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A Performance Analysis of Timed Synchronous 
Comunicat ion Primitives 

INSUP LEE, MEMBER, IEEE, AND SUSAN B. DAVIDSON, MEMBER, IEEE 

Abstmct- Two algorithms for timed synchronous communi- 
cation between a single sender and single receiver have recently 
appeared in the literature. Each weakens the definition of “cor- 
rect” timed synchronous communication in a different way, and 
exhibits a different “undesirable” behavior. In this paper, their 
performance is analyzed, and their sensitivity to various pa- 
rameters is discussed. These parameters include how long the 
processes are willing to wait for communication to be success- 
ful, how well synchronized the processes are, the assumed upper 
bound on message delay, and the actual end-to-end message de- 
lay distribution. We conclude by discussing the fault tolerance of 
the algorithms, and propose a mixed strategy that avoids some 
of the performance problems. 

Index Terms- Ada rendezvous, distributed systems, perfor- 
mance analysis, predictability, real-time systems, synchronous 
communication. 

I. INTRODUCTION 

DISTRIBUTED real-time systems, arbitrary delays asso- I” ciated with synchronous communication cannot be tolerated 
due to the time-dependent nature of computation. Languages 
such as Ada’ [ 11 and Occam2 [2], which are designed for real- 
time programming, therefore, support the notion of a deadline 
with their synchronous communication constructs. Real-time 
processes written in these languages can attach deadlines to 
their communication requests specifying how long they are 
willing to wait for successful communication. This gives rise 
to a notion of timed synchronous communication, which can 
be defined as follows. At time RS, the sender becomes ready 
to communicate, and sends a message containing information 
and its deadline, DS, which is the latest time the sender is 
willing to wait for successful communication. At some other 
point in time, unrelated to RS, the receiver becomes ready to 
receive a message, RR. The receiver also has its own deadline, 
DR. At DS and DR, the sender and receiver, respectively, will 
continue processing and must know the success or failure of 
communication. The problem is to design a nontrivial protocol 
(i.e., one which allows the possibility of success) which guar- 
antees that the sender and receiver will meet their deadlines 
and agree on whether or not communication is successful. 

Manuscript received December 1, 1987; revised April 26, 1988. This work 
was supported in part by NSF DCR 8501482, NSF DMC 8512838, NSF 
MCS 8219196-CER, ARO DAA6-29-84-k-0061, and a grant from AT&T’s 
Telecommunications Program at the University of Pennsylvania. 

The authors are with the Department of Computer and Information Science, 
University of Pennsylvania, Philadelphia, PA 19104. 

IEEE Log Number 9037190. 
‘Ada is a trademark of the U.S. Department of Defense (Ada Joint Program 

’Occam is a trademark of the INMOS Group of Companies. 
Office). 

The correct implementation of timed synchronous commu- 
nication primitives is complicated by the fact that the end-to- 
end delay of messages can be arbitrary or even infinite, i.e., 
messages can get lost. In fact, if the assumed failure envi- 
ronment includes message loss, it can be shown that such a 
protocol does not exist. This is the “Two Generals” problem, 
in which two generals are trying to agree upon a common time 
of attack but can only communicate via unreliable messengers. 
Knowing that they will be defeated unless the attack is simul- 
taneous, neither general will attack unless he is certain that 
agreement has been reached. However, agreement between the 
two generals is impossible as long as there is more than one 
value which can be decided upon. To show this, suppose that 
there exists a minimal sequence of messages between general 
A and general B for reaching agreement. Let k f k  to be the 
last message in this sequence, and let it be sent from general 
A to general B.  Since general A cannot be sure that general 
B received k f k ,  general A will attack regardless of the out- 
come of the message delivery. Thus, k f k  could be removed 
from the sequence of messages, contradicting the claim that 
the sequence is minimal. Such an argument could be extended 
to show that if a minimal sequence of messages did exist, it 
would be an empty sequence thus allowing agreement in the 
case where only one value can be decided upon [3]. 

Since our intention is to develop algorithms for timed- 
synchronous communication that work in reasonable operating 
environments, an upper bound on message delivery cannot be 
assumed. Two “relaxations” of the problem statement can 
therefore be offered, and have recently appeared in the litera- 
ture. In the first, the sender’s deadline is “absolute,” i.e., the 
sender decides that the message is unsuccessful if it does not 
hear to the contrary by its deadline [4]. Since an acknowledg- 
ment message from the receiver as to the success or failure of 
the communication could take longer than expected, there is 
a possibility for inconsistent decisions. This means that the 
sender believes that communication has failed, whereas the re- 
ceiver knows that communication has been successful. In the 
second relaxed problem statement, the deadline of the sender 
is not absolute, i.e., the sender waits until it receives the 
acknowledgment [5]. Although inconsistent decisions are not 
possible, the sender can be delayed past its deadline. Thus, al- 
though neither approach fully implements timed synchronous 
communication, each approximates it to some extent; further- 
more, each exhibits a different “undesirable” behavior. 

The goal of this paper is to show under which operating 
conditions protocols for these relaxed problem statements per- 
form well, and to measure how “badly” each can perform. 
This is done by probabilistic analysis, which gives insight into 
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what values should be chosen for parameters in the protocols 
to yield "acceptable" performance. However, the choice be- 
tween the potential for inconsistent decisions and missed dead- 
lines is controversial. Some feel that inconsistent decisions 
should never be allowed in real-time applications since con- 
flicting actions may be taken. Others feel that deadlines should 
never be missed; in hard real-time applications, a missed dead- 
line usually triggers an emergency shut-down of the system. 
One missed deadline can also cause other deadlines to be 
missed, creating a cascading effect. A potentially more severe 
problem with these algorithms is that if messages can be lost, 
then two communicating processes can reach an inconsistent 
decision which can never be detected, or the sender may wait 
forever. To remedy these problems, we extend the notion of 
consistency to a three value semantics: successful, unsuccess- 
ful or don't know. We then describe an algorithm in which 
the sender and receiver always reach a decision by their dead- 
lines, and the sender either definitely knows the decision, or 
knows that it is not sure as to the decision. The algorithm is 
attractive since if the sender's deadline can be extended, the 
answer is ensured to monotonically improve with time [6], 

"he rest of this paper is organized as follows. In the next 
section, we present protocols for timed-synchronous commu- 
nication with inconsistent decisions and for timed-synchronous 
communication with missed deadlines, and discuss perfor- 
mance measures. Section I11 outlines the probability model. In 
Section IV, we discuss the sensitivity of the protocols to such 
parameters as the assumed upper bound on message delivery, 
how long the processes are willing to wait for communica- 
tion to be successful, how well synchronized the processes 
are, and the end-to-end message delay distribution. Section V 
discusses the fault tolerance of the protocols and extends the 
probability model to include the effect of message loss. After 
describing ways to cope with message loss, we present a better 
algorithm that combines the first two algorithms. We conclude 
by summarizing general results, discussing the usefulness of 
the model, and proposing future research. 

171. 

II. OVERVIEW OF PROTOCOLS AND PERFORMANCE MEASURES 

In order to simplify the algorithms and analysis, we make 
the following assumptions. 

Assumption I :  Clocks are perfect. That is, when the 
sender's clock reads time X, the receiver's clock also reads 
time X. 

Relaxing this assumption is not difficult, and is discussed 
in [4]. We also restrict ourselves initially to a failure model 
which includes only arbitrary message delays. 

Assumption 2: Processes are perfect. 
Assumption 3: Messages are eventually delivered, and are 

delivered correctly. 
Removing this assumption, even to allow transient message 

loss, results in very undesirable behaviors: undetected incon- 
sistent decisions in the first algorithm, and the sender waiting 
forever in the second. A more complete discussion of this 
problem, along with an extended analysis and a compromise 
solution, will be presented in Section V. 

/* When Sender P becomes ready to communicate, */ 
/* P executes U)  follows: */ 

= d ( m v e P S )  
within DS do 

when (receive acknowlegement from Q) do 

end when 
return(success) 

acception 

end within 
return(failed) 

/* If a message arrives whiIe Receiver Q is not ready to communicate, */ 
/* Q exuutca aa follow: */ 

within LT do 
when (Q b m e s  ready) do 

s a d (  "Yes"); 
return( massage,mccass) 

end when 
end withiq 

/* When Receiver Q becomas ready to communicate, */ 
/* Q executes w follows: */ 

within DR do 
when (receive message from P) do 

if (LT is passed) 
then retnra(fai1ed) 
else ssnd("Yes"); 

return( meaaage,auccess) 
end when 

exception 

end within 
return(failed) 

Fig. 1. Outline of Algorithm 1. 

When presenting the algorithms we need to express timing 
constraints within a program, and will therefore use the notion 
of temporal scopes [8]. The syntax of a temporal scope is 
within D do 
when (condition) do 

end when 

(exception handling statements) 

(statement list) 

exception 

end within. 
The semantics of temporal scope is that a process can, af- 
ter entering a scope, wait for (condition) until its deadline D 
is reached. If the current time reaches deadline D while the 
process is waiting for message arrival and process becom- 
ing ready to communicate, the deadline exception is raised 
and handled within the exception handler part of the temporal 
scope. 

A .  Algorithms for the Relaxed Problem Statement 
Fig. 1 outlines Algorithm 1 for timed-synchronous com- 

munication with inconsistent decisions. When the sender be- 
comes ready to communicate, it sends the message together 
with its deadline DS to the receiver. If the sender does not 
receive an acknowledgment by its deadline, it decides that the 
communication has failed. 

When the receiver becomes ready to communicate, it waits 
for a message until its deadline, at which point it decides the 
communication has failed. When a message arrives, the re- 
ceiver calculates the "latest time to respond" to the sender, 
LT=DS-d, where d is chosen so that the sender will, with 
some high probability, receive the acknowledgment by its 
deadline. Thus, d could be the mean end-to-end message de- 
lay, or some larger value. If the message arrives before the 
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/*  When Sender P becomes ready to communicate, ‘ 
/* P executes as follows: */ 

send(mtssage,DS) 
when receive acknowlegement from Q do 

if ‘Yes” 
then return(meseage,success) 
else return(failed) 

end when 

/* If a message arrives while Receiver Q is not ready to communicate, */ 
/* Q executes as follows: */ 

within LT do 
when (Q becomes ready) do 

send( ‘Yes”); 
return( message,success) 

end when 

send(”No” ); 
exception 

end within 

/* When Receiver Q becomes ready to communicate, */ 
/* Q executes as follows: */ 

within DR do 
when (receive mesaw from P) do  

send( “Yes”); 
return( message,success) 

end when 
exception 

end within 
return(fai1ed) 

Fig. 2. Outline of Algorithm 2. 

receiver is ready to communicate and LT does not expire be- 
fore the receiver becomes ready, or if the receiver receives a 
message after it becomes ready and the current time is ear- 
lier than LT, then it accepts and acknowledges the message. 
Otherwise, it decides that communication has failed. 

As mentioned in the beginning of this section, no matter 
what value of d is chosen there is a chance that inconsistent 
decisions will be made. If a “Yes” response arrives after 
DS, the sender must take some appropriate recovery actions. 
Making d very large reduces the probability of this occurring; 
however, it also reduces the probability that the receiver will 
ever say “Yes.” 

Fig. 2 outlines Algorithm 2 for timed-synchronous commu- 
nication with missed deadlines. The sender sends a message 
and then waits for an acknowledgment. Unlike Algorithm 1, 
the sender receives an explicit “Yes/No” answer which may 
arrive after its deadline. 

If a message arrives at the receiver before it is ready to 
communicate, it waits until LT and then answers “No.” How- 
ever, once it has become ready to communicate, the receiver 
answers “Yes” even if LT has already expired since the 
sender is guaranteed to wait for the response regardless of the 
outcome. 

To contrast the two algorithms, Table I shows how and when 
the receiver decides. Letting M represent the time at which 
the initial message arrives at the receiver, the events of inter- 
est are M, LT, RR, and DR. There are 12 possible orderings 
of these events since RR always happens before DR. When- 
ever two events happen simultaneously, we interpret them as if 
one event happened before another so as to favor the success 
of communication. For example, if M and LT occur simulta- 
neously, we assume M < LT. Our treatment of simultaneous 
events also makes the 12 orderings mutually exclusive. 

/* When Sender P becomes ready to communicate, */ 
/* P executes as follows: *I 

send(message,DS) 
within DS do 

when (receive acknowlegement from Q) do 
if ‘Yea” 

then return(message,succes) 
else return(failed) 

end when 

retum(don’t know) 
exception 

end within 

1’ If a message arrives while Receiver Q is not ready to Communi-te, */ 
/* Q executes as follows: */ 

within LT do 
when (Q becomes ready) do 

send( ”Yes”); 
return( message,success) 

end when 

send( ’No”); 
exception 

end within 

/* When Receiver Q becomes ready to communicate, */ 
I* Q executes ae follows: ’/ 

within DR do 
when (receive message from P) do 

send( “Yes”); 
return( message,success) 

end when 

return(fai1ed) 
exception 

end within 

Fig. 3. Outline of Algorithm 3. 

In the remainder of this paper, ordering i is referred to as 
Ord(i), fo r i  = 1,.. . ,12 . 
B.  Performance Measures 

Although each algorithm can easily be shown to be a correct 
solution to their respective relaxed problem statement, they 
only approximate the correct statement since the sender may 
make an inconsistent decision or m i s s  its deadline. Our goal is 
to measure how well these algorithms approximate the correct 
statement. We therefore wish to measure the occurrence of the 
following events: 

Success: The receiver says “Yes” and the sender knows 

Inconsistent: Inconsistent decisions are made. 
Lute-Yes: The receiver says “Yes” and the sender is 

Late-No: The receiver says “No” and the sender is de- 

by its deadline. 

delayed past its deadline. 

layed past its deadline. 

Recall that late decisions cannot be made in Algorithm 1, 
although the decision made at the sender’s deadline may be 
inconsistent. Furthermore, inconsistent decisions cannot be 
made in Algorithm 2, although the sender may be delayed past 
its deadline waiting for either a “Yes” or “No” response. In 
the next section, we therefore develop a model to measure 
the probability of success for both algorithms (Success1 and 
Success2), the probability of inconsistent decisions for Algo- 
rithm l (Inconsistent), and the probability of a late response 
for Algorithm 2 (Lute-Yes, in which the response is “Yes,” 
and Lute-No, in which the response is “No”). 
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Ordering Event Sequence Algorithm 1 
1 R R S  M 5 LT I D R  YeS 

3 M < RR LT 5 D R  W-RR-Yes 
4 M < RR < D R  c LT W-RR-Yes 
5 R R I L T < M I D R  No 

7 L T < M < R R c D R  No 
8 L T < R R < D R < M  No 
9 R R I L T s D R c M  No 
10 R R < D R < L T c M  No 

2 R R I M S D R c L T  Yes 

6 L T < R R < M < D R  No 

11 RR < D R  M 5 LT W-LT-NO 
12 M 5 LT < RR D R  W-LT-NO 
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Algorithm 2 
Yes 
YeS 

W-RR-Yes 
W-RR-Yes 

Yes 
YeS 
No 
No 
No 
No 

W-LT-NO 
W-LT-NO 

To evaluate the perfomance 

X, = delay of initial message. 

enumerated in the line. Since replies are sent at time M in Oid (1) and Ord (2), 
and at time RR in Ord(3) and Ord(4), Xt is computed by 
M +Xu in the former and by RR +Xu in the latter. Thus, 

previous section, we use the following random variables: 

X, = delay of acknowledgment message. 
RS = time at which sender is ready. 
RR = time at which receiver is ready. 

Success1 = Pr [X 5 DS lord ( 1) , . . . , or Ord (4)] 

. Pr [Ord (l), . . . ,or Ord (4)] 

We also use the following parameters, which will be altered 
to see the effect on the performance of the algorithms: 

= Pr[M+X, 5 DS(Ord(l)orOrd(2)] 

. Pr [Ord (1) or Ord (2)] 
A, = length of time sender will wait. 
A, = length of time receiver will wait. 
d = time receiver allows for acknowledgment to be de- 

T = relative synchronization of the sender and receiver. 
By “relative synchronization” we mean that the sender and 
receiver will each become ready to communicate exactly once 
during the time period [ 1, TI. The smaller T is, the better the 
synchronization; if the sender and receiver are very poorly 
synchronized, T i s  arbitrarily large. Note also that we do not 
consider multiple receiver ready intervals during [ 1, TI. That 
is, if the message arrives after the receiver’s ready interval, 
both algorithms wait until LT and then decide that commu- 
nication fails. If multiple receiver intervals were allowed, the 
receiver could become ready to communicate again before LT 
and decide that communication is successful. This assumption 
was made not only to simplify the analysis, but because we 
found that multiple ready intervals were a second-order effect. 

To simplify the presentation, we make the following defini- 
tions: 

0 DS = RS + A,, deadline of the sender. 
0 DR = RR + A r , deadline of the receiver. 

LT=DS - d, latest time receiver should respond to 

livered. 

sender. 

+ Pr[RR +Xu I DSlOrd(3)orOrd(4)1 

. Pr [Ord (3) or Ord (4)]. 

Since the sender assumes that communication has failed if 
it does not receive an acknowledgment by its deadline, incon- 
sistent decisions are possible only when the receiver decides 
“Yes” but the acknowledgment does not arrive in time. Thus, 

Inconsistent = Pr [Xj  > DSlOrd (l) ,  . . . , or Ord (4)] 

. Pr [Ord (l), . . . , or Ord (4)] 

= Pr [M + Xu > DS lord (1) or Ord (2)] 

. Pr [Ord (1) or Ord (2)] 

+ Pr [RR + Xu > DS (Ord (3) or Ord (4)] 

. Pr [Ord (3) or Ord (4)]. 

Success2 is computed similarly to Success1 . 

= Pr [Xt 5 DS(0rd (l) ,  . . . , or Ord (6)] 
Success2 

. Pr [Ord (l), . . . , or Ord (6)] 

=Pr [M+X,  5 DS(Ord(l), Ord(2), Ord(5), or Ord(6)] 

M=RS + X , ,  time at which initial message arrives at . Pr [Ord ( l),  Ord (2), Ord (3, or Ord (6)] 
receiver. 

A.  Measurements 
0 X j  = time at which sender knows of outcome. + Pr [RR + X, 5 DS(0rd (3) or Ord (4)] 

. Pr [Ord (3) or Ord (4)]. 

In order for Algorithm 1 to succeed, the receiver must say 
“Yes” (which happens for Ord (l), . . . , Ord (4), see Table I), 

Late- Yes is defined on the same orderings as Success2 except 
that replies arrive after the deadline of the sender. 
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TABLE I1 
BOUNDS FOR DISCRETE EVENTS 

Note: 

1. Ai = A, - d 

2. A , = R S + A . - d  

3. A s = R S + A , - A , - d  

4. A , = R S + X m  

5. A , = R S + X , - A ,  

6. & = R S + A , - R R  

7. A7 = A, - Xm 

Lute- Yes +Pr[LT + X ,  > DSIOrd(l1) or Ord(12)l 

.Pr[Ord(l l )  or Ord(12)l. =Pr[Xt  >DSlOrd(l) , . . . ,  orOrd(6)l 

Pr [Ord (l), . . . , or Ord (6)] B .  Individual Probabilities 
= Pr I M  + > DS lord ( l),  Ord (2), Ord (5)3 Or Ord Table I1 shows the bounds needed to compute the probability 

that X r  5 DS and X r  > DS for each ordering; the derivation 
of these bounds can be found in the Appendix. Recall that 
the values of d,  A,, and A, are variables whose values are 
known. 

. Pr [Ord (l), Ord (2), Ord (3, or Ord (6)] 

+ Pr [RR + X, > DSlOrd (3) or Ord (4)] 

+ Pr [Ord (3) or Ord (4)]. 
For example, using this table we calculate 

Since the sender waits for an explicit acknowledgment, the 
sender may also have to wait beyond its deadline for “No” Pr [Xr I DSI Ord (l)] Pr [Ord (1)l 

T A s - d  min(i+j,T) A , - j  
message. X r  equals M + X ,  in Ord (7), Ord (8), Ord (9), and 
Ord (lo), and LT + X, in Ord (1 1) and Ord (12). Thus, 

Lute-No = Pr [Xt > DS(0rd (7), . . . , or Ord (12)] 
Pr [RS = i ]  =cc c 

i=l j=1 k=max( l , i+A, -A, -d)  / = I  

. Pr [Ord (7), . . . , or Ord (12)] .Pr[X, = j ]Pr [RR=k]Pr[X,  =/I. 

= pr [M + X ,  > DS lord (71, . . . , or Ord Since the orderings are mutually exclusive, Successl, In-  
consistency, Success*, Lute- Yes, and Lute-No can be com- 
puted by summing appropriate probabilities from events in . Pr [Ord (7), . . . , or Ord (lo)] 
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Ord (0. For example, A .  Effect of d 

Success1 = Pr [M + Xu 5 DS lord (l)] Pr [Ord (l)] As d increases, LT becomes earlier. When M is fixed to 
arrive during the receiver’s ready interval, Success1 deterio- 

+ Pr [M + Xu 5 DSlOrd (2)] Pr [Ord (2)] 

+ Pr [RR + X, 5 DS lord (3)] Pr [Ord (3)] 

+ Pr [RR + Xu I DSlOrd (4)] Pr [Ord (4)] 

rates as d increases since it says “No” if the message arrives 
after LT, while Sucressz remains unaffected. This effect is 
represented in the following diagram, which shows how the 
orderings change as LT becomes earlier relative to fixed RR, 

T A s - d  min(i+j,T) A , - j  M ,  and DR: =cc c c RR M DR 
i=l j=1 k=max(l, i+A,-A,-d) I = 1  1 I I I I 

Pr[RS = i ] P r [ X ,  =j]Pr[RR =k]Pr[X, =I ]  
T A,-d  min( i+A,-A, -d- l , i+ j ,T)  A , - j  +c c c c 

i=l j=1 k=max(l, i+j-A,) I = 1  

Pr [RS = i] Pr [X, = j] Pr [RR = k] Pr [Xu = 11 

T A,-d-1 min(i+A,-d,T) i+As-k +c c c c 
i= l  j=1 k=max(i+j+l, i+A,-A,-d) I = 1  

Ord( 6) Ord( 5) Ord( 1) ord(2) LT. 
- 8  I I 

When M is fixed to arrive before the receiver’s ready in- 
terval, both Success, and Success2 deteriorate by the same 
amount since they both say “No” if LT occurs before the 
receiver is ready: 

M RR DR 
I I I I I 

Pr [RS = i] Pr [ X m  = j ]  Pr [RR = k] Pr [Xu = I] 

+c c 
ord(7) Ord( 12) Ord(3) 0 ~ 4 )  LT. 
- 1  I I 

T A ,  4 - 1  min ( i+A,-A, -d-I ,T) i+A,-k  

However, when M is fixed to arrive after the receiver’s 
ready interval, there is no effect on either Success1 or Success2 

c 
I=1 

c 
k=i+ j + l  i=l j=O 

Pr[RS =i]Pr[Xm =j]Pr[RR =k]Pr[X,  =I]. since the receiver will always say “No:” 

RR DR M IV . PERFORMANCE EVALUATION I I I I 1 

As shown in the previous section, the five performance mea- 
sures depend on the probabilities of the orderings of events 
M, LT, RR, and DR. Furthermore, these probabilities depend 
on the values of d ,  A,, A,, and T. Thus, it is possible to 
predict how these parameters influence the performance of 
the two algorithms. In this section, we discuss the effects of 
individual parameters on the five measures. 

To illustrate their effects, we present sample graphs. The 
distributions used for the random variables in these examples 
are as follows. 

Assumption 4: Message delay (used for X, and Xu)  is 
geometrically distributed. That is, Pr [X, = k] = Pr [Xu = 
k] = P(1  - Plk-’, with the mean 

00 

C k P ( 1  -P)k--l = 1/P. 
i=l 

The values of P used in the evaluation are 1/2, 1/4, and 1/8; 
Fig. 4 shows these distributions. The geometric message delay 
distribution was used because it is easy to compute, and has 
a similar shape to that predicted by Wong [9]. 

We also assume the following distribution of ready times 
for the sender and receiver: 

Assumption 5: The time at which a process becomes ready 
to communicate (i.e., RR for the receiver and RS for the 
sender) is uniformly distributed over the interval [l, TI. 

Note that this does not imply that DR and DS must occur 
before T. 

Ord( 8) Ord(9) Ord( 10) 

Note that the only possible orderings when d > A, are 
Ord (5,6, . . . , lo), since messages must take some positive 
amount of time to be delivered. In these orderings, the receiver 
always says “No” for Algorithm 1, whereas the receiver only 
says “No” in Ord (7,. . . , lo )  for Algorithm 2. Thus, the net 
effect is that Successl deteriorates more rapidly than Success2 
as d increases; when d = A,, Successl becomes zero while 
Successz remains constant at some possibly nonzero value, 
due to Ord (5 & 6). In practice, A, should be chosen to be 
at least twice the average message delay if communication is 
to succeed; it is therefore unlikely that d should be chosen to 
exceed A,, since this is a very pessimistic estimate of how 
long the return message should take. Inconsistent improves 
(decreases) as d increases and becomes zero when d = A,; 
the sender will always be correct if it assumes that communi- 
cation has failed. Similarly, Lute- Yes improves (decreases) as 
d increases and then remains constant for d > A,. Lute-No, 
however, deteriorates (increases) as d increases and then re- 
mains constant when d > A,. 

Fig. 5 shows the effect of d for T = 16, P = 0.25, and 
A, = A, = 24. Note that these parameter values imply that 
the ready intervals of the sender and receiver must overlap 
by at least 8 time units, which is about twice the average 
message delay. Even in the worst case where RS = 1 and 
RR = T, any reply will almost always reach the sender by 
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llma Units 
Fig. 4. Message delay distributions used for X, and X,. 

\ I 

i 0.2 

Q success2 
+ success1 
4 Inc.LateNa/Yes I 

1 0  20 30 4 0  0 

d 
Fig. 5.  Effect of d.  (T = 16, P = 0.25, A, = A, = 24.) 

DS. Thus, Inconsistent, Late-Yes, and Late-No are very RR DR LT 
small. What is more interesting is the behavior of success 
for the algorithms. When d = 0, Successl = Success2 

both algorithms starts to drop off when d becomes larger 
than the minimum overlap of ready intervals (i.e., d > 8). 
As predicted, Success, drops sharply and hits zero when 
d = A, = 24, whereas Successz drops less sharply and re- 
mains constantly high due to the effect of Ord ( 5 )  and Ord (6). 

B .  Eflet of P 

M occurs earlier. If LT is fixed to occur after DR, Successl 
and Success2 both improve since they both say “Yes” if the ord(3) Ord( 1) Ord( 5 )  Ord( 9) 

‘ I I I I 

Ord(4) Ord( 2) Ord( 11) Ord( 10) 
since Pr [Ord (5)]  = Pr [Ord (6)] = 0. The performance of - 1  I I I M. 

When LT is fixed to occur during the receiver’s ready in- 
terval, the success of both algorithms again improves. Note 
that Successl improves less than Success2 since it says “No” 
if the message arrives after LT even if the message arrives 
during the receiver’s ready interval. 

As P increases, the average message delay decreases and RR LT DR 
I I I I 

I I I message arrives before DR: 1 M. 



1124 

0.0 0.2 0.4 0.6 0.8 1 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9. SEPTEMBER 1990 

I 
.o 

1 0.8 

P 
Fig. 6. Effect of P. (T = 8, d = 4, A, = A, = 8.) 

Lastly, when LT is fixed to occur before RR, there is no creases, all five Probabilities increase. It is interesting to note 
effect on Success1 , while Success2 improves transiently since in Fig. 8 that when d > A,, the curve initially incrdses, and 
it says “Yes” if the message arrives during its ready interval then slowly decreases. This is not due to late message arrival 
even if this is after LT (Ord (6)): since Late-No and Lute- Yes do not increase. Rather it is due 

to the shift from Ord(6) (in which the receiver says “Yes”) 
LT Rk DR 

LT occur before RR). 
1 I I I to Ord (7) (in which the receiver says “No” because M and 

Ord( 12) Ord(7) Ord(6) Ord( 8) 
I . I I I M. C .  Of A, and A, 

Since the average message delay is very large when P is 
small, the original message will almost certainly arrive af- 
ter the receiver’s ready interval and the “No” reply will ar- 
rive at the sender long after DS. Therefore, Late-No starts 
at 1 and diminishes to zero as P approaches 1. On the 
other hand, Success1 and Success2 start small and approach 
1 - Pr[Ord(12)J as P approaches 1, since Ord(12) is the 
only case in which the algorithms say “No” as the message 
delay becomes very small. Inconsistent and Late- Yes are also 
small when P is small, but increase as Successl and Success2 
increase. However, they eventually decrease as P approaches 
1 since a “Yes” message is more likely to arrive within the 
sender’s deadline if the average message delay is small, all 
other factors being held constant. 

Fig. 6 shows the effect of P for T = 8, d = 4, and 
A, = A, = 8. P varies as iJ16 for i = 1 , 2 , . . . ,  15. The 
shapes of the slopes confirm the above prediction. Note that 
this choice of parameters does not guarantee that the ready 
intervals of the sender and receiver will overlap. In the worst 
case, the sender’s deadline may occur exactly when the re- 
ceiver becomes ready. In this case, no matter what the average 
message delay, a response cannot be received by the sender 
before its deadline. Therefore, Success2 does not converge to 
1 as P approaches 1. 

Figs. 7 (Algorithm 1) and 8 (Algorithm 2) contrast the 
effects of P and d for T = 16, A, = A, = 24. AS d 
increases, all five probabilities decrease, whereas as P in- 

As A, increases, DR increases, and the success of both 
algorithms improves. When RR < M < LT, the success of 
both algorithms improves : 

RR M LT 
1 I I I 1 

Ord( 11) Ord(2) Ord( 1). 
DR I I I ,  

When M is fixed to arrive before the receiver’s ready in- 
terval, changing A, has no effect on either algorithm: 

M Fm LT 
I I I I I 

Ord(4) Ord( 3) 
DR - 

When M arrives after LT and RR, the success of Algorithm 
1 is unaffected, but the success of Algorithm 2 improves as 
DR becomes later than M 

RR LT M 

Ord( 10) Ord(9) Ord(5) DR I I I 

LT RR M 
I I I I I 

Ord( 8) Ord( 6) 
DR 
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(a) Success1 
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(b) Inconsistent 
P 

Fig. 7. Effect of d and P on Algorithm 1. (T = 16, As = A, = 24.) 

I 

5 

However, if M and LT occur before RR, DR can only 
be the last event (Ord(7 & 12)): both algorithms say “No” 
and there is no effect on either of their success. Thus, as A, 
increases, Late-No decreases and then remains constant at 

pr [x, > DS(0rd (7) or Ord C 12)lPr [Ord (7) or Ord (1211. 

Furthermore, Success1 ,  success^, Inconsistent, and 

Success1 = Pr [Xr 5 DS lord (1 or 3)] Pr [Ord (1 or 3)] 

Success2 = Pr [ X ,  5 DS(Ord(1, 3, 5 or 6)] 
.Pr [Ord(l, 3, 5 or 6)] 

Inconsistent = Pr [ X ,  > DSlOrd (1 or 3)] Pr [Ord (1 or 3)] 

Late-Yes = Pr[X, > DSlOrd(1, 3, 5 or 6)] 

.Pr[Ord(l, 3, 5 or 6)]. Late-Yes increase and then remain constant at 
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(a) Success2 
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P 

(b) Late-Yes and Late-No 
Fig. 8. Effect of d and P on Algorithm 2. (T = 16, A, = A, = 24.) 

Fig. 9 shows an example of this for T = 16, P = 0.25, 
d = 4, and A, = 24. Note that Successl and Success2 both 
stabilize by A, = 24, since in the worst case RS = T and 
RR = 1, but the receiver will still receive most messages in 
its ready interval and be able to respond “Yes.” 

As A, increases, LT becomes later. The opposite effect has 
already been discussed (see Section IV-A, the effect of chang- 
ing d). Note that this time, Ord(2), Ord(4), and Ord(l1) 
are unaffected. As A, increases, the sender is more likely 
to receive an acknowledgment message within its deadline. 

Thus, as A, increases, Success1 and Success2 approach 
1 - Pr [Ord ( 1 l)], and Inconsistent, Lute- Yes, and Lute-No 
approach zero. 

Fig. 10 shows the effect of increasing A, for T = 16, 
P = 0.25, A, = 24, and d = 4. This time, the success of 
both algorithms stabilizes later (A, = 32) since there must be 
enough time for the initial message to be sent to the receiver 
as well as for the reply to be received. The behavior of Incon- 
sistent is also very interesting as it initially increases and then 
decreases, peaking at A, M 8; there is also a gap between the 
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Fig. 10. Effect of A,. (T = 16, P = 0.25, d = 4, A, = 24.) 

curves for Success1 and Success2 at this point. The explana- 
tion for both of these effects is that d has been chosen to be 
the mean message delay; furthermore, since As is small, if 
the message arrives before LT it is probably just before LT. 
The decision to send “Yes” to the sender is therefore not very 
safe, i.e., it will very probably arrive late. 

D .  Eflect of T 
As mentioned earlier, T reflects how well the executions 

of the sender and receiver are synchronized. As T increases, 
communication is less likely to succeed since the ready in- 
tervals are less likely to overlap; that is, as T increases, 
Pr[Ord(z)] for i = 1,.-.,6, 8, 9 decrease to zero. Thus, 

zero as T gets arbitrarily large. On the other hand, Late-No 
increases as T increases and converges to 

Pr [M + X, > DSIOrd (7) or Ord (lo)] 

. Pr [Ord (7) or Ord (lo)] 

+Pr[LT+X, >DSlOrd(ll)  orOrd(12)l 

.Pr[Ord(l l )  or Ord(12)l. 

Thus, when A,, A,, d, and the message distribution are fixed, 
this value can be explicitly calculated as 

Pr[Xm +X, > A s  WdXm > As -dl 
SuccessI, Sumss2, Inconsistent, and Lute- Yes approach +Pr[X, > d a n d X m  S A s - d ] .  
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Fig. 11. Effect of T. (A, = A, = 8, P = 0.25, d = 4.) 

Fig. 11  shows the effect of T for A, = A, = 8, P = 0.25, 
and d = 4. As T becomes very large, the sender is blocked 
beyond its deadline waiting for belated “No” message with 
the probability of 0.4499, which is 

Pr[Xm+X,  > 8 a n d X ,  >4]+Pr[X,  > 4 a n d X ,  1 4 1  

= 0.2336 + 0.2163 = 0.4499. 

V. COPING WITH FAILURES 
So far in evaluating the performance of the two algorithms, 

we have not considered their fault tolerance. We now discuss 
the effect of message loss, failure of the sender or receiver, 
and communication link failures. 

A .  Message Loss 
Let f be the probability that any given message is lost. To 

distinguish this from the case of a message being delivered 
after an arbitrarily long delay (CO), we assume a very large 
constant ub after which messages are said to be lost. The 
probability that a given message will take longer than ub to 
be delivered approaches 0; any message that takes longer than 
ub to be delivered is thrown away. Thus, 

We therefore assume that 00 in the upper bounds for X ,  in 
Table I1 is replaced by ub. 

In extending the analysis of Algorithms 1 and 2 from the 
previous section, we use primes ( I )  to distinguish the analy- 
sis with transient message loss from that without. We also 
assume that 

Pr[& = i ]  = ( I  - f)Pr[X, = i ]  

to simplify the extensions. Thus, 

Pr [Ord’ ( i ) ]  = (1 - f) Pr [Ord (01. 

In Algorithm 1, communication is only successful if both 
M and the response Ack are delivered without failure and in 
time: 

Success’, = (1 - f ) 2  Success1 . 
If M is lost then the sender will time out and correctly assume 
that communication has failed. However, if the response Ack 
is lost, the receiver may have decided “Yes,” and an incon- 
sistent decision will be made. 

Inconsistent’ = (1  - f) Inconsistent + f (1 - f) Success1 . 
Thus, as f increases, Success’, will decrease. The effect on 
Inconsistent’ is harder to predict since increasing f increases 
the probability of failure of the final message, in which case 
the sender may decide “unsuccessful” when the reply is actu- 
ally “Yes;” whereas, increasing f also increases the probabil- 
ity that the initial message will fail, in which case the sender 
makes the correct decision. However, since Inconsistent is 
normally dominated by Success,, and since f should be very 
small, Inconsistent’ should also increase (but less rapidly than 
Success:) as f increases. 

In Algorithm 2, communication is again successful only if 
both M and a positive response Ack are delivered in time: 

Success: = ( 1 - f l 2  Success*. 

Since loss of either M or Ack results in the sender wait- 
ing forever, a case that is not covered in either Late-Yes 
or Late-No, Late-Yes‘ and Late-No’ can be calculated as 
follows: 

Late- Yes‘ = (1 - f l 2  Late- Yes 
Late-No’ = ( 1  - f )2 Late-No. 
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The analysis of Algorithm 2 must also be expanded to include 
the probability that the sender will wait forever for a response: 

Wait-Forever = f + (1  - f)f. 

Thus, as f increases Success2, Late-Yes, and Late-No all 
decrease, and Wait-Forever increases at their combined rate. 

The effect of message loss highlights the deficiencies of both 
Algorithms 1 and 2: the potential for (undetected) inconsis- 
tent decisions in Algorithm 1, and the potential of waiting for 
the decision past the sender’s deadline (perhaps indefinitely) 
in Algorithm 2. A solution to these problems is to blend Al- 
gorithms l and 2 (see Fig. 3). When the receiver receives a 
message, it must respond with “Yes” or “No,” and behaves 
as in Algorithm 2. The sender, however, only waits until DS 
for the receiver’s decision, as in Algorithm 1. If the deadline 
expires without the decision being received, the sender con- 
cludes “Don’t know.” An exception handler is then triggered, 
and the programmer defines the appropriate action to be taken 
[ 101. Note that in this approach a “three-value” semantics is 
used for the success or failure of communication: successful, 
unsuccessful, or don’t know. The meaning of consistent de- 
cisions would be: if the receiver says “No” or never receives 
the initial message, the sender must decide “unsuccessful” or 
“don’t know;” and if the receiver says “Yes” the sender must 
decide “successful” or “don’t know.” 

In the analysis of this new algorithm, note that Success; 
is the same as Succesd. The sender will never wait forever, 
and inconsistencies are not possible; however, there is the 
possibility that the sender is undecided by its deadline. This 
happens if the original message is lost, the reply is lost, or if 
the reply is not received in time: 

Undecided = Wait-Forever + Late-No -k Late-Yes. 

One action that could be taken when the potential for an 
inconsistent decision is detected (i.e., when the sender con- 
cludes “don’t know”) is to poll the receiver at timeout inter- 
vals to determine what, if any, decision had been made. If the 
receiver never received the message, it could respond “No,” 
as if the message had not been received in time (Ord (7-10)). 
Whatever the response of the receiver, it must improve mono- 
tonically with time [6],  [7]; that is, if the receiver ever an- 
swers with “Yes” it must always answer “Yes,” and the same 
must be true for a negative response. However, if the receiver 
answers with “don’t know,” it can improve its answer to ei- 
ther “Yes” or “No” at a future point in time. On the other 
hand, message loss is most likely to occur under peak load 
conditions, and it is precisely at this time that we do not want 
to start flooding the network with messages from the sender 
to the receiver asking for the results of communication. It is 
therefore important not to built this type of error recovery 
into the implementation of timed synchronous communication 
primitives, but to have it used explicitly by the programmer. 

B .  Other Failures 
Processor Failures: In both algorithms, the sender is “in- 

doubt” after it sends the initial message, and before it has 
made a decision (either explicitly or by reaching DS). If the 

sender fails in this window, upon recovery it can either try 
to resume where it left off when it crashed, or decide “don’t 
know” (as discussed above). To resume where it left off, the 
sender must know what the receiver has decided; that is, re- 
covery must include placing the receiver’s decision on the 
sender’s queue, if any has been made. Recovery must also 
involve setting the clock to the current time so the sender can 
determine whether or not the deadline has expired in Algo- 
rithm l .  

To cope with failure of the receiver, recovery must involve: 
reinitializing its state from the time of failure, placing any 
message received during the failure on its queue, and reini- 
tializing its clock. If the message arrives during the failure, or 
if the failure occurs after the message was received but before 
it was answered, the receiver takes appropriate action based 
on the current time at recovery. Note that the effect on the 
sender is the same as if the initial message took longer to be 
delivered: in Algorithm 1, the sender will make a decision at 
DS (and be correct with the same probability as if the receiver 
had not failed), whereas in Algorithm 2, the sender will wait 
until the receiver recovers and responds. 

Communication Link Failures: Apart from message loss, 
the effect of communication link failures is that messages may 
be consistently rerouted causing the average message delay 
to increase. The probability of inconsistent decisions in Al- 
gorithm l will therefore increase unless the value chosen for 
d is also increased. The success rate of both algorithms will 
also deteriorate since d increases. 

VI. CONCLUSIONS 
Protocols for timed-synchronous communication can be de- 

fined by how the receiver responds in each of the orderings 
in Table I. Two such protocols were described in this paper, 
which have previously appeared in the literature: Algorithm 
1 was originally proposed in [4]. Algorithm 2 was adapted 
from [ 5 ] ,  which discussed various implementations of the ren- 
dezvous construct in Ada. The protocols differ primarily in 
how they “fail” to meet the absolute correctness statement: 
Algorithm 1 allows inconsistent decisions, whereas Algorithm 
2 allows the sender to be delayed past its deadline. Algorithm 
1 also implicitly assumes failure of the message by expira- 
tion of the deadline, while Algorithm 2 requires a negative 
acknowledgment. 

Although the performance analysis in this paper is spe- 
cific to Algorithms 1 and 2, the model developed can 
be used to analyze the performance of any protocol for 
timed-synchronous communication by simple modifications of 
the orderings included in each criterion measured: Success, 
Late-Yes, Late-No, and Inconsistent. The model and cost 
equations can also be used to derive good values for d ,  A,, 
and A,, as long as the end-to-end message delay distribution 
and relative synchronization of sender and receiver (i.e., the 
distributions for RR and RS) are known. 

Even without knowledge of specific operating conditions, 
our analysis provides some general conclusions about the rel- 
ative performance of Algorithms 1 and 2. 

From Table I, it is easy to see that Successl is always less 
than or equal to Success2. However, this does not mean that 



1130 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990 

Algorithm 2 is better than Algorithm 1 since Inconsistent is 
also always less than or equal to Late- Ym. That is, Algorithm 
1 is generally not as successful as Algorithm 2, but also does 
not fail to meet the original problem statement as often. 

Successl and Success2 can be improved by decreasing T 
or increasing d ,  P ,  A,, or A,. However, Inconsistent and 
Late-Yes also increase as Success, and Success2 increase, 
except when their improvements are due to an increase in 
A,. In this case, Inconsistent and Late-Yes also decrease. 
On the other hand, as Success2 increases, Late-No decreases. 
Thus, increasing A, not only improves the success of both 
algorithms, but decreases their errors. 

A, should be larger than 2 x average message delay; 
otherwise, communication will almost always fail or errors 
will occur frequently. 

d should be larger than the average message delay to 
avoid a “Yes” message arriving after the sender’s deadline in 

Whether it is better to make inconsistent decisions or to al- 
low the sender to be delayed past its deadline is controversial. 
On the one hand, inconsistent decisions may cause conflicting 
actions to be taken. On the other hand, hard real-time systems 
frequently shut down completely if deadlines cannot be met, 
since missing one deadline may cause a cascade of missed 
deadlines. Neither of these outcomes is desirable. It is there- 
fore important to design the system correctly (by appropriately 
defining T, A,, A,, and message delivery guarantees) so that 
Inconsistent and Late-No +Late- Yes are virtually 0 .  

Another option is to further weaken the definition of “cor- 
rectness,” to allow a three-valued semantics: “Yes,” “No,” 
and “Don’t know.” This definition is achieved by a combina- 
tion of Algorithms 1 and 2 (Algorithm 3). Algorithm 3 guar- 
antees that the sender will not be delayed past its deadline, and 
also that it will never make an inconsistent decision; however, 
the sender may only be able to conclude “Don’t know” rather 
than “Yes” or “No” at time DS. The motivation for allowing 
this is that the sender may be able to take some corrective 
action when in doubt at time DS (for example, polling the re- 
ceiver for its response), or may be able to take a “soft” form 
of error recovery or perform defensive action if it knows for 
sure that communication has failed at time DS (for example, 
the sender may assume that the receiver has used filtering or 
estimation as is working with an incomplete knowledge of the 
environment). This also avoids certain pathological behaviors 
when transient message failures occur: the sender can detect 
that an inconsistent decision has been made (unlike Algorithm 
l), and the sender will not wait forever (unlike Algorithm 2). 
The analysis of this protocol, with an additional assumption 
about the probability that a given message fails 0, was de- 
scribed in Section V. 

Although this discussion has ignored clock discrepancy, the 
original algorithms take this into consideration [4], [5 ] .  To ad- 
just for clock drift, the receiving process needs to adjust its 
estimate of LT using either a worst case assumption about 
the difference between clocks (clock drift), or a worst case 
assumption about the rate at which the clocks tick and how 
long the original message from the sender took to be deliv- 
ered (clock rate). The effect on the algorithms is the same 

Algorithm 1. 

as increasing d: the worse the clock drift, the earlier LT be- 
comes in absolute time, and the success of both algorithms 
deteriorates. 

Other directions for research include using a more realis- 
tic message distribution based on observations from “real” 
systems, and evaluating the performance of N-way timed- 
synchronous communication primitives (a form of two-phase 
commit with timing constraints, see [4]). 

APPENDIX 

A. ORDERINGS AND DERIVATION OF PROBLEMS 

To calculate the probability of each ordering shown in Table 
I, we assume that all random variables used are discrete. Each 
probability therefore has the general form 
ubi ubj U b k  ubi E E E P r [ R S = i ] P r [ X ,  = j ]  

i d b ,  j d b ,  k d b k  Idbi 
. Pr [RR = k] Pr [X ,  = I ] .  

Loose bounds for some of these upper and lower bounds are 
derived from our assumptions: 1 I RS, RR I T, and 
1 5 X,, X, < 00. However, the upper and lower bounds 
must be tightened to reflect relative positions of events in each 
ordering (RR, M ,  LT, and DR). Since RR < DR always, we 
must only consider the relative positions of M to LT, RR to 
LT, DR to LT, RR to M ,  and DR to M. This is translated to 
bounds on the random variables in each ordering as follows: 

1) M (= RS + X , )  to LT (= RS + A, - d):  Let A ,  = 
A, - d .  

M 5 LT in Ord(l,11,12): X, 5 A1 (upper bound) 
M < LT in Ord(2-4): X ,  5 A ,  -1 (upper bound) 
M > LT in Ord(5-10): X ,  2 A l + l  (lower bound). 

2) RR to LT (= RS + A, - d):  Let A2 = RS + A, - d .  

RR I LT in Ord (1,3,5,9): RR I A2 (upper bound) 
RR < LT in Ord(2,4,10,11): RR 5 A2 - 1 (upper 

RR > LT in Ord(6,7,8,12): RR 2 A2 + 1 (lower 
bound) 

bound). 

3) DR (= RR + A,) to LT (= RS + A, - d):  Let A3 
R S + A , - A r - d .  

0 DR < LT in Ord(2,4,10,11): RR I A3 - 1 (upper 

DR > LT in Ord(5-8,12): RR 2 A3 + 1 (lower bound) 
DR 2 LT in Ord(1,3,9): RR 2 A3 (lower bound). 

bound) 

4) RRtoM(=RS+X, ) :LetA4=RS+X, .  

RR 5 M in Ord (1,2,6): RR 5 A4 (upper bound) 
RR < M in Ord(5,8-11): RR I A4 - 1 (upper bound) 
RR > M in Ord(3,4,7,12): RR 2 A4 + 1 (lower 
bound). 

5) DR(=RR+Ar) toM(=RS+X, ) :  L e t A , = R S +  
X ,  - A,. 

DR < M in Ord(8-11): RR 5 A5 - 1 (upper bound) 
DR >MinOrd(3,4,7,12):  RR 2 A5+l  (lowerbound) 
DR 2 M i n  Ord(1,2,5,6): RR 2 A5 (lower bound). 
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For example, in Ord (7), [8] I. Lee and V. Gehlot, “Language constructs for distributed real-time 
programming,” in P m .  IEEE Red-Time Syst. Symp., Dec. 1985. 

[9] J. W. Wong, “Distribution of end-to-end delay in message-switched 
networks,” Comput. Networks, vol. 2, pp. 44-49, 1978. 

[IO] I. Lee, S. B. Davidson, and V. Wolfe, “Motivating time as a first class 
entity,” Tech. Rep. MS-CIS-87-54, Dep. Comput. Inform. Sci., Univ. 
of Pennsylvania, 1987. 

RR 2 =(I ,  A2 + 1, A3 + 1, A4 + 1, A5 + 1). 

However, some of these terms dominate: 

A4 > 1, A3 < A2, As < A4 always. 
When Xm < A I ,  then A5 < A2, A4 < A2, A5 < A3, 
but A3 and A4 are unrelated. 
When Xm > A , ,  then A2 < A4 and A3 < A,, but A2 
and A5 are unrelated, and A3 and A4 are unrelated. 

Thus, since Xm > A1 in Ord(7), this expression can be 
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simplified to 

RR 2 A4 + 1, 

as shown in Table 11. 
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