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Graph-Based Weakly-Supervised Methods for Information Extraction &
Integration

Abstract
The variety and complexity of potentially-related data resources available for querying --- webpages, databases,
data warehouses --- has been growing ever more rapidly. There is a growing need to pose integrative queries
across multiple such sources, exploiting foreign keys and other means of interlinking data to merge
information from diverse sources. This has traditionally been the focus of research within Information
Extraction (IE) and Information Integration (II) communities, with IE focusing on converting unstructured
sources into structured sources, and II focusing on providing a unified view of diverse structured data sources.
However, most of the current IE and II methods, which can potentially be applied to the pro blem of
integration across sources, require large amounts of human supervision, often in the form of annotated data.
This need for extensive supervision makes existing methods expensive to deploy and difficult to maintain. In
this thesis, we develop techniques that generalize from limited human input, via weakly-supervised methods
for IE and II. In particular, we argue that graph-based representation of data and learning over such graphs can
result in effective and scalable methods for large-scale Information Extraction and Integration. Within IE, we
focus on the problem of assigning semantic classes to entities. First we develop a context pattern induction
method to extend small initial entity lists of various semantic classes. We also demonstrate that features
derived from such extended entity lists can significantly improve performance of state-of-the-art
discriminative taggers.

The output of pattern-based class-instance extractors is often high-precision and low-recall in nature, which is
inadequate for many real world applications. We use Adsorption, a graph based label propagation algorithm,
to significantly increase recall of an initial high-precision, low-recall pattern-based extractor by combining
evidences from unstructured and structured text corpora. Building on Adsorption, we propose a new label
propagation algorithm, Modified Adsorption (MAD), and demonstrate its effectiveness on various real-world
datasets. Additionally, we also show how class-instance acquisition performance in the graph-based SSL
setting can be improved by incorporating additional semantic constraints available in independently
developed knowledge bases.

Within Information Integration, we develop a novel system, Q, which draws ideas from machine learning and
databases to help a non-expert user construct data-integrating queries based on keywords (across databases)
and interactive feedback on answers. We also present an information need-driven strategy for automatically
incorporating new sources and their information in Q. We also demonstrate that Q's learning strategy is highly
effective in combining the outputs of ``black box'' schema matchers and in re-weighting bad alignments. This
removes the need to develop an expensive mediated schema which has been necessary for most previous
systems.
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ABSTRACT

Graph-Based Weakly-Supervised Methods for Information Extraction & Integration

Partha Pratim Talukdar

Supervisors: Prof. Fernando Pereira, Prof. Zack Ives, and Prof. Mark Liberman

The variety and complexity of potentially-related data resources available for querying —

webpages, databases, data warehouses — has been growing ever more rapidly. There is a

growing need to pose integrative queries across multiple such sources, exploiting foreign

keys and other means of interlinking data to merge information from diverse sources. This

has traditionally been the focus of research within Information Extraction (IE) and Infor-

mation Integration (II) communities, with IE focusing on converting unstructured sources

into structured sources, and II focusing on providing a unified view of diverse structured

data sources. However, most of the current IE and II methods, which can potentially be

applied to the problem of integration across sources, require large amounts of human su-

pervision, often in the form of annotated data. This need for extensive supervision makes

existing methods expensive to deploy and difficult to maintain. In this thesis, we develop

techniques that generalize from limited human input, via weakly-supervised methods for

IE and II. In particular, we argue that graph-based representation of data and learning

over such graphs can result in effective and scalable methods for large-scale Information

Extraction and Integration.

Within IE, we focus on the problem of assigning semantic classes to entities. First we

develop a context pattern induction method to extend small initial entity lists of various

semantic classes. We also demonstrate that features derived from such extended entity lists

can significantly improve performance of state-of-the-art discriminative taggers.

The output of pattern-based class-instance extractors is often high-precision and low-

recall in nature, which is inadequate for many real world applications. We use Adsorption,

a graph based label propagation algorithm, to significantly increase recall of an initial high-

precision, low-recall pattern-based extractor by combining evidences from unstructured
v



and structured text corpora. Building on Adsorption, we propose a new label propagation

algorithm, Modified Adsorption (MAD), and demonstrate its effectiveness on various real-

world datasets. Additionally, we also show how class-instance acquisition performance in

the graph-based SSL setting can be improved by incorporating additional semantic con-

straints available in independently developed knowledge bases.

Within Information Integration, we develop a novel system, Q, which draws ideas from

machine learning and databases to help a non-expert user construct data-integrating queries

based on keywords (across databases) and interactive feedback on answers. We also present

an information need-driven strategy for automatically incorporating new sources and their

information in Q. We also demonstrate that Q’s learning strategy is highly effective in

combining the outputs of “black box” schema matchers and in re-weighting bad align-

ments. This removes the need to develop an expensive mediated schema which has been

necessary for most previous systems.
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Chapter 1

Introduction

The spectacular growth of the Internet and the World Wide Web (WWW) has made an

enormous amount of heterogeneous data – unstructured, semi-structured and structured –

available to the common user1. The variety and complexity of potentially-related data re-

sources available for querying — webpages, databases, data warehouses, virtual integrated

schemas — are growing ever more rapidly. Web search engines have become the virtual

gate-keepers of these data by directing users to the data source which may contain the in-

formation the user is looking for. A user usually represents her information need in a few

keywords which are input to a search engine. The search engine then retrieves a list of web

pages ranked according to relevance of the webpages to the set of input keywords.

Web search engines have been very effective in such keyword based information re-

trieval (IR), which in part has fueled the growth of the web. However, they have certain

limitations. For example, the current ranking granularity of search engines is at the web-

page (single source) level. Hence, they can be effective only when a single source is enough

to answer user’s query.

Unfortunately, this is not sufficient in many real use cases. This is possibly most marked

in the life sciences, where hundreds of large, complex, interlinked, and overlapping data

resources have become available on fields like proteomics, genomics, disease studies, and

1In this thesis, we shall primarily focus on textual data sources.
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Figure 1.1: Heterogeneous sources along with links (e.g., hyperlinks, foreign-keys, cita-
tions, etc.) among them. Cylinders represent structured sources (e.g., relational databases),
while rectangles represent unstructured sources (e.g., research papers). The red dotted
lines connect sources which are needed together to answer a single information need, e.g.,
”find all genes and proteins associated with the disease malaria”, keywords are under-
lined. Traditional IR techniques assume the answer to be self-contained in a single source,
and hence they are inadequate to answer such queries where there is a need to integrate
multiple sources.

pharmacology. Within any of these databases, schemas are often massive: for example,

the Genomics Unified Schema [Kissinger et al., 2002], used by a variety of databases on

parasites, such as CryptoDB and PlasmoDB, has 358 relations, many of which have dozens

of attributes each. Biomedical researchers need to pose integrative queries across multiple

sources, exploiting foreign keys, similar terms, and other means of interlinking data: using

a plethora of sources can reveal previously undiscovered relationships among biological

entities [Boulakia et al., 2007, Mork et al., 2002], and some of these may lead to scientific
3



breakthroughs. One such scenario is shown in Figure 1.1, where a variety of heterogeneous

sources are linked with one another and the user is interested in finding out all the genes

and proteins associated with the disease malaria. If there existed a single source which

was created keeping exactly this information need in mind, then existing IR technology

would have been enough to retrieve that source and answer the query. However, as we see

in Figure 1.1, this is not the case as information regarding genes, proteins and diseases are

spread across multiple sources. Moreover, anticipating future queries and constructing (or

populating) data sources accordingly is neither practical nor efficient. Hence, there is a

growing need to be able to integrate data across sources to answer user’s queries.

The need for ability to query across sources is not limited to the life-sciences. For

example, if one were interested in generating a list of the alma maters of all current

U.S. city mayors, then there exist no easy way within current IR methods to achieve

this goal, without issuing multiple queries and intermediate bookkeeping. In this case,

one will have to first obtain the list of U.S. mayors (e.g., from http://usmayors.

org/climateprotection/list.asp) and then lookup wikipedia pages of individ-

ual mayors (e.g., http://en.wikipedia.org/wiki/Michael_Nutter) which

may contain their alma mater information. It is easy to see that this is a very labor in-

tensive and inefficient process. Even though the necessary information is present and is

spread across multiple sources, there exists no effective, automatic way to integrate them.

Traditionally, research within Information Integration (II) has focused on this problem. In

Section 1.2, we shall look into the current approaches to this problem, their limitations and

our proposed solutions to overcome them.

While some of the currently available data sources for querying are structured, there

are even larger number of unstructured sources (e.g., web pages, blogs, etc.). Currently,

the dominant way to represent such unstructured sources is to treat them as bags-of-words.

While this may be effective in standard keyword-based single source IR, this poses ad-

ditional challenges when there is a need to integrate data across sources, some of which

are unstructured. For example, database schemas provide the necessary semantics to inte-
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grate data across sources; unfortunately, such schemas are not readily available in case of

unstructured sources. For such sources, the information in the data needs to be automati-

cally organized in a structured form, resulting in a schema which in turn can be used for

subsequent integration across sources. Hence, before any form of information integration

can be attempted, there is a need to organize the information contained within unstructured

documents. This has traditionally been the focus of research within Information Extraction

(IE). In Section 1.1, we shall briefly look into the current approaches to IE, their limitations

and our proposed methods to overcome them.

1.1 Information Extraction (IE)

The goal of Information Extraction (IE) is to automatically extract structured information

from unstructured text sources (i.e., convert the rectangles into cylinder in Figure 1.1). For

example, given the sentence,

John is a graduate student at the University of Pennsylvania .

an IE system is expected to return the following pieces of information: ”John” is a

person, ”University of Pennsylvania” is a university and there is a student-of

relationship between ”John” and ”University of Pennsylvania”; where person,

university, and student-of are tags which are pre-determined by the system de-

signer. To achieve this objective, an IE system has to solve two subtasks: (1) Entity Ex-

traction: identifying the strings ”John” and ”University of Pennsylvania” as entities and

assigning semantic classes to them (person and university, respectively); (2) Rela-

tion Extraction: identifying the binary student-of relation and its two arguments. The

task of assigning semantic classes to instances (e.g., assigning class student to ”John”)

can be thought of as extraction of another special binary relation: the IS-A relation. In this

thesis, we shall assume that the entities have already been segmented, and instead primar-

ily focus on assigning classes to pre-segmented entities. The ability to do this on a large
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scale can result in a repository of class-instance2 pairs, which can then be used to bootstrap

other IE tasks (e.g., relation extraction), and can also be used in non-IE tasks (e.g., machine

translation).

Over the last two decades, several methods for IE have been developed, some

of which are based on hand-coded rules, while others are statistical learning

based. A recent survey of these methods is presented in [Sarawagi, 2007]. Super-

vised machine learning techniques achieve state-of-the-art performance on these IE

tasks [Florian et al., 2003], [Sang and De Meulder, 1837], [Bunescu and Mooney, 2005],

[Culotta and Sorensen, 2004]. Such supervised methods assume availability of high-

quality labeled training data, often annotated by human annotators. These annotations need

to be very specific. For example, to train an university extractor, one has to identify

documents containing universities and label specific mentions of universities in the docu-

ments. This labeling process is often quite expensive and time consuming. Instances and

relations of interest are potentially infinite, therefore labeling data for each such entity and

relation type is practically impossible. This requirement for labeled data has turned out to

be a critical bottleneck towards wide development and deployment of IE systems.

To overcome the problems listed above, seed-based bootstrapped extraction of

instances and relations has received considerable interest within the IE community

[Hearst, 1992], [Riloff and Jones, 1999], [Brin, 1999], [Agichtein and Gravano, 2000],

[Thelen and Riloff, 2002], [Etzioni et al., 2005]. These methods start with a few instances

of the class (or relation) of interest and grow that initial set by extracting more instances

of the same class from unlabeled text, often using contextual patterns as the extractor. Fol-

lowing this promising line of work, we present a novel context pattern induction method

for entity extraction in Chapter 2. Another contribution we make is that on top of extending

seed entity lists at high precision, we successfully include membership in these automat-

ically generated lexicons as features in a high quality named entity tagger improving its

performance.

2We use entity and instance interchangeably.
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The output of pattern-based bootstrapped extraction systems tend to be high-precision,

and low-recall in nature. However, for many real-world applications (e.g., Web search)

recall is equally important, and hence applicability of pattern-based methods in such

applications is limited. To address these problems, in Chapter 3, we present a graph-

based method to acquire labeled instances by combining evidence from unstructured

and structured text sources in a single framework. A graph-based label propagation

algorithm, Adsorption [Baluja et al., 2008, Talukdar et al., 2008c], is used to assign se-

mantic classes to instances. Adsorption is a semi-supervised learning (SSL) algorithm

[Zhu, 2005, Chapelle et al., 2006] which reduces dependence on labeled data by exploit-

ing widely available unlabeled data. Using the method presented in Chapter 3, we were

able to significantly increase coverage of an initial high-precision low-recall pattern based

extractor [Van Durme and Paşca, 2008]. WebTables [Cafarella et al., 2008], a collection

of 154 million HTML tables extracted from the web, was used as the (structured) source

of instances. In contrast to most previous approaches involving extractions from a single

source, our proposed graph-based method demonstrated a way to combine information and

extractions originating from multiple sources and methods, resulting in better and expanded

class-instance acquisition overall.

Building on the Adsorption algorithm, we propose a new graph-based label propagation

algorithm, Modified Adsorption (MAD) (Chapter 4), which shares all the desirable proper-

ties of Adsorption, while remaining more effective in practice. Like Adsorption, MAD can

be parallelized which is suitable for our target application setting where there is a pressing

need to efficiently process large volumes of data.

Recently, the problem of (instance, attribute) (e.g., (China, population)) extraction has

started to receive attention [Probst et al., 2007, Pasca and Durme, 2007]. In Chapter 4, we

explore whether additional semantic constraints in the form of (instance, attribute) pairs,

which are obtained from independently developed knowledge bases, can be used to im-

prove class-instance acquisition performance. In particular, we find preferences which

favor two instances sharing attributes to belong to the same class to be very effective. We
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note that such preferences can be easily incorporated into the graph-based method we pro-

pose.

As mentioned previously, in this thesis we have concentrated on developing weakly-

supervised, scalable methods for acquiring class-instance pairs, which can also be thought

of as extraction of instances of a single relation: the IS-A relation. Developing similar

methods for other types of relations is left as future work. In the next section, we review

the issues associated with integrating information across sources, assuming all unstructured

sources have already been converted into structured form.

1.2 Information Integration (II)

Information Integration remains one of the most difficult challenges in information technol-

ogy, largely due to the ambiguities involved in trying to semantically merge different data

sources. In an ideal world, the data needs of science, medicine, and policy would be met by

discovering new data sets and databases the moment they are published, and automatically

conveying their contents to users with related information needs, in the form relevant to

those users. Instead, we live in a world where both discovery and semantic conversion are

for the most part time-consuming, manual processes, causing a great deal of relevant in-

formation to be simply ignored. To address these difficulties, some research communities

have attempted to define a consensus global schema (mediated schema) for their field so

that individual sources can be mapped into a common representation. Researchers in ma-

chine learning, databases, and the semantic web have made significant progress in the last

few years on partially automating these mapping and alignment tasks for given schemas

and ontologies [Rahm and Bernstein, 2001].

However, the global-schema approach is poorly suited to automating the process of

source discovery and integration in a dynamic scientific community. It is difficult to de-

velop a consensus mediated schema that captures the diverse needs of a large user base and

keeps up with new concepts, methods, and types of experimental result.
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Going back to our examples from the life sciences, currently biologists have been re-

stricted to queries embodied in Web forms, typically limited to a single database, that were

created by full-time database maintainers; or they have to become experts in SQL, Web

services, the different schemas, and scripting languages to create their own queries that

span multiple schemas.

A potentially promising approach to authoring queries without using SQL — primar-

ily used within a single database — has been to start with keyword queries and to match

terms in tuples within the data instance’s tables. If multiple keywords are provided and

match on different tables, foreign keys within the database are used to discover “join paths”

through tables, and query results consist of different ways of combining the matched tu-

ples [Bhalotia et al., 2002, Hristidis and Papakonstantinou, 2002]. Path lengths are used as

costs for the joined results. In general, results will be highly heterogeneous and specific to

the keyword matches in the tuples. It is also possible to support approximate, similarity-

based joins [Cohen, 1998] or approximate keyword matches.

Unfortunately, the above work may be insufficient for scientific users, because such

work assumes query-insensitive costs for path length, attribute similarity, and other match-

ing steps, when scientists may need costs specific to the context of the query (i.e., the

setting under which the query is being posed). Preferences for sources may depend

on whether users are posing “what-if” types of exploratory queries or refining previ-

ous answers; they may depend on the specific query domain; or they may depend on

the (perceived or actual) quality of the individual data sources. Recent bioinformatics

work [Boulakia et al., 2007, Mork et al., 2002] shows that there are often many combina-

tions of data sources that can reveal relationships between biological entities, and biologists

need ways of discovering, understanding, and assessing the quality of each of the possible

ways of linking data.

Rather than simply answering queries by matching keywords to tuples and finding as-

sociations, in Chapter 5 we propose a system, Q, for defining and interactively refining

families of queries, based on keywords. The user poses keyword queries that are matched
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against source relations and their attributes; the system uses sequences of associations

(e.g., foreign keys, links, schema mappings, synonyms, and taxonomies) to create multiple

ranked queries linking the matches to keywords; the set of queries is attached to a Web

query form. Now the user and his or her associates may pose specific queries by filling in

parameters in the form. Importantly, the answers to this query are ranked and annotated

with data provenance, and the user provides feedback on the utility of the answers, from

which the system ultimately learns to assign costs to sources and associations according to

the user’s specific information need, as a result changing the ranking of the queries used to

generate results.

In contrast to previous approaches to keyword search over

databases [Bhalotia et al., 2002], [Botev and Shanmugasundaram, 2005],

[Hristidis and Papakonstantinou, 2002], [Kacholia et al., 2005], we seek to learn

how to score results based on user preferences, since associations between scientific

data sources do not necessarily reflect authority, and in any case perceived authority

may vary with user characteristics and needs. This naturally complements a num-

ber of existing bioinformatics query authoring systems that rely on expert-provided

scores [Boulakia et al., 2007, Mork et al., 2002].

Currently, few mechanisms exist for discovering relevant sources as they are first pub-

lished, and for having their data automatically put into use. Even though schema alignment

tools may be used to align a new source to existing sources, such tools rarely scale to large

numbers of schemas and relations, and it can be difficult to determine when they have pro-

duced the right mappings. In order to address these challenges, in Chapter 6, we present

an information need-driven strategy for automatically incorporating new sources and their

information in Q. We also demonstrate that our learning strategy is highly effective in com-

bining the outputs of “black box” schema matchers and in re-weighting bad alignments.
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1.3 Thesis Contributions & Organization

In this document, we support the following thesis:

Graph-based representation of data and learning over such graphs result in effective

and scalable methods for large-scale information extraction and integration.

We have found that graph-based methods allow us to have the following: high perfor-

mance, weak-supervision, and scalability – three crucial ingredients for overcoming the

challenges in large-scale Information Extraction and Integration, as mentioned in previous

sections.

In this thesis, we make the following contributions:

• In Chapter 2, we propose a novel context pattern induction method for entity extrac-

tion. We demonstrate effectiveness of the proposed method by extending seed entity

lists of various types at fairly high precision. We also show how performance of

a state-of-the-art discriminative tagger can be improved by adding features derived

from such extended entity lists.

• In Chapter 3, we use a graph-based semi-supervised label propagation algorithm,

Adsorption, for acquiring open-domain labeled classes and their instances from a

combination of unstructured and structured text sources. This allows extractions

from diverse sources and different methods to be put together in a single framework

and perform joint learning and inference. This acquisition method significantly im-

proves coverage compared to a previous set of labeled classes and instances derived

from free text, while achieving comparable precision.

• Building on Adsorption, in Chapter 4, we present a new label propagation algorithm,

Modified Adsorption (MAD). We compare many label propagation methods on a va-

riety of real-world learning tasks, including class-instance acquisition, and find MAD

to be the most effective. We also show how class-instance acquisition performance

11



in the graph-based SSL setting can be improved by including additional semantic

constraints available in independently constructed knowledge bases.

• In Chapter 5, we focus on Information Integration and present a novel system, Q,

which draws ideas from machine learning and databases to help a non-expert user

construct data-integrating queries based on keywords (across databases) and interac-

tive feedback on answers. We evaluate the effectiveness of Q against gold standard

costs from domain experts and demonstrate the method’s scalability.

• In Chapter 6, we present an information need-driven strategy for automatically in-

corporating new sources and their information in Q. This is particularly important in

today’s environment where new data sources are constantly showing up and there is

a pressing need to make new source’s data available to the user at the earliest. We

have also demonstrated that our learning strategy is highly effective in combining the

outputs of “black box” schema matchers and in re-weighting bad alignments.

Finally, in Chapter 7, we conclude the thesis by outlining again its main contributions

and listing avenues for future work.

12



Chapter 2

Entity Extraction from Unstructured

Text

Some parts of this chapter are based on [Talukdar et al., 2006].

2.1 Introduction

Partial entity lists and massive amounts of unlabeled data are becoming available with the

growth of the Web, as well as the increased availability of specialized corpora and entity

lists. For example, the primary public resource for biomedical research, MEDLINE, con-

tains over 13 million entries and is growing at an accelerating rate. Combined with these

large corpora, the recent availability of entity lists in those domains has opened up interest-

ing opportunities and challenges. Such lists are never complete and suffer from sampling

biases. However, we would like to exploit them, in combination with large unlabeled cor-

pora, to speed up the creation of information extraction systems for different domains and

languages. In this chapter, we concentrate on exploring the utility of such resources for

named entity extraction.

Currently available entity lists contain a small fraction of named entities: there are

13



orders of magnitude more entities present in the unlabeled data1. In this chapter, we test

the following hypotheses:

i. Starting with a few seed entities, it is possible to induce high-precision context pat-

terns by exploiting entity context redundancy.

ii. New entity instances of the same category can be extracted from unlabeled data with

the induced patterns to create high-precision extensions of the seed lists.

iii. Features derived from token membership in the extended lists improve the accuracy

of learned named-entity taggers.

Previous approaches to context pattern induction were described by

[Riloff and Jones, 1999], [Agichtein and Gravano, 2000], [Thelen and Riloff, 2002],

[Lin et al., 2003], and [Etzioni et al., 2005], among others. The main advance in the

present method is the combination of grammatical induction and statistical techniques to

create high-precision patterns.

The chapter is organized as follows. Section 2.2 describes our pattern induction algo-

rithm. Section 2.3 shows how to extend seed sets with entities extracted by the patterns

from unlabeled data. Section 2.4 gives experimental results.

2.2 Context Pattern Induction

The overall method for inducing entity context patterns and extending entity lists is as

follows:

1. Let E = seed set, T = text corpus.

2. Find the contexts C of entities in E in the corpus T (Section 2.2.1).

3. Select trigger words from C (Section 2.2.2).

1For example, based on approximate matching, out of the 2403 unique organization names mentioned in
CoNLL-2003 shared task training data, only 22 are present in the Fortune 500 list.
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4. For each trigger word, induce a pattern automaton (Section 2.2.3).

5. Use induced patterns P to extract more entities E ′ (Section 2.3).

6. Rank P and E ′ (Section 2.3.1).

7. If needed, add high scoring entities in E ′ to E and return to step 2. Otherwise,

terminate with patterns P and extended entity list E ∪ E ′ as results.

2.2.1 Extracting Context

Starting with the seed list, we first find occurrences of seed entities in the unlabeled data.

For each such occurrence, we extract a fixed number W (context window size) of tokens

immediately preceding and immediately following the matched entity. As we are only

interested in modeling the context here, we replace all entity tokens by the single token

-ENT-. This token now represents a slot in which an entity can occur. Examples of

extracted entity contexts are shown in Table 2.1. In the work presented in this chapter,

seeds are entity instances (e.g., Google is a seed for organization category).

increased expression of -ENT- in vad mice
the expression of -ENT- mrna was greater

expression of the -ENT- gene in mouse

Table 2.1: Extracted contexts of known genes with W = 3.

The set of extracted contexts is denoted by C. The next step is to automatically induce

high-precision patterns containing the token -ENT- from such extracted contexts.

2.2.2 Trigger Word Selection

To induce patterns, we need to determine their starting positions. It is reasonable to assume

that some tokens are more specific to particular entity classes than others. For example, in
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the examples shown above, expression can be one such word for gene names. Whenever

one comes across such a token in text, the probability of finding an entity (of the corre-

sponding entity class) in its vicinity is high. We call such starting tokens trigger words.

Trigger words mark the beginning of a pattern. It is important to note that simply selecting

the first token of extracted contexts may not be a good way to select trigger words. In such

a scheme, we would have to vary W to search for useful pattern starts. Instead of that

brute-force technique, we propose an automatic way of selecting trigger words. A good set

of trigger words is very important for the quality of induced patterns. Ideally, we want a

trigger word to satisfy the following:

• It is frequent in the set C of extracted contexts.

• It is specific to entities of interest and thereby to extracted contexts.

We use a term-weighting method to rank candidate trigger words from entity contexts.

IDF (Inverse Document Frequency) was used in our experiments but any other suitable

term-weighting scheme may work comparably. The IDF weight fw for a word w occurring

in a corpus is given by:

fw = log

(
N

nw

)
where N is the total number of documents in the corpus and nw is the total number of

documents containing w. Now, for each context segment c ∈ C, we select a dominating

word dc given by

dc = arg max
w∈c

fw

There is one dominating word for each c ∈ C. All dominating words for contexts in C

form multiset M . Let mw be the multiplicity of the dominating word w in M . We sort M

by decreasing mw and select the top n tokens from this list as potential trigger words.

Selection criteria based on dominating word frequency work better than criteria based

on simple term weight because high term weight words may be rare in the extracted con-
16



texts, but would still be misleadingly selected for pattern induction. This can be avoided

by using instead the frequency of dominating words within contexts, as we did here.

2.2.3 Automata Induction

Rather that using individual contexts directly, we summarize them into automata that con-

tain the most significant regularities of the contexts sharing a given trigger word. This

construction allows us to determine the relative importance of different context features

using a variant of the forward-backward algorithm from HMMs.

2.2.3.1 Initial Induction

For each trigger word, we extract the contexts starting with the word. For example, with

“expression” as the trigger word, the contexts in Table 2.1 are reduced to those in Table 2.2.

Since “expression” is a left-context trigger word, only one token to the right of -ENT- is

retained. Here, the predictive context lies to the left of the slot -ENT- and a single token is

retained on the right to mark the slot’s right boundary. To model predictive right contexts,

the token string can be reversed and the same techniques as here applied on the reversed

string.2

expression of -ENT- in
expression of -ENT- mrna

expression of the -ENT- gene

Table 2.2: Context segments corresponding to trigger word “expression”.

Similar contexts are prepared for each trigger word. The context set for each trigger

word is then summarized by a pattern automaton with transitions that match the trigger

word and also the wildcard -ENT-. We expect such automata to model the position in

2Experiments reported in this chapter use predictive left context only.
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the context of the entity slot and help us extract more entities of the same class with high

precision.

We use a simple form of grammar induction to learn the pattern automata. Grammar

induction techniques have been previously explored for information extraction (IE) and re-

lated tasks. For instance, [Freitag, 1997] used grammatical inference to improve precision

in IE tasks.

Context segments are short and typically do not involve recursive structures. Therefore,

we chose to use 1-reversible automata to represent sets of contexts. An automaton A is k-

reversible iff (1) A is deterministic and (2) Ar is deterministic with k tokens of lookahead,

where Ar is the automaton obtained by reversing the transitions of A. Wrapper induction

using k-reversible grammar is discussed by [Chidlovskii, 2000].

In the 1-reversible automaton induced for each trigger word, all transitions labeled by

a given token go to the same state, which is identified with that token. Figure 2.1 shows

a fragment of a 1-reversible automaton. [Solan et al., 2005] describe a similar automa-

ton construction, but they allow multiple transitions between states to distinguish among

sentences.

Each transition e = (v, w) in a 1-reversible automaton A corresponds to a bigram vw

in the contexts used to create A. We thus assign each transition the probability

P (w|v) =
C(v, w)

Σw′C(v, w′)

where C(v, w) is the number of occurrences of the bigram vw in contexts for W . With this

construction, we ensure words will be credited in proportion to their frequency in contexts.

The automaton may overgenerate, but that potentially helps generalization.

2.2.3.2 Pruning

The initially induced automata need to be pruned to remove transitions with weak evidence

so as to increase match precision.
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Figure 2.1: Fragment of a 1-reversible automaton

The simplest pruning method is to set a count threshold c below which transitions are

removed. However, this is a poor method. Consider state 10 in the automaton of Figure 2.2,

with c = 20. Transitions (10, 11) and (10, 12) will be pruned. C(10, 12)� c but C(10, 11)

just falls short of c. However, from the transition counts, it looks like the sequence “the

-ENT-” is very common. In such a case, it is not desirable to prune (10, 11). Using a local

threshold may lead to overpruning.

We would like instead to keep transitions that are used in relatively many probable

paths through the automaton. The probability of path p is P (p) =
∏

(v,w)∈p P (w|v). Then

the posterior probability of edge (v, w) is

P (v, w) =

∑
(v,w)∈p P (p)∑

p P (p)
,

which can be efficiently computed by the forward-backward algorithm [Rabiner, 1989]. We

can now remove transitions leaving state v whose posterior probability is lower than pv =

k(maxw P (v, w)), where 0 < k ≤ 1 controls the degree of pruning, with higher k forcing

more pruning. All induced and pruned automata are trimmed to remove unreachable states.

2.3 Automata as Extractor

Each automaton induced using the method described in Section 2.2.3 represents high-

precision patterns that start with a given trigger word. By scanning unlabeled data using

these patterns, we can extract text segments which can be substituted for the slot token

-ENT-. For example, assume that the induced pattern is “analyst at -ENT- and” and that
19
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Figure 2.2: Automaton to be pruned at state 10. Transition counts are shown in parenthesis.

the scanned text is “He is an analyst at the University of California and ...”. By scanning

this text using the pattern mentioned above, we can figure out that the text “the University

of California” can substitute for “-ENT-”. This extracted segment is a candidate extracted

entity. We now need to decide whether we should retain all tokens inside a candidate ex-

traction or purge some tokens, such as “the” in the example.

One way to handle this problem is to build a language model of content tokens and

retain only the maximum likelihood token sequence. However, in the current work, the

following heuristic which worked well in practice is used. Each token in the extracted text

segment is labeled either keep (K) or droppable (D). By default, a token is labeled K. A

token is labeled D if it satisfies one of the droppable criteria: whether the token is present

in a common-word list, whether it is non-capitalized, or whether it is a number.

Once tokens in a candidate extraction are labeled using the above heuristic, the longest

token sequence corresponding to the regular expression K[D K]∗K is retained and is consid-

ered a final extraction. If there is only one K token, that token is retained as the final extrac-

tion. In the example above, the tokens are labeled “the/D University/K of/D California/K”,

and the extracted entity will be “University of California”.

To handle run-away extractions, we can set a domain-dependent hard limit on the num-

ber of tokens which can be matched with “-ENT-”. This stems from the intuition that

useful extractions are not very long. For example, it is rare that a person name is longer

than five tokens.
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2.3.1 Ranking Patterns and Entities

Using the method described above, patterns and the entities extracted by them from un-

labeled data are paired. But both patterns and extractions vary in quality, so we need a

method for ranking both. Hence, we need to rank both patterns and entities. This is diffi-

cult given that there we have no negative labeled data. Seed entities are the only positive

instances that are available.

Related previous work tried to address this problem. [Agichtein and Gravano, 2000]

seek to extract relations, so their pattern evaluation strategy considers one of the attributes

of an extracted tuple as a key. They judge the tuple as a positive or a negative match for

the pattern depending on whether there are other extracted values associated with the same

key. Unfortunately, this method is not applicable to entity extraction.

The pattern evaluation mechanism used here is similar in spirit to those of

[Etzioni et al., 2005] and [Lin et al., 2003]. With seeds for multiple classes available, we

consider seed instances of one class as negative instances for the other classes. A pattern

is penalized if it extracts entities which belong to the seed lists of the other classes. Let

pos(p) and neg(p) be respectively the number of distinct positive and negative seeds ex-

tracted by pattern p. In contrast to previous work mentioned above, we do not combine

pos(p) and neg(p) to calculate a single accuracy value. Instead, we discard all patterns

p with positive neg(p) value, as well as patterns whose total positive seed (non distinct)

extraction count is less than certain threshold ηpattern. This scoring is very conservative.

There are several motivations for such a conservative scoring. First, we are more interested

in precision than recall. We believe that with massive corpora, large number of entity in-

stances can be extracted anyway. High accuracy extractions allow us to reliably (without

any human evaluation) use extracted entities in subsequent tasks successfully (see Section

2.4.3). Second, in the absence of sophisticated pattern evaluation schemes (which we are

investigating — Section 2.6), we feel it is best to heavily penalize any pattern that extracts

even a single negative instance.
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Let G be the set of patterns which are retained by the filtering scheme described above.

Also, let I(e, p) be an indicator function which takes value 1 when entity e is extracted by

pattern p and 0 otherwise. The score of e, S(e), is given by

S(e) = Σp∈GI(e, p)

This whole process can be iterated by including extracted entities whose score is greater

than or equal to a certain threshold ηentity to the seed list.

2.4 Experimental Results

For the experiments described below, we used 18 billion tokens (31 million documents)

of news data as the source of unlabeled data. We experimented with 500 and 1000 trigger

words. The results presented were obtained after a single iteration of the Context Pattern

Induction algorithm (Section 2.2).

2.4.1 English LOC, ORG and PER

For this experiment, we used as seed sets subsets of the entity lists provided with CoNLL-

2003 shared task data.3 Only multi-token entries were included in the seed lists of respec-

tive categories (location (LOC), person (PER) & organization (ORG) in this case). This

was done to partially avoid incorrect context extraction. For example, if the seed entity is

“California”, then the same string present in “University of California” can be incorrectly

considered as an instance of LOC. A stoplist was used for dropping tokens from candi-

date extractions, as described in Section 2.3. Examples of top ranking induced patterns

and extracted entities are shown in Table 2.9. Seed list sizes and experimental results are

shown in Table 2.3. The precision numbers shown in Table 2.3 were obtained by manually

evaluating 100 randomly selected instances from each of the extended lists.

3A few locally available entities in each category were also added. These seeds are available upon request
from the authors.
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Category Seed Size Patterns Used Extended Size Precision
LOC 379 29 3001 70%
ORG 1597 276 33369 85%
PER 3616 265 86265 88%

Table 2.3: Results of LOC, ORG & PER entity list extension experiment with ηpattern = 10
set manually.

The overlap4 between the induced ORG list and the Fortune 500 list has 357 organiza-

tion names, which is significantly higher than the seed list overlap of 22 (see Section 4.1).

This shows that we have been able to improve coverage considerably.

2.4.2 Watch Brand Name

A total of 17 watch brand names were used as seeds. In addition to the pattern scoring

scheme of Section 2.3.1, only patterns containing sequence “watch” were finally retained.

Entities extracted with ηentity = 2 are shown in Table 2.5. Extraction precision is 85.7%.

This experiment is interesting for several reasons. First, it shows that the method pre-

sented in this chapter is effective even with small number of seed instances. From this we

conclude that the unambiguous nature of seed instances is much more important than the

size of the seed list. Second, no negative information was used during pattern ranking in

this experiment. This suggests that for relatively unambiguous categories, it is possible to

successfully rank patterns using positive instances only.

2.4.3 Extended Lists as Features in a CRF Tagger

Supervised models normally outperform unsupervised models in extraction tasks. The

downside of supervised learning is expensive training data. On the other hand, mas-

sive amounts of unlabeled data are readily available. The goal of semi-supervised learn-

ing to combine the best of both worlds. Recent research have shown that improve-

4Using same matching criteria as in Section 4.1.
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Corum, Longines, Lorus, Movado,
Accutron, Audemars Piguet, Cartier,
Chopard, Franck Muller, IWC, Jaeger-
LeCoultre, A. Lange & Sohne, Patek
Philippe, Rolex, Ulysse, Nardin, Vacheron
Constantin

Table 2.4: Watch brand name seeds.

Rolex Fossil Swatch
Cartier Tag Heuer Super Bowl
Swiss Chanel SPOT

Movado Tiffany Sekonda
Seiko TechnoMarine Rolexes
Gucci Franck Muller Harry Winston

Patek Philippe Versace Hampton Spirit
Piaget Raymond Weil Girard Perregaux
Omega Guess Frank Mueller
Citizen Croton David Yurman
Armani Audemars Piguet Chopard
DVD DVDs Chinese

Breitling Montres Rolex Armitron
Tourneau CD NFL

Table 2.5: Extended list of watch brand names after single iteration of pattern induction
algorithm.

ments in supervised taggers are possible by including features derived from unlabeled

data [Miller et al., 2004, Liang, 2005, Ando and Zhang, 2005]. Similarly, automatically

generated entity lists can be used as additional features in a supervised tagger.

For this experiment, we started with a conditional random field

(CRF) [Lafferty et al., 2001] tagger with a competitive baseline (Table 2.6). The

baseline tagger was trained5 on the full CoNLL-2003 shared task data. We experimented

with the LOC, ORG and PER lists that were automatically generated in Section 2.4.1.

In Table 2.7, we show the accuracy of the tagger for the entity types for which we had

5Standard orthographic information, such as character n-grams, capitalization, tokens in immediate con-
text, chunk tags, and POS were used as features.
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System F1 (Precision, Recall)
[Florian et al., 2003], best sin-
gle, no list

89.94 (91.37, 88.56)

[Zhang and Johnson, 2003],
no list

90.26 (91.00, 89.53)

CRF baseline, no list 89.52 (90.39, 88.66)

Table 2.6: Baseline comparison on 4 categories (LOC, ORG, PER, MISC) on Test-a
dataset.

Training Data Test-a Test-b
(Tokens) No List Seed List Unsup. List No List Seed List Unsup. List

9268 68.16 70.91 72.82 60.30 63.83 65.56
23385 78.36 79.21 81.36 71.44 72.16 75.32
46816 82.08 80.79 83.84 76.44 75.36 79.64
92921 85.34 83.03 87.18 81.32 78.56 83.05

203621 89.71 84.50 91.01 84.03 78.07 85.70

Table 2.7: CRF tagger F-measure on LOC, ORG, PER extraction.

induced lists. The test conditions are just baseline features with no list membership,

baseline plus seed list membership features, and baseline plus induced list membership

features. For completeness, we also show in Table 2.8 accuracy on the full CoNLL task

(four entity types) without lists, with seed list only, and with the three induced lists. The

seed lists (Section 2.4.1) were prepared from training data itself and hence with increasing

training data size, the model overfitted as it became completely reliant on these seed lists.

From Tables 2.7 & 2.8 we see that incorporation of token membership in the extended

lists as additional membership features led to improvements across categories and at all

sizes of training data. This also shows that the extended lists are of good quality, since the

tagger is able to extract useful evidence from them.

Relatively small sizes of training data pose interesting learning situation and is the

case with practical applications. It is encouraging to observe that the list features lead to

significant improvements in such cases. Also, as can be seen from Table 2.7 & 2.8, these
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Training Data Test-a Test-b
(Tokens) No List Seed List Unsup. List No List Seed List Unsup. List

9229 68.27 70.93 72.26 61.03 64.52 65.60
204657 89.52 84.30 90.48 83.17 77.20 84.52

Table 2.8: CRF tagger F-measure on LOC, ORG, PER and MISC extraction.

lists are effective even with mature taggers trained on large amounts of labeled data.

2.5 Related Work

The method presented in this chapter is similar in many respects to some

of the previous work on context pattern induction [Riloff and Jones, 1999,

Agichtein and Gravano, 2000, Lin et al., 2003, Etzioni et al., 2005], but there are im-

portant differences. [Agichtein and Gravano, 2000] focus on relation extraction while we

are interested in entity extraction. Moreover, [Agichtein and Gravano, 2000] depend on an

entity tagger to initially tag unlabeled data whereas we do not have such requirement. The

pattern learning methods of [Riloff and Jones, 1999] and the generic extraction patterns

of [Etzioni et al., 2005] use language-specific information (for example, chunks). In

contrast, the method presented here is language independent. For instance, the English

pattern induction system presented here was applied on German data without any change.

Also, in the current method, induced automata compactly represent all induced patterns.

The patterns induced by [Riloff and Jones, 1999] extract NPs and that determines the

number of tokens to include in a single extraction. We avoid using such language

dependent chunk information as the patterns in our case include right6 boundary tokens

thus explicitly specifying the slot in which an entity can occur. Bayesian Sets (BS)

[Ghahramani and Heller, 2006] is a recently proposed method for set expansion whose

goals is similar to the method presented in this chapter. BS requires the candidate

6In case of predictive left context.
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Induced LOC Patterns
troops in -ENT-to
Cup qualifier against -ENT-in
southern -ENT-town
war - torn -ENT-.
countries including -ENT-.
Bangladesh and -ENT-,
England in -ENT-in
west of -ENT-and
plane crashed in -ENT-.
Cup qualifier against -ENT-,

Extracted LOC Entities
US
United States
Japan
South Africa
China
Pakistan
France
Mexico
Israel
Pacific

Induced PER Patterns
compatriot -ENT-.
compatriot -ENT-in
Rep. -ENT-,
Actor -ENT-is
Sir -ENT-,
Actor -ENT-,
Tiger Woods , -ENT-and
movie starring -ENT-.
compatriot -ENT-and
movie starring -ENT-and

Extracted PER Entities
Tiger Woods
Andre Agassi
Lleyton Hewitt
Ernie Els
Serena Williams
Andy Roddick
Retief Goosen
Vijay Singh
Jennifer Capriati
Roger Federer

Induced ORG Patterns
analyst at -ENT-.
companies such as -ENT-.
analyst with -ENT-in
series against the -ENT-tonight
Today ’s Schaeffer ’s Option Activity Watch features -ENT-(
Cardinals and -ENT-,
sweep of the -ENT-with
joint venture with -ENT-(
rivals -ENT-Inc.
Friday night ’s game against -ENT-.

Extracted ORG Entities
Boston Red Sox
St. Louis Cardinals
Chicago Cubs
Florida Marlins
Montreal Expos
San Francisco Giants
Red Sox
Cleveland Indians
Chicago White Sox
Atlanta Braves

Table 2.9: Top ranking LOC, PER, ORG induced pattern and extracted entity examples.

entities to be given as input, while the method in this chapter extracts (and subsequently

ranks) such candidate entities from unstructured text. SEAL [Wang and Cohen, 2007] is

another promising method recently proposed for set expansion. While SEAL exploits

semi-structured text, the method in this chapter processes unstructured text.
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Another contribution we make is the fact that on top of extending seed lists at high

precision, we successfully include membership in these automatically generated lexicons

as features in a high quality named entity tagger improving its performance.

2.6 Summary of Chapter

In this chapter, we have presented a novel language-independent context pattern induction

method. Starting with a few seed examples, the method induces in an unsupervised way

context patterns and extends the seed list by extracting more instances of the same category

at fairly high precision from unlabeled data. We were able to improve a CRF-based high

quality named entity tagger by using membership in these automatically generated lists as

additional features.

In the next chapter, we shall see how the coverage of an initial high precision extractor,

such as the one presented in this chapter, can be significantly increased by graph-based

semi-supervised learning methods.
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Chapter 3

Graph-based Acquisition of Labeled

Entities

Some parts of this chapter are based on [Talukdar et al., 2008c].

3.1 Introduction

3.1.1 Motivation

Users of large document collections can readily acquire information about the instances,

classes, and relationships described in the documents. Such relations play an important role

in both natural language understanding and Web search, as illustrated by their prominence

in both Web documents and among the search queries submitted most frequently by Web

users [Jansen et al., 2000]. These observations motivate our work on algorithms to extract

instance-class information from Web documents.

While work on named-entity recognition traditionally focuses on the acquisition and

identification of instances within a small set of coarse-grained classes, the distribution of

instances within query logs indicates that Web search users are interested in a wider range

of more fine-grained classes. Depending on prior knowledge, personal interests and imme-
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diate needs, users submit for example medical queries about the symptoms of leptospirosis

or the treatment of monkeypox, both of which are instances of zoonotic diseases, or the

risks and benefits of surgical procedures such as PRK and angioplasty. Other users may be

more interested in African countries such as Uganda and Angola, or active volcanoes like

Etna and Kilauea. Note that zoonotic diseases, surgical procedures, African countries and

active volcanoes serve as useful class labels that capture the semantics of the associated

sets of class instances. Such interest in a wide variety of specific domains highlights the

utility of constructing large collections of fine-grained classes.

Comprehensive and accurate class-instance information is useful not only in search

but also in a variety of other text processing tasks including co-reference resolu-

tion [McCarthy and Lehnert, 1995].

Pattern-based bootstrapped extractions (Chapter 2) present an interesting approach to

address these large-scale class-instance acquisition challenges. However, there are a few

limitations.

• The output of seed-based bootstrapped extraction systems tend to be high-precision,

and low-recall in nature. This is primarily because of the fact that pattern based

extraction methods tend to estimate extraction confidence using redundancy based

counts. This, along with a high retention threshold (in the face of uncertainty), leaves

very few extractions finally, resulting in lower recall. However, as mentioned above,

for many real-world applications recall is equally important, thereby limiting appli-

cability of pattern-based methods in such applications.

• The optimization carried out by bootstrapped extractors is not very well understood.

For example, it is not clear what (if any) objective function is being optimized

by the methods presented in [Hearst, 1992], [Riloff and Jones, 1999], [Brin, 1999],

[Agichtein and Gravano, 2000], [Thelen and Riloff, 2002], [Etzioni et al., 2005],

[Pantel and Pennacchiotti, 2006] or in Chapter 2.

• Context pattern based extractors are likely to be effective only when such patterns
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can be reliably learned from unstructured text. For entities or relations occurring

in a variety of contexts, learning such context patterns may not be effective. Some

evidence of this is presented in [Bellare et al., 2007].

3.1.2 Contributions

We study the acquisition of open-domain, labeled classes and their instances from

both structured and unstructured textual data sources by combining and ranking in-

dividual extractions in a principled way with the Adsorption label-propagation algo-

rithm [Baluja et al., 2008], reviewed in Section 4.2 below. To the best of our knowledge,

this is one of the first attempts of this kind in the area of minimally-supervised extraction

algorithms.

A collection of labeled classes acquired from text [Van Durme and Paşca, 2008] is ex-

tended in two ways:

1. Class label coverage is increased by identifying additional class labels (such as public

agencies and governmental agencies) for existing instances such as Office of War

Information).

2. The overall instance coverage is increased by extracting additional instances (such

as Addison Wesley and Zebra Books) for existing class labels (book publishers).

The WebTables database constructed by [Cafarella et al., 2008] is used as the source of

additional instances. Evaluations on gold-standard labeled classes and instances from ex-

isting linguistic resources [Fellbaum, 1998] indicate coverage improvements relative to that

of [Van Durme and Paşca, 2008], while retaining similar precision levels.

3.2 First Phase Extractors

To show Adsorption’s ability to uniformly combine extractions from multiple sources

and methods, we apply it to: 1) high-precision open-domain extractions from free Web
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Class Size Examples of Instances
Book Publishers 70 crown publishing, kluwer academic, prentice hall, puffin

Federal Agencies 161 catsa, dhs, dod, ex-im bank, fsis, iema, mema, nipc, nmfs, tdh,
usdot

Mammals 956 armadillo, elephant shrews, long-tailed weasel, river otter, wed-
dell seals, wild goat

NFL Players 180 aikman, deion sanders, fred taylor, jamal lewis, raghib ismail,
troy vincent

Scientific Journals 265 biometrika, european economic review, nature genetics, neuro-
science

Social Issues 210 gender inequality, lack of education, substandard housing, wel-
fare dependency

Writers 5089 bronte sisters, hemingway, kipling, proust, torquato tasso, un-
garetti, yeats

Table 3.1: A sample of the open-domain classes and associated instances from
[Van Durme and Paşca, 2008].

text [Van Durme and Paşca, 2008], and 2) high-recall extractions from WebTables, a large

database of HTML tables mined from the Web [Cafarella et al., 2008]. These two methods

were chosen to be representative of two broad classes of extraction sources: free text and

structured Web documents.

3.2.1 Extraction from Free Text

Van Durme and Paşca [Van Durme and Paşca, 2008] produce an open-domain set of in-

stance clusters C ∈ C that partitions a given set of instances I using distributional simi-

larity [Lin and Pantel, 2002], and labels using is-a patterns [Hearst, 1992]. By filtering the

class labels using distributional similarity, a large number of high-precision labeled clus-

ters are extracted. The algorithm proceeds iteratively: at each step, all clusters are tested

for label coherence and all coherent labels are tested for high cluster specificity. Label L

is coherent if it is shared by at least J% of the instances in cluster C, and it is specific if

the total number of other clusters C ′ ∈ C, C ′ 6= C containing instances with label L is less

than K. When a cluster is found to match these criteria, it is removed from C and added

to an output set. The procedure terminates when no new clusters can be removed from C.
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Table 3.1 shows a few randomly chosen classes and representative instances obtained by

this procedure.

3.2.2 Extraction from Structured Text

To expand the instance sets extracted from free text, we use a table-based extraction

method that mines structured Web data in the form of HTML tables. A significant fraction

of the HTML tables in Web pages are assumed to contain coherent lists of instances suitable

for extraction. Identifying such tables from scratch is hard, but seed instance lists can be

used to identify potentially coherent table columns. In this chapter, we use the WebTables

database of around 154 million tables as our structured data source [Cafarella et al., 2008].

We employ a simple ranking scheme for candidate instances in the WebTables corpus

T . Each table T ∈ T consists of one or more columns. Each column g ∈ T consists of a

set of candidate instances i ∈ g corresponding to row elements. We define the set of unique

seed matches in g relative to semantic class C ∈ C as

MC(g)
def
= {i ∈ I(C) : i ∈ g}

where I(C) denotes the set of instances in seed class C. For each column g, we define its

α-unique class coverage, that is, the set of classes that have at least α unique seeds in g,

Q(g;α)
def
= {C ∈ C : |MC(g)| ≥ α}.

Using M and Q we define a method for scoring columns relative to each class. Intuitively,

such a score should take into account not only the number of matches from class C, but

also the total number of classes that contribute to Q and their relative overlap. Towards this

end, we introduce the scoring function

score(C, g;α)
def
= |MC(g)|︸ ︷︷ ︸

seed matches

·

class coherence︷ ︸︸ ︷
|MC(g)|

|
⋃
C′∈Q(g;α) I(C ′)|

which is the simplest scoring function combining the number of seed matches with the

coherence of the table column. Coherence is a critical notion in WebTables extraction, as
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some tables contain instances across many diverse seed classes, contributing to extraction

noise. The class coherence introduced here also takes into account class overlap; that is, a

column containing many semantically similar classes is penalized less than one containing

diverse classes.1 Finally, an extracted instance i is assigned a score relative to class C equal

to the sum of all its column scores,

score(i, C;α)
def
=

1

ZC

∑
g∈T,T∈T

score(C, g;α)

where ZC is a normalizing constant set to the maximum score of any instance in class C.

This scoring function assigns high rank to instances that occur frequently in columns with

many seed matches and high class specificity. The ranked list of extracted instances is

post-filtered by removing all instances that occur in less than d unique Internet domains.

In this section, we presented a simple (and heuristic) way to assign classes to

instances present in tables. Previously proposed methods such as Bayesian Sets

[Ghahramani and Heller, 2006] may be used as an alternative for this task.

3.3 Graph-Based Extraction using Adsorption

To combine the extractions from both free and structured text, we need a representation ca-

pable of encoding efficiently all the available information. We chose a graph representation

for the following reasons:

• Graphs can represent complicated relationships between classes and instances. For

example, an ambiguous instance such as Michael Jordan could belong to the class

of both Professors and NBA players. Similarly, an instance may belong to multiple

nodes in the hierarchy of classes. For example, Blue Whales could belong to both

classes Vertebrates and Mammals, because Mammals are a subset of Vertebrates.

1Note that this scoring function does not take into account class containment: if all seeds are both wind
Instruments and instruments, then the column should assign higher score to the more specific class.

34



• Extractions from multiple sources, such as Web queries, Web tables, and text patterns

can be represented in a single graph.

• Graphs make explicit the potential paths of information propagation that are implicit

in the more common local heuristics used for weakly-supervised information extrac-

tion. For example, if we know that the instance Bill Clinton belongs to both classes

President and Politician then this should be treated as evidence that the class of Pres-

ident and Politician are related.

Each instance-class pair (i, C) extracted in the first phase (Section 3.2) is represented

as a weighted edge in a graph G = (V,E,W ), where V is the set of nodes, E is the set

of edges and W : E → R+ is the weight function which assigns positive weight to each

edge. In particular, for each (i, C, w) triple from the set of base extractions, i and C are

added to V and (i, C) is added to E, 2 with W (i, C) = w. The weight w represents the

total score of all extractions with that instance and class. Figure 3.1 illustrates a portion of

a sample graph. This simple graph representation could be refined with additional types of

nodes and edges, as we discuss in Section 5.7.

In what follows, all nodes are treated in the same way, regardless of whether they

represent instances or classes. In particular, all nodes can be assigned class labels. For

an instance node, that means that the instance is hypothesized to belong to the class; for a

class node, that means that the node’s class is hypothesized to be semantically similar to

the label’s class (Section 3.5).

We now formulate the task of assigning labels to nodes as graph label propagation. We

are given a set of instances I and a set of classes C represented as nodes in the graph, with

connecting edges as described above. We annotate a few instance nodes with labels drawn

from C. That is, classes are used both as nodes in the graph and as labels for nodes. There

is no necessary alignment between a class node and any of the (class) labels, as the final

labels will be assigned by the Adsorption algorithm.

2In practice, we use two directed edges, from i to C and from C to i, both with weight w.
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Figure 3.1: Section of a graph during various stages of the Adsorption label propagation
algorithm. The initial graph without any labels on nodes is shown in the upper-left corner,
while the final graph with labels estimated for all nodes using Adsorption is shown in
lower-right corner. For better readability, instance nodes are shaded in yellow while class
nodes are shaded in blue.

In order to assign labels to currently unlabeled nodes, the Adsorption label propagation

algorithm [Baluja et al., 2008] is now applied to the given graph. Adsorption is a general
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framework for label propagation, consisting of a few nodes annotated with labels and a

rich graph structure containing the universe of all labeled and unlabeled nodes. Adsorption

proceeds to label all nodes based on the graph structure, ultimately producing a probability

distribution over labels for each node.

More specifically, Adsorption works on a graph G = (V,E,W ) and computes

for each node v a label distribution that represents which labels are more or less ap-

propriate for that node. Several interpretations of Adsorption-type algorithms have

appeared in various fields [Azran, 2007, Zhu et al., 2003, Szummer and Jaakkola, 2002,

Indyk and Matousek, 2004]. Analysis of the Adsorption algorithm along with its various

interpretations are presented in Chapter 4.

Since Adsorption is memoryless, it can scale to large graphs (especially, with limited

number of classes) and can be easily parallelized, as described by [Baluja et al., 2008].

We used a MapReduce [Dean and Ghemawat, 2008] based parallel implementation for the

experiments in this chapter, using the heuristics from [Baluja et al., 2008] to set the random

walk probabilities (see Chapter 4 for details). Adsorption’s time complexity is linear in the

number of classes propagated, which can be a scalability concern when large number of

classes are involved. In practice, this can be speeded up by retaining only top scoring η

classes (if any) per node after each class update on a node. We shall get back to such per-

node class sparsity constraints in Section 4.6.5. For the experiments in this chapter, we set

η = 100, i.e., a node was allowed to attain a maximum of 100 classes.

3.4 Experiments

3.4.1 Data

As mentioned in Section 4.2, one of the benefits of using Adsorption is that we can com-

bine extractions by different methods from diverse sources into a single framework. To

demonstrate this capability, we combine extractions from free-text patterns and from Web
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Seed Class Seed Instances
Book Publishers millbrook press, academic press, springer verlag, chronicle books,

shambhala publications
Federal Agencies dod, nsf, office of war information, tsa, fema

Mammals african wild dog, hyaena, hippopotamus, sperm whale, tiger
NFL Players ike hilliard, isaac bruce, torry holt, jon kitna, jamal lewis

Scientific Journals american journal of roentgenology, pnas, journal of bacteriology, amer-
ican economic review, ibm systems journal

Table 3.2: Classes and seeds used to initialize Adsorption.

tables.

Open-domain (instance, class) pairs were extracted by applying the method described

by [Van Durme and Paşca, 2008] on a corpus of over 100M English web documents. A

total of 924K (instance, class) pairs were extracted, containing 263K unique instances in

9081 classes. We refer to this dataset as A8.

Using A8, an additional 74M unique (instance,class) pairs are extracted from a random

10% of the WebTables data, using the method outlined in Section 3.2.2. For maximum

coverage we set α = 2 and d = 2, resulting in a large, but somewhat noisy collection. We

refer to this data set as WT.

3.4.2 Graph Creation

We applied the graph construction scheme described in Section 4.2 on the A8 and WT data

combined, resulting in a graph with 1.4M nodes and 75M edges. Since extractions in A8

are not scored, weight of all edges originating from A8 were set at 13. This graph is used

in all subsequent experiments.

3A8 extractions are assumed to be high-precision and hence we assign them the highest possible weight.
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3.5 Evaluation

We evaluated the Adsorption algorithm under two experimental settings. First, we evaluate

Adsorption’s extraction precision on (instance, class) pairs obtained by Adsorption but

not present in A8 (Section 3.5.1). This measures whether Adsorption can add to the A8

extractions at fairly high precision. Second, we measured Adsorption’s ability to assign

labels to a fixed set of gold instances drawn from various classes (Section 3.5.2).
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Figure 3.2: Precision at 100 comparisons for five classes in A8 and Adsorption.

3.5.1 Instance Precision

First we manually evaluated precision across five randomly selected classes from A8: Book

Publishers, Federal Agencies, NFL Players, Scientific Journals and Mammals. For each

class, 5 seed instances were chosen manually to initialize Adsorption. These classes and

seeds are shown in Table 3.2. Adsorption was run for each class separately and the resulting

ranked extractions were manually evaluated.

Since the extracted instances in A8 are not ranked, we chose 100 random instances

(per class) from the A8 extractions to compare to the top 100 instances produced by Ad-
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Seed Class Non-Seed Class Labels Discovered by Adsorption
Book Publishers small presses, journal publishers, educational publishers,

academic publishers, commercial publishers
Federal Agencies public agencies, governmental agencies, modulation schemes,

private sources, technical societies
NFL Players sports figures, football greats, football players, backs, quarterbacks

Scientific Journals prestigious journals, peer-reviewed journals, refereed journals,
scholarly journals, academic journals

Mammal Species marine mammal species, whale species, larger mammals,
common animals, sea mammals

Table 3.3: Top class labels ranked by their similarity to a given seed class in Adsorption.

sorption. Each of the resulting 500 instance-class pairs (i, C) was presented to two human

evaluators, who were asked to evaluate whether the relation “i is a C” was correct or incor-

rect. The user was also presented with Web search link to verify the results against actual

documents. Results from these experiments are presented in Figure 3.2 and Table 3.4. The

results in Figure 3.2 show that the A8 extractions have higher precision than Adsorption’s

extractions. This is not surprising since the A8 system is tuned for high precision. When

considering individual evaluation classes, changes in precision scores between A8 and Ad-

sorption vary from a small increase from 87% to 89% for the class Book Publishers, to a

significant decrease from 52% to 34% for the class Federal Agencies, with a decrease of

10% as an average over the 5 evaluation classes.

Class Precision at 100
(non-A8 extractions)

Book Publishers 87.36
Federal Agencies 29.89

NFL Players 94.95
Scientific Journals 90.82
Mammal Species 84.27

Table 3.4: Precision of top 100 Adsorption extractions (for five classes) which were not
present in A8.
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Seed Class Sample of Top Ranked Instances Discovered by Adsorption
Book Publishers small night shade books, house of anansi press, highwater books,

distributed art publishers, copper canyon press
NFL Players tony gonzales, thabiti davis, taylor stubblefield, ron dixon, rodney hannah
Scientific Journals journal of physics, nature structural and molecular biology,

sciences sociales et santé, kidney and blood pressure research,
american journal of physiology–cell physiology

Table 3.5: Random examples of top ranked extractions (for three classes) found by Ad-
sorption which were not present in A8.

Table 3.4 shows the precision of the instances extracted by Adsorption alone, i.e., these

instances were not present in A8 extractions. Such an evaluation is important as one of

the main motivations of the current work is to increase coverage (recall) of existing high-

precision extractors without significantly affecting precision. Results in Table 3.4 show

that Adsorption is indeed able to extraction with high precision (in 4 out of 5 cases) new

instance-class pairs which were not extracted by the original high-precision extraction set

(in this case A8). Examples of a few such pairs are shown in Table 3.5. This is promising

as almost all state-of-the-art extraction methods are high-precision and low-recall. The

proposed method shows a way to overcome that limitation.

As noted in Section 4.2, Adsorption ignores node type and hence the final ranked ex-

traction may also contain classes along with instances. Thus, in addition to finding new

instances for classes, it also finds additional class labels similar to the seed class labels with

which Adsorption was run, at no extra cost. Some of the top ranked class labels extracted

by Adsorption for the corresponding seed class labels are shown in Table 3.3. To the best

of our knowledge, there are no other systems which perform both tasks simultaneously.

3.5.2 Class Label Recall

Next we evaluated each extraction method on its relative ability to assign labels to class

instances. For each test instance, the five most probable class labels are collected using

each method and the Mean Reciprocal Rank (MRR) is computed relative to a gold standard
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MRR MRR # found
Method (full) (found only)

A8 0.16 0.47 2718
WT 0.15 0.21 5747

AD 1 0.26 0.45 4687
AD 5 0.29 0.48 4687

AD 10 0.30 0.51 4687
AD 25 0.32 0.55 4687

Table 3.6: Mean-Reciprocal Rank scores of instance class labels over 38 Wordnet classes
(WN-gold). MRR (full) refers to evaluation across the entire gold instance set. MRR
(found only) computes MRR only on recalled instances.

target set. This target set, WN-gold, consists of the 38 classes in Wordnet containing 100

or more instances.

In order to extract meaningful output from Adsorption, it is provided with a number of

labeled seed instances (1, 5, 10 or 25) from each of the 38 test classes. Regardless of the

actual number of seeds used as input, all 25 seed instances from each class are removed

from the output set from all methods, in order to ensure fair comparison.

The results from this evaluation are summarized in Table 3.6; AD x refers to the ad-

sorption run with x seed instances. Overall, Adsorption exhibits higher MRR than either

of the baseline methods, with MRR increasing as the amount of supervision is increased.

Due to its high coverage, WT assigns labels to a larger number of the instance in WN-

gold than any other method. However, the average rank of the correct class assignment is

lower, resulting is lower MRR scores compared to Adsorption. This result highlights Ad-

sorption’s ability to effectively combine high-precision, low-recall (A8) extractions with

low-precision, high-recall extractions (WT) in a manner that improves both precision and

coverage.
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Figure 3.3: Plot of MRR (found only) vs Recall of the data shown in Table 3.6.

3.6 Related Work

Graph-based algorithms for minimally supervised information extraction methods have

recently been proposed. For example, SEAL [Wang and Cohen, 2007] is a random walk

based method applied over a graph built from entities and relations extracted from semi-

structured text. The method presented in this chapter is focused on combining extractions

from multiple methods and sources within one framework, with subsequent joint inference.

Hence, this proposed method should be interpreted more as a re-ranker and aggregator,

rather than an extractor in itself. To this effect, SEAL’s output can be one additional input,

amongst others, for the proposed method. Also, while SEAL expands one class at a time,

the proposed method in this chapter focuses on working with large number of classes at
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once. Adsorption is known to have a random walk interpretation [Baluja et al., 2008] (also

see Chapter 4). From this, we would like to point out that both Adsorption and SEAL have

similar inspiration: both are trying to rank nodes in a graph based on similarity of the nodes

to a given given set of initial nodes. The re-ranking algorithm of [Bellare et al., 2007] also

constructs a graph whose nodes are instances and attributes, as opposed to instances and

classes in this chapter. Adsorption can be seen as a generalization of the method proposed

in that paper.

3.7 Summary of Chapter

The field of open-domain information extraction has been driven by the growth of Web-

accessible data. We have staggering amounts of data from various structured and unstruc-

tured sources such as general Web text, online encyclopedias, query logs, web tables, or

link anchor texts. Any proposed algorithm to extract information needs to harness sev-

eral data sources and do it in a robust and scalable manner. The method in this chapter

represents a first step towards that goal. In doing so, we achieved the following:

1. Improved coverage relative to a high accuracy instance-class extraction system while

maintaining adequate precision.

2. Combined information from two different sources: free text and web tables.

3. Demonstrated a graph-based label propagation algorithm that given as little as five

seeds per class achieved good results on a graph with more than a million nodes and

70 million edges.

In the next chapter, we shall take a closer look at the details of the Adsorption algorithm,

and also its various extensions.
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Chapter 4

Adsorption Algorithm and its

Extensions

Some parts of this chapter are based on [Talukdar and Crammer, 2009] and

[Talukdar and Pereira, 2010].

4.1 Introduction

In Chapter 3, we used the Adsorption algorithm [Baluja et al., 2008] for large-scale class-

instance acquisition from a combination of unstructured as well as structured sources.

Adsorption is a recently proposed graph based semi-supervised algorithm which has

been successfully used for different tasks, such as recommending YouTube videos to

users [Baluja et al., 2008]. Adsorption has many desirable properties: it can perform multi-

label classification, it can be parallelized and hence can be scaled to handle large data sets

which is of particular importance for semi-supervised algorithms. Even though Adsorption

works well in practice, to the best of our knowledge it has never been analyzed before; for

example, it is currently unknown whether Adsorption is solving any well defined optimiza-

tion. Hoping to fill this gap, we make the following contributions in this chapter:
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• We analyze the Adsorption algorithm [Baluja et al., 2008] and show that there does

not exist an objective function with continuous second partial derivative whose local

optimization would be the output of the Adsorption algorithm.

• Motivated by this negative result, we propose a new graph based semi-supervised

algorithm (Modified Adsorption, MAD), which is similar to Adsorption and shares

its desirable properties, but has important differences.

• We state the learning problem as an optimization problem and develop efficient (it-

erative) methods to solve it. We also list the conditions under which the optimization

algorithm – MAD – is guaranteed to converge.

• The transition to an optimization based learning algorithm provides a flexible and

general framework that enables us to specify a variety of requirements. We demon-

strate this framework using data with dependent labels, resulting in the Modified

Adsorption with Dependent Labels (MADDL) algorithm.

• We report systematic comparison of various graph-based SSL algorithms on different

real-world learning tasks, including class-instance acquisition, where we find MAD

to be the most effective. We also demonstrate how class-instance acquisition perfor-

mance in the graph-based SSL setting can be improved by incorporating additional

semantic constraints available in independently developed knowledge bases.

4.2 Adsorption Algorithm

Adsorption [Baluja et al., 2008] is a general algorithmic framework for transductive learn-

ing where the learner is often given a small set of labeled examples and a very large set of

unlabeled examples. The goal is to label all the unlabeled examples, and possibly, under

the assumption of label-noise, also to relabel the labeled examples.

As many other related algorithms [Zhu et al., 2003], [Szummer and Jaakkola, 2002],

[Indyk and Matousek, 2004], the Adsorption algorithm assumes that the learning problem

is given in a graph form, where examples or instances are represented as nodes or vertices
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and edges code similarity between examples. Some of the nodes are associated with a

pre-specified label, which is correct in the noise-free case, or can be subject to label-noise.

Additional information can be given in the form of weights over the labels. Adsorption

propagates label-information from the labeled examples to the entire set of vertices via

the edges. The labeling is represented using a non-negative score values for each label,

high value for some label indicates high-association of a vertex (or its corresponding in-

stance) with that label. If the scores are additively normalized they can be thought of as a

conditional distribution over the labels given the node (or example) identity.

More formally, Adsorption is fed with an undirected graph G = (V,E,W ), where a

node v ∈ V corresponds to examples, an edge e = (a, b) ∈ V × V indicates that the label

of the two vertices a, b ∈ V should be similar and the weight Wab ∈ R+ measures the

strength of this similarity.

We denote the total number of examples or vertices by n = |V | , by nl the number

of examples for which we have prior knowledge of their label and by nu the number of

unlabeled examples to be labeled. Clearly nl + nu = n. Let L be the set of possible labels,

their number is denoted by m = |L| and with out loss of generality we assume that the

possible labels are L = {1 . . .m}. Each instance v ∈ V is associated with two column-

vectors Yv, Ŷv ∈ Rm
+ . The lth element of the vector Yv encodes the prior knowledge

for vertex v. The higher the value of Yvl the stronger we a-priori believe that the label of

v should be l ∈ L and a value of zero Yvl = 0 indicates no prior about the label l for

vertex v. If all the elements of Yv are zero, that is Yvl = 0 for l = 1 . . .m then the vertex

v is labeled. The second vector Ŷv ∈ Rm
+ is the output of the algorithm, using similar

semantics as Yv. For example, a high value of Ŷv,l indicates that the algorithm believes

that the vertex v should have the label l. Note the algorithm does not necessarily enforce

the equality Ŷv = Yv. We denote by Y, Ŷ ∈ Rn×m
+ the matrices whose rows are Yv and

Ŷv respectively. Finally, we denote by 0d the all-zeros row vector of dimension d.
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4.2.1 Random-Walk View

The Adsorption algorithm can be viewed as a controlled random what over the graph G.

The control is formalized via three possible actions denoted by inj, cont, abnd with pre-

defined probabilities pinjv , pcontv , pabndv ≥ 0 per vertex v ∈ V . Clearly their sum is unit

pinjv + pcontv + pabndv = 1. To label a some vertex v ∈ V , either unlabeled or labeled, we

make a random walk start at v facing three options: with probability pinjv the random-walk

stops and returns (i.e. inject) the pre-defined vector information Yv. We constrain pinjv = 0

for unlabeled vertices v. Second, with probability pabndv the random-walk abandons the la-

beling process and returns the all-zeros vector 0m. Third, with probability pcontv the random

continues to one of v’s neighbors v′ with probability proportional to Wvv′ ≥ 0. Note that

by definition Wv′v = 0 if (v, v′) /∈ V .

We can summarize the above process with the following set of equations. The transition

probabilities are,

Pr [v′|v] =


Wv′v∑

u : (u,v)∈E

Wuv

(v′, v) ∈ E

0 otherwise

. (4.1)

The (expected) score Ŷv for note v ∈ V is given by,

Ŷv =
(
pinjv ×Yv

)
+

pcontv ×
∑

v′ : (v′,v)∈E

Pr [v′|v] Ŷv′

+ pabndv × 0m . (4.2)

4.2.2 Averaging View

For this view we add a designated symbol called the dummy label and denoted by ν /∈ V .

This additional label explicitly encodes ignorance about the correct label and it means that

a dummy label can be used instead. Explicitly, we add an additional row to all the vectors

defined above, and have now that Yv, Ŷv ∈ Rm+1
+ and Y, Ŷ ∈ Rn×(m+1)

+ . We set Yvν = 0,

that is, a-priori no vertex is associated with the dummy label, and replace the zero vector 0m

with the vector r ∈ Rm+1
+ where rl = 0 for l 6= ν and rν = 1. In words, if the random-walk
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Algorithm 1: Adsorption Algorithm
Input:
- Graph: G = (V,E,W )
- Prior labeling: Yv ∈ Rm+1 for v ∈ V
- Probabilities: pinjv , pcontv , pabndv for v ∈ V

Output:
- Label Scores: Ŷv for v ∈ V
1: Ŷv ← Yv for v ∈ V {Initialization}
2:
3: repeat

4: Dv ←

∑
u

WuvŶu∑
u

Wuv

for v ∈ V

5: for all v ∈ V do
6: Ŷv ← pinjv ×Yv + pcontv ×Dv + pabndv × r
7: end for
8: until convergence

is abandoned, then the corresponding labeling vector is zero for all true labels in L, and

an arbitrary value of unit for the dummy label ν. This way, there is always a non-negative

score for at least one label, either the real one or the dummy label.

The averaging view then defines a set of fixed-point equations to update the predicted

labels. A summary of the equations appears in Algorithm 6. The algorithm is run until

convergence. Alternatively, it can be run until the label distribution on each node ceases

to change within some tolerance value; or it can be run for a fixed number of iterations,

which is what we used in practice. Also, since Adsorption is memoryless, it scales to tens

of millions of nodes with dense edges and can be easily parallelized [Baluja et al., 2008].

Baluja et. al. [Baluja et al., 2008] show that up to the additional dummy label, these

two views are equivalent. It remains to specify the values of pinjv , pcontv and pabndv . For

the experiments reported in Section 6.5 we set their value using the following heuristics

(adapted from Baluja et. al. [Baluja et al., 2008]) which depends on a parameter β = 2.
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For each node v we define two quantities: cv and dv and will define

pcontv ∝ cv ; pinjv ∝ dv .

The first quantity cv ∈ [0, 1] is monotonically decreasing with the number of neighbors

for node v in the graph G. Intuitively, the higher the value of cv, the lower the number

of neighbors of vertex v, and hence higher the information they contain about the labeling

of v. The other quantity dv ≥ 0 is monotonically increasing with the entropy (for labeled

vertices), and in this case we prefer to use the prior-information rather than the computed

quantities from the neighbors.

Specifically we first compute the entropy of the transition probabilities for each node,

H[v] = −
∑
u

Pr [u|v] log Pr [u|v] ,

and then pass it through the following monotonically decreasing function,

f(x) =
log β

log(β + ex))
.

Note that f(0) = log(β)/ log(β + 1) and that f(x) goes to zero, as x goes to infinity. We

define,

cv = f (H[v]) .

Next we define,

dv =

 (1− cv)×
√
H[v] the vertex v is labeled

0 the vertex v is unlabled

Finally, to ensure proper normalization of pcontv , pinjv and pabndv , we define,

zv = max(cv + dv, 1) ,

and

pcontv =
cv
zv

; pinjv =
dv
zv

; pabndv = 1− pcontv − pabndv .
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Thus, abandonment occurs only when the continuation and injection probabilities are low

enough.

We note that neighborhood entropy based estimation of the three random walk probabil-

ities above – pinjv , pcontv , and pabndv – is not necessarily the only possible way out. Depending

on the domain and the classification task at hand, other appropriate estimation choices may

be used. However, what is interesting is the fact that, through these three per-node prob-

abilities, Adsorption allows us to control the amount of information flowing through each

node, and thereby facilitating greater control during label propagation.

4.3 Analysis of the Adsorption Algorithm

Our next goal is to find an objective function that the Adsorption algorithm minimizes. Our

starting point is line 6 of Algorithm 6. We note that when the algorithm converges, both

sides of the assignments operator equal each other before the assignment takes place. Thus

when the algorithm terminates we have for all v ∈ V :

Ŷv = pinjv ×Yv + pcontv × 1

Nv

∑
u

WuvŶu + pabndv × r ,

where

Nv =
∑
v′

Wv′v .

The last set of equalities is equivalent to,

Gv = 0 for v ∈ V , (4.3)

where we define,

Gv

(
{Ŷu}u∈V

)
=

[
pinjv ×Yv + pcontv × 1

Nv

∑
u

WuvŶu + pabndv × r

]
− Ŷv .

Now, if the Adsorption algorithm was minimizing some objective function (denoted by

Q
(
{Ŷu}u∈V

)
) the termination condition of Eq. (4.3) was in fact a condition on the vector
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of its partial derivatives where we would identify

Gv =
∂

∂Ŷv

Q . (4.4)

Since the functions Gv are linear (and thus have continuous derivatives), necessary and

sufficient conditions for the existence of a function Q such that (4.4) holds is that the

derivatives of Gv are symmetric [Katz, 1979], that is,

∂

∂Ŷv

Gu =
∂

∂Ŷu

Gv, ∀ u, v

Computing and comparing the derivatives we get,

∂

∂Ŷu

Gv = pcontv

(
Wuv

Nv

− δu,v
)
6= pcont

u

(
Wvu

Nu

− δu,v
)

=
∂

∂Ŷv

Gu , (4.5)

where δu,v is an indicator variable with δu,v = 1 when u = v, and 0 otherwise. Please note

that equation (4.5) is true since in general Nu 6= Nv and pcontv 6= pcont
u . To conclude we

proved the following proposition:

Proposition 1 There does not exist a functionQwith continuous second partial derivatives

such that the Adsorption algorithm converges when gradient of Q is equal to zero.

In other words, we searched for a (well-behaved) function Q such that its local optimal

would be the output of the Adsorption algorithm, and showed that this search will always

fail. Please note that Proposition 1 is applicable only to the set of functions with continuous

second partial derivative, and that there may exist some function outside this set, whose

local optimization is the output of the Adsorption algorithm. Search for such a function is

an interesting avenue for future work.

We use the negative result in Proposition 1 to define a new algorithm, which builds on

the Adsorption and is optimizing a function of the unknowns Ŷv for v ∈ V .

4.4 New Algorithm: Modified Adsorption (MAD)

Our starting point is Sec. 4.2.2 where we assume to have been given a weighted-graph

G = (V,E,W ) and a matrix Y ∈ Rn×(m+1)
+ and are seeking for a labeling-matrix Ŷ ∈
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Rn×(m+1)
+ . In this section it is more convenient to decompose the matrices Y and Ŷ into

their columns, rather than rows. Specifically, we denote by Yl ∈ Rn
+ the lth column of Y

and similarly by Ŷl ∈ Rn
+ the lth column of Ŷ. (We distinguish the rows and columns of

the matrices Y and Ŷ using their index, the columns are indexed with the label index l,

while the rows are indexed are with a vertex index v, u).

We build on previous research in the area of graph-based semi-supervised learning

(SSL) [Zhu et al., 2003], [Subramanya and Bilmes, 2008] and construct an objective that

reflects three requirements as follows. First, for the labeled vertices, we would like the

output of the algorithm to be close to the a-priori given labels, that is Yv ≈ Ŷv. Second, for

pair of vertices that are close according to the input graph, we would like their labeling to

be close, that is Ŷu ≈ Ŷv if Wuv is large. Third, we want the output to be as uninformative

as possible, this serves as additional regularization, that is Ŷv ≈ r. We now further develop

the objective in light of the three requirements.

We use the Euclidean distance to measure discrepancy between two quantities, and start

with the first requirement above,∑
v

pinjv
∑
l

(
Yvl − Ŷvl

)2

=
∑
l

∑
v

pinjv

(
Yvl − Ŷvl

)2

=
∑
l

(
Yl − Ŷl

)>
S
(
Yl − Ŷl

)
,

where we defined the diagonal matrix S ∈ Rn×n and Svv = pinjv if vertex v is labeled

and Svv = 0 otherwise. The matrix S captures the intuition that for different vertices we

enforce the labeling of the algorithm to match the a-priori labeling with different extent.

Next, we modify the similarity weight between vertices to take into account the differ-

ence in degree of various vertices. In particular we define W
′
vu = pcontv ×Wvu. Thus, a

vertex u will not be similar to a vertex v if either the input weights Wvu are low or the
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vertex v has a large-degree (pcontv is low). We write the second requirement as,∑
v,u

W
′

vu

∥∥∥Ŷv − Ŷu

∥∥∥2

=
∑
v,u

W
′

vu

∑
l

(
Ŷvl − Ŷul

)2

=
∑
l

∑
v,u

W
′

vu

(
Ŷvl − Ŷul

)2

=
∑
l

∑
v

(∑
u

W
′

vu

)
‖Ŷvl‖2 +

∑
l

∑
u

(∑
v

W
′

vu

)
‖Ŷul‖2 − 2

∑
l

∑
u,v

W
′

vuŶulŶvl

=
∑
l

Ŷ>l LŶl ,

where,

L = D + D̄−W
′ −W

′>
,

and D and D̄ are n× n diagonal matrices with

Duu =
∑
v

W
′

vu , D̄vv =
∑
u

W
′

vu .

Finally we define the matrix R ∈ Rn×(m+1)
+ where the vth row of R equals pabndv × r

defined above. In other words the first m columns of R equal zero, and the last m+1th

column equal the elements of pabndv . The third requirement above is thus written as,∑
vl

(
Ŷvl −Rvl

)2

=
∑
l

∥∥∥Ŷl −Rl

∥∥∥2

.

We now combine the three terms above into a single objective, giving to each term a

different importance using the weights µ1, µ2, µ3 > 0

C(Ŷ) =
∑
l

[
µ1

(
Yl − Ŷl

)>
S
(
Yl − Ŷl

)
+ µ2Ŷ

T
l L Ŷl + µ3

∥∥∥Ŷl −Rl

∥∥∥2
]

.(4.6)

We remind the reader that Ŷl,Yl,Rl are the lth columns (each of size 1×n) of the matrices

Ŷ,Y and R (resp.). Note that each term in the sum can be optimized independently.

4.4.1 Solving the Optimization Problem

We now develop an algorithm to optimize (4.6) similar to the quadratic cost criteria

[Bengio et al., 2007]. Differentiating Equation 4.6 w.r.t. Ŷl we get,

1

2

δC(Ŷ)

δŶl

= µ1S(Ŷl −Yl) + µ2LŶl + µ3(Ŷl −Rl)

= (µ1S + µ2L + µ3I)Ŷl − (µ1SYl + µ3Rl) . (4.7)
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Differentiating once more we get,

1

2

δC(Ŷ)

δŶlδŶl

= µ1S + µ2L + µ3I ,

and since both S and L are symmetric and positive semidefinite matrices (PSD), we get

that the Hessian (Equation 4.8) is PSD as well, since positive semi-definiteness is preserved

under non-negative scalar multiplication and addition. Hence, we get the optimal minima

is obtained by setting the first derivative (i.e. Equation (4.7)) to 0, and we get,

(µ1S + µ2L + µ3I) Ŷl = (µ1SYl + µ3Rl) .

Hence, the new labels (Ŷ) can be obtained by a matrix inversion followed by matrix multi-

plication. However, this can be quite expensive when large matrices are involved. A more

efficient way to obtain the new label scores is to solve a set of linear equations using Jacobi

iteration [Saad, 2003], which we describe in Section 4.4.2 (also see [Bengio et al., 2007]).

4.4.2 Jacobi Method

Given the following linear system (in x)

Mx = b

the Jacobi iterative algorithm defines the approximate solution at the (t+1)th iteration given

the solution at time tth iteration as follows,

x
(t+1)
i =

1

Mii

(
b−

∑
j 6=i

Mijx
(t)
j

)
. (4.8)

We apply the iterative algorithm to our problem by substituting x = Ŷl, M = µ1S+µ2L+

µ3I and b = µ1SYl + µ3Rl in (4.8),

Ŷ
(t+1)
vl =

1

Mvv

(
µ1(SYl)v + µ3Rvl −

∑
u6=v

MvuŶ
(t)
ul

)
(4.9)
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Let us compute the values of (SYl)i, Mij(j 6=i) and Mii. First,

Mvu(v 6=u) = µ1Svu + µ2Lvu + µ3Ivu .

Note that since S and I are diagonal, we have that Svu = 0 and Ivu = 0 for u 6= v.

Substituting the value of L we get,

Mvu(v 6=u) = µ2Lvu = µ2

(
Dvu + D̄vu −W

′

vu −W
′

uv

)
,

and as before the matrices D and D̄ are diagonal and thus Dvu + D̄vu = 0. Finally,

substituting the values of W
′
vu and W

′
uv we get,

Mvu(v 6=u) = −µ2 × (pcontv ×Wvu + pcont
u ×Wuv) . (4.10)

We now compute the second quantity,

(SYl)vu = SvvYvv +
∑
t6=v

SvtYtu = pinjv ×Yvv ,

where the second term in the first line equals zero since S is diagonal. Finally, the third

term,

Mvv = µ1Svv + µ2Lvv + µ3Ivv

= µ1 × pinjv + µ2(Dvv −W
′

vv) + µ3

= µ1 × pinjv + µ2 × pcontv ×
∑
u6=v

Wvu + µ3 .

Plugging the above equations into (4.9) and using the fact that the diagonal elements of W

are zero, we get,

Ŷ(t+1)
v =

1

Mvv

(
µ1p

inj
v Yv + µ2

∑
u

(
pcontv Wvu + pcont

u Wuv

)
Ŷ(t)
u + µ3p

abnd
v Rv

)
.(4.11)

We call the new algorithm MAD (for Modified-Adsorption) and it is summarized in Algo-

rithm 2. Please note that for a graph G which is invariant to permutations of the vertices,

along with µ1 = 2µ2 = µ3 = 1, Adsorption and MAD coincide. Also, both algorithms

have the same time and space complexities.
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Algorithm 2: MAD Algorithm
Input:
- Graph: G = (V,E,W )
- Prior labeling: Yv ∈ Rm+1 for v ∈ V
- Probabilities: pinjv , pcontv , pabndv for v ∈ V

Output:
- Label Scores: Ŷv for v ∈ V
1: Ŷv ← Yv for v ∈ V {Initialization}
2: Mvv ← µ1 × pinjv + µ2 × pcontv ×

∑
uWvu + µ3

3: repeat
4: Dv ←

∑
u

(
pcontv Wvu + pcont

u Wuv

)
Ŷu

5: for all v ∈ V do
6: Ŷv ← 1

Mvv

(
µ1 × pinjv ×Yv + µ2 ×Dv + µ3 × pabndv ×Rv

)
7: end for
8: until convergence

4.4.3 Convergence

A sufficient condition for the iterative process of Equation (4.8) to converge is that M is

strictly diagonally dominant [Saad, 2003], that is if,

|Mvv| >
∑
u6=v

|Mvu| for all values of v

We have,

|Mvv| −
∑
u6=v

|Mvu| = µ1×pinjv + µ2×
∑
u6=v

(
pcontv ×Wvu + pcont

u ×Wuv

)
+ µ3 −

µ2×
∑
u6=v

(
pcontv ×Wvu + pcont

u ×Wuv

)
= µ1×pinjv + µ3 (4.12)

Note that pinjv ≥ 0 for all v and that µ3 is a free parameter in (4.12). Thus we can guarantee

a strict diagonal dominance (and hence convergence) by setting µ3 > 0.

57



4.5 Modified Adsorption with Dependent Labels

(MADDL)

In many machine learning tasks, labels are not mutually exclusive. For example, in hierar-

chical classification, labels are organized in a tree. In open-domain Information Extraction,

labels are extracted from text itself without any subsequent filtering. This often leads to

dependent labels (e.g. synonyms). In this section, we extend the MAD algorithm to handle

dependence among labels. Specifically, we shall additional terms to the objective for each

pair of dependent labels. Let C be a m × m matrix where m is the number of labels as

before. Each entry, Cll′ , of this matrix C represents the dependence or similarity among

the labels l and l′ . By encoding dependence in this pairwise fashion, we can encode depen-

dencies among labels represented as arbitrary graphs. The extended objective is shown in

Equation 4.13.

C(Ŷ) =
∑
l

[
µ1

(
Yl − Ŷl

)>
S
(
Yl − Ŷl

)
+ µ2Ŷ

T
l L Ŷl + µ3

∥∥∥Ŷl −Rl

∥∥∥
+µ4

∑
i

∑
l,l′

Cll′ (Ŷil − Ŷil′ )
2

 (4.13)

The last term in Equation 4.13 penalizes the algorithm if similar labels (as determined by

the matrix C) are assigned different scores, with severity of the penalty controlled by µ4.

Label Graph: This additional regularization term in Equation 4.13 can be thought of

as a Laplacian smoothness penalty over a label graph, as opposed to the instance graph we

have concentrated on so far, where each node is a label (totalm+1), with edges connecting

similar labels and the edge weight representing the degree of similarity between the pair of

labels. In other words, C is the edge weight matrix of this label graph. The labels estimated

by MADDL over this label graph is given by Ŷ>, where Ŷ is the estimated label matrix in

the instance graph. Since Ŷ is of size n× (m+ 1), Ŷ> is of size (m+ 1)× n. Hence, for

each node in the original instance graph, there is a corresponding label which is propagated
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over the label graph. We note that there is no direct relationship between the edge weight

matrices of the instance graph (W ) and the label graph (C).

Now, analyzing the objective in Equation 4.13 in the manner outlined in Section 4.4,

we arrive at the update rule shown in Equation 4.14.

Ŷ
(t+1)
vl =

1

Ml
vv

(
µ1p

inj
v Yvl + µ2

∑
u

(
pcontv Wvu + pcont

u Wuv

)
Ŷ

(t)
ul +

µ3p
abnd
v Rvl + µ4

∑
l′

Cll′Ŷil′

 (4.14)

where,

Ml
vv = µ1 × pinj

i + µ2 × pcont
i ×

∑
j 6=i

Wij + µ3 + µ4

∑
l′

Cll′

Replacing Line 6 in MAD (Algorithm 2) with Equation 4.14, we end up with a new

algorithm: Modified Adsorption with Dependent Labels (MADDL).

4.6 Class-Instance Acquisition Experiments

In this section, we compare performances of the three graph-based SSL algorithms – LP-

ZGL [Zhu et al., 2003], Adsorption, and MAD – on the class-instance acquisition task over

a variety of graphs constructed from different sources. For all experiments, we use Mean

Reciprocal Rank (MRR) as the evaluation metric as in [Talukdar et al., 2008c]. We used

iterative implementations of the graph-based SSL algorithms, and the number of iterations

was treated as a hyperparameter which was tuned, along with other hyperparameters, on

a separate held out set, details regarding which are presented in Table 4.1. Statistics of

various graph constructed and used in the experiments of Section 4.6 are presented in Table

4.2.
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Experiment Setting Algorithm Iterations µ1 µ2 µ3

Section 4.6.1, 2 seeds per class
LP-ZGL 3 - - -

Adsorption 3 - - -
MAD 4 1 1 1e2

Section 4.6.1, 10 seeds per class
LP-ZGL 2 - - -

Adsorption 2 - - -
MAD 4 1 1e2 1e3

Section 4.6.2, 2 seeds per class
LP-ZGL 3 - - -

Adsorption 2 - - -
MAD 7 1 1 1e-4

Section 4.6.2, 10 seeds per class
LP-ZGL 3 - - -

Adsorption 2 - - -
MAD 7 1 1e2 1e2

Section 4.6.3, 2 seeds per class
LP-ZGL 4 - - -

Adsorption 6 - - -
MAD 17 1 1 1e-4

Section 4.6.3, 10 seeds per class
LP-ZGL 4 - - -

Adsorption 4 - - -
MAD 15 1 1 1e-4

Table 4.1: Tuned hyperparameter values used in the experiments of Sections 4.6.1, 4.6.2,
and 4.6.3. During tuning, range of values tried for different hyperparameters were: maxi-
mum 20 iterations; µ1 ∈ {1}; µ2, µ3 ∈ {1e-4, 1e-2, 1, 1e2, 1e3, 1e4}.

4.6.1 Freebase Graph with Pantel Classes

Freebase [Metaweb Technologies, 2009]1 is a large collaborative knowledge base. The

knowledge base harvests information from many open data sets (e.g. Wikipedia, Mu-

sicBrainz), which is augmented by contributions from users. It contains structured in-

formation about many diverse topics (equivalent to a Wikipedia article). For example, Bob

Dylan, Neuroscience are examples of topics. A topic can have several properties and their

corresponding values, which we shall refer to as cell-values. Properties are grouped to-

gether into types. A topic is assigned one or more types. A type can be thought of as a

relational table. Types in turn are grouped into domains. In the example in Figure 4.2,

Bob Dylan is a topic whose properties are present in the types people-person and film-

1http://www.freebase.com/
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Graph Vertices Edges Avg. Min. Max.
Deg. Deg. Deg.

Freebase-1 32970 957076 29.03 1 13222
(Section 4.6.1)

Freebase-2 301638 2310002 7.66 1 137553
(Section 4.6.2)

TextRunner 175818 529557 3.01 1 2738
(Section 4.6.3)

YAGO 142704 777906 5.45 0 74389
(Section 4.6.6)

TextRunner + YAGO 237967 1307463 5.49 1 74389
(Section 4.6.6)

Table 4.2: Statistics of various graphs used in experiments in Section 4.6. Some of the
test instances (added for fair comparison with the TextRunner graph, Section 4.6.6) in the
YAGO graph had no attributes in YAGO KB, and hence these instance nodes had degree 0
in the YAGO graph.
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Figure 4.1: Comparison of three graph transduction methods on a graph constructed from
the Freebase dataset (see Section 4.6.1), with 23 classes. All results are averaged over 4
random trials.

music contributor. A type can be uniquely identified by prefixing its domain name. In type

people-person, Gender is a property and Male is the corresponding cell-value.

For our current purposes, we can think of the Freebase dataset as a collection of rela-
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Table id: people-person
Name Place of Birth Gender
· · · · · · · · ·
Isaac Newton Lincolnshire Male
Bob Dylan Duluth Male
Johnny Cash Kingsland Male
· · · · · · · · ·

Table id: film-music contributor
Name Film Music Credits
· · · · · ·
Bob Dylan No Direction Home
· · · · · ·

Figure 4.2: Examples of two tables (types) from Freebase, one table is from the people
domain while the other is from the film domain.

tional tables, where each table is assigned a unique ID. We use the following process to

convert the Freebase data tables into a graph:

• Create a node for each unique cell-value (those retained after filtering)

• Create a node for each unique property name, where unique property name is ob-

tained by prefixing the unique type name to the property name. For example, in the

example in Figure 4.2, people-person-gender is a unique property name.

• Add an edge of weight 1.0 from cell-value node v and unique property node p, iff

value v is present in the column corresponding to property p in one of the types.

Similarly, add an edge in the reverse direction.

By applying this graph construction process on the first column of the tables (types) in

Figure 4.2, we end up with the graph shown in Figure 4.3 (a).

We applied the same graph construction process on a subset of the Freebase dataset

consisting of topics from 18 randomly selected domains: astronomy, automotive, biology,

book, business, chemistry, comic books, computer, film, food, geography, location, people,
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Bob Dylan

film-music_contributor-name

Johnny 
Cash

people-person-name

Isaac Newton

(a)

Bob Dylan

film-music_contributor-name

Johnny 
Cash

people-person-name

Isaac Newton

has_attribute:albums

(b)

Figure 4.3: (a) Example of a section of the graph constructed from the two tables in
Figure 4.2. Nodes corresponding to unique property name is rectangular in shape, while
node corresponding to an entity (or cell-value) is oval shaped. (b) The graph in part (a)
augmented with an attribute node, has attribue:albums, along with the edges incident on
it. This results is additional constraints for the nodes Johnny Cash and Bob Dylan to have
similar labels (see Section 4.6.6).

religion, spaceflight, tennis, travel, wine. The topics in this subset were further filtered and

only cell-values with frequency 10 or more were retained. The resulting graph, Freebase-1

(Table 4.2), consisted of 32k nodes and 957k edges.
63



The authors of [Pantel et al., 2009] have made available a set of gold class-instance

pairs derived from Wikipedia, which is also downloadable from http://ow.ly/13B57. From

this set, we selected all classes which had more than 10 instance overlap with the Freebase

graph constructed above. This resulted in 23 classes, which along with their overlapping

instances were used as the gold standard set for the experiments in this section.

Experimental results with 2 and 10 seeds per class are shown in Figure 4.1. From Figure

4.1, we observe that LP-ZGL and Adsorption performed comparably on this dataset, with

MAD significantly outperforming both methods.

4.6.2 Freebase Graph with Wordnet Classes
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Figure 4.4: Comparison of graph transduction methods on a graph constructed from the
Freebase dataset (see Section 4.6.2). All results are averaged over 10 random trials

In order to scale up the evaluation setting in terms of graph size, we constructed a

larger graph, Freebase-2 (Table 4.2), from the same 18 domains as in Section 4.6.1, and

using the same graph construction process. The resulting graph consisted of 301k nodes

and 2.3m edges. In order to scale up the number of classes, we selected all Wordnet (WN)

classes, available in the YAGO KB [Suchanek et al., 2007], which had more than 100 in-
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stance overlap with the larger Freebase graph constructed above. This resulted in 192 WN

classes which were used for the experiments in this section. The reason behind imposing

such frequency constraint during class selection is to make sure that each class is left with

sufficient number of instances during testing.

Experimental results comparing LP-ZGL, Adsorption, and MAD with 2 and 10 seeds

per class are shown in Figure 4.4. In order to emphasizes the large scale nature of these

evaluations, we point out that a total of 292k test nodes were used during the evaluation in

the setting with 10 seeds per class. Once again, we observe MAD outperforming both LP-

ZGL and Adsorption. It is interesting to note that MAD with 2 seeds per class outperforms

LP-ZGL and Adsorption even with 10 seeds per class.

4.6.3 TextRunner Graph with Wordnet Classes
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Figure 4.5: Comparison of graph transduction methods on a graph constructed from the hy-
pernym tuples extracted by the TextRunner system [Banko et al., 2007] (see Section 4.6.3).
All results are averaged over 10 random trials.

In contrast to graph construction from structured tables as in Sections 4.6.1, 4.6.2, in

this section we use hypernym tuples extracted by TextRunner [Banko et al., 2007], an open
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domain IE system, to construct the graph2. An example of a hypernym tuple extracted by

TextRunner is (http, protocol, 0.92), where 0.92 is the extraction confidence. In order to

convert such tuples into a graph, we construct a node corresponding to the instance (http),

a node for the class (protocol), and connect the nodes with two directed edges in opposite

direction, with extraction confidence (0.92) set as edge weights. Following this process,

we constructed a graph from the TextRunner output with 175k nodes and 529k edges. We

call this graph the TextRunner Graph (Table 4.2). As in Section 4.6.2, we use WN class-

instance pairs as the gold set. In this case, we considered all WN classes, once again from

YAGO KB [Suchanek et al., 2007], which had more than 50 instances overlapping with the

constructed graph. This resulted in 170 WN classes being used in the experiments in this

section.

Experimental results with 2 and 10 seeds per class are shown in Figure 4.5. Perfor-

mances of the three methods are comparable in this setting, with MAD achieving the high-

est overall MRR.

4.6.4 Discussion

If we correlate the graph statistics in Table 4.2 with the results of sections 4.6.1, 4.6.2,

and 4.6.3, we see that MAD is most effective for graphs with high average degree, that

is, graphs where nodes tend to connect to many other nodes. For instance, the Freebase-1

graph has a high average degree of 29.03, with a corresponding large advantage for MAD

over the other methods. Even though this might seem mysterious at first, it becomes clearer

if we look at the objectives minimized by different algorithms. We find that the objective

minimized by LP-ZGL (Equation ??) is under-regularized, i.e., its model parameters (Ŷ)

are not constrained enough, compared to MAD (Equation ??, specifically the third term),

resulting in overfitting in case of highly connected graphs. In contrast, MAD is able to

avoid such overfitting because of its minimization of a well regularized objective (Equation

??). Based on this, we suggest that average degree, an easily computable structural property
2We thank the authors of [Banko et al., 2007] for kindly sharing their system’s output
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of the graph, may be a useful indicator in choosing which graph-based SSL algorithm

should be applied on a given graph.

Unlike MAD, Adsorption does not optimize any well defined objective

[Talukdar and Crammer, 2009], and hence any analysis along the lines described

above is not possible. The heuristic choices made in Adsorption may have lead to its

sub-optimal performance compared to MAD; we leave it as a topic for future investigation.

4.6.5 Effect of Per-Node Class Sparsity
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Figure 4.6: Effect of per node class sparsity (maximum number of classes allowed per
node) during MAD inference in the experimental setting of Figure 4.4 (one random split).

For all the experiments in Sections 4.6.1, 4.6.2, and 4.6.6, a node was allowed to attain

a maximum of 15 classes during inference. After each update on a node, all classes except

for the top scoring 15 classes were discarded. Without such sparsity constraints, a node

in a connected graph will end up acquiring all the labels injected into the graph. This is

undesirable for two reasons: (1) for experiments involving large number of classes (as in

previous section and true in general in case of open domain IE), this increases the space

requirement and also slows down inference; (2) a particular node is unlikely to belong
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a large number of classes. In order to estimate the effect of such sparsity constraints,

we varied the number of classes allowed per node from 5 to 45 on the graph and setup

of Figure 4.4. The results for MAD inference over the development split are shown in

Figure 4.6. We observe that performance can vary significantly as the maximum number

of classes allowed per node is changed, with the performance peaking at 25. This suggests

that sparsity constraints during graph based SSL may have a crucial role to play, a topic

which needs further investigation.

4.6.6 TextRunner Graph with Semantic Constraints from YAGO

Recently, the problem of instance-attribute extraction has started to receive attention

[Probst et al., 2007, Bellare et al., 2007, Pasca and Durme, 2007]. Example of an instance-

attribute pair is (Bob Dylan, albums). Given a set of seed instance-attribute pairs, these

methods attempt to extract more instance-attribute pairs automatically from different

sources, e.g. unstructured text, query logs etc. In this section, we explore whether class-

instance assignment in the graph-based SSL setting can be improved by incorporating new

semantic constraints derived from (instance, attribute) pairs. In particular, we experiment

with the following type of constraint: two instances with a common attribute are likely to

belong to the same class. For example, in Figure 4.3 (b), instances Johnny Cash and Bob

Dylan are more likely to belong to the same class as they have a common attribute, albums.

Because of the smooth labeling bias of graph-based SSL methods, such constraints are nat-

urally captured by the graph-based SSL methods. All that is necessary is the introduction

of bidirectional (instance, attribute) edges to the graph, as shown in Figure 4.3 (b).

In Figure 4.7, we compare class-instance acquisition performance of the three graph-

based SSL methods on the following three graphs (Table 4.2):

TextRunner Graph: Graph constructed from the hypernym tuples extracted by Tex-

tRunner, as in Figure 4.5 (Section 4.6.3).
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Figure 4.7: Comparison of class-instance acquisition performance on the three different
graphs described in Section 4.6.6. All results are averaged over 10 random trials, with
the hyperparameters tuned on a separate held out set. Addition of YAGO attributes to the
TextRunner graph significantly improves performance.

YAGO Graph: Graph constructed from the (instance, attribute) pairs obtained from

the YAGO KB [Suchanek et al., 2007], with 142k nodes and 777k edges.
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YAGO Top-3 WordNet Classes Assigned by MAD
Attribute (example instances for each class are shown in brackets)
has currency wordnet country 108544813 (Burma, Afghanistan)

wordnet region 108630039 (Aosta Valley, Southern Flinders Ranges)
wordnet state 108654360 (Agusan del Norte, Bali)

works at wordnet scientist 110560637 (Aage Niels Bohr, Adi Shamir)
wordnet person 100007846 (Catherine Cornelius, Jamie White)
wordnet chancellor 109906986 (Godon Brown, Bill Bryson)

has capital wordnet state 108654360 (Agusan del Norte, Bali)
wordnet region 108630039 (Aosta Valley, Southern Flinders Ranges)
wordnet country 108544813 (Burma, Afghanistan)

born in wordnet boxer 109870208 (George Chuvalo, Fernando Montiel)
wordnet chancellor 109906986 (Godon Brown, Bill Bryson)
wordnet celebrity 109903153 (Donald Trump, Iain Lee)

has isbn wordnet book 106410904 (Past Imperfect, Berlin Diary)
wordnet magazine 106595351 (Railway Age, Investors Chronicle)
wordnet episode 106396330 (Breaking Bread, Apocalypse Cow)

Table 4.3: Top-3 (out of 170) WordNet classes assigned by MAD on 5 randomly chosen
YAGO attribute nodes (out of 80) in the TextRunner + YAGO graph used in Figure 4.7 (see
Section 4.6.6), with 10 seeds per class used. A few example instances of each WordNet
class is shown within brackets. Top ranked class for each attribute is shown in bold.

TextRunner + YAGO Graph: Union of the two graphs above, with 237k nodes and

1.3m total edges.

In all experimental settings with 2 and 10 seeds per class in Figure 4.7, we ob-

serve that the three methods consistently achieved best performance on the TextRunner

+ YAGO graph. This suggests that addition of attribute based semantic constraints from

YAGO to the TextRunner graph results in a better connected graph which in turn re-

sults in better inference by the graph-based SSL algorithms, compared to using either

of the sources, i.e., TextRunner output or YAGO attributes, in isolation. This further il-

lustrates the advantage of aggregating information across sources [Talukdar et al., 2008c,

Pennacchiotti and Pantel, 2009]. However, we are the first, to the best of our knowledge, to

demonstrate the effectiveness of attributes in class-instance acquisition. We note that this
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work is similar in spirit to the recent work in [Carlson et al., 2010] which also demonstrate

the benefits of additional constraints in SSL.

Because of the label propagation behavior, graph-based SSL algorithms assign classes

to all nodes reachable (over the graph) from at least one of the labeled instance nodes. This

allows us to check the classes assigned to nodes corresponding to YAGO attributes in the

TextRunner + YAGO graph, as shown in Table 4.3. Even though the experimental setting

was designed for class-instance acquisition, it is encouraging to see that the graph-based

SSL algorithm (MAD in Table 4.3) is able to learn class-attribute relationships, an impor-

tant by-product which has been the focus of recent studies [Reisinger and Pasca, 2009].

For example, the algorithm is able to learn that works at is an attribute of the WordNet

class wordnet scientist 110560637, and thereby its instances (e.g. Aage Niels Bohr, Adi

Shamir).

4.6.7 Effect of Class Similarity Constraints

In this section, we explore whether addition of class similarity constraints (e.g. syn-

onym labels) in MADDL can improve overall class-instance acquisition performance.

Class similarities for MADDL were obtained using Jiang and Conrath similarity

[Jiang and Conrath, 1997] over the Wordnet graph. The similarities returned by this mea-

sure were manually browsed through and a few of the top scoring pairs were retained: 37

similarity pairs in case of Figure 4.8 (a), and 76 in case of Figure 4.8 (b). During infer-

ence, each node in the graph was allowed to have a maximum of 15 classes, as in previous

experiments. Experimental results comparing MADDL with three other methods on two

real-world graphs are presented in Figure 4.8.

From the results in Figure 4.8, we observe that MADDL is comparable or better than

the three other methods, and it is most effective in the TextRunner graph. During the exper-

iments in Figure 4.8, we observed that the MAD algorithm, which has no explicit knowl-

edge of class similarity, is able to assign similar classes comparable scores on the nodes.

Quality of the graph, where instance nodes from semantically similar classes have high
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Figure 4.8: Comparison of MADDL with other methods on the class-instance acquisition
task over two graphs: (a) Freebase-2 graph; (b) TextRunner graph (see Table 4.2). All
results are averaged over 10 random trials. In (a), 37 class similarity pairs were used in
MADDL; while in (b), 76 class similarity pairs were used.

connectivity, may be one reason for this. In this respect, the TextRunner graph is noisier

compared to the Freebase-2 graph, as the former is constructed from automatic extractions.

It is in such noisier graphs that we expect MADDL, and class similarity constraints, to be
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effective, as observed in Figure 4.8 (b).

Overall, we feel that the gains due to MADDL in these experiments are somewhat

limited, and that there is significant room for future exploration in this direction, some of

which we list here:

• Firstly, there is a need to evaluate effect of different similarity measures, as so far we

have experimented only with one [Jiang and Conrath, 1997].

• Secondly, the number of similarity constraints used in these experiments are quite

sparse, e.g. only 37 similarity constraints are used in Figure 4.8 (a), out of a to-

tal of 36672 possibilities. It will be interesting to see whether performance can be

improved by constraining the inference problem further by including more label con-

straints in MADDL.

4.7 Experimental Results on Non-IE Tasks

In this section, we compare MAD with various state-of-the-art learning algorithms on some

non-IE tasks: classification tasks (e.g. text classification in Sec. 4.7.1) and sentiment analy-

sis in Sec. 4.7.2). In Sec. 4.7.3, we also provide experimental evidence showing that MAD

is quite insensitive to wide variation of values in its hyper-parameters. In Sec. 4.7.4, we

present evidence showing how MADDL can be used to obtain smooth ranking for senti-

ment prediction, a particular instantiation of classification with dependent labels.

4.7.1 Text Classification

World Wide Knowledge Base (WebKB) is a text classification dataset widely used for

evaluating transductive learning algorithms. Most recently, the dataset was used by

Subramanya and Bilmes [Subramanya and Bilmes, 2008], who kindly shared their pre-

processed complete WebKB graph with us. There are a total of 4, 204 vertices in the
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Figure 4.9: PRBEP (macro-averaged) for the WebKB dataset with 3148 testing instances.
All results are averages over 20 randomly generated transduction sets.

Class SVM TSVM SGT LP AM Adsorption MAD
course 46.5 43.9 29.9 45.0 67.6 61.1 62.8
faculty 14.5 31.2 42.9 40.3 42.5 52.8 52.9
project 15.8 17.2 17.5 27.8 42.3 52.6 52.6
student 15.0 24.5 56.6 51.8 55.0 39.8 48.6
average 23.0 29.2 36.8 41.2 51.9 51.6 54.2

Table 4.4: PRBEP for the WebKB data set with nl = 48 training and 3148 testing instances.
All results are averages over 20 randomly generated transduction sets. The last row is the
macro-average over all the classes. MAD is the proposed approach. Results for SVM,
TSVM, SGT, LP and AM are reproduced from Table 2 of [Subramanya and Bilmes, 2008].

graph, with the nodes labeled with one of four categories: course, faculty, project, stu-

dent. A K-NN graph is created from this complete graph by retaining only top K neigh-

bors of each node. K is treated as a hyper-parameter. We follow previous experimen-

tal protocol [Subramanya and Bilmes, 2008] and use Precision-Recall Break Even Point

(PRBEP) [Raghavan et al., 1989] as the the evaluation metric. Performance comparison of
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MAD and Adsorption for increasing nl are shown in Figure 4.9, where MAD outperforms

Adsorption for all values of nl.

The dataset was randomly partitioned into four sets. A transduction set was gen-

erated by first selecting one of the four splits at random and then sampling nl train-

ing documents from it, the remaining three sets working as the test set. This process

was repeated 21 times to generate as many transduction sets. The first transduction set

was used to tune the hyper-parameters, with search over the following ranges (follow-

ing [Subramanya and Bilmes, 2008]): K ∈ {10, 50, 100, 500, 1000, 2000, 4204}, µ2 ∈

{1e–8, 1e–4, 1e–2, 1, 10, 1e2, 1e3}, µ3 ∈ {1e–8, 1e–4, 1e–2, 1, 10, 1e2, 1e3}. µ1 was not

tuned and was set to 1 in all the experiments. MAD’s parameter sensitivity is discussed in

Section 4.7.3.

As in previous work [Subramanya and Bilmes, 2008], Precision-Recall Break Even

Point (PRBEP) [Raghavan et al., 1989] is the the evaluation metric. Same evaluation mea-

sure, dataset and the same experimental protocol makes the results reported here directly

comparable to those reported in [Subramanya and Bilmes, 2008]. For easier readabil-

ity, the results from Table 2 [Subramanya and Bilmes, 2008] are reproduced in Table 4.4

of this chapter, comparing performance of Adsorption based methods (Adsorption and

MAD) to many previously proposed approaches: SVM [Joachims, 1999], Transductive-

SVM [Joachims, 1999], Spectral Graph Transduction (SGT) [Joachims, 2003] and Label

Propagation (LP) [Zhu and Ghahramani, 2002]. For MAD (the proposed approach) with

nl = 48, the optimal parameters were found to be: K = 2000, µ1 = µ2 = 1, µ3 = 10.

The first four rows in Table 4.4 shows PRBEP for individual categories, with the last line

showing the macro-averaged PRBEP across all categories. The MAD algorithm described

above outperforms all other methods for two of the four categories and achieves the best

performance overall (for nl = 48).

Performance comparison of MAD and Adsorption for increasing nl are shown in Fig-

ure 4.9. Comparing these results against Fig. 2 in [Subramanya and Bilmes, 2008],

it seems that MAD outperforms all other methods compared (except AM
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Figure 4.10: Precision for the Sentiment Analysis dataset with 3568 testing instances. All
r esults are averages over 4 randomly generated transduction sets.

[Subramanya and Bilmes, 2008]) for all values of nl. MAD performs better than

AM for nl = 48, but achieves second best solution for the other three values of nl.

4.7.2 Sentiment Analysis

The goal of sentiment analysis is to automatically assign polarity scores to text collec-

tions, with a high score reflecting positive sentiment (user likes) and a low score reflecting

negative sentiment (user dislikes). In this section, we report results on sentiment classifica-

tion in the transductive setting. From Section 4.7.1 and [Subramanya and Bilmes, 2008],

we observe that Label Propagation (LP) [Zhu and Ghahramani, 2002] is one of the best

performing L2-norm based transductive learning algorithm. Hence, we compare the per-

formance of MAD against Adsorption and LP.

For the experiments in this section, we use a set of 4, 768 user reviews from the elec-

tronics domain [Blitzer et al., 2007]. Each review is assigned one of the four scores: 1
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(worst), 2, 3, 4 (best). We create a K-NN graph from these reviews by using cosine sim-

ilarity as the measure of similarity between reviews. As before, K is treated as a hyper-

parameter. We create 5 transduction sets from this data using the process described in

Section 4.7.1. One transduction set is used to tune hyper-parameters while the rest are used

for evaluation, with hyper-parameter search over the ranges: K ∈ {10, 100, 500}, µ2 ∈

{1e–4, 1, 10}, µ3 ∈ {1e–8, 1, 1e2, 1e3}. As before, µ1 was not tuned and was set to 1 in all

experiments. PRBEP results for different algorithms are shown in Figure 4.10. From this,

we note that MAD outperforms LP, while Adsorption is quite competitive.

4.7.3 Parameter Sensitivity

We evaluated the sensitivity of MAD to variations of its µ2 and µ3 hyper-parameters. We

used a 2000-NN graph constructed from the WebKB dataset and a 500-NN graph con-

structed from the Sentiment dataset. In both cases we tried three values for µ2 and four

values for µ3 both ranging in at least 5 order of magnitude. For the WebKB the PRBEP

remains almost fixed ranging between 45.1 − 46.8 and for the sentiment data the PRBEP

varies in the range 35.7− 38.6. We note that in both cases the algorithm is less sensitive to

the value of µ3 than the value of µ2.

4.7.4 Smooth Ranking for Sentiment Analysis

We revisit the sentiment prediction problem in Section 4.7.2, but with the additional re-

quirement that ranking of the labels (1, 2, 3, 4) generated by the algorithm should be

smooth i.e. we prefer the ranking 1 > 2 > 3 > 4 over the ranking 1 > 4 > 3 > 2, where

3 > 2 means that the algorithm ranks label 3 higher than label 2. Even though heuristic

based post-processing of the ranking is one way to approach the problem, the goal here is

to develop a principled way. We use the framework of stating requirements as an objective

to be optimized. We use the MADDL algorithm of Sec. 4.5 initializing the matrix C as
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Figure 4.12: Plot of counts of
top predicted labels pairs (order
ignored) in MADDL’s predictions
(Section 4.5), with µ1 = µ2 = 1,
µ3 = 100 and µ4 = 1e3.

µ4

0 1 10 100 1000
Prediction Loss (L1) at rank 1 0.78 0.78 0.78 0.78 0.77
Prediction Loss (L1) at rank 2 1.02 1.00 0.96 0.96 0.95

Table 4.5: Average prediction loss at ranks 1 & 2 (for various values of µ4) for sentiment
prediction. All results are averaged over 4 runs. See Section 4.7.4 for details.

follows (assuming that labels 1 and 2 are related, while labels 3 and 4 are related):

C12 = C21 = 1 , C34 = C43 = 1

with all other entries in matrix C set to 0. Such constraints (along with appropriate µ4

in Equation (4.13)) will force the algorithm to assign similar scores to dependent labels,

thereby assigning them adjacent ranks in the final output. MAD and MADDL were then

used to predict ranked labels for vertices on a 1000-NN graph constructed from the sen-

timent data used in Sec. 4.7.2, with 100 randomly selected nodes labeled. For this exper-

iment we set µ1 = µ2 = 1, µ3 = 10. Results for increasing values of µ4 are shown in
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Table 4.5. L1 loss computed between the gold label and labels predicted at ranks r = 1, 2

are computed. MADDL with µ4 = 0 corresponds to MAD. From Table 4.5 we observe that

with increasing µ4, MADDL is able to put a label at r = 2 which is related (as per C) to the

label at r = 1, but at the same time maintain the quality of prediction at r = 1 (represented

by the almost constant first row in Table 4.5), thereby ensuring a smoother ranking.

Another view of the same phenomenon is shown in Fig. 4.11 and Fig. 4.12. In these

figures, we plot the counts of top predicted label pair (order of prediction is ignored for

better readability) generated by the MAD and MADDL algorithms. By comparing these

two figures we observe that label pairs (e.g. (2,1) and (4,3)) favored by C (above) are more

frequent in MADDL’s predictions than in MAD’s. At the same time, non-smooth predic-

tions (e.g. (4, 1)) are virtually absent in MADDL’s predictions while they are quite frequent

in MAD’s. These clearly demonstrate MADDL’s ability to generate smooth predictions in

a principled way, and more generally the ability handle data with non-mutually exclusive

or dependent labels.

4.8 Summary of Chapter

In this chapter we have analyzed the Adsorption algorithm [Baluja et al., 2008] and pro-

posed a new graph based semi-supervised learning algorithm, MAD. We have developed

efficient (iterative) solution to solve our convex optimization based learning problem, and

also listed the conditions under which the algorithm is guaranteed to converge. Transition

to an optimization based learning algorithm allows us to easily extend the MAD algorithm

to handle data with dependent labels, resulting in the MADDL algorithm. We reported sys-

tematic comparison of various graph-based SSL algorithms on different real-world learning

tasks, including class-instance acquisition, where we found MAD to be the most effective.

We also demonstrated how class-instance acquisition performance in the graph-based SSL

setting can be improved by incorporating additional semantic constraints available in inde-

pendently developed knowledge bases.

In the next chapter, we shall transition into the Information Integration (II) portion of
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this thesis, and explore how data-integrating structured queries can be constructed from

keyword queries and user feedback over answers.
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Chapter 5

Learning Data-Integrating Queries

Some parts of this chapter are based on [Talukdar et al., 2008a].

5.1 Introduction

In this chapter, we present Q, a system with which a non-expert user can author new query

templates and Web forms, to be reused by anyone with related information needs. The

user poses keyword queries that are matched against source relations and their attributes;

the system uses sequences of associations (e.g., foreign keys, links, schema mappings, syn-

onyms, and taxonomies) to create multiple ranked queries linking the matches to keywords;

the set of queries is attached to a Web query form. Now the user and his or her associates

may pose specific queries by filling in parameters in the form. Importantly, the answers

to this query are ranked and annotated with data provenance, and the user provides feed-

back on the utility of the answers, from which the system ultimately learns to assign costs

to sources and associations according to the user’s specific information need, as a result

changing the ranking of the queries used to generate results. We evaluate the effective-

ness of our method against “gold standard” costs from domain experts and demonstrate the

method’s scalability.

Challenges. The mode of interaction in Q creates a number of fundamental challenges.
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Figure 5.1: Schema elements (nodes) matching a query about proteins, diseases, and genes
related to “plasma membranes.” The relations come from different bioinformatics sources,
plus site-provided correspondence tables (e.g., InterPro2GO), the results of a record link-
ing tool (RecordLink), a Term that may be used directly or combined with its superclasses
or synonyms through ontologies (GO Term2Term, Term Syn), and instance-level keyword
matching (topic index). Rounded rectangles represent conceptual entities and squared rect-
angles represent tables relating these entities; Q considers there to be a weighted associa-
tion edge based on the foreign key or link dereference.

CQ2: q(prot , gene, typ, dis) :- TblProtein(id , prot , . . .),Entry2Meth(ent , id , . . .),
InterPro2Go(ent , gid1 ),Term Syn(gid1 , gid2 ),Term(gid2 , typ),
Gene2GO(gid2 , giId),GeneInfo(giId , gene, . . .),MIM2Gene(giId ,mId),
MAIN (mId , dis , . . .), typ = ’plasma membrane’

CQ3: q(prot , gene, typ, dis) :- TblProtein(id , prot , . . .),Entry2Meth(ent , id , . . .),
InterPro2Go(ent , gid1 ),Term2Term( , ’part of’, gid1 , gid2 ),Term(gid2 , typ),
Gene2GO(gid2 , giId),GeneInfo(giId , gene, . . .),MIM2Gene(giId ,mId),
MAIN (mId , dis , . . .), typ = ’plasma membrane’

Table 5.1: Excerpts of some potential queries from the graph of Figure 5.1, with important
differences highlighted in boldface.

First, we must have a unified, end-to-end model that supports computation of ranked

queries, which produce correspondingly ranked results, and it must be possible to learn

new query rankings from feedback over the results, ultimately converging to rankings con-

sistent with user expectations. In support of this, we must be able to find the top-k queries,

begin producing answers, and learn from feedback at interactive-level speeds. We must

always be able to determine results’ provenance, as a means of connecting feedback to
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the originating query or queries. Additionally, it is essential that we be able to generalize

feedback to results other than the one to which the user directly reacted. In part this is due

to the “curse of dimensionality”: we must generalize if we are to learn from small numbers

of examples.

Contributions. In our approach, edge weights encode shared learned knowledge about the

usefulness of particular schema elements, across multiple queries and users with similar

preferences and goals. Multiple users in the same lab or the same subfield may wish to

share the same view and continuously refine it. They may also wish to pose other related

queries, and have feedback affect the entire set of queries together. On the other hand,

groups of users with very different goals (say, highly speculative exploration of associa-

tions, versus refinement of results to find the highest-reliability links) can have their own

set of views with a different set of weight assignments. In essence, each sub-community is

defining its own integrated schema for viewing the data in the system — which includes not

only a set of schema mappings (associations) but also a set of weights on the mappings and

source relations. This represents a bottom-up, community-driven scheme for integrating

data. Our chapter makes the following contributions:

• We bring together ideas from data integration, query-by-example, data provenance, and

machine learning into a novel unified framework for authoring through feedback families

of queries corresponding to a bioinformatics Web form, but potentially spanning many

databases. We exploit the output from record linking and schema mapping tools.

• We develop efficient search strategies for exploring and ranking associations among

schema elements, links, synonyms, hypernyms, and mapping tables — producing top-

ranked queries at interactive speeds. This depends on a new approximation scheme for

the K-best Steiner tree problem (explained in Section 5.5), which scales to much larger

graphs than previous methods.

• We develop efficient techniques for integrating data provenance and online learning tech-
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niques — learning at interactive speeds.

• We experimentally validate the efficacy of our solutions, using real schemas and associ-

ations.

Roadmap. Section 5.3 presents our basic architecture and operation. Section 5.4 describes

how queries are answered in our system, and Section 5.5 describes how feedback is given

and processed. We present experimental results showing scalability and rapid learning in

Section 5.6, and we conclude and discuss future work in Section 5.7.

5.2 Related Work

The problem of providing ranked, keyword-based answers to queries has been the subject

of many studies. Most focus on providing answers based on the keywords, rather than on

constructing persistent views that can be used for multiple keywords. We briefly review

this work and explain why our problem setting is different.

Information retrieval [Baeza-Yates and Ribeiro-Neto, 1999] focuses on providing

ranked documents as query answers, given keyword queries. It does not generate or learn

structured queries that combine data from multiple databases. Similarly, while natural-

language query interfaces have been studied that create structured queries over databases,

e.g., [Popescu et al., 2003], our goal is to take keyword queries, not natural language, and a

large and diverse set of data sources and associations, and to learn the appropriate structural

queries.

At a high level, our work seems most similar to keyword search

over databases [Bhalotia et al., 2002, Botev and Shanmugasundaram, 2005,

Hristidis and Papakonstantinou, 2002, Kacholia et al., 2005]. There, keyword

matches involve both data items and metadata. Results are typically scored based

on a combination of match scores between keywords and data values, length

of the join path between the matched data items, and possibly node authority
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scores [Balmin et al., 2004, Guo et al., 2003]. The NAGA system [Kasneci et al., 2008]

additionally considers an ontology-like knowledge graph and a generative model for

ranking query answers. In many of these systems, ranking is based on costs that are

computed in additive fashion (much like the cost model we adopt). In contrast to all of

these systems, we seek to learn how to score results based on user preferences, since

associations between scientific data sources do not necessarily reflect authority, and in

any case perceived authority may vary with user characteristics and needs. This naturally

complements a number of existing bioinformatics query authoring systems that rely on

expert-provided scores [Boulakia et al., 2007, Mork et al., 2002].

Existing “top-k query answering” [Cohen, 1998, Gravano et al., 2003, Li et al., 2005,

Marian et al., 2004] provides the highest-scoring answers in answering ranked queries. Our

goal is to identify possible queries to provide answers by connecting terms, to separately

rank each combination, to output the results using this rank, and finally to enable feedback

on the answers. The step in which results are output could be performed using top-k query

processing algorithms.

Our work uses machine learning in a way that is complementary to other

learning-based tools and techniques for data integration. Schema matching

tools [Rahm and Bernstein, 2001] provide correspondences and possibly complete schema

mappings between different pre-existing schemas: we use mappings as input, in the form of

associations that help our system to create cross-site queries. We can also learn the quality

of the mappings based on feedback. Finally, recent work focuses on learning to construct

mashups [Tuchinda and Knoblock, 2008], in a way that generalizes the information extrac-

tion problem and suggests new columns to be integrated: this is also complementary to our

work, which focuses on determining how to decide which queries and answers should be

used to populate the results.

A method that learns to rank pairs of nodes based on their graph-walk similarity is

presented in [Minkov et al., 2006, Minkov and Cohen, 2007]. A similar method that learns

the random walk probabilities in a graph satisfying pairwise node ordering constraints is
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Figure 5.2: Architectural stages of the Q System.

presented in [Agarwal et al., 2006]. In contrast, the learning method used in this chapter

learns to rank trees derived from the query graph, and not just node pairs. However, all

these methods share the common objective of learning the costs on edges of the graph on

which they operate.

5.3 Architecture and Operation

We divide system operation into four major phases: initial setup, query template creation,

query execution, and learning through feedback. We discuss each of these phases in order,

focusing on the modules and dataflow.

5.3.1 Initial Setup

Refer to Figure 5.2 to see the components of the Q System. During initial setup, Q’s

Schema Loader (the box highlighted with the numeral 1 in the figure) is initially given

a set of data sources, each with its own schema. Data items in each schema might op-

tionally contain links (via URLs, foreign keys, or coded accession numbers) to other data

sources. Additionally, we may be given certain known correspondences or transformations

as the result of human input or data integration tools: for instance, we may have schema
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mappings between certain elements, created for data import, export, or peer-to-peer inte-

gration [Halevy et al., 2003]; some data items may be known to reference an externally

defined taxonomy or ontology such as GeneOntology (GO); and tools may be able to dis-

cover (possibly approximate) associations between schema elements. All such information

will be encoded in the schema graph, which is output by the Schema Loader and saved in

a metadata repository.

Figure 5.1 features two classes of relations as nodes: blue rounded rectangles represent

entities, and orange elongated rectangles represent cross-references, links, or correspon-

dence tables. Edges represent associations between nodes (generally indicating potential

joins based on equality of attributes). The schema graph in the example illustrates a com-

mon feature of many bioinformatics databases, which is that they frequently contain cross-

referencing tables: Entry2Meth, InterPro2GO, etc., represent the database maintainers’

current (incomplete, possibly incorrect) information about inter-database references. Ad-

ditionally, our example includes a correspondence table, RecordLink, that was created by a

schema mapping/record linking tool, which matches UniProt and InterPro tuples. As pre-

viously described, any of the associations encoded as edges may have a cost that captures

its likely utility to the user: this may be based on reliability, trustworthiness, etc., and the

system will attempt to learn that cost based on user feedback. These costs are normally

initialized to the same default value.

5.3.2 Query Template Creation

The user defining a query template poses a keyword query

protein "plasma membrane" gene disease

which is matched against the schema graph by the Steiner Tree Generator (box #2 in

Figure 2). A pre-processing step consists of matching keywords against graph elements:

We can see from the figure that the first term matches against UniProt and TblProtein

(based on substring matching against both relation and attribute names). The term “plasma
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membrane” does not match against any table names or attributes — but rather against a

term in the GO ontology, which includes (as encoded data) standardized terms. Terms in

the ontology have both subclasses (Term2Term) and synonyms (Term Syn), and hence the

system must consider these in the query answers as well. The keyword “gene” matches as a

substring against GeneInfo, and finally, “disease” matches against an entry in an index from

topics to databases. Implicitly, as part of the keyword matching process, the Q System adds

a node to the schema graph for each keyword, and an edge to each matching node. (For

visual differentiation in the figure, we indicate these edges by drawing a dashed rectangle

around each keyword and its matching nodes.)

Now, given keyword matches against nodes, the Steiner Tree Generator can determine

the best (top-k) queries matching the keywords. Its goal is to find the k trees of minimal

cost contained in the schema graph, each of which includes all of the desired (keyword)

nodes, plus any additional nodes and edges necessary to connect them. This is technically

a Steiner tree; the cost of each Steiner tree is the sum of edge costs. (We discuss below how

edge costs are obtained.) Note the subtlety that this module does not generate queries to

compute the top-k answers; rather, it produces the top-k-scoring queries according to our

schema graph. These may return more or fewer than k answers; but commonly each query

will return more than one answer.

The Query Formulator (box 3) takes each of the top-k Steiner trees and converts it

into a conjunctive query (nodes become relations, edges become joins, and the cost of the

query is the sum of the costs of the edges in the Steiner tree).

At the View Refinement stage (box 4), the top-scoring queries are combined into a

disjoint union (i.e., aligning like columns and padding elsewhere with nulls, as described

in Section 5.5), forming what we term a union view. Next, the query author may refine

the query, adding projections, renaming or aligning columns, and so on. At this stage, the

view is optionally given a name and made persistent for reuse. An associated Web form

is automatically generated, as in Figure 5.1b. (Recall that our “view” actually represents a

template for a family of queries with similar information needs, which are to be parameter-
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ized by the user to actually pose a query.)

5.3.3 Query Execution

Any user with permissions (not only the author) may access the Web Form Interface

(box 5), parameterize the fields of the query through the Web form, and execute it. This in-

vokes the Query Processor (box 6), which is a distributed relational query engine extended

to annotate all tuples with their provenance or lineage [Buneman et al., 2001, Cui, 2001,

Green et al., 2007b], which is essential for later allowing the system to take feedback on

tuples and convert it into feedback on queries. Of course, the query processor must also

return these annotated results in increasing order of cost, where they receive the cost of the

query that produces them. (If a tuple is returned by more than one query, it is annotated

with the provenance of all of its producer queries, and given the cost of the lowest-cost

query.)

5.3.4 Learning through Feedback

Once the user has posed a query, he or she may look over the results in the Re-

sults/Feedback Page (box 7) and provide feedback to the system, with respect to the rel-

ative ordering and set of answers. The system will generalize this feedback to the queries

producing the answers. Then the Learner (box 8) will adjust costs on the schema graph,

thus potentially changing the set of queries associated with the Web form, and altering

the set of answers to the query. The new results are computed and returned at interactive

speeds, and the user may provide feedback many times. Our goal is to learn the costs

corresponding to the user’s mental model of the values of the respective sources.

In the subsequent two sections, we discuss the implementation of the main modules in

detail. We omit further discussion of Module 1, the Schema Loader, as it is straightforward

to implement. Our discussion begins with the query creation and answering stages (boxes

2-6), and then we move on to discuss the feedback and learning stages (boxes 7 and 8).
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5.4 Queries and Query Answers

In this section, we begin by discussing the details of the schema graph (Section 5.4.1) and

cost model (Section 5.4.2), which form the basis of all query generation. Section 5.4.3

then considers how keywords are matched against the graph, and Section 5.4.4 addresses

the key problem of finding the best queries through Steiner tree generation. Finally, we

discuss how Steiner trees are converted into query templates (Section 5.4.5), and how these

templates are parameterized and executed (Section 5.4.6).

5.4.1 Foundation: the Schema Graph

As its name connotes, the schema graph is primarily at the schema and relationship level:

nodes represent source relations and their attributes and edges represent associations be-

tween the elements. Our query system additionally supports matches at the tuple level —

which is especially useful when searching topic indices and ontologies (as in Figure 5.1)

— but our emphasis is primarily on the metadata level, as explained in the previous section.

Nodes. Nodes represent source relations containing data that may be of interest. The query

answers should consist of attributes from a set of source nodes.

Edges. Within a given database, the most common associations are references: a foreign

key pointing to another relation, a hyperlink pointing to content in another database, etc.

However, a variety of additional associations may relate nodes, particularly across differ-

ent sources: subclass (“is-a”) is very common in ontologies or class hierarchies; maps-to

occurs when there exists a view, schema mapping, synonym, or correspondence table spec-

ifying a relationship between two different tables; similar-to describes an association that

requires a similarity join. All edges have cost expressions associated with them.
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5.4.2 Cost Model

The costs associated with edges in the schema graph are simple weighted linear combi-

nations of edge features. Features are domain-specific functions on edges that encode the

aspects of those edges that are relevant to user-ranking of queries: in essence, they capture

distinctions that may be relevant to a user’s preference for an edge as part of the query. The

identities of edge end-nodes are the simplest and most obvious features to use: the cost will

be a function of the nodes being associated by the edge. However, more general features,

for instance the type of association (subclass, maps-to, similar-to) used to create an edge,

are also potentially useful. Each feature has a corresponding weight, representing the rela-

tive contribution of that feature to the overall cost of the query: this is set to a default value

and then learned. Crucially, the use of common features in computing costs allows the Q

System to share information about relevance across different queries and edges, and thus

learn effectively from a small number of user interactions.

We discuss features and how they are learned in Section 5.5. For purposes of ex-

plaining query answering in this section, we note that the cost of a tree is a weighted

linear combination of the features of the edges in the tree. This model was carefully

chosen: it allows simple and effective learning of costs for the features from user feed-

back [Crammer et al., 2006a].

Intuitions behind the cost model. An edge cost in our model can be thought of as the

logarithm of the odds (in the sense of betting) that using that edge in a query leads to

worse answers (from the user’s point of view) than including the average alternative edge.

Conversely, lower costs correspond to better odds that using the edge will lead to better

answers. Since the costs are parameterized by a shared weight vector w, feedback from a

few queries will typically affect edges involved in many different queries. Selecting query

trees according to the updated weights will increase the odds that user-favored answers are

shown first.

We observe that our cost model somewhat resembles that of other keyword query sys-
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tems (e.g. [Kacholia et al., 2005]), which do not use features or learning, but often use an

additive model based on edge costs. Our notion of cost and its use in query construction is

different from the probabilities in probabilistic databases [Dalvi and Suciu, 2004], which

represent uncertainty about whether specific relationships hold. A low-cost answer tuple in

our model is not necessarily very probable, but simply one that was derived by a query that

involves associations favored by the user. Our costs are also different from edge capacities

in authority flow models [Balmin et al., 2004, Varadarajan et al., 2008], which encode the

relative strength of edges as carriers of authority between nodes. A low-cost edge in our

model is not necessarily one that passes more authority from its source to its target, but

simply one that supports a join that has proven useful.

5.4.3 Matching Keyword Queries

Given a user’s keyword query, the Q System begins by matching it against nodes in the

schema graph. A keyword query consists of a set of terms Q = {q1, . . . , qn}. Let Nq be

the set of nodes in the schema graph that match q ∈ Q, and let N =
⋃
q∈QNq. A node

matches a term if its label (consisting of the relation and attribute names) contains the term

as a substring, or, in special cases (e.g., for taxonomies and synonym tables), the instance

of the relation represented by the node contains the term.

For each q ∈ Q, we add a special keyword node q to the graph, and also edges (q, n)

for all n ∈ Nq. These new edges can be assigned costs according to an appropriate scoring

function, for instance TF/IDF. The system now attempts to find the k lowest-cost Steiner

trees that contain all of the keyword nodes.

Each such tree T also includes non-keyword nodes that are needed to complete a (con-

nected) tree. As discussed previously, the cost of T is the sum of costs of its edges, and

those costs are weighted combinations of edge features. Formally, the feature weights form

a weight vector w, and the cost C(T,w) of T is the sum of w-dependent edge costs:

C(T,w) =
∑

e∈E(T )

C(e,w) (5.1)
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Figure 5.3: Steiner trees for queries CQ2 and CQ3 in Table 5.1. Nodes matching query
keywords are shaded, with blue text.

where E(T ) is the set of edges of T .

We next discuss the process of finding Steiner trees. The goal here is to quickly (at

interactive rates) produce an ordered list of subtrees of the schema graph that purport to

satisfy the information need specified by a set of keywords. That ordered list is determined

by the current feature weight vector w. Later, the learning process will adjust this weight

vector so that the order of the returned query trees corresponds better to user preferences

about the order of the corresponding answers.

5.4.4 Steiner Tree Generation

The task of our Steiner Tree Generator is not merely to find a single Steiner tree in the

graph, as is customary in the literature — but to find the top k Steiner trees in order to

find the k best queries. Here, we are faced with the question of whether to find the actual
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STEINER (G,S,C) :

min
x,y

r∈V (G)

∑
(i,j)∈E(G)

C(i, j)× yij

s.t. S ′ = S − {r}∑
h∈V (G)

xkrh −
∑

j∈V (G)

xkjr = 1 ∀k ∈ S ′ (C1)

∑
h∈V (G)

xkkh −
∑

j∈V (G)

xkjk = −1 ∀k ∈ S ′ (C2)

∑
h∈V (G)

xkih −
∑

j∈V (G)

xkji = 0 ∀i ∈ V (G) \ S (C3)

xkij ≤ yij ∀(i, j) ∈ E(G), k ∈ S ′ (C4)

xkij ≥ 0 ∀(i, j) ∈ E(G), k ∈ S ′ (C5)

yij ∈ {0, 1} (C6)

Figure 5.4: Mixed integer program for min-cost Steiner trees.

k lowest-cost Steiner trees, or to settle for an approximation. For small graphs we use an

exact algorithm for finding the k lowest-cost Steiner trees, and for larger graphs we develop

a heuristic. This allows us to find the optimal solution for small schema graphs, and yet to

scale gracefully to larger schemas.

5.4.4.1 Steiner Trees via Integer Programming

We first formalize the Steiner tree problem. LetG be a directed graph with nodes and edges

given by V (G) and E(G), respectively. Each edge e = (i, j) ∈ E(G) has a cost C(e). We

also have a set of nodes S ⊆ V (G). A directed subtree T in G connecting the nodes in S

is known as a Steiner tree for S. The nodes in V (T ) \ S are called Steiner nodes. The cost

of T is C(T ) =
∑

e∈E(T )C(e). Finding the minimum cost Steiner tree on a directed graph

(STDG) is a well-known NP-hard problem [Wong, 1981, Garey and Johnson, 1979].

Finding a minimum-cost Steiner tree on a directed graph [Wong, 1981] can be ex-

pressed as a mixed integer program (MIP) [Wolsey, 1998] in a standard way (Fig-

ure 5.4) [Wong, 1981]. This encoding requires one of the nodes r in V (G) to be chosen as
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root of the Steiner tree. Hence, the minimum cost Steiner tree can be obtained by running

the appropriate MIP with each node in V (G) taken as root separately and then selecting

the lowest-cost tree from at most |V (G)| candidates. This can be time consuming espe-

cially for large schema graphs. For the experiments reported in this chapter, we convert

every schema graph edge (which, despite describing a foreign key, is really a bidirectional

association) to a pair of directed edges. With such bi-directional edges, one can find the

minimum cost Steiner tree by solving STEINER (G,S,C) with any of the nodes in S fixed

as root, avoiding the need to iterate over all the vertices in the graph. Unless otherwise

stated, we assume the graph to be bi-directional in what follows. In STEINER (G,S,C),

an edge (i, j) ∈ E(G) is included in the solution iff yij = 1. The MIP STEINER (G,S,C)

that finds the lowest-cost (according to cost function C) Steiner tree in G and containing

nodes S can be viewed as a network flow problem where xkij specifies the amount of flow

of commodity k flowing on edge (i, j). Flow on an edge (i, j) is allowed only if that edge is

included in the solution by setting yij = 1. This is enforced by constraint C4. All flows are

nonnegative (constraint C5). Flow of commodity k originates at the root r (constraint C1)

and terminates at node k (constraint C2). Conservation of flow at Steiner nodes is enforced

by constraint C3.

However, we need more than just the minimum-cost tree: we need the k lowest-cost

trees. To achieve this, we modify the MIP of Figure 5.4 so that it can be called multiple

times with constraints on the sets of edges that the solution can include. The modified

program is shown on Figure 5.5.

The MIP STEINERIE(G,S, I,X,C) finds the lowest cost (according to cost function

C) Steiner subtree of G rooted at r that contains the nodes in S, which must contain the

edges in I and cannot contain any edge in X . C9 guarantees that there is flow of at least

one commodity on all edges in I . T1 with C7-C9 enforce the inclusion constraints, while

the exclusion constraints are enforced by C10. We must also ensure the result will be a

tree by requiring flow to pass through the source nodes of the edges in I . Step T1 expands

S by including source nodes of the edges in I . This ensures there is a directed path from
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STEINERIE(G,S, I,X,C) :

min
x,y
r∈S

∑
(i,j)∈E(G)

c(i, j)× yij

S+ = S ∪ {i : (i, j) ∈ I} (T1)
s.t.

Constraints C1-C6 from STEINER(G,S+, C)∑
h∈V (G)

yhr = 0 (C7)

∑
h∈V (G)

yhi ≤ 1 ∀i ∈ V (G) \ {r} (C8)

∑
k∈S′

xkij ≥ 1 ∀(i, j) ∈ I (C9)

yij = 0 ∀(i, j) ∈ X (C10)

Figure 5.5: MIP for Steiner tree with inclusions and exclusions.

root r to the source nodes of the edges that must be included. C7 ensures that there is no

incoming active edge into the root. C8 ensures that all nodes have at most one incoming

active edge.

5.4.4.2 K-Best Steiner Trees

To obtain the k lowest-cost Steiner trees, where k is a predetermined constant,

we use KBESTSTEINER (Algorithm 3), which uses the MIP STEINERIE as a sub-

routine. KBESTSTEINER is a simple variant of a previous top k answers algo-

rithm [Kimelfeld and Sagiv, 2006, algorithm DQFSearch], which in turn generalizes a pre-

vious k-best answers algorithm for discrete optimization problems [Lawler, 1972].

We are not the first to use lowest-cost Steiner trees to rank keyword query results, but

we are the first to use the resulting rankings for learning. In addition, in the previous

work [Kimelfeld and Sagiv, 2006], the graph represents actual data items and their associ-

ations, and the Steiner trees are possible answers containing given keywords. Since data

graphs can be very large, the method is primarily of theoretical rather than practical inter-
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Algorithm 3: KBESTSTEINER(G,S,C, k). Input: Schema graph G, keyword nodes
S, edge cost function C, number of returned trees k. Output: List of at most k trees
sorted by increasing cost.

1: Q← empty priority queue
{Q contains triples (I,X, T ) sorted by T ’s cost.}

2: T = STEINERIE(G,S, ∅, ∅, C)
3: if T 6= null then
4: Q.INSERT((∅, ∅, T ))
5: end if
6: A← empty list
7: while Q 6= ∅ ∧ k > 0 do
8: k = k − 1
9: (I,X, T )← Q.DEQUEUE()

10: A.APPEND(T )
11: Let {e1, . . . , em} = E(T ) \ I
12: for i = 1 to m do
13: Ii ← I ∪ {e1, . . . , ei−1}
14: Xi ← X ∪ {ei}
15: Ti ← STEINERIE(G,S, Ii, Xi, C)
16: if Ti is a valid tree then
17: Q.INSERT((Ii, Xi, Ti))
18: end if
19: end for
20: end while
21: return A

est. In our application, however, we work on much smaller schema graphs, and each tree

corresponds to a whole query that may yield many answers, not a single answer.

5.4.4.3 K-Best Steiner Tree Approximation

As we show in Section 5.6, our Steiner formulation works for medium-scale schema graphs

(around 100 nodes). To scale k-best inference to much larger schema graphs, we developed

the following novel pruning heuristic.

Shortest Paths Complete Subgraph Heuristic (SPCSH) We explore using reduc-

tions [Duin and Volgenant, 1989, Winter and Smith, 1992] to prune the schema graph to
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scale up KBESTSTEINER to larger schema graphs. SPCSH keeps only the subgraph in-

duced by the m shortest paths between each pair of nodes in S. The intuition for this

is that there should be significant edge overlap between the k-best Steiner trees and the

subgraph induced by the m-shortest paths, thereby providing good approximation to the

original problem while reducing problem size significantly. SPCSH then computes the

k-best Steiner trees by invoking KBESTSTEINER on the reduced subgraph.

Algorithm 4: SPCSH(G,S,C, k,m). Input: Schema graph G, keyword nodes S,
edge cost function C, number of returned trees k, number of shortest paths to be used
m. Output: List of at most k trees sorted by increasing cost.

1: L← empty list
2: for all (u, v) ∈ S × S do
3: P ← G.SHORTESTPATHS(u, v, C,m)
4: L.APPEND(P )
5: end for
6: G(S,C,m) ← G.SUBGRAPH(L)
7: return KBESTSTEINER(G(S,C,m), S, C, k)

In SPCSH, G.SHORTESTPATHS(u, v, C,m) returns at most m shortest (least costly)

paths between nodes u and v of G using C as the cost function. Efficient algorithms

to solve this problem are known [Yen, 1971]. SPCSH is similar to the distance net-

work heuristic (DNH) for Steiner tree problems on undirected graphs [Winter, 1987,

Winter and Smith, 1992], but there are crucial differences. First, DNH works on the set

S-induced complete distance network in G while SPCSH uses a subgraph of G directly.

Second, DNH uses a minimum spanning tree (MST) approximation while we use exact

inference, implemented by KBESTSTEINER, on the reduced subgraph. Third, DNH con-

siders only the shortest path for each vertex pair in S × S, while SPCSH considers m

shortest paths for each such vertex pair.

98



5.4.5 From Trees to Query Templates

The next task is to go from top k Steiner trees to a set of conjunctive queries, all outputting

results in a common schema and returning only attributes in which the query author is in-

terested. This is accomplished by first converting the top Steiner trees into conjunctive

queries; then combining the set of conjunctive queries into a union view that produces a

unified output relation; next, supporting user refinement of the view, e.g., to add projec-

tions; finally, naming and saving the view persistently with a Web form.

Converting Steiner trees to conjunctive queries. The task of generating conjunctive

queries from Steiner trees is fairly straightforward. Each node in the Steiner tree typically

represents a relation; traversing an edge requires a join. (In a few cases, a keyword may

match on a tuple in, e.g., a topic index or ontology, and now the match represents a selection

predicate.) In our implementation, the edges in our schema graph are annotated with the

appropriate dereferencing information, typically foreign keys and keys. Here the query is

formed by adding relations plus predicates relating keys with foreign keys. We require a

query engine that supports queries over remote sources (such as the ORCHESTRA engine

we use, described in Section 5.4.6), and we assume the existence of “wrappers” to abstract

non-relational data into relational views.

Union view. The union of the queries derived from the top k Steiner trees form a single

union view. Since each tree query may consist of source data from relations with different

schemas, an important question is how to represent the schema for the union view. To

create an initial version of the union view, we adopt a variation of the outer union (disjoint

union) operator commonly used in relational-XML query processing [Carey et al., 2000].

Essentially, we “align” keys and attributes that have the same name, and pad each result

with nulls where it does not have attributes.

View refinement. Next, allow the user to refine the view definition by adding projections,

or aligning additional attributes from different source relations. This is done through an

AJAX-based Web interface, which provides rapid feedback on how user selections affect
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the output. Projection and attribute alignment are achieved as follows. In a scrollable pane,

we create a column for each keyword ki. Then, for each conjunctive query in the view,

we output a row in this pane, in which we populate each column i with the schema of the

relation ri that matches ki. Each attribute in the schema is associated with a check box —

unchecking the check box will project the attribute out from the view. Additionally, there

is a text field through which the attribute can be renamed as it is output in the view. If two

source attributes are renamed to the same name, then their output will be automatically

aligned in the same output column.

Web form. The result of refinement is an intuitive Web-based form created from (and

backed by) the view, as previously shown in Figure 5.1b. To reiterate, this form represents

not one query but a family of queries, as it may be parameterized the the user. The query

author will name and save the view and Web form, making it available for parameterization

and execution.

5.4.6 Executing a Query

The user of a Web form (who may or may not be its creator) may retrieve the form via a

bookmark, or by looking it up by its name and/or description. Each field in the Web form

has a check box, which can be deselected to further project out information. The biologist

may add selection predicates by filling in values in text boxes, or, for attributes with only

a few values, by selecting from a drop-down list. Finally, alongside each item, there is a

description of one or more sources from which the attribute is obtained — depending on

space constraints — to help the biologist understand what the attribute actually means.

Query execution with provenance. Once the query is parameterized, the user will request

its execution. Based on the query or queries that produced it, each tuple output by the

query processor receives a score, which is the cost of the query that generated it. If a tuple

is derived from multiple queries, it receives the lowest (minimum-cost) score. Rather than

build our own query engine specifically for the Q System, we adopt the query processor
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used in the ORCHESTRA system [Green et al., 2007a].

When computing query results, ORCHESTRA also records their provenance in the form

of a derivation graph, which can be traversed and retrieved. The same tuple may be

derived from more than one query: hence in queries produced by the Q System, the prove-

nance of a tuple is a tree-structured representation specifying which queries were applied

to which source tuples, in order to derive the result tuple.

The existing ORCHESTRA system encodes provenance as a graph represented in rela-

tions, since it must support recursive queries whose provenance may be cyclic. Since all

queries from the Q System are tree-structured and thus acyclic, we modified the query

answering system to compute the provenance in-line with the query results: each tuple is

annotated with a string-typed attribute containing the provenance tree expression, including

the keys and names of the specific source tuples, and any special predicates applied (e.g.,

tests for similarity). This annotation adds only the overhead of casting attributes to strings

and concatenating them to query processing — rather than materializing extra relations.

We note that, for situations in which all of the top k queries’ cost expressions are

independent of tuple data, we can simplify even further, and simply tag each tuple with the

ID of the query. However, for regularity across all answers, we use the previous scheme

that encodes full details about the source tuples.

In our experience and that of our collaborators, the majority of bioinformatics queries

have selective conditions, so we work under the assumption that any given query typically

returns few answers. This has an important benefit in our context: it means that we can

compute the entire set of answers satisfying the top queries — and as a result, compute

the complete provenance for each tuple in terms of the queries. We need this complete

information in order to provide proper feedback to the learning stages of the system, which

we describe next.
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5.5 Learning from Feedback

Interaction with the Q System does not stop once query answers have been returned. In-

stead, the user is expected to provide feedback that helps the system learn which answers

— thus, which queries and ultimately which features in the schema graph — are of greater

relevance to the user.

The user provides feedback through the Results/Feedback Page, which shows query

results in a table. When the user “mouses over” a tuple, Q provides a pop-up balloon

showing the provenance of the tuple, in terms of the Steiner tree(s) that produced it; in

many situations this is useful in helping the user understand how the tuple was created.

The user may click on a button to tell our Q System that a given tuple should be removed

from the answer set, another button instructing Q to move the tuple to the top of the results,

or may input a number to indicate a new position this tuple should have in the output. In

the cases we consider here, the cost (and thus rank) of a tuple is dependent solely on the

query, and therefore the feedback applies to all tuples from the same query.

5.5.1 Basis of Edge Costs: Features

As we discussed previously, edge costs are based on features that allow the Q System

to share throughout the graph what it learned from user feedback on a small number

of queries. Such features may include the identity of nodes or edge end-nodes, or the

overall quality of the match for an edge representing an approximate join. We now de-

fine features and their role in costs more precisely. Let the set of predefined features be

F = {f1, . . . , fM}. A feature maps edges to scalar values. In this chapter, all feature val-

ues are binary, but in general they could be real numbers measuring some property of the

edge. For each edge (i, j), we denote by f(i, j) the feature vector that specifies the values

of all the features of the edge. Each feature fm has a corresponding weight wm. Informally,

lower feature weights indicate stronger preference for the edges that have those features.
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(b) Cost=4.58

Figure 5.6: Re-ranked Steiner trees with costs updated as discussed in the text. The
updated edge is thicker and red.

Edge costs are then defined as follows:

C((i, j),w) =
∑
m

wm × fm(i, j) = w · f(i, j) (5.2)

where m ranges over the feature indices.

To understand features, weights, and the learning process, consider an example with the

two Steiner trees in Figure 5.3, which correspond to queries CQ2 and CQ3 in Table 5.1.

Their costs are derived from features such as the following, which test the identity of edge

end-nodes:

f8(i, j) =

 1 if i = Term(T1) & j = Term2Term

0 otherwise

f25(i, j) =

 1 if i = Term(T1)

0 otherwise
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Suppose that w8 = 0.06, w25 = 0.02. Then the score of the edge (i = Term(T1), j =

Term2Term) in Figure 5.3(b)1 would be C(i, j) = w8 × f8(i, j) + w25 × f25(i, j) = 0.08.

Now suppose that, as mentioned in the previous section, the user is presented with tu-

ples generated by the tree queries of Figures 5.3(a) and (b), annotated with provenance

information. Since CQ2’s tree has a lower cost than CQ3’s tree, tuples generated by ex-

ecuting CQ2 are ranked higher. The difference between CQ2 and CQ3 is that while CQ2

uses the synonym relation (Term Syn), CQ3 uses the ontology relation (Term2Term). Sup-

pose that the user prefers tuples produced by CQ3 to those produced by CQ2. To make that

happen, the learning algorithm would update weights to make the cost of the second tree

lower than the cost of the first tree so that in a subsequent execution, tuples from the second

tree are ranked higher. Setting w8 = 0.01, w25 = 0.02 would achieve this, causing the two

tree costs be as shown in Figure 5.6. Of course, the key questions are which weights to

update, and by how much. We now discuss the actual learning algorithm.

5.5.2 Learning Algorithm

We use an online learning algorithm, that is, an algorithm that updates its weights after

receiving each training example. Algorithm 9 is based on the Margin Infused Relaxed

Algorithm (MIRA) [Crammer et al., 2006a]. MIRA has been successfully applied to a

number of learning problems on sequences, trees, and graphs, including dependency pars-

ing in natural-language processing [McDonald and Pereira, 2006] and gene prediction in

bioinformatics [Bernal et al., 2007].

The weights are all zero as Algorithm 9 starts. After receiving feedback from the

user on the rth query Sr about a top answer, the algorithm computes the list B of the

k lowest-cost Steiner trees using the current weights. The user feedback for interaction

r is represented by the keyword nodes Sr and the target tree Tr that yielded the query

1For the sake of simplicity, we consider only simple paths here. However, the Q System is capable of
handling arbitrary tree structures. This is an improvement over previous systems [Boulakia et al., 2007] that
can handle path queries only.
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Algorithm 5: ONLINELEARNER(G,U, k). Input: Schema graph G, user feedback
stream U , required number of query trees k. Output: Updated costs of edges in G.

1: w(0) ← 0
2: r = 0
3: while U is not exhausted do
4: r = r + 1
5: (Sr, Tr) = U.NEXT()
6: Cr−1(i, j) = w(r−1) · fij ∀(i, j) ∈ E(G)
7: B = KBESTSTEINER(G,Sr, Cr−1, K)
8: w(r) = arg minw

∥∥w− w(r−1)
∥∥

9: s.t. C(T,w)− C(Tr,w) ≥ L(Tr, T ) ∀T ∈ B
10: w · fij > 0 ∀(i, j) ∈ E(G)
11: end while
12: Let C(i, j) = w(r) · fij ∀(i, j) ∈ E(G)
13: Return C

answers most favored by the user. The algorithm then updates the weights so that the cost

of each tree T ∈ B is worse than the target tree Tr by a margin equal to the mismatch

or loss L(Tr, T ) between the trees. If Tr ∈ B, because L(Tr, Tr) = 0, the corresponding

constraint in the weight update is trivially satisfied. The update also requires that the cost

of each edge be positive, since non-positive edge costs are not allowed in the Steiner MIP.

An example loss function, which is used in the experiments reported in this chapter, is the

symmetric loss:

L(T, T ′) = |E(T ) \ E(T ′)|+ |E(T ′) \ E(T )| (5.3)

The learning process proceeds in response to continued user feedback, and finally re-

turns the resulting edge cost function.

The edge features used in the experiments of the next section are simply the identities

of the source and target nodes, plus a single default feature that is on for all edges. The

default feature weight serves as a cost offset that is automatically adjusted by Algorithm 9

to ensure that all edge costs are positive.

105



5.6 Experimental Results

Our Q prototype consists of four primary components. The k-best Steiner tree algorithm

uses the MOSEK 5.0 integer linear program solver, run on a dual-core Linux machine

(2.6.18.8 kernel) with 12GB RAM. Query refinement is provided by a Java servlet running

on Apache Tomcat 6.0.14. Query answering with data provenance is performed by the

ORCHESTRA system [Green et al., 2007a], implemented in Java 6 and supported by IBM

DB2 9.1 on a Windows 2003, Xeon 5150 server. Finally, the machine learning component

is also implemented in Java 6.

5.6.1 Experimental Roadmap

In this chapter, we answer the following questions experimentally:

• Can the system start with default costs on all edges, and based on limited feedback over

query answers, generalize the feedback to learn new rankings that enable it to produce

“gold standard” (i.e., correct and complete according to expert opinion) queries? How

many feedback iterations are necessary?

• How long is the response time (1) in processing feedback and generating new top-k

queries, and (2) simply in generating top-k queries from the schema graph?

• How does our performance scale to large, real cross-database schema graphs?

We note that our evaluation focuses purely on the tasks of learning and generating queries.

Our interest is not in measuring the response times of the query engine, which is orthog-

onal to this work. The Q System returns the top k queries in pipelined fashion, and most

modern data integration query processors begin pipelining query answers as soon as they

receive a query [Chandrasekaran et al., 2003, Ives et al., 1999]. We also do not duplicate

the work of [Boulakia et al., 2007, Mork et al., 2002] by performing user studies compar-

ing with existing keyword search systems: that previous work already demonstrated that
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Figure 5.7: Learning curves of top k trees, k = 1, 2, 3 against gold standard as feedback is
provided, with error bars showing best/worst performance, based on different feedback or-
ders. There are 25 expert queries and the results are averaged over 3 random permutations
of the queries.

query answers need to be ranked by source authority/quality and not according to keyword

search metrics like path length or term similarity.

Data Sets and Methodology

We conducted our experiments (except for the final experiment focusing on very large

schema graphs) using data from a previous biomedical information integration system,

BioGuide (www.bioguide-project.net) [Boulakia et al., 2007]. BioGuide is, to

a significant extent, a baseline for comparison, as it provides ranked answers over
107
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a schema graph, given weights set by biological domain experts. The data that the

BioGuide developers kindly supplied includes schema graphs with record linking ta-

bles between bioinformatics data sources, edge costs determined by a panel of experts

based on reliability and completeness judgments, and expert queries (http://bioguide-

project.net/project/BioGuideQueryExamples.htm). An example of an expert query is,

“What are the related proteins and genes associated with the disease narcolepsy?” From

such queries, a set of keywords on concepts can be easily extracted. These form our query

workload.

Since BioGuide does not support the kind of learning from feedback we describe here,

we used the BioGuide schema graph and set the expert-determined edge costs to create

a “gold standard” against which to compare automatic learning. For a given query, the

lowest-cost Steiner tree according to expert costs is taken to be what the simulated user

prefers, and is used both as feedback in the learning process and as the gold standard for

evaluation. Our goal in the near future is to work with our bioinformatics collaborators

to deploy the Q System in real applications, and to conduct user studies in this context to

confirm our preliminary results.

5.6.2 Learning against Expert Costs

We first investigate how quickly (in terms of feedback steps) the Q System can learn edge

costs that yield the same query rankings as the gold standard obtained from expert-provided

costs. Note that this is stronger than simply learning, based on feedback, which query the

user prefers: our goal is to take feedback over a subset of the queries, and generalize that

in a way that lets the system correctly predict which future queries are preferred.

We converted each expert query into a query template in which each keyword picks out

a single table. For instance, for the narcolepsy query mentioned above, the template would

be “What are the related proteins (in [DB1]) and genes (in [DB2]) associated with disease

Narcolepsy in [DB3]?”. Here, [proteins], [genes] and [disease] are entities while [DB1],

[DB2] and [DB3] are table names that need to be filled in. Using substring matching
108



on table names, we populated these query templates by filling in the [DB] slots; each

such instantiated template forms a query. For the experiments reported in this section, we

generated 25 such queries and matched them over the BioGuide schema graph.

We created a feedback stream by randomly selecting a sequence in which the queries

will be posed. For each such stream, we paired each query with the corresponding lowest-

cost Steiner tree over our schema graph according to expert edge costs. We then applied

Algorithm 9 to each stream, with the goal of learning the feature weightings that returned

top query. At each point in the stream, our goal is to measure how well the top k algorithm’s

results for all of the 25 queries agree with the gold standard for those queries.

Thus, we simulate the interaction between the algorithm and a user who poses suc-

cessive queries, examines their answers, supplies feedback about which is the best answer

to this query, and moves on to the next query. However, to measure the quality of learn-

ing at each point, we need more than just the current query. We also need all the queries

that could have been posed, both past and future ones, since the algorithm may change its

weights in response to a later interaction in a way that hurts performance with previously

submitted queries. The system behavior we aim for is that as this process continues, the

queries preferred by the system will agree better with the user’s preferences.

The results appear in Figure 5.7. For k = 1, 2 & 3, we plot the mean and min/max

error bars (across the different random query-feedback stream sequences; note these are

not confidence intervals) of how many of the 25 queries fail to have the gold standard tree

within the top k trees computed with current weights. We conclude that the learning algo-

rithm converges rapidly: that is, it quickly learns to predict the best Steiner tree consistent

with the experts’ opinion. After 10-15 query/feedback steps, the system is returning the

best Steiner tree in one of the top three positions, and often the top position: Q begins to

return the correct queries for all queries, given feedback on 40-60% of them.
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5.6.3 Feedback and Query Response Time

Given that our goal is to provide an interactive query interface to the user, it is vital that our

feedback process, as well as the creation of new top queries based on the feedback, be at a

rate that is sufficient for interactivity.

To evaluate the feedback and query generation times, we fix the schema graph and

measure (1) the time to process a “typical” user feedback given over a set of top answers,

and (2) the time to create a set of queries based on that feedback. Assuming a search

engine-like behavior pattern, the user will not look at answers that are beyond the first

page of results; moreover, the user will only provide feedback on a few items. Hence, we

measured the time taken to retrain and regenerate the set of top queries based on feedback.

This took an average of 2.52 sec., which is easily an interactive rate.

A separate but related question is how quickly we can generate queries, given an exist-

ing set of weight assignments. Such a case occurs when a user retrieves an existing Web

form and simply poses a query over the existing schema graph. We term this the decoding

time, and Table 5.2 shows the total time it takes to generate the top 1, 5, 10, and 20 queries

over the BioGuide schema graph (whose parameters are shown). In general, 5-10 queries

should be sufficient to return enough answers for a single screenful of data — and these

are returned in 2-4 seconds. Particularly since query generation and query processing can

be pipelined, we conclude that response rates are sufficient for user interaction.

Test K Graph (G) Size Decoding
(Nodes, Edges) Time (s)

1 (28, 96) 0.11
5 (28, 96) 2.00

10 (28, 96) 4.02
20 (28, 96) 8.32

Table 5.2: Average per-query decoding times (sec.) for requesting top-1 through -20
results over BioGuide schema.

110



5.6.4 Schema Graph Size Scalability

We have shown that the Q system scales well to increased user demand for answers. A

second question is how well the system scales to larger schema graphs — a significant issue

in the life sciences. Given that the Steiner tree problem is NP-hard, we will need to use

our SPCSH algorithm (Sec. 5.4.4.3), but now the question is how well it performs (both in

running time and precision.) To evaluate this, we used a different real-world schema graph

based on mappings between the Genomics Unified Schema (www.gusdb.org), BioSQL

(www.biosql.org), and relevant portions of Gene Ontology (www.geneontology.org). We

call this the GUS-BioSQL-GO schema. The schema graph had 408 relations (nodes) and a

total of 1366 edges. The edge weights were set randomly.

K KBEST- SPCSH Speedup Approx. Symm.
STEINER (s) (s) Ratio (α) Loss

1 1.2 0.1 12.0 1.0 0
2 43.8 3.0 14.6 1.0 0
3 111.8 5.5 20.3 1.0 0
5 1006.9 13.9 72.4 1.0 0

Table 5.3: Decoding times (sec.) of KBESTSTEINER and SPCSH with K ranging from 1
to 5, and m from 1 to 3. Also shown are the speedup factors, the approximation ratio, α,
between the cost of SPCSH’s and KBESTSTEINER’s top predictions (α = 1.0 is optimal)
and the symmetric loss (Equation 6.2) between the top predictions of the two methods.
Results were averaged over 10 queries, each consisting of 3 keywords.

We use SPCSH to compute top-K Steiner trees on the GUS-BioSQL-GO schema

graph. SPCSH is an approximate inference scheme, while KBESTSTEINER performs ex-

act inference. Hence, the top prediction of KBESTSTEINER is always optimal. In Table 5.3,

SPCSH’s decoding time and inference quality is compared against KBESTSTEINER on

the GUS-BioSQL-GO schema. Table 5.3 demonstrates that SPCSH computes the k-best

Steiner trees (for various values of k) at a much faster rate than the previous method, while

maintaining quality of prediction (α is 1.0). In fact, in our experiments, SPCSH’s predic-

tions were always optimal. We believe this demonstrates that our approach scales to large

schema graphs without sacrificing result quality. We also reiterate that the time to generate
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the first query is of primary importance here: other queries can be pipelined to execution

as they are produced.

5.7 Summary of Chapter

In this chapter, we have addressed the problem of helping scientific users author queries

over interrelated biological and other data sources, without having to understand the full

complexity of the underlying schemas, source relationships, or query languages. In gen-

eral, such scientists would like to rely on expert-provided weightings for data sources and

associations, and use the best of these to guide their queries. However, experts are not

always available to assess the data and associations, and moreover, the utility of a given

association may depend heavily on the user’s context and information need.

Our approach is based on matching keywords to a schema graph with weighted edges,

allowing the user to refine the query, then providing answers with data provenance. As the

user provides feedback about the quality of the answers, we learn new weightings for the

edges in the graph (associations), which can be used to refine the query and any related

future queries.

We have demonstrated that our approach balances the task of finding the top-k queries

with the ability to learn new top queries based on feedback. The Q System learns weights

that return the top answers rapidly — both in terms of number of interactions, as well as

in the computation time required to process the interactions. Using real schemas and map-

pings, we have shown that we can use an exact top-k solution to handle schema graphs with

dozens of nodes and hundreds of edges, and we can easily scale to hundreds of nodes and

thousands of edges with our SPCSH approximation algorithm, which in all cases returned

the same top answers as the exact algorithm.

In the next chapter, we shall explore how information in new sources can be quickly

made available to the user within the Q system.
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Chapter 6

Automatically Incorporating New

Sources in Q

Some parts of this chapter are based on [Talukdar et al., 2010].

6.1 Introduction

In this chapter, we propose a information need-driven integration strategy for auto-

matically incorporating new sources and their information in the Q system which was

presented in Chapter 5. We shall continue to call the new system Q, as it essen-

tially extends capabilities of the original Q system (presented in Chapter 5), while

reusing many of its core components. The improved Q optionally starts with a

set of databases that may be interlinked through the use of common identifiers or

through correspondence tables, but it does not have a full mediated schema. A

user specifies an information need through a keyword query. Using ideas from key-

word search in databases [Bhalotia et al., 2002, Botev and Shanmugasundaram, 2005,

Hristidis and Papakonstantinou, 2002, Kacholia et al., 2005] and keyword-based data in-

tegration [Talukdar et al., 2008b], our system defines a ranked view consisting of a union

of conjunctive queries over different combinations of the sources. This view is made per-
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sistent. As users (or a Web crawler) register new databases, each such source’s relevance to

existing views is considered, using information about data-value overlap as well as schema

alignment costs from existing schema matchers. If the source is found to be highly relevant

to the query, then the query results are refreshed as appropriate. Now the users of the view

may provide feedback on the contents of the view: certain new results may be valuable,

or possibly erroneous. As the system gets feedback about erroneous results, it adjusts the

costs it has assigned to specific mappings or alignments so that associations responsible for

the errors are avoided.

Our approach is related to recent work on interactive, user-driven integration, where the

system makes a best-effort attempt to get the information, and a user or community of users

attempts to refine the results, in particular dataspaces [Franklin et al., 2005] and best-effort

integration [Shen et al., 2008]. The key distinctions are that we attempt to automatically

discover semantic links among data sources, and to use a data-driven approach to providing

feedback to the system. Any form of automatic schema alignment is likely to make errors,

especially at scale; the challenge is to determine when and where there are mistakes. Sim-

ply “eyeballing” the output mapping is unlikely to help identify what is correct. However,

if a domain expert is looking at data from the perspective of a particular information need,

he or she is (1) likely to invest some effort in ensuring the quality of results, (2) likely to

recognize when results do not make sense.

Only very recently has learning been applied to feedback over database query answers,

and that work was limited to learning cost assignments for exact match conditions. Given

a set of keywords and a known set of schema element correspondences, the cross-database

query system in [Talukdar et al., 2008b] sought to learn from user feedback the most useful

“join paths” for combining the relations. In this chapter we go significantly beyond that

work, as the improved Q learns not only how to adjust weights for individual alignments,

but also how to combine the outputs from different schema matchers. These tasks require

careful formulation of the learning problem, in particular with respect to how learner uses

features of the potential links between data sources.
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We make the following contributions:

• We create a novel “pluggable” architecture that uses matching tools to create alter-

native potential alignments.

• We develop an automatic, information need-driven strategy for schema alignments

that, for a given top-k keyword query and a new source, only aligns tables against

the new source if there is potential to affect the top-k query results.

• We develop a unified representation for data values and attribute labels, using edge

costs to measure relatedness; this facilitates both ranked querying and learning.

• We incorporate state-of-the-art alignment components from the

database [Do and Rahm, 2007] and machine learning [Talukdar et al., 2008d]

literature, and show how to combine their outputs.

• We propose the use of the random-walk-inspired algorithm Modified Adsorption

(MAD) [Talukdar and Crammer, 2009], presented in Chapter 4, to detect schema

alignments, and study its effectiveness instead of, and in combination with, the

COMA++ tool [Do and Rahm, 2007].

• We apply a machine learning algorithm called MIRA [Crammer et al., 2006b], to

learn not only correct attribute alignments, but also how to combine information from

multiple matching tools. Unlike the learning techniques applied in schema matching

tools, our techniques are based on feedback over answers.

We experimentally evaluate our techniques over bioinformatics schemas and data,

demonstrating effectiveness of the proposed methods.

The remainder of this chapter is structured as follows. First, in Section 6.2 we re-

view the basics of keyword search-based data integration, introduce our specific model,

and describe our basic problem setup. Section 6.3 then presents our solution to the prob-

lem of determining when a new source is relevant to an existing view, through the use of

focused schema alignment tasks. Section 6.4 describes how we learn to adjust the align-

ments among attributes, and their weights, from user feedback. We experimentally analyze
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our system’s effectiveness in Section 6.5. We discuss related work in Section 6.6, before

concluding and describing future work in Section 6.7.
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Figure 6.1: Basic architecture of Q. The initial search graph comes from the sources known at startup. At query time this is
expanded into a query graph, from which queries and ultimately results are generated. The search graph maintenance modules,
the focus of this chapter, handle user feedback and accept new source registrations, in order to update the search graph with
new alignments — triggering recomputation of the query graph and query results in response.
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6.2 Search-Based Integration

This chapter adopts a keyword search query model [Bhalotia et al., 2002,

Hristidis and Papakonstantinou, 2002, Kacholia et al., 2005, Talukdar et al., 2008b]

in which keywords are matched against elements in one or more relations in different

data sources. The system attempts to find links between the relations matching the given

keywords. Such links are proposed by different kinds of associations such as foreign key

relationships, value overlaps or global identifiers, similarity predicates, or hyperlinks. In

general, there may be multiple relations matching a search keyword, and multiple attribute

pairs may align between relations, suggesting many possible ways to join relations in

order to answer the query.

Figure 6.1 shows the basic architecture of our Q system. We start with an initial search

graph generated from existing data source relations and the associations among them. Dur-

ing the view creation and output stage, a keyword search is posed against this search graph,

and results in a top-k view containing answers believed to be relevant to the user. The def-

inition and contents of this view are maintained continuously: both the top-scoring queries

and their results may need to be updated in response to changes to the underlying search

graph made (1) directly by the user, who may provide feedback that changes the costs of

certain queries and thus query answers; (2) by the system, as new data sources are discov-

ered, and their attributes are found to align with the existing relations in the search graph,

in a way that results in new top-k answers for the user’s view. We refer to the process of

updating the schema graph’s nodes and associations as search graph maintenance. In fact,

there is interplay between the two graph maintenance mechanisms and the view creation

and output stage, as the system may propose an alignment, the view’s contents may be up-

dated, the user may provide feedback on these results, and the view output may be updated

once again. All of this is focused around alignments that are relevant to the user’s ongoing

information need.
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Figure 6.2: Search graph with weighted associations, indicated by bidirectional edges with
cost terms ci. Note the association between the table pub, the abbreviation pub, and the
term publication, specified in the abbrevs table.

6.2.1 Initial Search Graph Construction
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Figure 6.3: Query graph, given a series of keyword search terms. In general, each keyword
may match a node with a similarity score sci, for which a weight coefficient wci is to be
assigned by the system.

Before any queries are processed, an initial search graph is created (leftmost module in

Figure 6.1) to represent the relations and potential join links that we already know about.

Q first scans the metadata in each data source, determining all attribute and relation names,

foreign keys, external links, common identifiers, and other auxiliary information. The basic

search graph (see Figure 6.2 for an example) consists of two types of nodes: relations, rep-

resented by rounded rectangles, and attributes, represented by ellipses. We add undirected

edges between attributes and the relations that contain them (with zero-cost, indicated as

thin lines with no annotations), and between tables connected by a key-foreign-key rela-
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tionship (bold lines with costs cf1, . . . , cf3) initialized to a default foreign key cost cd.

The graph is extended with bidirectional association edges drawn from the results of

hand-coded schema alignments (or possibly the results of schema matching tools, such

as the ones we consider in this study, which are a label propagation algorithm and the

COMA++ schema matcher). Such associations may be within the same database (such as

those added between InterPro2GO and entry2pub, or entry.name and pub.title)

or across databases. Each of these associations receives a cost (ca1, . . . , ca3 in Figure 6.2)

based on the alignment confidence level.

Each tuple in each of the tables is a virtual node of the search graph, linked by zero-

cost edges to its attribute nodes. However, for efficiency reasons we will add tuple nodes

as needed for query interpretation. Once the search graph has been fully constructed, Q is

ready for querying, and ready to learn adjustments to the costs cci, caj , and cfk or to have

new association edges added.

6.2.2 Views from Keyword Queries

Given a keyword query Q = {K1, . . . , Km}, we dynamically expand the search graph into

a query graph as follows. For each Ki ∈ Q, we use a keyword similarity metric (by default

tf-idf, although other metrics such as edit distance or n-grams could be used) to match the

keyword against all schema elements and all pre-indexed data values in the data sources.

We add a node representing Ki to the graph (see Figure 6.3, where keyword nodes are

represented as boldfaced italicized words). We then add an edge from Ki to each graph

node (approximately) matching it. Each such edge is assigned a set of costs, including

mismatch cost (e.g., s2 in the figure) that is lower for closer matches, and costs related to

the relevance of the relations connected by the edge. The edge also has an adjustable weight

(for instance w2) that appropriately scales the edge cost to yield an overall edge cost (for

instance c2). Additionally, we “lazily” bring in data values as necessary. For each database

tuple matching the keyword, we add a node for each value in the tuple, with a similarity

edge between the value and the Ki node (e.g., wc3s3 to plasma membrane, where s3 is
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the mismatch cost and wc3 represents the starting weight for that edge). To complete the

graph, we add zero-cost edges between tuple value nodes and their corresponding attribute

nodes.

From this query graph, each tree with leaf nodes K1 . . . Km represents a possible join

query (each relation node in the tree, or connected to a node in the tree by a zero-cost edge,

represents a query atom, and each non-zero-cost edge represents a join or selection condi-

tion). As described in [Talukdar et al., 2008b], Q runs a top-k Steiner tree algorithm (using

an exact algorithm at small scales, and an approximation algorithm [Talukdar et al., 2008b]

at larger scales; STAR [Kasneci et al., 2009] could also be used) to find the k lowest-cost

Steiner trees.

From each such tree Q, we generate a conjunctive SQL query that constructs a list of

items for the SQL select, from, and where clauses, and an associated cost expression

for the particular query. For efficiency reasons, we only incorporate value-based similarity

predicates in matching keywords to data or metadata, not in joining one item with another;

hence the cost of each query is independent of the tuples being processed. (In ongoing

work we are incorporating similarity joins and other operations that vary in cost from one

tuple to the next.)

The individual SQL statements must be unioned together in increasing order of as-

sociated cost. This actually requires a disjoint or “outer” union: each query may output

different attributes, and we want a single unified table for output. However, we would like

to place conceptually “compatible” output attributes from different queries into the same

column.

We start by defining the query output schema QA to match the output schema of the

first query’s select-list LA. Then, for each successive query, we iterate over each attribute

a in its select-list. Let na be the node in the query graph with label a. Suppose there exists

some similarity edge (na, na′) with cost below a threshold t, and label(na′) appears in

QA. If the current query is not already outputting an attribute corresponding to label(na′),

then we rename attribute a to label(na′) in the output. Otherwise, we simply add a as a
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new attribute to QA. Then we create a multiway disjoint union SQL query, in which each

“branch” represents one of the queries produced from a query tree. Each “branch” also

outputs a cost (its e term). Finally, we execute the queries and return answers in ranked

order, annotated with provenance information about their originating queries.

6.2.3 Search Graph Maintenance

The novel aspect of our system is its ability to maintain the search graph and adjust the

results of existing user queries accordingly, as highlighted on the right side of Figure 6.1.

We assume that a user’s query has described an ongoing information need for that user,

and that he or she will make future as well as current use of the query results. Hence

we save the results of the query as a view, and we focus on enabling the user to refine

the view by giving feedback and adjusting the weights given to various associations, and

on incorporating new data sources if good associations can be found with the existing

relations in the search graph, and the contents of these new sources affect the contents of

the top-k tuples in the user’s view.

The core capabilities for user feedback were addressed in our previous

work [Talukdar et al., 2008b], so we concentrate here on discovering new associations

(alignments) with relevant sources (Section 6.3), and on using feedback to refine and repair

such associations (Section 6.4).

6.3 Adding New Data Sources

Once a keyword search-based view has been defined as in the previous section, Q switches

into search graph maintenance mode. One crucial maintenance process, discussed in this

section, decides if and how to incorporate new sources into the current view as the system

is notified of their availability.

Q includes a registration service for new tables and data sources: this mechanism can

be manually activated by the user (who may give a URL to a remote JDBC source), or could
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ultimately be triggered directly by a Web crawler that looks for and extracts tables from the

Web [Cafarella et al., 2008] or the deep Web [Madhavan et al., 2008, Zhang et al., 2004] .

6.3.1 Basic Approach

When a new source is registered, the first step is to incorporate each of its underlying tables

into the search graph. The search graph is in effect the data model queried by Q. It contains

both metadata (relation and attribute nodes) and data (tuple values), related by edges that

specify possible ways of constructing a query. The lower the cost of an edge, the more

likely that the edge will be relevant to answering queries involving one of the nodes it

links.

When a new source is encountered, the first step is to determine potential alignments

between the new source’s attributes and those in existing tables: these alignments will

suggest (1) potential joins to be used in query answering, and (2) potential alignments of

attributes in query output, such that the same column in the query answers contains results

from different sources. We note that in both cases, it is desirable that aligned attributes

come from the same domains (since, in the case of joins, no results would be produced

unless there are shared data values among the attributes).

Of course, this task requires a set of alignment primitives (schema matching algorithms)

used to match attributes, which we describe in Section 6.3.2. But there are additional ar-

chitectural challenges that must be faced at the overall system level. As the search graph

grows in size, the cost of adding new associations becomes increasingly expensive: regard-

less of the specific primitives used, the cost of alignment tends to be at least quadratic in

the number of compatible attributes. We must find ways of reducing the space of possible

alignments considered. Moreover, not all of these proposed alignments may be good ones:

most schema matching or alignment algorithms produce false positives.

We exploit the fact that a bad alignment will become apparent when (and only when) it

affects the top-k results of a user query whose results are closely inspected. We develop an

information need-driven strategy where we consider only alignments that have the potential
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Figure 6.4: Propagation of labels in a column-value graph, using the Modified Adsorption
(MAD) algorithm (Section 6.3.2.2). From left to right: the original graph with two column
nodes and three value nodes; each column node injected with its own label (labels inside
the rectangle); after two iterations of label propagation with estimated labels shown inside
hexagons.

to affect existing user queries (Section 6.3.3). As we later show in Section 6.5, this restricts

the space of potential alignments to a small subset of the search graph, which grows at a

much lower rate than the search graph itself. We then develop techniques for correcting

bad alignments through user feedback on the results of their queries (Section 6.4).
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6.3.2 Alignment Primitives

Since we focus here on system architecture and learning methods, our goal with Q is to

develop an architecture and learning methods that are agnostic as to the specific schema

matching or attribute alignment techniques used, such that we can benefit from existing

methods in databases and machine learning.

To demonstrate the architecture’s ability to accommodate different schema matching

algorithms, we incorporate two complementary types of matchers in Q. The first type

consists of typical similarity-based schema matchers from the database community that

rely on pairwise matches between source and target relations, primarily looking at schema

rather than instance-level features, and which we aim to plug into our architecture as “black

boxes”. The second kind are matchers that globally aggregate the compatibilities between

data instances. To that end, we develop a new schema matching technique that looks at

“type compatibility” in a way that considers transitivity: if attribute A has 50% overlap in

values with attribute B, and attribute B has 50% overlap in values with source C, all three

attributes likely come from the same domain even if A and C do not share many values.

Here we adapt a technique from the machine learning and Web community called label

propagation that exploits transitivity and data properties, which has not previously been

applied to schema matching. We briefly review both kinds of matchers, then describe how

we incorporate them into Q.

6.3.2.1 Alignment with Metadata Matcher

Prior work on schema matching has shown that it is useful to consider multiple

kinds of features, both at the data and metadata level, when determining alignments.

Many different schema matchers that incorporate multiple features have been proposed

in recent years [Rahm and Bernstein, 2001], with one of the most sophisticated be-

ing COMA++ [Do and Rahm, 2007]. The creators of the COMA++ schema match-

ing tool graciously provided a copy of their system, so our specific implementation
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incorporates COMA++ through its Java API. This system is described in detail else-

where [Do and Rahm, 2007]. Briefly, we used COMA++’s default structural relationship

and substring matchers over metadata to produce proposed alignments1.

6.3.2.2 Alignment with Label Propagation

Our second matcher focuses on which attributes are type-compatible at the instance level.

The notion of label propagation has been used in recent machine learning work for find-

ing associated metadata based on weighted transitive relationships across many sources.

Informally, this work represents a generalization of some of the ideas in similarity flood-

ing [Melnik et al., 2002] or the Cupid algorithm [Madhavan et al., 2001], but at a larger

scale. In label propagation, we are given a graph G = (V,E,W ) with nodes V , directed

edges E, and a weight function W : E → R that assigns a weight (higher is better) to each

edge. Assume some of the nodes i ∈ V initially are given labels li. Labels are propagated

from each node along its out-edges to its neighboring nodes with a probability proportional

to edge weight, eventually yielding a label probability distribution Li for each node. In-

tuitively, this model is similar to PageRank [Brin and Page, 1998], except that it computes

how likely a “random surfer” starting at an initial node with a particular label will end up

at some other node, based on a Markovian (memory- or history-free) behavioral assump-

tion. In this work, we use the Modified Adsorption (MAD) [Talukdar and Crammer, 2009]

label propagation algorithm.

MAD is one of a family of related label propagation algorithms used in sev-

eral areas [Zhu et al., 2003]. While these algorithms can be explained in several

ways [Baluja et al., 2008], for simplicity we will rely here on the random walk interpre-

tation of MAD.

Let Gr = (V,Er,Wr) be the edge-reversed version of the original graph G =

(V,E,W ), where (a, b) ∈ Er iff (b, a) ∈ E, and Wr(a, b) = W (b, a). Now, choose a

1COMA++ also optionally includes instance-level matching capabilities, but despite our best efforts and
those of the authors, we were only able to get the metadata matching capabilities of COMA++ to work
through its Java API.
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node of interest q ∈ V . To estimate Lq for q ∈ V , we perform a random walk on Gr

starting from q to generate samples for a random label variable L. After reaching a node i

during the walk, we have three choices:

1. With probability pcont
i , continue the random walk to a neighbor of i.

2. With probability pabnd
i , abandon the random walk. This abandonment probability

makes the random walk stay relatively close to its source when the graph has high-

degree nodes. When the random walk passes through such a node, it is likely that

further transitions will be into regions of the graph unrelated to the source. The

abandonment probability mitigates that effect.

3. With probability pinj
i , stop the random walk and emit either Li if i is one of the

initially labeled nodes.

Lq will converge to the distribution over labels L emitted from random walks ini-

tiated from node q. In practice, we use an equivalent iterative fixpoint view of

MAD [Talukdar and Crammer, 2009], shown in Algorithm 6. In this algorithm, Iv is the

injected label distribution that a node is seeded with; Rv is a label distribution with a single

peak corresponding to a separate “none of the above” label >. This dummy label allows

the algorithm to give low probability to all labels at a node if the evidence is insufficient.

In the next section, we shall see how MAD can be used to discover attribute associations.

6.3.2.3 Combining Matchers in Q

We now describe how we fit each type of matcher into Q, starting with the “black box”

interface to COMA++. Later in the chapter, we discuss how we can combine the outputs

of multiple matchers, using user feedback to determine how to weigh each one.

COMA++ as a black-box matcher. An off-the-shelf “black box” schema matcher typi-

cally does pairwise schema matching, meaning that each new source attribute gets aligned

with only a single attribute in the existing set of data sources (rather than, e.g., an attribute

in each of the existing data sources). Moreover, matchers tend to only output their top
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alignment, even when other potential alignments are considered. Our goal in Q is to de-

termine the top-Y (where Y is typically 2 or 3) candidate alignments for each attribute,

unless the top alignment has very high confidence: this way we can later use user feedback

to “suppress” a bad alignment and see the results of an alternative.

To get alignments between the new source’s attributes and all sources, we do a pairwise

schema alignment between the new source and each existing source. We thus obtain what

COMA++ assumes to be the top attribute alignments between each relation pair.

While we do not do this in our experiments, it is feasible (if expensive) to go be-

yond this, to force COMA++ to reveal its top-Y overall alignments. Between each pair

of schemas, we can first compute the top alignment. Next, for each alignment pair (A,B)

that does not have a high confidence level, remove attribute A and re-run the alignment,

determining what the “next best” alignment with B would be (if any). Next re-insert A

and remove B, and repeat the process. If there are additional schema matching constraints

(e.g., no two source attributes may map to the same target attribute), we can again iter-

ate over each alignment pair (A,B). Now remove all attributes from A’s schema that are

“type compatible” with A, except for A itself; and run the alignment. Then replace those

attributes, and repeat the process removing attributes type-compatible with B other than B

itself.

Ultimately, we will have obtained from the matcher a set of associations (equivalent

here to the alignments) and their confidence levels. Depending on the matcher used, the

confidence scores may need to be normalized to a value between 0 and 1; in the case of

COMA++, its output already falls within this range. These confidence scores will be used

in forming a new edge cost (Section 6.3.4).

MAD to discover compatible datatypes. We developed a matcher module (paralleliz-

able for Hadoop MapReduce), which performs MAD across schemas, using techniques

described in [Talukdar and Crammer, 2009]. While this matcher implementation is in some

sense a part of Q, it is implemented in a way that does not provide any special interfaces,

i.e., from Q’s perspective it remains a black box. This matcher first creates an internal
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label propagation graph that incorporates both metadata and data. From the search graph,

we take all relation attributes from all sources, and create a node in the label propagation

graph for each attribute, labeled with its canonical name. We also take all data values and

create a label propagation graph node for each unique value. We add to the graph an edge

between a value node and each node representing an attribute in which the value appears.

Now we annotate or label each attribute node with its name. A sample graph is shown in

the left portion of Figure 6.4; for simplicity, all the edges have weight 1.0.

We run the MAD algorithm over this graph, propagating sets of annotations from node

to node. The algorithm runs until the label distribution on each node ceases to change

beyond some tolerance value. Alternatively, the algorithm can be run for a fixed number

of iterations. Each value node ultimately receives a distribution describing how strongly

it “belongs” to a given schema attribute, and each attribute node receives a distribution

describing how closely it matches other attribute nodes.

In the graph in the second column in the Figure 6.4, we see that the attribute nodes

are annotated with labels matching their names, each with probability 1. These labels

are propagated to the neighboring nodes and multiple iterations are run until convergence

is reached (shown in the rightmost graph). At the end, we see that all data values are

annotated with both go id and acc since there is significant value overlap between the

two attributes. Note that MAD does not require direct pairwise comparison of sources.

This is very desirable as such pairwise comparisons can be expensive when many sources

are involved.

We use the label distributions generated by MAD to generate uncertainty levels from

which edge costs will be derived for Q’s search graph. For each node n in the MAD graph,

we select the top-Y attributes from its label distribution, and we add an edge in the search

graph between the attribute node for l and the attribute node for n. The confidence level

for each such edge will be Ln(l). Section 6.3.4 describes how this level is combined with

other weighted parameters to form an edge cost.
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Algorithm 6: Modified Adsorption (MAD) Algorithm
Input: Graph: G = (V,E,W ), Seed labeling: Iv ∈ Rm+1 for v ∈ V , Probabilities:
pinjv , pcontv , pabndv for v ∈ V , Label priors: Rv ∈ Rm+1 for v ∈ V , Output: Label
Scores: Lv for v ∈ V

1: Lv ← Iv for v ∈ V {Initialization}
2: Mvv ← µ1 × pinjv + µ2 × pcontv ×

∑
uWvu + µ3

3: repeat
4: Dv ←

∑
i

(
pcontv ×Wvi + pcont

i ×Wiv

)
× Ii

5: for all v ∈ V do
6: Lv ← 1

Mvv
× (µ1 × pinjv × Iv + µ2 ×Dv+

7: µ3 × pabndv ×Rv

)
8: end for
9: until convergence

Algorithm 7: VIEWBASEDALIGNER(G,G
′
, K, C, α). Input: Search graph G, new

sourceG′ , keywords (K) associated with current view, cost function C, cost threshold
α. Output: Augmented schema graph G′′ , with alignments between G and G′ .

1: G
′′ ← G ∪ G′

2: S ← ∅
3: for k ∈ K do
4: S = S ∪ GETCOSTNEIGHBORHOOD(G,C, α, k)
5: end for
6: for v ∈ S do
7: A = BASEMATCHER (G′

, v)
8: E(G′′)← E(G

′′
) ∪ A

9: end for
10: Return G′′

6.3.3 Searching for Associations

We just saw how to harness individual schema matchers to find alignments of sources,

and hence association edges between existing and new source relations. However, we need

to ensure that the alignment algorithms can be applied scalably, as we increase the number

of data sources that we have discovered.

Of course, the simplest (though least scalable) approach is to simply perform exhaustive

matching: upon the registration of a new data source, we iterate over all existing data
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Algorithm 8: PREFERENTIALALIGNER(G,G
′
, P ). Input: Search graph G, new

source G′ , vertex cost function P . Output: Augmented schema graph G′′ , with align-
ments between G and G′ .

1: G
′′ ← G ∪ G′

2: Vs = SORT(V (G), P )
3: for i = 1 to Vs.length do
4: r = GETRELATIONNODE (Vs[i])
5: A = BASEMATCHER (G′ , r)
6: E(G′′)← E(G

′′
) ∪ A

7: end for
8: Return G′′

sources in turn, and run our alignment algorithm(s). We term this approach EXHAUSTIVE,

and note that it will scale quadratically in the number of attributes in each source. As we

shall see in Section 6.5, even for small numbers of attributes schema alignment takes time,

and with large numbers of sources it may be costly to find new associations.

As was previously noted, we can exploit the fact that new associations are only “visible”

to users if they appear in any queries returning top-k results. Hence we exploit existing user

views, and the existing scores of top-k results, to restrict the search space of alignments. As

new queries are materialized within the system, we would incrementally consider further

alignments that might affect the results of those queries.

Algorithm 7 shows code for VIEWBASEDALIGNER, which reduces the number of

schema alignment comparisons (calls to BASEMATCHER) through a pruning strategy that

is guaranteed to provide the same top-k answer set for a query as EXHAUSTIVE. Given an

existing schema graph G = (V,E,C) where C is a nonnegative real-valued cost function

for each edge (discussed in the next section), a set of keyword nodes K, and the cost α of

the kth top-scoring result for the user view, VIEWBASEDALIGNER considers alignments

between the new source’s schema graph G′, and the projection of the graph that is within α

of any keyword node. To affect the view output, any new node from G′ must be a member

of a Steiner tree with cost ≤ α; given that edge costs are always non-negative, our pruning

heuristic guarantees that we have considered all possible alignments that could lead to this
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Figure 6.5: A schema graph for the keywords term and plasma membrane. Edges are
annotated with costs. The shaded region is the α-cost neighborhood (α = 2) of the two
keywords, i.e. all nodes reachable with cost ≤ 2 from a keyword.

condition.

We illustrate this with an example in Figure 6.5, where we assume two keywords have

matched and the kth best score α = 2. Here, VIEWBASEDALIGNER only considers align-

ments between a new source and those nodes within the shaded cost neighborhood. This

yields savings in comparison with EXHAUSTIVE, which would additionally need to com-

pare the new source against the two sources outside of the region. Of course, in a real

search graph many more sources are likely to be outside the region than inside it.

If we need even more aggressive pruning, we can adapt ideas from network formation

in social networks [Barabasi and Albert, 1999], and assume the existence of an alignment

prior (P ) over vertices of the existing search graph G, specifying a preference ordering for

associations with the existing nodes. This can capture, e.g., that we might want to align
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with highly authoritative or popular relations. Algorithm 8 shows pseudocode for such a

PREFERENTIALALIGNER. A new source, G′ , is compared against the existing nodes in

G in the order of the ranking imposed by the prior P . The prior might itself have been

estimated from user feedback over answers of keyword queries, using techniques similar

to those of the next section, or it might be computed using alternate methods such as link

analysis [Balmin et al., 2004].

6.3.4 Measuring Schema Graph Edge Quality

As we take the output of the aligner and use it to create an association in the search graph,

we would like to set the edge cost in a principled way: ideally the value is not simply a

hard-coded “default cost,” nor just the confidence value of the aligner, but rather it should

take into account a number of factors. For instance, the edge cost might take into account

costs associated with the relations being joined, derived from their authoritativeness or

relevance; and when we are using multiple matchers to create an alignment, we might want

to perform a weighted sum of their confidence scores.

We use a cost function for each edge that considers a combination of multiple weighted

components, some of which may be shared across edges, and others of which may be

exclusive to a specific edge. We formalize this by describing the cost of an edge as a

sum of weights times feature values (also called scores). The weights will be learned

by Q (Section 6.4), whereas the features are the base cost components whose value does

not change. For instance, to incorporate the uncertainty score from a black-box schema

matcher, we capture it as a feature, whose associated weight we will learn and maintain. In

some cases, we consider features to be Boolean-valued: for instance, if we want to learn a

different weight for each edge, then we will create a feature for that edge whose value is 1

for that edge (and 0 elsewhere).

Let the set of predefined features across the search graph be F = {f1, . . . , fM}. For-

mally, a feature maps edges to real values. For each edge (i, j), we denote by f(i, j) the

feature vector that specifies the values of all the features of the edge. Each feature fm has a
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corresponding weight wm. Informally, lower feature weights indicate stronger preference

for the edges that have those features. Edge costs are then defined as follows:

C((i, j),w) =
∑
m

wm × fm(i, j) = w · f(i, j) (6.1)

where m ranges over the feature indices.

When we add a new association edge based on an alignment, we set its cost based on

the following weighted features:

• A default feature shared with all edges and set to 1, whose weight thus comprises a

default cost added to all edges.

• A feature for the confidence value of each schema matcher, whose weight represents

how heavily we (dis)favor the schema matcher’s confidence scores relative to the

other cost components.

• A feature for each relation R connected by the association, whose value is 1 for this

relationR, and whose weight represents the negated logarithm of the R’s authorita-

tiveness.

• A feature that uniquely identifies the edge itself, whose value is 1, and whose weight

comprises a cost added to the edge.

Together, the weighted features form an edge cost that is initialized based not only on the

alignment confidence levels, but also on information shared with other nodes and edges.

6.4 User Feedback & Corrections

When the user sees a set of results, he or she may notice a few results that seem either

clearly correct or clearly implausible. In Q the user may provide feedback by optionally

annotating each query answer to indicate a valid result, invalid result, or a ranking con-

straint (tuple tx should be scored higher than ty). Q first generalizes this feedback by

taking each tuple, and, by looking at its provenance, replacing it with the query tree that
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produced it, using a scheme similar to [Talukdar et al., 2008b]. Recall that our model is

one of tuple and edge costs so a lower cost results in higher ranking.

The association cost learner converts each tuple annotation into a constraint as follows:

• A query that produces correct results is constrained to have a cost at least as low as

the top-ranked query result.

• A query Qx that should be ranked above some other query Qy is constrained to have

a cost that is lower than Qy’s cost.

These constraints are fed into an algorithm called MIRA [Crammer et al., 2006b],

which has previously been shown to be effective in learning edge costs from user feedback

on query results [Talukdar et al., 2008b]. We briefly summarize the key ideas of MIRA

here, and explain how we are using it in a less restricted way here, learning over real-valued

features, as opposed to the Boolean features in the previous work [Talukdar et al., 2008b].

Relationship between Edge Costs and Features. Recall from Section 6.3.4 that each

edge is initialized with a cost composed of multiple weighted features: the product of

the weight and the feature value comprise a default cost given to every edge, a weighted

confidence score from each schema alignment algorithm, the authoritativeness of the two

relations connected by the edge, and an additional cost for the edge itself. Q’s association

cost learner takes the constraints from user feedback and determines a weight assignment

for each feature — thus assigning a cost to every edge.

Learning Algorithm. The learning algorithm (Algorithm 9) reads training examples se-

quentially and updates its weights after receiving each of the examples based on how well

the example is classified by the current weight vector. The algorithm, which was first

used in [Talukdar et al., 2008b], is a variant of the Margin Infused Ranking Algorithm

(MIRA) [Crammer et al., 2006b]. We previously showed in [Talukdar et al., 2008b] that

MIRA effectively learning top-scoring queries from user feedback; however, in that work

only binary features were used, while here we need to include real-valued features from

similarity costs. Using real-valued features directly in the algorithm can cause poor learn-
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Algorithm 9: ONLINELEARNER(G,U, k). Input: Search graph G, user feedback
stream U , required number of query trees k, zero-cost constraint edges A. Output:
Updated costs of edges in G.

1: w(0) ← 0
2: r = 0
3: while U is not exhausted do
4: r = r + 1
5: (Sr, Tr) = U.NEXT()
6: Cr−1(i, j) = w(r−1) · fij ∀(i, j) ∈ E(G)
7: B = KBESTSTEINER(G,Sr, Cr−1, K)
8: w(r) = arg minw

∥∥w− w(r−1)
∥∥

9: s.t. C(T,w)− C(Tr,w) ≥ L(Tr, T ), ∀T ∈ B
10: w · fij = 0 ∀(i, j) ∈ A
11: w · fij > 0 ∀(i, j) ∈ E(G) \ A
12: end while
13: Let C(i, j) = w(r) · fij ∀(i, j) ∈ E(G)
14: Return C

ing because of the different ranges of different real-valued and binary features. Therefore,

as described above, we bin the real-valued features into empirically determined bins; the

real-valued features are then replaced by features indicating bin membership.

The weights are all zero as Algorithm 9 starts. After receiving feedback from the user

on the rth query Sr about a top answer, the algorithm retrieves the listB of the k lowest-cost

Steiner trees using the current weights. The user feedback for interaction r is represented

by the keyword nodes Sr and the target tree Tr that yielded the query answers most favored

by the user. The algorithm then updates the weights so that the cost of each tree T ∈ B is

worse than the target tree Tr by a margin equal to the mismatch or loss L(Tr, T ) between

the trees. If Tr ∈ B, because L(Tr, Tr) = 0, the corresponding constraint in the weight

update is trivially satisfied. The update also requires that the cost of each edge be positive,

since non-positive edge costs will result in non-meaningful Steiner tree computations. To

accomplish this, we include the default feature listed above, whose weight serves as a

uniform cost offset to all edge weights in the graph, which keeps the edge costs positive.

Some edges in the query graph are constrained to have a fixed edge cost, irrespective of
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learning. For example, attribute-relation edges have a cost of zero that should always be

maintained. We achieve this by adding such constraints to the MIRA algorithm. Our

implementation requires a modification of MIRA (shown in Algorithm 9) that takes as

input a set A specifying edges with zero cost constraints.

An example loss function, used in our experiments, is the symmetric loss with respect

to the edges E present in each tree:

L(T, T ′) = |E(T ) \ E(T ′)|+ |E(T ′) \ E(T )| (6.2)

The learning process proceeds in response to continued user feedback, and finally re-

turns the resulting edge cost function.

6.5 Experimental Analysis

In this section, we use Q as a platform to validate our strategy of performing schema align-

ment in a query-guided manner (Section 6.5.1), as well as our techniques for using user

feedback over data to correct bad alignments (Section 6.5.2). The search graph mainte-

nance modules in Q comprise approximately 4000 lines of Java code, and all experiments

were run on a Dell PowerEdge 1950 computer running RedHat Enterprise Linux 5.1 with

8GB RAM. We used the COMA++ 2008 API, and a Java-based implementation of our

MAD-based schema matcher.

Our focus in Q is on supporting bioinformatics applications, and hence wherever possi-

ble, we use real biological databases and compare with gold standard results, i.e., reference

results supplied by domain experts. This enables us to perform an experimental study with-

out having to conduct extensive user studies.

For the first set of experiments, we use a dataset for which we have logs of actual

SQL queries executed by Web forms, such that we can determine which proposed source

associations are actually valid (as witnessed by having real queries use them). This dataset,

GBCO2, consists of 18 relations (which we model as separate sources) with 187 attributes.
2http://www.betacell.org/
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In the second set of experiments, we used a different dataset, based on the widely used

(and linked) Interpro and GO databases, where we could obtain keyword queries and find

multiple alternative means of answering these queries. This dataset consists of 8 closely

interlinked tables with 28 attributes.

6.5.1 Incorporating New Sources

We first look at the cost of adding new data sources to an existing search graph, in a way

that keeps the alignment task tractable by limiting it to the “neighborhood” of an existing

query. We set up the experiment, using the GBCO dataset described above, as follows.

We first scanned through the GBCO query logs for pairs of SQL queries, where one

query represented an expansion of the other, base, query: i.e., the expanded query either

joined or unioned additional relations with the base query. Intuitively, the expanded query

tells us about new sources that would be useful to add to an existing search graph that had

been capable of answering the base query. When the expanded query represents the union

of the base query with a new query subexpression, then clearly adding the new data source

results in new association edges that provide further data for the user’s view. When the

expanded query represents an additional join of the base query with new data, this also

affects the contents of the existing view if the additional join represents a segment of a new

top-scoring Steiner tree for the same keyword query.

For each base query, we constructed a corresponding keyword query, whose Steiner

trees included the relations in the base query. Next, we initialized the search graph to in-

clude all sources except the ones unique to the expanded query. We initially set the weights

in the search graph to default values, then provided feedback on the keyword query re-

sults, such that the SQL base query from our GBCO logs was returned as the top query.

For all experiments in this section, the edge costs learned in the process were used as the

value of the function C in the VIEWBASEDALIGNER algorithm. The vertex cost func-

tion P in PREFERENTIALALIGNER was similarly estimated from the weights of features

corresponding to source identities.
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Figure 6.6: Running times (averaged over intro of 40 sources) when aligning a new source
to a set of existing sources (COMA++ as base matcher). VIEWBASEDALIGNER and
PREFERENTIALALIGNER significantly reduce running times vs. EXHAUSTIVE.

6.5.1.1 Cost of Alignment

Our first experiment measures the cost of performing alignments between the new source

and a schema graph containing all of the other sources — using our EXHAUSTIVE, VIEW-

BASEDALIGNER, and PREFERENTIALALIGNER search strategies, with the COMA++

matcher. Figure 6.6 compares the running times of these strategies. Figure 6.7 shows

the number of pairwise attribute comparisons necessary, under two different sets of as-

sumptions. The Value Overlap Filter case assumes we have a content index available on

the attributes in the existing set of sources and in the new source; we only make compare

attributes that have shared values (hence can join). More representative is likely to be the

No Additional Filter case, which has only metadata to work from.
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Figure 6.7: Pairwise attribute comparisons performed in aligning new source(s) to existing
sources (averaged over intro of 40 sources in 16 trials, where each trial introduces one or
more new sources). VIEWBASEDALIGNER and PREFERENTIALALIGNER significantly
reduce comparisons vs. EXHAUSTIVE.

We observe that, regardless of whether a value overlap filter is available, limiting

the search to the neighborhood of the existing query (i.e., our information need-driven

pruning strategy) provides significant speedups (about 60%) versus doing an exhaustive

set of comparisons, even on a search graph that is not huge. Recall that VIEWBASED-

ALIGNER will provide the exact same updates to a user view as the exhaustive algorithm.

PREFERENTIALALIGNER does not have this guarantee, and instead focuses on the align-

ments specified in the prior, but gives even lower costs.

The differences in costs results from the fact that the number of comparisons in EX-

HAUSTIVE depends on the number of source relations in the schema graph, whereas the

number of comparisons in the other cases is only dependent on the number of nodes in the
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is increased (averaged over introduction of 40 sources). VIEWBASEDALIGNER and
PREFERENTIALALIGNER are hardly affected by graph size.

local neighborhood of the query.

6.5.1.2 Scaling to Large Number of Sources

We next study how the cost of operations scales with respect to the search graph size. Since

it is difficult to find large numbers of interlinked tables “in the wild,” for this experiment

we generated additional synthetic relations and associations for our graph. We started with

the real search graph, and built upon it as follows. We initialized the original schema graph

of 18 sources with default costs on all edges. Then we took our set of keyword queries

and executed each in sequence, providing feedback on the output such that the base query

was the top-scoring one. At this point, the costs on the edges were calibrated to provide

meaningful results. Now we randomly generated new sources with two attributes, and then
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connected them to two random nodes in the search graph. We set the edge costs to the

average cost in the calibrated original graph.

Once the schema graph of desired size was created, the three alignment methods were

used to align the new sources in the expanded graph. Since our mostly-synthetic expanded

search graph does not contain realistic node labels and attributes, we do not directly run

COMA++ on the results, but instead focus on the number of column comparisons that

must be performed. The results appear in Figure 6.8. Recall that Figure 6.6 shows that

COMA++’s running times grow at a rate approximately proportional to the number of

column comparisons. From Figure 6.8, we observe that the number of pairwise column

comparisons needed by VIEWBASEDALIGNER and PREFERENTIALALIGNER remained

virtually unchanged as the number of sources increased from 18 to 500, whereas EX-

HAUSTIVE grew quite quickly.

We conclude from the experiments in this subsection that localizing the search to the

neighborhood around a query yields much better scalability. VIEWBASEDALIGNER gives

the same results as the exhaustive strategy, and hence is probably the preferred choice.

6.5.2 Correcting Matchings

The previous section focused on the cost of running alignment algorithms, without looking

at their quality. We now look at how well Q takes the suggested alignments from the indi-

vidual alignment algorithms, as well as user feedback on query answers, to get the correct

associations. These experiments were conducted over the InterPro-GO dataset described

previously (shown visually in Figure 6.9), for which we were able to get a set of keyword

queries based on common usage patterns suggested in the description of the GO and Inter-

Pro databases3. We know from the original schema specifications and documentation that

there are 8 semantically meaningful join or alignment edges among these relations, but we

remove this information from the metadata.
3http://www.ebi.ac.uk/interpro/User-FAQ-InterPro.html
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Figure 6.9: Schema graph used in the experiments of Section 6.5.2 (attributes are not
shown).

Our experimental setup is to start with a schema graph that simply contains the tables in

Figure 6.9, and then to run the association generation step (using COMA++ and/or MAD)

to generate a search graph in the Y most promising alignments (for different values of Y )

are recorded for each attribute. Next we execute the set of keyword queries obtained from

the databases’ documentation. For each query, we generate one feedback response, mark-

ing one answer that only makes use of edges in the gold standard. Since the gold standard

alignments are known during evaluation, this feedback response step can be simulated on

behalf of a user. Our goal is to “recover” all of the links shown in Figure 6.9, which forms

the gold standard.

We now present our results using precision, recall and F-measure as our evaluation

metrics. We compute these metrics with respect to the search graph, as opposed to looking
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Y System Precision Recall F-measure

1
COMA++ 62.5 62.5 62.5
MAD 70 87.5 77.78

2
COMA++ 63.64 87.5 73.68
MAD 66.67 100 80

5
COMA++ 63.64 87.5 73.68
MAD 66.67 100 80

Table 6.1: Evaluation of top-Y edges (per node) induced by COMA++ and MAD for vari-
ous values of Y (see Section 6.5.2.1). The schema graph of Figure 6.9 was used as the gold
reference. Precision-Recall plots for COMA++ and MAD for the Y = 2 case are are shown
in Figure 6.10.

at query answers. For different values of Y , we compare the top Y alignment edges in the

search graph (that also fall under a cost threshold) for each attribute, versus the edges in

the gold standard. Clearly, if the alignment edges in the schema graph exactly match the

gold standard, then they will result in correct answers.

6.5.2.1 Baseline Matcher Performance

Our first set of experiments compares the relative performance of the individual matchers

over our sample databases, as we increase the number of alternate attribute alignments we

request from the matcher in order to create the search graph. We briefly describe setup

before discussing the results.

COMA++ setup. As described in Section 6.3.2.1, COMA++ [Do and Rahm, 2007] was

applied as a pairwise aligner among the relations in Figure 6.9. This involved computing

alignments and scores in COMA++ for attributes in each pair of relations. Using this

scheme we were able to induce up to 34 alignment edges.

MAD setup. We took the relations in Figure 6.9 and the values contained in the tables, and

constructed a MAD graph resembling Figure 6.4. All nodes with degree one were pruned

out from the MAD graph before the matching algorithm was run, as they are unlikely to

contribute to the label propagation. Also, all nodes with numeric values were removed, as
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they are likely to induce spurious associations between attributes. The resulting graph had

87K nodes. We used the heuristics from [Talukdar and Crammer, 2009] to set the random

walk probabilities.

MAD was run for 3 iterations (taking approximately 4 seconds total), with µ1 = µ2 =

1, and µ3 = 1e−2. Each unique column name (attribute) was used as a label, and so 28

labels were propagated.

Results. For each of the algorithms, we added to the search graph (up to) the top-Y -

scoring alignments per attribute, for Y values ranging from 1 to 5, as shown in Table 6.1.

Our general goal is to have the matchers produce 100% recall, even at the cost of precision:

the Q learner must be able to find the correct alignment in the search graph if it is to be

able to allow for mapping correction.

We conclude that our novel MAD scheme, which is purely based on data values, does

very well in this bioinformatics setting, with a recall of 7 out of 8 edges even with Y = 1,

and 100% recall with Y = 2. COMA++ produced good output (7 out of 8 alignments)

with Y = 2, but we were not able to get it to detect all of the alignments even with high Y

values.

Note that we compute precision under a fairly strict definition, and one might com-

pellingly argue that some of the “wrongly” induced alignments are in fact useful in answer-

ing queries, even if they relate attributes that are not synonymous. For instance, if we look

at the “incorrect” edges induced by MAD, we see one between interpro.method.name

and interpro.entry.name. The data shows an overlap of 780 distinct values (out

of 53,007 entries in interpro.method.name and 14,977 in interpro.entry.name).

Joining these two tables according to this alignment may in fact produce useful results

for exploratory queries (even if these results should be given a lower rank in the output).

We hope in the future to conduct user studies to evaluate how useful biologists find Q’s

answers.
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Figure 6.10: Precision vs. recall for COMA++, MAD and Q (which combines COMA++
and MAD). Q was trained from feedback on 10 keyword queries, replayed three times
to reinforce the feedback. Precision and Recall were computed by comparing against the
foreign key associations in Figure 6.9.

6.5.2.2 Correcting Associations

We next study Q’s performance in combining the output of the two matchers, plus process-

ing feedback to correct alignments. This performance (measured in precision and recall) is

dependent on how high a similarity (how low a cost) we require between aligned attributes.

Generally, the more strict our similarity threshold, the better our precision and the lower

our recall will be.

Benefits of learning. In Figure 6.10, we take the schema alignments from both matchers

(COMA++ and MAD) when Y = 2 (the lowest setting where we get 100% recall, see

Table 6.1) and combine them, then provide feedback on 10 different two-keyword queries
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Figure 6.11: Precision versus recall in Q, given default weighting, then successively
greater amounts of feedback.

(created as previously discussed), with k = 5 (see Algorithm 9). In order to ensure that

weight updates are made in a way that consistently preserves all of the “good” answers,

we actually apply the feedback repeatedly (we replay a log of the most recent feedback

steps, recorded as a sliding window with a size bound). Here we input the 10 feedback

items to the learner four times in succession (i.e., replay them three times) to reinforce

them. In order to remove the edge cost variations resulting from intermediate feedbacks,

we consider the average edge cost over all feedback steps.

To see the relationship between recall and precision levels, we vary a pruning threshold

over the schema graph: any alignment edges with cost above this threshold will be ignored

in query result generation, and any below will be included. Compared to both schema

matchers in isolation, with the ten feedback steps, Q does a much better job of providing
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Figure 6.12: Average costs of gold edges (i.e., those in Figure 6.9) vs. non-gold edges
in the search graph, as more feedback is applied. To obtain Steps 11–40 we repeat the
feedback steps from 1–10 up to 3 times. Q continues to increase the gap between gold and
non-gold edges’ average scores.

both good precision and recall: we can get 100% precision with 100% recall.

Relative benefits of feedback. Next we study how performance improves with succes-

sive feedback steps. Figure 6.11 repeats the above experiment with increasing amounts of

feedback. As a baseline, we start with the setting where the matchers’ scores are simply

averaged for every edge — in the absence of any feedback, we give equal weight to each

matcher. Next we consider a single feedback step, designated Q (1x1), then ten feedback

steps. Previously we had applied the feedback four successive times: we show here what

happens if we do not repeat the feedback (10x1), if we repeat it once (10x2), and if we

repeat it three times (10x4).
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Recall Level 12.5 25 37.5 50 62.5 87.5 100
Feedback Steps 1 2 2 2 2 2 2

Table 6.2: Number of feedback steps required to initially get precision 1 with a certain
recall level in the schema graph.

Looking at relative performance in Figure 6.11, we see that the baseline — the average

of the two matchers’ output — approximately follows the output of COMA++. It turns out

that COMA++ gives higher confidence scores on average than MAD, and hence this simple

average favors its alignments. Of course, we could adjust the default weighting accordingly

— but it is far better to have the system automatically make this adjustment. We see from

the graph that this happens quite effectively: after a single feedback step, we immediately

see a noticeable boost in precision for most of the recall levels below 60%. Ten items of

feedback with no repetitions makes a substantial difference, yielding precision of 100% for

recall values all the way to 50%. However, repeating the feedback up to four times shows

significant benefit.

Figure 6.12 shows the average costs of edges in the gold-standard (i.e., edges in Figure

6.9) versus non-gold edges, as we provide more feedback. Q assigns lower (better) costs on

average to gold edges than to non-gold edges, and the gap increases with more feedback.

Feedback vs. precision for different recall levels. Finally, we consider the question of

how much feedback is necessary to get perfect precision (hence, ultimately exact query

answers) if we are willing to compromise on recall: Table 6.2 summarizes the results.

Note that perfect precision is actually obtained with only 2 feedback steps even with 100%

recall. At first glance this may seem incongruous with the results of the previous figures,

but it is important to remember that each feedback step is given on a different query, and

each time the online learner makes local adjustments that may counter the effects of the

previous feedback steps. Hence we can see drops in precision with additional feedback

steps, and it takes several more steps (plus, as we saw previously, multiple repetitions)

before the overall effects begin to converge in a way that preserves all of the correct edges.
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We conclude from these experiments that (1) the simple act of combining scores from

different matchers is not enough to boost scores, (2) with a small number of feedback steps

Q learns to favor the correct alignments, (3) particularly if a sequence of feedback steps is

replayed several times, we can achieve very high precision and recall rates. Ultimately this

means that we can learn to generate very high-quality answers directly using the output of

existing schema matching components, plus feedback on the results.

6.6 Related Work

In this chapter, we addressed one of the shortcomings of the version of

Q presented in [Talukdar et al., 2008b], namely, that all alignments were

specified in advance. Many systems supporting keyword search over

databases [Bhalotia et al., 2002, Botev and Shanmugasundaram, 2005, He et al., 2007,

Hristidis and Papakonstantinou, 2002, Hristidis et al., 2003, Kacholia et al., 2005] use

scores based on a combination of similarity between keywords and data values, length

of join paths, and node authority [Balmin et al., 2004]. Existing “top-k query answer-

ing” [Cohen, 1998, Gravano et al., 2003, Li et al., 2005, Marian et al., 2004] provides the

highest-scoring answers for ranked queries.

Schema alignment or matching is well-studied across the database, machine learning,

and Semantic Web communities [Rahm and Bernstein, 2001]. General consensus is that

methods that incorporate both data- and metadata-based features, and potentially custom

learners and constraints, are most effective. Thus, most modern matchers combine output

from multiple sub-matchers [Do and Rahm, 2007, Doan et al., 2001, Melnik et al., 2002].

Our focus is not on a new method for schema matching, but rather an architecture for

incorporating the output of a matcher in a complete iterative, end-to-end pipeline where the

matches or alignments are incorporated into existing user views, and feedback on answers

is used to correct schema matching output. Our approach requires no special support within

the matcher, simply leveraging it as a “black box.”
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The notion of propagating “influences” across node connectivity for schema

alignment is used in similarity flooding [Melnik et al., 2002] and the Cupid sys-

tem [Madhavan et al., 2001], among other schema matching studies. However, in the ma-

chine learning and Web communities, a great deal of work has been done to develop a

principled family of label propagation algorithms [Baluja et al., 2008, Zhu et al., 2003].

In Section 6.3.2.2, we incorporate this kind of matching method not only to align com-

patible attributes in the output, but to discover synonymous tables and transitively re-

lated items. This builds upon recent observations (see Chapter 4) showing that one could

find potential labelings of tables extracted from the Web using the Modified Adsorption

(MAD) label propagation algorithm [Talukdar and Crammer, 2009]. Another benefit of the

MAD-based method presented in Section 6.3.2.2 is that it doesn’t require pariwise attribute

comparisons, a scalability bottleneck, which is otherwise necessary in similarity flooding

[Melnik et al., 2002].

Our ranked data model propagates uncertainty from uncertain mappings to out-

put results. Intuitively, this resembles the model of probabilistic schema map-

pings [Dong et al., 2007], although we do not use a probabilistic model. Our goal is to

learn rankings based on answer feedback, and hence we need a ranking model amenable

to this.

Our work is complementary to efforts on learning to construct

mashups [Tuchinda and Knoblock, 2008], in suggesting potential joins with new

sources. Recent work on “pay as you go” integration has used decision theory to determine

which feedback is most useful to a learner [Jeffery et al., 2008].

As opposed to feedback-driven query expansion and rewriting in [Pan et al., 2008], our

goal here is to exploit user feedback to learn to correct schema matching errors. As men-

tioned in Chapter 5, a method that learns to rank pairs of nodes based on their graph-

walk similarity is presented in [Minkov et al., 2006, Minkov and Cohen, 2007]. A similar

method that learns the random walk probabilities in a graph satisfying pairwise node or-

dering constraints is presented in [Agarwal et al., 2006]. In contrast, the learning method
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used in this chapter learns to rank trees derived from the query graph, and not just node

pairs. The method for incorporating user feedback as presented in [Chai et al., 2009] re-

quires developers to implement declarative user feedback rules. We do not require any

such intermediate rule implementation, and instead learn directly from user feedback over

answers.

6.7 Summary of Chapter

In this chapter, we have developed an automatic, information need-driven strategy for au-

tomatically incorporating new sources and their information in a data integration setting.

Schema matches or alignments, whether good or bad, only become apparent when they

are used to produce query answers seen by a user; we exploit this to make the process of

finding alignments with a new source more efficient, and also to allow the user with an

information need to actually correct bad mappings through explicit feedback (from which

the system learns new association weights). Through experiments on real-world datasets

from the bioinformatics domain, we have demonstrated that our alignment scheme scales

well. We have also demonstrated that our learning strategy is highly effective in combin-

ing the outputs of “black box” schema matchers and in re-weighting bad alignments. In

doing this, we have also developed a new instance-based schema matcher using the MAD

algorithm.

We believe that Q represents a step towards the ultimate goal of automated data inte-

gration, at least for particular kinds of datasets. In ongoing work we are expanding our

experimental study to consider a wider array of domains, including Web sources with in-

formation extraction components.
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Chapter 7

Conclusion

In this thesis, we argued in support of the statement: Graph-based representation of data

and learning over such graphs result in effective and scalable methods for large-scale

information extraction and integration. We made the following contributions:

• In Chapter 2, we proposed a novel context pattern induction method for entity ex-

traction. We demonstrated effectiveness of the proposed method by extending seed

entity lists of various types at fairly high precision. We also showed how perfor-

mance of a state-of-the-art discriminative tagger can be improved by adding features

derived from such extended entity lists.

• In Chapter 3, we used a graph-based semi-supervised label propagation algorithm,

Adsorption, for acquiring open-domain labeled classes and their instances from a

combination of unstructured and structured text sources. This allowed extractions

from diverse sources and different methods to be put together in a single framework

and perform joint learning and inference. This acquisition method significantly im-

proved coverage compared to a previous set of labeled classes and instances derived

from free text, while achieving comparable precision.

• Building on Adsorption, in Chapter 4, we presented a new label propagation algo-

rithm, Modified Adsorption (MAD). We compared many label propagation methods
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on a variety of real-world learning tasks, including class-instance acquisition, and

found MAD to be the most effective. We also showed how class-instance acquisition

performance in the graph-based SSL setting can be improved by including additional

semantic constraints available in independently constructed knowledge bases.

• In Chapter 5, we focused on Information Integration and presented a novel system,

Q, which drew ideas from machine learning and databases to help a non-expert user

construct data-integrating queries based on keywords (across databases) and interac-

tive feedback on answers. We evaluated the effectiveness of Q against gold standard

costs from domain experts and demonstrated the method’s scalability.

• In Chapter 6, we presented an information need-driven strategy for automatically

incorporating new sources and their information in Q. This is particularly important

in today’s environment where new data sources are constantly showing up and there

is a pressing need to make new source’s data available to the user at the earliest.

We also demonstrated that our learning strategy is highly effective in combining

the outputs of “black box” schema matchers and in re-weighting bad alignments.

This removes the need to develop an expensive mediated schema which has been

necessary for most previous systems.

7.1 Future Work

In this section, we outline some of the promising avenues for future work:

• As one of the contributions of this thesis, we have demonstrated effectiveness of

graph-based semi-supervised learning (SSL) algorithms in large-scale acquisition of

class-instance pairs, which can be considered as extractions of a single relation: the

IS-A relation. It will be interesting to explore whether similar methods could also be

used to extract instantiations of other types of relations.
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• In Chapter 4, we found that incorporation of additional semantic constraints in the

form of (instance, attribute) pairs in the graph-based SSL setting can be quite helpful.

Inclusion of other types of constraints (e.g., instance similarity, attribute similarity,

per-node class sparsity, etc.) and measuring their impact is an interesting direction

of future work. We note that importance of constraints during SSL in general have

also been reported recently [Carlson et al., 2010]. Introduction of such additional

constraints may also allow one to move beyond bipartite graphs, the dominant graph

construction scheme used in Chapters 3, 4.

• For the experiments in Chapters 3 and 4, we have assumed that the entities are pre-

segmented. It will be interesting to explore whether large class-instance repositories

constructed by the methods proposed in this thesis can be used in conjunction with

recently proposed methods [Bellare and McCallum, 2009] to quickly bootstrap ex-

tractors for large number of classes, with the extractors performing entity segmen-

tation and classification at the same time. Additionally, exploring utility of such

class-instance resources in non-IE tasks (e.g., machine translation, Web search) is a

promising line of future work.

• So far, the language independent nature of the graph-based SSL methods proposed in

this thesis has not been exploited. It will be very interesting to evaluate effectiveness

of the proposed methods on non-English data sources.

• In Chapters 5 and 6, we have demonstrated Q’s effectiveness on a variety of datasets

obtained mostly from the life sciences domain. As part of future work, it will be inter-

esting to apply Q on datasets from other domains, including Web sources. Moreover,

a user study involving Q will also be very helpful in improving the system further.

Initial step in this direction is currently underway.

• In the current setting, whenever a new model needs to be trained for a new user,

the model parameters in Q are initialized to default values. Such cold starts may
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require larger amounts of feedback from the user, resulting in increased start-up time

and inconvenience for the user. Exploring how to use an existing model, already

trained for a current user, to warm start (or initialize) a model for a new user is an

exciting avenue for future work. Social network information, e.g., appropriate inter-

user similarity, and ideas from transfer learning [Raina et al., 2006] may be exploited

for this task.

• Finally, it will be worthwhile to integrate the IE components developed in this the-

sis into the Q system, which will then allow a non-expert user to pose queries and

integrate data from structured as well unstructured sources, in a feedback- and need-

driven basis.
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