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Abstract
Distributed real-time applications implement distributed applications with timeliness requirements. Such
systems require a deterministic communication medium with bounded communication delays. Ethernet is a
widely used commodity network with a large number of appliances and network components and represents a
natural fit for real-time application; unfortunately, standard Ethernet provides no bounded communication
delays.

Network Code Processor is a soft processor implementation for real-time communication on Ethernet. The
system provides a smart network-card functionality and can be seen as a co-processor for time-triggered
communication. Its most distinguishing feature, the programmability of the processor via the Network Code
language, allows developers to write adaptive but verifiable communication schedules tailored to the
application needs. In this work we present results around the development of the soft processor, discuss the
specific challenges of how to build a reliable and fast communication system, the tradeoffs involved when
moving from a generic software prototype to a programmable hardware implementation.

Comments
To be published in Proceedings of the 13th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), September 2008.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/378

http://repository.upenn.edu/cis_papers/378?utm_source=repository.upenn.edu%2Fcis_papers%2F378&utm_medium=PDF&utm_campaign=PDFCoverPages


In Proc. of the 13th IEEE Intl. Conf. on Emerging Technologies and Factory Automation (ETFA),
Hamburg, Germany, September 2008.

Revised version.

Hardware Acceleration for Verifiable, Adaptive Real-Time Communication

Sebastian Fischmeister
University of Waterloo

Waterloo, Canada
sfischme@uwaterloo.ca

Insup Lee
University of Pennsylvania

Philadelphia, USA
lee@cis.upenn.edu

Robert Trausmuth
University of Applied Sciences

Wiener Neustadt, Austria
trausmuth@fhwn.ac.at

Abstract

Distributed real-time applications implement dis-
tributed applications with timeliness requirements. Such
systems require a deterministic communication medium
with bounded communication delays. Ethernet is a widely
used commodity network with a large number of appli-
ances and network components and represents a natural
fit for real-time application; unfortunately, standard Eth-
ernet provides no bounded communication delays.

Network Code Processor is a soft processor implemen-
tation for real-time communication on Ethernet. The sys-
tem provides a smart network-card functionality and can
be seen as a co-processor for time-triggered communica-
tion. Its most distinguishing feature, the programmability
of the processor via the Network Code language, allows
developers to write adaptive but verifiable communication
schedules tailored to the application needs. In this work
we present results around the development of the soft pro-
cessor, discuss the specific challenges of how to build a
reliable and fast communication system, the tradeoffs in-
volved when moving from a generic software prototype to
a programmable hardware implementation.

1. Introduction

Modern real-time systems are used to implement dis-
tributed applications with timeliness requirements. An in-
trinsic property of such a system is that the correctness of
the system depends on the correctness of values and the
correctness of timing. This implies that a correct value at
an incorrect time can lead to a failure. Consider a car with
a brake-by-wire system, where the pedal communicates
to the brakes when force is applied to the wheels. In this
system, a correct value means that the brakes apply force
to the tires only when the driver hits the brake pedal, and
correct timing means that the time between the two events
of one “hitting the pedal” and two “applying force” should
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0011. The information contained herein does not necessarily reflect the
position or policy of the Government, and no official endorsement should
be inferred.

be bounded. It is obvious that the system is only useful, if
both—correct timing and correct values—are guaranteed.

A distributed real-time system adds the complexity of
decentralized control to a shared communication medium.
Connected nodes can access the medium and cause col-
lisions in the network communication, which scrambles
data and typically results in retransmissions. Since colli-
sions are difficult to predict and retransmissions make it
hard to place a bound on the communication delay, one
primary research goal is to investigate effective coordina-
tion models for controlling access to this shared medium.

Ethernet is a widely used network technology in the
embedded systems industry besides field bus systems.
The market provides a large number of appliances and net-
work components, therefore it is natural to try using Eth-
ernet for real-time communication. Unfortunately, Ether-
net’s intrinsic non-determinism caused by the collision de-
tection and binary back-off mechanism for resolving con-
tention make it hard to provide upper bounds for commu-
nication delays on this platform. A number of systems
propose different schemes, usually called real-time Ether-
net, with different arbitration schemes to provide bounded
delays and enable real-time communication.

Initial work on this topic proposed customized hard-
ware [5, 20, 23] that provided guarantees for the sys-
tem analysis and for high-level real-time software. At
the time this initial research was done, custom hard-
ware was an illusive assumption, because manufacturing
it was too expensive. This motivated research to move
towards commercial off-the-shelf (COTS) Ethernet com-
ponents. Approaches using COTS advocate either sta-
tistical methods [13, 4, 14, 17] for traffic shaping and
traffic prediction or higher-level communication frame-
works [26, 21, 22, 25, 9, 6, 12] on top of the standard Eth-
ernet card with a separate arbitration mechanism. How-
ever, running the framework and arbitration control on
the workstation can cause a huge computation overhead
in the processor [18] and is subject to high jitter (see Sec-
tion 1.1).

Now the assumption of custom chips and custom logic
is no longer illusive. Field programmable gate array
(FPGA) technology now allows systems researchers to
inexpensively build custom hardware running their real-
time communication frameworks [24]. This development
brings a number of benefits: (1) it provides a low jitter and
high throughput environment which is unaffected by the



interrupt load inside the workstation and experiments pro-
duce more trustworthy data, (2) it removes as many layers
as possible from the network stack and allows replacing
them with customized layers removing side effects from
the operating system, and (3) FGPA technology promotes
reuse and custom real-time communication frameworks
can be encapsulated into IP cores and reused by other re-
search groups or industry.

1.1. Motivation
The general goal of our work aims for building an

adaptive and verifiable communication system. The goal
of this work is to investigate whether such system is tech-
nically feasible and what constraints it imposes on the en-
vironment in terms of speed, generality, and integration.

For example, the communication system of the original
Network Code prototype was implemented in software [7]
and resided in the network driver of a real-time Linux sys-
tem. Although the code sits as close to the hardware as
possible considering a full-blown operating system, still
the system experiences high jitter which limits its applica-
bility to experiments in industrial settings.

Figure 1 shows two box plots for execution jitter of
instructions. The figure provides evidence that standard
components introduce high jitter in a system. Let’s con-
sider the instruction send() which enqueues a message in
the output queue. The statistical mode of this instruction is
372ns. If we consider the 99th percentile, then the execu-
tion time lies between with 371-733ns. If we increase the
percentile and thus increase the timing reliability of our
system (a correcter estimate of the execution time leads to
less frequent fault caused by missed deadlines), then we
will observe a drastic increase in execution time. For ex-
ample the 99.9999th percentile leads to an upper bound of
19.090µs (26 times the original value). Although parts of
the software might be optimized by correlating delays and
dependencies using for example statistical models [16],
the high variance still remains.

Execution Time for send()

500 1000 2000 5000 10000 20000 50000

20000 30000 40000 50000 60000 70000 80000

Execution Time for Sending A Packet

Figure 1. Execution jitter in [ns].

The aims of the work presented in this paper are mul-
tifold: 1) Is it possible to build a reliable and fast commu-
nication system for Network Code using programmable

hardware? Fast means for us that the throughput is compa-
rable with raw Ethernet; reliable means for us a low mean
time to failure when meeting timing constraints. 2) What
are the tradeoffs when moving from a software prototype
to programmable hardware? Pure software still provides
more flexibility in terms of programming constructs and
available resources than programmable hardware, so we
may need to trade system features and functionality for
practicability in the system development. 3) How can we
integrate the system with the computation system and its
environment? For example, we will explore whether we
can maintain the standard OS network driver interface, so
legacy drivers work without changes.

2. Overview of Network Code

Network Code represents a domain-specific language
for programming communication schedules and arbitra-
tion mechanisms for real-time communication. Network
Code programs of a certain structure remain verifiable [7],
analyzeable [2], and composable [3]. Furthermore, Net-
work Code and its runtime can be seen as a programmable
communication layer [8].

Network Code provides two distinct types of QoS: best
effort and guaranteed. Messages sent using the best effort
quality class have no bounded communication delay, as
the transmission can fail infinitely often for various rea-
sons including getting blocked by guaranteed traffic or
collisions. Messages sent using the guaranteed quality
class have bounded communication delays. We can apply
static verification [7] and analysis [2] to compute bounds
on communication delays as long as the traffic follows a
well-defined temporal pattern.

Network Code also provides data control functionality
for buffers. This functionality allows the developer to cre-
ate messages from these buffers and transmit them on the
network. The developer can use this to replicate buffers
across multiple nodes following a specific temporal pat-
tern. For example, given that a specific buffer holds the
sensor readings: The developer can write a Network Code
program that transmits the sensor readings to all nodes ev-
ery ten milliseconds. Replicated buffers can act as input
to control-flow decisions in the program. The conditional
branching instruction if() allows the developer to code al-
ternatives. For example, if the last sensor reading lies be-
low a threshold, then the sensor will suspend sending up-
dates for some time.

Figure 2 shows an overview of the programmable arbi-
tration layer used for Network Code, and how it interacts
with the queues and the computation tasks. For further
details, see the prototype software implementation [7].

The Network Code language consists of nine instruc-
tions which control timing, data flow, control flow, and
error handling. In the following, we provide two brief ex-
amples to demonstrate how Network Code works. Most of
the instructions and parameters are intuitive, and param-
eters, which are unimportant for this work, are masked
with the symbol ’ ’. For detailed descriptions, we direct
the interested reader to [7].
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Figure 2. Overview of queues and controls.

As an example for virtual circuit-switched communica-
tion consider the following programs. Note that for sake
of simplicity, we assume that both nodes start at the same
time and there is no clock skew; also wait() is a composite
instruction used for instructive purposes and not atomic.

Sender:
0 L0 : c r e a t e (msg_a , A )

send ( 1 , msg_a , _ )
2 f u t u r e ( 1 0 , L0 )

h a l t ( )

Receiver:
0 wait ( 9 )
L1 : r e c e i v e ( 1 , A )

2 f u t u r e ( 1 0 , L1 )
h a l t ( )

The sender first creates a packet from variable A using
the alias msg a. Then, it sends the message on channel 1,
and sets up an alarm in ten time units to continue at label
L0. It then halts execution (the halt() instruction) and waits
for the alarm to resume operation. The receiver first waits
nine time units for the first delivery of a message and then
receives a this from channel 1 into the local variable A
every ten time units.

As an example for packet-oriented communication,
consider the following programs using the same assump-
tions as before:

Node 1:
0 L0 : mode ( s o f t )

wait ( 4 )
2 mode ( hard )

f u t u r e ( 1 1 , L0 )
4 h a l t ( )

Node 2:
0 L1 : wait ( 5 )

mode ( s o f t )
2 wait ( 4 )

mode ( hard )
4 f u t u r e ( 1 , L1 )

h a l t ( )

The instruction mode() controls the mode of operation
of the run-time system. In the soft mode, the system offers
best-effort communication, in the hard mode it provides
guaranteed communication, and the init mode is used for
setting up the system. The system guards access to the
network through temporal isolation. Node 1 gets exclu-
sive access to the medium during the first four time units,
and Node 2 for time five to nine. While they have exclu-
sive access, both nodes communicate soft values. Mes-
sages are automatically received through the transceiver
and best-effort–traffic messages are logically separated
from guaranteed-traffic messages (see Figure 2).

Note that Network Code also supports raw communi-
cation. In the previous example, only one node was in the
soft mode at a time. If several nodes are in the soft mode,
all of them might concurrently access the network.

3. Network Code Processor

The goals mentioned in Section 1.1 require an effi-
cient architecture which maximizes data throughput and
minimizes latency. Our architecture of choice for achiev-
ing this is a super-scalar application-specific instruction
set processor (ASIP) [10, 11] with independent execution
units for the individual instructions of Network Code.

The ASIP was designed, optimized and implemented
by hand. Although there are several tools available for
doing this, namely MESCAL [19] or commercially avail-
able packages like the Tensilica cores [15], we chose this
approach for really having the hardware on our fingertips.
Future research will show whether we can get similar re-
sults by using such tools.

In this section, we describe the analysis and develop-
ment which lead to the ASIP called Network Code Proces-
sor (NCP). First, we analyze the control, data, and hard-
ware dependencies among individual instructions. Sec-
ond, we describe the concurrency controller in the super-
scalar architecture, and finally, we show an example that
demonstrates the speed up compared to standard sequen-
tial execution.

3.1. Instruction Dependencies
Based on the operational semantics of Network Code,

we can identify three types of dependencies: data depen-
dencies, control-flow dependencies, and mode dependen-
cies.
Control Dependence. Given two successive instructions,
the second one will be control dependent on the first one,
if its execution depends on the evaluation of a conditional
guard expressed in the first instruction. Obviously, the in-
struction if() creates control dependencies in program. The
instruction at the target address is control dependent on
the if() instruction.

However, Network Code also has non-obvious con-
trol dependencies resulting from the instructions halt() and
sync(). The instruction halt() terminates the current exe-
cution until an alarm trigger wakes up the runtime to re-
sume operation. Clearly, the NCP cannot concurrently ex-
ecute instruction sequences such as “halt(); create(...);”, be-
cause it must halt after the first statement and continue
only after a trigger event. The instruction sync() syn-
chronizes distributed nodes by means of a synchroniza-
tion packet. Nodes that wait for such a synchronization
packet must not resume operation before (a) such a packet
is received or (b) a timeout occurs. Therefore, the NCP
cannot concurrently execute instruction sequences such as
“sync(c,3000); create(...);”. The same goes for the sender
and specific instructions that cause packet transmissions,
because the NCP must preserve causal ordering of packet
transmissions.
Data dependence. Two successive instructions are data
dependent, if they access or modify the same resource [1].
In our system, all data dependencies originate from the
read/write access to the shared buffers in between the
individual microcode blocks which implement instruc-
tions. For example, the two instructions “create(msg a, );



send( ,msg a, );” cannot be executed in parallel, because
one instruction writes to a shared buffer containing the
created message while the other instruction reads it.
Mode dependence. Two successive instructions are mode
dependent, if the second instruction executes a mode
change to a target mode and the first instruction is un-
available in this target mode. Typically, each instruction
assumes a specific system state when it executes. A mode
change might violate this assumption. The NCP can be
in one of three operational modes: hard, soft, and sync.
From this, we can derive the mode dependencies among
instructions. For example, the instruction send() is used
solely in the hard mode, and its operational semantics as-
sume that this holds. However, this assumption creates
a mode dependency between the instructions send() and
mode(). For example, the following instruction sequence
is valid “send(...); mode(soft);” and can be executed concur-
rently, while the following cannot “mode(soft); send(...);”.
Summary. Table 1 shows a summary of the depen-
dencies among instructions. The symbols c−→ ,

d−→
and m−→ denote a control, data, and mode depen-
dence, respectively. The symbol a

?←→ b denotes
a dependence a

?−→ b and b
?−→ a. The set G1

consists of all guards except AlwaysFalse, the set G2

contains all guards except AlwaysTrue, and set G3 :=
{TestVar,GreaterVarVar,CompareVarVar,LessVarVar}.

Type Dependence
Control if(G1, jmp)

c−→ (instr(jmp) \ {nop})
if(G2, )

c−→ (instr(next(a)) \ {nop})
halt

c−→ instr(next(a))

sync
c−→ {send, receive, halt, mode, if}

Data halt
d←→ if

sync(c, )
d←→ if(StatusTest, )

receive
d←→ if(G3, )

receive
d←→ create

create
d←→ send

create
d←→ if(SendBufferEmpty, )

destroy
d←→ send

destroy
d←→ if(SendBufferEmpty, )

Mode mode
m←→ {sync, receive, create, destroy, send}

sync
m−→ mode

sync(c, )
m−→ halt

Table 1. Dependence summary

3.2. Concurrency Control
To minimize the number of stalls of concurrently exe-

cuting microcode blocks, we optimized a number of cases
that frequently occur in Network Code programs. For ex-
ample, one of the most frequent instruction sequences is
“create(); send();”, which first creates a message in the send
buffer and then transmits this message. According to the
data dependencies shown in Table 1, these two instruc-
tions must be executed sequentially. However, as they oc-
cur that frequently, we optimize the NCP to allow con-
current execution of these two instructions by means of
a data pipeline. We achieve this by (1) a FIFO queue
between the two microcode blocks and (2) the send() in-

struction’s delayed reading from this FIFO queue. The
FIFO queue enables concurrent access, because while the
microcode block implementing the create() instruction is
still filling the queue, the microcode block implement-
ing the send() instruction can already start reading from
this queue. However, we have to make sure that the
FIFO queue always contains data. To guarantee this,
the send() microcode block first creates the Ethernet tele-
gram’s header (requiring about 30 cycles) before it starts
reading the FIFO. Meanwhile, the concurrently execut-
ing create() block can already start filling the FIFO queue.
Also, the send() block reads data four times slower than the
create(), because the internal memory bus is 32 bits wide
whereas the MAC interface only supports 8 bits.

Table 2 shows the summary of all dependencies for the
NCP after optimizations. The meaning of the characters
in the table are ‘w’ for wait until finished, ‘c’ for continue
with next instruction and ‘b’ wait until the memory bus is
available. The table is read the following way: given two
sequential instructions “x(); y();”, the instruction x() spec-
ifies the column and y() specifies the row. For example,
the snippet “if(); send();” results in a sequential execution
as specified by w, while “send(); if();” can be executed in
parallel as the Table 2 provides a c.
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nop w c c c c w c w c
create w w c b c w c w w
send w c w c w w c w w

receive w b c w w w c w w
sync w c w c w w c w w
halt w c c c w w c w w

future w c c c c w w w w
mode w c w w w w c w w

if w b c b w w c w w

Table 2. Summary of final instruction depen-
dencies.

To simplify the implementation, the instructions mode()
and nop() are synchronous instructions which always have
to finish before the next instruction can start. The halt() in-
struction stops program execution, and the processor starts
working only after receiving an interrupt set up by an ear-
lier future() instruction.

The controller uses the running states of all the instruc-
tion blocks to calculate the locking conditions during the
decoding phase. If Table 2 permits concurrent execution,
the controller will trigger both microcode blocks. Oth-
erwise, it will only trigger one and enter a waiting loop
until the lock is resolved. After starting to execute one
instruction, the controller immediately decodes the next
instruction.

Before switching modes, the locking condition ensures
that the network is available. In practice this means mode
switching in a saturated network only occurs whenever a
currently running transmission on the network reaches its
inter-frame gap.



3.3. Example
Let’s consider an illustrative example to show the bene-

fit of the our selected architecture. Listing 3(b) shows one
of the most common program snippets found in Network
Code. Figure 3(a) shows how this program fits into the slot
structure. The node executing this program first creates a
telegram containing variable B which is then transmitted
as telegram msgb using channel 1. It also receives a tele-
gram msga from the previous slot and stores its content in
variable A.

t

msga msgb

Exec. prgm1

Gap
Slot

(a) Visual structure.

1 L0 : c r e a t e (msg_b , B )
send ( 1 , msg_b , _ )

3 r e c e i v e (msg_a , A )
f u t u r e ( 1 , L0 )

5 h a l t ( )
(b) Program prgm1.

Figure 3. Most common structure in the pro-
grams and its encoding in the sending and
receiving program.

Listing 3(b) must be executed within 10µs, because the
instruction future() specifies a delay of 1 time unit which,
in our implementation, equals 10µs. The future() instruc-
tion takes three cycles, and the halt() instruction requires
two cycles to complete. Assuming that the size of the
variables A and B are 128 words, the instructions create(),
send(), and receive() then require 135, 547 and 543 cycles,
respectively. The sequential execution of the whole pro-
gram block requires 1230 cycles. However, since 10µs
accommodates exactly 1000 cycles, this program cannot
be executed sequentially.

Executing the same program on our superscalar archi-
tecture with the instruction dependencies as specified in
Table 2, this program executes fast enough. First, the
two instructions “create();send();” are executed in paral-
lel, because the instruction send() can start right after cre-
ate() has begun to fill the send FIFO. The instructions
“send();receive();” can be executed in parallel, but the re-
ceive() instruction has to wait for the data bus occupied by
the create() instruction. The program will thus be ready af-
ter 145 cycles and the processor will be halted; except for
the receive() instruction which will still be active for an-
other 533 cycles. Since this is less than 1000 cycles, this
program can be executed by our processor.

Figure 4 shows the execution trace as a Gantt chart of
the NCP for executing Listing 3(b). For each instruction,
it first shows the loading time and then the actual execu-
tion in the microcode block. The upper part shows the
sequential execution, which requires more than 1000 cy-
cles. The lower part shows the execution trace of the NCP,
which executes instructions in parallel and thus can exe-
cute the program in less than 1000 cycles therefore satis-
fying the requirements for the future(1, ) statement.
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Figure 4. Scheduling of the example pro-
gram shown in Listing 3(b).

4. Measurements and Results

For measurements and experimentation, we use two
nodes that are directly connected with no active network
components in between. The two nodes communicate
with each other via a ping-pong program; specifically,
Node A periodically transmits variable A, and node B re-
ceives it.

4.1. Throughput of FPGA Solution
The execution speed of the create(), send() and receive()

instructions grows linearly with the size of the variable,
which makes the system predictable. Because of this,
the system throughput is a direct function of the execu-
tion speed and the variable size. Note that we calculate
the actual throughput with a high precision, because the
hardware is free from jittery influences such as interrupts,
cache misses, and page faults. Figure 5 shows the max-
imal throughput of the FPGA implementation depending
on the data size. The x-axis shows the variable size in
Bytes, and the y-axis shows the throughput in kB/sec.
Note that the data throughput differs from the actual net-
work utilization: (1) Ethernet telegrams include a header
which introduces overhead, and (2) telegrams have a spe-
cific minimum size, so padding must be added until 64
bytes and incurs overhead.

To calculate the performance of the FPGA implemen-
tation, we can use Equations 1 and 2. tp specifies the com-
putation time of the NCP, and ts is the time required by
the MAC layer to transmit a telegram. The components of
tp are instruction cycles executed at a speed of 100 MHz
with 8 cycles setup time for the create() microcode block,
5 cycles for the send() microcode block, and B/4 cycles
for copying the variable content of B bytes. The com-
ponents of ts are the size of the message (frame with 26
and the body with a minimum of 28 bytes and 10 bytes of
inter-frame gap) times the transmission duration of 80ns
per byte in the MAC.
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Figure 5. Throughput of the FPGA imple-
mentation.

tp(B) = (8 + B
4 + 5) ∗ 0.010µs (1)

ts(B) = (26 + max(B, 28) + 10) ∗ 0.08µs (2)

The data throughput TP can now be calculated by the
following equation where step marks the minimal time
granule in µs in the system:

TP (B, step) = (d tp + ts
step

e ∗ step)−1 ∗ B

1, 024
(3)

Figure 5 shows the throughput resulting from (3).

4.2. Software vs FPGA
To compare the performance between the software pro-

totype [7] and the FPGA implementation, we use the same
ping-pong program as mentioned before. The software
prototype runs on the hardware setup outlined in [7] and
the FPGA prototype uses the hardware mentioned before.
The core of the quantitative evaluation is now to identify
that maximum throughput while still obeying the follow-
ing premises:

1. The slot structure must be preserved. The sending
node must only communicate during its slot, so the
i-th communication must take place in the time slot
[i · step, (i + 1) · step).

2. The input queue must not overflow. The receiver
must be fast enough to process the input queue as
new telegrams arrive.

In the performance test, we run these programs on the
software implementation and on the FPGA with different
throughput values. We fixed the variable size to 4 bytes.
We then evaluated the reliability of the system in terms of
how many successful transmissions took place versus how
many unsuccessful ones happened. A successful trans-
mission is one which keeps the premises stated above. An
unsuccessful one violates at least one of them. So, for ex-
ample, programming an arbitrary throughput and running
the programs, if the premises are kept on average every
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Figure 6. Throughput of the two prototypes.

other transmission, then the reliability of this throughput
equals 50%.

Figure 6 shows the throughput of the two prototypes.
The data bases on about one million measurements per
data point, the data for the FPGA implementation bases on
the results from the cycle-accurate FPGA simulator and
sample measurements. The x-axis displays the reliability
of the traffic according to the definition above. The y-axis
show the throughput in Mbits/s. The figures show that
the FPGA implementation clearly outperforms the soft-
ware implementation. The difference becomes even more
significant as the reliability approaches 1. The software
version also requires and additional safety margin for in-
dustrial cases. Looking at the other end of the spectrum,
the software asymptotically approaches the upper limit as
the reliability moves towards 0.

4.3. On Chip Resource Usage
The current implementation uses a XILINX Virtex 4

FX 12 chip, which provides one PPC 405 core and two
Ethernet MACs on chip. The FPGA has 36 memory
blocks, and the NCP currently uses 20. The CLB usage
is moderate (30% of the FX12 chip) which leaves lots of
space for the host processor system integration. The host
processor uses another four memory blocks for the boot
loader, and it starts the operating system from a flash card.
The full system including FLASH card, NCP, VGA and
keyboard/mouse driver on chip covers 75% of the CLBs
on chip. The host operating system (in our case linux) is
booted from the FLASH card.

4.4. Timing and Data Throughput
Since the Network Code program is time triggered (the

future() instruction uses a time value for the parameter
dl), correct timing is important and needs to be analyzed
throughout the whole system.

The FPGA runs at 100 MHz. Every critical function is
implemented as an IP core and has a well-known timing
behavior. Although the execution time of some instruc-
tions depends on the length of the concerned variables, all
this information is known at design time and timing prop-
erties can be statically checked beforehand.



Programs can operate at a (message) resolution of
100 kHz, therefore the current time quantum (minimal
value) for the future() instruction is 10µs. Since we use a
100 MBit Ethernet connection, the quantum is more than
the minimum transmission time of an Ethernet telegram,
which is 6.8 µs for 64 bytes plus preamble and IFG that
gives a throughput of 6MB/s. Note different payload sizes
result in more or less throughput (see Figure 5). However,
active networking components can introduce an additional
delay that has to be considered. In our experiments we
used a Cisco Catalyst 3500 which added approximately
25, 135, and 271µs for a transmission of a variable with
the size of 4, 500, and 1 000 bytes.

4.5. Discussion
Going from Software to Programmable Hardware.

Software systems rarely face resource limitations of the
storage resource. If the developer faces such a limitation,
the typical solution is to either move to a larger chip (e.g.,
in microcontroller systems) or to add more memory and
disk storage to the computer. However, the developer can-
not apply this solution to programmable hardware, espe-
cially FPGAs, because current production and available
boards limit the available options. We therefore revisited
each instruction and made a case again why this feature
should be part of the system and should be present in the
hardware solution. Among the features, which we cut out
are message buffers for outgoing messages and multiple
concurrent future() instructions. Both features were rarely
used in the software prototype. As a consequence of the
former, the create() and send() instructions can only use one
send buffer. Therefore, one packet must be prepared after
the other has been sent. The latter results in more com-
plicated code, but does not reduce the functionality of the
system.

In the software implementation, the developer can code
arbitrary branch guards via C functions. In the hard-
ware implementation, we now provide a predefined set
of branching functions, but still leave the developer an
option of extending the set with own functions synthe-
sized onto the FPGA. These predefined branching condi-
tions fall into three categories: value comparators, state
comparators, and counter comparators. Value compara-
tors compare two values in the dual RAM and branch, for
instance, if the value A is greater than value B. State com-
parators allow the developer to branch depending on the
internal status bits. These conditions include for exam-
ple checks whether messages have been received in par-
ticular channels or whether the output buffer is filled. Fi-
nally, counter comparators provide convenience to the de-
veloper, because now the developer can set/reset and com-
pare the counters inside the Network Code program with-
out requiring a high-level application. For example, the
developer can now easily encode that the program follows
a particular branch every other round.

The FPGA implementation provides a decoupled pro-
cessor for real-time communication. In the software pro-
totype, the application and the communication were still
tightly coupled, because they executed on the same pro-

cessor. In the FPGA implementation, these two elements
are disjoint and we require additional means for commu-
nicating between them. We therefore provide a signal() in-
struction in the hardware implementation to generate in-
terrupts in the host processor. The application software in
the host processor can listen to this interrupt and respond
appropriately.

Lessons from Using Ethernet COTS vs FPGA. Our
measurements show that software-based real-time com-
munication frameworks in which the arbitration control
is located inside the kernel or at a higher level can only
be used for applications which require low throughput or
relaxed timing constraints. For case studies, this implies
that one should only consider applications with short run
times, because a long run time will inevitably eventually
cause violations in the slot structure and thus create errors.
However, short run times inevitably cast doubt on whether
the tested system actually works with industry-grade use
cases, especially since programmable hardware is read-
ily available. Network components such as switches fur-
ther aggravate this and support our argument that real-time
communication experiments conducted only with high-
level software prototypes should be handled with care.

On the other hand, using programmable hardware
for validating real-time communication frameworks bore
more advantages than drastic throughput improvements.
For example, the timing variance for each code instruction
and action differs among workstations, because of dif-
ferences among interrupt controllers, motherboards, and
processors. The FPGA allows cycle-accurate simulation
and offers similar delays on each board instance. Thus,
our current and future experiments lead to precise, re-
producible results. This increase in precision allows re-
searchers to place more confidence in the results.

Programmable hardware also enabled us to implement
our model more faithfully than software-based implemen-
tations. Again, this is partially due to the increase in deter-
minism, but also due to the natural way of implementing
concurrently executing structures. Concurrent tasks in-
side the communication framework can be implemented
as parallel processes on the FPGA board, and they will
truly concurrently execute. For example, if we want to
extend the hardware implementation of the NCP to allow
multiple concurrent threads via multiple future() instruc-
tions. We can achieve this easily by synthesizing multiple
NCPs onto the FPGA that run in parallel.

Finally, hardware synthesis also requires careful think-
ing about the system model, functionality, and timing. De-
bugging is difficult and programming by trial and error is
virtually impossible. This leads to a clean and well- doc-
umented implementation.

Verification Step Simplifies Software Requirements.
Using verification on Network Code programs [7] sig-
nificantly reduces the required functionality in the NCP.
This is important, because Network Code provides a pro-
grammable framework and the developer can program
own communication schedules. Since the developer can-
not be trusted, the NCP would need to provide function-
ality for error detection and error recovery. However, we



can check programs for structural and behavioral errors
and thus, we can substantially reduce the functionality for
error detection/recovery and free these resources. For ex-
ample, the NCP does not require checks on internal state
corruption such as invalid program counters, invalid mem-
ory cell accesses, and incompatible data formats and type
checking when receiving messages and storing the values
in the variable space. This significantly contributes to the
NCP’s low footprint.

5. Conclusion

We have presented the Network Code Processor (NCP)
which is a processor IP core for Network Code programs,
and a co-processor for time-triggered protocols in gen-
eral. The processor implements a superscalar architec-
ture in which multiple instructions execute concurrently.
We discussed the development of the NCP, specifically its
concurrency controller and presented an example which
clearly shows the benefits of the superscalar architecture.
Measurements showed that the the NCP clearly surpasses
the software implementation and moreover meets the de-
sign goal to provide a real-time–capable communication
system comparable with standard Ethernet. Finally, we
also captured our experiences during the development and
our design rationals in the discussion section of this work.
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