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Multi-start Method with Prior Learning for Image Registration

Abstract
We propose an efficient image registration strategy that is based on learned prior distributions of
transformation parameters. These priors are used to constrain a finite- time multi-start optimization method.
Motivation for this approach comes from the fact that standard affine brain image registration methods,
especially those based on gradient descent optimization alone, are affected by the initial search position.
While global optimization methods can resolve this problem, they are are often very time consuming. Our
goal is to build an explicit prior model of the gap between a typical registration solution and the solution
gained by a global optimization method. We use this learned prior model to restrict randomized search in the
relevant parameter space surrounding the initial solution. Global optimization in this restricted parameter
space provides, in finite time, results that are superior to both gradient descent and the general multi-start
strategy. The performance of our method is illustrated on a data set of 67 elderly and neurodegenerative
brains. Our novel learning strategy and the associated registration method are shown to outperform other
approaches. Theoretical, synthetic and real-world examples illustrate this improvement.
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Multi-start Method with Prior Learning for Image Registration

Gang Song, Brian B. Avants and James C.. Gee

Penn Image Computing and Science Laboratory

University of Pennsy:lvania

Abstract

We piapeal effic twi image retsllon straeg that
is based onZ leamed pi ior disUtribtions of tritI/bnomtatio
parmetesn nese pritoas ae used to constaivn a finite=
time nudlittart optimz(titon miiethod Motivltion flr this
appach ctiesfirin the fact that standwrd qjfine brain iti
age registiratin niethods, especia/Ky those based on gradi~
eatt dekLLi ap ti6fo alon wea/e ted b tde initial
searh positionh.i/e global optimiation methods can r
solve this probetti, the we aea lten re tuniie otisaming.
Ou r gol/ is to butId aIi eAplitc t paor ituod1l 4dte gap be.
tInen a tiwal egrstiatiott solution and the solution gained
by a globail optiniizanim meihod We use this leatedpniot
imod/ to tsrct rtandontized search hi the mlevant paatt-
etet space suuoiuidiig dMe (initial solutioni. WlObal pti
inittion ii thns estreted paattieter sace prosides, infi
ninte tume, msults that ate sipeior t both gidient desceit
and the geneml mult starl strateg) flue pedinnance of
our method is illustrated on a dail set of 67 elderly and
nenrodegmeettve bmtrais Our novel leantng stitalee and
the associated tsattuon method ar shown t ouplbim
other aproaches. Iteortcal, synthetic and real world ex

amiples il/tustrale thisi5tmpivvltem ut

1. Introduction
Image registration, or geometrically aligntig image vol-

times from different sources is a ffundamental pioblem for
miiedical imiage analysis. The standard reoisti ationi miiethod
seeks a transformation that aligns one floating iJmage to a

retcrence iisgc stuch that the cost betweei te reference
image an1d the t ansormled i'mge is Thmimmn.he- com
plexity of the human brain anid its natural variation b-
tween subjects often makes this optmization problem quite
challenging, evenswhen tiansfoimations air iestricted to
the affine space. as indicated by ongoing work in the field

Asstining a fixed cost function (here, tthe -mutual infor-
mation), the key aspect of' tlh'is problem is the optimiia-

tioti strategy. A variety of methods based on local opti
niziation have been used to optintimize i-elated siiiilarIity crii
teria These methods include the gadicent descent
Lvenberg Marquardt method, conjugate gradient descent,
Newtoils method and also non-gradien;t miethods like Pow
ell's method. Without any prior knowledge, the initial trals-
form is often set as the identity transfbrm lThese methods
are widely used in the domain of nedical imuage analysis
and give satisfatoy ieslts in. many cases (I , )

Howeverx due to the non convex nature of the cost Ifucn
tionis, these optimization methods are facedswith the flunda
mental problem of local optima.

In order to estimate a global optimum and reduce the
effect of the initial search position, methods like th-te multi
staui mnethod anid simnulated aiiialn otthne coarse to-fine
mU.ltr-esolution scaich method have been propose.
They require a huge ntumber of iterations to converge and
arc thus very time consuining. These global optimization
methods aie designed foi general optimtzation problems.
Howevei ignoring knowledge a:bout the specific prolblem
requimrs randonly sampling huge numbers of transform pa;

ranmeters This is an inefficietnt strategy wheni orne consid
ers that it is exactly ror knowledge that guarantees an ali
gorithimns good pcifmance on a specific data set (the No
Fie Lunch theorem [ I This important fact was also
noted by Ashburner et aL1 I1 who used a Gauss-Newton
method to optimize affine reistration in Bayesian frame
work. Thei-r prioors are diiectly modeled as Guassian distri-
bhution on thic optinmal transforms, which might have a large
vaiiance. Jeni'kilsonl, ct al. also iIvestigated restricting the
transforimation search space to sensible values and incor
porating diffeint tolerances and step sizes during iteration

Howevei, Jenkiison s approaclh used d-hac rules for
dteimining these sett:ine:s,

This paper focuses on how to use prior learning to
achieve a better optimization strategy and thus gain im-

registiation results. Our stiategvy for impvg
upon standard affiie -recistrtton methods is to autoiati-
callylyeain a tionpmttitnett prioi distribution of potetital
trans/o itprtemts. Given a grad'ient desentt solution

978-1-4244-1631-8/07/$25.00 ©2007 IEEE



as initializatioin, we explicitly comTpare the gradienit descent
solution to the solution gained by the multi-start mnethod.
We define this gap betw~eeni the global optimal transform
and the translorm of the local (gradient descent) minimum
as the tanigent tranAfirm This gives a mnore constrained
spaceothan duecilbt]y modeingI ihe optimhal tranlsform as in
Note thiat, Iin thi1s study, this iesidual tangent tranisfribimation)
is also an affine transformation. A set of such tangrent trans-
forms fromt the training set enables one to learn th tan
ei)'et tra sjun paqe. Thi muh saler tran.siornvrtio
space oFives a tighter constraint on the atfine transform that
needs to be explored Alter A single gradient detscent solution
is gained.
We provide a theoretical argument and experimeintally

denioiistiatc that using a, piioi based stiategy witliiii the rew
st-ricted tangent tranisfo mspace impr~oves uponi both gra-

dientdescet andgeneral miulti starft methods. We pe

form this analysis with revspect to a commion image regis-
-tration task: registering e-very i-mage in a database to a stan-
dard template. Typically, these 'images come -from a single
imaging protocol and a relatively homogeneous population.
They therefoare often share simnilar statistics, 'like possible
scale and possible rotationi angles. This restric-ted data set
enab.les us to learn the, "inteiestiugo" transfoarmation space
aind largely constrain -the optimiz orio.

The remainder of this paper is organized as follows. Sec-
tion 1 intioduces~the notion of the tangent transfoim anid
discusses how to learn its prior Section 3dccibes 1how to
use the prior to aid the generatl mtulti sltrt method.. Section

gives th xperimenta reut olafie iegistraion o'n a

synithetic anid a real database. Section 5discusses the possi-
ble extension and the limitation Of the work and concludes
the whole- paper.

2. Prior Learning on Tangent fTransfomn
Our approach directl1y addresses the conICern o-.)f how to

learii a relevant paiameter space withiii which -to optimize
a tiransformation. We assume that the cost function (eg,
'MUtual lnfifinatio J I) is gie id also a basico
tiinizationi procedure- (eg, giadient descent) exists for that
cost ftinction. The basic local optimization muethod used
here has beeti evaluated on brain images atid applied exteni-
sively by the open-sorirce ITK communityI I A s-ubset
of the fixed database will'be used as the learning set to boot:
strap the prior.

2A1. Cost Funcitiontad Its Optimhization

Given a reference image V'(x) and another floating im-

age If((1., the aimn of registriation is to find -the optnmal
transform T in the tranlsformation space STi. The defii
-tion of optimalfity is giveni by thec cost function 0(11' If T).
The registration problem 'is formulated as finidinig the opti1-

mal TI in space ST sucbh that,

T ara, mm ('(I ( ) I -1(T(x))t5i.( (I)

Although the challenging problemn of definiing a good
cost function is out of the scope of this paper, the cost ftune
tion is the vital key to the success o1 the" registration. No
optimization algoirithm can obtain a good iegistration wheni
the cost function is inapptopriate. Foi this paper we use the
Widcly accepted Mutual Infoirmationl (MI) q1, I) asour
cost ftinction. MI wats fiist pioposed to registre itnultnnodalm

itv iaeand is widely used in medical image reistrationi
(I , j) ILItmeasures the degree to vshich inlorina

tion from one image predicts another. This information-
theoietic criteiion does niot assgume specific intensity reIan
tionisbetween two images and cani be applied in diiierent
modalities. Consider image J and i' as discrete random
variables over intensities. Thec Ml between I and .Jis de-
finied as.

Z-,l.j)lo Ii0jo). (7)

ft is the dist:ribution loin the random yamimable ( ) P B is the
joint dist:ribution of' A and I.L )iffierent implemenitationis of
MI typically vary ~the mnethod of Parzen wsindow estimation
f6r the piobahbihities~(4 1 1J ) The implemnentation
of IIis used foir the expermiments inr this~paperL

2.21 Trans~formationi Spacee

IThe transfimhation space definfes Al the feasible trans-
forms. The only requirement for the 'transformn in our
scheme is that it can be pairameterized. For most, dataibases,
onlIy a smnallI poition of the fullI space contains opt]imal -trans
foirmation parameters. Intuitively, one, :should not, allow ex~
ploiration of the full tiansfoim paiametei- space.

For this paper we mestrict ouirselves to the affiiie tramis
form for thc foltlowing reasons. First, it is the miost flexible
linear transtormi. Be~sides containing the rigid transform,
it allows sbale chanige ini every dimnensomi and §1hearing as
well. Thus, it is suitable as a low dimiensionial trastlorina
tion for inter-subject studies. With 12 degrees, of ficeedomn
the prior paramieteis aic not easy to set mianually~ Also a
god affine registratiton is needed as a preprocessnin step in
no~igid rmegistra, i o-n tomake ihe glhobl wMn ss

as.PSJWC i ot,posible Wh-ile we retric--t this wor--k to he afffmne space,
the possibility of using our learning schemne vvith a largem
defornnable space Is discussed In section4 5

Thfie t-ransfoiin is repiesented as a projectio ati
A, and a tianslation vec'tor t: T'(J-I Ax. f tL The proiction
mnatrix -is decomnposed into the product of the in tation mnatrix
RI, -the sca'linig matrix S and the shearinig miatrix K, A
R. S h .



Given the rotation axis of (u, v, ~w) anid the rotation an-
gle 0, the rotatioin is parameterized by the quatern ion of
tour-paramneters 13~ (a, b, (,d) E R with (a, b. c. (1)

0 0 ~0 0
(C(}; a il~sin ii VI sit) The unitary constraint

2 2 2 2
IR12-I keeps the scale unichanged under rotation, IThe

rotation matrix lR is givent by, l{-

(12 Fj2 (2 (j 2 b 24 W 2
( 2(1( 9(2 (- 2 -Ab2 (/22 2c -1 2ab

2bId 2.u 2ab +2(d a bA ( 2 (12)

Details about quateMnuIns can be~founid in U
Let ST (5i ~$2,i ) reptesents the three sca'ling fac-
torn3dimnsins.The scal'ing matrii is grIven by

0i 2 8j Let KT (ki,A2 k31) representi

the shearing faictors. The shearing matrix K is given 'by

K (A 1

Thie transform T is thus parameterized 'by concatenating
these parameters: TI ("It STi hT1 O)~ Such a

parametrization gives each paiaimetei- a semantic mieaning.
Thle paritIl deiraivWe of the tiistur iii to each pairamieter
can be analytically obtained. lFuithermoie let dU(T 12) =.....

1<R1 IR7112. dS, d.K, dt have sitmilar dehunrkmons. We
define the distance mietiiec in Paiameter space as:

dtTTt iri.iax 1PIf1U(IS m1 1kN (t

iii which, ~I,u~,,t SihW and w1t are preset weights.
The sequential composition of two transforms -T1 and 'FT

is denoted as T~ T7 The inverse transform ofT'T is denioted
as 1' . QR de-composition is used to-0 compute, unique rota~
tion, scaling anid s"hearing, parameters fromn A.

2.3 Tangent Tr~ansform
Most previous woik seeks to enhance imiage registra7

tioni's insensitivity to initialization in one or bothi of the fol~
lowing two Ways. The fir-st approach uses a multi resolutioii
strategy As in i I The imnage at a coarse resoluition has~
smoo0thei featuies anid tewei pixela1nd the cobst tuinction
is easier to optimize. I he spatial transfonrm obtained at a,
eoalrser lewvl is propa~gated ro eacbsuc~essive lewl as the
initializ-atio.n. Anocthier orthogona aprah pusa searh
boundamy and step siz (inh tiansform spac as i h
atlttes of the boundary anld the step size are determined by

humnan experts amid must be tuned to each database. These
two -ways can be combined together. In -this paper we tai-
get at imiprovinga in the second direct ion, which is to learn a
mhote constrained space of possible trnt imsfi the given
database.

Directly leat mug the distiributioni of the optimal tranis
form is not a good idea since it has niothing to do with the
imnage itself'. Instead, we propose the idea of the tanigent
Irann~ftn-m to leairn the possi'ble range of the tiransfotrii The
notion of the tangent transform is based on two observa-
tionis Firtwt in a given brain imnage database, die possible
T* is almost always within a small sLubset o t"the lutll paiam-
eter space. So, it is only necessar to search the transform
inacnstrained space. Second, if the floating image d,o-e-s-

not have a, draniati varin-ation fro)m the reireile-e- image-, the-
gaien-t descen-t T' uisually gives a reasonabte so'lution es~

umrate* but niot a alobal optiunal solut6ton. Therefore if We
can melasuic the gap between the, global minimum TI and
thie local miinimu 'T. such a gap will be tightei- thani the
gap bctwecn TI and thc identity taiilorl .... a.. id thus the
global minimumn will, be easier to find.

Based on th-is intuition, we foitnmally define the notion of
the tanigent transform. Given the global optimal tiansformi
T' the tang'ent tmnifsirm of I~is definied as

1~~ I CIq ~~~~ (4)

Since T, is knowni, the optiminization o-f T* is equivalent as

finiding 1~. TI is given by 1 1=9 I,/1
Anoiher advantage of the tangeni transftim is thai ii is

a relativ measurement. I~ varies by diffrent images. As
long as I~can capttire the coarse poevration, the smull
systemnatic pose c'haiige in T* willI mimnimallty affect t'he pnrio
distribution of ¾~. Next we present oui approach for esti~
mating the distribution of the tangent transform.

2.4. Pri'or L...earning

The oyround -tru-th of the alobal miniumMI is impossi~
ble to get in mnany practicail cases. Hlowever we still can get
a, sub optiiia'l estiiiiatioii fioiii othier mnethiods, li'ke the iiulfti
start method discussed below., Normally thiese methods do
not make any ptriot assumptions abo-ut the consttaiu-ts i-n -the
transfomrm paramnetem space. Instead, the paramnetem space is
seaiched tunifoimly. But in faict miany regions in the param-
eter space do not provide a reasonable registration. lIn ad-
dition. sonic areas are mnore important thaii others anid nieed
more careful exploiation.

l'iagiven training dattabase, let 1 be the suib global'=~~~ e9 In~~~t

miinimlum obtained by the general multi-start method. IThe
prtiarr l tangenot -transdorm ij OflCfllpIted as I~IT I

Eahparam~eter is vieued- as a rando-n variable. Figure.
shows the h'istgi4am dmsisth.iutIion of the 5tIh paitmaic-ne-rc s for

T,(a) anld T, (b). Fhgure cIsehows that the It) p4aiaie
tersinR1 . l~ )of' 7', have sinallei devi'ations than of'
¼~except for -the 10th. This shows the distribu-tion, of' the
tangent tiansform -is distinct f'roim uniform anid niore con-
strained thain the space of T*, as in II)an ttseaiit
samnple.



prior

MektriotTi~~ ~~~~~~~~u tr

F~ie,i 2. Monte-Carlo experiment of the sampling strategy. Left:

..........
rhe posil P Rrh P(tO I)esusITerontih

for K For each riod tuth. all the methods sampled at
most 600 possible answers. P(t IT) is aivenaged by repeating
the experiment I() times.

(c)
Figoure 1 llustration ot the prior of transtomation paramete the
histogram of' si ! the scaling factor on the x axis trom (a) the tanr
gent transtoi tb) the sub global optimum tmnstormn I c)
comparison of standard deviation of the tirst 1n parameter (cx-
cludino the tiranlation parameter).The Iirst 4 ai the rtat'ion.
The 5th to 7th are the scLAlinig. The 8th to 1Oth aie tie she;arino.

The learnino, technique helps to learn the values of the
conistr-ainted spacc instead of setting tietm manually Allowing
our method to be easily extended to other datasets, This
is an ad-vantage as the learned space tmighit not be easily
guessed frot expettence (bt example, the 10th parameter
of I~).

Theoretically we should learn the joint distrthution of All
the parameters. But since each parameter hias its own se-
rmantic meaning and leamring the Joint distriibution of 1 3 pa-
rameters (with the iritary coirstrairt fr the quaterriioii) is
intractable, we only learn the marginal distribution for the
afine transform Section 5 discusses the potential waysi to
leIam the parameters li non rigid transorm.

2.5. Similation of Sampling Strategy
Tbis saction gives a theoretical alrgrient far the eficacy

of our sampling strategy. The mnulti-start nethod catn be
modeled as a sampling predute To register a database
of \ inages to a temiplate, the ground trutth is reeaided
as a random variable fron a distribtition I). The nmulti-
stain samples the rei'rartint-t f another disrihutinn P
For tie geneal rnultistai method, P is the unitorn dis-
tribution. For our mulftistart with prlor-,X P. To
simplify the analysis, P9 and I' are assiumned to be de-
inried on the discriete space { 1. KA }. For the ground truth

(L {1.,.. AK the muti start mnethod samples a sequenLice
of I possible answers (s ... sa ) (with a little abuse of
niotation ). st a fbr some /t I' -means that the mnuLlti-
start nethod finds the correct registration result at the t-th

sample. In a irealistic optini/zatio>n this means that froni the
intitiail traisn s the grad'ient dscenllt (or other baseline
iterative t0iiniLation) can converge to a when 1t and a are
close ellough.

TIhe performance of the registration can be mode'led 'by a

randoni vaiable t. (t < T) means thiat thei grounId truth a is
in the ;random sequence (S1,.. , S T) of T elements. Note
that a is a randomn, variable of P P(t I ) is the probabil=
ity of tinding the cotrct answer- by sanmpting 1 times. It is
easy to derive that (see Appetndix)

P(t < ) 1= P (h)T

in which PaH 1(a) q (a)
To compare different P0. we use Monte4Carlo expcri

ment to simulate P(t < T). Besides our prior schemne of
B0 = B0 arnd the general multi start method of the unil
form f) we also simulate a greedy strategy named ext
tirne Which i's a si-ngl pek distribution by smpling the
m3lode of PI ftbr most time Fioue 2(h) shows the smmu
Iation result fr a, two pea discretized distribution P. All
curves conver to I br etnough big IT which nmeans that all
the strategies find th;e correct answer by sampling enough
points. However prior is significantly better than the other
two strategies when T is small (T < 1(01) in this case). This
validates our procedure for sampliiig the learied prior and
shows that it has a larger chance of finding the global op=
timuim given a, relatively smaller nuiuber of sanples. Note
that it is possible to find tIme optimal 1W given FC and T bUt
we are riot going to discuss it in this paper

3. Algorithm
Fomr this paper we use -the multi-start algorithini as the

baseline to get the sub global optirnal transfirim to tmin the
prior. Then we show how to incorporate the prmior into the
eneral tmulti-start irethod.
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FO'-I toMAX.IIER.NUMBER
Random sample JZ unifoiny. such that

di p ) > d, VP SEARCH HIS7fORY
Find local optimal solution Tt by gradient descent fiorn
T g rad 11 fr

Compute the cost (1(-I= I (TI))
Add(T T ) into SEARCH HISTORY

Find the best solution TI" frm the his'tory
I ,; - arg1T uII'in o.i (IZ TI

SEARCH-ISTORY.
liN!e A\lgorithm of gete a] multi start method

3.1. General Multi-start Method

TIhe niulti start method is one way to explor the transw
torm parameter space. It is combined with other local op
timization method. ft wstarts the search, for the global, op-
tirnurn roM a nlew solution once a rgion (or a path) has
been explored by local optlmization. The new start posi-
tion is uniformly sampled from the tranisfrmation parame
ter space.

TIhe pseudocode tbr t-the multistart procedute 's illus
trated itn able I. A starting point I) is colnstructed at it
cration I, which is distinct horm ail the points searched in
the history. The next step imprves I' by local gradientt de-
sceiit to a better solutioi P. The new solution T1 as added
into the lhistoiy record of the seatrh list When enough stai-
inior positions have been exoplod, the best result T n the
lhistoiy ricord is given as the final solution.

3.2. Learnig the Prior Distribution of the Tangent
nTansform

Otn a gi:ven training set, the prior of the tatngent transform
is leared by computing the gap betweenii from the gen
cIal iulti start method and I tioim the giadient descetit,
We assume that each parameter of the atfine transform is
independent. The prior is calculated as the nmarginal distrii
button from the ttatitng set of tnigenit transforms To get a

more robust counting, we use the good transforms that have
a cost close to the best one fbutid by the mnulti-start proce
dine

labl I
2

sts th seudo code of leartning the pi mo distri
butiion Pi, thXe i6th1 pataneter of the tangent tiansfliftation.
Note that the same metfiod could be used even if I I>Y
However mor iterations of the multistart tmethod might

be rquired to gt an accurate estimate of the optimal trails=
lorm, if Td wei chosen to comnpute Te instead of T(.

3.3. lcorporating Prior with. Multi-Start method

Ontce we have leanrd the marginal prior dastributiont fbir
each pataeter, we sample the tangent transfor I parameter
accoafdaig to tlhe prioir instead of accordin1g to tnioall dis
tributioin. As muentioiied pieviolusly, the prior gives a tighter

T _
FO the 4h inage in the training wt

Recall SE.ARCH_H[ISfDRY and TI fbr the j-th imagc.
Compute the Ial ninimum fhorn the identity trans-

T, grad TI! ).
Coflect fthe goo tangent translorm set; Tj|

SFARCII lST()RY 4,C(T = C(.[ ,I= T) 0.F 8.

T3
D

F the rh transformation parameter
Compute P= the distribution of {ala I) I...... T4.

is(t)is the it element ot J.I

Taible 2. Algorithm of leaming the piior distiibution of I .

Comptite -the local minitmum I7" from the identity transfotm.
I arad (I,j I I).

FO i 1 t o MAXITFR NUMBER
Random sample fromrn the prior distribution P, sutch that

d( TY ) > di h, V T I SEARCH HISTIORY
HFid local optimal solution T" by gradicrit desOcnt horn

U grad(I I P )I f

Compute the cost f (I I (T ))
Add (I' Into SEARCH HISTORY

Find the best solution IT "om thl histoty,
I (_ gt ao I.lo* (I ?' It ar

fable 3. Algoritlhmi ot Incorporing prior wit:lh mnu/lti s!tartp

conistrainit in the ttastrnl space and thus reduces thie titme
requuied to find an improved solution.

Similar to the training, proced-ure, the mui ttstart mcthod
with paor begins by finiding the local mininimu f
identity transform. To fill in the gap between T4 and the
desired F, the potential tatngent tiansfo inis samnpled fromi
the priior JP and the gradient descent as prftormed frm each
samnipe. FinEally, the tramiisfIrnl with the best cost as chosein
a3s the final solution. The pscudo-eod to retisttr if to I' ts
listed in Table 3.

4. Results

To validate the perfomance of our algorithm, the first
cxpi met was onc Oil a synthetic database. One 3D
T1I MRI imanag of a human biain was used as the temt-
plat (in Figure 54. Random aiffinle trainsfoflrs wee ap-
plied to the template image together with a, small nonflin
ear random pertuibatiion. 48 synithetic images of dianen
sion 256x2 56x 124 weic generated altogether; examiples
are showii ii FigureI We use the previously evaluated



Figurc 3. Examples of the synthetic 3D ima'cs.

Strategv S dRi dS dIK di Iter
gradO 0044 0095 0.202 1.685 1000
iaistat 200 0025 0.094 0.156 1.612 500
prior50 0021 0.040 0.093 1,554 150
piiorl 50 0019 0.039 0.097 50

Tible 4(Comptarison otf the tiunsfonn parametets for different
strategies on synthetic data. pror 50 and priori 50 outperform
instaif 20. thee last column is the number of iterations br iryra
dient descent in eah strategy. For pior 50 anid priori 50 150
rterations at pertbrmedi aber the 10(0 iterations of grd O0

1TK iniplcmentation (1 1 of miutiual Inormaton as the
cost functioni. Only the I0 parameters of (Rie ,S K1) are
learned as a non parametric mode'l.

The baseiine method gmd 0 is T!, the local gradient de
scent from the identity transforn. This method was an cx-
tetisiion to Lydia Ng's iid transfbrm registration, which
was sown to pertfrm well conhpared to sinmilar nethods
'in the Retrospective Image Registration Evaluation Pro ect
at Vandeibilt (I I) Ihe geneial iitulti stait mnethod uni
tormly sampled 200 transforms as initial positions, denoted
as msnii! )00 p rioz 50 Anid piio I 50ai two tets of mutlIti -
start wi pio sampli'ng 50 transforms in the tangent trans-
form sace. Each test randomily selected 24 images as the
training set and the rest in the data'base as the test set. grad
0 and nvvtanr200 are tested on -the wIhole database. The
nu;mbers of iterations of gradient descent for eah strtegy
are tisted in the last colunr of Table 4. Note that 1o p1iOt
50 anid prior I( the 150 iterations aie performed aftei the
000 iteiaions of grd 0.
The affine transforms for generating the sytthetic data

are used as the groundtruth of the tiransforrn fbr the reaistr-
tioii Table 4 gives the avage disttiie of R, dS JI and
dt for each method., By sampling from the prior learned
from mst10 200 prior and priori both outperformed other
strategies. Note that the iterations of gradieint descen-t in
pnaor and p,ioorl ar less thaii in the general method m;sity
200.

I hrce image nmerics aim compputed to evalu the pe-
formance of the registration' th Ml the mean square er
ror (MSE) and the noormalized correlation (NC) between the
registered image and the template. Let I and J be the vector
of the mnage intensity. MSE and NC ar defied as.

AMSE(I, J) = JI N'C (I J) = I)
I' 1~1

Strateg S 4I-4'ErCitN
gra 0 0*0 0*0 000 94-38
mBstart 20 2 - 1 6.58 0, 66 94.97

prior 5;0 447 14.9 ..38 95.29

Tible 5. Evaluation of diffierent strateitics on synthetic daLa. The
data -in nd to 4th column is shown in percentage (%) pJ'ot 50
anid priori 50 outpertornE iinstai 200

With gid 0 as a basetine, the relative imcrease of MI
(M) and NC (rNC) and the relative decrease of MSE
(rMSE) are averaged over the database For the optimliza-
tion stray S and the corres&pondlingy regtstratloi resulti;
the)y a.re.re defined as:

I1A1(S)

L AIS((M)rrarf F\

.. ....... C
r
.
[ [. 1 rl

2ee \ i (11 -0)

rNC(S) 1

The average of the normahlzed correlation (nNC) is also
reported:

These image mietrics on the s;ynthetic data are sum ma
tiZed in Iable 4IThe sub global optitmal mhethod of wtart
200 gives 2% increase of rM3I comnpared witth the gradi-
ent descent. After learning the tangent transfomn prior from
ttistart 200, the performance of pnror 50 atnd priorI 50 has
around 4% iinprovement by otnly 50 samples, which is 25%
of nostait 200.

To evitfuate performance on real-world lara, we ested
the aigomithm oni a datbase of 67 TIstiuctura MRI im-
as. The images at forom eldedly and neurodegenerative
human brains, collected from a L.5T Siemens scanner at
I I x L.5mm resolution. Thie dimension of each 3D image

i. .256x256I 2. All images ae prepicessecd th remove
skulls befbor registration.

Lach ofprior 50 and pnor;i 50 used a randomly selected
set of 33 imwages as the trainin set and the rest as the test set
grd 0 and iinstat 20 are tested on the whole database. The
-nuimbers of iterations for each initial rrannsom ari listed in
the last col],un of TableI. As there is no groUd tiuth for
the abfine transform, only the evaluLati-o-n o-n the 'image met
rcs Wxas meported. The aveage metric Valuess are surhmat
rued itn Table 6 1Figure 4 shows the h,istogram of r 1 dad

I SE for insti rt 0 andd prior 50.
intafl 200 olly gives 1lr increase of' rA .11 compared

with the gradient descent., This shows that the gradient de-
seenit works foi naty image registration cases. However

N f 5I ml(r, - ii (Trq. ))--il
All(IT.. .: .)1.1.

iv !\r r f sI C(I I j. M ))
N il If('i--l NC(I . 'Y"1140)

I
Nf

7-f 5-X:IVC(I'.I (T.)).N i I

i'l

inNC(S)



Strategy S rMil r 31SE rNC mNC Iter#
randi2K p2087 -84X01 -13.05 74.05 N/A
rand 2K+trans 17-69 -5154 -9 3 7739 N/A
grad 0 0.00 0.00 0.00 9229 |(XWO
msart 200 0.98 7.04 0.61 92.97 50
rpial 50 3.11 14.10 1 24 93.67 150
priod 50 __99 II6 L13 9344 150

lable 6. Evaluation tor difftrent strat'es on the eal dat pnor
W0 and priori 50 outperform nsairt 2M. The last column is the
numbe of iterations for gradienft decent I o pi or 1 I
150 itetions aiepeitormed aftetr 100 iteiatioins ot grad () The
2nd to 4th co1lumnasare shawn1in percntage (e).

1:trsta srt 200.or: S | ,2 :-L U
a 02 UA 01 9 UZ~~~ 04 ES D

Figrwe 4. Iistlogimm o M (I(st row) and rMSE (2nd ow) foiins ahi 200 (on left) and prnor W0 (on righit)

there is still space to impmrve. Alter leamring the tangent
transfoirin pnior f&rom instart 220 the performance of pnor
50 and ptiOrl 50 give a 3% itnprovement by 50 samples.
The prior leaining again outperfblo s the sub-global opti=
mal from uisrta 200 with less cormputational overiead.

An interesting comparison is to randomly sarmple 2000
parmneters without an1y gradient descent optimization (tand
2K). This gives a 20.74o decrease of iAII in the perfor
marice. If the gradient descent is otily allowed on the trans-
lation parameters (mnd 2K+trans)X there is still 17.69% de-
crease Tlhis shows tfhat gradient descent on all tfhe parame-
tei's is necessary. it is nlot sufihcient to do random samp1lina
without further optimization.

Finially, we emphasize that the new prior based affine
registration mmetho not only prduces better metric values
but also prodties ViMbl improvLments in the results As
shown in] Fligure; 5, both Piior 50 admJheu 200 give a bet
ter ie.sult than grd 0. At the same time, the overall brain
shape is irgisteird hetter by pnot 50 than by unftrt 200.
This exaple ihas rMSE 6.7 , Which is iepresenta-
tive of the average it viet gaId byoiieti ds as
indicated by the histogirai in I1igure

5. Conclusion and Discussion
In this pi we §poscd the notion of the taniget trans-

fbrm which reprsents the gap between a global optimumn
and a lotally optimal (oi fixed) solution. We used thie tani-
getnt transtform to leartn prior distributions of transform pa-

(a) (b) (c)
i tiir 5. Comparison of egiStritioni isulis shown in the trans
verse view. 1st iow: (a) the template, (b) the moving image, (c)
the square differencing image of (a) and (b). 2nd row: the egistra-
tion iesults fiomn (a) prior 50. (b) ;nsta 20 (cL grid 0 3id row
the square diffeiencing image for 2nd mw with the template. The
rMLE of prior 50 is 16. i % fo this image.

raineteis in a restricted space. We performed a careful anat-
ysis and showed that the learned plioit of(he tangent trans-
foim helped to exploie the wilevant affine tiatisbrns space.
Out learninig method has the foIlowing henetits

* Ther is no restriction or Gaussian assumption on
the parameter space. The algorithm -will lear the non-
parametric distribution t save the labor of human experts
setting new searhi'ng rules. lt therefbre automatically e=x=
tends to new datasets.,

* There is no need to provide the ground truti fbr tiain-
ing. The algorithm, can learn the prior from. the general sub-
gIlobal optintization method. The results show that our aloo-
rithrn surpasse the perto rnance of t.he general sub-global
optimization with the learned pir

* Both theoertical simuilation and real data experiments
show that it uses fewer iterations to got better pei formance
thaan the general multi start nethod.

Outr notiot of the tangent transorIm definied a practical
prior model by explicitly modeling the residual gap between
the estimated global optimal solution and the gradient de-
scent solution. This is diffiernt trm modeling the optimal
solution directly a-s in Even in the case when the base
linee.ragdmeit descent did a rensoiible reistration, thiS teCh
nique still leads to improvemcnts.

The coreassumlption of the method is that all the images



in the same database have a, rough and learn able uange of
variation. This is~validated for our dataibase by the exalt
atnon. However this mnethod miay tail It some rare Images
have an outfier tangent itransform distotrtion compared with
other imhages. The learned pinior may not work oni this~case.

The framework proposed lil sectio 33s both iml
anid extensible. First It is independent hiorn the choice ol
cost tunetion. Second tlhis tiamework is easily eorp
rated wilth other general random opimwzation procedures,
like s-jimulautedc annealing.

The transfoim used in this paper is the afinme triansforin.
it is also) possible to extend the work to non rigid trants
foims. like the.1B spline or thin-plate spfline tian.sfoims. -in
these eases there will be many nmoie parameteis to Iea-in.
There arc two possible ways to handle this issue. The first ik
to learn the joint distribWutn by dimesin eductio t'h-
niques, like Piincipal Component Analysis. [he seconid is
-to geneirarw synthetic data by iandornly -waipirig i-mages.

This ftamework can also be extended in a way ol Se-
quenial, Monte Carlo methodg (I 1). In the terms of
Bayesian model, the registratioin transform, is the hidden

'Anble and the learn~ed prir ot the tangent transform i
the6 obseration model1 The prio of6f taingenht tinsfobtim is§ de-
hnted as the gap between the global optimadl tra-nstoi rn and
thle local optimal tianstormn starring htorn the identity trans~
form. A second level of tangent transform can be defined as
the gap between the global optimal transfoirm and thei cui~
tent optimization. As eachi level leads to a: mote and mote
constrainied transfoim space, the Optimnization cani be done
wi'th tewer and. fewer satiples and, lead to well efined con-
vergence.

The oveadll performtance gains inidicated by this ap-
proach wer-e consistent aciross theoryi siMulated data, anid
real data. We believe this indicates the strenigth of the
conceepts and s'hows that even simple nion para'metric learn~
img s-trategies m-ay be very useful in i-mprovi-ng reg-istiation
methiods.
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Appendix
P(t <I")

1z~

Derivati-on of Fqni5.
I P(t I ) I Z, (ol>I~ I)
IP (a)P(si,4 a &Tz a)
Ip9,V1L P(si a1)
tnAlK(t~ qa)T
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