
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

June 2007

Formal Methods Based Development of a PCA
Infusion Pump Reference Model: Generic Infusion
Pump (GIP) Project
David Arney
University of Pennsylvania, arney@cis.upenn.edu

Raoul Jetley
FDA OSEL

Paul Jones
FDA OSEL

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Postprint version. Presented at Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play
Interoperability, June 2007.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/358
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
David Arney, Raoul Jetley, Paul Jones, Insup Lee, and Oleg Sokolsky, "Formal Methods Based Development of a PCA Infusion Pump
Reference Model: Generic Infusion Pump (GIP) Project", . June 2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/358
mailto:libraryrepository@pobox.upenn.edu

Formal Methods Based Development of a PCA Infusion Pump Reference
Model: Generic Infusion Pump (GIP) Project

Abstract
As software becomes ever more ubiquitous and complex in medical devices, it becomes increasingly
important to assure that it performs safely and effectively. The critical nature of medical devices necessitates
that the software used therein be reliable and free of errors. It becomes imperative, therefore, to have a
conformance review process in place to ascertain the correctness of the software and to ensure that it meets all
requirements and standards.

Formal methods have long been suggested as a means to design and develop medical device software.
However, most manufacturers shy from using these techniques, citing them as too complex and time
consuming. As a result, (potentially life-threatening) errors are often not discovered until a device is already
on the market.

In this paper we present a safety model based approach to software conformance checking. Safety models
enable the application of formal methods to software conformance checking, and provide a framework for
rigorous testing. To illustrate the approach, we develop the safety model for a Generic Infusion Pump (GIP),
and explain how it can be used to aid software conformance checking in a regulatory environment.

Comments
Postprint version. Presented at Joint Workshop on High Confidence Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability, June 2007.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/358

http://repository.upenn.edu/cis_papers/358?utm_source=repository.upenn.edu%2Fcis_papers%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages

Formal Methods Based Development of a PCA Infusion Pump

Reference Model: Generic Infusion Pump (GIP) Project

David Arney

University of Pennsylvania

arney@cis.upenn.edu

Raoul Jetley

FDA OSEL

raoul.jetley@fda.hhs.gov

Paul Jones

FDA OSEL

PaulL.Jones@fda.hhs.gov

Insup Lee

University of Pennsylvania

lee@cis.upenn.edu

Oleg Sokolsky

University of Pennsylvania

sokolsky@cis.upenn.edu

Abstract

As software becomes ever more ubiquitous and com-
plex in medical devices, it becomes increasingly impor-
tant to assure that it performs safely and effectively.
The critical nature of medical devices necessitates that
the software used therein be reliable and free of errors.
It becomes imperative, therefore, to have a conformance
review process in place to ascertain the correctness of
the software and to ensure that it meets all require-
ments and standards.

Formal methods have long been suggested as a means
to design and develop medical device software. How-
ever, most manufacturers shy from using these tech-
niques, citing them as too complex and time consum-
ing. As a result, (potentially life-threatening) errors
are often not discovered until a device is already on the
market.

In this paper we present a reference model based ap-
proach to software conformance checking. Reference
models enable the application of formal methods to soft-
ware conformance checking, and provide a framework
for rigorous testing. To illustrate the approach, we de-
velop the reference model for a Generic Patient Con-
trolled Analgesic Infusion Pump, and explain how it
can be used to aid software conformance checking in a
regulatory environment.

1 Introduction

Software has been used in medical devices for sev-
eral decades now. During this time it has grown in
complexity and society has come to rely heavily on it.
Because of the often safety-critical nature of medical

devices, even a small software error can have undesired
consequences that can result in serious injury or even
death.

There are currently no widely accepted assurance
techniques in use for development or verification of
software in medical devices. Most software for these
devices are developed using conventional (or ad hoc)
strategies, which do not serve to rigorously assure sys-
tem properties, such as safety.

Regulatory agencies, like the FDA’s Center for De-
vices and Radiological Health (CDRH), assess device
software to ensure that it conforms to standards for
safety and reliability. Existing standards, however,
concentrate only on quality system development pro-
cesses, not the integrity of the software itself [9]. Such
an approach, though not entirely without its benefits,
depends mainly on crafted test case construction and
the results of test case executions for validation, with
little regard for properties of the actual code [8].

The use of formal methods based verification has of-
ten been suggested as an alternative to process-based
conformance [15]. Formal methods have been used ex-
tensively in the analysis of real-time embedded sys-
tems [12], and in the automotive and aviation indus-
try [19, 10]. However, unlike these applications, there
are as of yet no established guidelines for formal meth-
ods based development and testing of medical devices.

To begin exploring this issue, we introduce in this
paper, a formal methods based approach to specifying
the design requirements for a patient controlled anal-
gesia, or PCA, infusion pump.

1

2 Overview of the Model Based Pro-
cess

The goal of our work is to develop a methodology to
facilitate checking that medical device software is safe
and reliable. Figure 1 shows the overall structure of
the proposed methodology, which is based on formal
models and consists of the following steps:

Figure 1. Methodology

• Capture functional and safety requirements of a
specific type of device.

• Build a model which captures ’safety’ and ’relia-
bility’ properties for a specific type of device.

• Use formal methods to verify that the model is
correct with resepect to the requirements.

• Generate tests from the model and use the tests
to check implementations.

This section describes each of these steps. In this
paper, we present our infusion pump work as an ex-
ample of applying our broader design and verification
methodology. The next several sections describe a case
study applying this methodology to Patient Controlled
Analgesia (PCA) infusion pumps.

The model based conformance review process is ex-
plained in Algorithm 1. The scheme, as depicted in
the Algorithm, involves deriving a test case suite from
a formally verified reference model, essentially a one-
time effort, and using this test suite to assess individual
device software.

The process, as definied in the algorithm, consists of
four separate activities or phases. The first phase deals

Algorithm 1 Premarket Conformance Review

Input: A software family S characterized by system
requirements R, a set of safety properties P for S, a
set of software implementations I based on R.
Output: boolean array conform[I], indicating
whether i ∈ I conforms to safety properties given
by P .
Phase 1: Define a reference model M based on the
requirements R.
Phase 2: Verify the reference model M using formal
verification techniques (i.e., model checking) to check
whether M � P .
if M 6� P then

Revise the reference model M . Go to Phase 1.
end if

Phase 3: Derive a suite of test case sequences Ts

from reference model M .
for all i in I do

Validate i against derived test suite Ts (i.e., check
whether i � Ts).
if i � Ts then

conform[i] ← true.
else if i 6� Ts then

conform[i] ← false.
end if

end for

primarily with establishing a reference model based on
the requirements and delineating the system specifi-
cations used in the reference model. This reference
model consists of a set of communicating state ma-
chines which capture the behaviors described in the
requirements. To have the reference model serve as a
benchmark for all software implementations, it is im-
perative to ensure that the reference model is sound
and correctly incorporates the major functionalities
of the device captured in the requirements. To en-
sure this, the requirements are collected in consulta-
tion with a set of experts (both in-house at the FDA,
and from the industry) during Phase 0. With the help
of these experts, common characteristics of the device
are identified, and used to define the specifications for
the reference model.

While it may not be possible to capture all func-
tionalities and behavior for each and every PCA pump
implementation in the PCA pump reference model,
the reference model must consist of a set of minimum
safety behaviors that all implementations of the device
must possess. The behaviors of the reference model
are shown to guarantee the minimum safety proper-
ties during Phase 2. The implementations, thus, will
be evaluated against these behaviors during testing. A

2

failed test case would indicate a violation of a safety
condition and may lead to a potential hazardous mal-
function.

In Phase 2, the reference model itself is defined us-
ing formal methods based specification techniques and
is (usually) represented as an extended state machine
or finite state automaton. The advantage of using a
formal model is that it can be rigorously verified using
model checking based on exhaustive state explorations
to ensure its correctness and adherence to the safety
requirements. In this phase, the correctness and ade-
quacy of the reference model is evaluated with respect
to safety properties. If needed, the reference model is
revised and refined until it meets the requirements.

In phase 3, the reference model is verified and used
to automatically derive test case sequences. Each test
case generated represents an execution path in the ref-
erence model and corresponds to a set of user inputs or
events for the system. All such distinct paths (test se-
quences) and their corresponding results are recorded
and maintained as a test suite for products in the de-
vice family. As a manufacturer develops a implemen-
tation of a modeled device, it is checked against the
test suite for conformance. Any discrepancy between
the expected results (as obtained through the refer-
ence model) and observed outputs indicates a failure of
compliance for the product. However, if the results of
the tests are in agreement, then the product is deemed
compliant with the established requirements. Such ev-
idence can then be used when making a case for the
device in a pre-market submission.

3 Generic PCA Pump Case Study

An infusion pump is a typical safety-critical medi-
cal device that uses software to control its underlying
hardware and events. Not all infusion pumps are the
same, however. There are a number of different classes
of pumps providing varying treatment options to pa-
tients. Even within a particular class, pumps can be
further categorized based on their use environment, de-
livery mechanism, intended function etc.

PCA infusion pumps are used to administer pain
medication. The pumps are programmed with a basal
rate, which is the background rate used most of the
time, and can be triggered by the patient to deliver a
bolus dose, which is a preset volume of drug delivered
at a higher rate. The patient triggers a bolus dose by
pressing a button when they feel a high level of pain
and decide that they need more medication. The pump
must be programmed with upper limits on the number
and frequency of bolus doses which may be delivered
in order to prevent overdoses.

PCA infusion pumps have been involved in numer-
ous incidents resulting in injury or death. Thus, tech-
niques which may improve their safety are of interest
from a national health care system viewpoint. Im-
proving the safety of these pumps involves work in
numerous engineering disciplines including human fac-
tors, mechanical, electrical and software design. Our
interest is primarily in the fourth area, software design
and development. In this paper, we present our infu-
sion pump work as an example of applying our broader
design and verification methodology.

Our goal is to develop a set of requirements and a
reference model of a generic PCA infusion pump. This
reference model can be used to help verify the correct
functioning of software in real world PCA pump im-
plementations submitted to FDA for market approval.
Using a recognized reference model could allow device
manufacturers to concentrate on the specialized func-
tionality of their particular pump devices and simplify
the verification process.

3.1 Hazard Analysis Process.

A hazard analysis for a device is a systematic way
of enumerating the hazards and their contributing fac-
tors. We compiled such a list for PCA infusion pumps
in several stages. First we listed generic hazards com-
mon to all infusion pumps. Then we added the hazards
for small volume pumps, and finally those associated
specifically with PCA pumps.

We began by creating a system diagram, shown in
Figure 2, and listed hazards for each element of this dia-
gram. For instance, the infusion set has certain hazards
associated with it, such as blockages (occlusions) and
leaks. We also consulted publications on infusion pump
hazards including ECRI’s evaluation of PCA pumps [7]
and risk management and safety standards such as ISO
14971 [14] and IEC 60601 [13].

3.2 Examples of Hazards and Common
Mitigations.

This section contains several examples of hazards we
gathered during the hazards analysis process. These
hazards will be used as examples in the requirements
and model analysis sections of this paper.

Output side occlusion. An output side occlusion
is a blockage of the infusion set after the pump. This
can be caused by kinked tubing, closed valves, clot for-
mation, or numerous other problems. This condition is
most commonly detected using a pressure sensor, but

3

could also be detected with a flow sensor or by moni-
toring the pump motor’s current draw.

Air bubble. Air bubbles can be introduced into the
pump system in a variety of ways, for instance when
the fluid reservoir is changed or damaged. Air bub-
bles delivered to the patient can result in serious in-
jury or death, so the bubbles must be detected and the
pump stopped quickly enough to prevent them reach-
ing the patient. This is accomplished using an air sen-
sor to detect bubbles. The sensor may measure the
impedance of the fluid or use an optical sensor or some
other method.

Misuse. In a home care environment, children and
pets may damage cords, pull tubing, press buttons, and
so on. This hazard is on a different level than the others
we describe in this section, as it can not be directly
detected by the pump’s sensors. Instead, the sensors
detect the effects of the child or pet’s actions. For
instance, if the pet pulls on the tubing between the
fluid reservoir and the pump and causes a leak, the
pump may only detect that it is not getting fluid. The
pump can only determine the effects of this hazard and
not the cause. That is enough, however, to allow the
pump controller to take action by sounding an alarm
and stopping the pump. This hazard can be mitigated
by locking down the pump programming and arranging
the pump so that tubing and cables are not readily
accessible.

Overdose. Patients on a PCA pump are given a but-
ton they can use to request bolus doses of medication.
There are no limits on how often or how frequently
the patient can press the button, but the pump must
not give the patient too much drug, as this would
cause an overdose. The pump should be programmed
with proper drug concentration and limits (The pump
should check the limits and respond appropriately- if
the total dose and frequency are below the preset lim-
its, then the patient is given a bolus dose. Otherwise,
the pump does not deliver a dose, and it may signal
the patient so they can see that their inputs are not
being ignored).

4 Generic PCA Requirements and
Hazard Analysis

The first step in building the reference model was to
come up with a set of requirements. These require-
ments were collected from various sources and were

added to throughout the development process. The re-
quirements are structured hierarchically following the
structure of the pump classification. There are require-
ments that apply to all infusion pumps, additional re-
quirements for small volume pumps, and another set
which are specific to PCA pumps. Each set of require-
ments builds upon the higher level requirements so a
PCA pump implementation should meet all three of
these sets.

The top level requirements, which should apply to
all infusion pumps, are quite generic. They include
statements like “The pump should transfer fluid at the
commanded rate” and “The pump must not pump air
bubbles into the patient”. Infusion pumps are hetero-
geneous enough that it is quite difficult to find require-
ments common to all of them.

We generated our requirements by examining litera-
ture about numerous pumps on the market, by reading
infusion pump patents, and through discussions with
our collaborators at the Hospital of the University of
Pennsylvania, Duke University Hospital, ECRI, and
elsewhere.

The question of completeness of requirements is of-
ten raised. We believe that the best way to show that a
set of requirements is complete is to use them to build
a working system. It is usually the case that missing
requirements will be found and filled in during the pro-
cess of building the system.

The complete list of design requirements is too long
to present here. Instead, we will show some of the
requirements most closely associated with the example
hazards listed above.

Output side occlusion. Our design assumes a
pump with pressure sensors on the line from the fluid
reservoir to the pump (input side) and the line from
the pump to the patient (output side).

An occlusion alarm sounds when a pressure sensor
reading goes above some threshold and clears when the
reading drops below it and the alarm is reset by the
user.

Air bubble. The timing from detection of an air
alarm condition to stopping pump must be such that
bubbles can not be pumped to the patient. This should
hold even if the smallest (shortest and smallest diame-
ter) possible tubing is used.

When an alarm occurs, the pump should immedi-
ately stop pumping. A time should be specified which
makes the pump stop before it could push an air bubble
through the tube to the patient.

Tstop < Vtubing/(Spump + Tpump ∗ Spump)

4

Where Tstop is the amount of time the pump has
to stop transferring fluid, Vtubing is the volume of the
tubing set, Spump is the maximum speed of the pump,
and Tpump is the tolerance for the pump speed (e.g.,
±10%).

The air alarm sounds when the conductivity sensor
reading goes above some threshold and clears when the
reading drops below it. Pumps with an air alarm mea-
sure the conductivity of the fluid they are pumping. If
the reading goes out of bounds, this means that there
is air in the line. (These alarms may also be tripped by
using the wrong fluid, for instance pure water, another
potentially hazardous situation).

Misuse. There are no specific design requirements
for pump misuse because the pump sensors can not
distinguish between a pump misuse and normal use
hazardous situation.

For example, leaks and blockages of the tubing set,
which are covered by the air or occlusion alarm. Chil-
dren may also turn knobs or play with the pump con-
trols. This is one reason that the controls of PCA
pumps should be designed such that only an authorized
caregiver can introduce changes. This can be accom-
plished with a mechanical lock or through software.

Overdose. The user interface for PCA pumps adds a
means of setting the bolus dose volume, a means of set-
ting the maximum dosage per unit time (max dose), a
means of setting the time delay between boluses (delay
time), and a button which the patient can push.

When the patient button is pushed, the pump will
deliver a bolus of the volume specified by the bolus
dose volume setting if and only if these conditions are
met:

• The bolus dose would not cause the total infused
volume to exceed the max dose.

• It has been at least the established delay time since
the last bolus event.

Once the pump is started, all pump settings are
locked in and it should not be possible to change them
while the pump is running.

5 The Generic PCA Reference Model

The generic PCA infusion pump reference model
contains components modeling the caregiver, pump
system, infusion set, and patient, as shown in Figure 2.
The purpose of this model is to provide a formal refer-
ence implementation of a pump system which can be
used to generate tests for other pump implementations.

We modeled the pump system as a set of extended
finite state machines (EFSMs) which communicate us-
ing synchronized channels. This EFSM model is then
automatically translated into an UPPAAL model 1 so
we can check it for properties derived from the hazards
analysis.

Infusion Pump Reference Model

Handler

Alarm
Handler

Alarm
Manager

Controller
Pump

Event and
Error LogsInterface

User Display

Caregiver

Network
Interface

Reservoir
Drug

Infusion
Set

Patient

Alarm

Figure 2. System Overview

5.1 User Interface

 started

 stopped

 bolus

 wait

UI2AH_clear_alarm!

setting_is_not_ok == 1
UI2Display_setting_warning!

UI2AH_clear_alarm!

setting_is_ok == 1
UI2PC_start!

setting_is_ok == 1
UI2PC_setting_changed!

setting_is_not_ok == 1
UI2Display_setting_warning!

PC2UI_infusion_done?

bolus_is_ok == 1

UI2PC_bolus!

inBolus := true

PC2UI_bolus_done?
inBolus := false

setting_is_not_ok == 1
UI2Display_setting_warning!setting_is_ok == 1

UI2PC_setting_changed!

inBolus == 0

PC2UI_confirm?

inBolus == 1
PC2UI_confirm?

Figure 3. User Interface

The user interface component takes inputs from the
user and synchronizes with the rest of the system, par-
ticularly the pump controller. This component con-
trols when the user may trigger different inputs. For
instance, the pump must be started before a bolus dose
may be triggered. This is accomplished, as shown in
Figure 3, by only allowing UI2PC Bolus signals when
the UI EFSM is in its ’started’ state.

The UI EFSM has four states: stopped, started, bo-
lus, and wait. The first three match the conditions
when the pump is stopped, started, or delivering a bo-
lus dose. The wait state is used when the user interface
has signaled the pump controller that the settings have

1There is nothing specific about UPPAAL for our method-

ology. We could have easily used other model checkers such as

NuSMV, SPIN, VERSA, etc.

5

changed and is waiting for a confirmation before allow-
ing further input.

5.2 Pump Controller

The pump controller handles much of the core func-
tionality of the reference model. Its five states -
stopped, started, bolus, setting, and alarming - match
the possible modes of the pump. Critical functions such
as stopping the pump motor when an alarm occurs are
performed by this component.

 started

 setting

 stopped

 alarming

 bolus

UI2PC_start?
pumpspeed := rate , remainingVTBI := vtbi

UI2PC_setting_changed?

pumpspeed := rate

PC2UI_confirm!

lclock > 0 and remainingVTBI > 0
remainingVTBI := remainingVTBI - 1 , lclock := 0

remainingVTBI == 0
PC2UI_infusion_done!

AH2PC_alarm?
pumpspeed := 0

inBolus == 0

AH2PC_allclear?
pumpspeed := rate

UI2PC_bolus?
pumpspeed := rate + bolusRate , inBolus := true , lclock := 0

pumpedBolus >= bolusSize

PC2UI_bolus_done!
inBolus := false , pumpedBolus := 0

AH2PC_alarm?
pumpspeed := 0

inBolus == 1
AH2PC_allclear?

pumpspeed := rate + bolusRate lclock > 0 and pumpedBolus < bolusSize
pumpedBolus := pumpedBolus + 1 , lclock := 0

PC2UI_confirm!

Figure 4. Pump Controller

5.3 Alarm Manager

 updateM

 start

 updateL

 updateH

AH2AM_high_alarm?
high_array[high_tail] = high_value , high_tail := (high_tail + 1) % high_size

AH2AM_medium_alarm?
medium_array[medium_tail] = medium_value , medium_tail := (medium_tail + 1) % medium_size

AH2AM_low_alarm?

low_array[low_tail] = low_value , low_tail := low_tail + 1 % low_size

AM2D_update_display!

displayPriority := 3

displayPriority <= 2
displayPriority := 2

displayPriority > 2

displayPriority <= 1
displayPriority := 1

displayPriority > 1

displayPriority == 3 and high_head == high_tail

displayPriority := 2

displayPriority == 2 and medium_head == medium_tail
displayPriority := 1

displayPriority == 1 and low_head == low_tail

AH2PC_allclear!
displayPriority := 0

Figure 5. Alarm Manager

The alarm manager is responsible for keeping track
of which alarm conditions are active at any time. When
more than one alarm goes off at one time, the alarm
manager must also decide which active alarm should
be shown.

Alarms can be given priorities to force more im-
portant alarms to be handled before less important
alarms. For instance, the designers may decide that
the air alarm is more important (i.e., higher priority)
than the occlusion alarm since air bubbles may harm
the patient while a blockage in the line may be only an
inconvenience. This system has three levels of alarm
priorities: high, medium, and low. High level priority

alarms override lower level priority alarms. There are
three alarm queues, one for each priority level.

The alarm manager state machine uses three arrays
to keep track of the three alarm priorities. Each of
these arrays is initialized to be larger than the number
of alarms in the corresponding priority group. Each
array has a head and tail pointer, which is an integer
pointing to the position in the array holding the first
and last active alarm in the group. The array starts
out empty with the head and tail variables pointing
to the first position. When an alarm is activated, it is
added to the array corresponding to its priority level at
the position indicated by the tail variable and the tail
is incremented. Alarms are removed by incrementing
the head. All arithmetic is done modulo the size of
the array so that the positions wrap around correctly.
Another variable, displayPriority, is used to keep track
of which array has the highest priority active alarm.
This alarm is the one which should be displayed to the
user, and it is always found at the head position of the
alarm array named by displayPriority.

5.4 Alarm Handlers

 active inactive

air_sensor > 3

AH2AM_high_alarm!

high_value := 1

displayPriority == 3 and high_array[high_head] == 1

UI2AH_clear_alarm?

high_head := (high_head + 1) % high_size

Figure 6. Air Alarm Handler

Each alarm has its own handler. When an alarm
occurs, its handler catches that event and sets an inter-
nal variable representing the alarm to high. When the
alarm is cleared, the internal variable is reset, showing
that the alarm condition is no longer true. This vari-
able does not directly alter the behavior of the pump-
resetting it will not stop the alarm annunciation or
restart the pump if it has stopped. The alarm handler
only keeps track of whether the alarm condition is true
or false at a particular instant and makes that infor-
mation available to the higher level control algorithm.

5.5 Display

The display component is the interface from the
pump system to the caretaker. It consists of a text

6

display, a light, and an audible alarm. The text dis-
play is used to show short messages such as the current
pump speed, active alarms, or other information about
the status of the pump.

In this model, the display is abstracted and simpli-
fied. The display component synchronizes with other
components when a new display message is set, but
does not do anything else with it.

 start

AM2D_update_display?

Figure 7. Display

5.6 PCA Patient Model

We model the patient as a black box whose only
response to treatment is periodically pressing a bolus
button. The patient model contains a variable repre-
senting the level of medication absorbed by the patient.
As the patient receives periodic doses of medication
from the pump, it is absorbed in the patients blood-
stream at a rate generally unique to the patient. Our
model assumes that the patient absorbs medication at
a rate higher than the basal rate of the pump. This
means that over time, the level of medication in the
patients bloodstream will decrease.

We also define a pain threshold variable, which rep-
resents a level of absorbed medication below which the
patient feels enough pain to want to press the bolus
button for more medication. Pressing the bolus button
will increase the level of medication in the bloodstream
reducing the level of pain below the pain threshold level
for some period of time.

The behavior of the patient model is shown in Figure
8, which plots the patients pain level over time. Points
1, 2, and 3 represent points in time when the patients
pain threshold level “t” is exceeded and patient presses
the bolus button to request more medication.

This simple model could be improved by recognizing
that the pain threshold is different for every patient and
changes over time even for the same patient.

6 Verifying the Generic PCA Refer-
ence Model

One of the key reasons for building a formal refer-
ence model is that we can check it for desirable prop-
erties. This allows us to prove that the requirements

pain

1 2 3

level

time

t

Figure 8. Graph of the patient model behavior

are met, that hazards are avoided, and that certain
structural problems such as deadlocks are avoided.

6.1 Structural Properties

Structural properties are properties of the model
which can be checked without any domain knowledge.
These properties include nondeterminism, complete-
ness, and the presence of deadlocks.

6.1.1 Checking for nondeterminism

An EFSM is nondeterministic if there exists some state
with two or more outgoing transitions which may be en-
abled at the same time. In order to check for this condi-
tion, we check that it is not possible for more than one
transition from any state to be enabled. This is done
by finding the set of guard conditions g1, g2, . . . , gn for
the transitions from each state then checking that the
expression gi ∧ gj is not satisfiable for any i < j <= n.
The check is performed by feeding the expression into
a boolean satisfiability (SAT) solver. This process is il-
lustrated in Figure 9. The input format for most SAT
solvers is DIMACS, which is a syntax for expressions in
conjunctive normal form (CNF). In order to use a SAT
solver to check these expressions, we must first convert
the guards into CNF.

EFSM
Model

Get
outgoing

transitions
from each

state

Set of
Transitions

Convert
Guards to
DIMACS

Set of
CNF

Formulas
SAT4J Yes / No

Result

Figure 9. Using a SAT solver to check the
model

7

6.1.2 Checking for Completeness

Another property we can test for is completeness, or
totality. This is a way of saying that the system
doesn’t get stuck. That is, at each state S with outgo-
ing transitions t1, t2, . . . , tn and corresponding guards
g1, g2, . . . , gn, (g1 ∨ g2 ∨ . . . ∨ gn)→ True.

6.1.3 Checking for deadlocks

UPPAAL allows us to easily check that the reference
model is deadlock-free, since this test is built into the
tool.

6.2 Safety Properties

The category of safety properties encompasses a
broad range of properties related to system safety.
These include properties related to many of the haz-
ards and the requirements. As space does not permit
the complete list of properties to be included here, we
have again limited the list here to the properties as-
sociated with the hazards and requirements discussed
above.

In order to check properties with UPPAAL, they
must be expressed in a dialect of temporal logic. For
readability, they are also written here as English sen-
tences.

Output side occlusion. If the output side pressure
is over the permissible limit, then the output occlusion
alarm shall be active and the pump shall be stopped.

2Pout > Lout imply AHOcc ==active

Air bubble. If the air sensor reading is over the
threshold, then the air alarm should be active and the
pump should be stopped.

2Sair > Lair imply AHair == active and pump-
speed == 0

The time from when the air alarm is activated until
the pump is stopped must be less than the user defined
maximum.

Misuse. This hazard expresses itself as a wide variety
of effects. Each of these effects is handled by a sensor,
alarm, and associated set of properties. For example,
a pet may chew the input side tubing, admitting air.
This is handled by the air alarm and is checked using
the air alarm property above.

Overdose. There are several cases:

1. If a bolus is requested and the total infused +
bolus size > max dose, then the bolus must not
be delivered.

2. If a bolus is requested and the current time - time
of last bolus < delay time, then bolus must not be
delivered.

3. If a bolus is requested and neither 1 nor 2 is ap-
plicable, then the bolus may be delivered.

6.3 Test Generation

Test case sequences are derived from the reference
model by performing a walk through or guided simu-
lation through the state space of the model. Test se-
quences are generated by providing the reference model
with an extensible application interface (AI). The ap-
plication interface for the model maps the abstract
state space of the model to concrete structures in the
code. Every time, during simulation, a target state
(or transition) is encountered, the component generates
stimuli that the corresponding event would produce in
the device implementation. The various stimuli gen-
erated during the traversal are recorded to produce a
(unique) test sequence. An exhaustive collection of all
such scenarios for an implementation is referred to as
a test suite.

The criteria for recording the stimuli are defined
with respect to the syntax of the reference model. Each
model, defined in terms of an automaton, contains
states and transitions. Each transition in turn may
have a label that includes all or some of the following:
an event, a condition, a condition action, and a transi-
tion action. A transition’s condition action is executed
whenever it is deemed ready to fire. The transition’s
action is executed only when it is included in such a
firing transition.

The criteria for generating test case sequences can
thus be based on the following coverages:

1. State coverage. This criterion is met when each
state in the model has been entered at least once.

2. Condition action coverage. A condition action is
deemed to be covered if it has been executed at
least once, or, if the segment has no condition ac-
tion, if its condition has evaluated to true at least
once. This criterion is satisfied when all target
conditions have been covered.

3. Transition action coverage. This criterion is met
when all target transition actions have been exe-
cuted at least once. If a transition has no associ-
ated action, it is ignored by this criterion.

8

The test cases generated via reference models help
the regulator validate individual implementations using
a black-box testing approach. This is ideally suited to
a conformance review process, as the regulator is not
concerned about details of the implementation during
this process. Our future work is to develop other test
converages and evaluate their effectivenesses.

7 Related Work

There have been several studies involving the use
of formal methods-based analysis of safety-critical sys-
tems, mostly for embedded systems [3]. Sreemani and
Atlee [20] used SMV to analyze the A-7E aircraft soft-
ware requirements. Bharadwaj and Heitmeyer [2] con-
tinued this line of work, using SMV and Spin for other
SCR requirements. Pugliese and Tronci [16] developed
a process-algebra specification from an informal speci-
fication of a hydroelectric power plant, which was then
verified with an in-house BDD-based model checker.
Crow and Di Vito [5] verified invariants of the require-
ments for a software subsystem on the Space Shuttle of
NASA with the explicit model checker Murφ [6]. Us-
ing Spin, Havelund et al. [11] found errors in a space-
craft controller, while Schneider et al. [18] validated a
model of a fault-tolerant system specified as a hierar-
chical state machine.

Efforts involving formal verification of medical de-
vices, and infusion pumps in particular, have dealt
mainly with model checking of the CARA system. Alur
et al. [1] made use of Extended Finite State Ma-
chines (EFSMs) to formally model CARA, and verified
the specifications using tools supporting formal analy-
sis, such as SCR and Hermes. Ray and Cleaveland,
on the other hand, used the CWB-NC to analyze the
CARA system, using a technique called unit verifica-
tion [17], which entails verifying individual small units
of a system and repeatedly combining them to form
more tractable units. The GPCA project builds upon
these efforts, employing many of the same techniques
to define a formal approach for conformance review in
medical device software.

This process, viz. reference model based confor-
mance review, itself is similar to the Family-oriented
Abstraction, Specification and Translation (FAST)
process [4]. FAST is a development process for pro-
ducing software in a family-oriented way that applies
software product-line architecture principles [21] into
software engineering process. The FAST process sep-
arates product-line engineering process into two main
parts. One step concentrates on providing the core as-
sets including the environment for implementing each
product. The other step utilizes the environment in the

production of different software products belonging to
the family. Similarly, our approach has a core (GPCA)
model defining generic safety properties, allowing spe-
cific implementations to specify the architecture for in-
dividual devices.

8 Discussion

We have presented a model-based approach to con-
formance testing of medical devices. While no indi-
vidual step of this methodology is new, their applica-
tion in this domain raises interesting issues. FDA staff
at CDRH currently use a quality process documenta-
tion based approach to reviewing submitted devices.
In this approach, little is revealed about the proper-
ties of the implemented software. The challenge is to
establish a methodology whereby a significant portion
of the some fifteen thousand medical device manufac-
turers can present substantive arguments about certain
properties of the software, such as safety and reliability,
to the regulators.

There are many issues to overcome before this vi-
sion can be realized. First and foremost is overcoming
complacency. We must demonstrate that the methods
we offer will permit manufacturers to build their soft-
ware faster, better, and cheaper. This will involve com-
paring current process based methods to formal based
methods in terms of measures that can readily be con-
verted to financial gain. We must provide appropriate
tools that facilitate principled engineering based soft-
ware development manufacturers can trust. Such tools
should serve to minimize the regulatory burden of man-
ufacturers, perhaps by automatically managing prop-
erties of regulatory interest, while at the same time
assuring product integrity.

This effort represents the first step of many to sup-
port an argument that formal methods based software
development is a practicable means of building software
faster, better, cheaper, and with a positive regulatory
impact. We have begun the journey by establishing
a reference device of moderate complexity. By going
through the development process ourselves we have the
opportunity to learn about the kinds of things our tools
and manufacturers need to do. For example, we have
learned that some available academic (open source)
tools are better at some things than others. But vir-
tually none of them are seamlessly interoperable. This
presents a significant hurdle for manufacturers to deal
with. We have also learned that modeling even sim-
ple devices requires that the tools need to manage a
large number of states. There are further challenges in
providing tools that present information in a form that
device domain experts can identify with.

9

Once we have established a reasonable level of de-
sign maturity it will be necessary to compare our model
with real implementations. This will entail collabora-
tion of some form with a manufacturer of this type of
device- a not too insignificant challenge in itself.

While our work may serve to benefit one particular
type of device, it is clear that we can not do this for each
device coming to market. Rather, this work should ul-
timately serve to demonstrate what is needed for man-
ufacturers to produce similar results themselves.

A potential benefit of this research is that we may
establish a reference standard for this type of device.
By enhancing our approach, we provide the capability
to (reference) test implementations for a set of impor-
tant safety properties that all implementations of this
device type should meet.

We plan to publish our design work as an open
source resource for manufacturers to use as a reference
for implementations and for academics to experiment
with.

9 Conclusion and Future Work

We have developed a methodology for conformance
testing device implementations and begun a case study
applying it to PCA infusion pumps. We gathered lists
of hazards and requirements, built a reference model
for this class of pumps, and tested the model for struc-
tural and safety properties.

Our immediate future work is to generate tests from
the model and use the tests to check a pump implemen-
tation. We will develop the notion of a generic infusion
pump as a hierarchy of pump models. Requirements for
various classes of pumps overlap a great deal. We can
exploit this overlap to build a family of pump models
with shared requirements and components.

10 Acknowledgements

We would like to thank Victoria Rich and Poppy
Bass of the Hospital of the University of Pennsylvania
and Erin Sparnon from ECRI for their help. Without
the assistance of domain experts and clinical practi-
tioners this work would not have been possible.

References

[1] Rajeev Alur, David Arney, Elsa L. Gunter, In-
sup Lee, Jaime Lee, Wonhong Nam, Frederick
Pearce, Steve Van Albert, and Jiaxiang Zhou. For-
mal specifications and analysis of the computer-
assisted resuscitation algorithm (CARA) infusion

pump control system. Software Tools for Technol-
ogy Transfer, 5(4):308–319, 2004.

[2] Ramesh Bharadwaj and Constance L. Heitmeyer.
Model checking complete requirements specifica-
tions using abstraction. Autom. Softw. Eng.,
6(1):37–68, 1999.

[3] Edmund M. Clarke and Jeannette M. Wing. For-
mal methods: state of the art and future direc-
tions. ACM Comput. Surv., 28(4):626–643, 1996.

[4] James Coplien, Daniel Hoffman, and David Weiss.
Commonality and variability in software engineer-
ing. IEEE Software, 15(6):37–45, 1998.

[5] Judith Crow and Ben L. Di Vito. Formalizing
space shuttle software requirements: Four case
studies. ACM Trans. Softw. Eng. Methodologies,
7(3):296–332, 1998.

[6] D. L. Dill. The Murφ verification system. In Ra-
jeev Alur and Thomas A. Henzinger, editors, Pro-
ceedings of the Eighth International Conference on
Computer Aided Verification CAV, volume 1102,
pages 390–393, New Brunswick, NJ, USA, 1996.
Springer Verlag.

[7] ECRI. Patient-controlled analgesic infusion
pumps. Health Devices, 2006.

[8] Food and Drug Administration. General principles
of software validation; final guidance for industry
and FDA staff. Technical report, Food and Drug
Administration, 2002.

[9] Food and Drug Administration. Guidance for the
content of premarket submissions for software con-
tained in medical devices - guidance for industry
and FDA staff. Technical report, Food and Drug
Administration, 2005.

[10] Klaus Havelund, Michael R. Lowry, and John
Penix. Formal analysis of a space-craft controller
using SPIN. Software Engineering, 27(8), 2001.

[11] Klaus Havelund, Mike Lowry, and John Penix.
Formal analysis of a space-craft controller using
SPIN. IEEE Trans. Softw. Eng., 27(8):749–765,
2001.

[12] Thomas A. Henzinger and Howard Wong-Toi. Us-
ing hytech to synthesize control parameters for a
steam boiler. In Formal Methods for Industrial
Applications, pages 265–282, 1995.

10

[13] IEC International Electrotechnical Commission.
IEC 60601-2-24 medical electrical equipment- part
2-24: Particular requirements for the safety of in-
fusion pumps and controllers. Technical report,
IEC, 1998.

[14] IEC International Electrotechnical Commission.
ANSI/AAMI/ISO 14971, medical devices – ap-
plication of risk management to medical devices.
Technical report, 2000.

[15] Insup Lee, George J. Pappas, Rance Cleaveland,
John Hatcliff, Bruce H. Krogh, Peter Lee, Harvey
Rubin, and Lui Sha. High-confidence medical de-
vice software and systems. Computer, 39(4):33–38,
2006.

[16] Rosario Pugliese and Enrico Tronci. Automatic
verification of a hydroelectric power plant. In
FME, pages 425–444, 1996.

[17] Arnab Ray and Rance Cleaveland. Unit verifica-
tion: the CARA experience. Software Tools for
Technology Transfer, 5(4):351–369, 2004.

[18] Francis Schneider, Steve Easterbrook, John R.
Callahan, and Gerard J. Holzmann. Validating re-
quirements for fault tolerant systems using model
checking. In ICRE ’98: Proceedings of the 3rd
International Conference on Requirements Engi-
neering, pages 4–13, Washington, DC, USA, 1998.
IEEE Computer Society.

[19] Tirumale Sreemani and Joanne M. Atlee. Fea-
sibility of model checking software requirements.
In Compass’96: Eleventh Annual Conference
on Computer Assurance, page 77, Gaithersburg,
Maryland, 1996. National Institute of Standards
and Technology.

[20] Tirumale Sreemani and Joanne M. Atlee. Fea-
sibility of model checking software requirements.
In COMPASS’96, Proceedings of the 11th Annual
Conference on Computer Assurance, pages 77–88,
Gaithersburg, Maryland, 1996. National Institute
of Standards and Technology.

[21] David M. Weiss and Chi Tau Robert Lai. Software
product-line engineering: a family-based software
development process. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

11

	University of Pennsylvania
	ScholarlyCommons
	June 2007

	Formal Methods Based Development of a PCA Infusion Pump Reference Model: Generic Infusion Pump (GIP) Project
	David Arney
	Raoul Jetley
	Paul Jones
	Insup Lee
	Oleg Sokolsky
	Recommended Citation

	Formal Methods Based Development of a PCA Infusion Pump Reference Model: Generic Infusion Pump (GIP) Project
	Abstract
	Comments

	hcmdss07.dvi

