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A Constant Factor Approximation for the Single Sink Edge Installation
Problem

Abstract
We present the first constant approximation to the single sink buy-at-bulk network design problem, where we
have to design a network by buying pipes of different costs and capacities per unit length to route demands at
a set of sources to a single sink. The distances in the underlying network form a metric. This result improves
the previous bound of O(log |R|), where R is the set of sources. We also present a better constant
approximation to the related Access Network Design problem. Our algorithms are randomized and
combinatorial. As a subroutine in our algorithm, we use an interesting variant of facility location with lower
bounds on the amount of demand an open facility needs to serve. We call this variant load balanced facility
location and present a constant factor approximation for it, while relaxing the lower bounds by a constant
factor.
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A CONSTANT FACTOR APPROXIMATION FOR THE SINGLE
SINK EDGE INSTALLATION PROBLEM∗

SUDIPTO GUHA† , ADAM MEYERSON‡, AND KAMESH MUNAGALA§

Abstract. We present the first constant approximation to the single sink buy-at-bulk network
design problem, where we have to design a network by buying pipes of different costs and capacities
per unit length to route demands at a set of sources to a single sink. The distances in the underlying
network form a metric. This result improves the previous bound of O(log |R|), where R is the set
of sources. We also present a better constant approximation to the related Access Network Design
problem. Our algorithms are randomized and combinatorial. As a subroutine in our algorithm, we
use an interesting variant of facility location with lower bounds on the amount of demand an open
facility needs to serve. We call this variant load balanced facility location and present a constant
factor approximation for it, while relaxing the lower bounds by a constant factor.

Key words. approximation algorithms, network design, Steiner trees, facility location

AMS subject classifications. 68W25, 68W20

DOI. 10.1137/050643635

1. Introduction. Network design problems require laying cables on an under-
lying metric in order to connect a set of demand points. The network must support
each demand point operating at a known peak (or average) rate, and we would like the
cheapest possible network supporting these demands. In a metric scenario (which is
standard), if the cost of cables is linear in the amount of bandwidth they provide, this
problem is polynomial-time solvable using multicommodity flow techniques. However,
in several real applications, the costs of cables obey economies of scale; the cost-per-
unit-bandwidth is less for a high-capacity cable. Similar problems arise outside the
data networks community, e.g., in location theory, where we consider transporting
products for sale where the cost is a concave function of the amount of demand trans-
ported. The concavity also may arise implicitly, e.g., in clustering data, where we are
willing to tolerate a less dense cluster if it contains a larger number of points.

The problem of buy-at-bulk network design, with a single sink node to which all
the demand has to be routed, was first introduced by Salman et al. in [21]. They gave
an O(min{log n, log D}) approximation, where the number of nodes is n and D is the
maximum demand. They also showed that the problem is NP-hard. Awerbuch and
Azar [3] gave an O(log2 n) approximation for the multiple sink case, where different
demand points may communicate with different sinks. This result may be improved
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SINGLE SINK EDGE INSTALLATION PROBLEM 2427

to O(log n) using subsequent results of [4, 5, 9] on approximation of metrics using
trees. Andrews and Zhang [2] considered the Access Network Design problem, where
all demands need to connect to a single conceptual entity, the “core” of the network
which represents the internet backbone, a set of file servers, or the factories where
a product is produced. Even though there may exist multiple sinks, the sinks are
symmetric in that demand points do not care to which sink they are connected. The
Access Network Design problem is a special case of a single sink buy-at-bulk problem
with the added twist that cables have to be utilized up to a minimum capacity.

All of the above problems can be termed as uniform variant in the sense that any
cable type can be used between any pair of vertices. For the more general nonuniform
problem where cable types may have limited availability (but the network still has a
single sink), Meyerson, Munagala, and Plotkin provided an O(log n) approximation
in [19].

In this paper we focus on the uniform single sink case. Our main contributions
are as follows:

• Our algorithm provides the first constant factor approximation for the sin-
gle sink buy-at-bulk problem. This subsumes the Access Network Design
problem [2] as well. The approximation ratio we obtain for the buy-at-bulk
problem is 292.

• We provide a Structure Theorem that allows us to identify the key regions
in the concave function. This allows one to write a linear program (LP) with
an O(1) integrality gap. All subsequent analysis of this problem showing an
O(1) approximation (see below and section 7) depends on this theorem as
well.

• We define and provide the first constant factor bicriteria approximation al-
gorithm for a natural variant of facility location, the Load Balanced Facility
Location problem, where there is a lower bound specified on the demand an
open facility needs to serve. This problem arises in several clustering scenarios
as well [14].

We provide randomized combinatorial algorithms, but they can be derandomized
using standard techniques. The paper [12] contained several other results on multi-
level network design problems which were based on similar techniques. We omit their
discussion in the interest of keeping the presentation focused and simple.

Solution technique. There are several important novel ideas in our solution method-
ology. First, the optimal solution could use many cables with slightly differing costs
in succession, obtaining marginal benefit from each. Such a solution is hard to charac-
terize. We show that to a constant factor approximation, we can replace such similar
cable types with the same cable type. This leads to a solution with simpler layered
characterization (Structure Theorem). In particular, we show that a near-optimal
solution is composed of alternating layers of Steiner and shortest path forests, each
layer using only a single type of cable. The next layer gets used only when sufficient
demand has been accumulated at the roots of the previous layer to make the next
cable type cost-effective. Such a solution effectively hierarchically aggregates demand
in order to exploit the economies of scale in cable costs.

The challenge now is to approximate the layered solution. We show that the
shortest path instance corresponds to a variant of the well-studied facility location
problem, where a certain minimum demand (corresponding to making the next cable
type feasible) must be collected at the facilities. We present a constant factor ap-
proximation for this variant, which we term the load balanced facility location. This
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2428 S. GUHA, A. MEYERSON, AND K. MUNAGALA

is an independent contribution of this work. We present a simple constant factor
approximation for the Steiner forest variant as well. We finally show that an iterative
bottom-up aggregation of demand using these Steiner and shortest path forests yields
a constant factor approximation.

Independent results. Independent of this work, Karger and Minkoff [16] defined
the load balanced facility location problem as a subroutine for solving the single
commodity Rent-or-Buy problem. They obtained the same algorithm as the one we
present in section 6. We note that the single commodity Rent-or-Buy problem is a
special case of the single sink buy-at-bulk problem considered in this paper.

Garg et al. [10] obtained an O(K) approximation (where K is the number of
different cable types) to the single sink buy-at-bulk problem by rounding the natural
LP formulation. Our paper improves the approximation ratio via a fully combinatorial
algorithm. Since the natural LP relaxations for the Steiner forest and shortest path
problems have a constant integrality gap, it is natural to expect that an LP based on
the structure theorem should have an O(1) integrality gap as well, and we provide this
LP for completeness. However, the authors of [10] observe that the Structure Theorem
in our paper can be used on their stronger, natural LP as well. This connection has
also been made explicit by Talwar [23] subsequently.

Organization of the paper. In section 2, we state the single sink buy-at-bulk
problem formally and discuss the structural properties of the optimal solution. In
section 3.2, we discuss a scaling idea to remove similar pipe types and show how it
improves the structure of the optimum solution. We then present the Hierarchy

algorithm in section 4 and show a constant approximation ratio. We show in section 5
how to improve the approximation ratio for Access Network Design. We present the
algorithm for load balanced facility location in section 6 and conclude by surveying
results that appeared subsequently to the publication of a preliminary version of this
paper [13].

2. Definitions and preliminaries. The single sink buy-at-bulk problem as
defined in [21] is as follows: Given a graph G(V, E) with a distance (length) function
ce on the edges, the goal is to construct a network routing a set S1 ⊆ V of demand
nodes to a single sink s. We are given K types of connections (pipes) where pipe type i
has a fixed cost σi per-unit-length and a capacity ui. Each demand node v ∈ S1 needs
to transport some amount of demand dv to the sink. The objective is to optimize the
cost of buying pipes along the edges to route all demands to the sink. We are allowed
to buy multiple copies of a pipe along the same link. The above can be termed as
a capacitated version; we will use an alternate incremental cost formulation of the
above problem, which easily models arbitrary piecewise linear concave costs.

Definition 2.1. In the single sink buy-at-bulk problem we are given a set of
pipes, where pipe type i has fixed and incremental costs σi and δi, respectively. If we
transport d units of demand along a path of length L using pipe type i, we will pay
a total of L(σi + δid). The goal is to construct a network routing a set S1 ⊆ V of
demand nodes to a single sink s, while minimizing the cost of the network.

Let fi(Y ) = σi + δiY be the per-unit-distance cost of routing demand Y along a
pipe of type i. Define h(Y ) = mini fi(Y ). The function h() is piecewise linear and
concave. Note that a pipe type which does not affect h() (that is, does not define the
envelope) will not affect the solution at all. Therefore, if we focus only on the pipe
types which are useful and number the pipes in decreasing order of σi, we observe
that δ1 > δ2 > · · · > δK . In this formulation the “capacity” of pipe k is ui = σi/δi.

It is not hard to see that a solution under this incremental cost formulation costs
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at least as much as the same solution under the capacitated model, and at most twice
as much as the solution under the capacitated model. Furthermore, we have the
following.

Lemma 2.2 (see [2]). In the incremental cost model the optimum solution naturally
defines a tree.

The above is straightforward since the costs are subadditive under the above
assumptions of {σi}, {δi}; after the links in the optimum are bought and the fixed
cost paid, the entire demand from each node can be routed along the path with the
lowest incremental cost (ties broken arbitrarily) from each node to the sink. This
would define a tree, and we can eliminate the edges we do not use. Note that as a
consequence, every node would use a unique pipe type for its outgoing flow. Also due
to the subadditivity property of the costs, along every flow path the pipe types will
increase in number.

The authors of [2] also introduced the following problem.
Definition 2.2. The Access Network Design problem is defined as follows: It is

the same as the single sink buy-at-bulk problem with the following added restrictions
(c = 1/2 is used in [2]):

1. For 2 ≤ k ≤ K, if d < cσk

δk
, then dδk−1 + σk−1 < dδk + σk.

2. The smallest demand looks like the smallest pipe capacity, or, more precisely,
δ1 > cσ1.

3.
∑

κ<k σκ = O(σk).
As mentioned earlier, our solutions for the above problems will use solutions to

the following variant of the Facility Location problem.
Definition 2.3. The load balanced Facility Location problem is defined as fol-

lows: We are given a network G(V, E) with a distance function c(·) on the edges and
a set of demand points, with demands dj. The cost of opening a facility at location i
is fi. In addition, there is a lower bound of Li on the demand that a facility opened
at i must satisfy. We are required to open facilities and allocate the demands to the
open facilities so that an open facility at i has at least Li demand routed to it. The
cost of our solution is the sum of the distances traveled by the demands and the cost
of the open facilities. The goal is to minimize this cost.

3. Single sink buy-at-bulk.

3.1. Roadmap.
Intuition. Assume that we consider only the pipe types which are not dominated

by others. Thus the cost per-unit-length is a piecewise concave function of the demand.
Observe that as we increase demand along an edge, there are break-points at which
it becomes cheaper to use the next larger pipe type. Let gk be the demand for which
it becomes cheaper to use a pipe of type k +1 compared to a pipe of type k. Suppose
that we are in a scenario 0 = g0 < u1 < g1 < u2 < g2 < · · · < uK < gK = ∞ (we will
show how to achieve a similar scenario later).

Observe now that if the demand amount is in the range [gi−1, ui], we can ignore
the incremental cost with a factor 2 loss in cost, and the cost of the edge will just be
σi times the length of the edge, independent of the demand. If, on the other hand, the
demand is in the range [ui, gi], we can ignore the fixed cost with a factor 2 loss in cost,
and the cost of the edge per-unit-length is δi times the demand. This implies that the
optimum solution can be converted with a factor 2 loss in cost to a layered solution.
Layer i has a Steiner forest using pipes of type i followed by a forest of shortest path
trees using pipes of the same type. Each pipe in the Steiner forest has at least gi−1

demand, and each pipe in the shortest path forest has at least ui amount of demand.
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The shortest path forest should ensure that we collect at least a demand of gi, such
that we can use the Steiner forest corresponding to a larger pipe type. This gives us
a clustering problem where each cluster is supposed to have a minimum number of
(weighted by demand) points—this is the reason for using the load balanced Facility
Location problem.

For completeness, we first define the Facility Location problem [22].
Definition (Facility Location). We are given a set of demands D. Let dj be

the demand at j ∈ D. We are given a set of feasible locations F , where φi is the
cost of opening a facility at location i ∈ F . The points D and F are embedded in a
metric space where cij is the distance between points i and j. The goal is to open a
subset of facilities X ⊆ F and connect each demand j ∈ D to the closest open facility
q(j) ∈ X, so that the total cost of the open facilities,

∑
i∈X φi, plus the sum of the

routing cost,
∑

j∈D cq(j)jdj, is minimized. Let ρf denote the best approximation ratio
for the Facility Location problem. This is 1.52 due to [18].

The load balanced Facility Location problem has an added constraint: Each i ∈ F
has a lower bound Li on the demand it needs to serve if opened. The solution X
constructed must satisfy that for every i ∈ X , at least Li demand is routed to i in
the solution. In section 6 we prove the following.

Theorem 3.1. We can compute a solution for load balanced Facility Location
whose cost is 2ρf times that of the optimal solution, such that our solution relaxes the
lower bounds by a factor of 1/3, so that for i ∈ X, at least Li/3 demand is routed to
i.

However, if we apply the above directly and compare our solution with the optimal
solution that satisfies the above-mentioned structural properties, the analysis does not
immediately go through. So we use the idea that we will use a larger pipe type only
when it is significantly, i.e., by a constant factor, cheaper. This will allow us to set
up a geometric series that accounts for the cost of the shortest path forests. But to
bound the cost of the Steiner forests we will need a different idea; namely, we restrict
ourselves to pipes where the σi decrease by a constant factor as well. But this now
implies that we should show that even after ruling out pipes according to the above
two ideas, there is a feasible solution which is not too expensive. This is the Structure
Theorem we prove.

There is, however, one remaining issue regarding how to correlate the costs of
the different layers—we introduce a novel strategy where the entire demand of a layer
is sent to random node in S1. Note that it is important for our analysis that the
demands be sent to S1, because the structured solution we derive from modifying the
optimum solution is defined with these demand nodes as the ground truth.

In the remainder of the section, we first describe the structured feasible solution.
We then present the algorithm in section 4.

3.2. Constructing a layered solution. We now formalize the intuition de-
scribed above to obtain a layered solution with a cost close to the optimal cost. Our
algorithm will progressively construct partial solutions using each pipe type in turn.
In order to bound the total cost, we must guarantee that pipes are very different from
one another in terms of fixed and incremental costs.

Definition 3.2. Define a set of pipe types to be good if for some α ∈ (0, 1/2)
we have the following:

1. For any k < K, we have σk < ασk+1.
2. For any k < K, we have αδk > δk+1.
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We need to prove that we can guarantee these conditions without increasing the
cost of the optimum solution by too much.

Lemma 3.3. There exist a set of good pipes and a solution that uses only these
types, such that the cost of this solution is at most 1/α times the cost of the original
optimum solution.

Proof. We first eliminate pipes in order to guarantee that among the remaining
pipes we have σk < ασk+1 while increasing the fixed cost of the optimum solution by
at most 1/α. The incremental cost of the optimum solution can only decrease during
this phase.

We find the largest pipe k such that σk ≥ ασk+1. We eliminate this pipe, replacing
it in the optimum solution with pipe k+1. We renumber the pipes and repeat. Notice
that if at some point some pipe type is replaced by pipes of type k, then we will always
keep pipes of type k in the final solution (since every pipe type higher than k has at
least α higher fixed cost). When this finishes, we will have the desired property. The
original optimum solution with pipe replacements has fixed cost at most 1/α larger
since any pipe which was replaced was replaced by a pipe with at most 1/α bigger
fixed cost. The incremental cost can only decrease, since higher fixed cost implies
smaller incremental cost.

We now eliminate pipes in reverse order, where an eliminated pipe is replaced by
a pipe with larger incremental cost, to guarantee that among the remaining pipes we
have αδk > δk+1, while increasing the incremental cost of the optimum solution by at
most 1/α. The fixed cost of the optimum solution can only decrease.

Combining these two phases gives the solution claimed by the lemma.
Definition 3.4. Assuming that we have a good set of pipes, define bk to be

such that fk+1(bk) = 2αfk(bk). In essence, bk is a sufficient demand that it becomes
considerably cheaper to use a pipe of type k + 1 rather than a pipe of type k.

Lemma 3.5. For all k, uk ≤ bk ≤ uk+1.
Proof. From the definition of bk, we can write σk+1 + δk+1bk = 2α(σk + δkbk).
Solving this equation for bk yields

bk =
σk+1 − 2ασk

2αδk − δk+1
≤ σk+1

2αδk − δk+1
≤ σk+1

δk+1
= uk+1.

The above shows that bk ≤ uk+1; to see the other bound observe that when we
have bk flow, it is cheaper to use a pipe of type k + 1 rather than a pipe of type k. It
follows that σk+1 + δk+1bk < σk + δkbk. Solving this for bk, we can see that

bk >
σk+1 − σk

δk − δk+1
.

Since α < 1/2, it follows that σk+1 > 2σk and we can conclude that bk > uk.
Lemma 3.6. For all k and any demand D ≥ bk, fk+1(D) ≤ 2αfk(D).
Proof. Suppose D = bk + x for some x ≥ 0. Then, fk+1(D) = σk+1 + δk+1(bk +

x) = 2α(σk + δkbk) + δk+1x. Noting that δk+1 ≤ αδk, it immediately follows that
fk+1(D) ≤ 2αfk(D).

Lemma 3.7. For all k and any demand D ≤ uk, fk+1(D) ≥ fk(D).
Proof. Note that fk+1(D), fk(D) are nondecreasing linear functions in D, and

further, δk+1 ≤ δk. Therefore, to prove the lemma, it suffices to observe that
fk+1(uk) ≥ fk(uk).

But fk(uk) = σk + δk
σk

δk
= 2σk < σk/α ≤ σk+1 ≤ fk+1(uk). Note that we require

α ∈ (0, 1
2 ).
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We now show that there exists a structured near-optimum solution. Subsequently
we will search for solutions which obey this structure and are within a constant factor
of the best structured solution.

Theorem 3.8 (Structure Theorem). There exists a tree solution that uses pipes
of type k on a link iff the demand x on the link satisfies x ∈ [bk−1, bk). Further, the
tree routes all demands which entered a node using pipe k out of that node using a
pipe of type k or k + 1. This solution pays at most 1

2α2 times the optimum solution.

Proof. First, as noted in section 2, the optimal solution defines a tree due to the
subadditive nature of the costs. Further, as noted there, the incremental cost model
forces this solution to use only one pipe type per edge. Both these properties will be
preserved by the transformations described below.

We first modify the solution to use only the set of good pipes (according to
Lemma 3.3). Therefore, we need to show that transformations in the the rest of the
proof increase the cost of the solution by at most a factor of 1

2α .

Consider any edge where x units of flow are routed by the optimum solution. Let
k0 = argminifi(x). This is the pipe type used by the optimum solution.

Suppose a pipe has flow bk−1 ≤ x < uk. We know by (repeated) application of
Lemmas 3.6 and 3.5 that a pipe of type k would reduce the cost compared to any
smaller pipe type. Likewise, by (repeated) application of Lemmas 3.7 and 3.5 we can
conclude that a pipe of type k would reduce the cost compared to any larger pipe
type. Thus k = k0.

Therefore, what remains to be shown is that if uk ≤ x < bk and we use a pipe
of type k, then our cost does not increase significantly. First, due to the discussion
above, since bk ≤ uk+1, we know that it is cheaper to use pipe type k+1 compared to
any larger pipe type. Thus k0 = k or k0 = k + 1, and we need to compare fk(x) and
fk+1(x) only. Now, by Definition 3.4 and the fact that fk(x) and fk+1(x) are linear
nondecreasing with δk+1 ≤ δk, it is immediate that 2αfk(x) ≥ fk+1(x).

Thus, if we modify the optimum solution (already restricted to good pipes) to use
pipe type k in the range [bk−1, bk), then the cost of the solution goes up by at most
a factor of 1/(2α); combined with Lemma 3.3 the total cost is at most 1/(2α2) times
the optimal cost. To achieve the second part of the lemma, we observe that since we
are considering a tree solution, the flow does not decrease as we proceed toward the
root. We simply introduce dummy nodes or pipes of length 0 if the largest incoming
pipe type is k and the outgoing pipe type is larger than k + 1.

An LP formulation. We can encode the structural observation above into an
integer program formulation. We modify the graph to include K self-loops of length 0
at every vertex in order to accomodate pipe types required by the Structure Theorem.

Denote by xvek whether the demand at node v uses a pipe of type k on edge e. By
yek we denote whether there exists a pipe of type k on edge e. The integer program
can then be formulated as follows. Here In(v) denotes the set of edges coming into
on node v, and Out(v) the set going out of v. Recall that ce is the length of edge e,
and dv is the demand at node v ∈ S1.

Minimize
∑
e∈E

ce

(∑
k

σk · yek +
∑

e

∑
v∈S1

∑
k

δk · dv · xvek

)
,
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∑
e∈In(w) xvek =

∑
e∈Out(w) (xvek + xvek+1) ∀v ∈ S1, w ∈ V \ {s}, k,

xvek ≤ yek ∀v ∈ S1, e ∈ E, k,∑
e∈Out(v) xve1 = 1 ∀v ∈ S1,

xvek, yek ∈ {0, 1}.
In the above integer program (IP), the first constraint encodes the structural

condition that if a demand enters node v using a pipe of type k, then it leaves the
node using a pipe of type k or k + 1. The second constraint encodes that a demand
can use a pipe of type k on an edge only if a pipe of that type exists on that edge.
The third constraint encodes that the demand leaves its source using a pipe of type
1.

The LP is obtained by relaxing the final integrality constraints. It can be shown
using Theorem 4.7 that if the LP is written on the set of good pipe types, it has an
O(1) integrality gap. Direct LP rounding techniques exist as well [10, 23]. Since the
LP is not the main focus of the paper, we omit a proof of the integrality gap.

4. The HIERARCHY algorithm. We will now present the Hierarchy algo-
rithm for single sink buy-at-bulk based on the structural observations we made above.
The scaling idea from the previous section measures that we can compare the cost
of our solution in each layer with the respective costs of the optimum solution. The
algorithm is presented below.

Our solution will route the demands through the forests of increasing pipe types.
This solution need not be a tree but can easily be converted to one of no greater cost.

Let ρs and ρf denote the best approximation ratios for the Steiner tree and Facility
Location problems, respectively. Note that ρs = 1.55 due to [20] and ρf = 1.52 due
to [18]. Note that for the “shortest path tree” part, we use Theorem 3.1 to obtain
a 2ρf approximation that routes at least bi/3 demand to each open facility. For the
“Steiner trees” part, we use the ρs approximation.

4.1. Analysis. Let Γ be the structured optimal solution constructed in Theo-
rem 3.8. We define C∗

i to be the total cost of Γ using pipes of type i. The total cost
of the structured optimal solution is therefore

∑K
i=1 C∗

i = C∗.
Let T I

i be the incremental cost of the Steiner tree at layer i and T F
i be its fixed

cost. The total cost of the Steiner tree at layer i is Ti = T I
i + T F

i .
Let P I

i be the incremental cost of the shortest path tree at layer i and PF
i be its

fixed cost. The total cost of the shortest path tree at layer i is Pi = P I
i + PF

i .
Let Ni be the total cost of the consolidation steps for layer i. The total cost of

our solution is therefore
∑

i(Ti + Pi + Ni).
Lemma 4.1. For all i, v, we have E[Di(v)] = dv and E[DA

i (v)] = dv; that is,
the expected demand at any node after any of the consolidation steps is the original
demand of the node.

Proof. We will prove this by induction on the steps i. Suppose that the statement
is true at some step. We will show that it is true at the next step. There are two
cases to consider; either we performed a Steiner tree step or a shortest path tree step.

Note D1(v) = dv. For ease of notation, define DA
0 (v) = dv for all nodes v. These

two equations define the base case.
Suppose we have just performed a Steiner tree step. By the induction hypothesis

we know that E[Di(v)] = dv. The node v is a part of some tree t with total demand
Dt. We then choose a node for consolidation and the probability that we choose node
v is Di(v)/Dt. If we choose v, demand Dt will be placed there; otherwise the demand
is 0. Thus the expected amount of demand at v, conditioned on the previous i − 1
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Algorithm Hierarchy

• Let s denote the sink node and S1 the set of original demand nodes. Assume that
s ∈ S1. Let the demand of v ∈ S1 − {s} be denoted by dv.

• The algorithm proceeds in phases. In phase i we will use pipes of type i only.
Let Di(v) denote the demand of a node v at the start of the phase. Since the
algorithm is randomized, this is a random variable. Let Si be the set of nonzero
demand points (and s) we have at this stage.

(i) Steiner trees. Construct an approximately optimal Steiner tree on Si. Root
this tree at s. Transport the demands from Si upward along the tree. If on
any edge the amount of demand is larger than ui, we “cut” the tree at that
edge. This gives us a forest on Si where each edge has at most ui demand
through it.

(ii) Consolidate A. Consider any subtree t in the above forest which does not
contain s. Let the set of nonzero demand nodes in t be SA

i (t). Pick a node
y at random from SA

i (t) in proportion to its demand Di(y). For all nodes
in SA

i (t), we send their demand (currently located at the root of t) to z
using pipes of type i. Let Ai be the set of nodes y chosen corresponding to
different t. Denote the demand of a node v immediately after this step to
be DA

i (v).
(iii) Shortest path trees. Approximately solve a load balanced Facility Location

instance on S1 with the facility lower bound bi on all nodes (and no facil-
ity costs). If there does not exist bi total demand, then we instead route
directly to the sink. We get a forest of shortest path trees. We route our
current demands along these trees to their roots. Note that we solve the
load balanced Facility Location problem on the S1 nodes and not on the
SA

i (t) nodes.
(iv) Consolidate B. Consider any facility p opened in the above forest of shortest

path trees. Some set of nodes from S1 were assigned to p, denoted by
SB

i (p), and their (original) total demand is at least bi/3. We choose a
node z at random from SB

i (p) with probability proportional to dz. For
all y ∈ SB

i (p) ∩ Ai, we send their demand (currently at node p) to node
z using pipes of type i. Let Si+1 be the set of nodes z that are chosen
corresponding to the different facilities p. Note that the only nodes currently
having nonzero demands are nodes in Si+1.

steps, is Di(v). If we now remove the conditioning, E[DA
i (v)] = E[Di(v)] = dv, as

desired.
Suppose we have just performed a shortest path tree step. Note that we used

the S1 nodes for the load balanced Facility Location construction in this step. The
probability that we consolidate to v is dv/D(p, i), where v is assigned to p in this
stage and the total demand assigned to p is D(p, i). Note that

D(p, i) =
∑

u∈SB
i (p)

du.

The demand of v is Di+1(v) after this step. Note that v collects the demands of the
nodes in set Ai∩SB

i (p); further, the demand of a node u in this intersection is DA
i (u).

Conditioned on the previous steps, the expected value of Di+1(v) is

E[Di+1(v)]
dv

D(p, i)

∑
u∈SB

i (p)

DA
i (u).
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Now if we remove the conditioning,

E[Di+1(v)] =
dv

D(p, i)
E

⎡
⎣ ∑

u∈SB
i (p)

DA
i (u)

⎤
⎦

=
dv

D(p, i)

∑
u∈SB

i (p)

E[DA
i (u)]

=
dv

D(p, i)

∑
u∈SB

i (p)

du = dv.

This proves the inductive case.
Lemma 4.2. E[Ni] ≤ Ti + Pi.
Proof. The proof essentially follows by observing that the cost is a concave func-

tion of demand, and the consolidation process picks a random node in proportion to
the demand sent to the root.

This is obvious for the shortest path trees—let the nodes belonging to a tree
rooted at facility p be v1, . . . , vr with distances �1, . . . , �r from node p. Then the
expected consolidation cost is

∑
p

r∑
a=1

(dva/D)fi(D)�a ≤
∑

p

r∑
a=1

fi(dva)�a = Pi.

The inequality follows since fi is a concave function.
For the other step, consider the consolidation process to recursively choose from

the root a subtree with probability proportional to the total demand in the subtree.
We just saw the proof for a one-level tree that the consolidation cost is less than the
cost of sending the flows to the root. This argument is now repeated in each of the
subtrees.

Lemma 4.3. T I
i ≤ T F

i and PF
i ≤ P I

i .
Proof. Since we cut the tree at any edge with more than uk demand along it, we

guarantee that the fixed cost paid on any edge we actually use exceeds the incremental
cost.

By the same argument, the Steiner tree stage guarantees at least uk demand or
zero everywhere. For the shortest path tree, if an edge has zero demand flowing on
it, we will pay zero for that edge. Otherwise, there is at least uk demand on the edge,
and we pay an incremental cost which exceeds the fixed cost for the shortest path
trees.

Lemma 4.4. E[P I
i ] ≤ 2ρf

∑j=i
j=1 αi−jC∗

j .
Proof. Suppose the demands at the sources were those from S1. Then one possible

solution would be Γ itself until pipes of type i + 1 were used. We know that Γ must
gather the desired bi flow before using pipes of type i + 1. Since we will always pay
the incremental cost δi, and the incremental costs scale by α, we can guarantee a total
cost of at most

∑j=i
j=1 αi−jC∗

j for this solution. Our actual demand at each node has
an expected value equal to the original demand, so the expected value of a feasible
solution for P I

i is bounded as above. The extra factor is due to the approximation of
the load balanced Facility Location problem as stated in Theorem 3.1.

Lemma 4.5. Pr[Di(v) 	= 0] ≤ 3dv/bi−1.
Proof. Let v be the chosen node (denoted by z in step (iv) of the algorithm)

corresponding to some p. We obtain the nodes Si by solving an instance of the load
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balanced Facility Location problem on S1 with lower bounds bi−1. In this solution,
each node in Si except s has demand at least bi−1/3. In other words,

∑
u∈SB

i (p) du ≥
bi−1/3.

Now note that v is chosen independent of {Di−1(u)}, and this is the reason why
S1 is used and not Si. Note that at any node u in S1, the currently accumulated
before the shortest path tree step is DA

i−1(u). We therefore have

E[Di(v)|Di(v) > 0] =
∑

u∈SB
i (p)

E[DA
i−1(u)] =

∑
u∈SB

i (p)

du ≥ bi−1/3.

Now, combined with the fact that E[Di(v)] = dv, the lemma follows.
Lemma 4.6. Recall that ρs is the approximation ratio that the Steiner tree ap-

proximation algorithm used; then E[T F
i ] ≤ ρs(

∑j=K
j=i αj−iC∗

j +
∑j=i−1

j=1 3(2α)i−jC∗
j ).

Proof. To bound the cost of T F
i , we will show that there exists a Steiner tree

Γi which connects all Si with a low cost. Note that this Steiner tree will have an
approximation ratio at most ρs relative to the optimal Steiner tree on the set Si.

The tree Γi will be the tree corresponding to the structured solution Γ, where
(1) all the pipes of type j ≥ i use pipes of type i and (2) for the nodes v with
Di(v) > 0, the edges in the path to the root where any pipe of type j < i is used,
that corresponding edge now uses a pipe of type i.

The cost according to part (1) can be bounded by
∑j=K

j=i αj−iC∗
j . This is because

for any pipe of type j ≥ i, we have σi ≤ αj−iσj . Further, the fixed cost of using the
pipe of type j is less than its total cost, and thus the above bound follows.

To bound the contribution of (2), we focus on the subtrees of Γ which have total
demand at most bi−1 (and therefore use pipes of type j < i). Note that due to the
introduction of zero length edges, these subtrees may share their (sub)roots, but they
will be edge disjoint. For an edge e, let the demand flowing through it be xe < bi−1,
and suppose that Γ uses a pipe of type je < i for this edge. Let the set of nodes in Γ
below e be denoted by Γe. Let the length of e be ce.

Now the edge e is used in Γi if any v in the subtree below it has Di(v) > 0.
Therefore, the probability that e is used is bounded above by

∑
v∈Γe

3dv/bi−1 using
Lemma 4.5 and the union bound. Thus we pay a cost

∑
v∈Γe

3dv

bi−1
ceσi =

3xe

bi−1
σice ≤ 3xe

bi−1
fi(bi−1)

≤ 3xe

bi−1
(2α)i−jefje(bi−1) ≤ 3(2α)i−jefje

(
xe

bi−1
bi−1

)
= 3(2α)i−jefje(xe).

The second inequality follows from Lemma 3.6. Therefore, if we sum the right-
hand side over all je, the contribution from edges in that level will be 3(2α)i−jeC∗

je
.

Taking the contribution of both (1) and (2) together, the total cost of Γi is at most

j=K∑
j=i

αj−iC∗
j +

j=i−1∑
j=1

3(2α)i−jC∗
j .

We can find a Steiner tree of cost at most ρs times the above cost, so the lemma
follows.

Theorem 4.7. The Hierarchy algorithm is a constant-approximation for the
single sink buy-at-bulk problem.
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Proof. By Lemmas 4.2 and 4.3, the total expected cost of our solution,
∑

i E[Ni+
Pi + Ti], is bounded by

∑
i 2(2T F

i + 2P I
i ). Using Lemmas 4.4 and 4.6, we conclude

that the expected cost of our solution is bounded by the following:

4
∑

i

⎛
⎝ρs

j=K∑
j=i

αj−iC∗
j + ρs

j=i−1∑
j=1

3(2α)i−jC∗
j + 2ρf

j=i∑
j=1

αi−jC∗
j

⎞
⎠ .

By reversing the orders of summation, we can bound this by

4
(

ρs

1 − α
+

6αρs

(1 − 2α)
+

2ρf

1 − α

)
C∗.

This is our approximation relative to the near-optimum structured solution. Using
Theorem 3.8 allows us to bound our overall approximation ratio by(

4
2α2

)(
ρs + 2ρf

1 − α
+

6αρs

1 − 2α

)
.

The best known approximation ratio for Steiner trees is ρs = 1.55 due to [20],
and that for Facility Location is ρf = 1.52 due to [18]. Setting α = 1/3 the above
reduces to a 54ρf + 135ρs < 292 approximation for the incremental cost model.

5. Improved approximation algorithm for Access Network Design. Re-
call the definition of this problem from Definition 2.2. Andrews and Zhang [2] consider
the case c = 1/2 and show that the optimal solution can be converted with a constant
factor loss into a layered solution of shortest path forests. They show that there ex-
ists a near-optimal (within a constant multiplier on the cost) solution which is a tree
satisfying the following properties:

1. Each demand is routed through pipes of consecutive types, i.e., types 1, 2, . . . , κ
(κ ≤ k).

2. For all pipe types k, any pipe of that type has at least uk/2 = σk

2δk
amount of

demand flowing through it.
This means that for Access Network Design, the optimal solution can be converted

to a layered solution using shortest path forests of increasing pipe types.
We can improve the analysis of the above algorithm for Access Network Design.

As shown in [12], for Access Network Design we have a layered shortest path forest
solution with a reduction in cost at each layer. We can prove the following theorem.

Theorem 5.1. There exists a solution to the Access Network Design problem in
which we use only pipe types 1, 2, . . . satisfying the condition φi = δi+1

δi
≤ α, and in

which any pipe of type i has at least ui/2 amount of demand flowing through it. The
fixed and incremental costs of this solution are each within 1

α of the original optimum
which used all pipe types and which had at least uk/2 demand in any pipe of type k.

Proof. Note that since we are using pipes of larger types in increasing layers, the
incremental cost δ per unit of traffic keeps decreasing. In fact, we can make sure that
δ goes down by a constant fraction α < 1 with a 1

α increase in cost. The way we do
this is the following.

Consider pipes of increasing types starting at type 1. Let φi = δi+1
δi

. Let k′ be
the largest number such that

∏k′

i=1 φi ≥ α. We remove all pipe types 2, . . . , k′ +1 and
use only pipes of type 1 instead of all these pipes. We next consider pipes starting at
type k′ + 2 (renumber this as pipe 2) and repeat this filtering process.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2438 S. GUHA, A. MEYERSON, AND K. MUNAGALA

When the above is completed, we are left with a set of pipe types 1, 2, . . . satisfying
the following properties. For consecutive pipe types i and i + 1, δi+1

δi
≤ α. Finally,

note that in this process, if a pipe of type j was discarded and replaced by a pipe of
type i, it must be the case that σi < σj , and δi < 1

αδj , so that the cost of using pipe
i is at most 1

α times the cost of using pipe j.

Recall that φi = δi+1
δi

. From above, we can assume with a loss of 1
α in the

approximation ratio that all φi ≤ α < 1. Our algorithm will lay pipes in increasing
order of types.

Let Si denote the demand points at stage i. We maintain the invariant that every
demand point has at least ui/6 demand. We solve the load balanced Facility Location
instance on Si with lower bound ui+1 (except on the sink s). We route the demands
to the open facilities using pipes of type i. For every open facility, we choose one of
the demand points sending demand to it at random in proportion to its demand, and
route all the demand to this point using pipes of type i + 1. Let Si+1 be the final set
of demand points to which we route the demands. Note that every demand point has
at least ui+1/6 demand.

Let P I
i be the routing cost at stage i, and let PF

i be the fixed cost. Note that
PF

i ≤ 6P I
i because of the invariant on the demands.

We define C∗
i to be the total incremental cost incurred by the optimal solution

using pipes of type i. Note that the total cost of the optimal solution is C∗ ≥∑i C∗
i .

Lemma 5.2. E[P I
i ] ≤ 2ρf(1 + α)(

∑j=i−1
j=1 αi−j−1C∗

i ).
Proof. The routing cost that the optimum solution pays in routing the original

demand points until stage i using pipes of type i is at most
∑j=i−1

j=1 αi−j−1C∗
i . This

follows from [12] and from the analysis in section 4. This is an instance of the load
balanced Facility Location problem, and we apply Theorem 3.1.

It is now easy to see the following.
Lemma 5.3. E[

∑
i(P

I
i + PF

i )] ≤ 14ρf
1+α
1−αC∗.

Note that we lost a factor of 1
α up front in the routing cost because of scaling the

pipe types. Our approximation ratio is therefore 1
α14ρf

1+α
1−α . Setting α = 1/3 and

ρf = 1.52 this ratio is less than 128.
Theorem 5.4. We have a randomized 128 approximation for Access Network

Design.
This approximation factor has been subsequently improved in [15].

6. Load balanced Facility Location. Recall the definition of Facility Loca-
tion and load balanced Facility Location from section 3.1. The load balanced problem
differs from standard Facility Location [22] in that we must route at least Li units of
demand to each open facility i. Load balanced Facility Location has direct applica-
tions; consider a franchise which must open stores to minimize the average distance
from customer to store, but which must also guarantee a minimum number of cus-
tomers to each store so the individual stores remain profitable. We present a constant
approximation to this problem, losing a constant factor compared to the lower bound
on demand. We can write an IP for this problem.

Minimize
∑

i

∑
j

djcijxij +
∑

i

φiyi,
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∑
i xij ≥ 1 ∀j,
xij ≤ yi ∀i, j,∑

j djxij ≥ Liyi ∀i,

xij , yi ∈ {0, 1} ∀i, j.

Clearly, the general version of this problem is NP-hard, as it reduces to classical
facility location when the lower bounds are set to zero. In fact, this problem is NP-
hard even if all facility costs are zero, all lower bounds are equal, and all demands are
unit.

Theorem 6.1. Suppose we are given a load balanced Facility Location instance
with lower bound L on all facility locations, and facility costs being zero. Deciding if
a feasible solution of cost at most C exists is NP-hard.

Proof. We reduce the decision version of the unweighted set cover problem to
an instance of this problem as follows. The sets are the facilities. The elements are
the demand points with unit demand. Suppose there are n elements. In the Facility
Location instance, we add edges of cost one between every element and all the sets it
belongs to.

Suppose we have to decide if a cover with s > 1 sets exists. We add sn demand
points with unit demand and connect them to all the sets (or facilities) with edges of
length one. We set the lower bound on the facilities to be n + 1. We now ask if there
is a feasible solution of cost no more than ns + n + s. Note that if there exists a set
cover of size s, then there exists a solution of cost ns + n + s. The reverse also holds,
and therefore this completes the reduction.

Definition 6.2. An approximation algorithm for load balanced Facility Location
is an (α, β) approximation for some α ≥ 1 and β ≤ 1 if the cost of the solution is
within α times the optimal cost and facility i, if opened, serves at least Liβ demand.

Let us denote by ρf the best known approximation ratio for classical facility
location, which is ρf = 1.52 due to [18]. We present a (2ρf , 1/3) approximation to
this problem. The same result was independently obtained by [16]. Unlike classical
facility location [22], the lower bound makes it hard to round the linear relaxation
directly. This arises from the fact that the filtering steps of Lin and Vitter in [17] do
not work. Thus fractional solutions cannot be rounded by previous approaches.

The algorithm. The algorithm proceeds in two basic steps and uses an approxi-
mation algorithm for the Facility Location problem. We note that the approximation
guarantee holds relative to the LP relaxation as well (albeit with more technical details
that we omit, since it is not the main focus of the paper).

Load Balanced Facility Location Algorithm

(i) Transformation. For facility i, add the cheapest way to route exactly Li units of de-
mand to i to the facility cost φi. To do this, consider demands in increasing order
of distance from i, and route these demands to i until exactly Li units have been
routed. The routing cost of this process is added to φi.

(ii) Facility location. Next solve regular Facility Location with these facility costs using
the ρf -approximation algorithm.

(iii) Rounding to remove facilities. Now consider the open facilities in arbitrary order.
Consider any open facility i that serves less than Li/3 amount of demand. Close
the facility and route the demands it serves to their closest open facilities.

Lemma 6.3. Consider any feasible solution to the load balanced Facility Location
problem of cost C. After the transformation in step (i), this yields a feasible instance
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of the regular Facility Location problem of cost at most 2C.
Proof. Consider any facility i opened by the load balanced solution. Since this

solution is routing at least Li amount of demand to any open facility, the facility cost
we assign in the new problem is at most the routing cost of the demand connected to
that facility. Thus the total additional facility cost is at most C.

Therefore, the total cost in the solution we compute is bounded in terms of the
cost of the original solution to within a factor of 2ρf . Also note that facility location
guarantees that each demand point goes to the closest open facility. We have to show
that removing a facility does not increase the total facility plus routing cost of the
solution. For this, we show a feasible way to route the demands it serves so that the
cost does not increase.

Lemma 6.4. Removing a facility i serving less than Li

3 amount of demand cannot
increase the cost of our solution.

Proof. Suppose we are closing facility i. Consider the closest demand point j
which does not send demand to this facility. Suppose cij = D. If j is being served by
i′, ci′j < D, as each demand point goes to the closest open facility.

Note that at least 2Li/3 units of demand are at distance D or greater. Therefore,
f ′

i ≥ 2Li

3 D.
When we close the facility, we can afford to use f ′

i toward rerouting the demand
it serves. We send the demand to i′, the facility serving j. The extra cost for doing
this is at most the cost of taking the demand from i to j and from there to i′. This
distance is at most 2D by the metric property, and the demand is at most Li

3 , and so
the total rerouting cost is at most 2Li

3 D.
The above can be summarized in the following theorem.
Theorem 6.5. The load balanced Facility Location problem has a (2ρf , 1/3)

approximation where each demand is served by its closest open facility.

7. Conclusion. In this paper, we presented the first constant factor approx-
imation for the single sink buy-at-bulk network design problem. We conclude by
surveying the results on this and related problems that have appeared since the pub-
lication of the preliminary version of this paper [13]. First, the algorithm itself has
been significantly improved and simplified. Gupta, Kumar, and Roughgarden [15]
obtain a 72.8 approximation by combining the Steiner and shortest path stages into
a “Rent-or-Buy” stage, and using a novel analysis. This is the current best known
approximation guarantee. For the single sink case, Goel and Estrin [11] consider simul-
taneous (oblivious) approximation over all concave functions and obtain an O(log n)
approximation.

For the multiple sink (source-sink pairs) version of this problem, as mentioned
earlier, the best known approximation ratio of O(log n) follows directly from tree
embeddings [3, 9]. For this version, Andrews [1] has shown an Ω((log n)

1
4 ) hardness

of approximation assuming NP 	⊆ Dtime(nlogO(1) n).
The nonuniform version of the problem assumes different cable types are available

on different edges. As mentioned earlier, the best known approximation ratio [19] for
the single sink version is O(log n). Chuzhoy et al. [8] show that the single sink version
is hard to approximate within Ω(log log n), under similar hardness assumptions as the
uniform case. Charikar and Karagiozova [6] consider the nonuniform version in the
presence of multiple source-sink pairs. The best result for this case is a polylogarithmic
approximation ratio and is achieved by Chekuri et al. [7].
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