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dentiality and integrity policies. Such policies, however, are usually specified in terms of static

information—data is labeled high or low security at compile time. In practice, the confidentiality

of data may depend on information available only while the system is running.
This paper studies language support for run-time principals, a mechanism for specifying security

policies that depend on which principals interact with the system. We establish the basic property
of noninterference for programs written in such language, and use run-time principals for specifying

run-time authority in downgrading mechanisms such as declassification.

In addition to allowing more expressive security policies, run-time principals enable the inte-
gration of language-based security mechanisms with other existing approaches such as Java stack

inspection and public key infrastructures. We sketch an implementation of run-time principals

via public keys such that principal delegation is verified by certificate chains.
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1. INTRODUCTION

Information-flow type systems are a promising approach for enforcing strong end-
to-end confidentiality and integrity policies [Sabelfeld and Myers 2003]. However,
most previous work on these security-typed languages has used simplistic ways of
specifying policies: the programmer specifies during program development what
data is confidential and what data is public. These information-flow policies con-
strain which principals have access either directly, or indirectly, to the labeled data.

In practice, however, policies are more complex—the principals that own a piece
of data may be unknown at compile time or may change over time, and the security
policy itself may require such run-time information to downgrade confidential data.
This paper addresses these shortcomings and studies run-time principals in the
context of information-flow policies.

Run-time principals are first-class data values representing users, groups, etc.
During its execution, a program may inspect a run-time principal to determine
policy information not available when the program was compiled. The key problem
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Run-time Principals in Information-flow Type Systems · 3

is designing the language in such a way that the dynamic checks required to imple-
ment run-time principals introduce no additional covert channels. Moreover, while
adding run-time principals permits new kinds of security policies, the new policies
should still interact well with the static type checking.

Run-time principals provide a way of integrating the policies expressed by the
type system with external notions of principals such as those found in public key
infrastructures (PKI). This integration allows language-based security mechanisms
to interoperate with existing machinery such as the access control policies enforced
by a file system or the authentication provided by an OS.

This paper makes the following three contributions:

—We formalize run-time principals in a simple security-typed language based on
the λ-calculus and show that the type system enforces noninterference, a strong
information-flow guarantee. This type system is intended to serve as a the-
oretical foundation for realistic languages such as Jif [Myers et al. 1999] and
FlowCaml [Simonet 2003].

—We consider the problems of downgrading and delegation in the presence of run-
time principals and propose the concept of run-time authority to temper their use.
Declassification, and other operations that reveal information owned by a run-
time principal, may only be invoked when the principal has granted the system
appropriate rights. These capabilities must be verified at runtime, leading to a
mechanism reminiscent of (but stronger than) Java’s stack inspection [Wallach
and Felten 1998; Wallach et al. 2000].

—We investigate the implementation of run-time principals via public key infras-
tructures. Run-time principals are represented by public keys, run-time authority
corresponds to digitally signed capabilities, and the delegation relation between
principals can be determined from certificate chains.

As an example of an information-flow policy permitted by run-time principals,
consider this program that manipulates data confidential to both a company man-
ager and to less privileged employees:

1 class C {
2 final principal user = Runtime.getUser();
3 void print(String{user:} s) {...}
4 void printIfManager(String{Manager:} s) {
5 actsFor (user, Manager) {
6 print(s);
7 }
8 }}

This program, written in a Java-like notation, calls the print routine to display
a string on the terminal. The run-time principal user, whose value is determined
dynamically (Runtime.getUser), represents the user that initiated the program.
Note that, in addition to ordinary datatypes such as Java’s String objects, there
is a new basic type, principal; values of type principal are run-time principals.

Lines 3-4 illustrate how information-flow type systems constrain information-
flows using labels. The argument to the print method is a String object s that
has the security label {user:}. In the decentralized label model [Myers and Liskov

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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1998; 2000], this annotation indicates that s is owned by the principal user and
that the policy of user is that no other principals can read the contents of s. This
policy annotation might be appropriate when the Strings passed to the print
method are output on a terminal visible to the principal user. More importantly,
confidential information such as Manager’s password, which user is not permitted
to see, cannot be passed to the print method (either directly or indirectly). Here,
Manager is a principal constant (a fixed value determined at compile time), and
user is a principal variable (a dynamic value to be determined at run time). The
type system of the programming language enforces such information-flow policies
at compile time without run-time penalty.

The printIfManager method illustrates how run-time principals can allow for
more expressive security policies. This method also takes a String as input but,
unlike print, requires the string to have the label {Manager:}, meaning that the
data is owned and readable only by the principal Manager and principals that act for
Manager. The body of this method performs a run-time test to determine whether
the user principal that has initiated the program is in fact acting for the Manager
principal. If so, then s is printed to the terminal, which is secure because the user
has the privileges of Manager. Otherwise s is not printed. Without such a run-time
test, an information-flow type system would prevent a String{Manager:} object
from being sent to the print routine because it expects a String{user:} object.
Run-time principals allow such security policies that depend on the execution en-
vironment.

Although this example has been explained in terms of Java-like syntax, we carry
out our formal analysis of run-time principals in terms of a typed λ-calculus. This
choice allows us to emphasize the new features of run-time principals and to use
established proof techniques for noninterference [Heintze and Riecke 1998; Abadi
et al. 1999; Pottier and Simonet 2002; Zdancewic and Myers 2002]. It should be
possible to extend our results to Java-like languages by using the techniques of
Banerjee and Naumann [2002; 2003].

The rest of the paper is organized as follows. The next section introduces the
decentralized label model as the background of our development. Section 3 de-
scribes our language with run-time principals, including its type system and the
noninterference proof. Section 4 considers adding declassification in the context of
run-time principals. Section 5 contains the detailed proof of type-safety for the full
language. Section 6 suggests how the security policies admitted by our language
can be integrated with traditional public key infrastructures and gives an extended
example. The last section discusses related work and conclusions.

2. DECENTRALIZED LABEL MODEL

The security model considered in this paper is a version of the decentralized label
model (DLM) developed by Myers and Liskov [1998; 2000]. However, the labels in
this paper include integrity constraints in addition to confidentiality constraints,
because integrity constraints allow robust declassification (see Section 4).

2.1 Principals and labels

Policies in the DLM are described in terms of a set of principal names. We use
capitalized words like Alice, Bob, Manager , etc., to distinguish principal names
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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from other syntactic classes of the language. We use meta-variable X to range over
such names.

To accommodate run-time principals, it is necessary to write policies that refer to
principals whose identities are not known statically. Thus, the policy language in-
cludes principal variables, ranged over by α. Principal variables may be instantiated
with principal names, as described below. In the example from the introduction,
Manager is a principal name and the use of user in the label is a principal variable.
We also need sets of principals, s, written as (unordered) comma-separated lists of
principals. The empty set (of principals and other syntactic classes), written ‘·’,
will often be elided. In summary:

p ::= X | α s ::= · | p, s

Using principals and principal sets, the DLM builds labels that describe both
confidentiality requirements, which restrict the principals that may read the data,
and integrity requirements, which restrict which principals trust the data.

The confidentiality requirements of the DLM are composed of reader policy com-
ponents of the form p:s, where p is the owner of the permissions and s is a
set of principals permitted by p to read the data. For example, the component
Alice:Bob,Charles says that Alice’s policy is that only Bob and Charles (and im-
plicitly Alice) may read data with this label. The confidentiality part of a label
consists of a set of policy components, each of which must be obeyed—the prin-
cipals able to read the data must be in the intersection of the reader permissions.
For example, data labeled with the two reader permissions Alice:Bob,Charles and
Bob:Charles,Eve will be readable only by Charles and Bob.1

The information-flow type system described below ensures that data with a given
confidentiality policy will only flow to destinations with labels that are at least as
restrictive as the policy (see the discussion of the label lattice below). This label
model is decentralized in the sense that each principal may specify reader sets
independently.

The integrity part of a label consists of a set of principals that trust the data.2 For
integrity, the information-flow analysis ensures that less trusted data (trusted by
fewer principals) is never used where more trusted data is necessary. For example,
data whose integrity label is the set Alice,Bob is trusted by Alice and by Bob but
not by Charles.

Collecting the descriptions above, we arrive at the following formal syntax for
reader policies c, confidentiality policy sets d, and labels l. The integrity part of a
label is separated from the confidentiality part by ‘!’:

c ::= p:s d ::= · | c;d l ::= {d!s}

2.2 Acts-for hierarchy

The decentralized label model also includes delegation embodied by a binary acts-
for relation � between principals. This relation is reflexive and transitive, yielding

1Or, more precisely, principals that can act for Charles or Bob; see the discussion of the acts-for
hierarchy in Section 2.2.
2It would be possible to give a version of integrity fully dual to the owners–readers model by using
an owners–writers model, but there do not seem to be compelling reasons to do so [Li et al. 2003].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



6 · Stephen Tse and Steve Zdancewic

a preorder on principals. The notation p � q indicates that principal q acts for
principal p, or, conversely, that p delegates to q.

The acts-for relation is taken into account when determining the restrictions im-
posed by a label. For example, consider the labels {Alice:!Alice} and {Bob:!Bob}.
These labels describe data readable and trusted only by Alice and Bob, respectively.
However, if the relation Alice � Bob is in the acts-for relation, then data with label
{Alice:!Alice} will be readable by Bob—because Bob acts for Alice, Bob can read
anything that Alice can read. Bob does not trust the integrity of data with label
{Alice:!Alice}—Alice’s trust in the data does not imply Bob’s trust. Alice does
trust data with label {Bob:!Bob}, again because Bob acts for Alice, anything Bob
trusts Alice does too.

Formally, an acts-for hierarchy ∆ is a set of p � q constraints. ∆ is closed if
it contains no principal variables. To make it easier to distinguish closed acts-for
hierarchies from potentially open ones, we use the notation A rather than ∆ to
mean a closed hierarchy.

We write ∆ ` p � q if principal q acts for principal p according to hierarchy ∆,
or formally, if the reflexive, transitive closure of ∆ contains p � q. The notation
∆ ` s1 � s2 extends this delegation relation to sets of principals: the set of
principals s1 can act for the set of principals s2 if for each principal p ∈ s1 there
exists a principal q ∈ s2 such that ∆ ` p � q. We write ∆ ` s1 u s2 to be the meet
of s1 and s2, that is, the largest s3 such that ∆ ` s3 � s1 and ∆ ` s3 � s2.

Furthermore, we assume the existence of a unique most powerful principal >
(called top) that acts for all other principals. For all principals p and all hierarchies
∆, we have ∆ ` p � >.

2.3 Label lattice

A label l1 is less restrictive than a label l2 according to an acts-for hierarchy ∆,
written ∆ ` l1 v l2, when l1 permits more readers and is at least as trusted.
Formally, this relation is defined in according to these two rules (adapted from
Myers and Liskov [2000] but extended to include integrity sets):

∀c1 ∈ d1. ∃c2 ∈ d2. ∆ ` c1 v c2 ∆ ` s2 � s1

∆ ` {d1!s1} v {d2!s2}

∆ ` p1 � p2 ∆ ` s2 � s1

∆ ` p1:s1 v p2:s2

We write ∆ ` l1 6v l2 if it is not the case that ∆ ` l1 v l2. This negation
is well defined because the problem of determining the v relation is (efficiently)
decidable—it reduces to a graph reachability problem over the finite acts-for hier-
archy.

The labels of the DLM form a distributive, join-semi lattice, with join operation
given by

∆ ` {d1!s1} t {d2!s2}
def= {d1 ∪ d2!s3} if ∆ ` s1 u s2 = s3

The intuition is that the v relation describes legal information flows, and the 6v
relation describes the illegal information flows that should not be permitted in a
secure program. According to these rules, the following example label inequalities
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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can be derived:
· ` {Alice:Bob!} v {Alice:!}
· ` {Alice:!} 6v {Alice:Bob!}
· ` {!Alice,Bob} v {!Alice}
· ` {!Alice} 6v {!Alice,Bob}

Alice � Bob ` {Alice:!} v {Bob:!}
Alice � Bob ` {Bob:!} 6v {Alice:!}

∆ ` {!>} v l (for all ∆ and l)
∆ ` l v {>:!} (for all ∆ and l)

These inequalities show that there is a top-most label {>:!} (owned by >, read-
able and trusted by no principals) and that the bottom of the label lattice is {!>}
(completely unconstrained readers, trusted by all principals). Data with a less
restrictive label may always be treated as having a more restrictive label.

3. RUN-TIME PRINCIPALS

This section describes the language λRP, a variant of the typed λ-calculus with
information-flow policies drawn from the label lattice described above. In order to
focus on run-time principals, λRP does not address several aspects of information
flow. First, all programs in λRP terminate, thus it precludes termination channels.
Second, λRP does not have state, so no information channels may arise through
the shared memory. Third, the analysis presented here does not consider timing
channels. The type system could be extended to remove all of these limitations
using known techniques [Volpano et al. 1996; Agat 2000; Sabelfeld and Sands 2001;
Pottier and Simonet 2002; Zdancewic and Myers 2002].

Security types, plain types, program terms and values of the language are defined
according to the grammars in Figure 1. Like in previous information-flow languages,
computation in λRP is described by security types (t), which are plain types (u)
annotated with a label (l).

The unit, sum, and function types are standard [Pierce 2002]. There is only one
value, written *, of type 1. Sum values are created by tagging another value v with
either the left or right tag: inl v and inr v, respectively. The case expression
branches on the tag of a sum value. Function values, of type t1 → t2 are λ-
abstractions of the form λx : t. e, where x is the formal parameter that is bound
within expression e, the body of the function. Function application is written by
juxtaposition of expressions.

By convention, if the label is omitted from a plain type, we take it to be the
minimal label, {!>}. For example, the type 1{!>} can be written 1. We encode

Booleans with label l to be booll
def= (1 + 1)l such that true def= inl * and false

def=
inr *. The expression if (e) e1 e2 is encoded as case e (λx1 :1. e1) (λx2 :1. e2),
for some fresh names x1 and x2.

The last two kinds of types, Pp and ∀α � p. t, are the new features related
to run-time principals. The run-time representation of a principal such as Alice
may be a public key or some other structured data, but for now we treat these
representations as abstract. The only value of type PAlice is the constant Alice.
That is, Pp is a singleton type [Aspinall 1994]; such types have previously been
used to represent other kinds of run-time type information [Crary et al. 2002]. A

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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t ::= ul Secure types

u ::= Plain types
1 unit
t + t sum
t → t function
Pp principal
∀α � p. t universal
∃α � p. t existential

e ::= Terms
v value
x variable
inl e left injection
inr e right injection
case e v v sum case
e e application
if (e � e) e e if delegation
e [p] instantiation
open (α, x) = e in e opening

v ::= Values
* unit
inl v left injection
inr v right injection
λx : t. e function
X principal name
Λα � p. e polymorphism
pack (p � p, v) packing

E ::= Evaluation contexts
inl E | inr E | case E v v
| E e | v E
| E [p] | open (α, x) = E in e
| if (E � e) e e | if (v � E) e e

Fig. 1. Syntax of types, terms, and values for λRP

program can perform a dynamic test of the acts-for relation between Alice and Bob
using the expression if (Alice � Bob) e1 e2.

The type ∀α � p. t is a form of bounded quantification [Pierce 2002] over prin-
cipals.3 This type introduces a principal variable, and it describes programs for
which the static information about principal α is that the acts-for relation α � p

3It might be useful in practice to add lower bounds or multiple bounds, but we do not investigate
them here.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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holds. For example, the type t0 = ∀α � Alice. bool{α:!} → bool{α:!} describes
functions whose parameter and return types are Booleans owned by any principal
for whom Alice may act.

Term-level expressions generalize the principal variable α using the syntax Λα �
p. e. If f is such a function of the type t0 given above, and if the acts-for hierar-
chy establishes that Bob � Alice, we may call f by instantiating α with Bob by
f [Bob] true. A bound of > in a polymorphic type, as in ∀α � >. t, expresses a
policy parameterized by any principal, because all principals satisfy the constraint
p � >. For convenience, we define the syntactic sugar ∀α. t

def= ∀α � >. t and
Λα. e

def= Λα � >. e.
This kind of polymorphism over principals, in conjunction with the singleton

principal types, provides a connection between the static type system and the pro-
gram’s run-time tests of the acts-for hierarchy. Consider the following program g,
which is similar to the printIfManager example in Section 1:

g : ∀α. Pα → (bool{α:!} → 1) → bool{M:!} → 1
g = Λα. λuser :Pα. λprint :bool{α:!} → 1.

λs :bool{M:!}. if (M � user) (print s) *

This function is parameterized by the principal variable α. The next parameter is
a run-time principal user that has type Pα, meaning that the static name associated
with the run-time principal user is α. The next two arguments to g are a function
called print , which expects an argument owned by α, and a Boolean value s, owned
by the principal M (here abbreviating Manager). The body of g performs a run-
time test to determine whether user acts for M . If so, the first branch of the
conditional is taken, and the print function is applied to the secret s. Otherwise,
the unit value * is returned.

Another form of quantification is existential types ∃α � p. t, which are useful
for encapsulating the run-time identity of some principal.4 For example, the Java
API Runtime.getUser in Section 1 can now be given the type 1 → ∃α � >. Pα,
which means that the value is a package containing the identity of a principal but
its static type is encapsulated and only its upper bound > is revealed.

These existential types have been traditionally used for encoding modules or
packages [Pierce 2002]. An expression pack (p1 � p2, e) hides the principal p1

inside e, revealing only the upper bound p2 of the delegation to the rest of the
program. Programmers can then use the new expression open (α, x) = e1 in e2 to
interact with the package e1 inside the scope of e2.

The main feature of existential packages is that they are first-class values which
can be freely passed around. The distributed banking example in Figure 11 illus-
trates such practical use of existential types.

3.1 Dynamic semantics

The operational semantics of λRP, shown in Figure 2, is standard [Pierce 2002],
except for the addition of the acts-for hierarchy and the if-acts-for test. We use
the notation A, e −→ A, e′ to mean that an acts-for hierarchy A and a program e

4Existential types can be encoded in terms of universal types, following Reynolds’ encoding (but
requires a whole program analysis). For clarity, we include existential types here as primitives.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



10 · Stephen Tse and Steve Zdancewic

A, case (inl v) v1 v2 −→ A, v1 v (E-CaseInl)

A, case (inr v) v1 v2 −→ A, v2 v (E-CaseInr)

A, (λx : t. e) v −→ A, e{v/x} (E-Fun)

A, (Λα � p. e) [X] −→ A, e{X/α} (E-All)

A, open (α, x) = (pack (X1 � X2, v)) in e −→ A, e{X1/α, v/x} (E-Some)

A ` X1 � X2

A, if (X1 � X2) e3 e4 −→ A, e3
(E-IfDelYes)

A ` X1 6� X2

A, if (X1 � X2) e3 e4 −→ A, e4
(E-IfDelNo)

A, e1 −→ A, e2

A, E[e1] −→ A, E[e2]
(E-Context)

Fig. 2. Evaluation rules of λRP

make a small step of evaluation to become A and e′. The evaluation of a program
is the reflexive and transitive closure of the small-step evaluation. Note that A is
used but never changed here; Section 4.2 considers run-time modification of A via
delegation.

In Figure 2, E-Fun says that, if an abstraction λx : t. e is applied to a value v, then
v is substituted for x in e. Similarly, by E-All, if a polymorphic term Λα � p. e
is instantiated to a principal X, then X is substituted for α in e. E-Some does
both the term and the type substitutions when opening up a package. We use the
notation e{v/x} and e{X/α} for capture-avoiding substitutions.

E-CaseInl and E-CaseInr are rules for conditional test of tagged values: If the
test condition is a left-injection inl v, the first branch is applied to v. For example,
using the Boolean encoding described earlier,

if (true) Alice Bob
def= case (inl *) (λy :1. Alice) (λy :1. Bob)
−→ (λy :1. Alice) *
−→ Alice

E-IfDelYes and E-IfDelNo, unlike the other rules above, use the acts-for hierarchy
A to check delegation at run-time. If A proves that principal X1 delegates to
principal X2, the result of an if-acts-for term is the first branch; otherwise, the
result is the second branch.

E-Context specifies the congruence rules for evaluation with contexts.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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x : t ∈ Γ
∆; Γ ` x : t

(T-Var)

∆ ` l
∆; Γ ` * : 1l

(T-Unit)

∆; Γ ` e : t1 ∆ ` l

∆; Γ ` inl e : (t1 + t2)l

(T-Inl))

∆; Γ ` e : t2 ∆ ` l

∆; Γ ` inr e : (t1 + t2)l

(T-Inr)

∆; Γ ` e : (t1 + t2)l ∆; Γ ` v1 : (t1 → t)l ∆; Γ ` v2 : (t2 → t)l

∆; Γ ` case e v1 v2 : t t l
(T-Case)

∆; Γ, x : t1 ` e : t2 ∆ ` l

∆; Γ ` λx : t1. e : (t1 → t2)l

(T-Fun)

∆; Γ ` e1 : (t1 → t2)l ∆; Γ ` e2 : t1 ∆ ` π2 � (π1|l)
∆; Γ;π1 ` e1 e2 : t2 t l

(T-App)

∆; Γ ` e1 : (Pp)l ∆; Γ ` e2 : (Pq)l ∆, p � q; Γ ` e3 : t ∆; Γ ` e4 : t

∆; Γ ` if (e1 � e2) e3 e4 : t t l
(T-IfDel)

∆ ` l
∆; Γ ` X : (PX)l

(T-Name)

∆, α � p; Γ ` e : t α 6∈ ftv(Γ) ∆ ` l

∆; Γ ` Λα � p. e : (∀α � p. t)l

(T-All)

∆; Γ ` e : (∀α � q. t)l ∆ ` p � q

∆; Γ ` e [p] : t{p/α} t l
(T-Inst)

∆; Γ ` e : t{p/α} ∆ ` p � q ∆ ` l

∆; Γ ` pack (p � q, e) : (∃α � q. t)l
(T-Pack)

∆; Γ ` e1 : (∃α � p. t1)l

∆, α � p; Γ, x : t1 ` e2 : t2 α 6∈ ftv(Γ) ∪ ftv(t2)

∆; Γ ` open (α, x) = e1 in e2 : t2 t l
(T-Open)

∆; Γ ` e : t1 ∆ ` t1 ≤ t2
∆; Γ ` e : t2

(T-Sub)

Fig. 3. Typing rules of λRP

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



12 · Stephen Tse and Steve Zdancewic

∆ ` u ≤ u′ ∆ ` l v l′

∆ ` ul ≤ u′l′
(S-Label)

∆ ` u ≤ u (S-Refl)

∆ ` u ≤ u′ ∆ ` u′ ≤ u′′

∆ ` u ≤ u′′
(S-Trans)

∆ ` t1 ≤ t′1 ∆ ` t2 ≤ t′2
∆ ` (t1 + t2) ≤ (t′1 + t′2)

(S-Sum)

∆ ` t′1 ≤ t1 ∆ ` t2 ≤ t′2
∆ ` (t1 → t2) ≤ (t′1 → t′2)

(S-Fun)

∆ ` p′ � p ∆, α � p′ ` t ≤ t′

∆ ` (∀α � p. t) ≤ (∀α � p′. t′)
(S-All)

Fig. 4. Subtyping rules of λRP

3.2 Static semantics

Our type system, shown in Figure 3, is similar to those previously proposed [Heintze
and Riecke 1998; Pottier and Conchon 2000; Zdancewic and Myers 2002], except
for the addition of rules for run-time principals. The notation ∆; Γ ` e : t means
that a program e has type t under the hierarchy ∆ and the term environment Γ.

To explain how the type system keeps track of information flow, consider the
typing rule T-Case for a case term. The test condition has type (t1 + t2)l, the first
branch must be a function of type t1 → t, and the second branch must be a function
of type t2 → t. This typing rule matches the operational semantics of E-CaseInl
and E-CaseInr mentioned above. The label of the inputs (the test condition and
the branches) will be folded into the label of the output as in t t l. We define
tt l = (ul′)t l = u(l′ t l) so that the output always has a label as high as the input’s
label. For all elimination forms (T-App, T-IfDel and T-Inst), this restriction on
the output label is used to rule out implicit information flows [Heintze and Riecke
1998; Zdancewic and Myers 2002].

T-Var (variables), T-Unit (units), T-Inl (left injections), T-Inr (right injections),
T-Fun (functions), T-App (applications), T-Sub (subsumption) are standard rules
for lambda calculus with subtyping [Pierce 2002].5 Figure 4 shows the subtyping
rules of λRP. Note the absence of subtyping for singletons; it is unsound to combine
subtyping and singletons [Aspinall 1994].

By T-Name, a principal constant X has type (PX)l. This singleton property ties
the static type information and the run-time identity of principals—if a program
expression has type (PX)l, it is guaranteed to evaluate to the constant X (because of

5By Barendregt’s variable convention, a binding variable is chosen fresh with respect to the current
context. In particular, x does not occur free in Γ and α does not occur free in ∆ in rules T-Fun,
T-All and T-Open.
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type preservation and canonical forms). The extra condition ∆ ` l checks that the
label l is well-formed under hierarchy ∆, meaning that all free principal variables
of l are contained in ∆.

T-All indicates that a polymorphic term Λα � p. e is well-typed if the body e is
well-typed under hierarchy ∆ extended with the additional delegation α�p. The
extra condition α 6∈ ftv(Γ) ensures the well-formedness of the environment—α is a
fresh variable. T-Inst requires the left term to be a polymorphic term and that the
delegation constraint ∆ ` p � q on the instantiated principal is known statically.

T-Pack and T-Open are similar to T-All and T-Inst. The additional restriction
α 6∈ ftv(t2) prevents the escape of the lexically-scoped type variable α. This restric-
tion is an important detail for a sound type system with existential types [Pierce
2002].

T-IfDel is similar to T-All in that it extends ∆ with α�p, but it does the extension
only for the first branch. This matches the operational semantics of E-IfDelYes and
E-IfDelNo in Figure 2. Extending ∆ for the first branch reflects the run-time
information that the branch is run only when α�p holds at run-time. For example,
when type-checking the program g at the beginning of this section, the function
application print s will be type-checked in a context where M � α. Because
M � α ` {M :!} v {α:!} the function application is permitted—inside the first
branch of the if-acts-for, a value of type bool{M:!} can be treated as though it has
type bool{α:!}.

The following shows the safety of the type system with respect to the operational
semantics.

Theorem 1 (Type-safety).

(1 ) Progress: If A ` e : t, then e = v or A, e −→ A, e′ for some e′.

(2 ) Preservation: If A ` e : t and A, e −→ A, e′, then A ` e′ : t.

The proof for this theorem is similar to those for languages with subtyping [Pierce
2002]. Since type-safety also holds for our full language with declassification and
authority (to be introduced in Section 4), we present the full proof altogether as
Theorem 6 in Section 5. Theorem 1 here is a specialized version of Theorem 6
where the authority π is empty.

3.3 Noninterference

This section proves a noninterference theorem [Goguen and Meseguer 1982], which
is the first main theoretical result of this paper. The intuition is that in secure
programs, high-security inputs do not interfere with low-security outputs.

Formally, the noninterference theorem states that if a Boolean program e of low
security l is well-typed and contains a free variable x of high security l′, and if
values v and v′ have the same type and security as x, then substituting either v or
v′ for x in e will evaluate to the same Boolean value v0. We use Boolean so that
the equivalence of the final values can be observed syntactically. This result means
that a low-security observer cannot use a well-typed program e to learn information
about the high-security input x.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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A, e −→∗ A, v A, e′ −→∗ A, v′ A ` v ∼ζ v′ : t

A ` e ≈ζ e′ : t
(R-Term)

A ` l 6v ζ

A ` v ∼ζ v′ : ul
(R-Label)

A ` * ∼ζ * : 1l (R-Unit)

A ` v ∼ζ v′ : t1

A ` inl v ∼ζ inl v′ : (t1 + t2)l

(R-Inl)

A ` v ∼ζ v′ : t2

A ` inr v ∼ζ inr v′ : (t1 + t2)l

(R-Inr)

∀(A ` v2 ∼ζ v′2 : t1). A ` (v v2) ≈ζ (v′ v′2) : t2 t l

A ` v ∼ζ v′ : (t1 → t2)l

(R-Fun)

A ` X ∼ζ X : (PX)l (R-Name)

∀(A ` X � p). A ` (v [X]) ≈ζ (v′ [X]) : t{X/α} t l

A ` v ∼ζ v′ : (∀α � p. t)l

(R-All)

A ` v ∼ζ v′ : t{X1/α}
A ` pack (X1 � X2, v) ∼ζ pack (X1 � X2, v

′) : (∃α � X2. t)l
(R-Some)

Fig. 5. Logical relations for types with labels

Theorem 2 (Noninterference). If A;x : ul′ ` e : booll, A ` l′ 6v l, A ` v :
ul′ and A ` v′ : ul′ then

A, e{v/x} −→∗ A, v0 iff A, e{v′/x} −→∗ A, v0

The proof requires a notion of equivalence with respect to observers of different
security labels. To reason about equivalence of higher-order functions and polymor-
phism, we use the standard technique of logical relations [Mitchell 1996]. However,
we parameterize the relations with an upper-bound ζ (“zeta”) of the observer’s se-
curity label, capturing the dependence of the terms’ equivalence on the observer’s
label.

Logical relations. Figure 5 shows the formal definition of the logical relation.
We use the notation A ` e ≈ζ e′ : t to denote two related computations, and
A ` v ∼ζ v′ : t to denote two related values. These relations are parameterized by
a type t, an acts-for hierarchy A, and an upper-bound ζ of the observer’s security
label.

R-Term indicates that two terms are related at type t if they evaluate to values
which are related at type t. R-Label is the crucial definition for logical relations
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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with labels. It relates any two values at type ul as long as the label l is not lower
than the observer’s label ζ. If R-Label does not apply, values are related only by
one of the following syntax-directed rules.

By R-Unit, * is related only to itself and, similarly, by R-Name, X is related only
to itself (because they are both singleton types). R-Inl says that two values are
related at (t1 + t2)l if they both are left-injections of the form inl v and inl v′,
and if v and v′ are related at t. By R-Fun, two values are related at (t1 → t2)l

if their applications to all values related at t1 are related at t2 t l. Lastly, R-All
indicates that two values are related at (∀α � p. t)l if their instantiations with all
principals acting for p are related at t t l.

We use the notation A ` γ ≈ζ γ′ : Γ to denote two related substitutions, meaning
that dom(γ) = dom(γ′) = dom(Γ) and that, for all x : t ∈ Γ, we have A; · ` γ(x) ≈ζ

γ′(x) : t. Note that a substituted value γ(x) or γ′(x) is always closed, as the logical
relations relate only closed values to closed values, and closed expressions to closed
expressions.

We use the notation δ |= ∆ to denote a type substitution δ modeling a type
environment ∆, meaning that dom(δ) = dom(∆) and that, for all α � p ∈ ∆, we
have ∆ ` δ(α) � p. That is, δ substitutes all free principal variables in ∆ and, δ
respects all delegation constraints in ∆.

Similarly, we use the notation A ` γ |= Γ to denote a term substitution γ
modelling a term environment Γ under an acts-for hierarchy A, meaning that
dom(γ) = dom(Γ) and that, for all x : t ∈ Γ, we have A; Γ ` γ(x) : t. At last, the
notation A = δ(∆) is a point-wise extension of δ(t) such that dom(A) = dom(∆)
and that, for all α � p ∈ ∆, we have α � δ(p) ∈ A.

Remark 3. We do not deal with parametricity of polymorphic functions [Wadler
1989] nor the behavioral equivalence of existential packages [Pitts 1998]. That is,
our model assumes that an observer can differentiate different representations of
polymorphic functions or different implementations of existential packages. This
assumption simplifies the equivalence relations, and is the key difference between
noninterference and parametricity.

Using these definitions, we strengthen the induction hypothesis of noninterference
so that Theorem 2 (Noninterference) follows as a special case of this substitution
lemma. In essence, the lemma states that substitution of related values yields
related results.

Lemma 4 (Substitution for logical relations). If

(1 ) ∆; Γ ` e : t

(2 ) δ |= ∆
(3 ) A = δ(∆)
(4 ) A ` γ |= Γ
(5 ) A ` γ′ |= Γ
(6 ) A ` γ ≈ζ γ′ : δ(Γ)

then

A ` γδ(e) ≈ζ γ′δ(e) : δ(t)
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Proof. By induction on the typing derivations.

—T-Var:
x : t ∈ Γ

∆; Γ ` x : t
By the assumption A ` γ ≈ζ γ′ : δ(Γ) and the definition of related substitutions.

—T-Unit:
∆ ` l

∆; Γ ` * : 1l

By the definition of substitution, γδ(e) = γ′δ(e) = *. Their evaluated values are
related by R-Unit. The result then follows by R-Term.

—T-Inl:
∆; Γ ` e1 : t1 ∆ ` l

∆; Γ ` inl e1 : (t1 + t2)l

By the definition of substitution,

γδ(inl e1) = inl γδ(e1) (1)
γ′δ(inl e1) = inl γ′δ(e1) (2)
δ((t1 + t2)l) = (δ(t1) + δ(t2))δ(l) (3)

By IH on e1, we have A ` γδ(e1) ≈ζ γ′δ(e1) : δ(t1) with A, γδ(e1) −→∗

A, v and A, γ′δ(e1) −→∗ A, v′. By the evaluation under a context, we have
A, inl γδ(e1) −→∗ A, inl v and A, inl γ′δ(e1) −→∗ A, inl v′. The result fol-
lows by (1)-(3), R-Inl and R-Term.

—T-Inr: symmetric to T-Inl.

—T-Case:
∆; Γ ` e0 : (t1 + t2)l ∆; Γ ` v1 : (t1 → t0)l ∆; Γ ` v2 : (t2 → t0)l

∆; Γ ` case e0 v1 v2 : t0 t l
By IH on e0, we have A ` γδ(e0) ≈ζ γ′δ(e0) : δ((t1 + t2)l) with A, γδ(e0) −→∗

A, v0 and A, γ′δ(e0) −→∗ A, v′0. By the definition of substitution, we have
γδ(case e0 v1 v2) = case γδ(e0) γδ(v1) γδ(v2).
By the inversion of A ` v0 ∼ζ v′0 : δ((t1 + t2)l), there are three subcases to be
considered:
(1) R-Label with A ` l 6v ζ: let t0t l = ul′ . Since A ` l 6v ζ, we have A ` l′ 6v ζ.

Hence any two values of type ul′ are then trivially related by R-Label. The
result follows by R-Term.

(2) R-Inl with v0 = inl v and v′0 = inl v′ with A ` v ∼ζ v′ : δ(t1): by
E-CaseInl,

A, case v0 γδ(v1) γδ(v2) −→∗ A, γδ(v1) v

A, case v′0 γ′δ(v′1) γ′δ(v′2) −→∗ A, γ′δ(v′1) v′

By IH, the definition of substitution and R-Fun, we have

A ` (γδ(v1) v) ≈ζ (γ′δ(v′1) v′) : δ(t0 t l)

By R-Term, we have related values for the two application terms. By the
evaluation under a context, we have related values for the result terms.

(3) R-Inr with v0 = inr v and v′0 = inr v′: symmetric to the previous case.
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—T-Fun:
∆; Γ, x : t1 ` e0 : t2 ∆ ` l

∆; Γ ` λx : t1. e0 : (t1 → t2)l

By the definition of substitution,

γδ(λx : t1. e0) = λx :δ(t1). γδ(e0) (1)
γ′δ(λx : t1. e0) = λx :δ(t1). γ′δ(e0) (2)
δ((t1 → t2)l) = (δ(t1) → δ(t2))δ(l) (3)

By (1)-(3), R-Fun and R-Term, it remains to show that ∀A ` v ∼ζ v′ : δ(t1),

A ` ((λx :δ(t1). γδ(e0)) v) ≈ζ ((λx :δ(t1). γ′δ(e0)) v′) : δ(t2 t l)

By the evaluation under a context with E-Fun,

A, (λx :δ(t1). γδ(e0)) v −→∗ A, γδ(e0){v/x} (4)
A, (λx :δ(t1). γ′δ(e0)) v′ −→∗ A, γ′δ(e0){v′/x} (5)

Let γ0 = γ, x 7→ v and γ′0 = γ′, x 7→ v′ such that

γδ(e0){v/x} = γ0δ(e0) (6)
γ′δ(e0){v′/x} = γ′0δ(e0) (7)

A ` γ0 ≈ζ γ′0 : δ(Γ, x : t1) (8)

By IH with A ` γ0 |= Γ, x : t1 and A ` γ′0 |= Γ, x : t1 and (8), we have
A ` γ0δ(e0) ≈ζ γ′0δ(e0) : δ(t2 t l). Then, the result follows by (4)-(7) and R-
Term.

—T-App:
∆; Γ ` e1 : (t1 → t2)l ∆; Γ ` e2 : t1

∆; Γ ` e1 e2 : t2 t l
By IH on e1 and e2,
(1) A ` γδ(e1) ≈ζ γ′δ(e1) : δ((t1 → t2)l) with A, γδ(e1) −→∗ A, v1 and

A, γ′δ(e1) −→∗ A, v′1
(2) A ` γδ(e2) ≈ζ γ′δ(e2) : δ(t1) with A, γδ(e2) −→∗ A, v2 and A, γ′δ(e2) −→∗

A, v′2
The result then follows by R-Fun and R-Term.

—T-Name:
∆ ` l

∆; Γ ` X : (PX)l

By the definition of substitution, γδ(e) = γ′δ(e) = X and δ((PX)l) = (PX)δ(l).
The result then follows by R-Name and R-Term.

—T-IfDel:

∆; Γ ` e1 : (Pp1)l ∆; Γ ` e2 : (Pp2)l ∆, p1 � p2; Γ ` e3 : t0 ∆; Γ ` e4 : t0

∆; Γ ` if (e1 � e2) e3 e4 : t0 t l
By IH on e1, e2, e3 and e4,
(1) A ` γδ(e1) ≈ζ γ′δ(e1) : δ((Pp1)l) withA, γδ(e1) −→∗ A, v1 andA, γ′δ(e1) −→∗

A, v′1
(2) A ` γδ(e2) ≈ζ γ′δ(e2) : δ((Pp2)l) withA, γδ(e2) −→∗ A, v2 andA, γ′δ(e2) −→∗

A, v′2
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(3) A ` γδ(e3) ≈ζ γ′δ(e3) : δ(t0) with A, γδ(e3) −→∗ A, v3 and A, γ′δ(e3) −→∗

A, v′3
(4) A ` γδ(e4) ≈ζ γ′δ(e4) : δ(t0) with A, γδ(e4) −→∗ A, v4 and A, γ′δ(e3) −→∗

A, v′4
By the definition of substitution and the evaluation under a context,

γδ(if (e1 � e2) e3 e4) = if (γδ(e1) � γδ(e2)) γδ(e3) γδ(e4)
γ′δ(if (e1 � e2) e3 e4) = if (γ′δ(e1) � γ′δ(e2)) γ′δ(e3) γ′δ(e4)

A, if (γδ(e1) � γδ(e2)) γδ(e3) γδ(e4) −→∗ A, if (v1 � v2) γδ(e3) γδ(e4)
A, if (γ′δ(e1) � γ′δ(e2)) γ′δ(e3) γ′δ(e4) −→∗ A, if (v′1 � v′2) γ′δ(e3) γ′δ(e4)

By the inversion of A ` v1 ∼ζ v′1 : δ((Pp1)l) and A ` v2 ∼ζ v′2 : δ((Pp2)l),
(1) R-Label with A ` l 6v ζ: by R-Label, we have related values for the result

terms.
(2) R-Name with v1 = v′1 = δ(p1), v2 = v′2 = δ(p2): if A ` δ(p1) � δ(p2), then

by the evaluation under a context with E-IfDelYes,

A, if (v1 � v2) γδ(e3) γδ(e4) −→∗ A, γδ(e3)
A, if (v′1 � v′2) γ′δ(e3) γ′δ(e4) −→∗ A, γ′δ(e3)

Otherwise, if A ` δ(p1) 6� δ(p2), then by the evaluation under a context and
E-IfDelNo,

A, if (v1 � v2) γδ(e3) γδ(e4) −→∗ A, γδ(e4)
A, if (v′1 � v′2) γ′δ(e3) γ′δ(e4) −→∗ A, γ′δ(e4)

In both cases, by the evaluation under a context, we have related values for
the result terms at type δ(t0). By Lemma 5 (Subtyping for logical relations)
and Lemma 12 (substitution for subtyping), they are also related at type
δ(t0 t l). The result then follows by R-Term.

—T-All:
∆, α � p; Γ ` e0 : t0 α 6∈ ftv(Γ) ∆ ` l

∆; Γ ` Λα � p. e0 : (∀α � p. t0)l

By the definition of substitution,

γδ(Λα � p. e0) = Λα � δ(p). γδ(e0) (1)
γ′δ(Λα � p. e0) = Λα � δ(p). γ′δ(e0) (2)
δ((∀α � p. t0)l) = (∀α � p. δ(t0))δ(l) (3)

By (1)-(3), R-All and R-Term, it remains to show that ∀A ` X � δ(p),

A ` ((Λα � δ(p). γδ(e0)) [X]) ≈ζ ((Λα � δ(p). γ′δ(e0)) [X]) : δ(t0 t l)

By the evaluation under a context with E-All,

A, (Λα � δ(p). γδ(e0)) [X] −→∗ A, γδ(e0){X/α} (4)
A, (Λα � δ(p). γ′δ(e0)) [X] −→∗ A, γ′δ(e0){X/α} (5)

Let δ0 = δ, α 7→ X such that

γδ(e0){X/α} = γδ0(e0) (6)
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γ′δ(e0){X/α} = γ′δ0(e0) (7)
δ0 |= ∆, α � p (8)

By IH with (8), we have A ` γδ(e0) ≈ζ γ′δ(e0) : δ(t0 t l). Then, the result
follows by (4)-(7) and R-Term.

—T-Inst:
∆; Γ ` e0 : (∀α � p. t0)l

∆; Γ ` e0 [p] : t0 t l
By IH on e0, we haveA ` γδ(e0) ≈ζ γ′δ(e0) : δ((∀α � p. t0)l) withA, γδ(e0) −→∗

A, v and A, γ′δ(e0) −→∗ A, v′. The result then follows by R-All and R-Term.

—T-Pack:
∆; Γ ` e0 : t{q/α} ∆ ` p � q ∆ ` l

∆; Γ ` pack (p � q, e0) : (∃α � q. t)l

By the definition of substitution,

γδ(pack (p � q, e0)) = pack (δ(p) � δ(q), γδ(e1)) (1)
γ′δ(pack (p � q, e0)) = pack (δ′(p) � δ′(q), γ′δ(e1)) (2)

δ((∃α � q. t)l) = (∃α � δ(q). δ(t))δ(l) (3)

By IH on e0, we have A ` γδ(e0) ≈ζ γ′δ(e0) : δ(t{q/α}) with A, γδ(e0) −→∗ A, v
and A, γ′δ(e0) −→∗ A, v′. By the evaluation under a context,

pack (δ(p) � δ(q), γδ(e1)) −→∗ pack (δ(p) � δ(q), v)
pack (δ′(p) � δ′(q), γ′δ(e1)) −→∗ pack (δ′(p) � δ′(q), v′)

The result follows by (1)-(3), R-Some and R-Term.

—T-Open:
∆; Γ ` e1 : (∃α � p. t1)l ∆, α � p; Γ, x : t1 ` e2 : t2 α 6∈ ftv(Γ) ∪ ftv(t2)

∆; Γ ` open (α, x) = e1 in e2 : t2 t l
By IH on e1, A ` γδ(e1) ≈ζ γ′δ(e1) : δ((∃α � p. t1)l) with A, γδ(e1) −→∗ A, v1

and A, γ′δ(e1) −→∗ A, v′1.
By the definition of substitution and the evaluation under a context,

γδ(open (α, x) = e1 in e2) = open (α, x) = γδ(e1) in γδ(e2)
γ′δ(open (α, x) = e1 in e2) = open (α, x) = γ′δ(e1) in γ′δ(e2)

A, open (α, x) = γδ(e1) in γδ(e2) −→∗ A, open (α, x) = v1 in γδ(e2)
A, open (α, x) = γ′δ(e1) in γ′δ(e2) −→∗ A, open (α, x) = v′1 in γ′δ(e2)

By the inversion of A ` v1 ∼ζ v′1 : δ((∃α � p. t1)l),
(1) R-Label with A ` l 6v ζ: by R-Label and R-Term.
(2) R-Some with v1 = pack (X � p, v) and v′1 = pack (X � p, v′) with A ` v ∼ζ

v′ : δ(t{X/α}): by the evaluation under a context,

A, open (α, x) = v1 in γδ(e2) −→∗ A, γδ(e2){X/α, v/x}
A, open (α, x) = v′1 in γ′δ(e2) −→∗ A, γ′δ(e2){X/α, v′/x}

We can then finish in a similar way as T-Fun and T-All by extending γ0 =
γ, x 7→ v and γ′0 = γ′, x 7→ v′ and δ0 = δ, α 7→ X.
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—T-Sub:
∆; Γ ` e0 : t1 ∆ ` t1 ≤ t2

∆; Γ ` e0 : t2
By IH on e0, we have A ` γδ(e0) ≈ζ γ′δ(e0) : δ(t1) with A, γδ(e0) −→∗ A, v and
A, γ′δ(e0) −→∗ A, v′. The result is then a consequence of the following lemma
and R-Term.

Lemma 5 (Subtyping for logical relations). If A ` v ∼ζ v′ : t and
A ` t ≤ t′, then A ` v ∼ζ v′ : t′.

4. DECLASSIFICATION AND AUTHORITY

Although noninterference is useful as an idealized security policy, in practice most
programs do intentionally release some confidential information. This section con-
siders the interaction between run-time principals and declassification and suggests
run-time authority as a practical approach to delimiting the effects of downgrading.

The basic idea of declassification is to add an explicit method for the program-
mer to allow information flows downward in the security lattice. The expression
declassify e t indicates that e should be considered to have type t, which may re-
lax some of the labels constraining e. Declassification is like a type-cast operation;
operationally it has no run-time effect:

A, declassify v t −→ A, v (E-Dcls)

One key issue is how to constrain its use so that the declassification correctly
implements a desired security policy. Ideally, each declassification would be accom-
panied by formal justification of why its use does not permit unwanted downward
information flows. However, such a general approach reduces to proving that a
program satisfies an arbitrary policy, which is undecidable for realistic programs.

An alternative is to give up on general-purpose declassification and instead build
it into appropriate operations, such as encryption. Doing so essentially limits the
security policies that can be expressed, which may be acceptable in some situations,
but is not desirable for general-purpose information-flow type systems.

To resolve these tensions, the original decentralized label model proposed the use
of authority to scope the use of declassification. Intuitively, if Alice is an owner
of the data, then her authority is needed to relax the restrictions on its use. For
example, to declassify data labeled {Alice:!} to permit Bob as a reader (i.e. relax
the label to {Alice:Bob!}) requires Alice’s permission. In the original DLM, a
principal’s authority is statically granted to a piece of code.

Zdancewic and Myers proposed a refinement of the DLM authority model called
robust declassification [Zdancewic and Myers 2001; Zdancewic 2003; Myers et al.
2004]. Intuitively, robust declassification requires that the decision to release the
confidential data be trusted by the principals whose policies are relaxed. In a
programming language setting, robustness entails an integrity constraint on the
program-counter (pc) label—the pc label is a security label associated with each
program point; it approximates the information that may be learned by observing
that the program execution has reached the program point.

For example, suppose that the variable x has type booll. Then the pc label
at the program points at the start of the branches v0 and v1 of the conditional
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expression case x v0 v1 satisfies l v pc because the branch taken depends on x—
observing that the program counter has reached v0 reveals that x is true. If x has
low integrity and is untrusted by Alice, then the condition l v pc implies that the
integrity of the pc labels in the branches are also untrusted by Alice. Robustness
requires that Alice trusts the pc at the point of her declassification; even if she has
granted her authority to this program, no declassification affecting her policies will
be permitted to take place in v0 or v1.

In the presence of run-time principals, however, the story is not so straightfor-
ward. To adopt the authority model, we must find a way to represent a run-time
principal’s authority. Similarly, to enforce robust declassification, we must ensure
that at runtime the integrity of the program counter is trusted by any run-time
principals whose data is declassified. At the same time, we would like to ensure
backward compatibility with the static notions of authority and robustness in pre-
vious work [Zdancewic and Myers 2001; Zdancewic 2003].

4.1 Run-time authority and capabilities

To address downgrading with run-time principals, we use capabilities (unforgeable
tokens) to represent the run-time authority of a principal. The meta-variable i
ranges over a set of privilege identifiers I. We are interested in controlling the use
of declassification, so we assume that I contains at least the identifier declassify,
but the framework is general enough to control arbitrary privileges. In Section 4.2,
we consider using capabilities to regulate other privileged operations, such as en-
dorsement and delegation.

Figure 6 to Figure 9 summarize the changes to the language needed to support
run-time authority. Just as we separate the static principal names from their run-
time representation, we separate the static authority granted by a principal from its
representation. The former, static authority, is written p.i to indicate that principal
p grants permission for the program to use privilege i. For example, a program
needs to have the authority Alice .declassify to declassify on Alice’s behalf. The
latter, run-time authority, is written X{i} and represents an unforgeable capability
created by principal X and authorizing privilege i. T-Cap in Figure 8 says that
capabilities have static type C.

A program can test a capability at run time to determine whether a principal has
granted it privilege i using the expression if (e1 ⇒ e2 . i) e3 e4. Here, e1 evaluates
to a capability and e2 evaluates to a run-time principal; if the capability implies
that the principal permits i the first branch e3 is taken, otherwise e4 is taken.

Other expressions (endorse e p and acquire e . i) and other privileges (endorse
and delegatep�p) will be explained in the next subsections.

To retain the benefits of robust declassification, we generalize the pc label to be
a set of static permissions, π. The function type constructor must also be extended
to indicate a bound on the calling context’s pc. In our setting, the bound is the
minimum authority needed to invoke the function. We write such types as [π] t1 →
t2. For example, if f has type [Alice . declassify] bool{Alice:!} → bool{!>} then
the caller of f must have Alice’s authority to declassify—f may internally do some
declassification of data owned by Alice. Therefore f , which takes data owned by
Alice and returns public data, may reveal information about its argument. On
the other hand, a function of type [Alice . declassify] bool{Bob:!} → bool{!>}
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u ::= . . . Plain types
[π] t → t function
C capability

π ::= · | π, p . i Authority

i ::= Privileges
declassify declassification
endorse endorsement
delegatep�p delegation

e ::= . . . Terms
if (e ⇒ e . i) e e if certify
declassify e t declassify
endorse e p endorse
let (e � e) in e let delegate
acquire e . i acquire

v ::= . . . Values
let (X1 � X2) in λx : t. e delegated function
let (X1 � X2) in Λα � p. e delegated polymorphism
let (X1 � X2) in pack (p � p, v) delegated package
X{i} capability

E ::= . . . Evaluation contexts
| let (E � e) e
| let (v � E) e
| if (E ⇒ e . i) e e
| if (v ⇒ E . i) e e
| declassify E t
| endorse E p
| acquire E . i

Fig. 6. λRP with run-time authority

cannot declassify the argument, which is owned by Bob, unless Alice acts for Bob.
Note that the types accurately describe the security-relevant operations that may
be performed by the function.

The examples above use only static authority. To illustrate how run-time capa-
bilities are used, consider this program:

h : ∀α. [·] Pα → [·] C→ [·] bool{α:!} → bool{!>}
h = Λα. λuser :Pα. λcap :C. λdata :bool{α:!}.

if (cap ⇒ user . declassify)
(declassify data bool{!>})
false
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x : t ∈ Γ
∆; Γ;π ` x : t

(T-Var)

∆ ` l
∆; Γ;π ` * : 1l

(T-Unit)

∆; Γ;π ` e : t1 ∆ ` l

∆; Γ;π ` inl e : (t1 + t2)l

(T-Inl)

∆; Γ;π ` e : t2 ∆ ` l

∆; Γ;π ` inr e : (t1 + t2)l

(T-Inr)

∆; Γ;π1 ` e : (t1 + t2)l ∆; Γ;π1|l ` v1 : ([π2] t1 → t)l
∆ ` π2 � (π1|l) ∆; Γ; π1|l ` v2 : ([π2] t2 → t)l

∆; Γ;π1 ` case e v1 v2 : t t l
(T-Case)

∆; Γ, x : t1;π ` e : t2 ∆ ` l

∆; Γ; · ` λx : t1. e : ([π] t1 → t2)l

(T-Fun)

∆; Γ;π1 ` e1 : ([π2] t1 → t2)l ∆; Γ;π1 ` e2 : t1 ∆ ` π2 � (π1|l)
∆; Γ;π1 ` e1 e2 : t2 t l

(T-App)

∆ ` l
∆; Γ;π ` X : (PX)l

(T-Name)

∆, α � p; Γ; π ` e : t α 6∈ dom(∆) ∆ ` l

∆; Γ;π ` Λα � p. e : (∀α � p. t)l

(T-All)

∆; Γ;π ` e : (∀α � p2. t)l ∆ ` p1 � p2

∆; Γ;π ` e [p1] : t t l
(T-Inst)

∆; Γ;π ` e : t{p/α} ∆ ` p � q ∆ ` l

∆; Γ;π ` pack (p � q, e) : (∃α � q. t)l
(T-Pack)

∆; Γ;π ` e1 : (∃α � p. t1)l

∆, α � p; Γ, x : t1;π ` e2 : t2 α 6∈ ftv(Γ) ∪ ftv(t2)

∆; Γ;π ` open (α, x) = e1 in e2 : t2 t l
(T-Open)

∆; Γ;π ` e : t1 ∆ ` t1 ≤ t2
∆; Γ;π ` e : t2

(T-Sub)

Fig. 7. Modified typing rules of λRP with run-time authority
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∆ ` l
∆; Γ;π ` X{i} : Cl

(T-Cap)

∆; Γ;π ` e1 : (Pp1)l ∆; Γ;π ` e2 : (Pp2)l
∆, p1 � p2; Γ; π ` e3 : t ∆; Γ;π ` e4 : t

∆; Γ;π ` if (e1 � e2) e3 e4 : t t l
(T-IfDel)

∆; Γ;π ` e1 : (Pp1)l ∆; Γ;π ` e2 : (Pp2)l
∆, p1 � p2; Γ; π ` e3 : t ∆ ` p1 � π(delegatep1�p2

)

∆; Γ;π ` let (e1 � e2) in e3 : t t l
(T-LetDel)

∆; Γ;π ` e1 : Cl ∆; Γ;π ` e2 : (Pp)l
∆; Γ; (π, p . i)|l ` e3 : t ∆; Γ;π|l ` e4 : t

∆; Γ;π ` if (e1 ⇒ e2 . i) e3 e4 : t t l
(T-IfCert)

∆; Γ;π ` e : t2 ∆ ` t2 − t1 = s ∆ ` s � π(declassify)
∆; Γ;π ` declassify e t1 : t1

(T-Dcls)

∆; Γ;π ` e : t ∆ ` p � π(endorse)
∆; Γ;π ` endorse e p : t u {!p} (T-Endr)

∆; Γ;π ` e : (Pp)l

∆; Γ;π ` acquire e . i : (Cl + 1l)l

(T-Acq)

Fig. 8. Additional typing rules of λRP with run-time authority

The type of h is parameterized by a principal α, and the authority constraint [·]
indicates that no static authority is needed to call this function. Instead, h takes
a run-time principal user (whose static name is α), a capability cap, and some
data private to α. The body of the function tests whether capability cap provides
evidence that user has granted the program the declassify privilege. If so, the
first branch is taken and the data is declassified to the bottom label. Otherwise h
simply returns false.

The program h illustrates the use of the declassify e t expression, which de-
classifies the expression e of type t′ to have type t, where t′ and t differ only in their
security label annotations. The judgment ∆ ` t1 − t2 = s indicates that under the
acts-for hierarchy ∆, the type t1 may be declassified to type t2 using the authority
of the principals in s. We call s the set of declassification requisites (Figure 10),
which is computed by traversing through the types and collecting the authority in
labels:

s′ = {p | ∆ ` d2(p) � d1(p), ∆ ` d1(p) 6� d2(p)}
∆ ` {d1!s} − {d2!s} = s′

For example, ` bool{Alice:!}−bool{Alice:Bob!} = {Alice}, because Alice’s author-
ity is needed to add Bob as a reader. T-Dcls in Figure 8 is used when typechecking
the declassify expression.
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(A, X1 � X2), e3 −→ (A, X1 � X2), e′3
A, let (X1 � X2) in e3 −→ A, let (X1 � X2) in e′3

(E-LetDel)

A, let X1 � X2 in * −→ A, * (E-LetUnit)

A, let X1 � X2 in inl v −→ A, inl v (E-LetInl)

A, let X1 � X2 in inr v −→ A, inr v (E-LetInr)

A, let X1 � X2 in X −→ A, X (E-LetName)

A, let X1 � X2 in X{i} −→ A, X{i} (E-LetCap)

A, (let X1 � X2 in v1) v2 −→ A, let X1 � X2 in (v1 v2) (E-LetApp)

A, (let X1 � X2 in v) [p] −→ A, let X1 � X2 in (v [p]) (E-LetInst)

A, open (α, x) = (let X1 � X2 in v) in e (E-LetOpen)
−→ A, let X1 � X2 in (open (α, x) = v in e)

A ` X1{i} ⇒ X2 . i

A, if (X1{i} ⇒ X2 . i) e3 e4 −→ A, e3
(E-IfCertYes)

A ` X1{i} 6⇒ X2 . i

A, if (X1{i} ⇒ X2 . i) e3 e4 −→ A, e4
(E-IfCertNo)

A, declassify v t −→ A, v (E-Dcls)

A, endorse v p −→ A, v (E-Endr)

E ` X{i}
A, acquire X . i −→ A, inl X{i} (E-AcqYes)

E 6` X{i}
A, acquire X . i −→ A, inr *

(E-AcqNo)

Fig. 9. Additional evaluation rules of λRP with run-time authority

The typing judgments for run-time authority are of the form ∆; Γ;π ` e : t,
where π is the set of static capabilities available within the expression e. Given
static capabilities π, we write π(i) for the set of principals that have granted the
permission i; so π(i) = {p | p . i ∈ π}. In the rule T-Dcls, s is the set of principals
whose authority is needed to perform the declassification, therefore the condition
∆ ` s � π(declassify) says that the set of declassify-granting principals in the
static authority is sufficient to act for s.
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∆ ` u− u′ = s1 ∆ ` l − l′ = s2

∆ ` ul − u′l′ = s1 ∪ s2
(D-Label)

∆ ` 1− 1 = · (D-Unit)

∆ ` t1 − t′1 = s1 ∆ ` t2 − t′2 = s2

∆ ` (t1 + t2)− (t′1 + t′2) = s1 ∪ s2
(D-Sum)

∆ ` t′1 − t1 = s1 ∆ ` t2 − t′2 = s2

∆ ` (t1 → t2)− (t′1 → t′2) = s1 ∪ s2
(D-Fun)

∆ ` Pp − Pp = · (D-Name)

∆, α � p ` t− t′ = s

∆ ` (∀α � p. t)− (∀α � p. t′) = s
(D-All)

s′ = {p | ∆ ` d2(p) � d1(p), ∆ ` d1(p) 6� d2(p)}
∆ ` {d1!s} − {d2!s} = s′

(D-Label)

Fig. 10. Declassification requisites

For robustness [Zdancewic and Myers 2001; Zdancewic 2003; Myers et al. 2004],
we must ensure that the integrity of the data is reflected in the set of static capabil-
ities available.6 To do so, we define an operator π|l, that restricts the capabilities
in π to just those whose owners have delegated to principals present in the integrity
portion of the label l. With respect to hierarchy ∆, the formal definition is:

π|{d!s} = {p . i ∈ π | ∃q ∈ s. ∆ ` p � q}

The restriction operator occurs in the typing rules of branching constructs. For
example, T-Case in Figure 7 is the modified form of T-Case in Figure 3 for the
case expression.

The rule for capability certification also uses the restriction operator, but it also
adds the permission p . i before checking the branch taken when the capability
provides privilege i (T-IfCert in Figure 8).

Note that the restriction is applied after the permission is added, to prevent
the specious amplification of rights based on untrustworthy capabilities. At run
time, the validity of a capability under the current acts-for hierarchy determines
which branch of the certification expression is taken (E-IfCertYes and E-IfCertNo
in Figure 9).

To verify that a capability grants permission for principal X2 to perform some
privileged operation i, the run-time system determines whether the issuer X1 of
the capability acts for the principal X2 wanting to use the capability. It can be

6Although we do not carry out a robustness proof here, we expect that the methodology developed
by Myers et al. [2004] could be applied in this setting as well.
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implemented simply as A ` X2 � X1, but we want to keep the operation abstract
and show a PKI implementation in Section 6.

Function types capture the static capabilities that may be used in the body of the
function, and the modified rule for typechecking function application requires that
the static capabilities π of the calling context are sufficient to invoke the function
(T-Fun and T-App in Figure 7).

Finer-grained control of declassification can be incorporated into this framework
by refining the declassify privilege identifier with more information, for instance,
to give upper bounds on the data that may be declassified or distinguish between
declassify expressions applied for different reasons (see Section 6.2).

4.2 Endorsement and delegation

Endorsement is a downgrading mechanism for integrity policies, in the same way
that declassification is a downgrading mechanism for confidentiality policies. An
endorsement by principal p expresses the trust of p about the integrity of some
data, and hence requires p’s permission. Such an operation, like type-casts and
declassification, does not have any run-time effect. We use the privilege identifier
endorse ∈ I for such a privilege and use the expression endorse e p to express that
p endorses the integrity of e (see Figure 6). Its typing and evaluation (T-Endr and
E-Endr in Figure 8 and Figure 9) rules parallel those for declassification (T-Dcls
and E-Dcls).

Delegation, on the other hand, allows the acts-for hierarchy to change during
program execution—so far, the operational semantics has been given in terms of a
fixed A. When p delegates to q, then q may read or declassify all data readable or
owned by p; therefore, delegation is a very powerful operation that should require
permission from p.

We add a new expression let (e1 � e2) in e3 that allows programmers to
extend the acts-for hierarchy in the scope of the expression e3. Here, e1 and e2

must evaluate to run-time principals. Assuming their static names are p and q,
respectively, the body e3 is checked with the additional assumption that p � q.

Because delegation is a privileged operation, it needs the static authority of
principal p. We extend the set of privileges I to include additional identifiers of
the form delegatep�q. The constraint ∆ ` p � π(delegatep�q) ensures that
the capability to extend the acts-for hierarchy has been granted by p (T-LetDel in
Figure 8).

E-LetDel says that the body of a let-delegation term is evaluated to a value
under the extended acts-for hierarchy, but the original acts-for hierarchy is restored
afterwards. This ensures that the delegation is local to e3.

For simple values that are fully evaluated such as units, injections, principal
names and capabilities (to be introduced in the next subsection), we can forget the
extended delegation (see E-LetUnit, E-LetInl, E-LetInr, E-LetName and E-LetCap
in Figure 9).

For closure values that may contain a delayed computation such as function
closures, polymorphic generalizations and packages, the delayed computation may
capture the delegation constraint. Therefore, for our dynamic semantics to be type-
preserving (Theorem 14), let (X1 � X2) in v for such values v becomes a closure
value (see the definition of values in Figure 6) and auxiliary evaluation rules (see E-
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LetApp, E-LetInst and E-LetOpen in Figure 9) are necessary to lift or re-associate
such closures with each computation rule.

4.3 Acquiring capabilities

So far, this paper has not addressed how capability objects are obtained by the
running program. Because capabilities represent privileges conferred to the pro-
gram by run-time principals, they must be provided by the run-time system—they
represent part of the dynamic execution environment. In practice, capabilities may
be created in a variety of ways: the operating system may create an appropriate
set of capabilities after authenticating a user. If the capabilities are implemented
via digital certificates, then they may be obtained over the network using the un-
derlying PKI. Capabilities may also be generated by the system in response to user
input, for instance after prompting for user confirmation via a secure terminal.

To hide the details of the mechanism for producing capabilities, we model the
external environment as a black box E and write E ` X{i} to indicate that envi-
ronment E produces the capability X{i}. Using the expression acquire e.i, where
e evaluates to a run-time principal, the program can query the environment to see
whether a given capability is available. This operation either returns the corre-
sponding capability object X{i} or indicates failure by returning *. See T-Acq,
E-AcqYes and E-AcqNo in Figure 8 and Figure 9.

A common programming idiom is to obtain a run-time capability using acquire,
certify the capability, and, if both checks succeed, act using the newly acquired
abilities:

case (acquire user . declassify)
λcap :C. if (cap ⇒ user . declassify)

(declassify data t) (. . .)
λx :1. . . .

When written in this way, there appears to be a lot of redundancy in these
constructs. However, for the sake of modularity and flexibility, we separate the
introduction of a capability (acquire) from its validation (the if test) and the
use of the conferred privileges (the declassify). A surface language like Jif, would
provide syntactic sugar that combines the first two, the last two, or even all three of
these operations. Treating these features independently also allows more flexibility
for the programmer. For instance, the ability to pass capabilities as first class
objects is important in distributed settings, where one host may manufacture a
capability and send it to a second host that can verify the capability and act using
the privileges (see Section 6.2).

5. TYPE-SAFETY

As another theoretical contribution of this paper, we have extended the type-safety
result (Theorem 1) in Section 2 to the full language with downgrading and authority.
This property is specified as follows.

Theorem 6 (Type-safety).

(1 ) Progress: If A; ; π ` e : t, then e = v or A, e −→ A, e′ for some e′.
(2 ) Preservation: If A; ; π ` e : t and A, e −→ A, e′, then A′; ; π′ ` e′ : t for some

A′ and π′ such that A � A′ and π � π′.
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Remark 7. We have not proved a corresponding noninterference result for λRP

with the run-time authority because in this setting we are primarily concerned with
regulating declassification, which intentionally breaks noninterference. Other work
on a very similar language [Tse and Zdancewic 2005] formally proves that well-typed
programs not containing declassification or delegation satisfy noninterference.

The rest of this section sets up lemmas necessary to prove progress and preser-
vation of our full language.

5.1 Progress

The canonical form of a value can be uniquely determined by the inversion of typing
rules, except that any value can also be a delegation closure let X1 � X2 in v (as
discussed at the end of Section 4.2).

Lemma 8 (Canonical forms). If A; ; π ` v : t, then either v = let X1 �
X2 in v′, or one of the following holds:

(1 ) If A; ; π ` v : (t1 + t2)l, then v = inl v1, or v = inr v2.

(2 ) If A; ; π ` v : ([π2] t1 → t2)l, then v = λx : t. e.

(3 ) If A; ; π ` v : (PX)l, then v = X.

(4 ) If A; ; π ` v : Cl, then v = X{i}.
(5 ) If A; ; π ` v : (∀α � p. t)l, then v = Λα � p′. e, or v = let X1 � X2 in v′.

(6 ) If A; ; π ` v : (∃α � p. t)l, then v = pack (p � p′, e).

(7 ) If A; ; π ` v [p] : t, then p = X

Theorem 9 (Progress). If A; ; π ` e : t, then e = v or A, e −→ A, e′.

Proof. By induction on typing derivations. In case of T-Unit, T-Name, T-Cap,
T-Fun, or T-All, the expression is a value.

For the subcases when Lemma 8 (canonical forms) is applied, if the form is a
delegation closure, then progress is satisfied with some lifting rule described at the
end of Section 4.2. For example, if the term is e = v1 v2 where v1 = let X1 �
X2 in v′1, then e′ = let X1 � X2 in (v′1 v2).

—T-Var:
x : t ∈ ·

A; ; π ` x : t

Since the empty term context · cannot contain any variable binding x : t, this
case does not apply.

—T-Inl:
A; ; π ` e1 : t1 ` l

A; ; π ` inl e1 : (t1 + t2)l

By IH on e1,
(1) e1 = v: e = inl v is a value.
(2) A, e1 −→ A, e′1: by evaluation context E = inl E, we have e′ = inl e′1.

—T-Inr: symmetric to T-Inl.
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—T-Case:

A; ; π ` e0 : (t1 + t2)l A ` π2 � (π|l)
A; ; π ` v1 : ([π2] t1 → t0)l A; ; π ` v2 : ([π2] t2 → t0)l

A; ; π ` case e0 v1 v2 : t0 t l

By IH on e0,
(1) A, e0 −→ A, e′0: by evaluation context E = case E v1 v2, we have e′ =

case e′0 v1 v2.
(2) e0 = v: by Lemma 8 (canonical forms),

(a) e0 = inl v0: by E-CaseInl, e′ = v1 v0.
(b) e0 = inr v0: by E-CaseInr, e′ = v2 v0.

—T-App:
A; ; π ` e1 : ([π2] t1 → t2)l A; ; π ` e2 : t1 A ` π2 � (π|l)

A; ; π ` e1 e2 : t2 t l

By IH on e1 and e2,
(1) A, e1 −→ A, e′1: by evaluation context E = E e2, we have e′ = e′1 e2.
(2) e1 = v and A, e2 −→ A, e′2: by evaluation context E = v E, we have

e′ = v e′2.
(3) e1 = v1 and e2 = v2: by Lemma 8 (canonical forms), e1 = λx : t. e0: by

E-Fun, e′ = e0{v2/x}.

—T-IfDel:

A; ; π ` e1 : (Pp1)l A; ; π ` e2 : (Pp2)l
A, p1 � p2; ; π ` e3 : t0 A; ; π ` e4 : t0

A; ; π ` if (e1 � e2) e3 e4 : t0 t l

By IH on e1 and e2,
(1) A, e1 −→ A, e′1: by evaluation context E = if (E � e2) e3 e4, we have

e′ = if (e′1 � e2) e3 e4.
(2) e1 = v and A, e2 −→ A, e′2: by evaluation context E = if (v � E) e3 e4, we

have e′ = if (v � e′2) e3 e4.
(3) e1 = v1 and e2 = v2: by Lemma 8 (canonical forms),

(a) e1 = X1, e2 = X2 and A ` X1 � X2: by E-IfDelYes, e′ = e3.
(b) e1 = X1, e2 = X2 and A ` X1 6� X2: by E-IfDelNo, e′ = e4.

—T-LetDel:

A; ; π ` e1 : (Pp1)l A; ; π ` e2 : (Pp2)l
A, p1 � p2; ; π ` e3 : t0 A ` p1 � π(delegatep1�p2

)

A; ; π ` let (e1 � e2) in e3 : t0 t l

By IH on e1 and e2,
(1) A, e1 −→ A, e′1: by evaluation context E = let (E � e2) in e3, we have

e′ = let (e′1 � e2) in e3.
(2) e1 = v and A, e2 −→ A, e′2: by evaluation context E = let (v � E) in e3,

we have e′ = let (v � e′2) in e3.
(3) e1 = v1 and e2 = v2: by Lemma 8 (canonical forms), e1 = X1 and e2 = X2.

Then, by IH on e3:
(a) A, e3 −→ A, e′3: by E-LetDel, e′ = let (X1 � X2) in e′3.
(b) e3 = v: e = let (X1 � X2) in v is a value.
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—T-IfCert:

A ` e1 : Cl A ` e2 : (Pp)l A; ; (π, p . i)|l ` e3 : t0 A; ; π|l ` e4 : t0

A ` if (e1 ⇒ e2 . i) e3 e4 : t0 t l

By IH on e1 and e2,
(1) A, e1 −→ A, e′1: by evaluation context E = if (E ⇒ e2 . i) e3 e4, we have

e′ = if (e′1 ⇒ e2 . i) e3 e4.
(2) e1 = v and A, e2 −→ A, e′2: by evaluation context E = if (v ⇒ E . i) e3 e4,

we have e′ = if (v ⇒ e′2 . i) e3 e4.
(3) e1 = v1 and e2 = v2: by Lemma 8 (canonical forms),

(a) e1 = X1{i}, e2 = X2 and A ` X1{i} ⇒ X2 . i: by E-IfCertYes, e′ = e3.
(b) e1 = X1{i1}, e2 = X2 and A ` X1{i1} 6⇒ X2 . i2: by E-IfCertNo,

e′ = e4.

—T-Dcls:
A ` e0 : t2 A ` t2 − t1 = s A ` s � π(declassify)

A ` declassify e0 t1 : t1
By the evaluation context E = declassify E t1, or by E-Dcls.

—T-Endr:
∆; Γ;π ` e : t ∆ ` p � π(endorse)

∆; Γ;π ` endorse e p : t u {!p}
By the evaluation context E = endorse E t1, or by E-Endr.

—T-Acq:

A; ; π ` e0 : (Pp)l

A; ; π ` acquire e0 . i : (Cl + 1l)l

By IH on e0,
(1) A, e0 −→ A, e′0: by evaluation context E = acquire E . i, we have e′ =

acquire e′0 . i.
(2) e0 = v: by Lemma 8 (canonical forms), e0 = X{i}. Then, either

(a) E ` X{i}: by E-AcqYes, e′ = inl X{i}.
(b) E 6` X{i}: by E-AcqNo, e′ = inr *.

—T-Inst:
A; ; π ` e0 : (∀α � p. t0)l

A; ; π ` e0 [p] : t0 t l

By IH on e0,
(1) A, e0 −→ A, e′0: by evaluation context E = E [p], we have e′ = e′0 [p].
(2) e0 = v: by Lemma 8 (canonical forms), e0 = Λα � p. e1 and p = X: by

E-All, e′ = e1{X/α}.

—T-Pack:
A; ; π ` e0 : t{q/α} ∆ ` p � q ∆ ` l

A; ; π ` pack (X1 � X2, e0) : (∃α � q. t)l

By IH on e1,
(1) e0 = v: e = pack (X1 � X2, v) is a value.
(2) A, e0 −→ A, e′0: by evaluation context E = pack (X1 � X2, E), we have

e′ = pack (X1 � X2, e
′
0).
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—T-Open:
A; ; π ` e1 : (∃α � p. t1)l A, α � p; x : t1; ` e2 : t2 α 6∈ ftv(Γ) ∪ ftv(t2)

A; ; π ` open (α, x) = e1 in e2 : t2 t l
By IH on e1,
(1) A, e1 −→ A, e′1: by evaluation context E = open (α, x) = E in e2, we have

e′ = open (α, x) = e′1 in e2.
(2) e1 = v: by Lemma 8 (canonical forms), if e1 = pack (X1 � X2, e), then by

E-Some, e′ = e2{X1/α, v/x}.

—T-Sub:
A; ; π ` e0 : t1 A ` t1 ≤ t2

A; ; π ` e0 : t2
By IH on e0.

5.2 Preservation

Lemma 10 (Inversion).

(1 ) If ∆; Γ;π ` inl v : (t1 + t2)l, then ∆; Γ;π ` v : t1.
(2 ) If ∆; Γ;π ` inr v : (t1 + t2)l, then ∆; Γ;π ` v : t2.
(3 ) If ∆; Γ;π ` λx : t1. e : (t1 → t2)l, then ∆; Γ, x : t1 ` e : t2.
(4 ) If ∆; Γ;π ` Λα � p. e : (∀α � p. t)l, then ∆, α � p; Γ; π ` e : t.
(5 ) If ∆; Γ;π ` pack (p � q, e) : (∃α � p. t)l, then ∆; Γ;π ` e : t{q/α}.

Proof. By normalizing the typing derivations (via collapsing multiple applica-
tions of T-Sub into one application of T-Sub).

Lemma 11 (Weakening).

(1 ) If ∆; Γ;π ` e : t, then (∆, p1 � p2); (Γ, x : t′); (π, p . i) ` e : t.
(2 ) If ∆ ` t1 ≤ t2, then ∆, p � q ` t1 ≤ t2.
(3 ) If ∆ ` l1 v l2, then ∆, p � q ` l1 v l2.
(4 ) If ∆ ` c1 v c2, then ∆, p � q ` c1 v c2.
(5 ) If ∆ ` p1 � p2, then ∆, p � q ` p1 � p2.

Lemma 12 (Substitution for subtyping).

(1 ) If ∆ ` t1 ≤ t2, δ |= ∆ and A = δ(∆), then A ` δ(t1) ≤ δ(t2)
(2 ) If ∆ ` l1 v l2, δ |= ∆ and A = δ(∆), then A ` δ(l1) v δ(l2)
(3 ) If ∆ ` c1 v c2, δ |= ∆ and A = δ(∆), then A ` δ(c1) v δ(c2)
(4 ) If ∆ ` p1 � p2, δ |= ∆ and A = δ(∆), then A ` δ(p1) � δ(p2)
(5 ) If ∆, α � p ` t1 ≤ t2 and ∆ ` p′ � p, then ∆{p′/α} ` t1{p′/α} ≤ t2{p′/α}.
(6 ) If ∆, α � p ` l1 v l2 and ∆ ` p′ � p, then ∆{p′/α} ` l1{p′/α} v l2{p′/α}.
(7 ) If ∆, α � p ` c1 v c2 and ∆ ` p′ � p, then ∆{p′/α} ` c1{p′/α} v c2{p′/α}.
(8 ) If ∆, α � p ` p1 � p2 and ∆ ` p′ � p, then ∆{p′/α} ` p1{p′/α} � p2{p′/α}.

The last four rules are special cases of the first four. The first four rules are used
in proving Lemma 4 (substitution for logical relations), while the last four are used
in proving Lemma 13 (substitution for typing).
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Lemma 13 (Substitution for typing).

(1 ) If ∆; Γ;π ` e : t, δ |= ∆, A = δ(∆) and A ` γ |= δ(Γ), then A; ; π ` γδ(e) : δ(t).
(2 ) If ∆; Γ, x : t′;π ` e : t and ∆; Γ;π ` v : t′, then ∆; Γ;π ` e{v/x} : t.
(3 ) If ∆, α � p; Γ; π ` e : t and ∆ ` X � p, then ∆{X/α}; Γ{X/α};π{X/α} `

e{X/α} : t{X/α}.

The last two rules are special cases of the first. The first rule is used in proving
Lemma 4 (substitution for logical relations), while the last two are used in proving
Theorem 14 (preservation).

Theorem 14 (Preservation). If A; ; π ` e : t and A, e −→ A, e′, then A′; ; π′ `
e′ : t for some A′ and π′ such that A � A′ and π � π′.

Proof. By induction on the typing derivations. For steps taken with some
evaluation context, the typing holds simply because of induction hypothesis. In
case of T-Var, T-Unit, T-Fun, T-Name, T-Cap, T-Gen, or T-Pack, there is no
evaluation.

For steps taken with some lifting rule described at the end of Section 4.2, the
typing holds simply because of weakening. For example, in case of function appli-
cations, A, (let X1 � X2 in v1) v2 −→ A, let X1 � X2 in (v1 v2). By Lemma 11
(weakening) , A, X1 � X2; ; π1 ` v2 : t1. The result follows by T-App.

—T-Case:

A; ; π ` e0 : (t1 + t2)l A ` π2 � (π|l)
A; ; π|l ` v1 : ([π2] t1 → t0)l A; ; π|l ` v2 : ([π2] t2 → t0)l

A; ; π ` case e0 v1 v2 : t0 t l

Case E-CaseInl: A, case (inl v) v1 v2 −→ A, v1 v. By Lemma 10 (inversion),
A; ; π ` v : t1. The result follows by Lemma 11 (weakening) and T-App.

Case E-CaseInr: symmetric to E-CaseInl.

—T-App:
A; ; π1 ` e1 : ([π2] t1 → t2)l A; ; π1 ` e2 : t1 A ` π2 � (π1|l)

A; ; π1 ` e1 e2 : t2 t l

Case E-Fun: A, (λx : t1. e0) v −→ A, e0{v/x}. By Lemma 10 (inversion), ∆; Γ, x : t1 `
e0 : t2. Then, by Lemma 13 (substitution for typing), A; ; π ` e0{v/x} : t2. The
result follows by T-Sub.

—T-IfDel:

A; ; π ` e1 : (Pp1)l A; ; π ` e2 : (Pp2)l
A, p1 � p2; ; π ` e3 : t0 A; ; π ` e4 : t0

A; ; π ` if (e1 � e2) e3 e4 : t0 t l

Case E-IfDelYes:
A ` X1 � X2

A, if (X1 � X2) e3 e4 −→ A, e3. Let A′ = A, p1 � p2. The
result follows by Lemma 11 (weakening) and T-Sub.

Case E-IfDelNo: similar to E-IfDelYes.

—T-LetDel:

A; ; π ` e1 : (Pp1)l A; ; π ` e2 : (Pp2)l A; ; π ` e3 : t0

A; ; π ` let (e1 � e2) in e3 : t0 t l
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Case E-LetDel: by Lemma 11 (weakening) and T-Sub.

—T-IfCert:

A; ; π ` e1 : Cl A; ; π ` e2 : (Pp)l A; (π, p . i)|l ` e3 : t0 A; ; π|l ` e4 : t0

A; ; π ` if (e1 ⇒ e2 . i) e3 e4 : t0 t l

Case E-IfCertYes:
A ` X1{i} ⇒ X2 . i

A, if (X1{i} ⇒ X2 . i) e3 e4 −→ A, e3. Let π′ = π, p . i. The
result follows by T-Sub.

Case E-IfCertNo: similar to E-IfCertYes.

—T-Dcls:
A; ; π ` e0 : t2 A ` t2 − t1 = s A ` s � π(declassify)

A; ; π ` declassify e0 t1 : t1

Case E-Dcls: A, declassify v t0 −→ A, v. Assume we only declassify a label at
the top-level type, that is A ` ul′ − ul = s, where t2 = ul′ and t1 = ul. Since we
can assign any label to the top-level type of a value (according to T-Unit, T-Inl,
T-Inr, T-Fun, T-Name, T-Cap, T-All, and T-Pack), we can change the type of v
from A; ; π ` v : ul′ to A; ; π ` v : ul.
If we declassify a label inside the structure of a type (in particular, the parameter
type of a function), we need to weaken the theorem such that evaluation preserves
types only in the erasure semantics. That is, if A; ; π ` e : t and A, bec −→
A, be′c, then A; ; π ` be′c : t, where b·c is the type-erasure function. We omit the
proof for this general case here.

—T-Endr:
∆; Γ;π ` e : t ∆ ` p � π(endorse)

∆; Γ;π ` endorse e p : t u {!p}

Case E-Endr: A, endorse v p −→ A, v. Similar to T-Dcls, we can change the
type of v from A; ; π ` v : ul′ to A; ; π ` v : ul.

—T-Acq:

A; ; π ` e0 : (Pp)l

A; ; π ` acquire e0 . i : (Cl + 1l)l

Case E-AcqYes:
E ` X{i}

A, acquire X . i −→ A, inl X{i}. By T-Cap and T-Inl.

Case E-AcqNo: similar to E-AcqYes.

—T-Inst:
A; ; π ` e0 : (∀α � p2. t0)l A ` p1 � p2

A; ; π ` e0 [p1] : t0 t l

Case E-All: A, (Λα � p. e0) [X] −→ A, e0{X/α}. By Lemma 10 (inversion),
∆; Γ, α ` e0 : t0 t l. Then, by Lemma 13 (substitution for typing), A; ; π `
e0{X/α} : t0. The result follows by Lemma 11 (weakening) and T-Sub.

—T-Open:
A; ; π ` e1 : (∃α � p. t1)l A, α � p; x : t1; ` e2 : t2 α 6∈ ftv(Γ) ∪ ftv(t2)

A; ; π ` open (α, x) = e1 in e2 : t2 t l
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Case E-Some: A, open (α, x) = (pack (X1 � X2, v)) in e2 −→ A, e2{X1/α, v/x}.
By Lemma 13 (substitution for typing), A; ; π ` e2{X1/α, v/x} : t2. The result
follows by T-Sub.

—T-Sub:
A; ; π ` e0 : t1 A ` t1 ≤ t2

A; ; π ` e0 : t2
By IH on e0.

6. PKI AND APPLICATION

6.1 Public key infrastructures

This section considers some possible implementations of run-time principals, con-
centrating on one interpretation in terms of a public key infrastructure.

If run-time principals are added to an information-flow type system whose pro-
grams are intended to run within a single, trusted execution environment, the
implementation is straightforward: the trusted run time maintains an immutable
(and persistent) mapping of principal names to unique identifiers, the acts-for hier-
archy is a directed graph with nodes labeled by identifiers, and capabilities can be
implemented as (unforgeable) handles to data structures created by the run-time
system—this is the strategy currently taken by Jif.

If the programs are intended to run in a distributed setting, the implementa-
tion becomes more challenging. Fortunately, the appropriate machinery (principal
names, delegation, and capabilities) has already been developed using public-key
cryptography [Gasser and McDermott 1990; Howell and Kotz 2000]. We can inter-
pret the acts-for hierarchy and run-time tests of λRP in terms of PKI as follows:
run-time principals are implemented via public keys, the acts-for hierarchy is imple-
mented via certificate chains, and capabilities are implemented as digitally signed
certificates.

Formally, we have the following interpretation that maps the abstract syntax for
privileges, capabilities, and the principal comparison tests of λRP into their concrete
representations. Here, KX is the public key corresponding to X and K−1

X {[[i]]} is a
certificate containing [[i]]signed using X’s private key. The strings dcls and del
provide the content for the certificates, and they indicate the type of privilege
granted by possession of the the certificate. The remaining constructs (the acts-for
relation and the privileged operations) are simply interpreted as tuples of data:

[[X]] = KX

[[X1 � X2]] = (KX1 , KX2)
[[X{i}]] = K−1

X {[[i]]}
[[X . i]] = (KX , [[i]])

[[declassify]] = dcls
[[delegateX1�X2

]] = (del, KX1 , KX2)

The judgment A ` X1 ⇒ X2 . i, which is used in the rule E-IfCertYes translates
to the following rule:
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(KX2 , KX1) ∈ [[A]]∗

A ` K−1
X1
{[[i]]} ⇒ (KX2 , [[i]])

Here, the interpretation of the acts-for hierarchy, [[A]]∗, is a binary relation on
public keys—the reflexive, transitive closure of the point-wise interpretation of the
delegation pairs.

Given these definitions, it is clear how to interpret the capability verification—
we use cryptographic primitives to verify that the digital certificate is signed by
the corresponding public key. In the reflexive case, we need to check whether the
capability X1{i} permits the privilege X2 . j (in this instance, the judgment is
A ` X{i} ⇒ X . j). The translation of the capability is K−1

X1
{[[i]]}; the translation

of the privilege is the pair (KX2 , [[j]]). Operationally, the implementation tries to
use the key KX2to verify the signature, and if the signature is valid (which implies
that KX1= KX2) also checks to make sure that the contents of the certificate match
(it checks whether [[i]]= [[j]]). If all of these checks succeed, the acts-for hierarchy
permits the privilege (and evaluation proceeds according to rule E-IfCertYes). If the
check fails, the implementation must check for a sequence of delegation certificates
that permits the privilege.

The implementation uses graph reachability to test for transitive acts-for relations
in A. It is easy to show that the existence of a path in [[A]]∗ implies the existence
of a valid certificate chain. In general, the justification for constraint p1 � π(i) is
the existence of some certificate chain of the form:

K−1
p1
{[[p1 � p2]]} ↔ K−1

p2
{[[p2 � p3]]} ↔ . . . ↔ K−1

pn−1
{[[pn−1 � pn]]} ↔ K−1

pn
{[[i]]}

Only key Kp1 is needed to validate this chain, since each delegation certificate
contains the key needed to validate the next certificate in the sequence. The PKI
implementation must find such a chain at run time to justify granting privilege i.

The initial acts-for hierarchy contains only information relating principals to the
universally trusted principal >. The principal > behaves as a certificate authority
that generates private keys and issues certificates binding principal names to their
corresponding public keys. To satisfy the axiom ∆ ` X � >, we assume that each
host’s run-time is configured with K−1

X {[[X � >]]} and (KX , K>) ∈ [[A]] for each X—
this information would be acquired by a host when it receives the binding between
principal X and key KX from the certificate authority. The initial hierarchy consists
of (KX , K>) pairs. As the program runs, additional delegation key pairs are added
to the hierarchy by the let (X1 � X2) in . . . binding (corresponding to E-LetDel).

We illustrate this process by example. Consider the following program that takes
in two capabilities and some data owned by Alice and attempts to declassify it.

1 λc1 :C. λc2 :C. λx :bool{Alice :!}.
2 if (c1 ⇒ Alice . delegateAlice�Bob)
3 let (Alice � Bob) in
4 if (c2 ⇒ Bob . declassify)
5 declassify x bool{!}
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By the typing rule T-Dcls of declassification, line 5 needs the authority p .
declassify for some p acting for Alice because Alice’s policy is being weakened:

` bool{Alice :!} − bool{!} = {Alice}

The PKI implementation justifies the presence of Alice’s authorization. Assume
the acts-for hierarchy A at line 1 is the default hierarchy consisting of only (KX , K>)
pairs. Line 2 uses [[Alice]] = KAlice to verify the certificate A ` c1 ⇒ (KAlice , [[i]])
where [[i]] = [[delegateAlice�Bob ]] = (del, KAlice , KBob). Since the acts-for hierarchy
is otherwise empty, c1 must be of the form K−1

Alice{[[i]]} or K−1
> {[[i]]}. The first certifi-

cate can be validated using only KAlice ; the second can be validated starting from
KAlice by checking the certificate chain K−1

Alice{[[Alice � >]]} ↔ K−1
> {[[i]]}. If one of

these chains is valid, line 3 adds the delegation information into the hierarchy so
that (KAlice , KBob) ∈ [[A]].

Similarly, there are two certificates c2 that may justify the static condition

Alice � π(declassify) = Alice � Bob

required by rule T-Dcls in line 5. If c2 = K−1
Bob{dcls}, the static condition holds at

runtime because we can find the chain:

K−1
Alice{[[Alice � Bob]]} ↔ K−1

Bob{dcls}

If c2 = K−1
> {dcls} we can find the chain:

K−1
Alice{[[Alice � Bob]]} ↔ K−1

Bob{[[Bob � >]]} ↔ K−1
> {dcls}

6.2 Application to distributed banking

Figure 11 shows a more elaborate example λRP program that implements a dis-
tributed banking scenario in which a customer interacts with their bank through
an ATM. The example uses a number of standard constructs such as integers, pairs,
let-binding, and existential types with multiple arguments that are not in λRP, but
could readily be added or encoded [Pierce 2002]. The main functions for the ATMs
and the Bank are shown, along with the types of various auxiliary functions.

The static principals are Bank and ATM1 through ATMn , and there are two
run-time principals, user and agent. The principal user is the customer at an
ATM; agent is the Bank ’s name for one of the n ATMs that may connect to the
bank server. On the top of Figure 11 are the type declarations of the functions
used, in the middle is the client code for ATMj (a particular ATM), and at the
bottom is the bank server code.

At the ATMj , the customer logs in with the bank card and the password, re-
vealing his identity [user, userid] and allowing ATMj to act for him (represented
by the capability cdel). Then ATMj interacts with user to obtain his request such
as withdrawing $100. This interaction is modeled by the acquire. The ATM
client packs the identities ATMj and userid and the delegation cdel and the request
creq certificates into a message. To send the message over the channel to Bank ,
ATMj gives up the ownership of the data by declassifying the message to have label
{Bank:Bank!}. As a result of the transaction with the bank server, ATMj obtains
the new account balance of the customer. Finally, ATMj prompts to determine
whether the user wants a receipt, which requires a declassification certificate to
print.
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ATMj main : [ATMj . declassifynet]1→ 1
Bank main : [Bank . declassifynet]1→ 1

request : ∃(agent, user). ((Pagent, Puser, C, C){Bank:Bank!}
→ int{agent:agent!agent})

listen : 1→ ∃(agent, user).
(Pagent, Puser, C, C, (int{agent:agent!} → 1)){Bank:Bank!Bank}

login : 1→ (∃user. Puser, C){ATMj :ATMj !}
print : int{!} → 1

get : ∀user. Puser → int{Bank:Bank!}
set : ∀user. Puser → int→ 1

ATMj main = λx : 1.
open [user, (userid, cdel)] = login * in
case (acquire userid . withdraw100)

λcreq : C. let message = (ATMj , userid, cdel, creq) in
let data = declassifynet message (PATMj , Puser, C, C){Bank:Bank!} in

let balance = request (pack ((ATMj , user), data) in
case (acquire userid . declassifyprt)

λcprt : C. if (cprt ⇒ userid . declassifyprt)
let data = declassifyprt balance int{!} in
print data

· · · // other banking options

Bank main = λx : 1.
open ((agent, user), (agentid, userid, cdel, creq, reply)) = listen * in
if (cdel ⇒ userid . delegateuser�agent)
let (userid � agentid) in
if (cdel ⇒ userid . withdraw100)
let old = get [user] userid in
let balance = old− 100 in
set [user] userid balance;
let data = declassifynet balance int{user:user!} in
reply data

· · · // other banking options

Fig. 11. A distributed banking example

This example makes use of fine-grained declassify privileges to distinguish be-
tween the printing (declassifyprt) and network send (declassifynet) uses of de-
classification. these variants have the same static and dynamic semantics as the
declassify (as formulated in the last section), the subscripts are only annotations
that explicitly distinguish different uses of declassifcation.

The bank server listens over the private channel and receives the message. The
listen function also provides a reply channel so that the balance can be returned to
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the same ATM. The server determines that user has logged in to ATMj by verifying
cdel, and if so, checks that the request capability is valid. If so, the server updates
its database, and declassifies the resulting balance to be sent back to the ATM. In
practice Bank will also want to log the certificates for auditing purposes.

In the functions request and listen, we assume the existence of a private network
between ATMj and Bank , which can be established using authentication and en-
cryption. Since the network is private, the outgoing data must be readable only by
the receiver; and, since the network is trusted, the incoming data has the integrity
of the receiver. The labels of their types faithfully reflect this policy: for example,
{Bank:Bank!} vs. {agent:agent!agent} in the type of request.

Note that the run-time authority for declassification and delegation are provided
by the customer—they are acquired by the interaction of ATMj and user. In
contrast, in the types of ATMj main and Bank main, the static capability re-
quirements [ATMj . declassifynet] and [Bank . declassifynet] indicate that the
authorities to declassify to the network must be established from the caller.

Our type system does not prevent information leaks through computational ef-
fects such as printing or network input/output. Our ongoing research uses monads
to incorporate such static analysis, in the same spirit as the work by Crary et
al. [2004].

7. DISCUSSION

7.1 Related work

The work nearest to ours is the Jif project, by Myers et al. [1999]. The Jif compiler
supports run-time principals but its type system has not been shown to be safe.
Our noninterference proof for λRP is a step in that direction. Jif also supports run-
time labels [Zheng and Myers 2004], which are run-time representations of label
annotations, and a switch label construct that lets programs inspect the labels
at runtime. Although it is desirable to support both run-time labels and run-time
principals, the two features are mostly orthogonal.

While the core λRP presented here is not immediately suitable for use by pro-
grammers (more palatable syntax would be needed), λRP can serve as a typed in-
termediate representations for languages like Jif. Moreover, this approach improves
on the current implementation of the decentralized label model (DLM) because Jif
does not support declassification of data owned by run-time principals, nor does
it provide language support for altering the acts-for hierarchy. Our separation of
static principals from their run-time representations also clarifies the type checking
rules.

The ability to perform acts-for tests at runtime is closely related to intensional
type analysis, which permits programs to inspect the structure of types at runtime.
Our use of singleton types like Pp to tie run-time tests to static types follows the
work by Crary, Weirich, and Morrisett [2002]. Static capability sets π in our type
system are a form of effects [Jouvelot and Gifford 1991], which have also been
used to regulate the read and write privileges in type systems for memory manage-
ment [Crary et al. 1999]. Simonet and Pottier [2004] have an interesting example
of using guarded algebraic datatypes to express such run-time types and run-time
tests.
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The robustness condition on the set of run-time capabilities is very closely re-
lated to Java’s stack inspection model [Wallach and Felten 1998; Wallach et al. 2000;
Fournet and Gordon 2002; Pottier et al. 2001]. In particular, the enable-privilege
operation corresponds to our if (e1 ⇒ e2 . i) e3 e4 and the check-privileges oper-
ation corresponds to the constraint on π in the declassify rule. The restriction
π|l of capability sets in the type-checking rule for function application corresponds
to taking the intersection of privilege sets in these type systems. However, stack
inspection is not robust in the sense that data returned from an untrusted context
can influence the outcome of privileged operations [Fournet and Gordon 2002]. In
contrast, λRP tracks the integrity of data and restricts the capability sets according
to the principals’ trust in the data—this is why the restriction π|l appears in the
typechecking rule for case expressions.

Banerjee and Naumann [2003] have previously shown how to mix stack inspection-
style access control with information-flow analysis. They prove a noninterfer-
ence result, which extends their earlier work on information-flow in Java-like lan-
guages [Banerjee and Naumann 2002]. Unlike their work, this paper considers
run-time principals as well as run-time access control checks. Incorporating the
principals used by the DLM into the privileges checked by stack inspection allows
our type system to connect the information-flow policies to the access control policy,
as seen in the typechecking rule for declassify.

We have proposed the use of public key infrastructures as a natural way to imple-
ment the authority needed to regulate declassification in the presence of run-time
principals. Although the interpretation of principals as public keys and authorized
actions as digitally signed certificates is not new, integrating these features in a
language with static guarantees brings new insights to information-flow type sys-
tems. This approach should facilitate the development of software that interfaces
with existing access-control mechanisms in distributed systems [Howell and Kotz
2000; Gasser and McDermott 1990].

Making the connection between PKI and the label model more explicit may have
additional benefits. Myers and Liskov observed that the DLM acts-for relation is
closely related to the speaks-for relation in the logical formulation of distributed
access control by Abadi et al. [1993]. Adopting the local names of the SDSI/SPKI
framework [Abadi 1998] may extend the analogy even further. Chothia et al. [2003]
also use PKI to model typed cryptographic operations for distributed access control.

Lastly, although capability mechanism in λRP provides facilities for programming
with static and run-time capabilities, we do not address the problem of revocation.
It would be useful to find suitable language support for handling revocation, such as
that found in the work by Jim and Gunter [2001; 2000], but we leave such pursuits
to future work.

7.2 Conclusions

Information-flow type systems are a promising way to provide strong confidential-
ity and integrity guarantees. However, their practicality depends on their ability to
interface with external security mechanisms, such as the access controls and authen-
tication features provided by an operating system. Previous work has established
noninterference only for information-flow policies that are determined at compile
time, but such static approaches are not suitable for integration with run-time
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security environments.
This paper addresses this problem in three ways: (1) We prove noninterference

for an information-flow type system with run-time principals, which allow secu-
rity policies to depend on the run-time identity of users. (2) We show how to
safely extend this language with a robust access-control mechanism, a generaliza-
tion of stack inspection, that can be used to control privileged operations such as
declassification and delegation. (3) We sketch how the run-time principals and the
acts-for hierarchy of the decentralized label model can be interpreted using public
key infrastructures.

Our ongoing research attempts to use monads, in the same spirit as the depen-
dency core calculus by Abadi et al. [1999], to simplify the design of the decentral-
ized label model. In particular, we model all downgrading mechanisms uniformly
as subtyping to allow a simple formulation and proof of a conditioned version of
noninterference, even in the presence of downgrading.
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A. FULL SYNTAX

p ::= Principals
α variable
X name

s ::= · | p, s Principal sets
c ::= · | p : s Policies
d ::= · | c; d Policy sets
l ::= {d!s} Labels

∆ ::= · | ∆, p � p Principal environments
A ::= · | A, X � X Acts-for hierarchies
Γ ::= · | Γ, x : t Term environments
π ::= · | π, p . i Authority
δ ::= · | δ, α 7→ X Principal substitutions
γ ::= · | γ, x 7→ v Term substitutions

t ::= ul Secure types
u ::= Plain types

1 unit
t + t sum
[π] t → t function
∀α � p. t universal
∃α � p. t existential
Pp principal
C capability

v ::= Values
* unit
inl v left injection
inr v right injection
λx : t. e function
Λα � p. e generalization
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pack (p � q, e) packing
X principal constant
let (X1 � X2) in v let delegate
X{i} capability

e ::= Terms
v value
x variable
inl e left injection
inr e right injection
case e v v sum case
e e application
e [p] instantiation
open (α, x) = e in e opening
if (e � e) e e if delegate
let (e � e) in e let delegate
if (e ⇒ e . i) e e if certify
declassify e t declassify
endorse e p endorse
acquire e . i acquire

i ::= Privileges
declassify declassification
endorse endorsement
delegatep�p delegation
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