
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

May 2008

Compositional Feasibility Analysis for Conditional
Real-Time Task Models
Madhukar Anand
University of Pennsylvania, anandm@seas.upenn.edu

Arvind Easwaran
University of Pennsylvania, arvinde@seas.upenn.edu

Sebastian Fischmeister
University of Pennsylvania, sf@seas.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2008 IEEE. (To Appear) Proceedings of the 11th IEEE International Symposium on Object-oriented Real-time Distributed Computing
(ISORC 2008), Orlando, Florida, May 5-7, 2008.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/360
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Madhukar Anand, Arvind Easwaran, Sebastian Fischmeister, and Insup Lee, "Compositional Feasibility Analysis for Conditional Real-
Time Task Models", . May 2008.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/360
mailto:libraryrepository@pobox.upenn.edu

Compositional Feasibility Analysis for Conditional Real-Time Task
Models

Abstract
Conditional real-time task models, which are generalizations of periodic, sporadic, and multi-frame tasks,
represent real world applications more accurately. These models can be classified based on a tradeoff in two
dimensions – expressivity and hardness of schedulability analysis. In this work, we introduce a class of
conditional task models and derive efficient schedulability analysis techniques for them. These models are
more expressive than existing models for which efficient analysis techniques are known. In this work, we also
lay the groundwork for schedulability analysis of hierarchical scheduling frameworks with conditional task
models. We propose techniques that abstract timing requirements of conditional task models, and support
compositional analysis using these abstractions.

Comments
Copyright 2008 IEEE. (To Appear) Proceedings of the 11th IEEE International Symposium on Object-
oriented Real-time Distributed Computing (ISORC 2008), Orlando, Florida, May 5-7, 2008.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/360

http://repository.upenn.edu/cis_papers/360?utm_source=repository.upenn.edu%2Fcis_papers%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages

Compositional Feasibility Analysis of Conditional Real-Time Task Models ∗

Madhukar Anand, Arvind Easwaran, Sebastian Fischmeister and Insup Lee
Department of Computer and Information Science

University of Pennsylvania
{anandm,arvinde,sf,lee}@seas.upenn.edu

Abstract

Conditional real-time task models, which are general-
izations of periodic, sporadic, and multi-frame tasks, repre-
sent real world applications more accurately. These mod-
els can be classified based on a tradeoff in two dimensions
– expressivity and hardness of schedulability analysis. In
this work, we introduce a class of conditional task models
and derive efficient schedulability analysis techniques for
them. These models are more expressive than existing mod-
els for which efficient analysis techniques are known. In this
work, we also lay the groundwork for schedulability analy-
sis of hierarchical scheduling frameworks with conditional
task models. We propose techniques that abstract timing
requirements of conditional task models, and support com-
positional analysis using these abstractions.

1 Introduction

Embedded real-time processes are typically imple-
mented as some event-driven code embedded within an infi-
nite loop. In many applications, the action to be taken upon
the occurrence of external events depends on factors such as
the current state of the system, values of external variables,
etc. These systems can be modeled using well known task
frameworks such as periodic/sporadic tasks, task graphs,
and timed automata. Although schedulability is a well stud-
ied problem for periodic/sporadic tasks, they lack the ex-
pressivity of task graphs and timed automata. On the other
hand, schedulability analysis for general task graphs and
timed automata is hard.

A subclass of task graphs, called recurring branching
tasks [3], are more expressive than periodic/sporadic tasks
and their demand computation for schedulability analysis
can be done efficiently. In this work, we introduce new
models that are strictly more expressive than the recurring
task model used by Baruah [3], but at the same time re-
tain their efficiency of demand computation. Specifically,

∗This research was supported in part by FA9550-07-1-0216 NSF CNS-
0509143, NSF CNS-0721541, NSF CNS-0720703, and OEAW APART-
11059

we support analysis for models whose period of recurrence
for different branches is not identical (anisochronous), and
for models with explicit control variables, transition guards,
and assignments. We call these models Recurring Branch-
ing Task Model (RBT) and Recurring Task Model with
Branching and Control variables (RTC) respectively.

The increasing complexity of real-time embedded sys-
tems requires advanced design and analysis methods for the
assurance of timing requirements. Component-based tech-
niques have been widely used to design such systems. They
often involve hierarchical scheduling frameworks with con-
ditional task models for supporting hierarchical resource
sharing under different policies. To take advantage of
component-based design, schedulability analysis of hierar-
chical frameworks must then be addressed. Furthermore,
to be faithful to the paradigm of component-based engi-
neering, it is desirable to do this analysis compositionally,
i.e., system-level schedulability analysis should be done by
combining component interfaces that abstract component-
level timing requirements. In this work, we develop tech-
niques to abstract the resource demand of RBT/RTC mod-
els into interfaces, and thus address compositional analysis
for these models.

For real-time systems, there has been a growing attention
to compositional analysis of hierarchical scheduling frame-
works [6, 10, 11, 8, 13, 9, 14]. Traditionally, this analysis
has been achieved using resource model based interfaces
that characterize the resource supply necessary to sched-
ule components. Mok and Feng proposed the bounded-
delay resource partition model for a hierarchical scheduling
framework [6], and Shin and Lee [13] addressed the inter-
face generation problem for these models. Similarly, there
are studies [11, 8, 12] on the component abstraction prob-
lem using periodic resource models. When these techniques
are used for hierarchical frameworks with conditional task
models, complexity of interface generation depends on the
utilization of task set (i.e., schedulability checking of con-
ditional task models depends on utilization [3]). Specifi-
cally, if the utilization is high, then these procedures are
inefficient. On the other hand, in this paper, we directly
synthesize component interfaces from the resource demand
of conditional task models in those components. Our tech-

1

nique is independent of task set utilization, and therefore
does not suffer from the same drawback as resource model
based techniques.

In other related work, Thiele et al. [14], and Matic and
Henzinger [9], introduced real-time interfaces for the com-
positional analysis problem. However, these approaches
cannot be applied to hierarchical frameworks with condi-
tional task models. Recurring branching task models and
their schedulability analysis was introduced by Baruah [4,
3]. Bordoloi and Chakraborty [5] extended this analysis for
models with dynamic task parameters. However, both these
approaches consider restricted models and also do not ad-
dress the compositional analysis problem.

1.1 Motivational Example

Consider the example of the Three Tanks System
(3TS) [7] shown in Figure 1. The plant consists of inter-
connected water tanks, where each tank has evacuation taps
for simulating perturbation. Two of the tanks (T1 and T2)
can pump water into other tanks via the pumps P1 and P2.
The plant is nonlinear and hence it uses three different con-
trollers for each pump. (1) A controller P (proportional) is
used for the case when there is no perturbation (no water
leaves the tank). (2) A controller PI (proportional integra-
tor) is used when there is some perturbation (water drains
out of the tank). When the control error is large, a con-
troller with fast integration speed is used and otherwise, a
controller with slow integration speed is used.

xx

xx

xxx

Tap13 Tap23

P1
P2

T2T3T1

Tap1 Tap3 Tap2

Figure 1. Overview of 3TS

EM S1

S2Machine

TSTCT

HTL Code(CT) HTL Code(S) HTL Code(A)

TA

Figure 2. System hierarchy

Figure 1.1 shows the scheduling hierarchy of the 3TS
system. At the first level, we have the controller (CT), sen-
sor (S) and actuator (A) switching logic captured as HTL
code and scheduled by the virtual machine (EM). Each of

these modules release tasks TCT , TS and TA, respectively,
which actually perform the control, sensing and actuation.
These tasks are written in a high level language like C and
are scheduled by the operating system. In our example,
we assume that EM uses EDF (S1=EDF) for scheduling the
HTL tasks, and the operating system uses RM (S2=RM) to
schedule tasks at the second level. Figure 1.1 then shows the
conditional models for modules in 3TS (c.f.,HTL code [1]).

As can be seen from this example, in practice, embedded
real-time systems comprise of multiple components, each
modeled using conditional tasks. Therefore, as discussed
before, there is a need for compositional analysis techniques
for such complex systems. The abstraction techniques we
present in this paper, aim to fill this gap.

2 Task Model and Definitions

In this section, we define our recurring task models and
their execution semantics. Our system consists of multiple
real-time components sharing a global resource (e.g., CPU,
shared network, etc.) under a hierarchical scheduling pol-
icy. The shared resource demand of each component can
be represented by a set of RBT models, each comprising
of multiple simple tasks as the basis for demand. A simple
task T = (e,d) requires e time units of the resource within
d time units of its release.

Informally, a RBT model is a structure consisting of
nodes and transitions between these nodes, where each node
defines a release of a simple task and each transition identi-
fies the minimum jitter between successive task releases.

Definition 1 (RBT Model) A RBT model Ω is a tuple
〈V,v0,V F ,E,τ,ρ〉 where,

• V is a set of nodes,
• v0 ∈V is the start node,
• V F ⊆V is a set of final nodes called leaves,
• E ⊆ V ×V = ET ∪ER is a set of transitions where ER

is a set of resets,
• τ : V → T is a function from nodes to simple tasks,
• ρ : E → N is a function from a transition to minimum

jitter.

ER = {〈v,v0〉|v ∈V F} and ET = E \ER such that the under-
lying graph (V,ET) is a directed tree.

For this model, we assume that any node releases one sim-
ple task. Multiple task releases can be handled by transi-
tions with zero jitter. The execution semantics of a RBT
model may be described as follows. The execution starts at
node v0 where the task τ(v0) is released. After the release,
a transition from v0 is chosen non-deterministically to one
of the descendant nodes of v0 (say, v). This transition is
taken after a minimum delay of ρ(〈v0,v〉), and this process
of task release continues from node v. We now introduce
some definitions related to the RBT model.

2

P

R

L1

L3 L4

L2

L5 L6

PI(100, 500)

gRPIgRP

(0, 0)

(0, 0) (100, 450)

(10, 50)

(0, 0)(0, 0)

PIf PIs
(150, 450)

gPL1 gPIPIs

Controller Task

gRP ≡ (0,mode == m T1 control P, ∅)
gRPI ≡ (0,mode == m T1 control PI, ∅)
gPL1 ≡ (0, isP 2 PI1(e1, e3, s1),mode = m T1 control PI)
gPL2 = ¬gPL1

gPIPIf
≡ (0, isFast PI T1(h1), ∅)

gPIPIf
≡ (0, isSlow PI T1(h1), ∅)

gPIf L3 ≡ (0, isPI 2 P1(e1, e3, s1),mode = m T1 control P)
gPIf L4 = ¬gPIf L3

gPIsL5 = gPIf L3

gPIsL6 = gPIf L4

P

R

Sensor Task

PI(20, 500)

gRPIgRP

(0, 0)

(20, 450)

(5, 50)

PIf PIs

gPIPIs

(40, 450)

A (10, 250)

Actuator task

Figure 3. Conditional models for EM in the 3TS system

Definition 2 (Run) A run r ≡ run(vi,vi+ j, t) is a sequence
of progression of nodes from vi to vi+ j of a RBT model Ω =

〈V,v0,V F ,E,τ,ρ〉 : vi ei+1−→ vi+1 ei+2−→ . . .
ei+ j−→ vi+ j where ∀l ∈

[1, j], ei+l = 〈vi+l−1,vi+l〉 ∈ E and t = ∑l
k=1 ρ(ei+k). We

denote by Γ(r) the duration t of run r. Also, the resource

demand of the run r is defined as ∆(r) = ∑ j
l=0 τ(vi+l).e.

In this definition τ(vi+l).e represents the execution re-
quirement of task τ(vi+l). Now we can formally define the
term isochronous and anisochronous RBT models.

Definition 3 (Isochronicity) A RBT model Ω is
isochronous if ∀vi,v j ∈ V F ,Γ(run(v0,vi, t)) + ρ(vi,v0) =
Γ(run(v0,v j, t))+ ρ(v j,v0). In this case, the smallest t for
which this condition is true, is called the period of Ω. In all
other cases, Ω is anisochronous.

For an isochronous RBT model Ω with period P, we
define the worst case loop, wcl(Ω) = argmaxr ∆(r) where
r ≡ run(v0,v0,P). Intuitively, wclΩ is the loop with largest
demand starting from v0, ending at v0 and passing through
exactly one leaf.

Definition 4 (RTC Model) The RTC model Ψ is similar to
the RBT model Ω (Definition 1), except that ρ is now de-
fined as a function from a transition to minimum jitter, an
enabling condition, and a variable assignment (ρ : E →
N×G×A).

a ∈ A consists of assignment for variables in V and g ∈ G
is any decidable function over the variables V . The defini-
tions of run, Γ, ∆, isochronicity, and wcl for RTC models
are similar to those for RBT models, except that the transi-
tions in a valid run must be enabled. Hence a run is only
defined under a fixed variable assignment. In the remainder
of the paper, although we use the same notation to denote
a run (run(va,vb, t)), we assume, strictly for didactic pur-
poses, that there is an implicit initial variable assignment
that uniquely identifies this run. The execution semantics of

the RTC model are similar to the RBT model. In addition,
the enabling conditions/variable assignments on a transition
from vi are assumed to be evaluated/executed immediately
after the release of task τ(vi), which is instantaneous. The
3TS system models (Figure 3) is an example of RTC model.

We make the following assumptions for a RTC model
(1) the set of enabling conditions g1, . . . ,gm on transitions
leaving a node must be exhaustive, i.e.,

Wm
j=1 g j = true

(progress). (2) the enabling conditions and assignments
have no overhead in terms of space and time. This assump-
tion simplifies presentation of the paper, and the overhead
can be easily integrated into our analysis, and (3) the set of
leaf nodes V F is nonempty, and every other node has a run
to one of the leaf nodes.

3 Demand for anisochronous RBT models

The resource demand bound function (dbfΩ : R→ R) of
a RBT model Ω upper bounds the amount of computational
resource required to meet the deadlines of all the released
tasks. For a time interval length t, dbfΩ(t) gives the largest
resource demand of Ω in any time interval of length t. This
computation is done over tasks that are both released and
have their deadlines within the interval. Further, a run r of
Ω such that ∆(r) = dbfΩ(t) is called a critical run for in-
terval length t. Since we do not assume frame separation1,
the duration of this critical run need not be t. However, in
the remainder of the paper, for clarity of presentation we
will abuse notation in that we denote by t, the duration of
a critical run for interval length t. The request bound func-
tion (rbfΩ : R→ R) of a RBT model Ω, upper bounds the
amount of resource demand released in a time interval. The
rbf computation takes into account the demand of all the
tasks that are released in the interval, including those tasks
whose deadlines are outside the interval.

1Under frame separation, the deadline of a task at any node is at most the mini-
mum jitter over all outgoing transitions from that node. c.f., [3]

3

For isochronous RBT models, Baruah [3] has pre-
sented an efficient algorithm to compute the dbf. We
summarize this technique below. Consider model Ω =
〈V,v0,V F ,E,τ,ρ〉, and a time interval of length t < 2P
where P is the period of Ω. In any run of Ω with dura-
tion t, the start node v0 occurs at most once. These runs can
therefore be enumerated to compute dbfΩ for all t < 2P.
For t ≥ 2P, the run with largest demand consists of three
phases. (1) a run(vi,v0, t1) s.t. t1 < P, (2) some k ∈ N mul-
tiples of wcl(Ω) of total duration t2, and (3) a run(v0,v j, t3)
s.t. t3 < P and t1 + t2 + t3 = t. Since run(vi,v0, t1) ends in v0

and run(v0,v j, t3) starts from v0, we can concatenate them
into a single run of duration t1 + t3(< 2P) for the purposes
of dbf computation. Therefore, for all t ≥ 2P,dbfΩ(t) =
dbfΩ(t1 + t3) + k ∆(wcl(Ω)), where dbfΩ(t1 + t3) is com-
puted using the aforementioned dbf procedure for t < 2P.

The above procedure cannot be directly applied to
anisochronous models. This is because the minimum du-
ration between successive invocations of the start node in
the anisochronous case, depends on the particular run. In
fact, a reduction from the integer knapsack problem can be
used to prove that dbf computation for this case is NP-hard.
We now describe a procedure to transform anisochronous
RBT models into isochronous models. This procedure en-
sures that the demand of the transformed model is at least as
much as the demand of the anisochronous model. Consider
an anisochronous RBT model Ω = 〈V,v0,V F ,E,τ,ρ〉, such
that 〈p1, . . . , pn〉 represents the minimum durations of runs
between successive invocations of the start node, through
different leaf nodes. Furthermore, w.l.o.g we assume that
p1 ≤ p2 ≤ . . . ≤ pn. We denote by vi and ri, the leaf and
run, respectively, that correspond to pi. For example, con-
sider the anisochronous RBT model shown in Figure 4(a).
It consists of two different runs between successive invo-
cations of the start node; one through leaf v1 and another
through v2. In this case, the minimum durations of these
runs are 〈p1 = 4, p2 = 7〉.

We transform Ω to an isochronous model with period
P for some P ≥ pn. For this transformation, we assume
that for any v ∈ V , the deadline of τ(v) is at most the du-
ration of the shortest run to v0 from v (reset frame separa-
tion). This transformation procedure is presented in Algo-
rithm 1. In the algorithm, the nodes labeled u,uδ and umax
denote the inserted nodes. To make the presentation simple,
in all the algorithms described in this paper, we assume that
the creation of nodes and edges also appropriately update
sets V,V F , and E. In Lines 5-21 of the algorithm, we insert
nodes between vi and v0 in Ω such that the duration of the
inserted run is P− pi. This inserted run mimics the tran-
sition jitters of the old run ri (of duration P− pi), but the
demand of each inserted node is dbfΩ for an interval length
equal to the jitter on outgoing transition. This insertion en-
sures that any critical run in the old model also exists in the
transformed model, and has at least the same demand. In
the case that pi < P− pi, the introduced portion is longer

3

(1, 3)

(1, 2)(1, 2)

2

v0

v2

4

2

t

1

dbfΩ(t) rbfr1(t)

6

4

3

2

2

1

1 0 1

1 2

2

2

−

v1

dbfr1(t)

0

1

1

1

−

(a) Example anisochronous model

umax uδ ub ua

(1, 2)

1

(0.5, 3)

3

v1

v2

v0

(1, 2)(1, 7)

(1, 2)

(1, 3)

0 2 2

4

0

(1, 3)

2

(b) Transformed model

Figure 4. Model transformation

than the old run, so the remainder demand for P− 2pi is
inserted in Line 18.

As we make the RBT model isochronous by introducing
new nodes, it is possible that some of the older nodes get
shifted out of a critical interval in the dbf computation. In
Line 23 of the algorithm, we add a node that compensates
for the demand of such displaced nodes. Finally, we intro-
duce a node umax at the beginning of the RBT which has
a demand equal to the maximum demand over all inserted
nodes (except uδ and node inserted in Line 18). This is re-
quired to handle the case where the critical interval does
not end on an inserted node. Whenever P < 3p1, all values
of dbf and rbf required by the algorithm can be computed
in O(|V |3) time [3, 4], giving an overall running time of
O(|V |3 + |V |P). In addition, we observe that (1) number of
nodes inserted by the algorithm is O(|V F ||V |) and (2) re-
set frame separation property is preserved. We illustrate the
above algorithm using the anisochronous model shown in
Figure 4(a) when P = p2 = 7. The transformed isochronous
model is shown in Figure 4(b).

Theorem 1 Let Ω = 〈V,v0,V F ,E,τ,ρ〉 and P be the input
to Algorithm 1, and Ω′ = 〈V ′,v0′ ,V F ′ ,E ′,τ′,ρ′〉 denote its
output. Then, for all t > 0,dbfΩ′(t)≥ dbfΩ(t).

Due to lack of space, we provide proofs for all the
theorems in our technical report [2]. We now present
an upper bound on the demand overhead incurred in the
conversion technique given by Algorithm 1. If the orig-
inal anisochronous model is Ω and the corresponding
isochronous model is Ω′, the overhead is defined as follows.
Utilization overhead :

UO(Ω,Ω′) = max
t>0

dbfΩ′(t)
t

−max
t>0

dbfΩ(t)
t

This overhead reflects the increase in utilization that a re-
source supply would have to support due to the transforma-
tion. First, we make the following observation about dbfΩ
in any interval. This observation follows from reset frame

4

Algorithm 1 RTB-ISO-GEN(Ω,P)
Input: Ω = 〈V,v0,V F ,E,τ,ρ〉, p1 ≤ . . .≤ pn ≤ P
Output: Isochronous model Ω

1: Compute dbfΩ(t),∀t ≤maxi{P− pi}. Let dmax = 0.

2: Compute M = maxt<2pn
dbfΩ(t)

t .
3: for i = 1 to n do
4: Let u1 = vi,eo = 〈vi,v0〉,u2 = v0, j = t = ρ(eo)
5: while (t ≤ P− pi)∧ (u1 �=⊥) do
6: Create node u s.t. τ(u) = (M ·ρ(eo), t)
7: dmax = max{dmax,τ(u).e}
8: Create transition e = 〈u,u2〉 s.t. ρ(e) = ρ(eo)

// If u1 �= v0, then PRED(u1) returns predecessor of
u1, else it returns ⊥.

9: u2 =u,eo =ρ(PRED(u1),u1),u1 = PRED(u1)
10: t = t +ρ(eo)
11: end while

// The following condition checks for pi ≥ P− pi
12: if u1 �= v0 then
13: Create u, τ(u) = (M · (P− pi− t),P− pi)
14: dmax = max{dmax,τ(u).e}
15: Create e = 〈u,u2〉 s.t. ρ(e) = P− pi− t
16: jδ = 0
17: else
18: Create u, τ(u) = (M · (P−2pi), pi)
19: Create e = 〈u,u2〉 s.t. ρ(e) = 0.
20: jδ = p−2pi.
21: end if
22: Let δ = maxt<pi{rbfri(t)−dbfri(t)}
23: Create uδ, τ(uδ) = (δ,P− pi)
24: Create e1 = 〈uδ,u〉, ρ(e1) = jδ,e2 = 〈vi,uδ〉, ρ(e2) = j
25: end for
26: Create umax, τ(u) = (dmax,P)
27: for vi ∈V F do
28: Create e = 〈vi,umax〉, ρ(e) = ρ(〈vi,v0〉)
29: end for
30: Create e = 〈umax,v0〉 with ρ(e) = 0, and let v0 = umax

separation property, and arguments similar to dbf computa-
tion for isochronous RBT models [3].

Proposition 1 Given an anisochronous model Ω with reset
frame separation property and a time interval t, we can par-
tition t into sub-intervals t1, . . . , tm where t1, tm ≤ pn, and
for i = 2, . . . ,m− 1 ∃ j, 1 ≤ j ≤ n, with ti = p j, such that
dbfΩ(t) ≥ ∑m−1

i=2 maxri ∆Ω(ri) + maxr1,rm ∆(r1 + rm). Fur-
ther, the run of length t1 ends at v0 and the run of length
tm begins at v0.

We now bound the time interval t up to which we need
to check for computing UO(Ω,Ω′).

Theorem 2 Let Ω′ = RTB-ISO-GEN(Ω,P). Then,

UO(Ω,Ω′)≤ max
t<2pn

dbfΩ′(t)
t

−bΩ−max
t<2pn

{
maxr∈R ∆(r)−dΩ

t

}

where R is the set of all runs of Ω through v0 and of dura-
tion less than 2pn and bΩ = maxi

∆(ri)
pi

and dΩ = 2pnbΩ.

We note that since Ω′ is isochronous, computation of dbfΩ′
for values up to 2pn is straightforward.

3.1 Demand for RTC models

Given an RTC model Ψ, we denote by dbfΨ its demand
bound function, and by rbfΨ its request bound function. For
a recurring real-time task model, Baruah [4] has given a
technique for dbf computation which has exponential com-
plexity, even when the model is isochronous. This complex-
ity arises from the fact that between any pair of nodes there
can be exponentially many runs that need to be considered.
Note that a similar procedure, which takes into account en-
abling conditions on transitions, can be used for computing
the dbf of RTC models. Without any restriction on the RTC
model, this procedure also has exponential complexity.

To make dbf computation efficient, one way to restrict a
RTC model is to ensure that any two nodes in the model
have at most a constant number of simple runs between
them. We denote this property as constant simple runs prop-
erty. A simple run is a run that only uses transitions in
ET and no transition is repeated 2. Under this restriction,
a straightforward extension of the technique for RBTs can
be used to compute the dbf for RTC models. It is worth not-
ing that this restriction may not be necessary, and the dbf
may be computable efficiently under other assumptions.

For anisochronous RTC models, a similar procedure as
RTB-ISO-GEN (RTC-ISO-GEN) can be defined to trans-
form them into isochronous RTC models. RTC-ISO-GEN
is different from RTB-ISO-GEN in the following aspects.
(1) PRED in Line 9 of RTB-ISO-GEN takes a run and a
node and returns predecessor of the node in this run, (2)
existing assignments and enabling conditions on transitions
are preserved, and (3) the assignments and enabling con-
ditions on new nodes are /0. For correctness of this proce-
dure, it is required that model Ψ satisfy reset frame separa-
tion property. Additionally, RTC-ISO-GEN only introduces
O|V | new nodes in the model as control variables can be
used to merge common prefixes of final nodes (e.g., nodes
introduced in Line 6 of RTB-ISO-GEN).

4 RBT Abstraction

In this section, we describe a technique to abstract a col-
lection of RBT models into one RBT model. Specifically,
given models Ω1, . . . ,Ωm, we develop a RBT abstraction
(model) Ω such that ∀t > 0,dbfΩ(t)≥ ∑m

i=1 dbfΩi(t). Infor-
mally, in Ω we introduce loops from the start node such that
their demand satisfies the total dbf of models Ω1, . . . ,Ωm.
The procedure for generating RBT abstraction is given in
Algorithm 2. Firstly, we transform each model Ωi to an
isochronous model of period Pm = P (Line 1). We add a

2Since a run in RTC model is defined under a fixed variable assignment, this is
not overtly restrictive in that, it allows for multiple simple runs between a pair of
nodes, each enabled by mutually exclusive constraints.

5

2P -t′

0

0

P

P

P -t v0

(δ, t) (0, 0) (δ1, P)

(δw, P)

(δ2, t′-P)

v1

vw

t

t′-P

v2

v3

t′ : 2P > t′ > P

t : t ≤ P

Figure 5. RBT abstraction

loop from the start node having demand equal to the con-
current execution of all wcl(Ωi) (Line 2). This is shown in
Figure 5 as the loop through node vw. Now for each t ≤ P,
we add a node with demand δ = ∑m

i=1 dbfΩi(t) (Lines 4-8).
This is shown in Figure 5 as the loop through v1. Further,
for each P < t < 2P, we add two nodes v2 and v3 that release
tasks (δ1,P) and (δ2, t−P) as shown in Figure 5 (Lines 9-
14), such that δ1 + δ2 = ∑m

i=1 dbfΩi(t). We observe that
the abstraction is isochronous, reset frame separated, and
its size is O(P logP). The following theorem shows that
Algorithm 2 generates a sound abstraction with respect to
scheduling feasibility.

Algorithm 2 Algorithm for generating RBT abstraction

Input: Ω1, . . . ,Ωm,
where Ωi = 〈Vi,v0

i ,V
F
i ,Ei,τi,ρi〉.

Input: P1 ≤ . . .≤ Pm = P, where Pi is period of Ωi.
Input: C = {t < 2P|∀ε > 0,∃i,dbfΩi(t) > dbfΩi(t− ε)}
Output: Ω = 〈V,v0,V F ,E,τ,ρ〉, s.t. dbfΩ ≥ ∑m

i=1 dbfΩi .
1: For each i, let Ωi← RTB-ISO-GEN(Ωi,P)
2: Create v0, τ(v0) = (0,0); vw, τ(vw) = (δw,P).

// δw = ∑m
i=1 ∆(wcl(Ωi))− τ(v0).e).

3: Create e1 = 〈v0,vw〉, ρ(e1) = 0; e2 = 〈vw,v0〉, ρ(e2) = P.
4: for t ∈C∧ t ≤ P do
5: Create v1 s.t. τ(v1) = (δ, t) where δ = ∑m

i=1 dbfΩi(t)
6: Create e1 = 〈v0,v1〉 s.t. ρ(e1) = P− t.
7: Create e2 = 〈v1,v0〉 s.t. ρ(e2) = t.
8: end for
9: for t ∈C∧ (P < t < 2P) do

10: δ1 = ∑m
i=1 ∆(run(va

i ,v
b
i ,P))

// where run(va
i ,v

b
i ,P) is a prefix of the critical run of Ωi

for interval length t.
11: δ2 = ∑m

i=1 dbfΩi(t)−δ1

12: Create u2, τ(v2) = (δ1,P); v3, τ(v3) = (δ2, t−P).
13: Create e1 = 〈v0,v2〉, ρ(e1) = 0; e2 = 〈v2,v0〉, ρ(e2) = P;

e3 = 〈v0,v3〉, ρ(e3) = 2P− t; e4 = 〈v3,v0〉, ρ(e4) = t−P.
14: end for

Lemma 1 For all t > 0, dbfΩ(t)≥ ∑m
i=1 dbfΩi(t).

Theorem 3 If RBT Ω can be feasibly scheduled on an
uniprocessor platform, then RBT’s Ω1, . . . ,Ωm are also fea-
sible to be scheduled.

0

0
(0, 0)

(225, 500)

500

450

50

(210, 500)

50450

250

(25, 250)

250

450

50

500

(15, 50)

(200, 450)

(130, 450)

(a) RBT abstraction Ω

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000
de

m
an

d
bo

un
d

fu
nc

tio
n

time

P
dbf(t)

dbfΩ(t)
dbfΠ(t)

(b) dbf of the abstractions

Figure 6. Abstractions for 3TS

This result follows from Lemma 1.
Abstraction for 3TS. We illustrate this abstraction tech-

nique on 3TS introduced in Section 1.1. For the models
shown in Figure 1.1, we ignore the guards and assignments
on transitions. Then, these models are isochronous RBTs
with period P = 500. The RBT abstraction Ω for EM (Fig-
ure 1.1) is given in Figure 6(a) and its dbf plotted in Fig-
ure 6(b). As can be seen, dbfΩ closely follows the total
dbf of underlying modules. For comparison, we show the
abstraction of the 3TS modules using a periodic task with
period 50.

5 RTC Abstraction

In this section, we develop a RTC abstraction for a set of
RTC models. First, we describe a procedure to merge the
critical runs from underlying models which is used in the
abstraction procedure.

5.1 Merging runs of RTC models

Consider m runs r1, . . . ,rm of RTC models, that are of the
same duration t. Procedure 3 (MERGE) describes a tech-
nique to merge these runs into a single run r of duration t
and demand ∆(r) = ∑m

i=1 ∆(ri), i.e., it generates a run whose

6

demand is equal to the demand of all runs ri executing con-
currently. In this procedure, we first insert all nodes in runs
r1, . . . ,rm into a min-priority queue ordered by the duration
of partial runs leading to the node. Then, we extract each
node v from this queue and insert it in a run r with an in-
cident transition e from the current node vc of r. e has the
following properties: (1) the enabling condition on e checks
if variable lvc is set to v, (2) the minimum jitter of e is such
that the duration up to node v is preserved, i.e., if v belonged
to a run ri, then the duration of the partial run leading to
v in ri is preserved in r. Furthermore, the assignment on
the transition incident on vc is set to lvc = v. These assign-
ments and enabling conditions on transitions will be used in
the abstraction we generate, to prevent spurious runs. The
merging procedure is demonstrated in Figure 7 where we
only show the minimum jitter on transitions. In the figure,
runs r1 = run(va,vc,9) and r2 = run(v1,v3,9) are merged to
give run r = run(va,v3,9).

Procedure 3 MERGE(r1, . . . ,rm)
Input: Runs r1, . . . ,rm s.t. ∀i, j : Γ(ri) = Γ(r j).
Output: Run r s.t. ∆(r) = ∑m

i=1 ∆(ri) and Γ(r) = Γ(ri).
1: Create a min-priority queue Q← /0.
2: for i = 1 to m do
3: for each node v in ri do
4: INSERT(Q, tv) where tv = Γ(rv

i), rv
i being the partial run

of ri leading to node v.
// We assume that node v is inserted into Q as satellite
data.
// We also assume that in case of conflict, nodes of ri
have higher priority than nodes of rj for all i < j.

5: end for
6: end for
7: Let vc = EXTRACT-MIN(Q), ec = ε, tc = 0 denote the cur-

rent node, transition into vc, and the current duration, respec-
tively, in run r.

8: Initialize r = run(vc,vc,0).
9: while Q �= /0 do

10: (tv,v) = EXTRACT-MIN(Q)
11: Create e = 〈vc,v〉 s.t. ρ(e) = 〈tv− tc,{lvc ==v}, /0〉.

// We assume that lvc denotes a unique control variable
associated with node vc.

12: if ec �= ε then
13: (t ′,g′,a′) = ρ(ec).
14: ρ(ec) = 〈t ′,g′,{lvc = v}〉
15: end if
16: r = r·run(vc,v, tv− tc), ec = e.
17: vc = v, tc = tv.
18: end while

The following lemma shows that this procedure pre-
serves the demand of runs r1, . . . ,rm and is of duration Γ(ri)
for any i.

Lemma 2 ∆(r) = ∑m
i=1 ∆(ri) and Γ(r) = Γ(ri).

Proof By definition, ∆(s) for any run s is equal to the total
execution requirement of tasks released by all the nodes in

r :

r2 :

r1 :
va

v1

va v1

v2

vb

v2

vc

v3

v3
0

vcvb
0

3 1 5

63

4 5

Figure 7. Example for MERGE

the run. Since Procedure 3 adds all nodes in each run ri to
the run r, the first result follows.

Consider any node v belonging to run ri. We show that
the duration of the partial run leading to node v in run r is
the same as that in run ri. In Line 11 of the procedure, we
set the jitter of the transition to tv−tc where tc is the duration
of r leading to node vc. But, since vc precedes v in run r, the
duration of partial run of r leading to v is tc +(tv− tc) = tv.
This is equal to the duration of partial run leading to v in ri.
Since this holds for all nodes in r, we get ∆(r) = ∆(ri). �

The abstraction generation technique uses MERGE to
generate the RTC abstraction using a procedure similar to
Algorithm 2. Due to space constraints, we do not describe
this technique, but only point out the differences from Algo-
rithm 2. (1) RTB-ISO-GEN is replaced by RTC-ISO-GEN,
(2) For every critical time instant t (Lines 2,10,11), dbf(t)
for the abstraction is generated using MERGE, instead of
adding the demands from underlying critical runs. Sound-
ness of the RTC abstraction w.r.t scheduling feasibility is
similar to the RBT case.

Properties of RTC abstraction. (1) Ψ is isochronous,
but does not satisfy reset frame separation property. (2)
The size of abstraction Ψ is O(∑m

i=1 |Ei|S2(logP + logS))
where S = ∑m

j=1 |Vj|. This can be explained as follows.
The total number of nodes, new control variables, and num-
ber of inserted resets in Ψ are all O(S). The size of each
transition is O(logP + logS) since O(logS) space is re-
quired for storing the new enabling conditions and assign-
ments. The total number of transitions in Ψ is of the order
O(∑m

i=1 |Ei|S2(logP+ logS)). This can be observed by not-
ing that every transition of an underlying RTC model Ψi can
be duplicated at most S2 times. Therefore, the total size of
Ψ is O(∑m

i=1 |Ei|S2(logP+ logS)).

6 Compositional Analysis

As mentioned in the introduction, in compositional anal-
ysis of hierarchical frameworks, system-level schedulabil-
ity analysis is done by combining interfaces that abstract
component-level timing requirements. In this section, we
discuss compositional analysis of conditional task mod-
els using our abstractions. Given reset frame separated
RBT models, the RBT abstraction generated in Section 4 is
also reset frame separated. Therefore, given a hierarchical
framework in which all the components are comprised of

7

RBTs, we can analyze scheduling feasibility using our tech-
nique. However, if the underlying RBT models are not reset
frame separated, then RTB-ISO-GEN the modified abstrac-
tion technique using rbfΩ instead of dbfΩ can be used. Intu-
itively, since rbf accounts for demand of all the task releases
in a time interval, it compensates for the loss of demand re-
sulting from the transformation. In general, this modifica-
tion can result in larger demand overhead and hence, it is
beneficial to have reset frame separation.

Similarly, given reset frame separated RTC models, a
RTC abstraction can be generated. as in Section 5. How-
ever, this abstraction does not satisfy reset frame separation
property. A modification to RTC-ISO-GEN, similar to the
aforementioned one, can be used to overcome the problem.
We can then perform compositional analysis of components
comprised of RTC task models.

The RBT abstraction algorithm only uses the demand of
the underlying models. Hence, it can be used to generate
an RBT abstraction for RTC models without modification.
Finally, by observing that an RBT model is trivially an RTC
model with no variables and has constant simple runs prop-
erty, we can compositionally analyze a system comprising
of both RBT and RTC models.

7 Conclusions

In this paper, we have introduced RBT/RTC models and
techniques for their compositional analysis. This enables
modeling and analysis of many real-time applications with
hierarchical scheduling policies and conditional real-time
code. Although this paper focused on scheduling feasibil-
ity, similar techniques can be used for checking schedula-
bility with fixed priority schedulers such as RM. We now
present comparisons between RBT and RTC abstractions
in terms of size and demand overhead. We note that both
the abstraction algorithms convert the underlying models to
isochronous models, each having the same period. There-
fore, in this discussion, we assume that all the input models
have period P.

Size. Traditionally, viewing RBT models as transition
systems, their concurrent execution can be represented us-
ing a cross-product. To construct a cross-product, we have
to assume a synchronization between the models. For mod-
els Ω1, . . . ,Ωm and a fixed synchronization between them,
the total number of nodes and transitions in the cross prod-
uct are O(∏m

i=1 |Vi|) and O(∑m
i=1(∏

m
j=1 |Vj| logP)), respec-

tively. This results in a total size of O(m∏m
j=1(|Vj| logP)).

However, for schedulability analysis, we must consider all
possible synchronizations between the models which im-
plies O(∏m

j=1 |Vj|) number of initial nodes. Representing
each such synchronization as a product would therefore re-
sult in a total size of O(m∏m

j=1(|Vj|)2 logP). In comparison,

our RBT abstraction has a total size of O(P logP).
Given RTC models Ψ1, . . . ,Ψm, using similar arguments,

the size of a cross product that preserves the demand

of underlying models is O(∑m
i=1 |Ei||Vi|(∏ j �=i |Vj|2) logP).

The RTC abstraction, in comparison, has a total size of
O(∑m

i=1 |Ei|S2(logP + logS)) where S = ∑m
j=1 |Vj|. We ob-

serve that this abstraction is exponentially smaller than the
product. Additionally, |Ei|= O(|Vi|) when all Ψi are RBTs,
and the RTC abstraction is at least as big as the correspond-
ing RBT abstraction if and only if S3 = Ω(P).

Demand overhead. Unlike RBT abstractions, RTC ab-
stractions may not be reset frame separated. Hence, RTC
abstractions may have additional demand overhead in com-
parison to RBT abstractions. This is because procedure
RTC-ISO-GEN now uses rbf instead of dbf.

References

[1] 3ts system. http://htl.cs.uni-salzburg.at/
examples.html.

[2] M. Anand, A. Easwaran, S. Fischmeister, and I. Lee. Com-
positional analysis of conditional real-time task models.
Technical report, University of Pennsylvania, MS–CIS–07–
20, 2007.

[3] S. K. Baruah. Feasibility analysis of recurring branching
tasks. In ECRTS, pages 138–145, 1998.

[4] S. K. Baruah. A general model for recurring real-time tasks.
In RTSS, pages 114–122, 1998.

[5] U. D. Bordoloi and S. Chakraborty. Interactive schedu-
lability analysis. In RTAS ’06: Proceedings of the 12th
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS’06), pages 147–156, Washington,
DC, USA, 2006. IEEE Computer Society.

[6] X. Feng and A. Mok. A model of hierarchical real-time
virtual resources. In Proc. of IEEE Real-Time Systems Sym-
posium, pages 26–35, December 2002.

[7] A. Ghosal, A. Sangiovanni-Vincentelli, C. M. Kirsch, T. A.
Henzinger, and D. Iercan. A hierarchical coordination lan-
guage for interacting real-time tasks. In EMSOFT ’06, pages
132–141, 2006.

[8] G. Lipari and E. Bini. Resource partitioning among real-
time applications. In Proc. of Euromicro Conference on
Real-Time Systems, July 2003.

[9] S. Matic and T. A. Henzinger. Trading end-to-end latency
for composability. In Proc. of IEEE Real-Time Systems Sym-
posium, pages 99–110, December 2005.

[10] J. Regehr and J. Stankovic. HLS: A framework for compos-
ing soft real-time schedulers. In Proc. of IEEE Real-Time
Systems Symposium, pages 3–14, 2001.

[11] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein. Anal-
ysis of hierarchical fixed-priority scheduling. In Proc. of
Euromicro Conference on Real-Time Systems, June 2002.

[12] I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. In Proc. of IEEE Real-Time Sys-
tems Symposium, pages 2–13, December 2003.

[13] I. Shin and I. Lee. Compositional real-time scheduling
framework. In Proc. of IEEE Real-Time Systems Sympo-
sium, December 2004.

[14] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time inter-
faces for composing real-time systems. In Proceedings of
the 6th ACM International Conference on Embedded Soft-
ware (EMSOFT ’06), pages 34–43, October 2006.

8

	University of Pennsylvania
	ScholarlyCommons
	May 2008

	Compositional Feasibility Analysis for Conditional Real-Time Task Models
	Madhukar Anand
	Arvind Easwaran
	Sebastian Fischmeister
	Insup Lee
	Recommended Citation

	Compositional Feasibility Analysis for Conditional Real-Time Task Models
	Abstract
	Comments

	tmp.1202996225.pdf.pjHiP

