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Deformable Model Based Shape Analysis Stone Tool Application

Abstract

This paper introduces a method to measure the average shape of handaxes, and characterize deviations from
this average shape by taking into account both internal and external information. In the field of Paleolithic
archaeology, standardization and symmetry can be two important concepts. For axially symmetrical shapes
such as handaxes, it is possible to introduce a simple appropriate shape representation. We adapt a
parameterized deformable model based approach to allow flexibility of shape coverage and analyze the
similarity with a few compact parameters. Moreover a hierarchical fitting method ensures stability while
measuring global and local shape features step-by-step. Our model incorporates a physics-based framework so
as to deform due to forces exerted from boundary data sets.
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Abstract

This paper introduces a method to measure the
average shape of handaxes, and characterize
deviations from this average shape by taking into
account both internal and external information.
In the field of Paleolithic archaeology,
standardization and symmetry can be two
important concepts. For axially symmetrical
shapes such as handaxes, it is possible to
introduce a  simple appropriate  shape
representation. We adapt a parameterized
deformable model based approach to allow
flexibility of shape coverage and analyze the
similarity with a few compact parameters.
Moreover a hierarchical fitting method ensures
stability while measuring global and local shape
features step-by-step. Our model incorporates a
physics-based framework so as to deform due to
forces exerted from boundary data sets.

1. Introduction

This paper introduces a method to represent and
measure the average shape of handaxes and
characterizes deviations from this average shape
by taking into account both internal and external
information using inherent properties of stone
tools.

One of the most interesting areas of research
in Paleoanthropology focuses on questions
concerning the evolution of human intelligence
[see papers in 12]. There is an implicit
assumption in archaeology that modern cognitive
abilities are required to produce highly
standardized stone tool assemblages and highly
symmetrical artifacts (e.g. symmetrical both in
plan view and in cross-section).

anowell@uvic.ca
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The exact nature of the relationship between
standardization and symmetry and the evolving
human mind has been questioned [e.g. 5] as there
are a number of factors that influence stone tool
morphology that have little or nothing to do with
differences in cognitive abilities (e.g. the type of
raw material used to make a tool, its specific
function, the reuse/re-sharpening of a tool etc).
Nonetheless, these variables can still be useful
for archaeologist interested in this area of
research [12,15]. Therefore, it may be that as
researchers observe changes in standardization
and symmetry over time that one is also
documenting concomitant changes in hominid '
capabilities over time. For this reason, it is
crucial to be able to quantify these variables in as
accurate a manner as possible.

A number of traditional measurements
manually calculate by experts to quantify
handaxe shape [2]. More recently, computer
based approaches that allow for automatic and
detailed analyses have been proposed [9], and it
is this type of approach that we discuss here.

When studying standardization and symmetry
study, we need to consider both internal and
external information. While medial axis
representation [10] focuses on internal skeletons,
curve representation [17] focuses on external
information. Active shape models [11] represent
the shape as a PDM that has mean shape and set
of linearly independent variation modes. Though
this model can be applied to various cases, it is
often difficult to characterize features and derive
intuitive description. Terzoupolus et al. [13,14]
use a symmetry property to constrain the
deformation of the model. Since their symmetry-
seeking model assumes the symmetry, it cannot
measure the degree of symmetry.

! The term hominid refers to modern humans and their
ancient ancestors. In this paper this would include
Homo erectus and/or Homo sapiens neanderthalensis .
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We employ a deformable model approach that
has been applied in numerous contexts [3,8]
because of its compact shape representation. A
parameterized deformable model employed here
is created to capture various shapes and to
analyze shape similarity using a limited number
of parameters. A hierarchical fitting method
ensures stability while allowing for flexibility of
covered shape ranges .

Our model incorporates a physics-based
framework [4]. Here, the model deforms due to
forces exerted from boundary data points in
order to minimizing overall forces of Lagrangian
dynamics equation of motion. Model parameters
are estimated to minimize overall parameter
forces computed from boundary forces. Before
fitting commences, the axis of symmetry and
secondary axis are computed and used for
guidance of shape estimation. Therefore the
resulting shape parameters are good for axial
symmetric shape analysis. Moreover we classify
test cases according to its shape parameters.

While our deformable model approach can be
applied to various types of retouched and
unretouched stone tools, here we apply this
methodology to Acheulian handaxes from Tabun
Cave, a well dated, highly stratified, Middle-
Upper Paleolithic cave site in Israel(see
discussion in [5]). We then compare our method
of shape analysis to more traditional approaches
of quantifying handaxe morphology.

2. Deformable Handaxe Shape Model

In this section we briefly review our deformable
model geometry and shape parameters that are
suitable for quantifying symmetry and
standardization of handaxe morphology.

2.1. Deformable Model Geometry

We define a shape model s(u) = ¢+ Re(u) Where ¢

and R are the global translation and rotation of
the model, and e(u) is a generalization of the
ellipsoid primitive. One of the simplest shape
descriptors is a change in the length of the global
components along the direction of coordinate
axes. This produces an orthogonal scaling
operation on ellipsoid-like primitive.

e(u) =e(u;sc,al(u),a2(u))

[al(u)cosu ]
= 5¢
a2(u)sinu

where u = (-pi, pi) al, a2>=0; sc is the scaling
parameter for the model and al and a2 are the
axial length parameter functions. The scaling
parameter sc is used for size invariant shape
feature extraction. The function al and a2 are
parameters that are evaluated at positive and
negative directions along axes from its origin.

The shape presented by e deforms depending
on the deformation parameters. While we can
apply many deformation operations, we found
that parameterized tapering is suitable for
capturing the “curvature” and “irregularities” of
the shape. Given the above primitive e,
parameterized tapering is defined along the
model axis y. We define the function t(u) as a
linear function of u as follows:

s(u)=Ti(e;t(u))

[(1 +1(u)a2(u)sin u)al(u)cosuj
= sc (M

a2 (u)sinu

where t(u) = tapering * u/pi.

By putting all the parameters together, the
vector ¢, which refers to the degrees of freedom
of the model with respect to the model
parameters are as follows:

q = (al(u),a2(u), t(u))" 2

Figure 1 shows how the initial deformable
primitive is changed when model parameters
increase and decrease. While a solid line
represents the initial deformable model, a dotted
line represents the model after deformation.

+A —A

_\\\ / \\
) vl
al(u) /.’ N
// /
{ ) Lo
\\\ \

a2(u)

Figure1. Parameter Graph.
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The Jacobian of the shape primitive s can be
computed in a way using a chain rule [4].

2.2 Shape Fitting

By incorporating the geometric definition of the
models into the physics based framework, we
create a dynamic model that deform due to
forces exerted from datasets.

In shape estimation, the governing
Lagrangian equations of motion can be
simplified while preserving useful dynamics. We
accomplish this by setting the mass density to
zero so that the resulting equation yields a model
that has no inertia and comes to rest as soon as
overall forces equilibrate.
q=7, f, =L fdu
where q is the vector of the model parameters
and fqis the associated generalized forces. Then

generalized forces fare computed from the

boundary data forces. The Jacobian matrix L
converts the data forces f into forces that

directly affect the parameters of the model. The
data forces, taken from boundary points of the
handaxe, are computed by distributing force
weights to the closest line element on the model.
The forces are exerted from data points to the
nearest line element of the model.

By doing hierarchical fitting, we cannot only
estimate global and local information but we can
also ensure stable fitting. Furthermore, we can
recover the shape for incomplete datasets
because our parameter estimation is guided by
parent parameters that are estimated at previous
levels.

3. Global and Local Shape Measures

The resulting information can be used to measure
the average of handaxe shape and characterize
the deviations. In order to find the principal axis,
the axis of symmetry, a model translates and
rotates so that the longest bisecting line is the
principal axis and the maximum width line,
orthogonal to the principal axis, is the secondary
axis. Then the model is scaled such that the
maximum distance from the model center to the
perimeter is set to 1.

(0.4986, 0.5897,
0.7191,1.2330
1.7290,0.6615)

(0.5305, 0.5926,
,0.5652,  1.3546,
1.3299, -4.8202)

(a) Handaxes (b) Models (c)Feature vectors
Figure 2. Global Shape Features. Given
handaxes, the models approximate the
shape and represent its features in six
parameters. The feature vectors are (al+,
al-, a2-, a2+, taper at tip, taper at base) and
are explained in equation (2).

A model approximates the shape in a few
numbers of parameters. The shape features of
handaxes are measured with six variables of
axial scaling parameters and tapering parameters.
The axial scaling parameters, al+, al-, a2+ and
a2- are positive/negative directional al(u) and
a2(u) parameters. The tapering at tip and base
represent the curvature of the slope where
tapering parameters range from —5 to 5. Figure 2
shows examples of handaxes, shape models and
shape feature vectors.

While al+,al-,a2+,a2- and tapering at the tip
and base are able to capture global features of
handaxe morphology, the variations of al, a2 and
tapering at child-domain (parameters are

continuously estimated at finite number of

domains) caBture the detailed information.

(a) Image

(b) Model (c)Parameter

Figure 3. Local Shape Features

Proceedings of the 2003 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’03)
1063-6919/03 $ 17.00 © 2003 IEEE

YF]',F.

COMPUTER

SOCIETY



Figure 3 depicts three examples of the
methodology presented here. After measuring
global shape feature vectors, the model estimates
the variations of al and a2 parameters. The
parameter graph shown in (c), draws the
parameter al+ in red and the parameter al- in
cyan. Hence, the difference of two lines visually
represents the degree of symmetry.

Another important measure is the degree of
symmetry in handaxes. In other applications for
the symmetry study, they use the metric based
calculation called SD(Symmetry Distance)[9].
Here, we use the parameter-based calculation
that is a simpler and more intuitive abbreviation.

1 3
symmetry = ;2|p,,1 ~qutPa —f],,zl @

n

Symmetry is calculated using model
parameters at each node p and g. The degree of
symmetry depends on the parametric differences
of matching nodes w.r.t the axis of symmetry.
The al and a2 parametric differences are
summed up and divided by number of nodes, in
our examples n=72. Model nodes are regularly
spaced in u coordinates where — T <=u<7m.
The node p is a mirror node of the node ¢
according to the axis of symmetry. As a result,
the degree of symmetry ranges from 0 to 1 where
the smaller value means more bilateral
symmetric.

4. Experimental Results

In Paleolithic archaeology following the work of
Francois Bordes [2], traditional measurements of
handaxe shape include width at midpoint, width
at 1/3 points, width at 2/3 points, length and
thickness.

While the traditional measurements such as
width and length are defined in [1], we, here, do
experiments how our model parameters can

handaxes’ shape. Our study is conducted using
Acheulian handaxes from Tabun Cave in Israel.

By testing a training set of 158 handaxes we
obtain the following model parameters. Figure 4
shows a series of al parameters on the left and
right sides and series of a2 parameter at top and
bottom halves of the handaxes. Even from a
cursory reading of the results it is obvious that
three is greater left and right direction symmetry
than top and bottom direction symmetry.

[

111

111

' - — —

1 H | i 151
Hund A xes

SR
=i

(a) a1 parameter

®Boton
Ty

.0.

1 H m 1951
Hund Axes

(b) a2 parameter
Figure 4 Model Parameters: Axial scaling
parameters along the x and y-axis where the
y-axis is the axis of symmetry.

We are able to characterize the shape of
handaxes by conducting the statistical analysis of
global feature vectors. The mean values,
standard deviations and ranges of parameters are
shown in Table 1. In order to demonstrate the
effect of each feature, we performed a principal
component analysis of all handaxes. The first

explain  standardization and symmetry of two components with eigenvalues, 3.023 and
MEAN | STD RANGE PRINCIPAL COMPONENTS
al+ 0.696 | 0.104 | 0.434 - 0.943 | -0.016 -0.010 -0.083 -0.731 0.674 -0.056
al- 0.701 | 0.095 | 0.465-0.973 | -0.014 -0.003 -0.040 -0.672 -0.737 -0.031
a2+ 0.768 | 0.188 | 0.247 - 1.152 0.028 0.002 -0.724 0.107 -0.029 -0.680
az- 1.155 | 0.179 | 0.767 - 1.564 -0.031 0.004 0.682 -0.015 0.007 -0.730
t(tip) 0.662 | 0.925 | -1.81 -3.414 0.194 0.981 0.006 -0.014 0.005 0.002
t(base) -0.606 | 1.712 | -5.0 - 3.662 -0.979 0.194 -0.039 0.022 -0.001 0.006

Table 1.Shape Feature Vectors: The mean values, standard deviations and ranges of samples
generally approximate the average shape of handaxes. The six principal components have the
eigenvalues 3.0231, 0.7705, 0.0617, 0.0161, 0.0020 and 0.0005 respectively.
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0.7705, account for 78.0 and 19.8 percentage of
the total variance in observations. In Table 1, we
clearly see that, the first component is a measure
of tapering at base while the secondary
component is related to tapering at tip. The axial
parameters are relatively insignificant.

In terms of our analysis, we then build a
hypothesis that most handaxes are symmetrical
along the axis of symmetry; the descriptive
analysis of al+ and al- parameters is nearly the
same. The mean values of a2+ and a2-
parameters inform us that maximum width point
is located around 2/3(.6803) from top along the
principal axis. Therefore, center of mass is
usually located at the horizontal midpoint and
vertically two-thirds from top.

We, then, focus on axial symmetry analysis by
taking a look at symmetry in equation (3). Figure
5 is the clustered examples of handaxe artifacts
in terms of the degree of symmetry. Figure 6 is
the distribution of symmetry values, of the 158
handaxe artifacts.

.01

.03

.04

.05

.07

.09

A1

Figure 5. The degree of symmetry and
handaxes examples.

Distribution of Symmetry

Frequency —

‘T

Figure 6. Distribution of symmetry values, of
the sampled handaxes. The x-axis is the
degree of symmetry ranging from 0.01 —
0.16 while the y-axis is the frequency.

4. Comparison

It is useful at this point to compare our approach
with that of earlier computer-based attempts to
study handaxe morphology. Specifically, the
approach of Saragusti and her colleagues [9]
quantifies the degree of symmetry in a handaxe
while our method goes a step further by
characterizing handaxe shape in terms of shape
feature vectors. Secondly, in certain handaxes,
the two approaches will produce different results
in terms of the degree of symmetry observable in
the artifact. The reason is usually because our
method measures the symmetry according to the
common reference frame, i.e. the axis of
symmetry is the maximum length while
Saragusti et al approach is looking for the axis of
symmetry that minimizes its measurements.

More traditional methods of studying
handaxes include the approach of Wynn and
Tierson [16]. Their method cannot standardize
the average shape of handaxes because they have
many variables and cannot compactly describe
the shape in a few numbers. Therefore, their
method does not truly describe shape but rather
highlights significant differences between groups
of handaxes across specific variables. This
means that their method is useful for classifying
handaxes into different groups but it cannot be
used to study symmetry or standardization. In
contrast, our method can describe average
handaxe shape (and deviations from this shape)
using only six shape feature vectors and as noted
above it is ideal for quantifying symmetry.

5. Discussion
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Our  deformable  model-based  approach
successfully describes the average shape of
handaxes so as to give compact standardization
and symmetry parameters. Compared to other
methods [9,16] being used by archaeologists, our
method adapts parameter-based calculations for
quantifying the degree of symmetry. One
advantage of the parameter-based method is that
the results are comparable between cases and
therefore inter-assemblage comparisons are
possible. Moreover, our method describes and
analyzes the average shape that can be used for
recovery while other approaches do not [9,16]. In
a future, we are going to extend our method to 3-
D measurements of stone tools.
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