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Abstract
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Timed Atomic Commitment 
Susan B. Davidson, Member, IEEE, Insup Lee, Member, IEEE, and Victor Wolfe, Student Member, IEEE 

Abstract-In a large class of hard-real-time control appli- 
cations, components execute concurrently on distributed nodes 
and must coordinate, under timing constraints, to perform the 
control task. As such, they perform a type of atomic commitment. 
lkaditional atomic commitment differs, however, because there 
are no timing constraints; agreement is eventual. We therefore 
define timed atomic commitment (TAC) which requires the pro- 
cesses to be functionally consistent, but allows the outcome to 
include an exceptional state, indicating that timing constraints 
have been violated. We then present centralized and decentralized 
protocols to implement TAC and a high-level language construct 
that facilitates its use in distributed real-time prograi: :ming. 

Index Terms-Atomic commitment, distributed protocols, dis- 
tributed real-time systems, fault tolerance, language constructs. 

I. INTRODUCTION 
N A large class of hard-real-time control applications, I components execute concurrently on distributed nodes and 

must coordinate, under timing constraints, to perform the 
control task. The application is often such that all or none 
of the components must perform correctly within timing 
constraints for the system to be consistent. If only some of the 
components perform correctly, then the system will be left in 
an inconsistent state that could violate functional requirements. 
The problem of coordinating all or nothing behavior under 
timing constraints is called timed atomic commitment. 

As a simple example, consider a plant where containers 
of chemicals are processed on a conveyer belt. Occasionally, 
a defective container is detected which has to be carefully 
removed and discarded, preferably without stopping the belt. 
To do this, two robot arms, which are also servicing the belt in 
other capacities, must coordinate to perform the task within ten 
seconds of detecting the defective container. Before a container 
is lifted, each arm must have grasped the container and must 
know that operating conditions will allow it to lift the container 
within the deadline; if these conditions cannot be met, then the 
conveyer belt can be safely stopped, the container removed 
without timing restrictions, and the belt reset. Using the 
terminology of atomic commitment: if both arms complete the 
lift by the deadline, then the system has committed; if neither 
arm lifts and the belt stops, then the system has aborted. In 
either case, both arms have performed the same actions, and 
functional consistency has been maintained. However, if one 
or both arms have only partially lifted within 10 s (perhaps 
due to electrical or mechanical failure), a hazardous situation 
may occur, such as a spill or collision with the next container 
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on the belt; the system is in an exception state calling for 
emergency actions. 

In this application, the robot arm processes must perform 
a type of atomic commitment. However, traditional atomic 
commitment only requires that all processes eventually either 
commit or abort. There is no deadline by which the decision 
and action must be completed. We therefore introduce a new 
notion for distributed real-time computing called timed atomic 
commitment which enforces a deadline on the decision and 
performance of commitment actions. Similar notions have 
been called for in [1]-[3] and many discussions allude to 
the benefits of being able to time constrain traditional atomic 
commitment [4], [5], but timed atomic commitment remains 
without a clear definition or implementation. 

Unfortunately, it is impossible to place a deadline on 
traditional atomic commitment if processor failure or message 
loss can occur. If a processor fails before a decision has 
been reached and remains down until after the deadline, it 
may be impossible for any processor to reach a decision. 
Furthermore, if a processor fails before completing the decided 
upon action, it may be down until after the deadline and 
obviously cannot complete the action. Even if. processors do 
not fail, message loss alone causes timed atomic commitment 
to be impossible. This fact follows easily from the “Two 
General’s Paradox” [4], which states that there can be no 
fixed length protocol for nontrivial agreement between two 
or more processes if messages can be lost. Since reasonable 
distributed operating environments include message loss and 
processor failure, traditional atomic commitment cannot be 
extended to observe a deadline. We therefore allow the global 
outcome of timed atomic commitment, which is a function of 
the local outcomes of the participant processes, to be either 
1) all participant processes performed commitment actions 
within the deadline (COMMIT), 2) all participant processes 
performed no commitment actions (ABORT), or 3) the system 
is in an exceptional state indicating that a fault may have 
caused timing constraints to be violated (EXCEPTION). 

The distinction between ABORT and EXCEPTION is im- 
portant. In the coordinating robots example, if the outcome 
is ABORT, then neither arm has lifted; nothing “wrong” has 
happened, and the belt can merely be stopped for long enough 
for the container to be successfully lifted. However, if the 
outcome is EXCEPTION, then the container may be only 
partially lifted which may cause it to spill or to interfere 
with the next container on the belt. In general, EXCEPTION 
indicates that the system may be in an undesirable state, 
requiring recovery actions. However, regardless of the number 
of faults, we still require that the processes are functionally 
consistent, i.e., no process commits if some process aborts. 
Note that since it is provably impossible for any atomic 
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commitment to solve the problem of ensuring an “all-abort” 
or “all-commit” outcome within a deadline in the presence 
of faults, timed atomic commitment is defined to detect 
inconsistencies through the exceptional outcome and provide 
the opportunity for recovery. 

Our goal is to define timed atomic commitment, devise 
protocols to implement it in a realistic operating environment, 
and show its usefulness though an example. The rest of 
this paper is organized as follows. Section I1 defines timed 
atomic commitment. In Section 111, necessary requirements 
for the operating environment are discussed and centralized 
and decentralized protocols for timed atomic commitment 
are presented. Section IV introduces programming constructs 
for timed atomic commitment and illustrates their use in the 
coordinating robots example. Section V draws conclusions on 
the effectiveness of timed atomic commitment and when it 
should be used. 

11. DEFINITION OF TIMED ATOMIC COMMITMENT 

Atomic commitment is a problem that has been extensively 
studied, has a clean definition, and has a range of provably 
correct protocols for its implementation [SI. An especially 
clean statement of the problem can be found in [SI, and it 
is this definition that we adapt to include a deadline. 

There are N processes, called participants, that are to 
perform timed atomic commitment (TAC). When the TAC 
commences, a global clock is initiated to measure the deadline 
for completion, D. Each participant goes through three phases, 
as shown in Fig. 1: a vote phase, at the end of which it 
produces a vote of YES or NO; a decision phase, at the end 
of which it produces the decision, COMMIT or ABORT; and 
a performance phase, during which it performs the decided- 
upon action and records the outcome in its local state. The vote 
indicates the participant’s perception of its ability to commit: 
a YES vote is a promise to commit if the decision is made 
to commit; a NO vote means it cannot promise to commit. 
The local state of a participant is initially EXCEPTION, and 
cannot be altered after the TAC ends at D. 

Informally, in a “perfect” operating environment, the goal 
of TAC is to guarantee that, at D, either all participants have 
local states of COMMIT, or all participants have local states of 
ABORT. Furthermore, a COMMIT outcome is preferable to 
an ABORT outcome. To reach a COMMIT outcome, every 
participant must vote YES and decide to COMMIT; addi- 
tionally, the commit actions must be successfully performed 
by D. To reach an ABORT outcome, some participant must 
vote NO, and thus all participants decide to ABORT; aborting 
(which may include performing restoring actions) must also 
be successfully performed by D. 

Unfortunately, actual operating environments are not perfect 
and include faults. For example, local clocks may be skewed, 
messages may be delayed or even lost, processes may not be 
able to execute when they need to, and execution may take 
longer than expected. Any of these factors may cause some 
participant to have a local state of EXCEPTION after the TAC, 
i.e., be unable to vote, decide, or perform the decided-upon 
action by D. However, most operating environments offer 

cal-state 
transition labds 

received message 

sent message 

Fig. 1. FSM model of a participant in TAC 

“guarantees”: for example, local clocks are synchronized to 
within a constant, and delivery time of messages has an upper 
bound. If the operating environment does not maintain a stated 
guarantee, we say that a fault has occurred. When faults occur 
we allow the TAC to indicate an EXCEPTION outcome. 

A. TAC Correctness Criteria 

We now specify what it means to perform correct timed 

TACl All participants that reach a decision reach the same 

TAC2 The decision is to commit only if all participants 

TAC3 At D, a participant’s local state either reflects the 

TAC4 If there are no faults, then 
a) all participants reach a decision; 
b) if all participants vote YES, then the decision is to 

c) all participants complete the decided-upon action by D; 

d) at D,  a participant’s local state reflects the participant’s 

Criteria TACl and TAC2 define the functional consistency 
of TAC, while TAC3 requires the local state to be determined 
at D. TAC4 defines minimal “success” requirements: TAC4b 
requires the decision to be COMMIT if there are no faults and 
all participants vote YES; this invalidates trivial protocols that 
arbitrarily force the decision to be ABORT. TAC2 and TAC4a 
together imply that a decision must be made to ABORT rather 
than remaining EXCEPTION if there are no faults and some 
participant votes No; this eliminates trivial protocols that allow 
a process to remain undecided. TAC4c and TAC4d require 
that, in the absence of faults, the decided-upon action must be 
successfully completed and recorded in the local state by D. 

Note that in addition to the “all-commit’’ or “all-abort’’ 
outcomes of traditional atomic commitment, there are three 
other combinations of local states in a TAC: 1) all exceptional; 
2) some committed, some exceptional; and 3) some aborted, 
some exceptional. This increased number of outcomes is due 

atomic commitment. 

one. 

vote YES. 

participant’s completed action or is EXCEPTION. 

commit; 

and 

completed action. 
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to the distinction between the EXCEPTION state and the 
ABORT state. In an ABORT state, the participant returns to 
its original state. In the example, an ABORT state implies that 
neither robot arm lifted and the container is in the position it 
was before the TAC. In an EXCEPTION state, the participant 
may have partially performed commit or abort actions; e.g., 
one arm may have only partially lifted by the deadline while 
the other one has completely lifted. The EXCEPTION state 
indicates that the system may be inconsistent, and that recovery 
should be performed. 

To see the difference between TAC and traditional atomic 
commitment, consider the case where there is no deadline, 
i.e., D = 00. In the absence of faults, the correctness criteria 
require that all participants eventually reach a decision and 
perform the decided-upon action. Therefore, the result of TAC 
with D = 00 will be either “all-abort” or “all-commit.” 
No participant will ever terminate in the EXCEPTION local 
state, and this definition agrees with that of traditional atomic 
commitment in [5] .  However, if faults occur, the correctness 
criteria pose no requirements on whether a decision will 
ever be reached. This contrasts with the traditional definition 
which states that if faults do not occur for sufficiently long, 
a decision will eventually be reached. The reason for this 
discrepancy is that “sufficiently long” and “eventually” are 
temporal statements that must be quantified in the presence of 
a deadline. However, they are impossible to quantify unless 
further assumptions about the operating environment are made 
(such as the number, time of occurrence, and frequency of 

participant’s completed action. Furthermore, the partic- 
ipant’s global state vector entry is the same as its local 
state. 

The protocols and language constructs we present for TAC are 
based on this extended definition. 

111. PROTOCOLS FOR TIMED ATOMIC COMMITMENT 

One’s initial reaction in building a timed atomic commit 
protocol is to merely add a deadline to the end of the 
performance phase of a “favorite” traditional (untimed) atomic 
commit protocol. If D expires at any phase of the partic- 
ipant’s execution, the participant merely makes a transition 
to the EXCEPTION local state (see Fig. 1 in the previous 
section). However, this simple solution violates the correctness 
criterion TAC4 since an EXCEPTION state may be reached 
with no faults occurring. For example, at some point in any 
atomic commitment protocol, the participant must reach a 
decision; this decision can be made just before D, not leaving 
enough time for the decided-upon action to be completed. 
Furthermore, the participant may not reach a decision at all 
before D expires; no faults have occurred, but again the 
participant enters an EXCEPTION local state. In light of these 
types of anomalies, We must develop slightly more complex 
protocols and carefully state what we require of the operating 
environment. 

A.  Operating Environment - -  
faults). Therefore, we replace the requirement of eventually 
reaching a decision with the requirement that the outcome is 
EXCEPTION if a decision is not reached by the deadline. 

In devising a correct TAC protocol, the guarantees made by 
the operating environment must be carefully considered. For 
example, if the operating environment makes no guarantees 
about message delivery, then message loss is not a fault. 
As argued in the Introduction, there can be no correct TAC B. Callina Process Extension - 

In practice, it is not enough that the participants establish 
their own local states by D; some other process must know all 
of the local states by D so that it can determine what action 
to take. Furthermore, it is natural to assume that this process 
initiates the TAC by sending start messages, and “embodies” 
the global clock by measuring D. In the coordinating robots 
example, if the outcome is ABORT, the belt should be stopped 
and the lift retried. If the outcome is EXCEPTION, some 
form of recovery should be taken. We therefore extend the 
definition of timed atomic commitment with a calling process 
that initiates the TAC by sending out the start messages, 
measures D on its clock, and establishes the outcome of the 
TAC by D. The outcome of the TAC is represented by a 
global state vector. The global state vector entry for each 
participant is initially EXCEPTION and is changed when the 
caller determines each participant’s local state. To ensure that 
the caller correctly establishes the outcome of the TAC by D, 
we replace TAC3 and TAC4d in the timed correctness criteria 
with: 

TAC3’ At D, a participant’s local state either reflects 
the participant’s completed action or is EXCEPTION. 
Furthermore, the participant’s global state vector entry 
is either its local state or is EXCEPTION. 
TAC4d’ at D, a participant’s local state reflects the 

protocol for this environment. Since the definition of TAC 
relies on the definition of faults, any protocol must describe 
what its assumed operating environment is, including what 
guarantees it makes and what faults can occur. Our assumed 
operating environment makes guarantees about processors, 
schedulers, clocks, and communication. 

The assumed computation system is a collection of dis- 
tributed processors that communicate with each other via 
messages over a network. A processor fault occurs when a 
processor goes down. While the processor is down, no process 
that is assigned to the processor performs any computation. 
Each processor has its own local clock. A clock fault occurs if 
two clocks drift too far apart, i.e., there is an assumed upper 
bound on clock drift, called 6 .  We assume that no malicious 
faults occur. 

Communication is asynchronous. The time from executing 
send to arrival of the message at the recipient process’s 
message queue is guaranteed not to exceed A. There are 
two forms of communication faults: lost messages, where a 
message is never delivered from the sender to the receiver, and 
late messages, where messages take longer than the guaranteed 
upper bound on delivery. We assume that messages never 
arrive out of order. 

Finally, each processor has a collection of time-shared 
processes that are subject to preemption. We assume that 
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scheduling is fair: each process is guaranteed to execute for 
at least 7,. time units within ~p time units of becoming ready 
to execute. Processors use a resource manager to allocate and 
schedule resources such as the CPU and devices. The resource 
manager is assumed to be capable of guaranteeing resources 
for a duration of time within a given time interval [ 6 ] - [ 8 ] .  
A scheduling fault occurs either when the fairness assumption 
is violated, or the resource manager promises resources but 
fails to deliver them within the promised time. We assume 
that the execution time bounds are accurate, i.e., a process 
never requests too little time from a resource manager, and that 
the resource manager responds to guarantee requests within a 
fixed amount of time. 

B. Notation 
To facilitate the description of the protocols, we introduce 

the following notation. First, we express time dependent 
behavior using the temporal scope language construct. We 
outline only the aspects of temporal scopes used in this paper; 
further details can be found in [9 ] .  A temporal scope consists 
of (optionally) a start time and a deadline, statements that 
are to be performed in the interval defined by the start time 
and deadline, and an exception handler. If the start time is 
not specified, it is assumed to be immediate; if the deadline 
is missing, it is assumed to be infinite. The structure of a 
temporal scope is as follows: 

before (start-time) by (deadline) do 

except 
(statements-1) 

when E-START do (statements-2) end when 
when E-DEADLINE do (statements-3) end when 

end before. 

If (statements-1) are not started by the specified (start-time), 
then (statements-2) are executed. If the (statements-1) 
are not completed by (deadline), then execution of 
(statements-1) is terminated (statements-3) are executed. 

Second, we describe how processes reserve resources. A 
process must be able to reserve resources to be able to com- 
plete the decided-upon action by the deadline. For simplicity, 
we assume that the only required resource is the CPU, although 
in general it could include other resources such as memory 
or devices. A system call, Reserve(e, [low, high]), returns true 
if e execution time units within the interval [low,high] are 
guaranteed by the resource manager to the invoking process; 
otherwise, false is returned. 

Third, we describe communication. The send primitive, 
send( process, message), takes rs units of local processing 
time (included in the assumed bound A). We also assume a 
noninterruptible broadcast version of send(process, message) 
called send-all( process-list, message). By noninterruptible we 
mean that it is not possible to interrupt a send-all for a 
temporal scope deadline violation. The send-all primitive has 
a bound of A*, of which r b  is local processing time. The 
receive primitive, receive( process-list, message), blocks until 
a message arrives from any of the specified processes. 

C. Centralized TAC Protocol 

This section adapts a centralized two-phase commit pro- 
tocol’ to TAC by incorporating intermediate deadlines; the 
result is the centralized timed two-phase commit protocol 
(CT2PC). In CT2PC, an extra “coordinator” process is added 
to collect votes from the participants, and make and distribute 
the decision. For simplicity, we assume that the calling process 
is the coordinator, i.e., the caller sends out the start messages, 
acts as coordinator during the TAC, and establishes the global 
state vector at the end of the TAC. 

In the TAC, let S be the absolute start time and D be 
the absolute deadline. For a participant Pi, let ti be the 
maximum execution time needed to receive a pending decision 
message, carry out the commit or abort action, and send a 
completion message, measured on its clock. The largest of 
all the ti’s is called rmax. For the coordinator, let Td be the 
maximum execution time needed to receive N waiting vote 
messages, process them, and make a decision; and rf be 
the maximum execution time needed to receive N pending 
completion messages and compute the result of a TAC. Recall 
that E is the maximum clock drift, A is the bound on execution 
of send, T~ is the local processing time for send, A* is the 
bound on execution of send-all, and r b  is the local processing 
time for send-all. 

Intermediate Deadlines: Each phase of the CT2PC consists 
of a message exchange between the coordinator and the 
participants as shown in Fig. 2. The following intermediate 
deadlines are added to the phases: 

D, = D - A - r f  - E :  deadline for sending a com- 
pletion message by a participant. In the absence of faults, 
each participant must complete the decided-upon action 
and send the completion message (at most A time units) 
so that the coordinator has time to process it (at most ~f 

time units) before D on the coordinator’s clock (skewed 
by at most E ) .  

DEC = D, - r,,, - A* - E :  deadline for sending a 
decision by the coordinator. For a participant with r,,, 
execution time to guarantee completion of the decided- 
upon action by D, in the absence of faults, it must 
start executing the action by D, - rmax on its clock. 
The coordinator must then interpret this time on its own 
clock using the worst case assumption on clock skew, 
and allowing maximum message delay for the broadcast 
decision to arrive at the participant. 
v = DEC - A - Td - E :  deadline for a participant to 
vote. The participant must vote in time for the vote 
message to arrive at the coordinator and be processed 
before DEC expires on the coordinator’s clock. 
[LST;, D,]: the interval of time during which Pi requests 
a guarantee of ti time units of resources needed to perform 
the decided-upon action. There are several choices for 
LST,, ranging from LSTi = DEC + A* + E to LSTi = 
D, - ti. Choosing an earlier LSTi allows Pi to vote 
YES more frequently since the guarantee is more likely 

‘For an overview of centralized two-phase commit protocols see [5] and 
141. 
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wait for votes determine 

start 

PARTICIPANT 
generate perform 

vote actions 
LST 9, 

Fig. 2. Messages in a CT2PC protocol. 

to be granted. Choosing the later LSTi can better tolerate 
a tardy decision message. 

To understand why the assumption of fair scheduling has 
been imposed, consider the following scenario. Suppose that 
the coordinator sends START messages to the participants, 
and that the messages are delivered within A* time units. 
If no assumption is made about scheduling, some participant 
could be ready to receive the message, but not be scheduled 
to execute until after the deadline, D. This will cause the 
coordinator to conclude that the outcome is EXCEPTION 
in the absence of any faults, violating TAC4c. However, if 
participants are guaranteed to execute for long enough to 
send a COMPLETION message to the coordinator before D, 
indicating that they have automatically aborted, this problem 
is avoided. Thus, rr must at least be long enough for the 
participant to null-abort, that is, allow enough time for the 
participant to receive a waiting START message, query the 
resource manager, and send a COMPLETION message to 
the coordinator. Furthermore, T~ must be given after the start 
message is delivered and before D,. This can be guaranteed if 
the participant is given T~ units within TP time units of being 
ready, in which r p  < D, - S - A*. 

CT2PC Protocol: Fig. 3 outlines the coordinator process. 
Before starting a TAC, the coordinator ensures that D is 
sufficiently long to allow each participant to receive a START 
message and return a COMPLETION message in time for 
the coordinator to determine the result. The coordinator also 
reserves Td and rf units of execution so that it can send a 
decision message by DEC and determine the result by D. If the 
reservations are denied, the TAC is not started. Otherwise, the 
coordinator commences the TAC by sending START messages. 
The coordinator then waits to receive vote messages from the 
participants. When it receives all votes, or any NO vote, it 
decides and sends the decision to the participants. However, 
if DEC expires before it decides, it decides to abort and sends 
the ABORT decision to the participants. After sending the 
decision, it receives COMPLETION messages and updates the 
corresponding global state vector entries. If D expires before 
all COMPLETION messages have been received, the result is 
EXCEPTION. 

Fig. 4 outlines a participant Pi. When a START message 
is received, the participant attempts to reserve ti units of 
execution within [LSTi, D,]. If the reservation succeeds, it 
determines its vote and tries to send the vote by V. When 
the participant receives a decision from the coordinator, it 
performs the decided-upon action and sends a COMPLETION 
message by D,. 

process Csllcr(S.D) /. S= s m  time, D= &adline *I 
begin 

D, := D - A - r, - - c  
DEC :=Dp - A* - r,,,,,= - c 
V := DEC - A - 6  - r d  
if ( D p  - S 2 A * +  r,) and (D,  - S - A .  > r p )  

and Reserve (Td + Q, [DEC - Td, DEC + 731) 
and Reserve (r,. [ D - r,, Dl) then 
Initialize global state vector entries to EXCEPTION. 
decision := ABORT 
by DEC do 

send-all ([Pi,. . . ,PN]. START, D,, DEC.  V )  
while (not received all N votes) and (no NO votes received) do 

end while 
if all YES votes then decision := COMMIT end if 
send-all ( [ P I , .  . . , PN], decision) 

when EDEADLINE do 

end when 

Kccive ([Pi,. . . , PN]. vote) 

except 

send-all ( [ P I , .  . . , PN]. decision) 

end by I* DEC *I 
by D do 

while not received all COMPLETION messages do 
receive ( [ P I , .  . . , PN]. COMPLETION) 
Update global state vector envy. 

end while 
end by 

end if 
end process 

Fig. 3. Coordinator (caller) process for CT2PC. 

process P, r ith participant ~ocess */ 
w n  

meive (Caller, STARTIABORT. D,. DEC. V) 
by D, do 

if &ved ABORT then 
send (CaUer. COMPLETION) P null a b n  *I 

eke P received START message */ 
LST, := DEC + A' + c 
if Rcscrve ( t , ,  [LST,,  D,]) then 

by V do 
compute vote W I N O )  
send (Caller, vow) 

end by P V *I 
receive (Caller. decision) 
case decision of 

C O W  user-specified commit statements 
ABORE user-specified abon statements 

end esse 
end if 
send (Caller, COMPLETION) 

end if 

when EDEADLINE do exception s t a t e n "  end when 
except 

end by I* D, *I 
end process 

Fig. 4. Participant process for CT2PC. 

Note that steps taken for vote determination are application 
dependent. For the coordinating robots example described in 
the Introduction, a robot must grasp the container before voting 
YES to ensure that it can lift it correctly. Thus, if the robot 
votes YES, but the decision is ABORT, the robot must release 
the container in its ABORT action. 

If the participant cannot receive a reservation, or receives 
an ABORT message without a prior START message, the 
participant null-aborts and sends a COMPLETION message. 
A null-abort indicates that the participant has taken no steps in 
determining its vote that need to be undone during an ABORT. 

D. Correctness of CT2PC 

To show that CT2PC is correct, we now prove a series 
of lemmas corresponding to the correctness criteria of Sec- 
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tion 11-A. We assume that the TAC was initiated, i.e., the coor- 
dinator has received its requested guarantees, the deadline was 
far enough away to initiate the protocol, and start messages 
were sent to the participants. 

Lemma 1 (TAC2): The decision is COMMIT only if all 
participants vote YES. 

Proof: Follows immediately from the fact that a par- 
ticipant decides to commit only if the coordinator sends a 
COMMIT message, which is done only if all the votes are 
YES. 0 

Lemma 2 (TACI): All participants that reach a decision 
reach the same one. 

Proof: First, recall that send-all is noninterruptible, so 
the coordinator sends out the same decision message to every 
participant. The only case in which a participant makes a 
decision without explicitly receiving it from the coordinator 
is if the participant aborts. In this case, the coordinator cannot 
decide to commit since the aborting participant will not send 
a YES vote. It follows from Lemma 1 that the decision in this 
case cannot be COMMIT. 0 

In the following two lemmas, we assume that there are 
no faults. They are used to show that CT2PC satisfies the 
minimum goodness requirements, TAC4. 

Lemma 3: If there are no faults, any message that process 
Pj sends to process Pi at time t on Pj’s clock is guaranteed 
to arrive by t + A + E on Pi’s clock. Furthermore, if process 
Pj broadcasts a message at time t ,  then it will arrive by t + 
A* + E on any recipient Pi’s clock. 

Proof: Follows from the definitions of A, A*, and E .  0 
Lemma 4: If there are no faults and the participant Pi is not 

guaranteed its execution times, then it meets TAC4. 
Proof: The fair scheduling assumption and definitions of 

rr and rp ensure that Pi will send a COMPLETION message 
by D, (TAC4a,c). Using Lemma 3 and the fact that D - D, 
includes rf  time to receive and process all COMPLETION 
messages, TAC4d’ holds. TAC4b is trivially satisfied because 
Pi does not vote YES. 0 

We now complete the proof of TAC4 by restricting our 
attention to participants who have received a guarantee of 
their execution times. 

Lemma 5: If there are no faults, then the decision message 
arrives at each participant Pi by LST;, measured on Pi’s clock. 

Proof: It is enough to show that in the absence of faults 
the decision message is broadcast by DEC, because Lemma 3 
ensures that it arrives at Pi by DEC + A* + E = LSTi on 
Pi’s clock. Suppose that the decision message has not been 
broadcast before DEC. Since the coordinator has reserved 
T d  + Tb execution time during [DEC - Td,DEC + r b ] ,  the 
coordinator is guaranteed to start executing the exception 
handler at DEC and have enough local processing time for 
a send-all ( r b ) ;  hence, the decision message is sent at DEC 
according to the coordinator clock in the worst case. 0 

Lemma 6 (TAC4a): If there are no faults, then all partici- 
pants reach a decision. 

Proof: By Lemma 5,  the decision message arrives at Pi 
by LSTi. Since P; has received a guarantee of ti during 
[LSTi, D p ] ,  and ti includes execution time to receive the 
decision, Pi is guaranteed to reach a decision. 

Lemma 7 (TAC4b): If there are no faults and all participants 
vote YES, then the decision is to commit. 

Proof: Since there are no faults and each participant 
votes YES, each participant must have sent its vote message by 
V measured on its clock. Due to Lemma 3, every vote message 
must arrive at the coordinator by V + A + E = DEC - T d ,  

measured on the coordinator’s clock. Since the coordinator has 
reserved ‘rd units of execution during [DEC - r d ,  DEC], it is 
guaranteed to be able to receive all vote messages and decide 
to commit by DEC. By Lemma 6, all participants must also 
decide to commit. 0 

Lemma 8 (TAC4c): If there are no faults, then all participants 
complete their decided-upon action by D.  

Proof: By Lemma 5 ,  the decision message arrives at Pi 
by LST;. Since Pi has reserved t; execution time during 
[LSTi, D,], then by the definition of ti Pi completes the 
decided-upon action and sends a COMPLETION message 
by D,. Note that we have proved something stronger than 
required, namely that the COMPLETION message is also sent 

Lemma 9 (TAC4d‘): If there are no faults, then at D ,  each 
participant’s local state and global state vector entry reflect the 
participant’s completed action. 

Proof: As noted in the proofs of Lemmas 4 and 8, 
each participant sends a COMPLETION message by D,. By 
Lemma 3, the COMPLETION messages must arrive at the 
caller by D, + A + E = D - r f .  Since the coordinator has 
reserved rf execution time in [D - r f ,  D ] ,  it must receive all 
COMPLETION messages and update the global state vector 

Lemma 10 (lAC3’): At D ,  each participant either has its 
local state and global state vector entry reflect its completed 
action or its global state vector entry is EXCEPTION. 

Proof: The global state vector is initially EXCEPTION 
for each participant, and is changed only when a COMPLE- 
TION message is received from a participant. A COMPLE- 
TION message is only sent if the participant has completed the 
decided-upon action and (implicitly) changed its local state to 

0 
Using the above lemmas, we conclude that CT2PC is 

Theorem 1: CT2PC shown in Figs. 3 and 4 is correct with 

by D,. 0 

by D. 0 

reflect completion of the decided-upon action. 

correct: 

respect to the TAC Correctness Criteria. 

E.  A Decentralized TAC Protocol 

This section adapts a decentralized two-phase commit pro- 
tocol that requires each participant to receive a vote from 
every other participant, make its own decision, and perform 
the appropriate action in time to let the caller know its local 
state by D. 

For a participant P;, let 7 d  be the maximum execution time 
needed to receive N vote messages, process them, and make a 
decision; let ti be the maximum execution time needed carry 
out its commit or abort action and send its local state message; 
and let T,,, be the largest of all the t i ’ s .  As in CT2PC, let 
rf be the maximum execution time needed for the caller to 
receive N completion messages and compute the result of the 
TAC. Recall that E is the maximum clock drift, A is the bound 

I 
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D determine 
result 

wait for voles 

PARTICIPANT 
perform 

other LST 
votes 

vote 

Fig. 5. Messages in a DT2PC protocol. 

on execution of send, rs is the local processing time for send, 
A* is the bound on execution of send-all, and q, is the local 
processing time for send-all. 

Intermediate Deadlines: Participants execute as shown in 
Fig. 5. The intermediate deadlines are 

D, = D - A - rf - E: deadline for sending a com- 
pletion message by a participant. 
V = Dp - A* - rmax - Td - E: deadline for a partici- 
pant to vote. Let P be a participant with r,, expected 
execution time. To guarantee that P can meet D,, each 
participant must broadcast its vote by V to ensure that its 
vote arrives at P by Dp - rmax - Td on P's clock. 
[LSTi, D,]: the interval of time during which Pi requests 
a guarantee of t; time units of resources needed to 
perform the decided-upon action. LSTi can range from 
LST; = Dp - r,,, to LST; = D, - t ; .  The former 
is the latest time that Pi receives all votes if no fault 
occurs, whereas the latter is the latest time that P; must 
start executing its decided-upon action to complete by a 
pessimistic interpretation of Dp on its clock. The tradeoffs 
are similar to those discussed in the CT2PC protocol. 

We now reiterate what is required of the fair scheduling 
assumption: T~ must be long enough to null-abort, which 
in this case involves receiving a waiting START message, 
querying the resource manager, broadcasting a NO vote, and 
sending an ABORT message to the caller. Furthermore, all 
votes must arrive at each participant before LSTi, forcing 

process Caller(S, D )  
begin 

D, := D- A - 7, - 6 
V := Dp - A* - Tma= - 7d - C 

if (V - S - A' > r p  and R ~ r v e  (7,. ID - 7,. D1) ulen 
Initialize global state vcctor cnnies IO EXCEPTION. 
by D do 

send-all ( [Pi , .  . . , PNI. START. rma=, D,. V) 
while (not w i v e d  all N local-nstc masages) do 

rcccivc ([PI, ..., P,vI.ABORTKOMM'O 
update global slate vector may. 

end rhile 
end by P D Y 

end if 
end p- 

Fig. 6.  Caller process for DT2PC. 

Pmeess Pi 
begin 

receive (Caller, START. rmW. D,. V) 

ifnot(R-c(a,[V,v+al) 
LSTi := Dp - 7,- 

RCSCWC.(~~, [LSTi - +d,  LSTi]) m d  
RCSCIVC(~~, [LSTi, Dp]) )  thea 

md-all ( [Pi , .  . . , PNI. NO) 
send (Caller. ABORT) 

eiser -tee rcccivcd */ 
vote:= NO 
by V do 

canptte vow ("0) 
smd-alI([P1,...,PNl.Vac) 

when EDEADLINE do &-all ( [Pi , .  . . , P,vI.Mte) end aha, 
uaptrv*/ 

end by P V *I 
by D, do 

if vote= NO then temp:= ABORT else temp:= COMMlT 
whUe (not roccivcd 111 otha votes) and (temp = COMMIT) do 

w i v e  ( [ P I , .  . . ,P,v]. their-vote.) 
if their-vote = NO Uun temp := ABORT end if 

end while 
dcfisioo:= temp 
asc decision of 

COMMIT: ABom lL92r-speeificd uscr-spccificd .boa " m i t  aatements 8utcmcnts 

end case 
send (c&er, dcciim) r ~oed state message */ 

when EDEADLINE do excepion s"ocnts end when 
except 

end by P D, Y 
end if 

end process 

Fig. 7. Participant process Pi in DT2PC. 

- 

Pi votes YES, it waits to receive all votes from the other 
participants. It then decides, the appropriate action, 

r p  < V - S - A*. 
DT2PC Protocol: Fig. 6 outlines the caller in DT2PC. It first 

checks that is long to each participant to and communicates its local state to the calling process upon 
receive a completion. If Dp expires, then pi termhates by executing send No votes to Other participants, 
and send ABORT to the caller. It then attempts to guarantee 
that it can receive Tf execution time in order to receive 

exception 

the local-state messages (COMMIT/ABORT). If it receives a 
guarantee, start messages are sent using a send-all primitive. 
The caller then waits to receive local-state messages. 

Fig. 7 outlines a participant Pi in DT2PC. Upon receiving a 
start message from the caller, Pi attempts to receive guarantees 
from its resource manager that it can vote by V, process other 
votes by LSTi, and perform the commit or abort actions in the 
interval [LSTi,D,]. If Pi does not receive these guarantees, 
it null-aborts by voting NO and sending a local state message 
(ABORT) to the caller. Otherwise, Pi attempts to determine 
its vote. If V expires before Pi sends its vote, the temporal 
scope handler generates a NO vote. Whenever P; votes NO, it 
aborts and sends an ABORT message to the caller. Whenever 

F. Correctness of DT2PC 

We now show that DT2PC is correct by proving a series 
of lemmas corresponding to the correctness criteria of Sec- 
tion 11-A. We use Lemma 3 from Section 111-D and again 
assume that the TAC is initiated, i.e., that the caller received 
its requested guarantees, the deadline was far enough away to 
initiate the protocol, and that start messages were sent to the 
participants. 

Lemma I I  (ZAC2): The decision is COMMIT only if all 
participants vote YES. 

Proof: Obvious, since the only way a participant can 
decide to commit is to receive all votes with none of them 
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being NO. 0 
Lemma 12 (DtCl): All participants that reach a decision 

reach the same one. 
Proof: If some participant decides COMMIT, then any 

other participant that reaches a decision must decide COMMIT 
since all votes must be YES. If some participant decides 
ABORT, then some vote (possibly its own) must be NO; 
hence, by Lemma 11 no other participant can decide COM- 
MIT. 0 

Lemma 13: If there are no faults and participant Pa is not 
guaranteed its execution times, then it meets TAC4. 

Proof: Note that the fair scheduling assumption and 
definitions of r, and r p  ensure that P, will broadcast NO 
votes to all other participants and send an ABORT message to 
the caller by V (TAC4a, c). Using Lemma 3 and the facts that 
V < D, and that D - Dp includes ~f time for the caller 
to receive all ABORT/COMMIT messages, TAC4d’ holds. 
TAC4b is trivially satisfied because P, does not vote YES. 0 

We now complete the proof of TAC4 by restricting our 
attention to participants who have received a guarantee of 
their execution times. 

Lemma 14: If there are no faults, then each participant P, 
sends its vote by V as measured on its own clock. 

Proof: Follows since Pa is guaranteed q, time needed to 
0 

Lemma 15: If there are no faults, then each participant P, 
reaches a decision by LST,, measured on its own clock. 

Proof: Lemmas 14,3, and the proof of Lemma 13 ensure 
that all vote messages arrive at Pa by V + A* + E on its 
clock, which is LST, - 7 d .  Since Pa reserved 7 d  time in 
[LST, - T d ,  LST,], it receives the votes and decides by LST,. 

0 
Lemma 16 (TAC4a): If there are no faults, then all partici- 

0 
Lemma 1 7  (TAC4b): If there are no faults and all participants 

vote YES, then the decision is to commit. 
Proof: By Lemma 15, each participant receives all votes 

and has time to reach a decision by LST,. Since the votes are 
all YES, the decision must be to COMMIT. 0 

Lemma 18 (TAC4c): If there are no faults, then all partici- 
pants complete their decided-upon action by D. 

Proof: This follows from the fact that the decision is 
made by LST, (Lemma 15), and t ,  units of execution are 
guaranteed within [LST,. Dp] which is sufficient both to 
complete the decided-upon action and to send the completion 
message by D,. Note that for any participant, the completion 

0 
Lemma 19 (mC4d’): If there are no faults, then at D, each 

participant’s local state and global state vector entry reflect the 
participant’s completed action. 

Proof: The local state message is sent by D, (proof 
of Lemma 18) and arrives at the caller by D, + A + E 

(Lemma 3), which is D - ~f on the caller’s clock. rj allows 
the caller time to receive the message and update the global 
state vector. 0 

Lemma 20 (TAC3‘): At D ,  each participant either has its 
local state and global state vector reflect its completed action 

broadcast its vote in the exception handler at V .  

pants reach a decision. 
Proof: Follows directly from Lemmas 13 and 15. 

message is sent by D,. 

or its global state vector entry is EXCEPTION. 
Proof: The global state vector is initially EXCEPTION 

for each participant, and is changed only when a local state 
message is received from a participant. This message is only 
sent if the participant has completed the decided-upon action 
and (implicitly) changed its local state to reflect completion of 

Using the above lemmas, we conclude that DT2PC is 

Theorem 2: DT2PC shown in Figs. 6 and 7 is correct with 

the decided-upon action. 0 

correct. 

respect to the TAC Correctness Criteria. 

IV. COORDINATING ROBOTS EXAMPLE 

We now illustrate the usefulness of TAC using the coordinat- 
ing robots example described in the introduction. To facilitate 
the description, we first introduce some language constructs. 

A. Language Constructs 
The language constructs include a TAC block for the calling 

process, and timed actions for the participants. 
TAC Block: To invoke a TAC, the caller starts a set of con- 

current participant timed actions, and waits for the participants’ 
local states. The structure of the TAC block is 

tac-begin [VI ,  . . . , V,] /* Global state vector. */ 
VI := action PI ((args)) 

V, := action P, ((args)) 
end tac; 
The global state vector [VI , .  . . , V,] is initialized to EX- 

CEPTION for each entry; V, is updated when Pa completes 
and returns its local state. When each entry in the global state 
vector has been updated, the TAC completes. To establish a 
deadline for TAC, the TAC block is enclosed within a temporal 
scope (see Section 111-B and [9]). If the deadline is reached and 
TAC block has not completed (some V,  is still EXCEPTION), 
then the temporal scope exception handler starts recovery. 

Timed Actions: TAC participants are timed actions which 
execute as remote procedures called from a TAC block. The 
structure of a timed action is 

timed action (action-name) ( (parameters) ) 
for (time) { resource (resource-id) } 

begin 
(statementsl) /* decide vote: YES or NO */ 
vote (YES or NO) 
await 

when COMMIT do (statements*) end when 
when ABORT do (statements3) end when 

when E-DEADLINE do (statements4) end 
when 

except 

end action. 
The parameters allow data to be exchanged between the TAC 
block and the timed action; the explicit declaration of resources 
allows the underlying protocol to request reservations for the 
COMMIT/ABORT actions. When the timed action is invoked, 
it computes its vote; the decision is made based on the votes 
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of all timed actions in the TAC block. If the decision is 
COMMIT, (statementsz) are executed; if the decision is 
ABORT, (statementss) are executed. Note that the deadline 
(E-DEADLINE) is not explicitly specified, but is determined 
by the underlying protocol using the caller’s deadline. 

Another difference between timed atomic commitment and 
traditional atomic commitment should be discussed here. In 
traditional atomic commitment programmer-provided abort 
statements (such as (statementss)), are not used because only 
automatically recoverable actions are performed before the 
decision is known. However, in timed atomic commitment, 
state altering actions may be performed in the voting phase that 
can only be restored by the programmer. For instance, in the 
robot example of Section V, a robot bases its vote on whether 
or not it has grasped the container; if the decision is to abort, 
the programmer must provide explicit compensating actions 
[lo], [ll] in the abort clause to release the container. However, 
unrecoverable actions should be performed only during the 
commit phase so that they can be assured of completing 
(barring faults). 

B. Coordinating Robots Example 

The coordinating robots example described in the Introduc- 
tion requires that a defective chemical container be picked up 
by two robot arms and discarded within 10 s of detection. 
The example consists of a caller process, Belt-Controller (see 
Fig. 8), and two participants, Robot-1 and Robot-2, which 
control the arms needed to pick up a container from the 
conveyer belt. (See Fig. 9.) 

Belt-Controller waits 5 s after a sensor detects a defective 
container before initiating a TAC with a 10 s deadline. It 
then waits until it knows both arms have completed the 
decided-upon action, or until the 10 s deadline expires. If the 
result is COMMIT, the belt continues without interruption; 
if it is ABORT, the belt is stopped and reset. Otherwise, 
Belt-Controller does not know whether or not Robot-1 and 
Robot-2 have successfully completed by the deadline; it stops 
the entire system and alerts the operator so that the unlifted 
container can be removed. 

Upon invocation, Robot-1 determines its vote by trying to 
grasp the container; this may fail since the arm is shared among 
several processes and only one process may control the arm 
at a time. If it is successful, the vote is YES; otherwise, the 
vote is NO. Note that the underlying protocol may also force 
the vote to be NO if intermediate deadlines cannot be met or 
the required reservations are not guaranteed; in this example, 
the arm is needed for 4 s during the COMMIT/ABORT 
phase. After voting, Robot-1 awaits the decision; ABORT 
results in the container being released; otherwise, it is lifted. 
If the participant’s deadline expires before the completion 
of the decided-upon action, then the arm is stopped and 
Belt-Controller handles the exception. 

V. CONCLUSION 
In a large class of hard-real-time control applications, com- 

ponents of a control task must perform a type of atomic com- 
mitment under timing constraints. However, if the assumed 

process Belt-Conmller 

Wait for scllsor to detect a defective-cmtaincr. 
after 5 seconds within 10 scu)ILds do 

V, := action Robot-1 0 
V, := action R O W  0 

tacbeoin [VI, V,] 

end tac 

when EDEADLINE do 
except 

stop entirc system 
den operator to clcar container f” arms 

end when 
end after 
If VI = ABORT and V, = ABORT 

then stop belt and lcw 

Fig. 8. Caller process Belt-Controller. 

timed action R o b o ~ l 0  
for 4 su: resnurce arm1 

lower ann and grasp container 
besin 

if grasped comedy then vote (YES) else vote (NO) 
await 

when COMMIT do raise. ann end when 
when ABOm do 

end when 

when EDEADLINE do stop arm end when 

if container is grasped then release container 

except 

end action 

Fig. 9. Participant timed action Robot-I. 

operating environment includes the possibility of processor 
and communication faults, it is impossible to devise a protocol 
which guarantees that all participants either commit or abort 
by a deadline. We therefore modify the traditional definition 
of atomic commitment to one for timed atomic commitment 
by introducing an EXCEPTION state, which indicates that a 
participant may not have completed the decided-upon action 
by the deadline. As in traditional atomic commitment, we 
insist that the decisions made by participants are consistent, 
i.e., no participant decides to commit if another decides to 
abort; however, EXCEPTION is defined to be consistent with 
COMMIT or ABORT. 

To formalize this notion, we presented minimal require- 
ments for a correct implementation of timed atomic commit- 
ment. These correctness criteria capture the intuitive notion 
that an exceptional outcome should only occur in the presence 
of faults, and an aborted outcome should only occur in the 
presence of faults or if some process votes NO. That is, a 
correct TAC should succeed in committing whenever possible. 
In order to achieve a correct implementation, we also noted 
that it is necessary to have an operating environment that 
provides bounds on message delays and clock synchronization, 
and guarantees resources. 

Centralized and decentralized timed two-phase commit pro- 
tocols were modified to meet the correctness criteria by 
introducing intermediate deadlines on the voting and per- 
formance phases of participants, and on the decision phase 
for the caller. The deadlines were derived from D using 
several assumptions, e.g., maximum message delay, clock 
drift, and execution time bounds. If any of these assumptions 
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are violated, correctness is still assured but an exception 
outcome may occur; to reduce exceptions, these bounds should 
be pessimistic. 

There are tradeoffs between using the centralized or decen- 
tralized implementation. In CT2PC, there are 4N messages; of 
these, 2N messages (the decision and completion messages) 
are “critical.” By critical we mean that if the message is 
lost, the result will be EXCEPTION. Note that if a START 
or VOTE message is lost in CT2PC, the coordinator will 
timeout and decide ABORT. In DT2PC there are N 2  + N 
messages, all of which are critical. In either implementation, 
loss of any process, participant, or coordinator, may result in 
an EXCEPTION outcome. 

If the caller wishes to know that there is a possibility 
of committing, using worst case assumptions, there is a 
minimum overall elapsed deadline, D - S. For the centralized 
protocol, D - S must be greater than or equal to the sums 
of the time to send the start message (A*),  compute the vote 
( ( T ~  - T ~ )  + E ) ,  send the vote (A), decide (Td + E ) ,  send the 
decision (A*),  perform the decided-upon action (T,,, + E ) ,  

send the completion message (A), and update the global state 
vector ( ~ j ) :  

D - S 2 2A + 2A* + ( ~ r  + 7s) + Td + Tmax + ~j + 36. 

(1) 

For the decentralized protocol, D - S must be greater than 
or equal to the sums of the time to send the start message 
(A*), compute the vote ( ( T ~  - 76) + E ) ,  send the vote (A*), 
decide and perform the decided-upon action (Td + T,,, + E),  

send the completion message (A) ,  and update the global state 
vector ( ~ f ) :  

D - S 2 A + 2A* + (Tr - T b )  Td + Tmax + Tf + 2E. 

(2) 

A shorter deadline would not be incorrect nor necessarily 
cause exceptional outcomes. However, since the intermediate 
deadlines are derived from D,  a shorter D may cause an 
increased ABORT rate. For example, there may not be enough 
time for guarantees to be made, or (in CT2PC) the coordinator 
may timeout while waiting for votes. Thus, these protocols are 
most useful for real-time applications in which the deadline is 
long compared to message delays and clock skew. 

Note that a virtue of the TAC protocols is that the timed 
behavior of the caller is predictable; at the deadline, the caller 
either knows that all participants have performed the decided- 
upon action, or decides that some participant is exceptional 
and performs explicit recovery. It is our belief [l], [3], [8] 
that consistency and predictable performance are often more 
important than speed in real-time computing, thus the overhead 
of using the TAC protocols is justified. 

To support the use of timed atomic commitment, we also 
introduced a temporal scope, TAC block, and timed action 
constructs. A timed action defines a participant with explicit 
voting, decision, and performance phases. The caller uses a 
TAC block to initiate the atomic commitment, and expresses 
the deadline by enclosing it in a temporal scope. These con- 
structs were demonstrated in the coordinating robots example. 

Although it is possible to implement the example without 
these constructs, an equivalent implementation would require 
explicit synchronization, fault detection, and enforcement of 
timing constraints. In addition, these constructs support ex- 
tensible and modifiable programs: Programs are extensible 
since adding another robot arm merely entails adding another 
participant in the TAC. Programs are modifiable since chang- 
ing the deadline in the caller does not necessitate changing 
the participant code. Above all, TAC language constructs 
simplify program development and modification by hiding 
implementation details. 

The language constructs and underlying protocols are cur- 
rently being implemented using a real-time kernel [8] devel- 
oped at the University of Pennsylvania for distributed real-time 
control applications. 
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