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Multi-start Method with Prior Learning for Image Registration

Abstract

We propose an efficient image registration strategy that is based on learned prior distributions of
transformation parameters. These priors are used to constrain a finite- time multi-start optimization method.
Motivation for this approach comes from the fact that standard affine brain image registration methods,
especially those based on gradient descent optimization alone, are affected by the initial search position.
While global optimization methods can resolve this problem, they are are often very time consuming. Our
goal is to build an explicit prior model of the gap between a typical registration solution and the solution
gained by a global optimization method. We use this learned prior model to restrict randomized search in the
relevant parameter space surrounding the initial solution. Global optimization in this restricted parameter
space provides, in finite time, results that are superior to both gradient descent and the general multi-start
strategy. The performance of our method is illustrated on a data set of 67 elderly and neurodegenerative
brains. Our novel learning strategy and the associated registration method are shown to outperform other
approaches. Theoretical, synthetic and real-world examples illustrate this improvement.
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Abstract

We propose an efficient image registration strategy that
is based on learned prior distributions of transformation
parameters. These priors are used to constrain a finite-
time multi-start optimization method. Moftivation for this
approach comes from the fact that standard affine brain im-
age registration methods, especially those based on gradi-
ent descent optimization alone, are affected by the initial
search position. While global optimization methods can re-
solve this problem, they are arve often very time consuming,
Qur goal is to build an explicit prior model of the gap be-
tween a typical registration solution and the solution gained
by a global optimization method. We use this learned prior
model to restrict randomized search in the relevant paream-
eler space surrounding the initial solution. Glabal opti-
mization in this restricied parameter space provides, in fi-
iite time, results that are superior to both gradient descent
and the general multi-start strategy. The performance of
our method s illustrated on a data sel of 67 elderly and
newrodegenerative brains. Qur novel learning strategy and
the associated registration method are shown to ouiperform
other approaches. Theoretical, synthetic and real-world ex-
amples illustrate this improvement.

1. Introduction

Image registration, or geometrically aligning image vol-
umes from different sources, is a fundamental problem for
medical image analysis. The standard registration method
secks a trunsformation that aligns one floating image to a
reference image such that the cost between the reference
image and the transformed image is minimum. The com-
plexity of the human brain and its natural variation be-
tween subjects often makes this optimization problem quite
challenging, even when transformations are restricted to
the affine space, as indicated by ongoing work in the field
[20,2, 12,19, 17, 18].

Assuming a fixed cost function (here, the mutual infor-
mation), the key aspect of this problem is the optimiza-
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tion strategy. A variety of methods based on local opti-
mization have been used o optimize related similarity cri-
teria [12, 19]. These methods include the gradient descent,
Levenberg-Marquardt method, conjugate gradient descent,
Newton's method and also non-gradient methods like Pow-
ell’s method. Without any prior knowledge, the initial trans-
form is often set as the identity transform. These methods
are widely used in the domain of medical image analysis
and give satisfactory results in many cases ([7/, |7, [5]).
However, due to the non-convex nature of the cost func-
tions, these optimization methods are faced with the funda-
mental problem of local optima.

In order to estimate a global optimum and reduce the
effect of the initial search position, methods like the multi-
start method and simulated annealing, or, the coarse-to-fine
multi-resolution search method |4, 4] have been proposed.
They require a huge number of iterations to converge and
are thus very time-consuming. These global optimization
methods are designed for general optimization problems.
However, ignoring knowledge about the specific problem
requires randomly sampling huge numbers of transform pa-
rameters. This is an inefficient strategy when one consid-
ers that it is exactly prior knowledge that guarantees an al-
gorithm’s good performance on a specific data set (the No
Free Lunch theorem [16]). This important fact was also
noted by Ashburner et al. [1]. who used a Gauss-Newton
method to optimize affine registration in Bayesian {rame-
work. Their priors are directly modeled as Guassian distri-
bution on the optimal transforms, which might have a large
variance. Jenkinson, et al. also investigated restricting the
transformation search space to sensible values and incor-
porating different tolerances and step sizes during iteration
|]. However, Jenkinsen’s approach used ad-hoc rules for
determining these settings.

This paper focuses on how lo use prior learning to
achieve a beuler optimization strategy and thus gain im-
proved registration results. Our strategy for improving
upon standard affine registration methods is to automati-
cally learn a non-parametric prior distribution of potential
transform improvements. Given a gradient descent solution



as initialization, we explicitly compare the gradient descent
solution to the solution gained by the multi-start method.
We define this gap between the global optimal transform
and the transform of the local (gradient descent) minimum
as the tangent transform. This gives a more constrained
space than directly modeling the optimal transformas in [ 1],
Note that, in this study, this residual tangent transformation
is also an alline lransformation. A sel of such langent lrans-
forms from the training set enables one to learn the fan-
gent transform space. This much smaller transformation
space gives a tighter constraint on the affine transform that
needs to be explored after a single gradient descent solution
is gained.

We provide a theoretical argument and experimentally
demonstrate that using a prior-based strategy within the re-
stricted tangent transform space improves upon both gra-
dient descent and general multi-start methods. We per-
form this analysis with respect to a common image regis-
tration task: registering every image in a database to a stan-
dard template. Typically, these images come from a single
imaging protocol and a relatively homogeneous population.
They therefore often share similar statistics, like possible
scale and possible rotation angles. This restricted data set
enables us to learn the “interesting” transformation space
and largely constrain the optimization.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the notion of the tangent transform and
discusses how to learn its prior. Section 3 describes how to
use the prior o aid the general multi-start method. Section
4 gives the experimental results of affine registration on a
synthetic and a real database. Section 5 discusses the possi-
ble extension and the limitation of the work and concludes
the whole paper.

2. Prior Learning on Tangent Transform

Our approach directly addresses the concern of how to
learn a relevant parameter space within which to optimize
a transformation. We assume that the cost function (eg,
Mutual Information [ 15, 1]) is given and also a basic op-
timization procedure (eg, gradient descent) exists for that
cost function. The basic local optimization method used
here has been evaluated on brain images and applied exten-
sively by the open-source ITK community [ |9, 5]. A subset
of the fixed database will be used as the learning set to boot-
strap the prior.

2.1. Cost Function and Its Optimization

Given a reference image /™ (z) and another floating im-
age I/{x), the aim of registration is to find the optimal
transform 7" in the transformation space Sy. The defini-
tion of optimality is given by the cost function C'(1", T4, T).
The registration problem is formulated as finding the opti-

mal T in space St such that,

T* = arg min C{I" (), I (T(z)). )

Although the challenging problem of defining a good
cost function is out of the scope of this paper, the cost func-
tion is the vital key to the success of the registration. No
optimization algorithm can obtain a good registration when
the cost function is inappropriate. For this paper we use the
widely accepted Mutual Information (MT) ([15, 3]) as our
cost function. M1 was first proposed to register multimodal-
ity images and is widely used in medical image registration
([0, 1 12]). It measures the degree to which informa-
tion from one image predicts another. This information-
theoretic criterion does not assume specific intensity rela-
tions between two images and can be applied in different
modalities. Consider image [ and J as discrete random
variables over intensities. The MI between [ and .J is de-
fined as:

MI(L Y =3 Pr(a)log Pr(i) + 3 Palj) log Pr(j)
i 4

— Y Pryli, 5)log Prai, 7). 2)
¥

P is the distribution for the random variable {-). P4p is the
joint distribution of A and B. Different implementations of
MI typically vary the method of Parzen window estimation
for the probabilities ([ | 5] [14] [11]). The implementation
of [1 1] is used for the experiments in this paper.

2.2. Transformation Space

The transformation space defines all the feasible trans-
forms. The only requirement for the transform in our
scheme is that it can be parameterized. For most databases,
only a small portion of the full space contains optimal trans-
formation parameters. Intuitively, one should not allow ex-
ploration of the full transform parameter space.

For this paper we restrict ourselves to the affine trans-
form for the following reasons. First, it is the most flexible
linear transform. Besides containing the rigid transform,
it allows scale change in every dimension and shearing as
well. Thus, it is suitable as a low-dimensicnal transforma-
tion for inter-subject studies. With 12 degrees of freedom,
the prior parameters are not easy to set manually. Also a
good alline registration is needed as a preprocessing step in
non-rigid registration to make the global warping as small
as possible. While we restrict this work to the affine space,
the possibility of using cur learning scheme with a larger
deformable space is discussed in section 5.

The affine transform is represented as a projection matrix
A and a translation vector £: 1) = Ax+t. The projection
matrix is decomposed into the product of the rotation matrix
R, the scaling matrix S and the shearing matrix K, A =
R xS xK.



Given the rotation axis of (u, v, w) and the rotation an-
gle ), the rotation is parameterized by the quaternion of

four-parameters Ry = (a,b,¢,d) € B* with (a, b,c,d) =
(cos oY sin —, v sin o ursin ;) . The unitary constraint

|Rp \Tg = 1 keeps the scale lll1_('2|'l'r]llg6d under rotation. The
rotation matrix I is given by i} =

PRy, VR 2be — 2ad 200 + 2bd
2erel + 2he aZz — W et 2 2l — b
2bd — 2ae Jab+ 2ed @ =W — 2+ 2

Details about quaternions can be found in [ 3].
Let S = (s1.82,83) represents the three scaling fac-
tor in 3 dimensions. The scaling matrix S is given by

81 0 (O
S=10 s 0 Let Ky = (k. ka. ky) represent
] 0 &g
the shearing factors. The shearing matrix IX is given by
1 k1 ko
K=10 1 ks
o o 1

The transform 7 is thus parameterized by concatenating
these parameters: 7' = (Ry, Sy, Ky 1) € R, Sucha
parametrization gives each parameter a semantic meaning.
The partial derivative of the transform to each parameter
can be analytically obtained. Furthermore let dR(T5,73) =
|Br, — By |2 dS, dK, di have similar definitions. We
define the distance metric in parameter space as:

d(Ty, Ts) = max(wpdR, wedS, wydK, wydt),  (3)

in which, wg, ws, wx and wy are presel weights.

The sequential composition of two transforms T and T3
is denoted as 75 o Ty. The inverse transform of T is denoted
as T 1. QR decomposition is used to compute unique rota-
tion, scaling and shearing parameters from A.

2.3, Tangent Transform

Most previous work seeks to enhance image registra-
tion’s insensitivity to initialization in one or both of the fol-
lowing two ways. The first approach uses a multi-resolution
strategy as in [, #]. The image at a coarse resolution has
smoother features and fewer pixels and the cost function
is easier to optimize, The spatial transform obtained at a
coarser level is propagated to each successive level as the
initialization. Another orthogonal approach puts a search
boundary and step size in the transform space as in [Y]. The
values of the boundary and the step size are determined by
human experts and must be tuned to each database. These
two ways can be combined together. In this paper we tar-
get at improving in the second direction, which is to leamm a
more constrained space of possible transforms for the given
database.

Directly learning the distribution of the optimal trans-
form is not a good idea since it has nothing to do with the
image itself. Instead, we propose the idea of the rangent
transform 10 learn the possible range of the transform. The
notion of the tangent transform is based on two observa-
tions. Firse, in a given brain image database, the possible
7" is almost always within a small subset of the full param-
eler space. So, il is only necessary W search the transform
i a constrained space. Second, 1f the floating image does
not have a dramaltic variation from the reference image, the
gradient descent T}, usually gives a reasonable solution es-
timate, but not a global optimal solution. Therefore if we
can measure the gap between the global minimum 7™ and
the local minimum 75, such a gap will be tighter than the
gap between T™ and the identity transform 154 and thus the
global minimum will be easier to find.

Based on this intuition, we formally define the notion of
the tangent transform. Given the global optimal transform
T, the tangent transform of T, is defined as

=T 6T % )

Since T, is known, the optimization of 7™ is equivalent as
finding ?,;y‘ T is given by 17 = ']T“_q 0Ty

Another advantage of the tangent tansform is that it is
a relative measurement. T, varies by different images. As
long as 1, can capture the coarse pose variation, the small
systematic pose change in T will minimally affect the prior
distribution of ’f"y. Next we present our approach for esti-
maling the distribution of the tangent transform.

2.4. Prior Learning

The ground truth of the global minimum I™ is impossi-
ble to get in many practical cases. However we still can get
a sub optimal estimation from other methads, like the multi-
start method discussed below. Normally these methods do
not make any prior assumptions about the constrainis in the
transform parameter space. Instead, the parameter space is
searched uniformly. But in fact many regions in the param-
eter space do not provide a reasonable registration. In ad-
dition, some areas are more important than others and need
more careful exploration.

For a given training database, let T7) be the sub global
minimum obtained by the general multi-start method. The
practical tangent transform is computed as fq =T Tg_l.
Each parameter is viewed as a random variable. Figure |
shows the histogram distribution of the 5th parameter s for
f[, (a) and T3, (b). Figure 1{c) shows that the 10 parame-
ters in (R, S, Kg) of T, have smaller deviations than of
Zf}, except for the 10th. This shows the distribution of the
tangent transform is distinet from uniform and more con-
strained than the space of 77, (as in [1]) and thus easier to

in
sample.
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Figure 1. Illustration of the prior of transformation parameter. the
histogram of 5., the scaling factor on the x-axis, from (a) the tan-
gent transform fq‘ (b} the sub global optimum transform 71°;,. (¢)
comparison of standard deviation of the first 10 parameters (ex-
cluding the translation parameters). The first 4 are the rotation.
The 5th to 7th are the scaling. The &th to 10th are the shearing.

The learning technique helps to learn the values of the
constrained space instead of setting them manually allowing
our method 1o be easily extended to other datasets. This
is an advantage as the learned space might not be casily
guessed from experience (for example, the 10th parameter
of T,).

Theoretically we should learn the joint distribution of all
the parameters. Dut since each parameter has its own se-
mantic meaning and learning the joint distribution of 13 pa-
ramelers (with the unitary constrainl for the quaternion) is
intractable, we only learn the marginal distribution for the
affine transform. Section 5 discusses the potential ways to
learn the parameters for non-rigid transform.

2.5, Simulation of Sampling Strategy

This section gives a theoretical argument for the efficacy
of our sampling strategy. The multi-start method can be
modeled as a sampling procedure. To register a database
of N images to a template, the ground truth is regarded
as a random variable from a distribution F,;. The muld-
start samples the registration from another distribution F.
For the general multi-start method, Pf.r is the uniform dis-
tribution.  For our multi-start with prior, F, = F,. To
simplify the analysis, %, and F; are assumed to be de-
fined on the discrete space {1, ..., K'}. For the ground truth
a € {1,..., K}, the multi-start method samples a sequence
of T possible answers (s,....s) (with a little abuse of
notation). s5; = a for some £ < 7T means that the multi-
start method finds the correct registration result at the ¢-th

a iprior

. * prior
W 2 @m a0 80 ——
5 | < gxtrame
i |
w2 m &0
Dil. - = : R
‘-e:treme ) )
[ ] 1 200 Eoil ) 400 .14 (o=}
" " s an A0

Figure 2. Monte-Carlo experiment of the sampling strategy. Left:
three possible #;. Right: P(t < 1") versus T". The ground truth
is sampled N = 50 times from the prior distribution distribution
for K' = 50. For each ground truth, all the methods sampled at
most 600 possible answers. P(f < T) is averaged by repeating
the experiment 100 times.

sample. In a realistic optimization this means that from the
initial transform &; the gradient descent (or other baseline
iterative optimization) can converge to a when s, and o are
close enough.

The performance of the registration can be modeled by a
random variable {. (£ < T') means that the ground truth @ is
in the random sequence (s1,...,s7) of 1’ elements. Note
that a is a random variable of P,. P(i < T') is the probabil-
ity of finding the correct answer by sampling 7" times. It is
easy to derive that (see Appendix)

K
Pt<T)=1-Y pa(l—q), 5
a=1

in which p, = Py(a), g. = Pyla).

To compare different . we use Monte-Carlo experi-
ment to simulate Pt < T). Besides our prior scheme of
Py, = P, and the general multi-start method of the uni-
form £, wc also simulalc a greedy stralegy namced ex-
treme, which is a single peak distribution by sampling the
mode of #; for most time. Figure 2(b) shows the simu-
lation result [or a lwo-peak discretized distribution Py, All
curves converge to 1 for enough big ', which means that all
the strategies find the correct answer by sampling enough
points. However prior is significantly better than the other
two strategies when 17 1s small (1" < 100 i this case). This
validates our procedure for sampling the learned prior and
shows that it has a larger chance of finding the global op-
timum given a relatively smaller number of samples. Note
that it is possible to find the optimal P, given P, and T but
we are not going to discuss it in this paper.

3. Algorithm

For this paper we use the multi-start algorithm as the
baseline to get the sub global optimal transform to train the
prior. Then we show how to incorporate the prior into the
general multi-start method.



FORi =1 to MAX_ITER NUMBER
Random sample Ilﬂ uniformly, such that
d(TE.T7) > dyy,. W T7 € SEARCH_HISTORY.
Find local optimal solution 7" by gradient descent from T,
T = prad(T%, I7, I7).
Compute the cost ¢! = C(I", IV (T*)).
Add (T3, T', ¢') into SEARCH_HISTORY.

END
Find the best solution T from the history,

] = argps mine',  for (15, 7".¢") €
SEARCH_HISTORY.

Table 1. Algorithm of general multi-start method,

3.1. General Multi-start Method

The multi-start method is one way to explore the trans-
form parameter space. It is combined with other local op-
timization method. Tt restarts the search for the global op-
timum from a new solution once a region (or a path) has
been explored by local optimization. The new start posi-
tion is uniformly sampled from the transformation parame-
ler space.

The pseudo-code for the multi-start procedure is illus-
trated in Table I. A starting point T} is constructed at it-
eration i, which is distinet from all the points searched in
the history. The next step improves T}} by local gradient de-
scent to a better solution 77, The new solution T is added
into the history record of the search list. When enough start
ing positions have been explored, the best result 7" in the
history record is given as the final solution.

3.2. Learning the Prior Distribution of the Tangent
Transform

Omn a given training set, the prior of the tangent transform
18 learned by computing the gap between 1.}, from the gen-
eral multi-start methad and T, from the gradient descent,
We assume that each parameter of the affine transform is
independent. The prior is calculated as the marginal distri-
bution from the training set of tangent transforms. To get a
more robust counting, we use the good transforms that have
a cost close to the best one found by the multi-start proce-
dure.

Table 2 lists the pseudo code of learning the prior distri-
bution %, the i-th parameter of the tangent transformation.
Naote that the saume method could be used even il ’1:5, = Tia
. However, more iterations of the multi-start method might
be required to get an accurate estimate of the optimal trans-
form, if T;y were chosen to compute ﬁ, instead of 7.

3.3. Incorporating Prior with Multi-Start method

Once we have learned the marginal prior distribution for
each parameter, we sample the tangent transform parameter
according to the prior instead of according to uniform dis-
tribution. As mentioned previously, the prior gives a tighter

Set T=2
#OR the j-th image in the training set
Recall SEARCH_HISTORY and T for the j-th image.
Compute the local minimum T, from the identity trans-
farm,
T, = grad(Trq, I, I).
Collect the good tangent transform set Ty,
Ty = {T|T, = ToT;",C(T) < rC(T"),T €
SEARCH_HISTORY },
G =C, M. T),r=08.
S5et T « TUT;
END
FOR the #-th transformation parameter
Compute F* = the distribution of {a|a = Ty(i), Ty € T},
Tu(#) is the -th element of Tj.
END

Table 2. Algarithm of learning the prior distribution of f'y.

Compute the local minimum 7, from the identity transform.
T, = grad(Tya, I, I).
FORi=1 to MAX_ITER_ NUMBER
Random sample T3 from the prior distribution P, such that
d(T3. 77} > dyp, ¥ 77 € SEARCH_HISTORY.
Find local optimal solution 77 by gradient descent from
e,
i — grad('Tf; a Ty, I ff).
Compute the cost ¢' = C(I", I7(T).
Add (13,77, ¢') into SEARCH_HISTORY.
END
Find the best solution T from the history,
Tp = f(argpmine’) o T, for (T3, T',c") €

SEARCH_HISTORY.

Table 3. Algorithm of Incorporating prior with multi-start.

constraint in the transform space and thus reduces the time
required to find an improved solution,

Simular to the traming procedure, the multi-start method
with prior begins by finding the local minimum 1 from the
identity transform. To fill in the gap between T, and the
desired 7™, the potential tangent transform is sampled from
the prior F° and the gradient descent is performed from each
sample. Finally, the transform with the hest cost is chosen
as the final solution. The pseudo-code to register I/ to I" is
listed in Table 3.

4, Results

To validate the performance of our algorithm, the first
experiment was done on a synthetic database. One 3D
T1 MRI image of a human brain was used as the tem-
plate (in Figure 5). Random affine transforms were ap-
plied to the template image together with a small nonlin-
ear random perturbation. 43 synthetic images of dimen-
sion 256256 x 124 were generated altogether; examples
are shown in Figure 3. We use the previously evaluated



Figure 3. Examples of the synthetic 312 images.

Strategy & | dR ds dK dt Tter #
grad O 0.044  0.095 0202 1.685 | 1000
mstart 200 | 0025 0094 0.156 1.612 | 500
prior 50 0.021 0040 0.093 1.554 | 150
priorl 50 0.019 0039 0097 1.235 | 150

Table 4. Comparison of the transform parameters for different
strategies on synthetic data. prior 50 and prier] 50 outperform
mstart 200. The last column is the number of iterations for gra-
dient descent in each strategy. For prior 30 and prior] 50, 150
iterations are performed after the 1000 iterations of grad 0.

ITK implementation ([5, | | ]) of mutual information as the
cost function, Only the 10 parameters of (Rp, Sy, Ky are
learned as a non-parametric model.

The baseline method grad 0 is Ty, the local gradient de-
scent [rom the identity transform. This method was an ex-
tension to Lydia Ng's rigid transform registration, which
was shown to perform well compared to similar methods
in the Retrospective Image Registration Evaluation Project
at Vanderbilt ([6]). The general multi-start method uni-
formly sampled 200 transforms as initial positions, denoted
as mstart 200, prior 50 and priori 50 are two tests of multi-
start with prior, sampling 50 transforms in the tangent trans-
form space. Each test randomly selected 24 images as the
training set and the rest in the database as the test set. grad
0 and mstart 200 are tested on the whole database. The
numbers of iterations of gradient descent for each strategy
are listed in the last column of Table 4. Note that for prior
50 and prior! 50 the 150 iterations are performed after the
1000 iterations of grad 0.

The affine transforms for generating the synthetic data
are used as the groundtruth of the transform for the registra-
tion. Table 4 gives the average distance of JdI%, dS, dK and
dit for each method. By sampling from the prior learned
from msiari 200, prior and prior! both outperformed other
strategies. Note that the iterations of gradient descent in
prior and prior] are less than in the general method mstart
200.

Three image metrics are computed to evaluate the per-
formance of the registration: the MI, the mean square er-
ror (MSE) and the normalized correlation (NC) between the
registered image and the lemplate. Let I and J be the vector
of the image intensity. MSE and NC are defined as:

2 I..J
MSE(I,J)=|I-JI3 NCU.J)= m

Strategy § | vMI +rMSE +NC mNC
grad 0 0.00  0.00 0.00 9438
mstart 200 | 2.01 6.58 0.66  94.97
prior 50 4.57 14.9 1.38 95.29
prior] 50 3.62 13.4 0.88 9548

Table 5. Evaluation of different strategies on synthetic data. The
data in 2nd to 4th column is shown in percentage (Ye). priov 50
and priorl 50 outperform mstart 200).

With grad O as a buaseline, the relative increase of MI
{rMT) and NC (rNC) and the relative decrease of MSE
(rMSE) are averaged over the database. For the optimiza-
tion strategy & and the corresponding registration result ‘}"5,
they are defined as:

1o~ MIUT, I(TP)

MI(S) = My L
rMI(S) N & M-, 0 (Tig)

1 o MEEF TN

rMSE(S) = 1— — o )
N & MESEI I (Tig)
N arpvpre pf S

rNC(S) = %ZM_

& NOUI I (T
The average of the normalized correlation (mNC) is also
reported:

. L S e of g
mNC(S) = + E\ G, (T,

These image metrics on the synthetic data are summa-
rized in Table 4. The sub-global optimal method of mstart
200 gives 2% increase of »AM I compared with the gradi-
ent descent. After learning the tangent transform prior from
mstart 200, the performance of prior 50 and prior! 50 has
around 4% improvement by only 50 samples, which is 25%
of mstarr 200).

To evaluate performance on real-world data, we tested
the algorithm on a database of 67 Tlstructural MRI im-
ages. The images are from elderly and neurodegenerative
human brains, collected from a 1.5T Siemens scanner at
I > 1> 1. 3mm resolution. The dimension of each 3D image
is 256256124, All images are preprocessed to remove
skulls before registration.

Each of prior 50 and prior] 50 used a randomly selected
setof 33 images as the training set and the rest as the test set,
grad 0 and msrart 200 are tested on the whole database, The
numbers of iterations for each initial transform are listed in
the last columm of Table 6. As there is no groud truth for
the affine transform, only the evaluation on the image met-
rics was reported. The average metric valuess are summa-
rized in Table 6. Figure 4 shows the histogram of r M [ and
rMSE for mstart 200 and prior 50.

mstart 200 only gives 1% increase of M [ compared
with the gradient descent. This shows that the gradient de-
scent works for many image registration cases. However



Strategy & rMI  rMSE vNC mNC | lter#

rand 2K -20.87 -84.01 -13.05 74.05 [ N/A
rand 2K+trans | -17.69 -51.54 -9.13 7739 | N/A
arad 0 0.00  0.00 0.00 9229 | 1000
mstart 200 098 7.4 0.61 92.97 | 500
prior 50 311 14.10 .24 93.67 | 150

priorl 50 2.99 11.60 1.13 9344 | 150

Table 6. Evaluation for different strategies on the real data. prior
50 and priord 50 outperform mstart 200. The last column is the
number of iterations for gradient descent. For prior 30/ priori 50,
150 iterations are performed after 1000 iterations of grad (). The
2nd to 4th columns are shown in percentage (%).
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Figure 4. Histogram of M (Ist row) and +MSE (2nd row) for
mstart 200 (on left) and prior 50 (on right).

there is still space to improve. After learning the tangent
transform prior from mstart 200, the performance of prior
5 and priorl 50 give a 3% improvement by 50 samples.
The prior learning again outperforms the sub-global opti-
mal from mestart 200 with less computational overhead.

An interesting comparison is to randomly sample 2000
parameters without any gradient descent optimization (rand
2K). This gives a 20.87% decrease of »M [ in the perfor-
mance. If the gradient descent is only allowed on the trans-
lation parameters (rand 2K +trans), there is still 17.69% de-
crease. This shows that gradient descent on all the parame-
ters is necessary. It is not sufficient w do random sampling
without [urther oplimization.

Finally, we emphasize that the new prior-based afline
registration method not only produces better metric values,
but also produces visible improvements in the results. As
shown in Figure 5, both prior 50 and mstart 200 give a bet-
ter result than grad €. At the same time, the overall brain
shape is registered better by prior 530 than by mstart 200,
This example has rMSE = 16.7%, which is representa-
tive of the average improvement gained by our methods as
indicated by the histogram in Figure 4.

5. Conclusion and Discussion

In this paper, we proposed the notion of the tangent trans-
form which represents the gap between a global optimum
and a locally optimal {or fixed) solution. We uscd the tan-
gent transform to learn prior distributions of transform pa-

(a) {b) (c)
Figure 5. Comparison of registration results, shown in the trans-
verse view. Ist row: (a) the template, (b) the moving image, (c)
the square differencing image of (a) and (b). 2nd row: the regisira-
tion results from (a) prior 50, (b) mstart 200, (c) grad (). 3rd row:
the square differencing image for 2nd row with the template. The
rMSE of prior 50 is 16.7% for this image.

rameters in a restricted space. We performed a careful anal-
ysis and showed that the learned prior of the tangent trans-
form helped to explore the relevant affine transform space.
Our learning method has the following benefits:

e There is no restriction or Gaussian assumption on
the parameter space. The algorithm will learn the non-
parametric distribution to save the labor of human experts
setting new searching rules, It therefore automatically ex-
tends to new datasets.

¢ There is no need to provide the ground truth for train-
ing. The algorithm can learn the prior from the general sub-
global optimization method. The results show that our algo-
rithm surpasses the performance of the general sub-global
optimization with the learned prior.

s Both theoretical simulation and real data experiments
show that it uses fewer iterations 1o get better performance
than the general multi-start method.

Our notion of the tangent transform defined a practical
prior model by explicitly modeling the residual gap between
the estimated global optimal solution and the gradient de-
scent solution. This is different from modeling the optimal
solution directly as in [1]. Even in the case when the base-
line gradient descent did a reasonable registration, this tech-
nigue still leads to improvements.

The core assumption of the method is that all the images



in the same database have a rough and learn-able range of
variation. This is validated for our database by the evalu-
ation. However this method may fail if some rare images
have an outlier tangent transform distortion compared with
other images. The learned prior may not work on this case.

The framework proposed in section 3.3 is both simple
and extensible. First it is independent from the choice of
cost (unction.  Second this framework is easily incorpo-
rated with other general random optimization procedures,
like simulated annealing.

The transform used in this paper is the affine transform.
It is also possible to extend the work to non-rigid trans-
forms, like the B-spline or thin-plate spline transforms. In
these cases there will be many more parameters to learn.
There are two possible ways 10 handle this issue. The first is
to learn the joint distribution by dimension reduction tech-
niques, like Principal Component Analysis. The second is
10 generate synthetic data by randomly warping images.

This framework can also be extended in a way of Se-
quential Monte Carlo methods ([5]). 1In the terms of
Bayesian model, the registration transform is the hidden
variable and the learned prior of the tangent transform is
the observation model. The prior of tangent transform is de-
fined as the gap between the glebal optimal transform and
the local optimal transform starting from the identity trans-
form. A second level of tangent transform can be defined as
the gap between the global optimal transform and the cur-
rent optimization. As each level leads to a more and more
constrained transform space, the optimization can be done
with fewer and fewer samples and lead to well-defined con-
YCIgence.

The overall performance gains indicated by this ap-
proach were consistent across theory, simulated data and
real data. We believe this indicales the strength of the
concepts and shows that even simple non-parametric learn-
ing strategies may be very useful in improving registration
methods.
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