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More on the Reliability Function of the BSC

Abstract
An improved upper bound is given for the maximum attainable exponent of the error probability of max-
likelihood decoding on a binary symmetric channel (the reliability function of the channel).
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Abstract - An improved upper bound is given for 
the maximum attainable exponent of the error proba- 
bility of max-likelihood decoding on a binary symmet- 
ric channel (the reliability function of the channel). 

I. INTRODUCTION 

Let C(n,  M = 2Rn) c (0 ,  1)” be a code of rate R used over a 
binary symmetric channel with crossover probability p .  Denote 
by Pe (C, p )  the average error probability of maximum likeli- 
hood decoding of C. The best attainable exponent E(R,p) of 
that probability (optimized over the choice of codes for a given 
channel) is called the reliability function of the channel. The 
best known lower bounds on E(R,p) were derived by Elias and 
Gallager. In particular, for R between the critical rate of the 
channel Rcrit = @/(& + and the channel capacity 
C = 1 - h(p) the function E(R, p) is known exactly (here h(p) 
is the binary entropy function). 

Sequential improvements of the upper bounds on E(R, p )  
for low rates were obtained in [2], [3], [4]. The purpose of this 
paper is to  present a new, tighter upper bound on E(R,p). 

11. THE RESULTS 

We will need the following notation: 

a ( 1 -  a)  - T ( 1 -  T )  

1 + 2J- G(a, T )  = 2 

A(w)  = w log 2 J m .  

The results of (11 and [3] for low rates can be stated as follows 

Recent improvements of error exponents for the BSC and the 
Gaussian channel [4, 5, 61 were obtained based on estimates of 
the distance distribution of an arbitrary code of a given rate R. 
Let Bw, w = 0,1, . . . , n be the average distance distribution 
of the code C. In [4] it is proved that for any family of codes 
of sufficiently large length n and rate R and any CY E [0,1/2] 
there exists a value 0 I w 5 G(cY, T )  such that 

n-llogB,, 2 p(R,a,w) - o(1) (1) 

(the exact expression for p is rather cumbersome and is omit- 
ted). We rely on the bound (1) together with a version of the 
estimation method of [6] to  prove the following result. 

Theorem 1 
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where Fi$ is a certain value of the code rate, depending on p.  
For R 2 R: 

max B ( w , A )  -A(A) (3) 
O < A F E ( R )  A<w56,p(R) 

where 

B ( w ,  A) = -w - (1 - w)h(p)+ 

+ (1 - w - A/2)h (:“;“‘;;) ) 
Remarks 1. The bound (2) simply states that the error 

probability Pe(C,p) for any code C of large length n can- 
not be smaller than the probability of incorrect decoding t o  a 
codeword at a distance n6Lp from the transmitted codeword, 
multiplied by the number of such codewords in a random code. 

2. An improvement of Theorem 1 over the results of [4] is 
in the range of code rates where the bound (2) can be claimed 
to be true. For instance, for p = 0.01 analysis of the results 
in [4] shows that (2) holds for 0 I R I 0.271. Theorem 1 
extends that range to  0 5 R 5 R: M 0.388. 

We can also apply the same estimation technique to  codes 
with the binomial weight distribution: B, = (:)2””-”. This 
question is of interest because almost all codes in the ensemble 
of all linear codes of rate R for large n have have the weight 
distribution a,. The result is as follows: there exists some 
value G*, a function of p ,  such that for R 5 RG* the lower 
bound on the error exponent of such a code coincides with 
the expurgation exponent -A(GGv(R)). This complements the 
result of [7]. 
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