
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

November 2007

Adventures in Bidirectional Programming
Benjamin C. Pierce
University of Pennsylvania, bcpierce@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Postprint version. Published in Lecture Notes in Computer Science, Volume 4855, FSTTCS: Foundations of Software Technology and Theoretical
Computer Science, November 2007, pages 21-22.
Publisher URL: http://dx.doi.org/10.1007/978-3-540-77050-3_3

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/361
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Benjamin C. Pierce, "Adventures in Bidirectional Programming", . November 2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/361
mailto:libraryrepository@pobox.upenn.edu


Adventures in Bidirectional Programming

Abstract
Most programs get used in just one direction, from input to output. But sometimes, having computed an
output, we need to be able to update this output and then "calculate backwards" to find a correspondingly
updated input. The problem of writing such bidirectional transformations — often called lenses — arises in
applications across a multitude of domains and has been attacked from many perspectives [1–12, etc.]. See
[13] for a detailed survey.

Comments
Postprint version. Published in Lecture Notes in Computer Science, Volume 4855, FSTTCS: Foundations of
Software Technology and Theoretical Computer Science, November 2007, pages 21-22.
Publisher URL: http://dx.doi.org/10.1007/978-3-540-77050-3_3

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/361

http://repository.upenn.edu/cis_papers/361?utm_source=repository.upenn.edu%2Fcis_papers%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages


Adventures in Bidirectional Programming

Benjamin C. Pierce

University of Pennsylvania

Most programs get used in just one direction, from input to output. But some-
times, having computed an output, we need to be able to update this output and
then “calculate backwards” to find a correspondingly updated input. The prob-
lem of writing such bidirectional transformations—often called lenses—arises in
applications across a multitude of domains and has been attacked from many
perspectives [1–12, etc.]. See [13] for a detailed survey.

The Harmony project at the University of Pennsylvania is exploring a linguis-
tic approach to bidirectional programming, designing domain-specific languages
in which every expression simultaneously describes both parts of a lens. When
read from left to right, it denotes an ordinary function that maps inputs to out-
puts. When read from right to left, it denotes an “update translator” that takes
an input together with an updated output and produces a new input that reflects
the update. These languages share some common elements with modern func-
tional languages—in particular, they come with very expressive type systems.
In other respects, they are rather novel and surprising.

We have designed, implemented, and applied bi-directional languages in three
quite different domains: a language for bidirectional transformations on trees
(such as XML documents), based on a collection of primitive bidirectional tree
transformation operations and “bidirectionality-preserving” combining forms [13];
a language for bidirectional views of relational data, using bidirectionalized ver-
sions of the operators of relational algebra as primitives [14]; and, most recently,
a language for bidirectional string transformations, with primitives based on
standard notations for finite-state transduction and a type system based on reg-
ular expressions [15]. The string case is especially interesting, both in its own
right and because it exposes a number of foundational issues common to all
bidirectional programming languages in a simple and familiar setting.

This survey talk discusses several of these issues in depth and describes
progress toward solutions.

References

1. Meertens, L.: Designing constraint maintainers for user interaction (1998)
Manuscript.

2. Kennedy, A.J.: Functional pearl: Pickler combinators. Journal of Functional Pro-
gramming 14(6) (2004) 727–739

3. Benton, N.: Embedded interpreters. Journal of Functional Programming 15(4)
(2005) 503–542

4. Ramsey, N.: Embedding an interpreted language using higher-order functions and
types. In: ACM SIGPLAN Workshop on Interpreters, Virtual Machines and Em-
ulators (IVME), San Diego, CA. (2003) 6–14



5. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bi-directional transformations. In: Partial Evaluation and
Program Manipulation (PEPM). (2004)

6. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual syntax for XML languages.
In: Database Programming Languages (DBPL), Trondheim, Norway. Volume 3774
of Lecture Notes in Computer Science., Springer-Verlag (August 2005) 27–41

7. Kawanaka, S., Hosoya, H.: bixid: a bidirectional transformation language for XML.
In: ACM SIGPLAN International Conference on Functional Programming (ICFP),
Portland, Oregon. (2006) 201–214

8. Daly, M., Mandelbaum, Y., Walker, D., Fernández, M.F., Fisher, K., Gruber, R.,
Zheng, X.: PADS: An end-to-end system for processing ad hoc data. In: Proceed-
ings of ACM SIGMOD International Conference on Management of Data, Chicago,
IL. (2006) 727–729

9. Alimarine, A., Smetsers, S., van Weelden, A., van Eekelen, M., Plasmeijer, R.:
There and back again: Arrows for invertible programming. In: ACM SIGPLAN
Workshop on Haskell. (2005) 86–97

10. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and
open questions. In: MODELS. (2007)

11. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4) (December 1981) 557–575

12. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems (TODS) 13(4) (1988) 486–524

13. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: A linguistic approach to the view update
problem. ACM Transactions on Programming Languages and Systems (3) (May
2007) Extended abstract in Principles of Programming Languages (POPL), 2005.

14. Bohannon, A., Vaughan, J.A., Pierce, B.C.: Relational lenses: A language for
updateable views. In: Principles of Database Systems (PODS). (2006) Extended
version available as University of Pennsylvania technical report MS-CIS-05-27.

15. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. Technical report, Dept. of CIS University of
Pennsylvania (July 2007) Available from http://www.cis.upenn.edu/∼jnfoster/

boomerang-tr.pdf.


	University of Pennsylvania
	ScholarlyCommons
	November 2007

	Adventures in Bidirectional Programming
	Benjamin C. Pierce
	Recommended Citation

	Adventures in Bidirectional Programming
	Abstract
	Comments


	tmp.1203019132.pdf.8bvvk

