
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

September 1990

A Performance Analysis of Timed Synchronous
Communication Primitives
Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 1990 IEEE. Reprinted from IEEE Transactions on Computers, Volume 39, Issue 9, September 1990.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/382
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Insup Lee and Susan B. Davidson, "A Performance Analysis of Timed Synchronous Communication Primitives", . September 1990.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/382
mailto:libraryrepository@pobox.upenn.edu

A Performance Analysis of Timed Synchronous Communication
Primitives

Abstract
Two algorithms for timed synchronous communication between a single sender and single receiver have
recently appeared in the literature. Each weakens the definition of "correct" timed synchronous
communication in a different way, and exhibits a different "undesirable" behavior. In this paper, their
performance is analyzed, and their sensitivity to various parameters is discussed. These parameters include
how long the processes are willing to wait for communication to be successful, how well synchronized the
processes are, the assumed upper bound on message delay, and the actual end-to-end message delay
distribution. We conclude by discussing the fault tolerance of the algorithms, and propose a mixed strategy
that avoids some of the performance problems.

Keywords
ada rendezvous, distributed systems, performance analysis, predictability, real-time systems, synchronous
communication

Comments
Copyright 1990 IEEE. Reprinted from IEEE Transactions on Computers, Volume 39, Issue 9, September 1990.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/382

http://repository.upenn.edu/cis_papers/382?utm_source=repository.upenn.edu%2Fcis_papers%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages

1117 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

A Performance Analysis of Timed Synchronous
Comunicat ion Primitives

INSUP LEE, MEMBER, IEEE, AND SUSAN B. DAVIDSON, MEMBER, IEEE

Abstmct- Two algorithms for timed synchronous communi-
cation between a single sender and single receiver have recently
appeared in the literature. Each weakens the definition of “cor-
rect” timed synchronous communication in a different way, and
exhibits a different “undesirable” behavior. In this paper, their
performance is analyzed, and their sensitivity to various pa-
rameters is discussed. These parameters include how long the
processes are willing to wait for communication to be success-
ful, how well synchronized the processes are, the assumed upper
bound on message delay, and the actual end-to-end message de-
lay distribution. We conclude by discussing the fault tolerance of
the algorithms, and propose a mixed strategy that avoids some
of the performance problems.

Index Terms- Ada rendezvous, distributed systems, perfor-
mance analysis, predictability, real-time systems, synchronous
communication.

I. INTRODUCTION

DISTRIBUTED real-time systems, arbitrary delays asso- I” ciated with synchronous communication cannot be tolerated
due to the time-dependent nature of computation. Languages
such as Ada’ [11 and Occam2 [2], which are designed for real-
time programming, therefore, support the notion of a deadline
with their synchronous communication constructs. Real-time
processes written in these languages can attach deadlines to
their communication requests specifying how long they are
willing to wait for successful communication. This gives rise
to a notion of timed synchronous communication, which can
be defined as follows. At time RS, the sender becomes ready
to communicate, and sends a message containing information
and its deadline, DS, which is the latest time the sender is
willing to wait for successful communication. At some other
point in time, unrelated to RS, the receiver becomes ready to
receive a message, RR. The receiver also has its own deadline,
DR. At DS and DR, the sender and receiver, respectively, will
continue processing and must know the success or failure of
communication. The problem is to design a nontrivial protocol
(i.e., one which allows the possibility of success) which guar-
antees that the sender and receiver will meet their deadlines
and agree on whether or not communication is successful.

Manuscript received December 1, 1987; revised April 26, 1988. This work
was supported in part by NSF DCR 8501482, NSF DMC 8512838, NSF
MCS 8219196-CER, ARO DAA6-29-84-k-0061, and a grant from AT&T’s
Telecommunications Program at the University of Pennsylvania.

The authors are with the Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104.

IEEE Log Number 9037190.
‘Ada is a trademark of the U.S. Department of Defense (Ada Joint Program

’Occam is a trademark of the INMOS Group of Companies.
Office).

The correct implementation of timed synchronous commu-
nication primitives is complicated by the fact that the end-to-
end delay of messages can be arbitrary or even infinite, i.e.,
messages can get lost. In fact, if the assumed failure envi-
ronment includes message loss, it can be shown that such a
protocol does not exist. This is the “Two Generals” problem,
in which two generals are trying to agree upon a common time
of attack but can only communicate via unreliable messengers.
Knowing that they will be defeated unless the attack is simul-
taneous, neither general will attack unless he is certain that
agreement has been reached. However, agreement between the
two generals is impossible as long as there is more than one
value which can be decided upon. To show this, suppose that
there exists a minimal sequence of messages between general
A and general B for reaching agreement. Let k f k to be the
last message in this sequence, and let it be sent from general
A to general B. Since general A cannot be sure that general
B received k f k , general A will attack regardless of the out-
come of the message delivery. Thus, k f k could be removed
from the sequence of messages, contradicting the claim that
the sequence is minimal. Such an argument could be extended
to show that if a minimal sequence of messages did exist, it
would be an empty sequence thus allowing agreement in the
case where only one value can be decided upon [3].

Since our intention is to develop algorithms for timed-
synchronous communication that work in reasonable operating
environments, an upper bound on message delivery cannot be
assumed. Two “relaxations” of the problem statement can
therefore be offered, and have recently appeared in the litera-
ture. In the first, the sender’s deadline is “absolute,” i.e., the
sender decides that the message is unsuccessful if it does not
hear to the contrary by its deadline [4]. Since an acknowledg-
ment message from the receiver as to the success or failure of
the communication could take longer than expected, there is
a possibility for inconsistent decisions. This means that the
sender believes that communication has failed, whereas the re-
ceiver knows that communication has been successful. In the
second relaxed problem statement, the deadline of the sender
is not absolute, i.e., the sender waits until it receives the
acknowledgment [5]. Although inconsistent decisions are not
possible, the sender can be delayed past its deadline. Thus, al-
though neither approach fully implements timed synchronous
communication, each approximates it to some extent; further-
more, each exhibits a different “undesirable” behavior.

The goal of this paper is to show under which operating
conditions protocols for these relaxed problem statements per-
form well, and to measure how “badly” each can perform.
This is done by probabilistic analysis, which gives insight into

0018-9340/90/0990-1117$01.00 0 1990 IEEE

1118 IEEE TRANSACIlONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

what values should be chosen for parameters in the protocols
to yield "acceptable" performance. However, the choice be-
tween the potential for inconsistent decisions and missed dead-
lines is controversial. Some feel that inconsistent decisions
should never be allowed in real-time applications since con-
flicting actions may be taken. Others feel that deadlines should
never be missed; in hard real-time applications, a missed dead-
line usually triggers an emergency shut-down of the system.
One missed deadline can also cause other deadlines to be
missed, creating a cascading effect. A potentially more severe
problem with these algorithms is that if messages can be lost,
then two communicating processes can reach an inconsistent
decision which can never be detected, or the sender may wait
forever. To remedy these problems, we extend the notion of
consistency to a three value semantics: successful, unsuccess-
ful or don't know. We then describe an algorithm in which
the sender and receiver always reach a decision by their dead-
lines, and the sender either definitely knows the decision, or
knows that it is not sure as to the decision. The algorithm is
attractive since if the sender's deadline can be extended, the
answer is ensured to monotonically improve with time [6],

"he rest of this paper is organized as follows. In the next
section, we present protocols for timed-synchronous commu-
nication with inconsistent decisions and for timed-synchronous
communication with missed deadlines, and discuss perfor-
mance measures. Section I11 outlines the probability model. In
Section IV, we discuss the sensitivity of the protocols to such
parameters as the assumed upper bound on message delivery,
how long the processes are willing to wait for communica-
tion to be successful, how well synchronized the processes
are, and the end-to-end message delay distribution. Section V
discusses the fault tolerance of the protocols and extends the
probability model to include the effect of message loss. After
describing ways to cope with message loss, we present a better
algorithm that combines the first two algorithms. We conclude
by summarizing general results, discussing the usefulness of
the model, and proposing future research.

171.

II. OVERVIEW OF PROTOCOLS AND PERFORMANCE MEASURES

In order to simplify the algorithms and analysis, we make
the following assumptions.

Assumption I : Clocks are perfect. That is, when the
sender's clock reads time X, the receiver's clock also reads
time X.

Relaxing this assumption is not difficult, and is discussed
in [4]. We also restrict ourselves initially to a failure model
which includes only arbitrary message delays.

Assumption 2: Processes are perfect.
Assumption 3: Messages are eventually delivered, and are

delivered correctly.
Removing this assumption, even to allow transient message

loss, results in very undesirable behaviors: undetected incon-
sistent decisions in the first algorithm, and the sender waiting
forever in the second. A more complete discussion of this
problem, along with an extended analysis and a compromise
solution, will be presented in Section V.

/* When Sender P becomes ready to communicate, */
/* P executes U) follows: */

= d (m v e P S)
within DS do

when (receive acknowlegement from Q) do

end when
return(success)

acception

end within
return(failed)

/* If a message arrives whiIe Receiver Q is not ready to communicate, */
/* Q exuutca aa follow: */

within LT do
when (Q b m e s ready) do

s a d ("Yes");
return(massage,mccass)

end when
end withiq

/* When Receiver Q becomas ready to communicate, */
/* Q executes w follows: */

within DR do
when (receive message from P) do

if (LT is passed)
then retnra(fai1ed)
else ssnd("Yes");

return(meaaage,auccess)
end when

exception

end within
return(failed)

Fig. 1. Outline of Algorithm 1.

When presenting the algorithms we need to express timing
constraints within a program, and will therefore use the notion
of temporal scopes [8]. The syntax of a temporal scope is
within D do
when (condition) do

end when

(exception handling statements)

(statement list)

exception

end within.
The semantics of temporal scope is that a process can, af-
ter entering a scope, wait for (condition) until its deadline D
is reached. If the current time reaches deadline D while the
process is waiting for message arrival and process becom-
ing ready to communicate, the deadline exception is raised
and handled within the exception handler part of the temporal
scope.

A . Algorithms for the Relaxed Problem Statement
Fig. 1 outlines Algorithm 1 for timed-synchronous com-

munication with inconsistent decisions. When the sender be-
comes ready to communicate, it sends the message together
with its deadline DS to the receiver. If the sender does not
receive an acknowledgment by its deadline, it decides that the
communication has failed.

When the receiver becomes ready to communicate, it waits
for a message until its deadline, at which point it decides the
communication has failed. When a message arrives, the re-
ceiver calculates the "latest time to respond" to the sender,
LT=DS-d, where d is chosen so that the sender will, with
some high probability, receive the acknowledgment by its
deadline. Thus, d could be the mean end-to-end message de-
lay, or some larger value. If the message arrives before the

LEE AND DAVIDSON: TIMED SYNCHRONOUS COMMUNICATION PRIMITIVES 1119

/* When Sender P becomes ready to communicate, ‘
/* P executes as follows: */

send(mtssage,DS)
when receive acknowlegement from Q do

if ‘Yes”
then return(meseage,success)
else return(failed)

end when

/* If a message arrives while Receiver Q is not ready to communicate, */
/* Q executes as follows: */

within LT do
when (Q becomes ready) do

send(‘Yes”);
return(message,success)

end when

send(”No”);
exception

end within

/* When Receiver Q becomes ready to communicate, */
/* Q executes as follows: */

within DR do
when (receive mesaw from P) do

send(“Yes”);
return(message,success)

end when
exception

end within
return(fai1ed)

Fig. 2. Outline of Algorithm 2.

receiver is ready to communicate and LT does not expire be-
fore the receiver becomes ready, or if the receiver receives a
message after it becomes ready and the current time is ear-
lier than LT, then it accepts and acknowledges the message.
Otherwise, it decides that communication has failed.

As mentioned in the beginning of this section, no matter
what value of d is chosen there is a chance that inconsistent
decisions will be made. If a “Yes” response arrives after
DS, the sender must take some appropriate recovery actions.
Making d very large reduces the probability of this occurring;
however, it also reduces the probability that the receiver will
ever say “Yes.”

Fig. 2 outlines Algorithm 2 for timed-synchronous commu-
nication with missed deadlines. The sender sends a message
and then waits for an acknowledgment. Unlike Algorithm 1,
the sender receives an explicit “Yes/No” answer which may
arrive after its deadline.

If a message arrives at the receiver before it is ready to
communicate, it waits until LT and then answers “No.” How-
ever, once it has become ready to communicate, the receiver
answers “Yes” even if LT has already expired since the
sender is guaranteed to wait for the response regardless of the
outcome.

To contrast the two algorithms, Table I shows how and when
the receiver decides. Letting M represent the time at which
the initial message arrives at the receiver, the events of inter-
est are M, LT, RR, and DR. There are 12 possible orderings
of these events since RR always happens before DR. When-
ever two events happen simultaneously, we interpret them as if
one event happened before another so as to favor the success
of communication. For example, if M and LT occur simulta-
neously, we assume M < LT. Our treatment of simultaneous
events also makes the 12 orderings mutually exclusive.

/* When Sender P becomes ready to communicate, */
/* P executes as follows: *I

send(message,DS)
within DS do

when (receive acknowlegement from Q) do
if ‘Yea”

then return(message,succes)
else return(failed)

end when

retum(don’t know)
exception

end within

1’ If a message arrives while Receiver Q is not ready to Communi-te, */
/* Q executes as follows: */

within LT do
when (Q becomes ready) do

send(”Yes”);
return(message,success)

end when

send(’No”);
exception

end within

/* When Receiver Q becomes ready to communicate, */
I* Q executes ae follows: ’/

within DR do
when (receive message from P) do

send(“Yes”);
return(message,success)

end when

return(fai1ed)
exception

end within

Fig. 3. Outline of Algorithm 3.

In the remainder of this paper, ordering i is referred to as
Ord(i), fo r i = 1,.. . ,12 .
B. Performance Measures

Although each algorithm can easily be shown to be a correct
solution to their respective relaxed problem statement, they
only approximate the correct statement since the sender may
make an inconsistent decision or m i s s its deadline. Our goal is
to measure how well these algorithms approximate the correct
statement. We therefore wish to measure the occurrence of the
following events:

Success: The receiver says “Yes” and the sender knows

Inconsistent: Inconsistent decisions are made.
Lute-Yes: The receiver says “Yes” and the sender is

Late-No: The receiver says “No” and the sender is de-

by its deadline.

delayed past its deadline.

layed past its deadline.

Recall that late decisions cannot be made in Algorithm 1,
although the decision made at the sender’s deadline may be
inconsistent. Furthermore, inconsistent decisions cannot be
made in Algorithm 2, although the sender may be delayed past
its deadline waiting for either a “Yes” or “No” response. In
the next section, we therefore develop a model to measure
the probability of success for both algorithms (Success1 and
Success2), the probability of inconsistent decisions for Algo-
rithm l (Inconsistent), and the probability of a late response
for Algorithm 2 (Lute-Yes, in which the response is “Yes,”
and Lute-No, in which the response is “No”).

1120

Ordering Event Sequence Algorithm 1
1 R R S M 5 LT I D R YeS

3 M < RR LT 5 D R W-RR-Yes
4 M < RR < D R c LT W-RR-Yes
5 R R I L T < M I D R No

7 L T < M < R R c D R No
8 L T < R R < D R < M No
9 R R I L T s D R c M No
10 R R < D R < L T c M No

2 R R I M S D R c L T Yes

6 L T < R R < M < D R No

11 RR < D R M 5 LT W-LT-NO
12 M 5 LT < RR D R W-LT-NO

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

Algorithm 2
Yes
YeS

W-RR-Yes
W-RR-Yes

Yes
YeS
No
No
No
No

W-LT-NO
W-LT-NO

To evaluate the perfomance

X, = delay of initial message.

enumerated in the line. Since replies are sent at time M in Oid (1) and Ord (2),
and at time RR in Ord(3) and Ord(4), Xt is computed by
M +Xu in the former and by RR +Xu in the latter. Thus,

previous section, we use the following random variables:

X, = delay of acknowledgment message.
RS = time at which sender is ready.
RR = time at which receiver is ready.

Success1 = Pr [X 5 DS lord (1) , . . . , or Ord (4)]

. Pr [Ord (l), . . . ,or Ord (4)]

We also use the following parameters, which will be altered
to see the effect on the performance of the algorithms:

= Pr[M+X, 5 DS(Ord(l)orOrd(2)]

. Pr [Ord (1) or Ord (2)]
A, = length of time sender will wait.
A, = length of time receiver will wait.
d = time receiver allows for acknowledgment to be de-

T = relative synchronization of the sender and receiver.
By “relative synchronization” we mean that the sender and
receiver will each become ready to communicate exactly once
during the time period [1, TI. The smaller T is, the better the
synchronization; if the sender and receiver are very poorly
synchronized, T i s arbitrarily large. Note also that we do not
consider multiple receiver ready intervals during [1, TI. That
is, if the message arrives after the receiver’s ready interval,
both algorithms wait until LT and then decide that commu-
nication fails. If multiple receiver intervals were allowed, the
receiver could become ready to communicate again before LT
and decide that communication is successful. This assumption
was made not only to simplify the analysis, but because we
found that multiple ready intervals were a second-order effect.

To simplify the presentation, we make the following defini-
tions:

0 DS = RS + A,, deadline of the sender.
0 DR = RR + A r , deadline of the receiver.

LT=DS - d, latest time receiver should respond to

livered.

sender.

+ Pr[RR +Xu I DSlOrd(3)orOrd(4)1

. Pr [Ord (3) or Ord (4)].

Since the sender assumes that communication has failed if
it does not receive an acknowledgment by its deadline, incon-
sistent decisions are possible only when the receiver decides
“Yes” but the acknowledgment does not arrive in time. Thus,

Inconsistent = Pr [Xj > DSlOrd (l) , . . . , or Ord (4)]

. Pr [Ord (l), . . . , or Ord (4)]

= Pr [M + Xu > DS lord (1) or Ord (2)]

. Pr [Ord (1) or Ord (2)]

+ Pr [RR + Xu > DS (Ord (3) or Ord (4)]

. Pr [Ord (3) or Ord (4)].

Success2 is computed similarly to Success1 .

= Pr [Xt 5 DS(0rd (l) , . . . , or Ord (6)]
Success2

. Pr [Ord (l), . . . , or Ord (6)]

=Pr [M+X, 5 DS(Ord(l), Ord(2), Ord(5), or Ord(6)]

M=RS + X , , time at which initial message arrives at . Pr [Ord (l), Ord (2), Ord (3, or Ord (6)]
receiver.

A. Measurements
0 X j = time at which sender knows of outcome. + Pr [RR + X, 5 DS(0rd (3) or Ord (4)]

. Pr [Ord (3) or Ord (4)].

In order for Algorithm 1 to succeed, the receiver must say
“Yes” (which happens for Ord (l), . . . , Ord (4), see Table I),

Late- Yes is defined on the same orderings as Success2 except
that replies arrive after the deadline of the sender.

LEE AND DAVIDSON: TIMED SYNCHRONOUS COMMUNICATION PRIMITIVES 1121

TABLE I1
BOUNDS FOR DISCRETE EVENTS

Note:

1. Ai = A, - d

2. A , = R S + A . - d

3. A s = R S + A , - A , - d

4. A , = R S + X m

5. A , = R S + X , - A ,

6. & = R S + A , - R R

7. A7 = A, - Xm

Lute- Yes +Pr[LT + X , > DSIOrd(l1) or Ord(12)l

.Pr[Ord(l l) or Ord(12)l. =Pr[Xt >DSlOrd(l) , . . . , orOrd(6)l

Pr [Ord (l), . . . , or Ord (6)] B . Individual Probabilities
= Pr I M + > DS lord (l), Ord (2), Ord (5)3 Or Ord Table I1 shows the bounds needed to compute the probability

that X r 5 DS and X r > DS for each ordering; the derivation
of these bounds can be found in the Appendix. Recall that
the values of d, A,, and A, are variables whose values are
known.

. Pr [Ord (l), Ord (2), Ord (3, or Ord (6)]

+ Pr [RR + X, > DSlOrd (3) or Ord (4)]

+ Pr [Ord (3) or Ord (4)].
For example, using this table we calculate

Since the sender waits for an explicit acknowledgment, the
sender may also have to wait beyond its deadline for “No” Pr [Xr I DSI Ord (l)] Pr [Ord (1)l

T A s - d min(i+j,T) A , - j
message. X r equals M + X , in Ord (7), Ord (8), Ord (9), and
Ord (lo), and LT + X, in Ord (1 1) and Ord (12). Thus,

Lute-No = Pr [Xt > DS(0rd (7), . . . , or Ord (12)]
Pr [RS = i] =cc c

i=l j=1 k=max(l , i+A, -A, -d) / = I

. Pr [Ord (7), . . . , or Ord (12)] .Pr[X, = j]Pr [RR=k]Pr[X, =/I.

= pr [M + X , > DS lord (71, . . . , or Ord Since the orderings are mutually exclusive, Successl, In-
consistency, Success*, Lute- Yes, and Lute-No can be com-
puted by summing appropriate probabilities from events in . Pr [Ord (7), . . . , or Ord (lo)]

1122 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

Ord (0. For example, A . Effect of d

Success1 = Pr [M + Xu 5 DS lord (l)] Pr [Ord (l)] As d increases, LT becomes earlier. When M is fixed to
arrive during the receiver’s ready interval, Success1 deterio-

+ Pr [M + Xu 5 DSlOrd (2)] Pr [Ord (2)]

+ Pr [RR + X, 5 DS lord (3)] Pr [Ord (3)]

+ Pr [RR + Xu I DSlOrd (4)] Pr [Ord (4)]

rates as d increases since it says “No” if the message arrives
after LT, while Sucressz remains unaffected. This effect is
represented in the following diagram, which shows how the
orderings change as LT becomes earlier relative to fixed RR,

T A s - d min(i+j,T) A , - j M , and DR: =cc c c RR M DR
i=l j=1 k=max(l, i+A,-A,-d) I = 1 1 I I I I

Pr[RS = i] P r [X , =j]Pr[RR =k]Pr[X, =I]
T A,-d min(i+A,-A, -d- l , i+ j ,T) A , - j +c c c c

i=l j=1 k=max(l, i+j-A,) I = 1

Pr [RS = i] Pr [X, = j] Pr [RR = k] Pr [Xu = 11

T A,-d-1 min(i+A,-d,T) i+As-k +c c c c
i= l j=1 k=max(i+j+l, i+A,-A,-d) I = 1

Ord(6) Ord(5) Ord(1) ord(2) LT.
- 8 I I

When M is fixed to arrive before the receiver’s ready in-
terval, both Success, and Success2 deteriorate by the same
amount since they both say “No” if LT occurs before the
receiver is ready:

M RR DR
I I I I I

Pr [RS = i] Pr [X m = j] Pr [RR = k] Pr [Xu = I]

+c c
ord(7) Ord(12) Ord(3) 0 ~ 4) LT.
- 1 I I

T A , 4 - 1 min (i+A,-A, -d-I ,T) i+A,-k

However, when M is fixed to arrive after the receiver’s
ready interval, there is no effect on either Success1 or Success2

c
I=1

c
k=i+ j + l i=l j=O

Pr[RS =i]Pr[Xm =j]Pr[RR =k]Pr[X, =I]. since the receiver will always say “No:”

RR DR M IV . PERFORMANCE EVALUATION I I I I 1

As shown in the previous section, the five performance mea-
sures depend on the probabilities of the orderings of events
M, LT, RR, and DR. Furthermore, these probabilities depend
on the values of d , A,, A,, and T. Thus, it is possible to
predict how these parameters influence the performance of
the two algorithms. In this section, we discuss the effects of
individual parameters on the five measures.

To illustrate their effects, we present sample graphs. The
distributions used for the random variables in these examples
are as follows.

Assumption 4: Message delay (used for X, and Xu) is
geometrically distributed. That is, Pr [X, = k] = Pr [Xu =
k] = P(1 - Plk-’, with the mean

00

C k P (1 -P)k--l = 1/P.
i=l

The values of P used in the evaluation are 1/2, 1/4, and 1/8;
Fig. 4 shows these distributions. The geometric message delay
distribution was used because it is easy to compute, and has
a similar shape to that predicted by Wong [9].

We also assume the following distribution of ready times
for the sender and receiver:

Assumption 5: The time at which a process becomes ready
to communicate (i.e., RR for the receiver and RS for the
sender) is uniformly distributed over the interval [l, TI.

Note that this does not imply that DR and DS must occur
before T.

Ord(8) Ord(9) Ord(10)

Note that the only possible orderings when d > A, are
Ord (5,6, . . . , lo), since messages must take some positive
amount of time to be delivered. In these orderings, the receiver
always says “No” for Algorithm 1, whereas the receiver only
says “No” in Ord (7,. . . , lo) for Algorithm 2. Thus, the net
effect is that Successl deteriorates more rapidly than Success2
as d increases; when d = A,, Successl becomes zero while
Successz remains constant at some possibly nonzero value,
due to Ord (5 & 6). In practice, A, should be chosen to be
at least twice the average message delay if communication is
to succeed; it is therefore unlikely that d should be chosen to
exceed A,, since this is a very pessimistic estimate of how
long the return message should take. Inconsistent improves
(decreases) as d increases and becomes zero when d = A,;
the sender will always be correct if it assumes that communi-
cation has failed. Similarly, Lute- Yes improves (decreases) as
d increases and then remains constant for d > A,. Lute-No,
however, deteriorates (increases) as d increases and then re-
mains constant when d > A,.

Fig. 5 shows the effect of d for T = 16, P = 0.25, and
A, = A, = 24. Note that these parameter values imply that
the ready intervals of the sender and receiver must overlap
by at least 8 time units, which is about twice the average
message delay. Even in the worst case where RS = 1 and
RR = T, any reply will almost always reach the sender by

LEE AND DAVIDSON: TIMED SYNCHRONOUS COMMUNICATION PRIMITIVES 1123

PI 0.25

0.0
0 10 20 30 4 0

llma Units
Fig. 4. Message delay distributions used for X, and X,.

\ I

i 0.2

Q success2
+ success1
4 Inc.LateNa/Yes I

1 0 20 30 4 0 0

d
Fig. 5. Effect of d. (T = 16, P = 0.25, A, = A, = 24.)

DS. Thus, Inconsistent, Late-Yes, and Late-No are very RR DR LT
small. What is more interesting is the behavior of success
for the algorithms. When d = 0, Successl = Success2

both algorithms starts to drop off when d becomes larger
than the minimum overlap of ready intervals (i.e., d > 8).
As predicted, Success, drops sharply and hits zero when
d = A, = 24, whereas Successz drops less sharply and re-
mains constantly high due to the effect of Ord (5) and Ord (6).

B . Eflet of P

M occurs earlier. If LT is fixed to occur after DR, Successl
and Success2 both improve since they both say “Yes” if the ord(3) Ord(1) Ord(5) Ord(9)

‘ I I I I

Ord(4) Ord(2) Ord(11) Ord(10)
since Pr [Ord (5)] = Pr [Ord (6)] = 0. The performance of - 1 I I I M.

When LT is fixed to occur during the receiver’s ready in-
terval, the success of both algorithms again improves. Note
that Successl improves less than Success2 since it says “No”
if the message arrives after LT even if the message arrives
during the receiver’s ready interval.

As P increases, the average message delay decreases and RR LT DR
I I I I

I I I message arrives before DR: 1 M.

1124

0.0 0.2 0.4 0.6 0.8 1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9. SEPTEMBER 1990

I
.o

1 0.8

P
Fig. 6. Effect of P. (T = 8, d = 4, A, = A, = 8.)

Lastly, when LT is fixed to occur before RR, there is no creases, all five Probabilities increase. It is interesting to note
effect on Success1 , while Success2 improves transiently since in Fig. 8 that when d > A,, the curve initially incrdses, and
it says “Yes” if the message arrives during its ready interval then slowly decreases. This is not due to late message arrival
even if this is after LT (Ord (6)): since Late-No and Lute- Yes do not increase. Rather it is due

to the shift from Ord(6) (in which the receiver says “Yes”)
LT Rk DR

LT occur before RR).
1 I I I to Ord (7) (in which the receiver says “No” because M and

Ord(12) Ord(7) Ord(6) Ord(8)
I . I I I M. C . Of A, and A,

Since the average message delay is very large when P is
small, the original message will almost certainly arrive af-
ter the receiver’s ready interval and the “No” reply will ar-
rive at the sender long after DS. Therefore, Late-No starts
at 1 and diminishes to zero as P approaches 1. On the
other hand, Success1 and Success2 start small and approach
1 - Pr[Ord(12)J as P approaches 1, since Ord(12) is the
only case in which the algorithms say “No” as the message
delay becomes very small. Inconsistent and Late- Yes are also
small when P is small, but increase as Successl and Success2
increase. However, they eventually decrease as P approaches
1 since a “Yes” message is more likely to arrive within the
sender’s deadline if the average message delay is small, all
other factors being held constant.

Fig. 6 shows the effect of P for T = 8, d = 4, and
A, = A, = 8. P varies as iJ16 for i = 1 , 2 , . . . , 15. The
shapes of the slopes confirm the above prediction. Note that
this choice of parameters does not guarantee that the ready
intervals of the sender and receiver will overlap. In the worst
case, the sender’s deadline may occur exactly when the re-
ceiver becomes ready. In this case, no matter what the average
message delay, a response cannot be received by the sender
before its deadline. Therefore, Success2 does not converge to
1 as P approaches 1.

Figs. 7 (Algorithm 1) and 8 (Algorithm 2) contrast the
effects of P and d for T = 16, A, = A, = 24. AS d
increases, all five probabilities decrease, whereas as P in-

As A, increases, DR increases, and the success of both
algorithms improves. When RR < M < LT, the success of
both algorithms improves :

RR M LT
1 I I I 1

Ord(11) Ord(2) Ord(1).
DR I I I ,

When M is fixed to arrive before the receiver’s ready in-
terval, changing A, has no effect on either algorithm:

M Fm LT
I I I I I

Ord(4) Ord(3)
DR -

When M arrives after LT and RR, the success of Algorithm
1 is unaffected, but the success of Algorithm 2 improves as
DR becomes later than M

RR LT M

Ord(10) Ord(9) Ord(5) DR I I I

LT RR M
I I I I I

Ord(8) Ord(6)
DR

LEE AND DAVIDSON: TIMED SYNCHRONOUS COMMUNICATION PRIMITIVES 1125

0.1 0.2 0.3 0.4 0.5

P

(a) Success1

0.2

0.1 0.2 0.3 0.4 a

(b) Inconsistent
P

Fig. 7. Effect of d and P on Algorithm 1. (T = 16, As = A, = 24.)

I

5

However, if M and LT occur before RR, DR can only
be the last event (Ord(7 & 12)): both algorithms say “No”
and there is no effect on either of their success. Thus, as A,
increases, Late-No decreases and then remains constant at

pr [x, > DS(0rd (7) or Ord C 12)lPr [Ord (7) or Ord (1211.

Furthermore, Success1 , success^, Inconsistent, and

Success1 = Pr [Xr 5 DS lord (1 or 3)] Pr [Ord (1 or 3)]

Success2 = Pr [X , 5 DS(Ord(1, 3, 5 or 6)]
.Pr [Ord(l, 3, 5 or 6)]

Inconsistent = Pr [X , > DSlOrd (1 or 3)] Pr [Ord (1 or 3)]

Late-Yes = Pr[X, > DSlOrd(1, 3, 5 or 6)]

.Pr[Ord(l, 3, 5 or 6)]. Late-Yes increase and then remain constant at

1126 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

0.6 ! I I I I
0.1 0.2 0.3 0.4 0.5

P

(a) Success2

I \ \\ I 1

0.0 \
0.1 0.2 0.3 0.4 0.5

P

(b) Late-Yes and Late-No
Fig. 8. Effect of d and P on Algorithm 2. (T = 16, A, = A, = 24.)

Fig. 9 shows an example of this for T = 16, P = 0.25,
d = 4, and A, = 24. Note that Successl and Success2 both
stabilize by A, = 24, since in the worst case RS = T and
RR = 1, but the receiver will still receive most messages in
its ready interval and be able to respond “Yes.”

As A, increases, LT becomes later. The opposite effect has
already been discussed (see Section IV-A, the effect of chang-
ing d). Note that this time, Ord(2), Ord(4), and Ord(l1)
are unaffected. As A, increases, the sender is more likely
to receive an acknowledgment message within its deadline.

Thus, as A, increases, Success1 and Success2 approach
1 - Pr [Ord (1 l)], and Inconsistent, Lute- Yes, and Lute-No
approach zero.

Fig. 10 shows the effect of increasing A, for T = 16,
P = 0.25, A, = 24, and d = 4. This time, the success of
both algorithms stabilizes later (A, = 32) since there must be
enough time for the initial message to be sent to the receiver
as well as for the reply to be received. The behavior of Incon-
sistent is also very interesting as it initially increases and then
decreases, peaking at A, M 8; there is also a gap between the

LEE AND DAVIDSON: TIMED SYNCHRONOUS COMMUNICATION PRIMITIVES

a
c .- 3 -
n e n

d

0.4 1 + Lats-No
+ Inc.Late-Yos

0.2

0.0

1 .o

0.8

0.6

0.4

0 10 20 30 4 0 5 0 6 0

Delta-r
Fig. 9. Effect of A,. (T = 16, P = 0.25, d = 4, A, = 24.)

1127

I

I

Q success2
+ success1

Late-Yes I+ Inc 1
-0. Lale-no

I V.V , - - I - . -
0 10 2 0 30 4 0 5 0 6 0

Delta-s
Fig. 10. Effect of A,. (T = 16, P = 0.25, d = 4, A, = 24.)

curves for Success1 and Success2 at this point. The explana-
tion for both of these effects is that d has been chosen to be
the mean message delay; furthermore, since As is small, if
the message arrives before LT it is probably just before LT.
The decision to send “Yes” to the sender is therefore not very
safe, i.e., it will very probably arrive late.

D . Eflect of T
As mentioned earlier, T reflects how well the executions

of the sender and receiver are synchronized. As T increases,
communication is less likely to succeed since the ready in-
tervals are less likely to overlap; that is, as T increases,
Pr[Ord(z)] for i = 1,.-.,6, 8, 9 decrease to zero. Thus,

zero as T gets arbitrarily large. On the other hand, Late-No
increases as T increases and converges to

Pr [M + X, > DSIOrd (7) or Ord (lo)]

. Pr [Ord (7) or Ord (lo)]

+Pr[LT+X, >DSlOrd(ll) orOrd(12)l

.Pr[Ord(l l) or Ord(12)l.

Thus, when A,, A,, d, and the message distribution are fixed,
this value can be explicitly calculated as

Pr[Xm +X, > A s WdXm > As -dl
SuccessI, Sumss2, Inconsistent, and Lute- Yes approach +Pr[X, > d a n d X m S A s - d] .

1128 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

Q Success2
-+ Success1
4 Late-yes

o Lafe-No

0.4 -

0.2 -

0.0 I I I I I
0 2 0 4 0 G O 8 0

T

Fig. 11. Effect of T. (A, = A, = 8, P = 0.25, d = 4.)

Fig. 11 shows the effect of T for A, = A, = 8, P = 0.25,
and d = 4. As T becomes very large, the sender is blocked
beyond its deadline waiting for belated “No” message with
the probability of 0.4499, which is

Pr[Xm+X, > 8 a n d X , >4]+Pr[X, > 4 a n d X , 1 4 1

= 0.2336 + 0.2163 = 0.4499.

V. COPING WITH FAILURES
So far in evaluating the performance of the two algorithms,

we have not considered their fault tolerance. We now discuss
the effect of message loss, failure of the sender or receiver,
and communication link failures.

A . Message Loss
Let f be the probability that any given message is lost. To

distinguish this from the case of a message being delivered
after an arbitrarily long delay (CO), we assume a very large
constant ub after which messages are said to be lost. The
probability that a given message will take longer than ub to
be delivered approaches 0; any message that takes longer than
ub to be delivered is thrown away. Thus,

We therefore assume that 00 in the upper bounds for X , in
Table I1 is replaced by ub.

In extending the analysis of Algorithms 1 and 2 from the
previous section, we use primes (I) to distinguish the analy-
sis with transient message loss from that without. We also
assume that

Pr[& = i] = (I - f)Pr[X, = i]

to simplify the extensions. Thus,

Pr [Ord’ (i)] = (1 - f) Pr [Ord (01.

In Algorithm 1, communication is only successful if both
M and the response Ack are delivered without failure and in
time:

Success’, = (1 - f) 2 Success1 .
If M is lost then the sender will time out and correctly assume
that communication has failed. However, if the response Ack
is lost, the receiver may have decided “Yes,” and an incon-
sistent decision will be made.

Inconsistent’ = (1 - f) Inconsistent + f (1 - f) Success1 .
Thus, as f increases, Success’, will decrease. The effect on
Inconsistent’ is harder to predict since increasing f increases
the probability of failure of the final message, in which case
the sender may decide “unsuccessful” when the reply is actu-
ally “Yes;” whereas, increasing f also increases the probabil-
ity that the initial message will fail, in which case the sender
makes the correct decision. However, since Inconsistent is
normally dominated by Success,, and since f should be very
small, Inconsistent’ should also increase (but less rapidly than
Success:) as f increases.

In Algorithm 2, communication is again successful only if
both M and a positive response Ack are delivered in time:

Success: = (1 - f l 2 Success*.

Since loss of either M or Ack results in the sender wait-
ing forever, a case that is not covered in either Late-Yes
or Late-No, Late-Yes‘ and Late-No’ can be calculated as
follows:

Late- Yes‘ = (1 - f l 2 Late- Yes
Late-No’ = (1 - f)2 Late-No.

LEE AND DAVIDSON: TIMED SYNCHRONOUS COMMUNICATION PRIMITIVES 1129

The analysis of Algorithm 2 must also be expanded to include
the probability that the sender will wait forever for a response:

Wait-Forever = f + (1 - f)f.

Thus, as f increases Success2, Late-Yes, and Late-No all
decrease, and Wait-Forever increases at their combined rate.

The effect of message loss highlights the deficiencies of both
Algorithms 1 and 2: the potential for (undetected) inconsis-
tent decisions in Algorithm 1, and the potential of waiting for
the decision past the sender’s deadline (perhaps indefinitely)
in Algorithm 2. A solution to these problems is to blend Al-
gorithms l and 2 (see Fig. 3). When the receiver receives a
message, it must respond with “Yes” or “No,” and behaves
as in Algorithm 2. The sender, however, only waits until DS
for the receiver’s decision, as in Algorithm 1. If the deadline
expires without the decision being received, the sender con-
cludes “Don’t know.” An exception handler is then triggered,
and the programmer defines the appropriate action to be taken
[101. Note that in this approach a “three-value” semantics is
used for the success or failure of communication: successful,
unsuccessful, or don’t know. The meaning of consistent de-
cisions would be: if the receiver says “No” or never receives
the initial message, the sender must decide “unsuccessful” or
“don’t know;” and if the receiver says “Yes” the sender must
decide “successful” or “don’t know.”

In the analysis of this new algorithm, note that Success;
is the same as Succesd. The sender will never wait forever,
and inconsistencies are not possible; however, there is the
possibility that the sender is undecided by its deadline. This
happens if the original message is lost, the reply is lost, or if
the reply is not received in time:

Undecided = Wait-Forever + Late-No -k Late-Yes.

One action that could be taken when the potential for an
inconsistent decision is detected (i.e., when the sender con-
cludes “don’t know”) is to poll the receiver at timeout inter-
vals to determine what, if any, decision had been made. If the
receiver never received the message, it could respond “No,”
as if the message had not been received in time (Ord (7-10)).
Whatever the response of the receiver, it must improve mono-
tonically with time [6], [7]; that is, if the receiver ever an-
swers with “Yes” it must always answer “Yes,” and the same
must be true for a negative response. However, if the receiver
answers with “don’t know,” it can improve its answer to ei-
ther “Yes” or “No” at a future point in time. On the other
hand, message loss is most likely to occur under peak load
conditions, and it is precisely at this time that we do not want
to start flooding the network with messages from the sender
to the receiver asking for the results of communication. It is
therefore important not to built this type of error recovery
into the implementation of timed synchronous communication
primitives, but to have it used explicitly by the programmer.

B . Other Failures
Processor Failures: In both algorithms, the sender is “in-

doubt” after it sends the initial message, and before it has
made a decision (either explicitly or by reaching DS). If the

sender fails in this window, upon recovery it can either try
to resume where it left off when it crashed, or decide “don’t
know” (as discussed above). To resume where it left off, the
sender must know what the receiver has decided; that is, re-
covery must include placing the receiver’s decision on the
sender’s queue, if any has been made. Recovery must also
involve setting the clock to the current time so the sender can
determine whether or not the deadline has expired in Algo-
rithm l .

To cope with failure of the receiver, recovery must involve:
reinitializing its state from the time of failure, placing any
message received during the failure on its queue, and reini-
tializing its clock. If the message arrives during the failure, or
if the failure occurs after the message was received but before
it was answered, the receiver takes appropriate action based
on the current time at recovery. Note that the effect on the
sender is the same as if the initial message took longer to be
delivered: in Algorithm 1, the sender will make a decision at
DS (and be correct with the same probability as if the receiver
had not failed), whereas in Algorithm 2, the sender will wait
until the receiver recovers and responds.

Communication Link Failures: Apart from message loss,
the effect of communication link failures is that messages may
be consistently rerouted causing the average message delay
to increase. The probability of inconsistent decisions in Al-
gorithm l will therefore increase unless the value chosen for
d is also increased. The success rate of both algorithms will
also deteriorate since d increases.

VI. CONCLUSIONS
Protocols for timed-synchronous communication can be de-

fined by how the receiver responds in each of the orderings
in Table I. Two such protocols were described in this paper,
which have previously appeared in the literature: Algorithm
1 was originally proposed in [4]. Algorithm 2 was adapted
from [5] , which discussed various implementations of the ren-
dezvous construct in Ada. The protocols differ primarily in
how they “fail” to meet the absolute correctness statement:
Algorithm 1 allows inconsistent decisions, whereas Algorithm
2 allows the sender to be delayed past its deadline. Algorithm
1 also implicitly assumes failure of the message by expira-
tion of the deadline, while Algorithm 2 requires a negative
acknowledgment.

Although the performance analysis in this paper is spe-
cific to Algorithms 1 and 2, the model developed can
be used to analyze the performance of any protocol for
timed-synchronous communication by simple modifications of
the orderings included in each criterion measured: Success,
Late-Yes, Late-No, and Inconsistent. The model and cost
equations can also be used to derive good values for d , A,,
and A,, as long as the end-to-end message delay distribution
and relative synchronization of sender and receiver (i.e., the
distributions for RR and RS) are known.

Even without knowledge of specific operating conditions,
our analysis provides some general conclusions about the rel-
ative performance of Algorithms 1 and 2.

From Table I, it is easy to see that Successl is always less
than or equal to Success2. However, this does not mean that

1130 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

Algorithm 2 is better than Algorithm 1 since Inconsistent is
also always less than or equal to Late- Ym. That is, Algorithm
1 is generally not as successful as Algorithm 2, but also does
not fail to meet the original problem statement as often.

Successl and Success2 can be improved by decreasing T
or increasing d , P , A,, or A,. However, Inconsistent and
Late-Yes also increase as Success, and Success2 increase,
except when their improvements are due to an increase in
A,. In this case, Inconsistent and Late-Yes also decrease.
On the other hand, as Success2 increases, Late-No decreases.
Thus, increasing A, not only improves the success of both
algorithms, but decreases their errors.

A, should be larger than 2 x average message delay;
otherwise, communication will almost always fail or errors
will occur frequently.

d should be larger than the average message delay to
avoid a “Yes” message arriving after the sender’s deadline in

Whether it is better to make inconsistent decisions or to al-
low the sender to be delayed past its deadline is controversial.
On the one hand, inconsistent decisions may cause conflicting
actions to be taken. On the other hand, hard real-time systems
frequently shut down completely if deadlines cannot be met,
since missing one deadline may cause a cascade of missed
deadlines. Neither of these outcomes is desirable. It is there-
fore important to design the system correctly (by appropriately
defining T, A,, A,, and message delivery guarantees) so that
Inconsistent and Late-No +Late- Yes are virtually 0 .

Another option is to further weaken the definition of “cor-
rectness,” to allow a three-valued semantics: “Yes,” “No,”
and “Don’t know.” This definition is achieved by a combina-
tion of Algorithms 1 and 2 (Algorithm 3). Algorithm 3 guar-
antees that the sender will not be delayed past its deadline, and
also that it will never make an inconsistent decision; however,
the sender may only be able to conclude “Don’t know” rather
than “Yes” or “No” at time DS. The motivation for allowing
this is that the sender may be able to take some corrective
action when in doubt at time DS (for example, polling the re-
ceiver for its response), or may be able to take a “soft” form
of error recovery or perform defensive action if it knows for
sure that communication has failed at time DS (for example,
the sender may assume that the receiver has used filtering or
estimation as is working with an incomplete knowledge of the
environment). This also avoids certain pathological behaviors
when transient message failures occur: the sender can detect
that an inconsistent decision has been made (unlike Algorithm
l), and the sender will not wait forever (unlike Algorithm 2).
The analysis of this protocol, with an additional assumption
about the probability that a given message fails 0, was de-
scribed in Section V.

Although this discussion has ignored clock discrepancy, the
original algorithms take this into consideration [4], [5] . To ad-
just for clock drift, the receiving process needs to adjust its
estimate of LT using either a worst case assumption about
the difference between clocks (clock drift), or a worst case
assumption about the rate at which the clocks tick and how
long the original message from the sender took to be deliv-
ered (clock rate). The effect on the algorithms is the same

Algorithm 1.

as increasing d: the worse the clock drift, the earlier LT be-
comes in absolute time, and the success of both algorithms
deteriorates.

Other directions for research include using a more realis-
tic message distribution based on observations from “real”
systems, and evaluating the performance of N-way timed-
synchronous communication primitives (a form of two-phase
commit with timing constraints, see [4]).

APPENDIX

A. ORDERINGS AND DERIVATION OF PROBLEMS

To calculate the probability of each ordering shown in Table
I, we assume that all random variables used are discrete. Each
probability therefore has the general form
ubi ubj U b k ubi E E E P r [R S = i] P r [X , = j]

i d b , j d b , k d b k Idbi
. Pr [RR = k] Pr [X , = I] .

Loose bounds for some of these upper and lower bounds are
derived from our assumptions: 1 I RS, RR I T, and
1 5 X,, X, < 00. However, the upper and lower bounds
must be tightened to reflect relative positions of events in each
ordering (RR, M , LT, and DR). Since RR < DR always, we
must only consider the relative positions of M to LT, RR to
LT, DR to LT, RR to M , and DR to M. This is translated to
bounds on the random variables in each ordering as follows:

1) M (= RS + X ,) to LT (= RS + A, - d): Let A , =
A, - d .

M 5 LT in Ord(l,11,12): X, 5 A1 (upper bound)
M < LT in Ord(2-4): X , 5 A , -1 (upper bound)
M > LT in Ord(5-10): X , 2 A l + l (lower bound).

2) RR to LT (= RS + A, - d): Let A2 = RS + A, - d .

RR I LT in Ord (1,3,5,9): RR I A2 (upper bound)
RR < LT in Ord(2,4,10,11): RR 5 A2 - 1 (upper

RR > LT in Ord(6,7,8,12): RR 2 A2 + 1 (lower
bound)

bound).

3) DR (= RR + A,) to LT (= RS + A, - d): Let A3
R S + A , - A r - d .

0 DR < LT in Ord(2,4,10,11): RR I A3 - 1 (upper

DR > LT in Ord(5-8,12): RR 2 A3 + 1 (lower bound)
DR 2 LT in Ord(1,3,9): RR 2 A3 (lower bound).

bound)

4) RRtoM(=RS+X,) :LetA4=RS+X, .

RR 5 M in Ord (1,2,6): RR 5 A4 (upper bound)
RR < M in Ord(5,8-11): RR I A4 - 1 (upper bound)
RR > M in Ord(3,4,7,12): RR 2 A4 + 1 (lower
bound).

5) DR(=RR+Ar) toM(=RS+X,) : L e t A , = R S +
X , - A,.

DR < M in Ord(8-11): RR 5 A5 - 1 (upper bound)
DR >MinOrd(3,4,7,12): RR 2 A5+l (lowerbound)
DR 2 M i n Ord(1,2,5,6): RR 2 A5 (lower bound).

LEE AND DAVIDSON: TIMED SYNCHRONOUS COMMUNICATION PRIMITIVES 1131

For example, in Ord (7), [8] I. Lee and V. Gehlot, “Language constructs for distributed real-time
programming,” in P m . IEEE Red-Time Syst. Symp., Dec. 1985.

[9] J. W. Wong, “Distribution of end-to-end delay in message-switched
networks,” Comput. Networks, vol. 2, pp. 44-49, 1978.

[IO] I. Lee, S. B. Davidson, and V. Wolfe, “Motivating time as a first class
entity,” Tech. Rep. MS-CIS-87-54, Dep. Comput. Inform. Sci., Univ.
of Pennsylvania, 1987.

RR 2 =(I , A2 + 1, A3 + 1, A4 + 1, A5 + 1).

However, some of these terms dominate:

A4 > 1, A3 < A2, As < A4 always.
When Xm < A I , then A5 < A2, A4 < A2, A5 < A3,
but A3 and A4 are unrelated.
When Xm > A , , then A2 < A4 and A3 < A,, but A2
and A5 are unrelated, and A3 and A4 are unrelated.

Thus, since Xm > A1 in Ord(7), this expression can be

Insup Lee (S’80-M’83) received the B.S. degree
in mathematics from the University of North Car-
OKM, Chapel Hill, in 1977, and the M.S. and Ph.D.
degrees in computer science from the University of
Wisconsin, Madison, in 1978 and 1983.

He is currently an Associate Professor in the
Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, where he
has been since 1983. His research interests include
programming languages and operating system for
distributed real-time comuuting, specification and

simplified to

RR 2 A4 + 1,

as shown in Table 11.

REFERENCES

U.S. Department of Defense, “Ada Programming Language,” 1983.

MMOS Ltd., Oomm Pmgmmrning Manual. Englewood Cliffs, NJ:
Prentice-Hall Int., 1984.
3. Gray, “Notes on data base operating systems,” in Opemting Sys-
tems: An Advanced Course, R. Bayer, R. Graham, and G. Seeg-
muller, Eds.
I. Lee and S. Davidson, “Adding time to synchronous process com-
munications,” IEEE Tmns. Comput.. pp. 941-948, Aug. 1987.
R. A. Volz and R. N. Mudge, ‘‘Timing issues in the distributed ex-
ecution of Ada programs,” IEEE Tmns. Comput.. vol. C-36, pp.
449-459, Apr. 1987.
K. Lin, S. Natarajan, and J. Liu, “Imprecise results: Utilizing partial
computations in real-time systems,” in Pm. Real-Time Syst. Symp.,
Dec. 1987, pp. 210-217.
S. Davidson and A. Watters, “Partial computation in real-time database
systems,” in Workshop Real-Time Oper. Syst., May 1988.

ANSIMIL-STD- 18 15A- 1983.

New York: Springer-Verlag, 1979, pp. 393-481.

verification of time dependent systems and protoiols, &d-interconnection
network synthesis algorithms.

Susan B. Davidson (M’83) received the B.A.
degree in mathematics from Cornell University,
Ithaca, NY, in 1978, and the M.A. and Ph.D. de-
grees in electrical engineering and computer science
from Princeton University, Princeton NJ, in 1980
and 1982.

She is currently an Associate Professor in the
Department of Computer and Information Science,
University of Pennsylvania, where she has been
since 1982. Her research interests include the de-
sign and analysis of fault-tolerant distributed sys-

tems, database systems and real-time systems, and programming languages
for complex object databases and real-time systems.

	University of Pennsylvania
	ScholarlyCommons
	September 1990

	A Performance Analysis of Timed Synchronous Communication Primitives
	Insup Lee
	Susan B. Davidson
	Recommended Citation

	A Performance Analysis of Timed Synchronous Communication Primitives
	Abstract
	Keywords
	Comments

	A performance analysis of timed synchronous communication primitives - Computers, IEEE Transactions on

