-linearly (SfM-KB-NL), and (4) a RANSAC-
based [12] method (Algorithm 1) that samples the set
of possible viewing orientations of one camera, uses the
matched features in a preemptive way to filter out bad orien-
tation hypotheses, and then applies the non-linear optimiza-
tion described in Section 5 to refine the remaining hypothe-
ses (RANSAC-KB-NL).

We evaluate the methods enumerated above on two
datasets: a synthetic dataset composed of 100 instances in
which features and viewpoints are generated randomly and
then perturbed with controlled amounts of noise, and a real
dataset from the ICCV2005 Computer Vision Contest [20].

Synthetic dataset. For each synthetic scene generated,
viewpoints t1, t2, t3 were independently drawn from uni-
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Algorithm 1 RANSAC-based method to compute absolute
orientations of three views (RANSAC-KB-NL).
Require: knowledge of 3 viewing positions;
Require: P >3 point correspondences across 3 views;

1: for each R1 ∈ uniform-sampling (SO(3)) do
2: choose 3 among P point correspondences;
3: R2,R3 ← roots (4th-degree-polynomials) [14];
4: use other P−3 correspondences preemptively [12] to

discard [R1 R2 R3] hypotheses with little support;
5: end for
6: for 32 hypotheses with smallest Sampson errors do
7: refine [R1 R2 R3] as in Section 5;
8: end for
9: choose [R1 R2 R3] with smallest Sampson error.

form distributions in the following cuboids:

t1 ∈ [0 < x < 15, 0 < y < 5, 0 < z < 1] ,

t2 ∈ [0 < x < 5, 10 < y < 15, 0 < z < 1] ,

t3 ∈ [10 < x < 15, 10 < y < 15, 0 < z < 1] ,

and P = 30 features were independently drawn from a uni-
form distribution in the following cuboid:

pk ∈ [0 < x < 15, 30 < y < 45, 0 < z < 10] ,

k =1, . . . , P. For each given value of experimental param-
eter α (synthetic feature noise), the direction of each fea-
ture in each view was then perturbed by a α-degree rotation
about an axis independently drawn from a uniform distribu-
tion on S2. Moreover, for each given value of experimental
parameter δ (synthetic viewpoint uncertainty), the values of
t1, t2, t3 fed as input to the methods that require knowledge
of viewing positions were perturbed by translations inde-
pendently drawn from a uniform distribution on the square
[−δ/2 < x < δ/2, −δ/2 < y < δ/2, z = 0].

Figure 1 shows the distribution of the errors in the ori-
entations1 estimated by each of the four techniques in study
for different values of the synthetic feature noise (α) and
zero synthetic viewpoint uncertainty.

In such ideal scenario the median error of SfM-KB-NL
is significantly smaller than that of traditional SfM (as ex-
pected). However, in a few instances the non-linear opti-
mization diverges, which results in SfM-KB-NL errors of
more than ten degrees. RANSAC-KB-NL, on the other
hand, does not suffer from this shortcoming, while still
yielding a median accuracy similar to that of SfM-KB-
NL. The trade-off is that RANSAC-KB-NL is significantly
slower than the other alternatives. Average execution times

1We define the error of each estimated triple of orientations as the max-
imum among the angles (in degrees) of the three rotations that must be
applied to transform each estimated orientation into the corresponding ac-
tual orientation. To compute this metric for SfM results, which are only
relative (not absolute) orientations, we express actual orientations in the
coordinate system of one of the three input views.
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Figure 1. Histograms of errors in orientations1 estimated by apply-
ing SfM, SfM-KB-L, SfM-KB-NL and RANSAC-KB-NL to 100
synthetic scenes, with δ = 0. Each bar (except those with the label
“>10”) is the percentage of errors within a 0.25◦ interval.

per scene on a Pentium4 3.4GHz 1GB RAM running Mat-
lab 7.0 over Windows XP were: SfM, 0.02s; SfM-KB-L,
0.02s; SfM-KB-NL, 1s; RANSAC-KB-NL, 110s.

More realistic scenarios are those in which there is un-
certainty in the coordinates of the cameras’ centers of pro-
jection. Figures 2 and 3 show the error distributions pro-
duced by the three techniques that require knowledge of
viewing positions, when there is viewpoint uncertainty.
Each one of these figures corresponds to a different value of
α. They should thus be compared against the graphs with
corresponding α values in the top row of Figure 1.

Through such comparison, it becomes clear that for any
given level of noise in image features, there is a level of un-
certainty in GPS measurements for which the accuracy of
the methods proposed in this paper is roughly equivalent to
that of traditional SfM. For instance, by comparing the last
row of Figure 2 against the middle graph in the top row of
Figure 1, we verify that with feature noise α = 0.1◦ this
“break even” point between RANSAC-KB-NL and tradi-
tional SfM is somewhere near δ = 0.25. For levels of GPS
uncertainty lower than that, RANSAC-KB-NL will gener-
ally yield more accurate results than traditional SfM.

Real dataset. In order to provide some evidence that the
methods based on prior knowledge about viewing positions
are useful in challenging real-life scenarios, we applied the
most accurate of them (RANSAC-KB-NL) to a triple of im-
ages from the final dataset of the ICCV2005 Computer Vi-
sion Contest [20]. To do so, we manually selected and es-
tablished correspondences among P = 37 features that are
visible across these three images, as shown in Figure 4.
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Figure 2. Histograms of errors in orientations1 estimated by apply-
ing SfM, SfM-KB-L, SfM-KB-NL and RANSAC-KB-NL to 100
synthetic scenes, with α = 0.1

◦.
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Figure 3. Histograms of errors in orientations1 estimated by apply-
ing SfM, SfM-KB-L, SfM-KB-NL and RANSAC-KB-NL to 100
synthetic scenes, with α = 0.2

◦.

Each of these three input images has 1200 × 1600 pix-
els. Their internal calibration matrices were calculated as-
suming a 49◦ horizontal field-of-view, which yields a fo-
cal length of about 1700 pixels. Viewing positions ob-
tained from GPS measurements imply the following base-
line lengths: ‖b1,2‖ = 8.5m, ‖b2,3‖ = 8.3m, ‖b3,1‖ =
0.26m, with an uncertainty of about 2m per measurement.
Because views 1 and 3 are very close, this is a nearly sin-
gular configuration, i.e. almost a worst-case scenario for
methods based on epipolar constraints.

In order to evaluate the accuracy of the orientations es-
timated with RANSAC-KB-NL, we used them (in conjunc-
tion with GPS measurements and the cameras’ intrinsic ma-
trices) to compute optical rays through the selected fea-
tures, in world coordinates. Then, we recovered a sparse
3D model of the scene by finding the least-squares inter-
sections of each triple of corresponding rays. Finally, we
reprojected all estimated 3D points back to each image and
compared the resulting image coordinates against those of

the manually-selected features.
As shown in Figure 4, none of the Root-Mean-Square

(RMS) reprojection errors generated by RANSAC-KB-NL
on the three input views were larger than 3.2 pixels, which is
less than 0.2% of the focal length. We also used the sparse
3D structure computed with RANSAC-KB-NL to localize
four other views that were part of the Contest’s final dataset
(pictures 0687, 5296, 6673 and 7632), using a pose estima-
tion method [1]. The localization errors obtained for those
four viewpoints were, respectively, 9.3m, 1.1m, 8.5m, 6.0m,
which are all within the range for which positive scores
were attributed in the Contest’s final round [20].

7. Limitations and Future Work

In this paper we provided the algebraic framework to
work with multiple views that are accompanied by GPS
positions. Our next goal is to use the framework above
but include uncertainty in the viewpoint positions using a
bounded error model that can be incorporated with inequal-
ity constraints. To make the system more practicable we
will study the case of varying focal length and correspond-
ing conditions for fundamental matrices to be consistent
with given viewpoints. In both cases of calibrated and un-
calibrated cameras it is very important to be able to identify
degenerate cases and in particular planar scenes that can be
modeled with collineations.

Moreover, we have shown what is the minimum number
of point correspondences needed to recover N viewing ori-
entations when viewing positions are known, but we have
not shown that such minimum sets of correspondences are
sufficient to disambiguate the problem completely. In fact,
due to the polynomial nature of the constraints created by
point correspondences, finite ambiguities almost certainly
do exist in minimal cases. Performing reliable orientation
recovery with very few point correspondences is thus a ma-
jor challenge that we intend to tackle by applying recent
developments in global optimization of general computer
vision problems [7, 8, 18] to the particular problem studied
in this paper.
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A. Proof of Lemma 1

The fact that Eq. (2) implies Eqs. (4)-(6) is well known
[9]. To see that the converse holds, observe that Eq. (4) im-
plies that the vectors v1, b1,2 and v2 are linearly dependent,
where vi � Riui. Moreover, because p is in general posi-
tion with respect to t1 and t2 by hypothesis, v1 and v2 are
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view 1 view 2 view 3

Figure 4. Real dataset from the ICCV2005 Computer Vision Contest [20] and results obtained on this dataset by RANSAC-KB-NL. White
circles represent manually selected features. Yellow crosses represent reprojections of the 3D points reconstructed with RANSAC-KB-NL.
RMS reprojection errors on views 1, 2 and 3 are: 2.9 pixels, 0.39 pixels and 3.2 pixels, respectively.

linearly independent. Hence

∃! λ1, μ2 ∈ � | λ1v1 − μ2v2 = b1,2. (32)

Analogously, Eqs. (5)-(6) imply that

∃! λ2, μi ∈ � | λ2v2 − μivi = b2,i, (33)

∃! λi, μ1 ∈ � | λivi − μ1v1 = bi,1. (34)

Now because t1, t2 and ti are points in the Euclidean space,

b1,2 + b2,i + bi,1 = 0. (35)

By adding Eqs. (32)-(34) and substituting Eq. (35) on the
r.h.s. of the resulting expression, we obtain

(λ1 − μ1)v1 + (λ2 − μ2)v2 + (λi − μi)vi = 0. (36)

Since v1, v2 and vi are linearly independent by hypothe-
sis, Eq. (36) implies that μ1 = λ1, μ2 = λ2, μi = λi.
Substituting this on Eqs. (32)-(34) yields Eq. (2). �
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