
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

May 1991

Timed Atomic Commitment
Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Victor Wolfe
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 1991 IEEE. Reprinted from IEEE Transactions on Computers, Volume 40, Issue 5, May 1991, pages 573-583.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/384
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Susan B. Davidson, Insup Lee, and Victor Wolfe, "Timed Atomic Commitment", . May 1991.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/384
mailto:libraryrepository@pobox.upenn.edu

Timed Atomic Commitment

Abstract
In a large class of hard-real-time control applications, components execute concurrently on distributed nodes
and must coordinate, under timing constraints, to perform the control task. As such, they perform a type of
atomic commitment. Traditional atomic commitment differs, however, because there are no timing
constraints; agreement is eventual. We therefore define timed atomic commitment (TAC) which requires the
processes to be functionally consistent, but allows the outcome to include an exceptional state, indicating that
timing constraints have been violated. We then present centralized and decentralized protocols to implement
TAC and a high-level language construct that facilitates its use in distributed real-time programming.

Keywords
atomic commitment, distributed protocols, distributed real-time systems, fault tolerance, language constructs

Comments
Copyright 1991 IEEE. Reprinted from IEEE Transactions on Computers, Volume 40, Issue 5, May 1991, pages
573-583.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/384

http://repository.upenn.edu/cis_papers/384?utm_source=repository.upenn.edu%2Fcis_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991 573

Timed Atomic Commitment
Susan B. Davidson, Member, IEEE, Insup Lee, Member, IEEE, and Victor Wolfe, Student Member, IEEE

Abstract-In a large class of hard-real-time control appli-
cations, components execute concurrently on distributed nodes
and must coordinate, under timing constraints, to perform the
control task. As such, they perform a type of atomic commitment.
lkaditional atomic commitment differs, however, because there
are no timing constraints; agreement is eventual. We therefore
define timed atomic commitment (TAC) which requires the pro-
cesses to be functionally consistent, but allows the outcome to
include an exceptional state, indicating that timing constraints
have been violated. We then present centralized and decentralized
protocols to implement TAC and a high-level language construct
that facilitates its use in distributed real-time prograi: :ming.

Index Terms-Atomic commitment, distributed protocols, dis-
tributed real-time systems, fault tolerance, language constructs.

I. INTRODUCTION
N A large class of hard-real-time control applications, I components execute concurrently on distributed nodes and

must coordinate, under timing constraints, to perform the
control task. The application is often such that all or none
of the components must perform correctly within timing
constraints for the system to be consistent. If only some of the
components perform correctly, then the system will be left in
an inconsistent state that could violate functional requirements.
The problem of coordinating all or nothing behavior under
timing constraints is called timed atomic commitment.

As a simple example, consider a plant where containers
of chemicals are processed on a conveyer belt. Occasionally,
a defective container is detected which has to be carefully
removed and discarded, preferably without stopping the belt.
To do this, two robot arms, which are also servicing the belt in
other capacities, must coordinate to perform the task within ten
seconds of detecting the defective container. Before a container
is lifted, each arm must have grasped the container and must
know that operating conditions will allow it to lift the container
within the deadline; if these conditions cannot be met, then the
conveyer belt can be safely stopped, the container removed
without timing restrictions, and the belt reset. Using the
terminology of atomic commitment: if both arms complete the
lift by the deadline, then the system has committed; if neither
arm lifts and the belt stops, then the system has aborted. In
either case, both arms have performed the same actions, and
functional consistency has been maintained. However, if one
or both arms have only partially lifted within 10 s (perhaps
due to electrical or mechanical failure), a hazardous situation
may occur, such as a spill or collision with the next container

Manuscript received December 21, 1988; revised March 12, 1990. This
work was supported in part by ARO DAA6-29-84-k-0061, ONR N000014-
89-5-1131, and NSF CCR87-16975.

The authors are with the Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104.

IEEE Log Number 9143278.

on the belt; the system is in an exception state calling for
emergency actions.

In this application, the robot arm processes must perform
a type of atomic commitment. However, traditional atomic
commitment only requires that all processes eventually either
commit or abort. There is no deadline by which the decision
and action must be completed. We therefore introduce a new
notion for distributed real-time computing called timed atomic
commitment which enforces a deadline on the decision and
performance of commitment actions. Similar notions have
been called for in [1]-[3] and many discussions allude to
the benefits of being able to time constrain traditional atomic
commitment [4], [5], but timed atomic commitment remains
without a clear definition or implementation.

Unfortunately, it is impossible to place a deadline on
traditional atomic commitment if processor failure or message
loss can occur. If a processor fails before a decision has
been reached and remains down until after the deadline, it
may be impossible for any processor to reach a decision.
Furthermore, if a processor fails before completing the decided
upon action, it may be down until after the deadline and
obviously cannot complete the action. Even if. processors do
not fail, message loss alone causes timed atomic commitment
to be impossible. This fact follows easily from the “Two
General’s Paradox” [4], which states that there can be no
fixed length protocol for nontrivial agreement between two
or more processes if messages can be lost. Since reasonable
distributed operating environments include message loss and
processor failure, traditional atomic commitment cannot be
extended to observe a deadline. We therefore allow the global
outcome of timed atomic commitment, which is a function of
the local outcomes of the participant processes, to be either
1) all participant processes performed commitment actions
within the deadline (COMMIT), 2) all participant processes
performed no commitment actions (ABORT), or 3) the system
is in an exceptional state indicating that a fault may have
caused timing constraints to be violated (EXCEPTION).

The distinction between ABORT and EXCEPTION is im-
portant. In the coordinating robots example, if the outcome
is ABORT, then neither arm has lifted; nothing “wrong” has
happened, and the belt can merely be stopped for long enough
for the container to be successfully lifted. However, if the
outcome is EXCEPTION, then the container may be only
partially lifted which may cause it to spill or to interfere
with the next container on the belt. In general, EXCEPTION
indicates that the system may be in an undesirable state,
requiring recovery actions. However, regardless of the number
of faults, we still require that the processes are functionally
consistent, i.e., no process commits if some process aborts.
Note that since it is provably impossible for any atomic

0018-9340/91/0500-0573$01.00 0 1991 IEEE

n

574 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5 , MAY 1991

commitment to solve the problem of ensuring an “all-abort”
or “all-commit” outcome within a deadline in the presence
of faults, timed atomic commitment is defined to detect
inconsistencies through the exceptional outcome and provide
the opportunity for recovery.

Our goal is to define timed atomic commitment, devise
protocols to implement it in a realistic operating environment,
and show its usefulness though an example. The rest of
this paper is organized as follows. Section I1 defines timed
atomic commitment. In Section 111, necessary requirements
for the operating environment are discussed and centralized
and decentralized protocols for timed atomic commitment
are presented. Section IV introduces programming constructs
for timed atomic commitment and illustrates their use in the
coordinating robots example. Section V draws conclusions on
the effectiveness of timed atomic commitment and when it
should be used.

11. DEFINITION OF TIMED ATOMIC COMMITMENT

Atomic commitment is a problem that has been extensively
studied, has a clean definition, and has a range of provably
correct protocols for its implementation [SI. An especially
clean statement of the problem can be found in [SI, and it
is this definition that we adapt to include a deadline.

There are N processes, called participants, that are to
perform timed atomic commitment (TAC). When the TAC
commences, a global clock is initiated to measure the deadline
for completion, D. Each participant goes through three phases,
as shown in Fig. 1: a vote phase, at the end of which it
produces a vote of YES or NO; a decision phase, at the end
of which it produces the decision, COMMIT or ABORT; and
a performance phase, during which it performs the decided-
upon action and records the outcome in its local state. The vote
indicates the participant’s perception of its ability to commit:
a YES vote is a promise to commit if the decision is made
to commit; a NO vote means it cannot promise to commit.
The local state of a participant is initially EXCEPTION, and
cannot be altered after the TAC ends at D.

Informally, in a “perfect” operating environment, the goal
of TAC is to guarantee that, at D, either all participants have
local states of COMMIT, or all participants have local states of
ABORT. Furthermore, a COMMIT outcome is preferable to
an ABORT outcome. To reach a COMMIT outcome, every
participant must vote YES and decide to COMMIT; addi-
tionally, the commit actions must be successfully performed
by D. To reach an ABORT outcome, some participant must
vote NO, and thus all participants decide to ABORT; aborting
(which may include performing restoring actions) must also
be successfully performed by D.

Unfortunately, actual operating environments are not perfect
and include faults. For example, local clocks may be skewed,
messages may be delayed or even lost, processes may not be
able to execute when they need to, and execution may take
longer than expected. Any of these factors may cause some
participant to have a local state of EXCEPTION after the TAC,
i.e., be unable to vote, decide, or perform the decided-upon
action by D. However, most operating environments offer

cal-state
transition labds

received message

sent message

Fig. 1. FSM model of a participant in TAC

“guarantees”: for example, local clocks are synchronized to
within a constant, and delivery time of messages has an upper
bound. If the operating environment does not maintain a stated
guarantee, we say that a fault has occurred. When faults occur
we allow the TAC to indicate an EXCEPTION outcome.

A. TAC Correctness Criteria

We now specify what it means to perform correct timed

TACl All participants that reach a decision reach the same

TAC2 The decision is to commit only if all participants

TAC3 At D, a participant’s local state either reflects the

TAC4 If there are no faults, then
a) all participants reach a decision;
b) if all participants vote YES, then the decision is to

c) all participants complete the decided-upon action by D;

d) at D, a participant’s local state reflects the participant’s

Criteria TACl and TAC2 define the functional consistency
of TAC, while TAC3 requires the local state to be determined
at D. TAC4 defines minimal “success” requirements: TAC4b
requires the decision to be COMMIT if there are no faults and
all participants vote YES; this invalidates trivial protocols that
arbitrarily force the decision to be ABORT. TAC2 and TAC4a
together imply that a decision must be made to ABORT rather
than remaining EXCEPTION if there are no faults and some
participant votes No; this eliminates trivial protocols that allow
a process to remain undecided. TAC4c and TAC4d require
that, in the absence of faults, the decided-upon action must be
successfully completed and recorded in the local state by D.

Note that in addition to the “all-commit’’ or “all-abort’’
outcomes of traditional atomic commitment, there are three
other combinations of local states in a TAC: 1) all exceptional;
2) some committed, some exceptional; and 3) some aborted,
some exceptional. This increased number of outcomes is due

atomic commitment.

one.

vote YES.

participant’s completed action or is EXCEPTION.

commit;

and

completed action.

DAVIDSON er al.: TIMED ATOMIC COMMITMENT 515

to the distinction between the EXCEPTION state and the
ABORT state. In an ABORT state, the participant returns to
its original state. In the example, an ABORT state implies that
neither robot arm lifted and the container is in the position it
was before the TAC. In an EXCEPTION state, the participant
may have partially performed commit or abort actions; e.g.,
one arm may have only partially lifted by the deadline while
the other one has completely lifted. The EXCEPTION state
indicates that the system may be inconsistent, and that recovery
should be performed.

To see the difference between TAC and traditional atomic
commitment, consider the case where there is no deadline,
i.e., D = 00. In the absence of faults, the correctness criteria
require that all participants eventually reach a decision and
perform the decided-upon action. Therefore, the result of TAC
with D = 00 will be either “all-abort” or “all-commit.”
No participant will ever terminate in the EXCEPTION local
state, and this definition agrees with that of traditional atomic
commitment in [5] . However, if faults occur, the correctness
criteria pose no requirements on whether a decision will
ever be reached. This contrasts with the traditional definition
which states that if faults do not occur for sufficiently long,
a decision will eventually be reached. The reason for this
discrepancy is that “sufficiently long” and “eventually” are
temporal statements that must be quantified in the presence of
a deadline. However, they are impossible to quantify unless
further assumptions about the operating environment are made
(such as the number, time of occurrence, and frequency of

participant’s completed action. Furthermore, the partic-
ipant’s global state vector entry is the same as its local
state.

The protocols and language constructs we present for TAC are
based on this extended definition.

111. PROTOCOLS FOR TIMED ATOMIC COMMITMENT

One’s initial reaction in building a timed atomic commit
protocol is to merely add a deadline to the end of the
performance phase of a “favorite” traditional (untimed) atomic
commit protocol. If D expires at any phase of the partic-
ipant’s execution, the participant merely makes a transition
to the EXCEPTION local state (see Fig. 1 in the previous
section). However, this simple solution violates the correctness
criterion TAC4 since an EXCEPTION state may be reached
with no faults occurring. For example, at some point in any
atomic commitment protocol, the participant must reach a
decision; this decision can be made just before D, not leaving
enough time for the decided-upon action to be completed.
Furthermore, the participant may not reach a decision at all
before D expires; no faults have occurred, but again the
participant enters an EXCEPTION local state. In light of these
types of anomalies, We must develop slightly more complex
protocols and carefully state what we require of the operating
environment.

A. Operating Environment - -
faults). Therefore, we replace the requirement of eventually
reaching a decision with the requirement that the outcome is
EXCEPTION if a decision is not reached by the deadline.

In devising a correct TAC protocol, the guarantees made by
the operating environment must be carefully considered. For
example, if the operating environment makes no guarantees
about message delivery, then message loss is not a fault.
As argued in the Introduction, there can be no correct TAC B. Callina Process Extension -

In practice, it is not enough that the participants establish
their own local states by D; some other process must know all
of the local states by D so that it can determine what action
to take. Furthermore, it is natural to assume that this process
initiates the TAC by sending start messages, and “embodies”
the global clock by measuring D. In the coordinating robots
example, if the outcome is ABORT, the belt should be stopped
and the lift retried. If the outcome is EXCEPTION, some
form of recovery should be taken. We therefore extend the
definition of timed atomic commitment with a calling process
that initiates the TAC by sending out the start messages,
measures D on its clock, and establishes the outcome of the
TAC by D. The outcome of the TAC is represented by a
global state vector. The global state vector entry for each
participant is initially EXCEPTION and is changed when the
caller determines each participant’s local state. To ensure that
the caller correctly establishes the outcome of the TAC by D,
we replace TAC3 and TAC4d in the timed correctness criteria
with:

TAC3’ At D, a participant’s local state either reflects
the participant’s completed action or is EXCEPTION.
Furthermore, the participant’s global state vector entry
is either its local state or is EXCEPTION.
TAC4d’ at D, a participant’s local state reflects the

protocol for this environment. Since the definition of TAC
relies on the definition of faults, any protocol must describe
what its assumed operating environment is, including what
guarantees it makes and what faults can occur. Our assumed
operating environment makes guarantees about processors,
schedulers, clocks, and communication.

The assumed computation system is a collection of dis-
tributed processors that communicate with each other via
messages over a network. A processor fault occurs when a
processor goes down. While the processor is down, no process
that is assigned to the processor performs any computation.
Each processor has its own local clock. A clock fault occurs if
two clocks drift too far apart, i.e., there is an assumed upper
bound on clock drift, called 6 . We assume that no malicious
faults occur.

Communication is asynchronous. The time from executing
send to arrival of the message at the recipient process’s
message queue is guaranteed not to exceed A. There are
two forms of communication faults: lost messages, where a
message is never delivered from the sender to the receiver, and
late messages, where messages take longer than the guaranteed
upper bound on delivery. We assume that messages never
arrive out of order.

Finally, each processor has a collection of time-shared
processes that are subject to preemption. We assume that

576 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

scheduling is fair: each process is guaranteed to execute for
at least 7,. time units within ~p time units of becoming ready
to execute. Processors use a resource manager to allocate and
schedule resources such as the CPU and devices. The resource
manager is assumed to be capable of guaranteeing resources
for a duration of time within a given time interval [6] - [8] .
A scheduling fault occurs either when the fairness assumption
is violated, or the resource manager promises resources but
fails to deliver them within the promised time. We assume
that the execution time bounds are accurate, i.e., a process
never requests too little time from a resource manager, and that
the resource manager responds to guarantee requests within a
fixed amount of time.

B. Notation
To facilitate the description of the protocols, we introduce

the following notation. First, we express time dependent
behavior using the temporal scope language construct. We
outline only the aspects of temporal scopes used in this paper;
further details can be found in [9] . A temporal scope consists
of (optionally) a start time and a deadline, statements that
are to be performed in the interval defined by the start time
and deadline, and an exception handler. If the start time is
not specified, it is assumed to be immediate; if the deadline
is missing, it is assumed to be infinite. The structure of a
temporal scope is as follows:

before (start-time) by (deadline) do

except
(statements-1)

when E-START do (statements-2) end when
when E-DEADLINE do (statements-3) end when

end before.

If (statements-1) are not started by the specified (start-time),
then (statements-2) are executed. If the (statements-1)
are not completed by (deadline), then execution of
(statements-1) is terminated (statements-3) are executed.

Second, we describe how processes reserve resources. A
process must be able to reserve resources to be able to com-
plete the decided-upon action by the deadline. For simplicity,
we assume that the only required resource is the CPU, although
in general it could include other resources such as memory
or devices. A system call, Reserve(e, [low, high]), returns true
if e execution time units within the interval [low,high] are
guaranteed by the resource manager to the invoking process;
otherwise, false is returned.

Third, we describe communication. The send primitive,
send(process, message), takes rs units of local processing
time (included in the assumed bound A). We also assume a
noninterruptible broadcast version of send(process, message)
called send-all(process-list, message). By noninterruptible we
mean that it is not possible to interrupt a send-all for a
temporal scope deadline violation. The send-all primitive has
a bound of A*, of which r b is local processing time. The
receive primitive, receive(process-list, message), blocks until
a message arrives from any of the specified processes.

C. Centralized TAC Protocol

This section adapts a centralized two-phase commit pro-
tocol’ to TAC by incorporating intermediate deadlines; the
result is the centralized timed two-phase commit protocol
(CT2PC). In CT2PC, an extra “coordinator” process is added
to collect votes from the participants, and make and distribute
the decision. For simplicity, we assume that the calling process
is the coordinator, i.e., the caller sends out the start messages,
acts as coordinator during the TAC, and establishes the global
state vector at the end of the TAC.

In the TAC, let S be the absolute start time and D be
the absolute deadline. For a participant Pi, let ti be the
maximum execution time needed to receive a pending decision
message, carry out the commit or abort action, and send a
completion message, measured on its clock. The largest of
all the ti’s is called rmax. For the coordinator, let Td be the
maximum execution time needed to receive N waiting vote
messages, process them, and make a decision; and rf be
the maximum execution time needed to receive N pending
completion messages and compute the result of a TAC. Recall
that E is the maximum clock drift, A is the bound on execution
of send, T~ is the local processing time for send, A* is the
bound on execution of send-all, and r b is the local processing
time for send-all.

Intermediate Deadlines: Each phase of the CT2PC consists
of a message exchange between the coordinator and the
participants as shown in Fig. 2. The following intermediate
deadlines are added to the phases:

D, = D - A - r f - E : deadline for sending a com-
pletion message by a participant. In the absence of faults,
each participant must complete the decided-upon action
and send the completion message (at most A time units)
so that the coordinator has time to process it (at most ~f

time units) before D on the coordinator’s clock (skewed
by at most E) .

DEC = D, - r,,, - A* - E : deadline for sending a
decision by the coordinator. For a participant with r,,,
execution time to guarantee completion of the decided-
upon action by D, in the absence of faults, it must
start executing the action by D, - rmax on its clock.
The coordinator must then interpret this time on its own
clock using the worst case assumption on clock skew,
and allowing maximum message delay for the broadcast
decision to arrive at the participant.
v = DEC - A - Td - E : deadline for a participant to
vote. The participant must vote in time for the vote
message to arrive at the coordinator and be processed
before DEC expires on the coordinator’s clock.
[LST;, D,]: the interval of time during which Pi requests
a guarantee of ti time units of resources needed to perform
the decided-upon action. There are several choices for
LST,, ranging from LSTi = DEC + A* + E to LSTi =
D, - ti. Choosing an earlier LSTi allows Pi to vote
YES more frequently since the guarantee is more likely

‘For an overview of centralized two-phase commit protocols see [5] and
141.

DAVIDSON et al.: TIMED ATOMIC COMMITMENT 577

wait for votes determine

start

PARTICIPANT
generate perform

vote actions
LST 9,

Fig. 2. Messages in a CT2PC protocol.

to be granted. Choosing the later LSTi can better tolerate
a tardy decision message.

To understand why the assumption of fair scheduling has
been imposed, consider the following scenario. Suppose that
the coordinator sends START messages to the participants,
and that the messages are delivered within A* time units.
If no assumption is made about scheduling, some participant
could be ready to receive the message, but not be scheduled
to execute until after the deadline, D. This will cause the
coordinator to conclude that the outcome is EXCEPTION
in the absence of any faults, violating TAC4c. However, if
participants are guaranteed to execute for long enough to
send a COMPLETION message to the coordinator before D,
indicating that they have automatically aborted, this problem
is avoided. Thus, rr must at least be long enough for the
participant to null-abort, that is, allow enough time for the
participant to receive a waiting START message, query the
resource manager, and send a COMPLETION message to
the coordinator. Furthermore, T~ must be given after the start
message is delivered and before D,. This can be guaranteed if
the participant is given T~ units within TP time units of being
ready, in which r p < D, - S - A*.

CT2PC Protocol: Fig. 3 outlines the coordinator process.
Before starting a TAC, the coordinator ensures that D is
sufficiently long to allow each participant to receive a START
message and return a COMPLETION message in time for
the coordinator to determine the result. The coordinator also
reserves Td and rf units of execution so that it can send a
decision message by DEC and determine the result by D. If the
reservations are denied, the TAC is not started. Otherwise, the
coordinator commences the TAC by sending START messages.
The coordinator then waits to receive vote messages from the
participants. When it receives all votes, or any NO vote, it
decides and sends the decision to the participants. However,
if DEC expires before it decides, it decides to abort and sends
the ABORT decision to the participants. After sending the
decision, it receives COMPLETION messages and updates the
corresponding global state vector entries. If D expires before
all COMPLETION messages have been received, the result is
EXCEPTION.

Fig. 4 outlines a participant Pi. When a START message
is received, the participant attempts to reserve ti units of
execution within [LSTi, D,]. If the reservation succeeds, it
determines its vote and tries to send the vote by V. When
the participant receives a decision from the coordinator, it
performs the decided-upon action and sends a COMPLETION
message by D,.

process Csllcr(S.D) /. S= s m time, D= &adline *I
begin

D, := D - A - r, - - c
DEC :=Dp - A* - r,,,,,= - c
V := DEC - A - 6 - r d
if (D p - S 2 A * + r,) and (D, - S - A . > r p)

and Reserve (Td + Q, [DEC - Td, DEC + 731)
and Reserve (r,. [D - r,, Dl) then
Initialize global state vector entries to EXCEPTION.
decision := ABORT
by DEC do

send-all ([Pi,. . . ,PN]. START, D,, DEC. V)
while (not received all N votes) and (no NO votes received) do

end while
if all YES votes then decision := COMMIT end if
send-all ([P I , . . . , PN], decision)

when EDEADLINE do

end when

Kccive ([Pi,. . . , PN]. vote)

except

send-all ([P I , . . . , PN]. decision)

end by I* DEC *I
by D do

while not received all COMPLETION messages do
receive ([P I , . . . , PN]. COMPLETION)
Update global state vector envy.

end while
end by

end if
end process

Fig. 3. Coordinator (caller) process for CT2PC.

process P, r ith participant ~ocess */
w n

meive (Caller, STARTIABORT. D,. DEC. V)
by D, do

if &ved ABORT then
send (CaUer. COMPLETION) P null a b n *I

eke P received START message */
LST, := DEC + A' + c
if Rcscrve (t , , [LST,, D,]) then

by V do
compute vote W I N O)
send (Caller, vow)

end by P V *I
receive (Caller. decision)
case decision of

C O W user-specified commit statements
ABORE user-specified abon statements

end esse
end if
send (Caller, COMPLETION)

end if

when EDEADLINE do exception s t a t e n " end when
except

end by I* D, *I
end process

Fig. 4. Participant process for CT2PC.

Note that steps taken for vote determination are application
dependent. For the coordinating robots example described in
the Introduction, a robot must grasp the container before voting
YES to ensure that it can lift it correctly. Thus, if the robot
votes YES, but the decision is ABORT, the robot must release
the container in its ABORT action.

If the participant cannot receive a reservation, or receives
an ABORT message without a prior START message, the
participant null-aborts and sends a COMPLETION message.
A null-abort indicates that the participant has taken no steps in
determining its vote that need to be undone during an ABORT.

D. Correctness of CT2PC

To show that CT2PC is correct, we now prove a series
of lemmas corresponding to the correctness criteria of Sec-

578 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

tion 11-A. We assume that the TAC was initiated, i.e., the coor-
dinator has received its requested guarantees, the deadline was
far enough away to initiate the protocol, and start messages
were sent to the participants.

Lemma 1 (TAC2): The decision is COMMIT only if all
participants vote YES.

Proof: Follows immediately from the fact that a par-
ticipant decides to commit only if the coordinator sends a
COMMIT message, which is done only if all the votes are
YES. 0

Lemma 2 (TACI): All participants that reach a decision
reach the same one.

Proof: First, recall that send-all is noninterruptible, so
the coordinator sends out the same decision message to every
participant. The only case in which a participant makes a
decision without explicitly receiving it from the coordinator
is if the participant aborts. In this case, the coordinator cannot
decide to commit since the aborting participant will not send
a YES vote. It follows from Lemma 1 that the decision in this
case cannot be COMMIT. 0

In the following two lemmas, we assume that there are
no faults. They are used to show that CT2PC satisfies the
minimum goodness requirements, TAC4.

Lemma 3: If there are no faults, any message that process
Pj sends to process Pi at time t on Pj’s clock is guaranteed
to arrive by t + A + E on Pi’s clock. Furthermore, if process
Pj broadcasts a message at time t , then it will arrive by t +
A* + E on any recipient Pi’s clock.

Proof: Follows from the definitions of A, A*, and E . 0
Lemma 4: If there are no faults and the participant Pi is not

guaranteed its execution times, then it meets TAC4.
Proof: The fair scheduling assumption and definitions of

rr and rp ensure that Pi will send a COMPLETION message
by D, (TAC4a,c). Using Lemma 3 and the fact that D - D,
includes rf time to receive and process all COMPLETION
messages, TAC4d’ holds. TAC4b is trivially satisfied because
Pi does not vote YES. 0

We now complete the proof of TAC4 by restricting our
attention to participants who have received a guarantee of
their execution times.

Lemma 5: If there are no faults, then the decision message
arrives at each participant Pi by LST;, measured on Pi’s clock.

Proof: It is enough to show that in the absence of faults
the decision message is broadcast by DEC, because Lemma 3
ensures that it arrives at Pi by DEC + A* + E = LSTi on
Pi’s clock. Suppose that the decision message has not been
broadcast before DEC. Since the coordinator has reserved
T d + Tb execution time during [DEC - Td,DEC + r b] , the
coordinator is guaranteed to start executing the exception
handler at DEC and have enough local processing time for
a send-all (r b) ; hence, the decision message is sent at DEC
according to the coordinator clock in the worst case. 0

Lemma 6 (TAC4a): If there are no faults, then all partici-
pants reach a decision.

Proof: By Lemma 5, the decision message arrives at Pi
by LSTi. Since P; has received a guarantee of ti during
[LSTi, D p] , and ti includes execution time to receive the
decision, Pi is guaranteed to reach a decision.

Lemma 7 (TAC4b): If there are no faults and all participants
vote YES, then the decision is to commit.

Proof: Since there are no faults and each participant
votes YES, each participant must have sent its vote message by
V measured on its clock. Due to Lemma 3, every vote message
must arrive at the coordinator by V + A + E = DEC - T d ,

measured on the coordinator’s clock. Since the coordinator has
reserved ‘rd units of execution during [DEC - r d , DEC], it is
guaranteed to be able to receive all vote messages and decide
to commit by DEC. By Lemma 6, all participants must also
decide to commit. 0

Lemma 8 (TAC4c): If there are no faults, then all participants
complete their decided-upon action by D.

Proof: By Lemma 5 , the decision message arrives at Pi
by LST;. Since Pi has reserved t; execution time during
[LSTi, D,], then by the definition of ti Pi completes the
decided-upon action and sends a COMPLETION message
by D,. Note that we have proved something stronger than
required, namely that the COMPLETION message is also sent

Lemma 9 (TAC4d‘): If there are no faults, then at D , each
participant’s local state and global state vector entry reflect the
participant’s completed action.

Proof: As noted in the proofs of Lemmas 4 and 8,
each participant sends a COMPLETION message by D,. By
Lemma 3, the COMPLETION messages must arrive at the
caller by D, + A + E = D - r f . Since the coordinator has
reserved rf execution time in [D - r f , D] , it must receive all
COMPLETION messages and update the global state vector

Lemma 10 (lAC3’): At D , each participant either has its
local state and global state vector entry reflect its completed
action or its global state vector entry is EXCEPTION.

Proof: The global state vector is initially EXCEPTION
for each participant, and is changed only when a COMPLE-
TION message is received from a participant. A COMPLE-
TION message is only sent if the participant has completed the
decided-upon action and (implicitly) changed its local state to

0
Using the above lemmas, we conclude that CT2PC is

Theorem 1: CT2PC shown in Figs. 3 and 4 is correct with

by D,. 0

by D. 0

reflect completion of the decided-upon action.

correct:

respect to the TAC Correctness Criteria.

E. A Decentralized TAC Protocol

This section adapts a decentralized two-phase commit pro-
tocol that requires each participant to receive a vote from
every other participant, make its own decision, and perform
the appropriate action in time to let the caller know its local
state by D.

For a participant P;, let 7 d be the maximum execution time
needed to receive N vote messages, process them, and make a
decision; let ti be the maximum execution time needed carry
out its commit or abort action and send its local state message;
and let T,,, be the largest of all the t i ’ s . As in CT2PC, let
rf be the maximum execution time needed for the caller to
receive N completion messages and compute the result of the
TAC. Recall that E is the maximum clock drift, A is the bound

I

DAVIDSON et al.: TIMED ATOMIC COMMlTMENT 579

D determine
result

wait for voles

PARTICIPANT
perform

other LST
votes

vote

Fig. 5. Messages in a DT2PC protocol.

on execution of send, rs is the local processing time for send,
A* is the bound on execution of send-all, and q, is the local
processing time for send-all.

Intermediate Deadlines: Participants execute as shown in
Fig. 5. The intermediate deadlines are

D, = D - A - rf - E: deadline for sending a com-
pletion message by a participant.
V = Dp - A* - rmax - Td - E: deadline for a partici-
pant to vote. Let P be a participant with r,, expected
execution time. To guarantee that P can meet D,, each
participant must broadcast its vote by V to ensure that its
vote arrives at P by Dp - rmax - Td on P's clock.
[LSTi, D,]: the interval of time during which Pi requests
a guarantee of t; time units of resources needed to
perform the decided-upon action. LSTi can range from
LST; = Dp - r,,, to LST; = D, - t ; . The former
is the latest time that Pi receives all votes if no fault
occurs, whereas the latter is the latest time that P; must
start executing its decided-upon action to complete by a
pessimistic interpretation of Dp on its clock. The tradeoffs
are similar to those discussed in the CT2PC protocol.

We now reiterate what is required of the fair scheduling
assumption: T~ must be long enough to null-abort, which
in this case involves receiving a waiting START message,
querying the resource manager, broadcasting a NO vote, and
sending an ABORT message to the caller. Furthermore, all
votes must arrive at each participant before LSTi, forcing

process Caller(S, D)
begin

D, := D- A - 7, - 6
V := Dp - A* - Tma= - 7d - C

if (V - S - A' > r p and R ~ r v e (7,. ID - 7,. D1) ulen
Initialize global state vcctor cnnies IO EXCEPTION.
by D do

send-all ([Pi , . . . , PNI. START. rma=, D,. V)
while (not w i v e d all N local-nstc masages) do

rcccivc ([PI, ..., P,vI.ABORTKOMM'O
update global slate vector may.

end rhile
end by P D Y

end if
end p-

Fig. 6. Caller process for DT2PC.

Pmeess Pi
begin

receive (Caller, START. rmW. D,. V)

ifnot(R-c(a,[V,v+al)
LSTi := Dp - 7,-

RCSCWC.(~~, [LSTi - +d, LSTi]) m d
RCSCIVC(~~, [LSTi, Dp])) thea

md-all ([Pi , . . . , PNI. NO)
send (Caller. ABORT)

eiser -tee rcccivcd */
vote:= NO
by V do

canptte vow ("0)
smd-alI([P1,...,PNl.Vac)

when EDEADLINE do &-all ([Pi , . . . , P,vI.Mte) end aha,
uaptrv*/

end by P V *I
by D, do

if vote= NO then temp:= ABORT else temp:= COMMlT
whUe (not roccivcd 111 otha votes) and (temp = COMMIT) do

w i v e ([P I , . . . ,P,v]. their-vote.)
if their-vote = NO Uun temp := ABORT end if

end while
dcfisioo:= temp
asc decision of

COMMIT: ABom lL92r-speeificd uscr-spccificd .boa " m i t aatements 8utcmcnts

end case
send (c&er, dcciim) r ~oed state message */

when EDEADLINE do excepion s"ocnts end when
except

end by P D, Y
end if

end process

Fig. 7. Participant process Pi in DT2PC.

-

Pi votes YES, it waits to receive all votes from the other
participants. It then decides, the appropriate action,

r p < V - S - A*.
DT2PC Protocol: Fig. 6 outlines the caller in DT2PC. It first

checks that is long to each participant to and communicates its local state to the calling process upon
receive a completion. If Dp expires, then pi termhates by executing send No votes to Other participants,
and send ABORT to the caller. It then attempts to guarantee
that it can receive Tf execution time in order to receive

exception

the local-state messages (COMMIT/ABORT). If it receives a
guarantee, start messages are sent using a send-all primitive.
The caller then waits to receive local-state messages.

Fig. 7 outlines a participant Pi in DT2PC. Upon receiving a
start message from the caller, Pi attempts to receive guarantees
from its resource manager that it can vote by V, process other
votes by LSTi, and perform the commit or abort actions in the
interval [LSTi,D,]. If Pi does not receive these guarantees,
it null-aborts by voting NO and sending a local state message
(ABORT) to the caller. Otherwise, Pi attempts to determine
its vote. If V expires before Pi sends its vote, the temporal
scope handler generates a NO vote. Whenever P; votes NO, it
aborts and sends an ABORT message to the caller. Whenever

F. Correctness of DT2PC

We now show that DT2PC is correct by proving a series
of lemmas corresponding to the correctness criteria of Sec-
tion 11-A. We use Lemma 3 from Section 111-D and again
assume that the TAC is initiated, i.e., that the caller received
its requested guarantees, the deadline was far enough away to
initiate the protocol, and that start messages were sent to the
participants.

Lemma I I (ZAC2): The decision is COMMIT only if all
participants vote YES.

Proof: Obvious, since the only way a participant can
decide to commit is to receive all votes with none of them

580 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

being NO. 0
Lemma 12 (DtCl): All participants that reach a decision

reach the same one.
Proof: If some participant decides COMMIT, then any

other participant that reaches a decision must decide COMMIT
since all votes must be YES. If some participant decides
ABORT, then some vote (possibly its own) must be NO;
hence, by Lemma 11 no other participant can decide COM-
MIT. 0

Lemma 13: If there are no faults and participant Pa is not
guaranteed its execution times, then it meets TAC4.

Proof: Note that the fair scheduling assumption and
definitions of r, and r p ensure that P, will broadcast NO
votes to all other participants and send an ABORT message to
the caller by V (TAC4a, c). Using Lemma 3 and the facts that
V < D, and that D - Dp includes ~f time for the caller
to receive all ABORT/COMMIT messages, TAC4d’ holds.
TAC4b is trivially satisfied because P, does not vote YES. 0

We now complete the proof of TAC4 by restricting our
attention to participants who have received a guarantee of
their execution times.

Lemma 14: If there are no faults, then each participant P,
sends its vote by V as measured on its own clock.

Proof: Follows since Pa is guaranteed q, time needed to
0

Lemma 15: If there are no faults, then each participant P,
reaches a decision by LST,, measured on its own clock.

Proof: Lemmas 14,3, and the proof of Lemma 13 ensure
that all vote messages arrive at Pa by V + A* + E on its
clock, which is LST, - 7 d . Since Pa reserved 7 d time in
[LST, - T d , LST,], it receives the votes and decides by LST,.

0
Lemma 16 (TAC4a): If there are no faults, then all partici-

0
Lemma 1 7 (TAC4b): If there are no faults and all participants

vote YES, then the decision is to commit.
Proof: By Lemma 15, each participant receives all votes

and has time to reach a decision by LST,. Since the votes are
all YES, the decision must be to COMMIT. 0

Lemma 18 (TAC4c): If there are no faults, then all partici-
pants complete their decided-upon action by D.

Proof: This follows from the fact that the decision is
made by LST, (Lemma 15), and t , units of execution are
guaranteed within [LST,. Dp] which is sufficient both to
complete the decided-upon action and to send the completion
message by D,. Note that for any participant, the completion

0
Lemma 19 (mC4d’): If there are no faults, then at D, each

participant’s local state and global state vector entry reflect the
participant’s completed action.

Proof: The local state message is sent by D, (proof
of Lemma 18) and arrives at the caller by D, + A + E

(Lemma 3), which is D - ~f on the caller’s clock. rj allows
the caller time to receive the message and update the global
state vector. 0

Lemma 20 (TAC3‘): At D , each participant either has its
local state and global state vector reflect its completed action

broadcast its vote in the exception handler at V .

pants reach a decision.
Proof: Follows directly from Lemmas 13 and 15.

message is sent by D,.

or its global state vector entry is EXCEPTION.
Proof: The global state vector is initially EXCEPTION

for each participant, and is changed only when a local state
message is received from a participant. This message is only
sent if the participant has completed the decided-upon action
and (implicitly) changed its local state to reflect completion of

Using the above lemmas, we conclude that DT2PC is

Theorem 2: DT2PC shown in Figs. 6 and 7 is correct with

the decided-upon action. 0

correct.

respect to the TAC Correctness Criteria.

IV. COORDINATING ROBOTS EXAMPLE

We now illustrate the usefulness of TAC using the coordinat-
ing robots example described in the introduction. To facilitate
the description, we first introduce some language constructs.

A. Language Constructs
The language constructs include a TAC block for the calling

process, and timed actions for the participants.
TAC Block: To invoke a TAC, the caller starts a set of con-

current participant timed actions, and waits for the participants’
local states. The structure of the TAC block is

tac-begin [VI , . . . , V,] /* Global state vector. */
VI := action PI ((args))

V, := action P, ((args))
end tac;
The global state vector [VI , . . . , V,] is initialized to EX-

CEPTION for each entry; V, is updated when Pa completes
and returns its local state. When each entry in the global state
vector has been updated, the TAC completes. To establish a
deadline for TAC, the TAC block is enclosed within a temporal
scope (see Section 111-B and [9]). If the deadline is reached and
TAC block has not completed (some V, is still EXCEPTION),
then the temporal scope exception handler starts recovery.

Timed Actions: TAC participants are timed actions which
execute as remote procedures called from a TAC block. The
structure of a timed action is

timed action (action-name) ((parameters))
for (time) { resource (resource-id) }

begin
(statementsl) /* decide vote: YES or NO */
vote (YES or NO)
await

when COMMIT do (statements*) end when
when ABORT do (statements3) end when

when E-DEADLINE do (statements4) end
when

except

end action.
The parameters allow data to be exchanged between the TAC
block and the timed action; the explicit declaration of resources
allows the underlying protocol to request reservations for the
COMMIT/ABORT actions. When the timed action is invoked,
it computes its vote; the decision is made based on the votes

DAVIDSON et al.: TIMED ATOMIC COMMITMENT 581

of all timed actions in the TAC block. If the decision is
COMMIT, (statementsz) are executed; if the decision is
ABORT, (statementss) are executed. Note that the deadline
(E-DEADLINE) is not explicitly specified, but is determined
by the underlying protocol using the caller’s deadline.

Another difference between timed atomic commitment and
traditional atomic commitment should be discussed here. In
traditional atomic commitment programmer-provided abort
statements (such as (statementss)), are not used because only
automatically recoverable actions are performed before the
decision is known. However, in timed atomic commitment,
state altering actions may be performed in the voting phase that
can only be restored by the programmer. For instance, in the
robot example of Section V, a robot bases its vote on whether
or not it has grasped the container; if the decision is to abort,
the programmer must provide explicit compensating actions
[lo], [ll] in the abort clause to release the container. However,
unrecoverable actions should be performed only during the
commit phase so that they can be assured of completing
(barring faults).

B. Coordinating Robots Example

The coordinating robots example described in the Introduc-
tion requires that a defective chemical container be picked up
by two robot arms and discarded within 10 s of detection.
The example consists of a caller process, Belt-Controller (see
Fig. 8), and two participants, Robot-1 and Robot-2, which
control the arms needed to pick up a container from the
conveyer belt. (See Fig. 9.)

Belt-Controller waits 5 s after a sensor detects a defective
container before initiating a TAC with a 10 s deadline. It
then waits until it knows both arms have completed the
decided-upon action, or until the 10 s deadline expires. If the
result is COMMIT, the belt continues without interruption;
if it is ABORT, the belt is stopped and reset. Otherwise,
Belt-Controller does not know whether or not Robot-1 and
Robot-2 have successfully completed by the deadline; it stops
the entire system and alerts the operator so that the unlifted
container can be removed.

Upon invocation, Robot-1 determines its vote by trying to
grasp the container; this may fail since the arm is shared among
several processes and only one process may control the arm
at a time. If it is successful, the vote is YES; otherwise, the
vote is NO. Note that the underlying protocol may also force
the vote to be NO if intermediate deadlines cannot be met or
the required reservations are not guaranteed; in this example,
the arm is needed for 4 s during the COMMIT/ABORT
phase. After voting, Robot-1 awaits the decision; ABORT
results in the container being released; otherwise, it is lifted.
If the participant’s deadline expires before the completion
of the decided-upon action, then the arm is stopped and
Belt-Controller handles the exception.

V. CONCLUSION
In a large class of hard-real-time control applications, com-

ponents of a control task must perform a type of atomic com-
mitment under timing constraints. However, if the assumed

process Belt-Conmller

Wait for scllsor to detect a defective-cmtaincr.
after 5 seconds within 10 scu)ILds do

V, := action Robot-1 0
V, := action R O W 0

tacbeoin [VI, V,]

end tac

when EDEADLINE do
except

stop entirc system
den operator to clcar container f” arms

end when
end after
If VI = ABORT and V, = ABORT

then stop belt and lcw

Fig. 8. Caller process Belt-Controller.

timed action R o b o ~ l 0
for 4 su: resnurce arm1

lower ann and grasp container
besin

if grasped comedy then vote (YES) else vote (NO)
await

when COMMIT do raise. ann end when
when ABOm do

end when

when EDEADLINE do stop arm end when

if container is grasped then release container

except

end action

Fig. 9. Participant timed action Robot-I.

operating environment includes the possibility of processor
and communication faults, it is impossible to devise a protocol
which guarantees that all participants either commit or abort
by a deadline. We therefore modify the traditional definition
of atomic commitment to one for timed atomic commitment
by introducing an EXCEPTION state, which indicates that a
participant may not have completed the decided-upon action
by the deadline. As in traditional atomic commitment, we
insist that the decisions made by participants are consistent,
i.e., no participant decides to commit if another decides to
abort; however, EXCEPTION is defined to be consistent with
COMMIT or ABORT.

To formalize this notion, we presented minimal require-
ments for a correct implementation of timed atomic commit-
ment. These correctness criteria capture the intuitive notion
that an exceptional outcome should only occur in the presence
of faults, and an aborted outcome should only occur in the
presence of faults or if some process votes NO. That is, a
correct TAC should succeed in committing whenever possible.
In order to achieve a correct implementation, we also noted
that it is necessary to have an operating environment that
provides bounds on message delays and clock synchronization,
and guarantees resources.

Centralized and decentralized timed two-phase commit pro-
tocols were modified to meet the correctness criteria by
introducing intermediate deadlines on the voting and per-
formance phases of participants, and on the decision phase
for the caller. The deadlines were derived from D using
several assumptions, e.g., maximum message delay, clock
drift, and execution time bounds. If any of these assumptions

582 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

are violated, correctness is still assured but an exception
outcome may occur; to reduce exceptions, these bounds should
be pessimistic.

There are tradeoffs between using the centralized or decen-
tralized implementation. In CT2PC, there are 4N messages; of
these, 2N messages (the decision and completion messages)
are “critical.” By critical we mean that if the message is
lost, the result will be EXCEPTION. Note that if a START
or VOTE message is lost in CT2PC, the coordinator will
timeout and decide ABORT. In DT2PC there are N 2 + N
messages, all of which are critical. In either implementation,
loss of any process, participant, or coordinator, may result in
an EXCEPTION outcome.

If the caller wishes to know that there is a possibility
of committing, using worst case assumptions, there is a
minimum overall elapsed deadline, D - S. For the centralized
protocol, D - S must be greater than or equal to the sums
of the time to send the start message (A*), compute the vote
((T ~ - T ~) + E) , send the vote (A), decide (Td + E) , send the
decision (A*), perform the decided-upon action (T,,, + E) ,

send the completion message (A), and update the global state
vector (~ j) :

D - S 2 2A + 2A* + (~ r + 7s) + Td + Tmax + ~j + 36.

(1)

For the decentralized protocol, D - S must be greater than
or equal to the sums of the time to send the start message
(A*), compute the vote ((T ~ - 76) + E) , send the vote (A*),
decide and perform the decided-upon action (Td + T,,, + E),

send the completion message (A) , and update the global state
vector (~ f) :

D - S 2 A + 2A* + (Tr - T b) Td + Tmax + Tf + 2E.

(2)

A shorter deadline would not be incorrect nor necessarily
cause exceptional outcomes. However, since the intermediate
deadlines are derived from D, a shorter D may cause an
increased ABORT rate. For example, there may not be enough
time for guarantees to be made, or (in CT2PC) the coordinator
may timeout while waiting for votes. Thus, these protocols are
most useful for real-time applications in which the deadline is
long compared to message delays and clock skew.

Note that a virtue of the TAC protocols is that the timed
behavior of the caller is predictable; at the deadline, the caller
either knows that all participants have performed the decided-
upon action, or decides that some participant is exceptional
and performs explicit recovery. It is our belief [l], [3], [8]
that consistency and predictable performance are often more
important than speed in real-time computing, thus the overhead
of using the TAC protocols is justified.

To support the use of timed atomic commitment, we also
introduced a temporal scope, TAC block, and timed action
constructs. A timed action defines a participant with explicit
voting, decision, and performance phases. The caller uses a
TAC block to initiate the atomic commitment, and expresses
the deadline by enclosing it in a temporal scope. These con-
structs were demonstrated in the coordinating robots example.

Although it is possible to implement the example without
these constructs, an equivalent implementation would require
explicit synchronization, fault detection, and enforcement of
timing constraints. In addition, these constructs support ex-
tensible and modifiable programs: Programs are extensible
since adding another robot arm merely entails adding another
participant in the TAC. Programs are modifiable since chang-
ing the deadline in the caller does not necessitate changing
the participant code. Above all, TAC language constructs
simplify program development and modification by hiding
implementation details.

The language constructs and underlying protocols are cur-
rently being implemented using a real-time kernel [8] devel-
oped at the University of Pennsylvania for distributed real-time
control applications.

ACKNOWLEDGMENT

We thank the referees for their constructive input into earlier
versions of this paper.

REFERENCES

[l] J. Stankovic, “Misconceptions about real-time computing: A serious
problem for next-generation systems,” IEEE Compuf. Mag., vol. 21,
pp. 10-19, Oct. 1988.

[2] K. Schwan, T. Bihari, and B. Blake, “Adaptable, reliable software
for distributed and parallel, real-time systems,” in Proc. Sixth Symp.
Reliability in Distributed Software, Mar. 1987, pp. 32-44.

[3] I. Lee, S. Davidson, and V. Wolfe, “Motivating time as a first class
entity,” Tech. Rep. MS-CIS-87-54, Dep. Comput. and Inform. Sci. Univ.
of Pennsylvania, July 1987. Presented at IEEE Fourth Workshop on
Real-Time Operating Systems.

[4] J. Gray, “Notes on database operating systems,” in Operating Systems.
Berlin, Germany: Springer-Verlag, 1979, pp. 394-481.

[5] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and
Recovery in Database Systems. Reading, M A Addison-Wesley, 1986.

[6] W. Zhao, K. Ramamritham, and J. Stankovic, “Scheduling tasks with
resource requirements in hard real-time systems,” IEEE Trans. Software
Eng., vol. SE-13, pp. 564-577, May 1987.

[7] -, “Preemptive scheduling under time and resource constraints,”
IEEE Trans. Comput., vol. C-36, pp. 949-960, Aug. 1987.

[SI I. Lee, R. B. King, and R. P. Paul, “A predictable real-time kernel
for distributed multisensor systems,” IEEE Comput. Mag., vol. 22,
pp. 78-83, June 1989.

[9] I. Lee and V. Gehlot, “Language constructs for distributed real-time
programming,” in Proc. IEEE Real-Time Sysf. Symp., Dec. 1985.

[lo] H. Tokuda, “Compensatable atomic objects in object-oriented operat-
ing systems,” in Proc. Pacific Comput. Commun. Symp., Oct. 1985,

[l l] A. Gheith and K. Schwan, “CHAOSart: Support for real-time atomic
transactions,” in Proc. 19th Int. Symp. Fault Tolerant Comput., IEEE,
1989, pp. 462-469.

pp. 45-53.

Susan B. Davidson (M’83) received the B.A. de-
gree in mathematics from Cornell University, Ithaca,
NY, in 1978, and the M.A. and Ph.D. degrees in
electrical engineering and computer science from
Princeton University, Princeton, NJ, in 1980 and
1982.

She is currently an Associate Professor in the
Department of Computer and Information Science at
the University of Pennsylvania, Philadelphia, where
she has been since 1982. Her research interests
include fault tolerance, distributed systems, database

systems, and real-time systems.

DAVIDSON et 01 ‘ TIMED ATOMIC COMMITMENT 583

Insup Lee (S’80-M’83) received the B.S. degree in
mathematics from the University of North Carolina,
Chapel Hill, in 1977, and the Ph.D. degree in
computer science from the University of Wisconsin,
Madison, in 1983.

He is currently an Associate Professor in the
Department of Computer and Information Science
at the University of Pennsylvania, Philadelphia,
where he has been since 1983. His research
interests include the specification and analy-
sis of time dependent systems, real-time pro-

Victor Wolfe (S’90) received the B.S. degree in
electrical engineering and computer science from
Tufts University, Medford, MA, in 1983, the M.S.E.
degree in computer and information science from
the University of Pennsylvania, Philadelphia, in
1985, and is currently a Ph.D. degree candidate in
computer and information science at The University
of Pennsylvania.

He was a Computational Design Engineer for
General Electric’s Space Systems Division from
1983 to 1986. His research interests include con-

gramming languages and semantics, and distributed real-time operating
systems. languages.

currency control in real-time systems and distributed real-time programming

n

	University of Pennsylvania
	ScholarlyCommons
	May 1991

	Timed Atomic Commitment
	Susan B. Davidson
	Insup Lee
	Victor Wolfe
	Recommended Citation

	Timed Atomic Commitment
	Abstract
	Keywords
	Comments

	Timed atomic commitment - Computers, IEEE Transactions on

