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Adventures in Bidirectional Programming

Abstract
Most programs get used in just one direction, from input to output. But sometimes, having computed an
output, we need to be able to update this output and then "calculate backwards" to find a correspondingly
updated input. The problem of writing such bidirectional transformations — often called lenses — arises in
applications across a multitude of domains and has been attacked from many perspectives [1–12, etc.]. See
[13] for a detailed survey.
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Adventures in Bidirectional Programming

Benjamin C. Pierce

University of Pennsylvania

Most programs get used in just one direction, from input to output. But some-
times, having computed an output, we need to be able to update this output and
then “calculate backwards” to find a correspondingly updated input. The prob-
lem of writing such bidirectional transformations—often called lenses—arises in
applications across a multitude of domains and has been attacked from many
perspectives [1–12, etc.]. See [13] for a detailed survey.

The Harmony project at the University of Pennsylvania is exploring a linguis-
tic approach to bidirectional programming, designing domain-specific languages
in which every expression simultaneously describes both parts of a lens. When
read from left to right, it denotes an ordinary function that maps inputs to out-
puts. When read from right to left, it denotes an “update translator” that takes
an input together with an updated output and produces a new input that reflects
the update. These languages share some common elements with modern func-
tional languages—in particular, they come with very expressive type systems.
In other respects, they are rather novel and surprising.

We have designed, implemented, and applied bi-directional languages in three
quite different domains: a language for bidirectional transformations on trees
(such as XML documents), based on a collection of primitive bidirectional tree
transformation operations and “bidirectionality-preserving” combining forms [13];
a language for bidirectional views of relational data, using bidirectionalized ver-
sions of the operators of relational algebra as primitives [14]; and, most recently,
a language for bidirectional string transformations, with primitives based on
standard notations for finite-state transduction and a type system based on reg-
ular expressions [15]. The string case is especially interesting, both in its own
right and because it exposes a number of foundational issues common to all
bidirectional programming languages in a simple and familiar setting.

This survey talk discusses several of these issues in depth and describes
progress toward solutions.
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